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Summary 

 

The hippocampal formation’s role in spatial navigation and as the brain’s internal metric of 

space has been recognized since the discovery of place cells and grid cells. Through extensive 

research, mostly conducted in rodents, we know much about these cortical areas’ projections, 

morphology and cellular firing properties. However, how this cortical network encodes a met-

ric of space is not fully understood, and knowledge from human experiments is sparse. Hu-

man research is methodologically and ethically more difficult to conduct. Today, the most 

used measurement of human grid cell activity is hexadirectional differences in fMRI BOLD-

signalling in humans exploring a virtual reality environment. The evidence for this signal 

originating from grid cells comes from electrophysiological cell recordings in rats, but the ev-

idence is inconclusive and has never before been replicated. Replicating this evidence could 

clarify the reliability of much of today’s fMRI research on human grid cell activity. Utilizing 

single cell recordings could also answer parts of a much bigger question, addressing the cellu-

lar mechanisms behind the six-fold symmetry seen in fMRI BOLD-signal during human navi-

gation as well as the mechanism behind the fMRI BOLD-signal itself.    
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Samandrag 

 

Hippocampusformasjonen si rolle i romleg navigering og som hjernen sitt indre romlege kart 

har vore annerkjend sidan oppdaginga av stadsceller og gitterceller. Gjennom omfattande 

forsking, hovudsakleg utført i gnagarar, veit vi mykje om denne kortikale områda sine projek-

sjonar, morfologi og cellulære fyringseigenskapar. Korleis dette nettverket av nevron kodar 

eit mentalt kart er derimot ikkje fullt ut forstått, og det er sparsamt med kunnskap frå eksperi-

ment på menneske. Menneskeforsøk er metodisk og etisk vanskelegare å utføre. I dag er det 

mest brukte målet på gittercelleaktivitet hos menneske seksdelt rotasjonssymmetri i fMRI 

BOLD-signal hos menneske som utforsker ei virtuell røynd. Evidensen for at desse signalend-

ringane kjem frå gitterceller baserer seg på elektrofysiologiske opptak av nevron i rotteforsøk, 

men evidensen er inkonklusiv og har aldri før vore replikert. Replikasjon av dette evidens-

grunnlaget kan seie noko om reabiliteten til mykje av forskinga på gitterceller som i dag gje-

rast med fMRI på menneske. Ved å bruke opptak frå enkeltceller kan ein samstundes svare på 

delar av eit mykje større spørsmål om dei cellulære mekanismane bak den seksdelte rotasjons-

symmetrien ein observerer i fMRI BOLD-signal medan menneske navigerer like så som me-

kanismen bak fMRI-signalet i seg sjølv. 
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Introduction 

 

The hippocampal formation 

The hippocampal formation is a phylogenetically old structure, highly conserved across mammalian 

species in regard of both structure and function (1). This structure consists of the hippocampus proper 

with its areas CA1-3, the dentate gyrus (DG), the entorhinal cortex and the subiculum with the adja-

cent pre- and parasubiculum (Fig. 1). The entorhinal-hippocampal system caught interest early be-

cause of their strong reciprocal projections (2). Today, the entorhinal cortex is known as a nodal point 

between the neocortex and upstream sensory cortices on one side, and the hippocampus on the other 

side (3-5). Since the hippocampal projections are reciprocal to that of its input via the entorhinal cor-

tex, the natural idea of hippocampal functioning is modification of the signals it receives.   

 

A cognitive map of space 

Studies of hippocampal functioning in Henry Molaison, also known as patient H.M., who underwent 

bilateral removal of the hippocampal formation and uncus due to drug treatment-resistant temporal 

lobe epilepsy, concluded that the hippocampus was crucial both for the formation of episodic memo-

ries and spatial navigation (6, 7). Investigations of the cellular mechanisms for hippocampal function 

with single cell electrophysiological recordings in rats lead to the discovery of place cells (8). These 

hippocampal neurons show specific firing at certain locations when an animal freely forages an envi-

ronment (Fig. 2). Different place cells have different preferred firing locations and could therefore 

make out a spatial map. The discovery of place cells in the hippocampus lead to the cognitive map the-

Figure 1| Anatomy of the hippocampal 

formation. Top left shows a transverse 

section of the hippocampal formation from 

the right hemisphere of a rat; top right 

shows a schematic sagittal section (A: an-

terior, P: posterior, D: dorsal, V: ventral). 

Together, this shows the anatomical rela-

tions between the cornua ammonis (CA1-

3), the dentate gyrus (DG), the subiculum, 

the presubiculum (PrS) and parasubiculum 

(PaS), the medial entorhinal cortex (MEC) 

and the lateral entorhinal cortex (LEC). 

The bottom part of the figure shows the 

main connectivity between these areas, and 

emphasizes the entorhinal cortex as a nodal 

point between the neocortex and the hippo-

campus.  

 

From: E. I. Moser et al., Grid cells and 

cortical representation. Nat. Rev. Neurosci. 

15, 466-481 (2014). 
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ory, proclaiming the hippocampus as a cognitive map of space (9). The two functions of the hippo-

campus – formation of episodic memory and spatial navigation – seem disparate yet should still 

emerge from the same neural algorithm. Interestingly, it is hypothesised that these two functions 

emerge from the same mechanism; in other words that navigating in mental space (episodic memory) 

and physical space (spatial navigation) is based on the same neural encoding (10). 

 

 

The discovery of place cells led to questions concerning the origin of the space metric. The hippocam-

pus, being far downstream from primary sensory cortices, could either encode the space metric by in-

trinsic mechanisms, or it could be encoded in another cortical area from which the hippocampus re-

ceives input. Due to the minimal intrinsic connections between CA1 cells, which does not hold true for 

CA3 cells, an intrinsic mechanism would likely be computed by connections between CA1 and CA3 

(11, 12). However, completely lesioning the CA3 projections to the CA1 proved insufficient to disrupt 

the sharpness and stability of CA1 place cell firing, thus speaking against an intrinsic mechanism of 

the hippocampus in the formation of place cells (13). Therefore, focus moved towards the parahippo-

campal region, with special interest of the medial entorhinal cortex (MEC) due to its nodal role be-

tween the hippocampus and the neocortex with strong projections to both CA1, CA3 and the DG. 

Electrophysiological single cell recordings in layer II (LII) and layer III (LIII) of the MEC showed 

cells with sharp and stable multiple firing fields, similar to those seen in place cells, that even kept 

their firing properties after lesional removal of the hippocampal output (14). Being upstream of hippo-

campal place cells, and unaffected by removal of hippocampal output, these cells were a likely source 

for generating place cell activity. These cells were to be known as grid cells (15).  

 

Unlike place cells, that has one firing field in a simple environment, grid cells have several firing 

fields placed in a strikingly regular hexagonal pattern tiling the environment as a mosaic made of 

solely equilateral triangles. The cells fire irrespective of absence of visual input or changes in the ani-

mals speed or direction (15). Three distinct features characterize grid cells: scale, phase and orienta-

tion. Grid scale describes the distance between two adjacent firing fields; grid phase is the relative 

Figure 2 | Hippocampal place cell. Electrophysiological 

single cell recordings from rat CA1 show that some of the 

neurons have preferred firing to certain locations in the en-

vironment. Left part shows the running trajectory (grey) of a 

rat foraging an open field box (1 m x 1 m), with each spike 

from this neuron superimposed as red dots coherent to the 

location of the animal when the spike occurred. Right part 

shows a heat map of the spiking activity, with red being 

maximal activity and blue being minimal activity.  

 

From: K. M. Igarashi, The entorhinal map of space. Brain 

Res. 1637, 177-187 (2016). 
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shift of firing fields in the xy-plane; and grid orientation is the angle between the grid axes and the en-

vironment (15). Grid scale increases along the dorsoventral axis, and grid cells with equal grid scale 

are more likely to share grid orientation than grid cells with different scale (16). This grouping of simi-

lar grid cells is called grid modules, and the modular organization goes along the dorsoventral axis of 

the MEC (Fig. 3). The increase in grid scale is also discretized, increasing with a factor of approxi-

mately 1,42 from one module to the next (17). 

  

With the existence of both place and grid cells, the path was set for studying the relationship between 

these cells. Rooting in anatomical projections, several studies were conducted to understand the inde-

pendency of these cell types. One such study exploited the different projection from LII and LIII of the 

MEC to the hippocampus. The superficial MEC projections go to CA1 through either a direct or an 

indirect pathway. The direct projections go from LIII directly to CA1, whilst the indirect projections 

go from LII to CA3 and the DG, which successively project back to CA1. Selectively impairing the 

direct input to CA1 from MEC LIII neurons would therefore lead to altered grid cell input to CA1, 

Figure 3 | Grid cell firing properties and modular organization of grid cells. Top left shows the firing of 

a grid cell of a rat foraging a 2,2 m square box in a path plot with running trajectory (grey) and superimposed 

spikes (black). Note the remarkable hexagonal organization of firing fields. Bottom left shows the three 

properties in which grid cells variate, scale, orientation and phase, by comparing the firing fields of two sim-

ulated grid cells (blue and green). Top right shows a sagittal Nissl stained section from rat MEC (red), with 

representative plots like top left showing an increase in grid scale along the dorsoventral axis of the MEC. 

Bottom right shows the discretized organization of grid scale of grid cells from one rat. Cells were plotted 

successive in the order they were recorded from dorsal to ventral part of the MEC. Cells could then be clus-

tered into discrete modules.  

 

Left panel from: E. I. Moser et al., Grid cells and cortical representation. Nat. Rev. Neurosci. 15, 466-481 

(2014). 

Right panel from:  K. M. Igarashi, The entorhinal map of space. Brain Res. 1637, 177-187 (2016). 
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while conserving input to CA3. Such impairment resulted in larger and less sharp firing fields of CA1 

place cells, while CA3 place cells were unaffected (18). In the reverse direction, studying the entorhi-

nal grid map’s dependence of hippocampal input by silencing the hippocampus, grid cells have shown 

to lose their spatial firing properties when excitatory projects from the hippocampus cease (19). Dis-

rupting grid patterns also occur by inactivation of the medial septum and the anterior thalamic nuclei, 

indicating that a diverse set of input is necessary to form the entorhinal map of space, but also by inac-

tivation of GABAergic parvalbumin+ interneurons in the superficial layers of MEC (20-23). Studies in 

rat pups also show that place cells are detectable and mature earlier than grid cells (24, 25). In addi-

tion, removal of NMDA glutamate receptors in the MEC selectively disrupt grid cell firing whilst 

place cells remain their firing fields, but also leads to impaired navigational behaviour in mice (26). 

The neural encoding mechanisms from which these two cell types emerge and cooperate is still not un-

derstood, but understanding this would be a major breakthrough in neuroscience as it would describe 

the cortical representations of space far downstream of any visual or sensory input (3).  

 

After the discovery of grid cells, spatial tuning within the entorhinal network was widely investigated. 

Grid cells were first described in rats, but were later described in mice, bats, macaque and humans (27-

30). It also became clear that grid cells were a part of a bigger network of other functional cell types in 

the MEC, as head direction cells, border cells, speed cells and object vector cells were discovered (Fig. 

4) (31-35). Head direction cells exist in several cortical areas, including the presubiculum, retrosple-

nial cortex, thalamus and mammillary nuclei, and are cells that fire rapidly when the animal’s head is 

turned in a specific direction (36-39). Border cells fire along clear geometric boarders in the environ-

ment. Interestingly, both head direction and border cells have mature firing properties in new born rat 

pups, which could be sufficient for generating place cells in the hippocampus whilst grid cells are still 

Figure 4 | Spatial cells of the MEC. In addition to 

grid cells, five other spatial cells have been identified 

in the MEC. These are head direction cells (top left), 

border cells (middle left), speed cells (top right) and 

object vector cells (middle left). Many cells exhibit 

dual functionality, and are so called conjunctive cells. 

One of the most common dual functionality is con-

junctive grid and head directions cells (bottom).  

 

Polar plots: Own data.  

Firing rate maps: T. Solstad, C. N. Boccara, E. Kropff, 

M. B. Moser, E. I. Moser, Representation of geometric 

borders in the entorhinal cortex. Science 322, 1865-

1868 (2008). 

Speed cell: E. Kropff, J. E. Carmichael, M. B. Moser, 

E. I. Moser, Speed cells in the medial entorhinal 

cortex. Nature 523, 419-424 (2015). 

Object vector cell: O. A. Hoydal, E. R. Skytoen, S. O. 

Andersson, M. B. Moser, E. I. Moser, Object-vector 

coding in the medial entorhinal cortex. Nature 568, 

400-404 (2019). 
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immature (40, 41). Speed cells have a linearly increase in firing rate coherent to running speed, and 

object vector cells are tuned to both distance and orientation from objects in the environment. In addi-

tion, several of the MEC cells have dual functionality. Most striking is the conjunction of head direc-

tionality and grid cell firing in cells, often referred to as conjunctive grid cells (32). Together, all these 

functional cell types in the MEC together with the hippocampal spatial cells orchestrate the cognitive 

map and the ability to navigate.  

 

Studying human grid cell activity 

Studying grid cells in primates is challenging compared to studies in rodents, in both methodical and 

ethical aspects. Electrophysiological recordings in non-human primates is for example challenging due 

to the ventral migration of the hippocampal formation during evolution, locating it entirely within the 

temporal lobe, whilst the rodent MEC is located dorsocaudaly, easier accessible for electrophysiologi-

cal recordings (42). In humans, invasive electrophysiological recordings have been possible to perform 

only in patients with drug-resistant temporal lobe epilepsy, which undergo electrode implantation to 

locate foci of seizures for possible surgical removal. Implanted patients navigating in a virtual reality 

(VR) open field environment have shown cells with grid-like firing patterns, suggesting the existence 

of grid cells in human primates as well as in rodents (30). In humans, this approach is little available 

and has clear constrains to methods that can be utilized. Therefore, functional magnetic resonance im-

aging (fMRI) based on blood oxygen level dependent (BOLD) contrast has been used combined with 

VR navigational tasks. For instance, the first indirect measurements pointing towards grid-like activity 

in humans were obtained using a BOLD fMRI and VR navigational approach (43). 

 

BOLD fMRI 

In order to understand the basis of grid-like activity in BOLD fMRI, understanding the basics of the 

BOLD-signal is essential. BOLD fMRI is based on oxygenated and deoxygenated haemoglobin hav-

ing different magnetic properties. Deoxygenated haemoglobin is paramagnetic, as four out of its six 

outer electrons are unpaired, while oxygenated haemoglobin is diamagnetic, as all its uncoupled elec-

trons have been coupled with electrons from the bound oxygen (44). A paramagnetic substance leads 

to changes in the inhomogeneity of a magnetic field, resulting in faster T2-relaxation, so that an in-

crease in the concentration of deoxygenated haemoglobin leads to a signal intensity decrease whilst a 

decrease of deoxygenated haemoglobin leads to a signal intensity increase (Fig. 5) (45). In response to 

increased regional brain activity and higher metabolic needs, neurovascular coupling leads to higher 

regional blood flood and an increase of local oxygenated haemoglobin (44). These changes are detect-

able with MRI, and therefore BOLD fMRI measures increases in both regional blood flow and vol-

ume, in addition to the relative increase of oxygenated haemoglobin in capillaries and venous blood 
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(46). The idealized BOLD-response starts with an initial dip, resulting from an initial increase of oxy-

gen extraction after neuronal activity (44). Following, with approximately a 2 seconds delay reaching 

maximum intensity after 5-6 seconds, comes an increase in local blood flow overshooting the demand 

resulting in an increased signal intensity, before the signal intensity goes back to baseline (Fig. 5) (45). 

These BOLD changes are not understood at a cellular level, and the order above is only a hypothesized 

model based around the idea that increased need of oxygen due to oxidative phosphorylation in meta-

bolic active neurons leads to BOLD-signal changes.  

 

Another hypothesized model concerns the metabolic role of astrocytes. These glial cells base their me-

tabolism on non-oxygen dependent glycolysis, and are highly active shortly after neuronal activity due 

to their important role in the energy-consuming task of recycling glutamate from the synapses to gluta-

mine (45). Therefore, astrocyte activity could lead to higher blood flow because of high glucose de-

mands in astrocytes, secondarily resulting in higher concentrations of oxygenated haemoglobin. Taken 

together, BOLD fMRI is an indirect measure of brain activity described by complex metabolic and 

vascular changes. 

 

The wide use of BOLD fMRI has led researchers to address the elusive relationship between fMRI and 

direct electrophysiological recordings. Simultaneous BOLD fMRI and intracortical electrode record-

ings in monkey visual cortex has shown a correlation between local field potentials (LFPs) and hae-

modynamic changes, possibly because LFPs are generated more by internal processing within a corti-

cal area rather than its spiking output (47, 48).  This indicates that BOLD-signal changes are a result of 

Figure 5 | Basics of BOLD fMRI. BOLD 

fMRI is based on deoxygenated haemoglobin 

(deOxyHb) having a different effect on the 

MRI-signal than oxygenated haemoglobin 

(OxyHb). The BOLD-signal is connected to 

neural activity by vascular coupling, so that 

increased neural activity and metabolic need 

leads to increased local blood flow and in-

creased OxyHb. These changes in perfusion 

can be detected by changes in especially 

T2*-weighted sequences, and start with an 

initial dip of the signal, before reaching a 

high peak and returning to baseline.  

 

Top left: Gore, J. C. Principles and practice 

of functional MRI of the human brain. The 

Journal of Clinical Investigation 112, 4-9, 

doi:10.1172/JCI19010 (2003). 

Top right: D. J. Heeger, D. Ress, What does 

fMRI tell us about neuronal activity? Nature 

Reviews Neuroscience 3, 142 (2002). 

Bottom: Wise, R.. Pharmacological fMRI: 

Principles and confounds. Cardiff University 

Brain Research Imaging Centre. 
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internal signalling rather than the spiking output often recording with single unit electrophysiology. 

However, comparison of invasive electrocorticograpic field potentials (EcoG) and BOLD fMRI in hu-

mans have failed to show a correlation in field potentials and haemodynamic response (49). A combi-

nation of calcium imaging fibre-optics and BOLD fMRI have shown predictable BOLD-signal 

changes from direct neuronal activity, but also contributions of astrocytic networks to the BOLD-sig-

nalling (50). Also, a study of mouse haemodynamics showed that changes in the cerebral blood vol-

ume was greatly influenced by behaviour, and that at least half of the changes in cerebral blood vol-

ume during the resting state was unrelated to cortical processing (51). These studies imply that much 

is still unknown about the correlation between neural activity and BOLD fMRI, making conclusions at 

the cellular level based on such studies precarious.    

 

The rationale for measuring grid cell activity with BOLD fMRI 

As previously mentioned, the first measurements of putative human grid cell activity came from a 

study measuring the changes in BOLD-signalling in humans navigating in a VR environment (43). In 

this study, human participants were foraging the VR environment using a joy stick to move around 

while being scanned inside a 3T MRI-scanner (Fig. 6). By investigating the BOLD-signal in voxels (2 

mm x 2 mm x 3 mm) of the human parahippocampal region, the researchers discovered that the 

BOLD-signal increased and decreased periodically. The periodicity corresponded to which direction 

Figure 6 | BOLD-signal changes are symmetric, six-folded and stronger during fast runs. Left panel shows 

the running trajectory (black) of a person exploring the VR-environment during MRI-scanning, and the first per-

son view of the environment that the participants saw. Middle panel shows localized BOLD-signal increase in 

voxels of the human parahippocampal area. The signal is stronger for runs 60° apart from a baseline (φ), but not 

for other periods (ex. 45°). The signal is also stronger for fast runs than for slow runs. Right panel shows how a 

six-fold symmetry of BOLD fMRI (φ + n ∙ 60°) fits with the axis of grid cells in the MEC. The grid cell auto-

correlogram is rotated so that the grid orientation coincides with the baseline φ. Stronger signal for fast runs 

could then be explained by the animal traversing more grid firing fields, leading to higher grid cell activity, mak-

ing it measurable with BOLD fMRI. 

 

From: C. F. Doeller, C. Barry, N. Burgess, Evidence for grid cells in a human memory network. Nature 463, 

657-661 (2010). 
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the participants were moving in the VR environment. Interestingly, the BOLD-signal had increases at 

increments of 60°, followed by signal decreases in between, resulting in a hexadirectional signal pat-

tern (Fig. 6). This six-fold symmetry could resemble the hexagonal firing pattern showed by grid cells 

in the MEC. The periodicity was not apparent in controls of 90°, 45°, 72° or 51,4°, corresponding to a 

4-fold, 8-fold, 5-fold or 7-fold symmetry. In addition, the BOLD-signal changes were stronger for fast 

runs than slow runs (Fig. 6). Six-fold symmetry strongly modulated by speed appeared from the ento-

rhinal cortex into the subiculum, as well as in posterior and medial parietal cortex, lateral temporal 

cortex and medial prefrontal cortex, consistent with the present of either visual, head directional or 

grid-like coding in these cortices. However, even though the origin of this signal remains elusive, the 

hexadirectional signal pattern in BOLD fMRI has been used as a measure of grid cell activity (52-56).  

 

One possible mechanism behind the hexadirectional BOLD-signal is coherent firing of conjunctive 

grid cells along the axis of the grid (43). If conjunctive grid cells that all share orientation has a pre-

ferred firing direction along one of the grid axes, this population would have six preferred firing direc-

tions. Even though these cells would have different grid phases, a macroscopic measure as BOLD 

fMRI could possibly measure increased neuronal activity for runs along these preferred directions. 

This increased activity would correspond to the recruitment of conjunctive grid cells with the same 

preferred firing direction, activated at different locations in the environment due to phase differences 

(Fig. 7). However, the modular organization of grid cells makes this hypothesis troublesome. Even 

though grid cells of the same module share both grid scale and grid orientation, conjunctive grid cells 

of different modules would differ in grid orientation. This intermodular orientation difference, how-

ever, is more synchronized that what you expect by chance (57). For the population of conjunctive 

grid cells in total, this might lead to a disruption of the six-folded organization of preferred firing di-

rections (Fig. 7) (17). In addition, ellipticity of grid cell firing makes this model even harder to fit with 

the known firing properties of grid cells (57). On the other side, this issue can be address experimen-

tally by comparing the grid axis and firing direction of conjunctive grid cells, preferably from many 

cells and of different modules. 

 

Alignment of grid axis and preferred firing direction of conjunctive grid cells 

This experiment is performed in the same article that found the hexadirectional BOLD-signal and that 

proposed conjunctive grid cells as a candidate for the BOLD-signal changes (43). From electrophysio-

logical extracellular tetrode recordings, they provide data from 18 conjunctive grid cells recorded in 

eight different rats foraging an open field environment for cookies. Analyses on this data show that the 

preferred firing direction of conjunctive grid cells coincides with one of the grid axis (Fig. 8). There-

fore, they argue, conjunctive grid cells could serve as the underlying mechanism of hexadirectional 
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changes in BOLD-signalling. This finding is, to our knowledge, the only electrophysiological evi-

dence connected to the grid-like activity in BOLD yet has never been reproduced. In addition to anal-

yses of conjunctive grid cells, they show by analysing 113 grid cells recorded from 16 rats that the or-

ganization of the grid cells’ firing fields were more consistent and regular when the animals were run-

ning fast compared to slow. The positive modulation of BOLD fMRI by higher speed could be ex-

plained simply by the traversing of more firing fields from more cells in a shorter time, but also by this 

increased gridness. An obvious weakness in the electrophysiological studies, especially concerning 

conjunctive grid cells, is the low number of cells. Since this study was conducted, large studies have 

been conducted to characterize grid cells, leading to datasets with almost tenfold as many cells. In the 

following, we try to replicate these electrophysiological analyses using the Stensola-dataset. This da-

taset consists of 968 unique cells recorded with tetrodes from LII-III of MEC in 15 rats, 10 of which 

were implanted with hyperdrives carrying 12 tetrodes and 5 of which were implanted with microdrives 

carrying 4 tetrodes. This allows analyses on a vast number of grid cells, and up to 186 grid cells from 

Figure 7 | Simulation of conjunctive grid cell firing. Top left shows the firing fields (+) of three conjunctive 

grid x head direction cells (red, green and blue) of the same module, so that the cells share both orientation and 

scale. The orientation is marked as a straight line through the firing fields. Top middle shows the preferred firing 

direction of one of these conjunctive grid cells as a polar plot (head direction as degrees, firing rate as radius), 

where the preferred firing direction coincides with one of the grid axis. Top right shows a merged polar plot of 

such a population of conjunctive grid cells of the same module. If all cells fire along one of the grid axes, this 

would lead to six distinct head directions that would recruit neural activity from this subpopulation of MEC neu-

rons. Bottom left is equal to top left, but shows two conjunctive grid cells (red and blue) of different modules 

with different scale and orientation. Bottom right shows how a simulated merged polar plot of conjunctive grid 

cells from four different modules could look. The six-folded symmetry has vanished and the distribution is more 

uniform.  
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one animal (17). Further, we look for another origin of the hexadirectional BOLD-signal in non-clus-

tered multi-unit activity recorded from the same electrodes.  

 

 

 

  

Figure 8 | The preferred firing direction of 

conjunctive grid cells coincide with the grid 

axis. Top two rows show the firing rate map, the 

autocorrelation of the rate map and the polar plot 

of two conjunctive grid cells of different module. 

Firing rate, orientation, gridness (gridscore, see 

Results) and head directionality measurements 

(KL- divergence and angular mean, see Results) 

are marked above the plots. Orientation is 

marked as a red line in the autocorrelation maps, 

and the grid axis are plotted in the polar plots for 

comparison to the preferred firing direction. Bot-

tom left shows the angular difference between 

the mean firing direction of each cell (n = 18) 

and its closest grid axis. This distribution is non-

uniform and clustered around 0°, as expected if 

conjunctive grid cells firing along the axis of the 

grid. Bottom right shows that the gridness of grid 

cells (n = 113) is lower for slow runs than fast 

runs when separated by the median split. 

 

From: C. F. Doeller, C. Barry, N. Burgess, Evi-

dence for grid cells in a human memory network. 

Nature 463, 657-661 (2010). 
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Methods and Results 

 

Classification of grid cells and conjunctive grid cells  

In the experimental procedure, rats were freely foraging an open field square environment ranging 

from 1 m to 2,2 m while looking for cookies. Unit activity was recorded with the tetrodes by amplify-

ing with a factor of 3000-5000 and high-pass filtering from 600-6000 Hz. Spike thresholds were set by 

the experimenter, around 55 μV. The animal was tracked using two LEDs connected to the head stage 

and the implant. First, grid cells were defined based on their spatial rate map based on the firing and 

tracking data. A smoothed rate map was used make an autocorrelation, from which a gridscore was 

calculated. The gridscore is a calculation of the spatial periodicity of a cell, in brief based on the dif-

ference when correlating the original autocorrelation to one turned 60° or 120°, and one turned either 

30°, 90° or 150° (for details, see ref. (17)). A high grid score indicated a high spatial periodicity of 

60°, compatible with the firing of grid cells. Further, grid cells were defined based on a shuffling pro-

cedure (for details, see ref. (17)). In total, 1044 unique cells recorded from superficial layers of MEC 

were included in the shuffling procedure. These cells were preselected by eye as cells with grid-like or 

spatial firing properties. Each of these cells were shuffled for 500 iterations. Only cells exceeding a 

chance level determined by the 99th percentile of the shuffled distribution, corresponding to a gridscore 

> 0,444, were classified as grid cells and used in further analyses (n = 882) (Fig. 9). In these cells, grid 

orientation was defined from the spatial autocorrelation using the six firing fields closest to the central 

field (“inner ring”). Three axes were defined as the angular distance from a fixed horizontal line (0°) 

Figure 9 | Classification of cells based on the shuffling procedure. Left: Histogram of gridscores in all 1044 

putative grid cells. Chance levels described by the 95th and 99th percentile are plotted as respectively green and 

red vertical lines. 976 cells (93,5 %) exceeded the 95th percentile, and 881 cells (84,4 %) exceeded the 99th per-

centile. Only cells exceeding the 99th percentile were classified as grid cells. Right: As to the left, but for MVL. 

354 cells (33,9 %) exceeded the 95th percentile, and 256 cells (24,5 %) exceeded the 99th percentile. If using the 

95th percentile, 321 cells (30,8 %) were classified as conjunctive grid cells. However, only cells exceeded the 

99th percentile chance levels for both gridscore and MVL were included, and thus 224 cells (21,5 %) were classi-

fied as conjunctive grid cells.  
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and a line from the central field to three neighbouring fields of the inner ring. As an autocorrelation is 

symmetric around 180°, the remaining three axes were calculated from these three. Further, grid scale 

was calculated as the mean distance from the central field to these three fields. For details on all calcu-

lations, see (17). 

 

Head direction for each position sample in the recording was tracked by the two LEDs on the head 

stage on the animal. As the head stage is not implanted perfectly along the main axis of the animal, the 

tracked head direction needs to be corrected. By assuming that the rat usually looks straight ahead 

when running fast, the head stage offset was calculated as the difference between the head direction 

and the moving direction of the animal during fast runs. For each animal separately, the mean offsets 

for all trials were calculated, from which the mean of means were calculated. This value was then used 

as the head direction offset to correct the tracked head direction in all trials for that animal.  

Head directionality can be calculated in several ways, two of which are the Kullback Leibler (KL) di-

vergence and the mean vector length (MVL). Since MVL has been widely used in literature concern-

ing head directionality within the MEC network, we used this as the main method for determining 

head directionality (31, 32, 41). However, since the initial experiment used KL divergence, this was 

also applied to some extent. Head directionality were, as with grid cells, determined by a similar shuf-

fling procedure of all 1044 cells. Only cells exceeding both the grid cell and head directionality criteria 

(99th percentile: MVL > 0.189) were characterized as conjunctive grid cells. Of the 881 cells exceed-

ing the grid cell criteria, 224 cells also exceeded the head directionality criteria and were classified as 

conjunctive grid cells (Fig. 9). Using the 95th percentile of the shuffled distribution, being less strict 

and possibly increasing the number of false positives, resulted in 976 cells exceeding the grid cell cri-

teria (gridscore > 0.20), of which 321 cells exceed the head directionality criteria (MVL > 0.13) (Fig. 

9).  

 

Preferred firing direction of conjunctive grid cells 

First, we investigated the relationship between the preferred firing direction and the axis of the grid. 

For each conjunctive grid cell, we analysed the mean firing direction and found the grid axis nearest to 

the mean firing direction. The angular firing offset was calculated as the absolute value of the nearest 

grid axis subtracted from the mean firing direction (Fig. 8). Intuitively, this would lead to a distribu-

tion between 0°- 30°, as the maximum angular distance in between two adjacent grid axes is 30°. 

When looking at all cells  from all animals, the mean angular difference between the closest grid axis 

and the mean firing direction is 15,8° ± 1,2° (mean ± 1,96 sd.). Further, the distribution is uniform and 

not clustered around 0° (Rayleigh test for uniformity: p = 0,606; V test for uniformity with a known 

mean, µ = 0°: p = 0,619), unlike the expectation if the mean firing direction was to coincide with the 
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grid axis (Fig. 10). A few cells showed differences > 30°, which were due to asymmetric or elliptic 

grid fields.   

 

 

 

 

Rat ID Number of 

grid cells 

Number of conjunc-

tive grid cells 

Circular mean (95 % 

CI) 

Rayleigh 

test 

V test 

13122 6 1 26,9° (-) - - 

13261 6 5 14,4° (6,1°-22,8°) - - 

13468 17 13 21,8° (15,0°-28,6°) 0,008 0,001 

13855 103 7 21,6° (10,3°-32,9°) - - 

13960 71 41 14,7° (11,9°-17,4°) 0,107 0,838 

14146 10 4 15,3° (10,5°-20,0°) - - 

14147 179 47 11,5° (9,0°-13,9°) 0,014 0,489 

15314 162 18 21,8° (18,0°-25,0°) 0,260 0,549 

15687 13 4 11,7° (2,3°-21,1°) - - 

15708 101 11 21,3° (17,6°-25,0°) 0,144 0,738 

13388 58 18 18,9° (15,2°-22,7°) 0,129 0,689 

13473 52 6 12,3° (3,6°-21,0°) - - 

14257 59 34 15,3° (12,0°-18,6°) 0,555 0,178 

14760 12 0 - - - 

15444 32 16 13,6° (10,0°-17,3°) 0,084 0,981 

Figure 10 | Angular difference between mean firing direction and the nearest axis of the grid. Left: Histo-

gram of absolute angular difference between the mean firing direction and the nearest axis of the grid. The dis-

tribution is uniform from 0° and 30° (Rayleigh test: p = 0,606), and not clustered around 0° (V test, µ = 0°: p = 

0,619). Right: The same data as in the histogram, shown with arrows (one arrow per cell).    

Table 1 | Overview of all cells per animal and corresponding circular statistics (see also Fig. 11) 

The table summarizes the findings per rat, and shows the number of grid cells, conjunctive grid cells, 

the circular mean of the difference between mean firing direction and the closes axis of the grid, and 

circular statistics for rats with at least 10 conjunctive grid cells.  
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In the original paper, head direction was not measured with MVL but by KL divergence, and a grid 

cell was classified as conjunctive if tis KL divergence exceeded the somewhat arbitrary value 0,15. 

We investigated the KL divergency in our population of cells, and found that 148 cells (16,8 %) had a 

KL divergence > 0,15 (reducing the number of conjunctive grid cells by 28,2 %), indicating that this 

13122 13261 

14257 

15687 

13960 14146 14147 15314 

15708 

13468 13855 

13388 13473 

15444 

Figure 11 | All angular differences shown per animal.  

The 14 small circles show the angular difference between  

the mean firing direction and the closest axis of the grid  

per animal. Rat ID above the plot corresponds to the  

overview in Table 1. Circular statistics for non-uniformity  

(Rayleigh) and non-uniformity with known mean (V test) were  

only performed when the number of conjunctive grid cells exceeded 10.  

Two rats (13468 and 14147) exceeded chance level (p < 0,05) for non-uniformity, of which one rat (13468) 

also exceeded chance level (p < 0,05) for non-uniformity with known mean (µ = 0°). For all other rats, as for 

all cells together, the distribution was uniform and not clustered around 0°. The big circle shows the distribu-

tion of the mean firing direction for all conjunctive grid cells. The distribution if uniform (Rayleigh test: p = 

0,819). 
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criterion might be stricter than our 99th percentile of the shuffled MVL distribution. However, this 

could also mean that the KL divergence criteria is too strict. Next, we re-ran our analyses using the KL 

divergence criteria for head direction. When looking at the angular difference in all animals, the circu-

lar mean was 15,0° ± 1,5° (mean ± 1,96 std.). The distribution was uniform (Rayleigh test: p = 0,38) 

and not clustered around 0° (V test, µ = 0°: p = 0,382) (Fig. 12). Only five animals had ≥ 10 conjunc-

tive grid cells (13960, 14147, 15314, 14257 and 15444) so that circular statistics were calculated (Ta-

ble 1). No animal reached the level of significance for either uniformity or clustering around 0°, alt-

hough one animal (15444) almost reached significance for non-uniformity (Rayleigh test: p = 0,05; V-

test, µ = 0°: p = 0,99) 

 

As grid modules tend to act independently, we next asked 

if this was the case for conjunctive grid cells of different 

modules as well. To classify all grid cells into modules, 

we used grid spacing as it is the most prominent feature 

that separates modules (Fig. 13). As previously described 

(17), the number of modules per animal was determined 

by the number of peaks, k, in a kernel density plot of the 

logarithmic grid spacing. Modular identity of cells was 

then determined by k-means clustering for k clusters, as 

the best fit after 300 iteration per rat. All grid cells per an-

imal were used for these analyses, and in consistency with 

Figure 12 | Angular difference when KL divergence is used to classify head directionality. When using KL di-

vergence > 0,15 to classify conjunctive grid cells, 148 cells (16,8 %) were classified as conjunctive. As when using 

MVL to classify these cells (see Fig. 10), the angular difference between the mean firing direction and the nearest 

axis of the grid is uniformly distributed (Rayleigh test: p = 0,38) and not clustered around 0°. 

Figure 13 | Grid spacing as a prominent 

feature of grid modules. This plot shows 

the distribution of grid spacings for all cells 

in rat 15444 when sorted in ascending or-

der. Note the stepwise increase in grid spac-

ing, consistent with the three modules in 

this rat. 
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the original paper of this dataset, this revealed up to four discretized modules per rat.  

 

Next, we analysed conjunctive grid cells from the same module per rat. As this is a great down sam-

pling of our data, only few rats gave enough cells to apply circular statistics on their distribution. Only 

cells from modules with more than two grid cells were analysed, while modules of two or fewer cells 

were considered as outliers that might not share similar functional features. Only five rats (13960, 

15314, 15708, 1338 and 14147) had enough cells to perform statistical test on at least one of the mod-

ules. For most cases, the distribution of angular differences were uniformly distributed and not clus-

tered around 0°. For one animal, the distribution of module 2 reach level of significance for non-uni-

formity, but the distribution was not clustered around 0° (Fig 14). 

 

Effect of running speed on gridscore  

As introduced earlier, an increase in hexagonality in fMRI BOLD-signal during fast runs compared to 

slow runs was hypothesized to origin from more grid cell firing fields traversed and thus activation of 

a greater population of grid cells. Therefore, we also try to replicate the finding that gridscore in-

creases when looking at spikes from fast runs compared to slow runs. To do this, all cells classified as 

grid cells with at least 1500 spikes were used. All spikes were divided into three groups of equal size 

Figure 14 | Angular differences are uniform across modules. Top: All angular differences between mean 

firing direction and the closest axis of the grid for the conjunctive grid cells of rat 14147. This rat has four dif-

ferent modules, and the angular difference is shown for the cells of each module separately. The distributions 

were uniform for all modules (Rayleigh test: p > 0,05) except module 3 (Rayleigh test: p = 0,03). For all mod-

ules, the distributions were not clustered around 0° (V test for uniformity with a known mean, µ = 0°: p > 

0,05). Note that in this animal only module 2 exceeded a total of ten cells (n = 20), all others had nine cells, 

making these statistical tests for circular uniformity less applicable. Bottom: Same as top, but for rat 13960. 

Only module 2 and 4 exceeded ten cells (module 2: n = 10; module 4: n = 25). For module 4 the distribution 

was not uniform (Rayleigh test: p = 0,03), but was not clustered around 0° (V test for uniformity with a known 

mean, µ = 0°: p = 0,72). 
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based on running speed, and then gridscore was calculated for three categories of running speed: low, 

medium and high. In total, 732 grid cells were analysed. The mean grid score for all these cells was 

0,95 (95 % CI: 0,93-0,96), and dropped significantly for high 0,71 (0,68-0,73) and medium speed 0,72 

(0,69-0,74), and again for low speed 0,46 (0,43-0,49) (Fig. 15). By first look the distributions appeared 

normally distributed, however, upon testing this appeared not to be the case (one-sample Kolmogorov-

Smirnov test: p << 0,01 for all groups; Lilliefors test: p << 0,01 for all groups). Therefore, after distri-

bution fitting, non-parametric tests were applied to check for statistical significance of the medians. 

The difference of medians was significant between all spikes and high speed (Wilcoxon rank sum: p 

<< 0,01); between all spikes and medium speed (Wilcoxon rank sum: p << 0,01); and between all 

spikes and low speed (Wilcoxon rank sum: p << 0,01). When comparing the different speed bins to 

Figure 15 | Gridscore increases with running speed. Top: Left plot shows the distribution of mean 

gridscore for all grid cells with at least 1500 spikes. Spikes are sorted into three equally sized groups: low, 

medium and high speed. Mean gridscore with 95 % confidence interval is shown. Grid score increases signif-

icantly as running speed increases, but only from slow runs to medium runs. In addition, gridscore rises sig-

nificantly when using all spikes. Right plot shows the cumulative distribution function of the same data. The 

same effect is noticeable, with lower gridscore from spikes during slow locomotion than for fast. Bottom: 

Rate map from two example grid cells from rat 15314 (top row) and 14147 (lower row), colorbar showing 

firing rate (Hz). These cells have at least 3000 spikes and show an increase in grid score with faster running 

speed. Again, highest gridscore it calculated from all spikes.  
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each other, the difference of median between fast speed and slow speed was significant (Wilcoxon 

sign rank test: p << 0,01); which also held true between medium and slow speed (Wilcoxon sign rank 

test: p << 0,01). The medians between medium and fast speed, however, did not differ significantly 

(Wilcoxon sign rank test: p = 0,36). This difference is also visible in the cumulative probability func-

tion of these four distributions and when looking at the raw rate maps of grid cells (Fig. 15). This 

might suggest that grid cells have stronger spatial tuning during fast locomotion, or rather that spatial 

tuning is weaker when the animal barely moves and is more prone to errors. Given the seemingly im-

portance of running speed, input from speed cells might work by correcting the internal path integra-

tor, like the sharpness of grid cell firing. 

 

Multi-unit activity from MEC tetrodes 

After having looked at the activity of single units, we next explored whether we could uncover a peri-

odic modulation in electrophysiological data corresponding to the macroscopic changes in fMRI 

BOLD by looking at multi-unit activity (MUA). To do this, we looked at all spikes recorded from all 

12 tetrodes in the 10 hyperdrive rats for 229 sessions corresponding to the sessions from the single cell 

analyses without doing any clustering. Due to the high-pass filtering from 600-6000 Hz during unit 

recording, our MUA therefore consists of activity from several cells, but removed background noise 

recorded by the system as low frequency bandwidths were filtered out. The MUA of these 12 tetrodes 

may resemble the brain activity from a voxel as measured in fMRI better than activity with single cell 

resolution, and thus may reveal a periodic firing alike that described in fMRI. Since the changes in 

BOLD-signal are described to be stronger for fast movement, we also separated the MUA by running 

speed and looked for periodic changes in firing rate. 

 

From each session, we first extracted the MUA firing rate per tetrode and calculated its tuning curve, 

before summing the 12 tetrode tuning curves up to calculate the trial tuning curve. Trial tuning curves, 

which are histograms of firing rate over 360°, were normalized for firing rates to range between 0-1 

for comparison across trials. The same procedure was performed for MUA at high running speed. To 

determine what high running speed could be defined as, we looked at the distribution of all speeds. 

When comparing the running speeds for all recorded timestamps to the running speed at spiking (Fig. 

16), spiking is slightly correlated with higher running speed and the median between the two distribu-

tions is significantly different (speed at all timestamps: median 13,8 cm/s; speed when spiking: median 

15,1 cm/s; Wilcoxon rank sum: p << 0,01). Although the difference is statistically significant, it is ar-

guably different for the behaviour of the rats. Many thresholds were tried, and we ended up using 30 

cm/s as a lower threshold for high running speed. This coincides fairly with the 85th percentile of 

speeds for all movement and for movement when spiking and should be a reasonably high threshold 

that still allows enough data for further analyses (Fig. 16).  
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For all spikes, the MUA tuning curves appeared uniform with no clear periodicity (Fig. 17), which 

also held true upon statistical testing of circular uniformity (Rayleigh test: p > 0,70 for all trials tested 

separately). The high speed MUA tuning curves were less homogeneous (Fig. 17), but most still 

looked uniform. Upon statistical testing this also appeared to be the case, were 5/229 trials were signif-

icantly non-uniform (Rayleigh test: p > 0.05 for 224/229) and the distribution of p-values covered 

more or less the entire interval between 0-1 (Fig. 17). Of the 5/229 non-uniform tuning curves, two 

came from rat 13261, one from rat 13468 and one from rat 14147 (Fig. 17). The tuning curves from 

these trials show a peak at 180° for two of the rats, one peaking at 30°, and all seem to have stronger 

tuning from 300° and upwards. However, no clear periodic firing emerges and many have very low 

tuning. Further, the three trials without stronger tuning at 180° have somewhat few speed filtered 

spikes (< 3500) compared to many other trials (> 10 000).  

 

To further investigate periodicity in this signal, we first performed a Fourier transform of the MUA 

tuning curves to unravel any periodic firing. By performing the Fourier transform, we could split the 

signal into a series of sine waves described by their periodicity and amplitude given by the xy-coordi-

nates of the peaks in the frequency spectrum of the transform. No peak threshold was set, and all local 

peaks in the frequency spectrum were extracted. As expected, the Fourier transform showed little peri-

odicity when performed on all MUA tuning curves. This is seen by a clustering of low-amplitude, low-

periodic peaks in the frequency spectrum resembling small harmonic deviations from a constant line 

(Fig. 18). When performing the transform on the speed filtered MUA tuning curves, this also showed a  

Figure 16 | Distribution of running speed and filtering of spikes. Left: Histogram of the running speed for 

all recorded timestamps, for all trials across animals. The distribution is half-normal (median: 13,8, 25th per-

centile 6,6 and 75th percentile 23,6. The 85th percentile at 29,5 cm/s and the 95th percentile of 40,0 cm/s are 

denoted by grey lines. Both these values, and others, were tested for a threshold for filtering out spikes with 

fast running speed, but both resulted in few spikes and little data to analyse further. Right: Histogram of the 

running speed when spiking. The distribution is slightly skewed to the right compared with the running speed 

at all timestamps (median: 15,1, 25th percentile 7,5; 75th percentile 25,3). The 85th percentile at 31,5 cm/s and 

the 95th percentile of 42,6 cm/s are denoted by grey lines. The two distributions differ significantly (Wilcoxon 

rank sum: p << 0,01). 
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Figure 17 | MUA tuning curves and speed filtered MUA tuning curves are uniform. Top three rows: 

These polarplots show the normalized firing rate per moving direction for each rat, plotted as the mean of the 

angular tuning curves for all trials in that rat, both for all MUA (blue) and speed filtered MUA (red). All rats 

have uniform all MUA tuning curves, while the speed filtered are less homogenous, but still mostly uniform. 

Middle right: Plot as for each rat separately, but here as the mean over all rats. The tuning curves are uniform 

and show no clear pattern in periodicity (Rayleigh test for circular uniformity: p = 0,99 for all MUA; p = 0,43 

for speed filtered MUA). Bottom left: Distribution of p-values from the Rayleigh test for circular uniformity. 

The speed filtered tuning curves are less uniform than for all MUA, but only 5 trials reach significance at p < 

0,05. Bottom right: Speed filtered tuning curves with significant non-uniformity. All five tuning curves show a 

bigger tendency towards directions greater than approximately 300°.  
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cluster of low- amplitude low-periodic peaks, but also a greater variety in the frequency spectrum with 

both longer periods and more prominent amplitudes. For instance, the median amplitude for all MUA 

was 0,011, while the median for speed filtered MUA was 0,028. Interestingly, when we looked at the 5 

% peaks with highest amplitude, a top at both low-periods and at 120° emerged, but none at 60° (Fig. 

18). There were some tendencies towards greater amplitudes for periods of both 45°, 50°, 90°, 120°, 

Figure 18 | Periods and amplitudes from the Fourier transform. Top: Scatterplots showing the relation-

ship between period and amplitude from all 229 trials when looking at all MUA (left) and speed filtered 

MUA (right). The plots – especially for all MUA – reveal clustering of low amplitude and low periodic 

peaks, but also some clustering around both 10°, 40°, 45°, 50°, 60°, 72°, 90°, 120°, 180° and 360°. Middle: 

Histograms showing the periods (blue) and amplitudes (red) from performing the Fourier transform on all 

MUA. The results are skewed to low periods and low amplitudes. The most prominent peaks, defined as 

peaks with amplitudes above the 95th percentile of all amplitudes, are displayed separately (green) and show 

higher amplitudes for periodicity of both 30°, 60°, 90°, 120° and 180°. Bottom: As middle pannel, but from 

performing the Fourier transform on speed filtered MUA. There are in total many more peaks in the 

frequency spectrum, resulting in more period-amplitude pairs. Also, they have higher amplitudes. Still, there 

is a lot of low-frequency periods, but plotting the 5 % pairs with highest amplitude (green) also reveal a 

clustering around 45° and 120° periods, without much contribution from a 60° periodicity. 
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180° and 360°.  The clustering at equal periods for the longer periods is likely due to few datapoints 

feed into the transform (360° binned at 3°, resulting in 120 datapoints per trial). 

 

Secondly, we looked for periodic firing by calculating the autocovariance of the trial tuning curves for 

both all MUA and speed filtered MUA. The autocovariance was calculated by subtracting the mean of 

the trial tuning curve from each datapoint in the trial tuning curve, and then autocorrelate it. Periodic 

firing could be unravelled by peaks in the autocovariance. To specifically look for periodicity of 60°, 

we calculated an autocovariance score defined by the ratio between the summed autocovariance values 

at 60° and 120°, and the sum of the autocovariance values at 30° and 90°. A high score would indicate 

a harmonious pattern in the firing rate with 60° periods, a score around 1 would indicate no such peri-

odicity, and scores <1 would indicate firing anticorrelated to 60° periodicity. 

 

𝐴𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =  
𝐴𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (60°) + 𝐴𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (120°)

𝐴𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (30°) + 𝐴𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (90°)
 

 

The autocovariance and the corresponding score was calculated for all trials. Most trials showed very 

low autocovariance, and no harmonic changes (Fig. 19). As for the Fourier analyses, stronger auto-

covariance was shown at peaks with several periods and with several strengths. When looking at all 

229 autocovariances one by one for all MUA, no clear patters emerged, and when averaging over all 

trials the mean showed no strong tendencies (Fig. 19). However, when looking at the autocovariance 

of speed filtered MUA, a periodic pattern of 10°-12° as well as 45° was clear, and quite strong in rats 

with many trials. The value of autocovariance is small, but periodic for 10°-12° shifts, while it is 

stronger with peaks > 0,5 for 45° shifts. 

 

When plotting a histogram of all autocovariance scores, it showed a small right-sided tail for all MUA 

and mainly values < 1 for speed filtered MUA (Fig. 20). We took a closer look at trials with an auto-

covariance score > 2,0 and saw little resemblance of 60° periodic firing (Fig. 20). The max score at 

10,9, for instance, was mainly driven by a very low denominator and almost no true increased auto-

covariance at 60° and 120°. Quite strikingly, the speed filtered MUA showed strong anticorrelated 60° 

firing judged by the autocovariance score.  

 

Taken together, the Fourier analyses and the autocovariance analyses pointed towards periodicity in 

tuning curves at periods of 10°-12°, 45° and 120°, but not so at 60°. Therefore, we reran our analyses 

to test for firing at these periods. We redefined our autocovariance score, and looked first for corre-

lated firing at 45°, 90° and 135° together with anticorrelated firing at 24°, 66° and 111°. For speed fil-

tered MUA, this resulted in 27 trials reaching an autocovariance score > 2, and 92 trials reached a 
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score > 1,5 (Fig. 21). By using a score to fit 120° periodicity (autocovariance at 120° times two, di-

vided by the autocovariance at 60° + 180°) for the speed filtered MUA, 13 trials reached a score > 2,0 

and 24 trials reached a score > 1,5. Next, we tested the contribution of 15° periodicity by looking for 

correlation at 15°, 30°, 60° and 75° against anticorrelation of  21°, 36°, 66° and 81°, avoiding multi-

ples of 45°, by which only three trials reached a score > 1,5, were two of them also reached a score > 

2. Lastly, we wanted to test for 10° and 12° periodicity. With a binning of 3°, however, the shift be-

tween correlated and anticorrelated runs becomes narrow. Nevertheless, we calculated a score in simi-

lar fashion as before, using the sum of autocovariance values from 12°, 24° and 36° against 18°, 30° 

and 42° to test for 12° periodicity. This resulted in 76 trials reaching a score > 1,5, of which 21 trials 

 

Figure 19 | Autocovariance curves and scores. Top left: Example of autocovariance from rat 15687, four tri-

als with the autocovariance for all MUA (blue) and autocovariance score denoted in the title. Circles indicate 

firing at 60° and 120°, whilst red circles indicate firing at 30° and 90°. Top right: When plotting all autocovari-

ance curves for all 229 trials, no strong modulation appears in all MUA, and the mean signal (black) is mostly 

flat. Bottom left: Example of autocovariance from the same trials as above, but for speed filtered MUA. Green 

and red circles as above. None of these four trials show any 60° periodicity. Bottom right: All autocovariances 

for speed filtered MUA, as in the plot above are the mean of all plotted in black. Unlike the results from all 

MUA, this reveals periodic firing with approximately 10-12° periodicity and a stronger tuning with 45° perio-

dicity. 
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Figure 20 | Distribution of autocovariance scores. Left: Autocovariance scores when looking at all MUA tun-

ing curves. The plot shows a right-sided tail, and the distribution does not differ from a random distribution 

with median 1 (Wilcoxon sign rank test: p = 0,25). 16,2 % (37/229) of the trials have a score > 1,5, while 10,5 

% (24/229) of the trails have a score >2,0. Middle: Autocovariance scores from the speed filtered MUA tuning 

curve show no tail, have mainly values < 1 and differs from a random distribution with median 1 (one sample t-

test: p <<< 0,001). No score were above 1,5, with maximal autocovariance score of 1,13. Right: The 24 trials 

with autocovariance score > 2 show no strong autocovariance at 60° or 120°, but rather quite low values at 30° 

and 90°. 

 

Figure 21 | Autocovariance curves with autocovariance score for 45° and 12° periodicity. Top: Distribu-

tion of all autocovariance scores from all speed filtered MUA trials when testing for 45° periodicity. The dis-

tribution show tendencies towards values > 1, and 92 trials have a score >1,5. These autocovariances are 

plotted to the right, showing clear peaks at 45°, 90° and 135°. Bottom: As above, but when testing for 12° 

periodicity. The distribution show strong tendencies to values > 1, and 76 trials have an autocovariance score 

> 1,5. These trials are plotted to the right. Stronger peaks at 45° periodicity is also clear in these trials and are 

notably higher than peaks at other multiples of 12°.   
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also reached a score > 2,0. From the tuning curves with high scores, it was also apparent that these tri-

als overlap with trials showing 45° periodicity, and vice versa, and 55 % (42/76) of the trials also has a 

score >1,5 when testing for 45° periodicity  (Fig. 21). When testing for 10° periodicity we calculated 

the score by autocovariance at 9°, 21° and 30° against anticorrelated values of 15°, 24° and 36°. Here 

only 10 trials reached a score > 1,5, were two also reached a score > 2, which was strikingly different 

from 12° periodicity. 

 

As a final analysis, we compared the results from the Fourier transform of speed filtered MUA in trails 

with an autocovariance score >1,5 when looking for 45° periodicity. This showed, again, a clustering 

of low-amplitude low-periodicity peaks in the frequency spectrum, but also showed high amplitude 

peaks at periods of 10-12° and 120° (Fig. 22). As expected, we also saw a clustering of periods of 45° 

and 90° (Fig. 22). Taken together, this shows that there are many harmonic elements needed to de-

scribe the variations in speed filtered MUA tuning curves, and that the Fourier transform can separate 

our tuning curves into many smaller elements especially for lower periods, whilst the autocovariance 

and the autocovariance scores are tools applicable to look for specific periodicity, even for higher peri-

ods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 | Comparison of the Fourier transform and autocovariance. Left: Scatter plot of period and 

amplitude pairs from the frequency spectrum of the Fourier transform, from trials of speed filtered MUA 

with high autocovariance score when looking for 45° periodicity. The scatter shows that periods associated 

with high periods are similar to the earlier Fourier-analysis and the autocovariances, with peaks around 10°-

12°, 45°, 60°, 75°, 90° and 120°. Different colour indicate different trials. Right: Histogram of all periods 

from the same trials as to the left. The histogram shows the strong clustering at low periods, but also a promi-

nent peak at 45° together with smaller peaks at 60°, 70°, 90° and 120°. This shows that the periodicity of 45° 

is clear across methods, and that the Fourier transform can separate tuning curves into more than one har-

monic component.      
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Conclusion 

 

A major pillar of science is reproducibility of experiments; that others can get similar results when 

performing the same experiment that someone else has reported. In the strive for further knowledge 

and deeper understanding, novel findings are pursued and published in high impact papers whilst re-

produced results that either strengthen or weaken the claims of previous studies usually get far less at-

tention. The primary goal of this work was to replicate previous findings that suggested a mechanism 

for 6-fold symmetry in BOLD-signalling. This was especially interesting since the original results 

were based on a small data sample, and that the claims from these results has been used in later re-

search without it ever being reproduced. Further, we looked for other possible explanations for a 

mechanism behind the 6-fold symmetry in electrophysiological data from rats. 

 

First, we analysed a far greater number of conjunctive grid cells from MEC LII-III (n = 224) and 

found that the preferred firing direction of these cells does not coincide with one of the six grid axes. 

The distribution of firing directions were uniform around the grid axes, and the angular proximity of 

the preferred firing direction and the closest axis did not cluster around 0°. This opposed the previous 

finding, were conjunctive grid cells were indeed showed to fire along one of the grid axes. This claim, 

however, is based on few cells (n = 18) recorded from 8 different rats. Another weakness in the origi-

nal finding is that grid axes are defined with perfect 60° firing, where two of the axes are calculated 

from the first by integers of 60°. In our analyses, we used the true axes of the grid by calculating the 

angle for all three fields in an auto-correlogram. This would for instance take ellipsoid grid cells into 

account and does not bias our finding towards periodicity of 60°. In addition, 6-fold symmetry in 

BOLD fMRI caused by conjunctive grid cells firing along the grid axes is hard to explain when ac-

counting for grid phase and orientation, especially across modules. 

 

Since we had enough cells in our dataset, we also looked at subdivisions of conjunctive grid cells by 

looking at grid modules separately. Since grid modules have been shown to act somewhat inde-

pendently of each other, it could be the case that some cells show alignment of grid axes and preferred 

firing direction. However, this appeared not to be the case. The difference in firing direction and grid 

axes were just as uniform when looking at modules one by one, suggesting that this is not a mecha-

nism or feature of conjunctive grid cell firing for neither all nor subdivisions of these dual-typed cells.  

 

Interestingly, BOLD fMRI signal changes are stronger during fast runs compared to slower runs. 

When we tested how running score affect the gridness of all analysed grid cells, we did indeed find 

stronger gridness for faster runs. Or rather, it seems like slow runs are associated with less stringent 

grid cell firing. Notably, gridness is most stringent in grid cells when regarding all spikes rather than 
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separating them into equally sized groups based on running speed. This feature could be a result from 

down sampling, since grid score is easily influenced by few spikes. On that aspect, one could expect 

that the scores where equal for slow and fast runs since the number of spikes were equal for each 

group per cell. In addition, the score is also affected strongly by coverage, and lower moving speed 

would indicate less coverage. This could affect the results so that true grid cells only get to fire in one 

firing field due to little movement and would therefore get a bad grid score, while spikes for greater 

moving speed would get more coverage and visit more firing fields, so thus result in a higher grid 

score. If grid cells fire more stringently during fast runs holds to be true, this might imply that the 

MEC speed cells are important for updating the cognitive map, and that these cells are more actively 

correcting other functional MEC cells when movement is increased. 

    

By our findings, the 6-fold symmetry seen in BOLD fMRI in humans navigation in VR can not be as-

cribed to conjunctive grid cell firing. Therefore, we asked if other aspects of electrophysiological data 

than single cell recording could explain it. By looking at all MUA from recording trials within the 

MEC of rats, we were unable to distinguish any periodic firing patters in the angular tuning curves for 

any of the 229 trials. The MUA is, however, a crude measure that includes both true cell activity and 

noise recorded by the recording system when the animal for instance grooms or eats. A periodic pat-

tern could therefore drown in an enormous amount of noise and overall activity.  

 

Since the BOLD-signalling is shown stronger for fast runs, we did the same analyses on speed filtered 

MUA and wanted to see if this could help in unravelling periodic firing patterns. When filtering out 

approximately the 15 % of spikes with highest running speed, we discovered a pattern of periodic fir-

ing both at single trials, across trials and across rats. The periodicity, however, did not match a 6-fold 

symmetry with 60° periods, but rather an 8-fold symmetry at 45° periods and a weaker 30-fold sym-

metry at 12° periods. Also, periods of 120° suggesting 3-fold symmetry was apparent in several trials. 

Nevertheless, when looking at autocovariance of the angular tuning curves, 45° periodicity was clearly 

the strongest component of angular tuning for speed filtered MUA. Such a periodicity has shown no 

correlation with changes in BOLD-signalling. The effect was not apparent when we analysed all 

MUA, which might indicate that the contribution to this firing pattern is weak compared to all firing. 

Also, a strong component at 45° could have undermined our tests for 60° periodicity. When testing for 

60° periodicity, we expected anticorrelation at 90°. Since many runs had strong 45° periodicity, our 

seemingly missing finding of 60° periodicity could rather be a result of high correlation at 90°, as ex-

pected by strong 45° periodicity. Yet, this would imply that a 45° periodicity is stronger than a 60° pe-

riodicity and should therefore have been more prominent in fMRI BOLD if this finding is applicable 

to BOLD. Since our data consisted of cells from both LII and LII of MEC, it could also be the case 

that the two layers differ in periodic tuning, and could make a true tuning hard to unravel.   
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Just as it is hard to draw conclusions at cell and population level from fMRI BOLD is it also hard to 

hypothesis on how BOLD-signalling would be affected based on findings from electrophysiological 

MUA. As our first finding imply, one should be wary of concluding upon cellular mechanisms on 

small samples, and especially when extrapolating mechanisms from single cell recording to macro-

scopic indirect measures such as fMRI BOLD. 

 

That 45° periodicity stick out was puzzling and not expected. One possible explanation could for in-

stance be that it occurs as a result of the rats foraging square environments. Testing for the same peri-

odic tuning in data from rats running in circular boxes would therefore have been interesting. Sadly, 

all of the rats in this dataset were tested in square environments. Further, it would be interesting to see 

if there are correlations between EEG and fMRI. Both methods are indirect and population based 

measures of brain activity, and might therefore be more comparable to each other than to electrophysi-

ological single cell recordings and MUA. Since EEG-data often are available through tetrode record-

ings and that EEG oscillations within the entorhinal-hippocampal circuit is thoroughly studied, such 

experiments might give insight into what the 6-fold symmetry fMRI BOLD-signal originates from. 
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