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A B S T R A C T   

This paper presents a revised theoretical interpretation for the analysis of bridge response signals arising during a 
vehicle passage. The derivation shows that it is possible to approximate the forcing function from bridge re
sponses, by means of a finite difference scheme. This Point Load Approximation (PLA) is also formulated into 
explicit expressions following classic beam theory. This idea is then generalized to include other load effects and 
their corresponding time derivatives. These findings are particularly relevant for Bridge Weigh-in-Motion 
(BWIM) applications. The influence line for a BWIM system with multiple sensors can be explicitly defined 
using the presented formulation. The theory and applications are validated numerically by means of examples 
and case studies. These studies include the performance evaluation of a multiple strain sensor BWIM system, as 
well as, a novel approach to acceleration-based BWIM.   

1. Introduction 

Road network owners are faced with the challenge of economically 
managing ever growing infrastructure inventories. To that end, the 
knowledge of the traffic characteristics has been proven to be a valuable 
resource for design and management of pavements and bridges [1]. 
Several countries have used it to even perform bridge condition evalu
ation [2] and it offers new strategies to prolong asset life [3]. One 
possibility to obtain this traffic data is by using Weigh-in-Motion (WIM) 
technology [4]. The most common WIM installation is pavement-based 
where instrumentation is placed on or near the road surface. This is 
costly, disruptive to traffic and requires frequent recalibration [1]. 

Bridge Weight-in-Motion (BWIM) technology instruments a bridge to 
measure its response during traffic loading to infer axle weights and 
geometry for every passing vehicle. This alternative offers several ad
vantages compared to the pavement-based solution. The BWIM instal
lation is more durable (sensors not in direct contact with traffic), safer 
and less disruptive (installation done under the bridge) and more ac
curate (because of longer duration of the signals) [5]. However, this 
technology is generally suited only for shorter bridges (<20 m). 

BWIM was first proposed in 1979 [6] and has been an active field of 
research ever since. Multiple developments have improved its accuracy 
and extended its application range, as recent state-of-the-art reviews 
show [5,7]. In essence, the most common BWIM implementation mea
sures bridge strains during a vehicle passage and compares the signal to 
the influence line of the measured load effect at the sensor location. 
Performing a least-squares optimization, results in weight estimates for 
each of the vehicle’s axles. Refer to [8] for extended description of the 

BWIM technology and its core algorithm. 
The influence line is the function that describes the value of a load 

effect due to a unitary load moving along the bridge. This function is 
different for each location and load effect and depends on the structural 
properties and support conditions. There exist several methods to 
extract it, like the matrix method [9] that calculates it based on the 
known weights of a calibration truck. Commercially available BWIM 
systems obtain the influence line as the result of a non-linear optimi
zation procedure [10], based on responses under multiple vehicles of 
unknown axle weights. However, the problem is far from resolved and 
has received much attention during recent years. Novel suggestions to 
find the influence line include: deconvolution in frequency domain [11], 
regularized least-squares QR factorization [12], adaptive B-splines 
fitting [13], combination of empirical mode decomposition and Tikho
nov regularization [14] and probabilistic method based on the static 
transmissibility in frequency domain [15]. 

Influence lines are the cornerstone of BWIM algorithms, and they are 
arguably the most important feature needed to have accurate weight 
estimates. It would be advantageous to be able to formulate correct in
fluence lines explicitly. A step towards that goal was suggested in 
[16–18]. This research shows that it is possible to derive an analytical 
expression of a generic influence line that is independent of the bridge’s 
boundary conditions, when combining information from various sen
sors. For a BWIM system based on such an influence line, the input signal 
is equal to the factored combination of the signals from three strain 
gauges. This idea, termed Virtual Simply Supported method in [16], was 
derived theoretically and tested empirically to detect the speed and axle 
distances of moving vehicles. Subsequently, the same idea was termed 
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Macro Strain Curvature in [17,18], and was used as the basis for a BWIM 
system with fibre Bragg grating sensors. 

The findings in [16-18] are a leap towards the calculation of robust 
influence lines for BWIM methods. However, the application range of 
those findings is limited to strain signals only. Furthermore, the physical 
interpretation provided is incomplete. A broader and more insightful 
interpretation is needed. Therefore, the study below further elaborates 
the underlying theory and extends its applicability to BWIM technology. 
The results show that the factored combination of signals from several 
sensors corresponds to a finite difference scheme. This approximate 
differentiation provides an approximation of the forcing function 
(moving point load). Moreover, explicit expressions of these approxi
mations can be obtained. This knowledge can be used to develop robust 
BWIM systems based on multiple sensor readings. 

This study aims at presenting a consistent interpretation of previ
ously reported results and its potential for BWIM applications. Section 2 
revisits the original derivations in [16-18], to subsequently generalize 
the results and to integrate them within a more insightful theoretical 
framework. Section 3 numerically explores the application of the new 
interpretation for two particular BWIM applications. Finally, the dis
cussion in Section 4 explores the implications of the findings on BWIM 
technology. 

2. Theoretical analysis 

In [16-18] the authors derived and explored a useful relationship 
that combines the measured bending moments from three different 
sections of a beam solicited by traversing loads. For the case of a unitary 
moving point load, the combined signal is equivalent to an influence 
line. Remarkably, it is shown that the shape of this inferred influence 
line is independent of the boundary conditions. This novel and inter
esting outcome was termed isolated moment of a point [16] or Macro 
Strain Curvature (MSC) [17,18] in an attempt to provide a physical 
interpretation to the result. However, these interpretations are incom
plete. This section presents an improved interpretation that generalizes 
the relationship to other load effects (and not only bending moments). 

Furthermore, this section presents a revised derivation with different 
notation, complemented with additional steps that leads naturally to a 
better physical interpretation. Whereas in the original derivation 
[17,18] the strain sensors are considered to have certain length, here we 
assume that the sensor length is negligible compared to the bridge 
length. This simplification does not affect the validity or generality of 
the final result, which could be further extended to account for the 
length of the sensor. However, the simplification makes the derivation 
easier to understand and produces smaller expressions. 

2.1. Revisited original derivation 

A beam with generic supports A and B is loaded by a point load P 
located at xP, as depictured in Fig. 1a, for a reference system centred at 
the left beam support. 

Define a section i located at xi from A and consider the left beam 

segment for static equilibrium calculation (Fig. 1b). The total moment at 
that section (Mi) is equal to the sum of moments produced by the load 
(MP

i ) and by the boundary (MB
i ) as shown in Eq. (1). 

Mi = MP
i +MB

i (1) 

Following the definitions in Fig. 1b, the moment due to the load P is 
equal to the piecewise definition (Eq. (2)), depending on what segment 
of the beam the load is. When the load is on the left segment, then it is 
simply the product of the force times the distance to the section i. When 
the load is on the right beam segment, it does not contribute to the 
equilibrium and has zero value. 

MP
i =

⎧
⎨

⎩

MP
i,1

MP
i,2

⎫
⎬

⎭
=

{
P
(
xp − xi

)
if xp < xi

0 if xp ≥ xi
(2) 

The moment from the boundary (MB
i ) is due to the reaction forces at 

A, namely the vertical force RA and the support moment MA, and is 
defined in Eq. (3). 

MB
i = MA +RA⋅xi (3) 

Now consider three particular sections along the beam (see Fig. 1a), 
where we assume to have placed sensors measuring the bending 
moment. Based on Eq. (3), one can write the theoretically measured 
moment for each sensor. 

MB
1 = MA +RA⋅x1 (4)  

MB
2 = MA +RA⋅x2 (5)  

MB
3 = MA +RA⋅x3 (6) 

These expressions can be combined into a relationship that is inde
pendent of the reaction forces. First, subtracting Eq. (5) from Eq. (4) and 
Eq. (6) from Eq. (5) leads to two expressions that are independent of MA. 
These two expressions can then be solved for RA and compared to each 
other, resulting in: 

MB
1 − MB

2

x1 − x2
=

MB
2 − MB

3

x2 − x3
(7) 

Additional algebraic manipulation of Eq. (7), gives the expression: 

(x3 − x2)MB
1 +(x1 − x3)MB

2 +(x2 − x1)MB
3 = 0 (8) 

Next, define the total moment at each sensor using Eq. (1). To take 
advantage of the relationship in Eq. (8), it is convenient to multiply each 
by the appropriate factor defined in terms of the sensor coordinates. The 
resulting expressions are shown here: 

(x3 − x2)M1 = (x3 − x2)MB
1 +(x3 − x2)MP

1 (9)  

(x1 − x3)M2 = (x1 − x3)MB
2 +(x1 − x3)MP

2 (10)  

(x2 − x1)M3 = (x2 − x1)MB
3 +(x2 − x1)MP

3 (11) 

Fig. 1. a) Loaded beam with generic supports and three sensors; b) External and reaction forces to the left of section i.  
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Finally, add together Eq. (9), Eq. (10) and Eq. (11) and use Eq. (2) for 
each of the considered sensor locations. The final expression presented 
in Eq. (12) shows that the factored combination of three measured 
moments is equal to a piecewise function independent of the boundary 
conditions and defined in terms of the load and the relative location of 
the sensors to each other. Furthermore, for a traversing unitary load 
located at xP, the piecewise function is a triangular shape and could be 
interpreted as an influence line. 

(x3 − x2)M1 +(x1 − x3)M2 +(x2 − x1)M3

= P

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ∈ [0, x1)

− (x3 − x2)(xP − x1) for x ∈ (x1, x2)

(x2 − x1)(xP − x3) for x ∈ (x2, x3)

0 for x ∈ (x3, L]

(12)  

2.2. Extended derivation 

Eq. (12) can be further manipulated to arrive to a different and more 
useful expression. In fact, it is convenient to divide the equation by a 
factor in such a way that the integral of the right-hand side is equal to P. 
In other words, to normalize the piecewise function so that the integral 
of the influence line is equal to the unit. That factor is called here A and 
is the result of the piecewise integration shown in Eq. (13). 
∫ x1

0
0dxP+

∫ x2

x1

− (x3 − x2)(xP − x1)dxP+

∫ x3

x2

(x2 − x1)(xP − x3)dxP+

∫ L

x3

0dxP

=(x3 − x2)(x1 − x3)(x2 − x1)/2=A
(13) 

Therefore, dividing Eq. (12) by A (Eq. (13)) gives the expression in 
Eq. (14). 

2
(x1 − x3)(x2 − x1)

M1 +
2

(x3 − x2)(x2 − x1)
M2 +

2
(x3 − x2)(x1 − x3)

M3

=
P
A

⎧
⎪⎪⎨

⎪⎪⎩

0
− (x3 − x2)(x − x1)

(x2 − x1)(x − x3)

0

(14) 

Upon close examination, one realizes that the factors multiplying the 
moments on the left-hand side of Eq. (14) correspond to the coefficients 
of the central finite difference scheme for 2nd order derivative with 
accuracy 2. This result is for the generic case with irregular spacing 
between sensors and thus corresponds to the finite difference scheme 
with a non-uniform grid. For the case of uniformly spaced sensors with a 
physical separation between them of value h one obtains the more 
familiar triad of coefficients of the central finite difference scheme, 
namely [1, − 2, 1]/h2. 

Therefore, one can conclude that in fact the combination of three 
moments with the factors from the 2nd order finite difference scheme in 
Eq. (14) is equal to the approximation of its second derivative. As known 
from classic beam theory, the second derivative of the moment is equal 
to the load. Consequently, the piecewise function on the right-hand side 
of the expression is in fact the finite difference approximation of the 
point load. This insight clarifies why Eq. (14) and the results presented 
in [16-18] lead to an expression that is independent of the boundary 
conditions. This is because, indeed, the external load applied to a beam 
is independent of the support conditions, or even the structure for that 

matter. The following section aims at extending this revised interpre
tation to a broader framework to include different load effects. 

2.3. New interpretation 

Euler-Bernoulli beam theory describes the static response of a beam 
subjected to a point load P located at xP with the well-known differential 
equation given in Eq. (15), where δ is the Dirac delta function. This 
theory relates different load effects on the beam (namely: deformation y, 
rotation θ, bending moment M and shear force V) to the external load by 
a series of successive differentiations. Fig. 2 shows a schematic repre
sentation of the relations between the involved quantities. This shows 
that, it is possible to find the forcing function by performing the spatial 
differentiation (with appropriate order) starting from any load effect. 

d2

dx2

(

EI
d2y
dx

)

= P⋅δ(xP) (15) 

Strictly speaking, the differential formulation is valid for continuous 
functions, meaning that the load effects should be known along the 
length of the beam. However, the relation can be used also to approxi
mate the forcing function with the knowledge of a load effect at only a 
few spatially distributed discrete locations. The differentiation can be 
approximated by a finite difference scheme applied to measured load 
effects at different locations along the beam. In this case the finite dif
ference grid is simply the geometry of the sensor placement. The deri
vation below obtains the approximation of the forcing function starting 
from any of the load effects via the finite difference scheme for a generic 
grid. To that end, the formulation of this idea requires the expressions of 
the load effects and the appropriate coefficients for the finite difference 
scheme. 

Eq. (16) defines a generic load effect (LE) as a function in terms of a 
particular sensor location xi and the location of the point load xP. This 
can be written in terms of the influence line (ILE,i), which is the load 
effect at section i of the beam due to a unitary load at xP. This can be 
expressed in piecewise form, dividing it in two parts depending on 
whether the point load is located to the left or to the right of section i. 

LE(xi, xP) = P⋅ILE,i(xP) = P

⎧
⎨

⎩

Ileft
LE,i(xP) for xP < xi

Iright
LE,i (xP) for xi ≤ xP

(16) 

Table 1 shows the influence line expressions for the case of a simply 
supported beam of length L with constant bending stiffness (EI). These 
expressions can easily be derived and are readily available in literature 
but are included here for completeness. 

Fig. 2. Schematic relation between load effects and load.  

Table 1 
Influence line expressions for a simply supported beam with constant EI.  

Load effect Symbol IleftLE,i  Iright
LE,i  

Shear V L − xP

L  
−

xP

L  
Bending moment M L − xP

L
xi  −

L − xi

L
xP  

Rotation θ  x2
P + 3x2

i − 6Lxi + 2L2

6EIL
xP  

x2
P + 3x2

i − 2LxP

6EIL
(xP − L)

Deformation y  x2
P + x2

i − 2Lxi

6EIL
(xi − L)xP  

x2
P + x2

i − 2LxP

6EIL
(xP − L)xi   
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The coefficients of finite difference schemes can be obtained by 
differentiating the Lagrange polynomials. Refer to [19] for additional 
information on finite difference schemes and systematic calculation of 
the coefficients for different differentiation order and accuracy. For 
example, the coefficients to approximate the 2nd derivative are equal to 
the 2nd derivatives of the Lagrange polynomials, where the accuracy of 
the approximation depends on how many nodes are included in the 
polynomial generation. This method quickly becomes quite cumber
some for hand calculations particularly when considering non-uniform 
grids and has been completed here with the aid of symbolic calcula
tion software. 

Let us denote αX,i as the finite difference coefficient for grid node i to 
obtain the X order derivative. The coefficients for the central finite 
difference schemes of order 1–4 with accuracy 2 for uniform and non- 
uniform grids have been calculated and are listed in the Appendix A. 

Now we are equipped with the tools necessary to find an approxi
mation of the forcing function. Any load effect can be written using Eq. 
(16) and Table 1 and the appropriate differentiation can be approxi
mated by the finite difference scheme with the coefficients listed in 
Appendix A. Therefore, the forcing function can be approximated using 
Eq. (17), where n is the number of finite difference grid points, in other 
words, the number of sensors on the beam. 

∑n

i
αX,iLE(xi, xP) = PδLE(xP) (17) 

The function δLE approximates the Dirac delta function based on the 
load effect measured at i locations. The function δLE(xP) is a piecewise 
function that can be calculated using the expressions of the influence 
lines and the finite difference coefficients. After algebraic manipulations 
one obtains the Dirac delta approximations Eq. (18) and Eq. (19) based 
on the load effects shear and bending moment respectively. The ex
pressions for δθ(xP) and δy(xP) considering non-uniform grids can be 
computed but are too long to be written down. Appendix B presents their 
formulation and only for the case of uniformly spaced grids. 

δV(xP) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 xP ≤ x1

−
(x2 − x3)

(x1 − x2) (x1 − x3)
x1 < xP ≤ x2

−
(x1 − x2)

(x1 − x3) (x2 − x3)
x2 < xP ≤ x3

0 x3 ≤ xP

(18)  

δM(xP) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 xP ≤ x1

−
2 (x1 − xP)

(x1 − x2) (x1 − x3)
x1 < xP ≤ x2

2 (x3 − xP)

(x1 − x3) (x2 − x3)
x2 < xP ≤ x3

0 x3 ≤ xP

(19) 

Therefore, this derivation shows that we can approximate the forcing 
function from multiple load effect measurements on the beam by means 
of a finite difference approximation of appropriate order. Furthermore, 
this forcing function can be formulated explicitly (see, Eq. (18) and Eq. 
(19) and Appendix B) and is independent of the boundary conditions of 
the beam. 

2.4. Static solution examples 

In order to clarify the results presented so far, two examples are 
discussed. The theoretical results are compared to the numerical solu
tion from a finite element model of the beam. Section 3.1 provides 
additional information about the numerical model used in these exam
ples. Note that these examples deal with the static response of the beam. 
The contribution of dynamic effects is included in an extended analysis 

in Section 3. 
The first example is for a simply supported beam traversed by a 

moving load P. There are three sensors distributed irregularly along the 
beam (Fig. 3a). These theoretical sensors are capable of measuring the 
bending moment during the load passage. The measured moments are 
shown in Fig. 3b, normalized by the maximum mid-span moment. The 
approximation of the forcing function is calculated numerically and 
symbolically, rendering the same result (Fig. 3c). The numerical result 
takes the response of the beam due to the load (Fig. 3b) and applies the 
2nd order central finite difference scheme using the coefficients defined 
in Appendix B. In contrast, the symbolic result in Fig. 3c is calculated 
using directly Eq. (19). 

The second example is for a cantilever beam loaded by a moving 
constant load P. In this case the sensors measure the vertical deforma
tion and are distributed evenly along the beam (Fig. 4a). The numerical 
deformation at each sensor in shown in Fig. 4b and normalized by the 
maximum possible deformation of the beam that is PL3/3EI, which oc
curs at the free end when the load is placed there. The forcing function 

Fig. 3. Example 1; a) Sketch of beam, sensors and load; b) Normalized bending 
moments for three sensors; c) Forcing function approximation. 
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approximation (Fig. 4c) is obtained numerically by performing the 4th 
order differentiation using the numerical responses (Fig. 4b) and the 
corresponding finite difference scheme (Appendix A). This result 
matches perfectly the symbolic result based on the function δy provided 
in Appendix B. 

These examples show that the derived formulation is correct, and 
therefore that the forcing function can be approximated with explicit 
formulations. The graphical representations in Figs. 3c and 4c visually 
highlight some of the properties of the δLE functions. The load approx
imations are piecewise functions, where each peace is limited by the 
sensor locations. The functions are zero-valued outside the grid of points 
used for the differentiation approximation. 

2.5. Generalization 

The presented results can be extended to the case of multiple suc
cessive traversing loads. Because the formulation of the problem is 

linear, superposition is applicable. Therefore, Eq. (17) can be extended 
to include a set of N passing loads (Pj), where each load position is 
defined by xP,j, as seen in Eq. (20). This formulation is applicable to more 
realistic scenarios where an instrumented bridge is traversed by vehicles 
with more than one axle. 

∑n

i
αX,i

∑N

j
PjILE,i

(
xP,j

)
=

∑N

j
PjδLE

(
xP,j

)
(20) 

In addition, the formulation can be extended in the time domain. We 
recognize first that the load (vehicle) position changes in time, which is 
equivalent to make the variable xp,j dependent on time in Eq. (20). 
Furthermore, it is possible to differentiate the whole equation with 
respect of time. Eq. (21) shows the generalization of the expression for 
the m-th order time derivative. The functions ILE and δLE (given in Eq. 
(16) and Appendix B) are piecewise polynomial functions that can be 
expressed in terms of t coordinate. Thus, their m-th order time derivative 
versions can explicitly be derived, however they have not been repro
duced in this document because it was deemed a straightforward 
operation. 

∑n

i
αX,i

∑N

j
Pj

dm

dtm

(
ILE,i

(
xP,j(t)

) )
=

∑N

j
Pj

dm

dtm

(
δLE

(
xP,j(t)

) )
(21) 

Eq. (21) relates any possible load effect (including time-derivatives) 
to an explicit expression for the approximation of the forcing function 
(and its time derivatives) via the appropriate finite difference scheme. 
For example, the equation shows that the 4th spatial derivative of the 
beam acceleration signals is equal to an explicitly defined function that 
approximates the (2nd time derivative) forcing function produced by the 
passing vehicle. 

Therefore, the result in Eq. (21) is termed Point Load(s) Approxi
mation (PLA), since it relates approximations of traversing point loads, 
in explicit form. The left-hand side of Eq. (21) is the factored combi
nation of recorded signals during a vehicle crossing event. The factors 
are the corresponding finite difference coefficients (Appendix A) defined 
in terms of the spacing between sensors. Using the correct order for the 
finite difference scheme results in the approximation of the forcing 
function, as schematically shown in Fig. 2. The right-hand side of Eq. 
(21) is also the forcing function approximation but expressed in terms of 
axle weights and explicit functions. These functions are regularizations 
of the Dirac delta function for the finite difference grid matching the 
sensor distribution. These expressions are defined explicitly in Eq. (18), 
Eq. (19) and Appendix B. 

This theoretical result can be used, for instance, to establish a BWIM 
system using any load effect. The influence line for a PLA-based BWIM 
system is known explicitly (δLE) and is independent of the structure. The 
input signal for the BWIM algorithm is the PLA result, namely the 
factored combination of several signals via a finite difference scheme. 
The method requires a minimum number of sensors, which depends on 
what load effect is measured. There should be at least as many sensors as 
the number of grid points needed to perform the finite differentiation. 
The order of the finite difference is the derivative order needed to 
transform the measured load effect into the forcing function, as known 
from theory and indicated in Fig. 2. 

2.6. Additional comments 

This sub-section lists some additional complementary comments to 
complete the presentation and clarify some aspects of the PLA idea.  

• The derivation has been presented for the central finite difference 
scheme, but other alternatives, such as forward or backward 
schemes, could also be used.  

• The number of grid points used in the finite difference schemes can 
be increased, and so the number of sensors in an analysis. In that 

Fig. 4. Example 2; a) Sketch of beam, sensors and load; b) Normalized defor
mation for five sensors; c) Forcing function approximation. 
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case, the expressions for the corresponding coefficients become too 
long to write. However, it is possible to derive them following sys
tematic procedures, as presented in [19], that can be readily 
implemented and automated.  

• Previous derivation was based on the influence line expressions for a 
simply supported beam (Table 1), for simplicity’s sake. Other 
boundary conditions could have been used resulting in identical δLE 
expressions. This is because the load approximation is independent 
of the structure, as seen in the cantilever beam example (Fig. 4).  

• The examples and subsequent analysis in this study assume the 
knowledge of beam’s bending stiffness (EI). However, the actual 
value of this structural parameter is not strictly necessary to apply 
the PLA idea since the expressions and results can be left in terms of 
EI. This facilitates its applicability to real scenarios where this in
formation might be difficult to obtain or is not known exactly. 

• The final PLA expression (Eq. (21)) relates only the static compo
nents, because the derivation is based on the static description of the 
loaded beam problem. The derivation does not include damping or 
inertia effects. However, any load effect measured during a vehicle 
crossing, features static and dynamic contributions. Some load ef
fects have significant static components (e.g. displacement or strain) 
while others are dominated by the dynamic contribution (e.g. ac
celeration). Using signals with deviations from the ideal static 
response in Eq. (21) introduces errors in the analysis. Therefore, it 
might be convenient to perform some signal processing on the 
measurement to (some extent) remove the dynamic component. To 
that end, one promising possibility is the use of Empirical Mode 
Decomposition (EMD) as reported in [14,20] 

3. Numerical investigations 

The presented PLA idea can have potential implications on different 
applications, ranging from traffic weight estimation to Structural Health 
Monitoring (SHM). This section explores numerically only two partic
ular applications for BWIM technology, namely, using multiple strain 
readings and acceleration-based BWIM. However, let us introduce first 
the model and methods used for the numerical investigation. 

3.1. Modelling and analysis 

The aim of the numerical model is to simulate heavy trucks passing 
over a bridge considering realistic conditions and properties for the 
model. No specific situation is precisely modelled, but rather the model 
represents a generic vehicle and bridge. The analysis is complemented 
with Monte Carlo simulations to deal with the inherent uncertainties 
and variabilities of the problem. Therefore, the model consists of a 
vehicle moving over a road profile and bridge. The calculated bridge 
load effects are the inputs for a BWIM system. 

The vehicle represents a 5-axle truck, made of rigid bodies (tractor, 
trailer and axles) connected to the road by suspension and tyre systems, 
which are modelled as spring and dashpot configurations (See Fig. 5). 
More details about the development of such numerical models can be 
found in [21]. The geometry and mechanical properties are based on 
common values of such 5-axle trucks on European roads and are taken 
from [22]. This reference also provides the parameters for probabilistic 
distributions (mean, standard deviation, maximum and minimum 
values) that are the basis for the generation of random property samples 
of the vehicle properties for the Monte Carlo analysis. Road profiles are 
randomly generated following corresponding international standard 
[23] that provides power spectral density definitions for well- 
maintained highway roads, which are categorized as Class ‘A’. A 
Finite Element Model (FEM), which has been previously described in 
[22], is made of 100 beam elements and simulates the bridge. The 
particular bridge properties values are: 25 m span (L), 18358 kg/m mass 
per unit length, 4.87 ⋅ 1010N m2 bending stiffness (EI) and 3% damping, 
deemed to represent typical properties of a beam and slab construction. 
The fundamental frequency of the bridge model is 4.09 Hz (fB) and is in 
agreement with reported average frequency values of exiting bridges 
[24]. 

The main outputs of the dynamic vehicle-bridge simulation are the 
bridge responses, which are the signals used for the subsequent BWIM 
analysis. This analysis requires the knowledge of two things, namely the 
signal of the particular crossing event and the influence line. For the 
standard BWIM system, the signal is the mid-span strain response and 
the influence line is the strain at that location due to a unitary load. 
Alternatively, and based on the theoretical results presented in previous 
section, one can establish a BWIM system based on multiple signals 

Fig. 5. Sketch of 5-axle truck model.  

Fig. 6. 5-axle truck crossing a bridge with array of evenly spaced strain gauges.  
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along the beam. In this case the signal is the PLA (the factored combi
nation of several signals) and the influence line is the corresponding δLE 
function according to the measured load effect. It is important to note 
that the core calculations in both alternatives are the same, i.e., a least- 
squares optimization that provides individual axle weight estimates. The 
difference between both alternatives are the input signal and the influ

ence line. 
Furthermore, BWIM systems have difficulties estimating individual 

weights for closely spaced axles, particularly on longer bridges. This 
problem is avoided considering groups of equally loaded axles, which 
reduces the number of unknowns and improves the results accuracy. 
This is a standard procedure currently implemented in modern BWIM 
systems [25] and relies on the fact that suspension systems evenly 
distribute the load among the axles within a group. The numerical 
simulations here consider this axle grouping strategy to calculate the 
three axle weights of the trailer of the 5-axle truck (Fig. 5). Additionally, 
the numerical analysis assumes known vehicle entry and exit times as 
well as the vehicle’s axle distance configuration. This information is 
usually obtained in existing BWIM systems by pre-processing the signals 
[5]. 

3.2. BWIM using multiple strain readings 

The use of arrays of strain sensors for BWIM systems has been pre
viously explored. Particularly, in [17,18] the authors investigate 
numerically and experimentally the use of fibre Bragg grating sensors to 
establish a BWIM system. This optical fibre sensor technology, when 
installed along the beam, provides multiple closely spaced strain read
ings. This section revisits the same idea but under the light of the new 
PLA interpretation. 

The simply supported bridge, shown in Fig. 6, is instrumented with 9 
evenly distributed strain gauges and traversed by a 5-axle truck with 
unknown axle weights. The strain signals from each sensor can be 
transformed to bending moments simply factoring the signals by the 
bridge’s bending stiffness (EI). The 2nd spatial differentiation of the 
moments gives an approximation of the multiple point loads from the 

Fig. 7. Results for a 5-axle truck passage; a) Strain signals; b) Point load 
approximation signal compared to the corresponding influence line. 

Fig. 8. Examples of influence lines for strain sensors considering. a) 1 sensor; b) 3 sensors; c) 5 sensors; d) 7 sensors; e) 9 sensors.  
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vehicle. 
Fig. 7a shows the strain signals for the sensors near the mid-span (S4, 

S5 and S6) for one vehicle crossing with a random instance of properties 
and road profile. The 2nd spatial derivative can be approximated via the 
central difference scheme using the coefficients in Appendix B. Fig. 7b 
displays the resulting signal (PLA) compared to the shape of δM (see Eq. 
(19)) for the specific span L and sensor locations. The signal and influ
ence line in Fig. 7b are used to perform BWIM calculations, obtaining a 
GVW error of − 6.1% and errors in tractor axles and trailer axle group 
estimates of − 9.6%, 2.2% and 0.6% respectively. 

The standard BWIM uses one single sensor, which for the theoretical 
case of a simply supported beam with the sensor at mid-span (S5) has a 
triangular influence line, as shown in Fig. 8a. The new PLA interpreta
tion proposes the generation of influence lines using the signals from 
multiple sensors, as demonstrated in Fig. 7b using 3 sensors. But in fact, 
it is possible to combine more signals to obtain PLA influence lines by 
increasing the number of grid points in the finite difference approxi
mation. For comparison purposes, Fig. 8 shows influence line examples 
when considering grids with 3, 5, 7 and 9 points. There exist multiple 
options for grouping the sensors. However, in this study the grouping 
options have been limited only to groups composed of consecutive 
sensors and using the notation: N+(number)+G+(group number). For 
example, N5G2 denotes the group of 5 consecutive sensors starting from 
S2. The PLA influence lines based on multiple sensors are narrower than 
the one associated to a single sensor. In theory, BWIM systems using 
such sharp influence lines should provide good results and improved 
accuracies on the weight estimates, particularly for closely spaced axles. 

Both BWIM alternatives are put to a test by comparing their per
formances for a sample of randomly generated vehicle and road situa
tions. The first alternative is the classic strain-based BWIM using one 
single strain gauge. In this example it is possible to define 9 different 
single sensor BWIM systems, one for each sensor ‘S’ shown in Fig. 6. 
Each installation requires the knowledge of the local influence line and 
the event’s signal, resulting in 9 instances of axle weights estimates of 

the passing vehicle. Alternatively, for the PLA-based BWIM (with mul
tiple sensors), there are several possibilities depending on the number 
and location of sensors considered. Now the PLA influence lines for these 
sensor groups are derived explicitly as exemplified in Fig. 8 and the 
signals are the factored combination of the recorded strain histories 
using the relevant finite difference coefficients or PLA. 

A Monte Carlo analysis with 30 vehicle crossing events has been 
simulated, where vehicle speed, payloads and suspension properties, as 
well as, road profiles have been randomly sampled to represent the 
variability in the results found in real measurements. Fig. 9a shows the 
prediction errors in GVW in absolute value for both BWIM alternatives 
and used sensor combinations. The figure displays the error for each 
individual event, as well as the average of the 30 runs. It is evident that 
single sensor BWIM provides more accurate GVW estimates than solu
tions that have used 3 or more sensors. The reduced accuracy in the PLA- 
based BWIM estimates is because of the accumulation of signal distur
bances. The combination of 3 or more signals that include disturbances 
due to dynamic effects results in more corrupted signals. This can be 
observed in Fig. 7. Whereas the individual strain signals are relatively 
smooth, the PLA signal has noise-like features arising from the factored 
signal combination. Any deviation from the ideal static signal affects the 
accuracy of BWIM calculations. The accumulation of signal disturbances 
on PLA-based BWIM solutions results in larger errors in GVW estimates. 

It is well known that standard BWIM generally provides very good 
estimates for GVW. But ultimately the goal of BWIM systems is to be able 
to estimate individual axle weights. Then the solutions are more prone 
to error. In fact, the accuracy of single axle weight estimates is poorer in 
BWIM systems. This is reflected in the error tolerances of WIM system 
certification criteria [4], which generally demand higher accuracies for 
GVW estimates compared to axle groups and single axle estimates. 

The same 30 events from the Monte Carlo simulation are investigated 
to assess individual axle weight estimates. Because of the axle grouping 
strategy, there are only 3 unknown axle weights for the 5-axle truck, 
namely those of the first axle, second axle and the trailer’s axle group. 

Fig. 9. Strain-based BWIM results for Monte Carlo analysis with 30 events; a) GVW estimation error; b) Axle weights estimation errors.  
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The average weight estimate error for each of these axles (groups) is 
shown in separate lines in Fig. 9b. The single sensor BWIM provides poor 
axle weight estimates for the tractor’s single axles. The accuracy for the 
axle group is significantly better, indicating the effectiveness of the axle 
grouping strategy. On the other hand, PLA-based BWIM systems esti
mate all axle weights with similar accuracy levels. This alternative 
drastically improves the accuracy of the individual axle estimates. This 
improvement can probably be attributed to the use of narrower influ
ence lines and PLA signals, which to some extend transforms the single 
event into two separate ones. Take the example in Fig. 7b. The PLA 
signal shows distinct valleys between the times 0.4 s, 0.7 s and 1 s, which 
could be interpreted as separate events for the tractor and trailer. 
Arguably, the combination of signals into a single PLA separates their 
contributions, thus reducing the negative effects from one to the other 
during the estimation process. However, note that this is only a quali
tative explanation. The calculations of both BWIM alternatives consider 
the whole event as single one and only input signals and influence lines 
differ. Furthermore, the results in Fig. 9b also seem to indicate that it is 
not necessarily beneficial to increase the number of sensors in a sensor 
group. 

3.3. Acceleration-based BWIM 

In recent years the use of accelerometers for BWIM has been sug
gested, where ease of sensor installation stands out as the biggest 

advantage. One possibility is to have a displacement-based BWIM sys
tems where the acceleration signals are double integrated [26], showing 
decent accuracy on extended monitoring periods [27]. Alternatively, 
[28] suggests an approach to use an acceleration signal directly on the 
BWIM algorithm, reporting poor accuracies due to persistent GVW un
derestimations, but statistically robust to detect an eventual damage on 
the structure. The numerical study in this subsection explores the use of 
multiple acceleration signals to obtain an approximation of the loading 
(PLA) and use that as the basis for the BWIM algorithm. 

Fig. 10 shows a schematic description of the numerical example 
under study, a simply supported beam instrumented with 3 accelerom
eters traversed by a 5-axle truck with unknown axle weights. The pro
posed method requires the transformation of the acceleration signals 
into the (2nd time derivative) loading function, which can be approxi
mated by the 4th order finite difference derivative, as expressed in Eq. 
(21). The minimum grid size for this approximation is 5 points, while the 
example assumes the existence of only 3 sensors. This can be resolved by 
taking advantage of the known behaviour at the supports. One can as
sume the existence of 2 virtual accelerometers that output constant zero 
signals. Therefore, 3 real accelerometers and 2 virtual ones provide 
sufficient information to perform the 4th order differentiation. 

Fig. 11a presents the acceleration time histories from the 3 acceler
ometers for a randomly generated vehicle crossing event. The PLA signal 
can be calculated considering the additional zero signals from the virtual 
sensors at the supports and is shown in Fig. 11b. The corresponding 
necessary PLA influence line (δ̈y) is the approximation of 2nd time de
rivative of the Dirac delta function, which can be derived from the 
equations in Appendix B, and is also shown in Fig. 11b. Because the 
acceleration signals are dominated by the dynamic contribution, it is 

Fig. 10. 5-axle truck crossing a bridge with evenly spaced accelerometers.  

Fig. 11. Results for a 5-axle truck passage; a) Acceleration signals; b) Point load 
approximation signal compared to the corresponding influence line. 

Fig. 12. Histogram of GVW error.  
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advantageous to apply some form of signal processing to remove most of 
its effects. In this example, a low-pass filter with a cut-off frequency of 
3.27 Hz (=0.8 fB) is applied to the PLA signal and PLA influence line 
shown in Fig. 11b. Signal and influence line are used to perform the 
BWIM calculations, obtaining a GVW error of − 2.6% and errors in 
tractor axles and trailer axle group estimates of − 25.3%, 4.0% and 0.8% 
respectively. 

One single example is not representative to assess the performance of 
the method. Therefore, a Monte Carlo simulation with 1000 randomly 
sampled vehicle crossing events is used to compare weight estimates 
from alternative solutions. The reference case corresponds to the stan
dard single mid-span strain sensor BWIM method, which is compared to 
the acceleration-based BWIM with 3+2 (real + virtual) sensors. 

Fig. 12 compares the errors in GVW estimation for both alternatives. 
The standard strain-based BWIM clearly outperforms the acceleration- 
based alternative because the distribution of errors is more densely 
distributed around the zero mark. However, it is interesting to note that 
even though the deviation in results is larger for the acceleration-based 
BWIM, the mean value of both is similar and near zero. Furthermore, 
Table 2 compares the single axles and axle group estimation errors in 
terms of mean and standard deviation of the results. Both methods 
perform poorly in terms of average error result, whereas the dispersion 
is generally greater for the acceleration-based BWIM. 

This example has shown that the acceleration-based BWIM does not 
provide precise results, but they can be useful. In general, variability in 
weight estimation is larger but produces reasonably good average result, 
similar as those from the standard BWIM. Additionally, the idea of vir
tual sensors has been exploited to allow for the required approximate 
differentiation via a finite difference scheme. 

4. Discussion 

The PLA idea offers a more insightful framework to utilize the signals 
from vehicle-bridge crossing events. The potential applications of this 
interpretation must be further explored. This study has focused on the 
implications on BWIM technology. However, this exploratory numerical 
investigation cannot provide a general recommendation on the suit
ability of the PLA-based BWIM idea. Additional studies are required for 
different vehicle configurations, bridge properties and sensor configu
rations, among other defining characteristics of this problem. 

Nevertheless, the theoretical framework shows several important 
features for BWIM technology. Arguably the most important one, is that 
it is possible to define the exact shape and magnitude of the PLA influ
ence line with an explicit analytical formulation. This shape is made of 
piecewise polynomials, where each segment is bounded by sensor lo
cations. On the other hand, the influence line in a standard BWIM 
installation is not defined analytically. The shape of the influence line 
can be extracted and approximated also as a piecewise function, but the 
magnitude must be obtained during the calibration process. Further
more, this influence line might change with temperature or alterations 
of the support conditions [10]. The PLA influence line overcomes these 
issues, because it encapsulates the bridge response into an approxima
tion of the traversing load, which is independent of the structure and 
support conditions. Therefore, a BWIM based on this PLA influence line 
is advantageous under real operational conditions. 

Furthermore, the framework naturally extends the formulation to 
other load effects. This facilitates the definition of BWIM systems based 
on alternative sensor solutions. In addition, the PLA idea could be used 
to implement BWIM systems on longer bridges as opposed to conven
tional BWIM installations that are only suited for short-span bridges. In a 
PLA-based solution, the length of the influence line is defined by the 
distance between the outer sensors. Thus, a BWIM installation could be 
devised on a long-span bridge by placing sensors that define a shorter 
influence line. PLA-based BWIM systems using multiple strain signals 
have already been explored and validated empirically in [16-18]. These 
studies were based on narrower interpretations of the problem but 
corroborate the theoretical findings presented above. 

A PLA-based BWIM system requires the installation of several sensors 
along the bridge. This is common practice in some modern installations, 
which have mid-span sensors and several supplementary strain gauges. 
These additional signals are currently used for velocity estimation and 
axle detection. Therefore, the PLA idea could readily be implemented in 
such installations, requiring only modifications in the analysis of the 
measured responses. Furthermore, the results in this study show that 
using PLA-based BWIM can increase the accuracy of individual axle 
weight estimates, whereas single sensor systems provide better GVW 
predictions (due to the accumulation of disturbances when combining 
multiple signals). To take advantage of the strengths of both methods it 
would be feasible to combine both approaches utilizing the method that 
provides better accuracy for each estimate respectively. 

The practical implementation on a real bridge of a PLA-based BWIM 
system faces many of the same difficulties as the standard BWIM system. 
These include, for instance, the influence of the transverse vehicle po
sition and signal corruption by noise. Therefore, the same strategies as 
for standard BWIM installations can be utilized on PLA-based alterna
tives. To address the transverse vehicle position issue, BWIM systems 
combine the signals from several sensors placed along the same cross 
section. On the other hand, the effect of noise can be reduced by 
appropriate signal processing, such as low-pass filtering [16]. 

5. Conclusion 

This study has presented the Point Load Approximation (PLA) idea 
for vehicle-bridge crossing events. Starting from classical beam theory, 
the derivation has shown that the forcing function can be approximated 
from multiple measurements on the beam by means of a finite difference 
approximation of appropriate order. At the same time, this forcing 
function can also be formulated explicitly. The theoretical finding was 
integrated into a generalized formulation that extended it to other load 
effects and corresponding time derivatives. This interpretation offers a 
broader and more insightful theoretical framework, which integrates 
results previously reported in other publications. 

The PLA idea has then been applied to Bridge Weigh-in-Motion 
(BWIM) technology and enabled the definition of PLA-based BWIM 
systems. In these systems, the influence line is defined explicitly using 
the presented formulations (δLE), and the input signals are simply the 
factored combination of several signals via a finite difference scheme. 
The theoretical frameworks allowed for the application of BWIM algo
rithms to a broader set load effects. Two particular scenarios have been 
numerically investigated. The first study showed that multiple strain 
gauges BWIM systems might lead to consistently more accurate indi
vidual axle weight estimates, when compared to the standard one strain 
sensor BWIM. The second study explored an alternative way of estab
lishing an acceleration-based BWIM. The results showed reasonably 
good average GVW estimates. 
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Table 2 
Mean (μ) and standard deviation (σ) of weight estimates error (%) from Monte 
Carlo simulation with 1000 events.   

BWIM acc-BWIM  

μ  σ  μ  σ  

GVW 0.46 1.19 − 1.5 23.81 
Axle 1 − 32.18 33.94 − 24.58 53.53 
Axle 2 25.44 36.85 11.25 33.05 
Axle group 0.68 5.59 0.37 23.54  
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Appendix A 

See Table 3. 

Appendix B 

Eq. (22) and Eq. (23) show the Dirac delta function approximations obtained from rotations and deformations respectively. The formulation is 
based on the central finite difference scheme of accuracy 2. The formulation for a generic case with a non-uniform grid results in expressions that are 
too long to transcribe. Thus, the expressions below are for uniform grids, with a distance between points (or sensors) of h, and with the reference 
system located on the first point of the grid (i.e. x1 = 0). 

δθ(xP) =
1

4 EI h3

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 xP ≤ 0
xP

2 0 < xP ≤ x2
4 h xP − 2 h2 + xP

2 x2 < xP ≤ x3
4 h xP − 2 h2 + xP

2 x3 < xP ≤ x4
(4 h − xP)

2 x4 < xP ≤ x5
0 x5 ≤ xP

(22)  

δy(xP) =
1

6 EI h4

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 xP ≤ 0
xP

3 0 < xP ≤ x2
4 h3 − 12 h2 xP + 12 h xP

2 − 3 xP
3 x2 < xP ≤ x3

− 44 h3 + 60 h2 xP − 24 d xP
2 + 3 xP

3 x3 < xP ≤ x4
(4 h − xP)

3 x4 < xP ≤ x5
0 x5 ≤ xP

(23)  
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