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Abstract: We propose a method for performing automatic docking of a small autonomous
surface vehicle (ASV) by interconnecting an optimization-based trajectory planner with a
dynamic positioning (DP) controller for trajectory tracking. The trajectory planner provides
collision-free trajectories by considering a map with static obstacles, and produces feasible
trajectories through inclusion of a mathematical model of the ASV and its actuators. The
DP controller tracks the time-parametrized position, velocity and acceleration produced by the
trajectory planner using proportional-integral-derivative feedback with velocity and acceleration
feed forward. The method’s performance is tested on a small ASV in confined waters in
Trondheim, Norway. The ASV performs collision-free docking maneuvers with respect to static
obstacles when tracking the generated reference trajectories and achieves successful docking.
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1. INTRODUCTION

Autonomous surface vehicles (ASVs) constitute a topic of
significant research and commercial attention and effort.
Motivating factors are economy, flexibility, safety and
environmental advantages. Technology developments in
this field are rapid, and the use cases are many, e.g.
mapping of the ocean floor, military applications such as
surveillance, and transportation. In addition, the relatively
low cost of smaller ASVs enables novel concepts, for
example autonomous urban passenger ferries that are an
alternative to bridges in a city landscape.

To achieve autonomy in transportation operations the
following phases must be automated:

• Undocking – moving from the quay in a confined
harbor area to open waters,

• transit – crossing a canal or large body of water
towards the destination harbor,

• docking – moving from open waters towards the
docking position along the quay in a harbor area.

Since this paper focuses on the docking phase, we provide
a background on automatic docking methods. The number
of reported existing methods is limited in research litera-
ture and in commercial applications. Methods for docking
of autonomous underwater vehicles (AUVs) have been

� This work is supported by the Research Council of Norway
through the project number 269116 as well as through the Centres
of Excellence funding scheme with project number 223254.

introduced by e.g. Rae and Smith (1992), Teo et al. (2015)
and Hong et al. (2003), but they are of limited value for
use with surface vessels in a confined harbor area, due to
the lack of consideration of nearby obstacles. Tran and Im
(2012) propose a method for docking of a large ship based
on artificial neural networks to control the ship’s thrusters,
which has shown promising simulation results. However,
this method does not include the harbor layout for collision
avoidance. Mizuno et al. (2015) propose an optimization-
based approach taking into account known disturbances.
An optimal nominal path is generated once, and a lower-
level model predictive controller (MPC) attempts to follow
it. This method also does not include the harbor layout for
collision avoidance, and it is not very realistic to assume
known disturbances in such dynamic settings. Commercial
demonstrations of automatic docking have been performed
by Wärtsilä 1 and Rolls-Royce 2 (now Kongsberg Mar-
itime). Details about the methods used in these approaches
are unavailable to the public.

The docking method from (Martinsen et al., 2019) is a
nonlinear model predictive controller (NMPC) that takes
into account vessel dynamics in the form of its dynamic
model, as well as collision avoidance by planning trajec-

1 Wärtsilä press release: https://www.wartsila.com/

twentyfour7/innovation/look-ma-no-hands-auto-docking-

ferry-successfully-tested-in-norway.
2 Rolls-Royce press release: https://www.rolls-royce.com/

media/press-releases/2018/03-12-2018-rr-and-finferries-

demonstrate-worlds-first-fully-autonomous-ferry.aspx.
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Fig. 1. The experimental autonomous urban passenger
ferry milliAmpere, developed at NTNU, moored near
Brattøra in Trondheim, Norway.

tories within a convex set, based on the harbor layout.
Advantages of that approach include explicit handling of
static obstacles, planning of dynamically feasible trajecto-
ries, and flexible behavior shaping via the nonlinear cost
function. The method does not handle moving obstacles
or account for external unknown disturbances. Addition-
ally, due to the non-convex shape of the optimal control
problem (OCP), guarantees on run time or feasibility are
not provided. In this paper, we build on (Martinsen et al.,
2019) and add the following contributions:

• Instead of running the trajectory planner as an MPC
controller by using the inputs directly, the state tra-
jectory is sent to a trajectory-tracking dynamic po-
sitioning (DP) controller to account for disturbances
and unmodeled dynamics.

• The thruster model is adjusted to improve run times
and convexity properties.

• The cost function is adjusted to deal with the wrap-
around problem in the heading variable, and to avoid
quadratic costs on large position deviations.

• Slack variables are added to deal with feasibility
issues that arise when implementing the method in
a real-world scenario.

• Although not detailed in this paper, we have imple-
mented an algorithm that dynamically updates the
convex set which represents the static obstacles. The
set is updated based on the vessel’s current position
in the map, which allows us to use convex constraints
in a non-convex map.

By modifying the method from (Martinsen et al., 2019), it
is shown to produce collision-free and successful maneuvers
in full-scale experiments on the experimental autonomous
urban passenger ferry milliAmpere, seen in Figure 1, in
Trondheim, Norway. Although the method is implemented
to solve the docking problem on an autonomous urban
passenger ferry, this is a generic approach that is suitable
also for other use cases and vessel types.

The rest of this paper is structured as follows: We intro-
duce the experimental platform milliAmpere in Section 2.
The trajectory planner used for generating docking trajec-
tories is presented in Section 3, along with the trajectory-
tracking DP controller. Section 4 presents the experimen-
tal results, and we conclude the paper in Section 5. We
present the mathematical models used in the paper in
Appendix A.

Table 1. milliAmpere specifications.

Dimensions 5m by 2.8m symmetric footprint

Position and heading
reference system

Vector VS330 dual GNSS with RTK
capabilities

Thrusters Two azimuth thrusters on the center
line, 1.8m aft and fore of center

Existing control
modules

Trajectory-tracking DP controller and
thrust allocation system

Docking planner
DP controller

milliAmpere
Thrust allocation

Planned
trajectory
xp(t), ẋp(t)

Thruster
commands

Measured states x(t)

Docking
pose

Thruster
commands

Fig. 2. Block diagram of the docking system setup. The DP
controller and thrust allocation are existing functions
on milliAmpere.

2. THE MILLIAMPERE AUTONOMOUS FERRY
PLATFORM

For the sea trials, we used the experimental autonomous
urban passenger ferry milliAmpere, depicted in Figure 1
and with specifications as listed in Table 1. Developed
at the Norwegian University of Science and Technology
(NTNU) since 2017, milliAmpere has been an experimen-
tal platform where many students have contributed with
control systems as well as hardware solutions. A larger
version is being designed and built by the research group
Autoferry. 3 Small passenger ferries for urban water trans-
port is a novel concept which is being made economically
feasible due to increased availability and advances in both
sensor systems and autonomous technology. Such a solu-
tion is anticipated to make areas that are separated by
waterways more accessible at a lower cost and with less
interfering infrastructure than building a bridge.

For simulation purposes, we have used a surge-decoupled
three-degree-of-freedom model, along with dynamic mod-
els for azimuth angles and propeller speeds of the
thrusters. Separate models are also used for planning and
trajectory tracking. Since we are using three different
models in the work described in this paper, we place the
model information in Appendix A to improve readability.
Parameters and information about the model identifica-
tion process are available in (Pedersen, 2019).

3. TRAJECTORY PLANNING AND CONTROL

The trajectory planner is an OCP that takes into account
the vessel dynamics via a mathematical model, as well
as the harbor layout by including a map as constraints.
The OCP is a modified version of the one developed in
(Martinsen et al., 2019). In our case, the OCP runs at a
set rate and provides pose, velocity and acceleration tra-
jectories for an existing trajectory-following DP controller,
as illustrated in Figure 2.

The OCP is described by the following equations:

3 Autoferry website: https://www.ntnu.edu/autoferry.
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min
xp(·),up(·),s(·)

∫ t0+T

t0

(
F (xp(t),up(t)) + k�

s s(t)
)
dt (1a)

subject to

ẋp(t) = f(xp(t),up(t)) ∀t ∈ [t0, t0 + T ] (1b)

h(xp(t),up(t))− s(t) ≤ 0 ∀t ∈ [t0, t0 + T ] (1c)

s(t) ≥ 0 ∀t ∈ [t0, t0 + T ] (1d)

xp(t0) = x(t0). (1e)

The planned states are denoted xp = [η�
p ,ν

�
p ]�, where

ηp = [xp, yp, ψp]
� is the Earth-fixed pose, and νp =

[up, vp, rp]
� is the body-fixed velocity vector. The kine-

matic relationship between the pose and velocity vectors
is detailed in Appendix A. The goal of the OCP is to arrive
at the constant state vector xd = [η�

d ,0
�
3 ]

� while avoiding
collisions, where ηd = [xd, yd, ψd]

� is referred to as the
docking pose. The vector x(t0) is the vessel’s measured
state at time t0. The planning horizon is T = 120 s.

The input vector up = [fx1, fy1, fx2, fy2]
� is used to

denote the forces decomposed in surge and sway of mil-
liAmpere’s two actuators, where fx1 represents a force in
surge direction from thruster 1, fy2 represents a force in
sway direction from thruster 2, etc. Details on the mapping
from this input to control forces are found in Appendix A.
The cost functional and constraints are elaborated upon
in the following subsections. The OCP is discretized us-
ing direct collocation and solved as a nonlinear program
(NLP) with 60 control intervals.

3.1 Cost functional

The cost functional (1a) operates on the trajectories of
the states xp(·), inputs up(·) and slack variables s(·). It
consists of a cost-to-go function F (xp(t),up(t)), as well
as a cost-to-go on the slack variables k�

s s(t) with the
elements of ks having values large enough (1.0× 103) so
that the slack variables are active only when the problem
otherwise would be infeasible.

The cost-to-go function is

F (xp(t),up(t)) =

H

([
xp(t)− xd

yp(t)− yd

])
+

20 (1− cos(ψp(t)− ψd))+

10 vp(t)
2 + 10 rp(t)

2 +

up(t)
�up(t) /m

2
11 ,

(2)

where the terms are costs on position error, heading error,
quadratic sway velocity and yaw rate, and quadratic input,
respectively. The parameter m11 is the system inertia in
surge, detailed in Appendix A. The terms are scaled so
that the cost function becomes dimensionless. The pseudo-
Huber function

H(a) = δ2

(√
1 +

a�a

δ2
− 1

)
(3)

with δ = 10m provides a quadratic penalty when the
quadrature position errors are low and linear when they
are high.

The resulting cost functional encourages the planned tra-
jectories to converge to the docking pose ηd with zero

Sv

Ss

E

N

Fig. 3. Spatial constraints illustration.

velocity, while penalizing sway and yaw rates, as well
as the input forces. Including the docking pose in the
cost functional instead of as terminal constraints allows
us to use the planner far away from the dock, when the
docking pose is outside the reach of the planning horizon
T . Additionally, if the operator selects a docking pose that
is in violation of the collision constraints, the planner will
accept it and find a feasible pose close to the docking pose.

3.2 Vessel model

Equation (1b) is a simplified model of the vessel dynam-
ics. A diagonalized version of the surge-decoupled model
in (Pedersen, 2019) is used, with details found in Ap-
pendix A. The kinematic and kinetic models are concate-
nated to

ẋp = f(xp,up) =[
R(ψp)νp

(SMp)
−1(−Cp(νp)νp −Dp(νp)νp + τp(up))

]
, (4)

where the time argument is omitted for notational brevity.
This equation is included as dynamic constraints in the
OCP.

3.3 Inequality constraints

The inequality constraints (1c) encode collision avoidance
criteria as well as state and input limitations. These con-
straints are softened by using slack variables and lin-
ear slack costs that keep the optimization problem fea-
sible should disturbances push the vessel outside of these
boundaries.

To avoid collisions, we specify a set Sv ⊂ R2 representing
the footprint of the vessel, as well as a permissible convex
set Ss ⊂ R2. The collision avoidance constraint is to ensure
Sv ⊂ Ss, which can be controlled by checking that the
vertices of Sv are within Ss, as illustrated in Figure 3.
Since Ss is a convex polyhedron, we can describe it as

Ss =
{
p ∈ R2 | Asp ≤ bs

}
, (5)

where As ∈ Rk×2 and bs ∈ Rk and k is the number of
vertices in the convex set. This results in the collision
avoidance constraint being equivalent to

As

(
R2(ψp(t))v +

[
xp(t)
yp(t)

])
≤ bs

∀ v ∈ Vertex(Sv) . (6)

The rotation matrix R2(ψp(t)) is equal to the upper-left
R2×2 of (A.3) in Appendix A. The set Ss is generated
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velocity, while penalizing sway and yaw rates, as well
as the input forces. Including the docking pose in the
cost functional instead of as terminal constraints allows
us to use the planner far away from the dock, when the
docking pose is outside the reach of the planning horizon
T . Additionally, if the operator selects a docking pose that
is in violation of the collision constraints, the planner will
accept it and find a feasible pose close to the docking pose.

3.2 Vessel model

Equation (1b) is a simplified model of the vessel dynam-
ics. A diagonalized version of the surge-decoupled model
in (Pedersen, 2019) is used, with details found in Ap-
pendix A. The kinematic and kinetic models are concate-
nated to

ẋp = f(xp,up) =[
R(ψp)νp

(SMp)
−1(−Cp(νp)νp −Dp(νp)νp + τp(up))

]
, (4)

where the time argument is omitted for notational brevity.
This equation is included as dynamic constraints in the
OCP.

3.3 Inequality constraints

The inequality constraints (1c) encode collision avoidance
criteria as well as state and input limitations. These con-
straints are softened by using slack variables and lin-
ear slack costs that keep the optimization problem fea-
sible should disturbances push the vessel outside of these
boundaries.

To avoid collisions, we specify a set Sv ⊂ R2 representing
the footprint of the vessel, as well as a permissible convex
set Ss ⊂ R2. The collision avoidance constraint is to ensure
Sv ⊂ Ss, which can be controlled by checking that the
vertices of Sv are within Ss, as illustrated in Figure 3.
Since Ss is a convex polyhedron, we can describe it as

Ss =
{
p ∈ R2 | Asp ≤ bs

}
, (5)

where As ∈ Rk×2 and bs ∈ Rk and k is the number of
vertices in the convex set. This results in the collision
avoidance constraint being equivalent to

As

(
R2(ψp(t))v +

[
xp(t)
yp(t)

])
≤ bs

∀ v ∈ Vertex(Sv) . (6)

The rotation matrix R2(ψp(t)) is equal to the upper-left
R2×2 of (A.3) in Appendix A. The set Ss is generated

regularly and consists of the eight edges made up of
landmasses in the map that are closest to the vessel in
order to form a convex set. Including more edges increases
the accuracy of the inequality constraints, but negatively
affects run time, and we have found eight to be a good
compromise.

The thrusters on milliAmpere are each limited in the
amount of thrust they are able to produce, so we place
limits on the norms of each individual thruster output:

fxi(t)
2 + fyi(t)

2 ≤ f2
max, i ∈ {1, 2} . (7)

There are also limits on the states xp, i.e.

xlb ≤ xp(t) ≤ xub , (8)

which ensure that the OCP does not plan trajectories with
out-of-bounds velocities. The limits are only in effect for
the velocities in surge and sway (±1.0m s−1) and the yaw
rate (±5 ◦ s−1).

As noted, all these constraints are softened with slack
variables to ensure feasibility when e.g. a disturbance
pushes the vessel’s state outside the velocity limits or the
collision avoidance criterion. The constraints are gathered
in a single vector, giving the inequality constraint vector
in (1c).

3.4 Trajectory-tracking DP controller

The planned state trajectory and its derivative from the
solution of (1) are used as reference values for a trajectory-
tracking DP controller, which was already implemented on
milliAmpere before we added the trajectory planner. There
are several reasons for preferring this approach instead of
directly using the thruster commands from the solution of
(1):

• The planner does not account for drift, disturbances
or modeling errors, while the tracking controller does
so through feedback.

• While the planner is iteration-based with no formal
performance guarantees, the tracking controller pro-
vides a robust bottom layer that acts also as a safety
measure.

• The sampling rate of the planner is too low to stabilize
the vessel on its own.

The tracking controller is based on proportional-integral-
derivative (PID) action with feed-forward terms from both
velocity and acceleration:

τc(t) = τff(t) + τfb(t) . (9)

The feed-forward term is

τff(t) = Mpν̇p(t) +Dp(νp(t))νp(t) , (10)

with details in Appendix A. An issue with this feed-
forward term is that it doesn’t include coupling Coriolis
or damping effects, which may degrade its performance.
This discrepancy is left for the feedback to handle. The
PID feedback is

τfb(t) = −R(ψ(t))�·(
Kpη̃(t) +

∫ t

0

Kiη̃(τ) dτ +Kd
˙̃η(t)

)
, (11)

with η̃(t) = η(t) − ηp(t). The controller gains are Kp =
diag{100, 100, 200}, Ki = diag{10, 10, 20} and Kd =

diag{1000, 1000, 1500} with units that transform the re-
spective elements to force and moment units. The integra-
tor term in (11) has an anti-windup condition, limiting its
contribution to ±[150N, 150N, 200Nm]�.

The control command τc(t) is sent to milliAmpere’s thrust
allocation system, detailed in (Torben et al., 2019), which
sends commanded actuator azimuth angles and propeller
speeds to the actuators.

3.5 Design tradeoffs

In designing the docking system, it has been necessary to
compromise between optimality, performance and robust-
ness. One of the compromises was to separate trajectory
planning and motion control. While it would be possible
to run the trajectory planner as an MPC and use the
inputs from its solution directly, separation gives several
advantages:

• A PID controller accounts for steady-state distur-
bances and corrects for modeling errors, as opposed
to the MPC approach.

• Using a high-rate feedback controller allows us to run
the planner at a low rate, even though the vessel’s
dynamics are quite fast. The planner has run-times
between 0.3 and 0.7 s, which would make it difficult
to stabilize the vessel.

• Having a trajectory-tracking controller as the bottom
control layer makes the docking system more robust
to situations where the solver fails to find a feasible
solution.

Choosing this hybrid structure, where we separate plan-
ning from motion control, we have achieved flexibility
in the trajectory planner, disturbance rejection through
feedback, and robustness to failures in the planning level.

4. EXPERIMENTAL RESULTS

Experiments were performed with the milliAmpere pas-
senger ferry in confined waters in Trondheim, Norway on
October 18, 2019. The weather conditions were calm with
winds of 2m s−1 to 3m s−1 and rare gusts of 5m s−1. The
vessel is highly susceptible to wind disturbances, due to
its large cross-sectional area above water and low under-
water profile. The confined waters protect against waves
and currents, however, the shallow depth of milliAmpere’s
thrusters causes the thrust wake to disturb the hull when
operating close to quay, as is the case in the final docking
stage.

To test the docking system, we piloted the ferry to an
initial pose around 40m away from the docking pose,
and activated the docking system once we came to a
standstill. The trajectory planner then calculated state
trajectories at a rate of 0.1Hz towards the docking pose. A
higher rate caused frequent resetting of the error between
the planned and measured poses, limiting the effect of
the feedback controller (11). A lower rate would limit
the trajectory planner’s ability to take into account new
information. Since the trajectory planner calculates a safe
trajectory towards the docking pose, a rate of 0.1Hz is
a well-functioning compromise. Before every run of the
planner, an algorithm quickly calculated a new convex area
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Ss based on the vessel’s current position, which served
as collision-avoidance constraints in the OCP (5). State
measurements, the planned trajectory and its derivative
were fed to the DP controller at a rate of 10Hz. This is
sufficient for motion control, since the vessel’s dynamics
are much slower.

A bird’s eye view of the resulting trajectory is seen in
Figure 4, with full-state trajectories in Figure 8. As is
seen in Figure 4, milliAmpere is able to safely navigate
to the docking pose by the help of the docking system.
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Fig. 4. Overview of milliAmpere’s trajectory during a
docking experiment. The vessel’s pose is depicted at
5 s intervals with green rectangles. The measured posi-
tion is drawn in solid green, while the active planned
reference is in dash-dotted orange. The dotted gray
lines show the trajectory planner’s reference for the
entirety of each planning horizon, also after a new
solution is calculated. The docking pose is marked
with a rectangular bright green dashed outline.
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Fig. 5. Planned and measured positions from the first step
of the planner. In 2 s intervals, the plot shows the
entire planned pose trajectory as gray outlines, and
the first 10 s of the measured pose as green rectangles.
The black solid polyhedron shows the current convex
area that represents the spatial constraints from (6).
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Fig. 6. As Figure 5, but at the second planning step. In
this step we see that the tracking controller struggles
to follow the heading commands. We believe this
is due to milliAmpere’s lack of natural stability in
heading, as well as due to poor performance of the
DP controller at high velocities.
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Fig. 7. As Figure 5, but at the third planning step. At this
slow speed, the tracking controller is able to follow
the planned trajectory well.

The trajectory is collision-free and slows down nicely when
approaching the quay. In the course of the experiment
there were 13 re-planning steps. Figures 5 through 7 show
the planned trajectories at the first, second and third steps,
respectively. The figures also show the convex area that
the trajectory planner uses for spatial constraints. Due to
how the convex-set algorithm works, the first step does
not include the docking pose in its permissible set, so
the trajectory planner generates a trajectory towards the
edge of its constraints. The vessel is able to closely follow
this trajectory until the second step. Here we see that the
vessel’s heading angle is failing to track the planned one.
We believe this is due to milliAmpere’s lack of stability
in heading, and due to poor tuning of the DP controller,
which fails to handle tracking of heading and yaw rate at
high speeds. In the third step, the trajectory planner is
able to plan all the way towards the docking pose, and
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entire planned pose trajectory as gray outlines, and
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area that represents the spatial constraints from (6).
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Fig. 6. As Figure 5, but at the second planning step. In
this step we see that the tracking controller struggles
to follow the heading commands. We believe this
is due to milliAmpere’s lack of natural stability in
heading, as well as due to poor performance of the
DP controller at high velocities.

0 20 40 60 80

East [m]

40

50

60

70

80

90

100

N
o
rt

h
 [

m
]

Initial time: 25.2 s

Measured

Planned horizon

Docking pose

Constraints

Fig. 7. As Figure 5, but at the third planning step. At this
slow speed, the tracking controller is able to follow
the planned trajectory well.

The trajectory is collision-free and slows down nicely when
approaching the quay. In the course of the experiment
there were 13 re-planning steps. Figures 5 through 7 show
the planned trajectories at the first, second and third steps,
respectively. The figures also show the convex area that
the trajectory planner uses for spatial constraints. Due to
how the convex-set algorithm works, the first step does
not include the docking pose in its permissible set, so
the trajectory planner generates a trajectory towards the
edge of its constraints. The vessel is able to closely follow
this trajectory until the second step. Here we see that the
vessel’s heading angle is failing to track the planned one.
We believe this is due to milliAmpere’s lack of stability
in heading, and due to poor tuning of the DP controller,
which fails to handle tracking of heading and yaw rate at
high speeds. In the third step, the trajectory planner is
able to plan all the way towards the docking pose, and
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Fig. 8. Measured pose and velocity states during the
docking experiments, along with reference trajectories
and docking pose. As in Figure 4, we include the
full horizon of the planned trajectories in dotted gray
lines.

the vessel is able to track the commanded trajectory well,
since the speed has decreased.

Figure 8 shows the state trajectories for pose and velocities
over time. It can be seen that the planned trajectories
are tracked tightly for the linear positions and velocities.
A notable observation is that the first two plans do not
converge to the docking pose, due to the convex area not
including the docking pose. This is corrected as the vessel
approaches the harbor. The heading angle and yaw rate are
not converging as well as the linear velocities, especially
at high speeds, as seen from the figure. Additionally,
due to the periodic resetting of the planned trajectory
to the current vessel state, integration is slow in the DP
controller, causing steady-state disturbance rejection to be
poor towards the end of the trajectory.

From Figure 9, we see that the solution times of the
trajectory planner are in the 0.3 s to 0.7 s range, which
is fast enough to be considered real-time feasible when
run at a period of 10 s. These results are repeatable when
docking from and to the same pose, and similar results are
also seen when docking from other locations.

5. CONCLUSIONS AND FUTURE WORK

We have demonstrated the capabilities for docking an ASV
using an OCP-based trajectory planner in combination
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Fig. 9. Histogram of solution times of the trajectory
planner.

with a DP controller. The solution is tested experimentally
in confined waters in Trondheim, Norway, and produces
safe maneuvers. The maneuvers avoid collision with static
obstacles and complete the docking phase, ending up in
a position adjacent to the dock, ready to moor. We have
shown that the combination of an OCP-based trajectory
planner and a tracking controller is suitable for the docking
problem. The method is also general, requiring only a
geographic map of sufficient resolution of the harbor envi-
ronment. This map may be known a priori, but may also be
adjusted with exteroceptive sensors, enabling extensions
to the method with camera, lidar and radar systems, e.g.
using simultaneous localization and mapping techniques.

The experiments have uncovered several possibilities for
improvement which are points for future work. A main
conclusion is that although we are able to combine a
trajectory planner with an existing tracking controller, the
tracking controller must be well-designed and tuned for
the combination to function satisfactorily. The following
points are considered as future work:

• Improve the tuning of the existing DP controller in
order to better track the reference trajectory.

• Include coupling effects in the feed-forward term of
the DP controller.

• Investigate other trajectory-tracking controllers.
• Adjust the cost function so that the trajectory plan-
ner produces maneuvers that are more consistent with
a harbor pilot’s experience with docking.

• Adjust the trajectory planner to produce more con-
servative trajectories.

• Develop a disturbance estimator that can provide the
trajectory planner with valuable information.

Future work also includes integrating the docking system
in a control structure that handles all the phases of a ferry
transport. The next item in our research is to integrate
systems for the undocking and transit phases. For the
undocking phase, the approach presented in this paper is
well suited. For the transit phase, we look to integrate a
version of the method from (Bitar et al., 2019), which can
bring the vessel to a location suitable for docking.
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Appendix A. MATHEMATICAL VESSEL MODELS

In this work, we have used three separate models for the
milliAmpere vessel, respectively for simulation, planning
in the OCP, and for trajectory tracking with the DP
controller. All of them are based on the surge-decoupled
three-degree-of-freedom model from (Pedersen, 2019). The
models use the state vector

x =
[
η� ν�]� , (A.1)

with η = [x, y, ψ]� ∈ R2×S being the pose states position
north and east of an origin, and heading angle (yaw),
respectively. The velocity vector ν = [u, v, r]� contains
body-fixed surge velocity, sway velocity and yaw rate,
respectively. The kinematic relationship between the pose
and velocity is

η̇ = R(ψ)ν , (A.2)

where

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 (A.3)

is the kinematic rotation matrix. The kinetic equations
that describe the propagation of ν are different for the
three applications.

A.1 Simulation model

When we simulated the approach prior to running full-
scale experiments, we used the surge-decoupled three-
degree-of-freedom model from (Pedersen, 2019). That
model has the form

Mν̇ +C(ν)ν +D(ν)ν = τ (α,n) , (A.4)

where M ∈ R3×3 is the positive definite system inertia
matrix, C(ν) ∈ R3×3 is the skew symmetric Coriolis
and centripetal matrix, and D(ν) ∈ R3×3 is the positive
definite damping matrix. The force vector τ ∈ R3 is a
function of the thrusters’ azimuth angles α = [α1, α2]

�

and their propeller speeds n = [n1, n2]
�. These values are

modeled dynamically based on commanded values, with
details in (Pedersen, 2019).

A.2 Planning model

For the dynamic constraints in the OCP, we use a simpli-
fied version of (A.4):

SMpν̇p +Cp(νp)νp +Dp(νp)νp = τp(up) , (A.5)

where Mp, Cp and Dp are diagonalized versions of M, C
and D from (A.4), respectively. The matrices are

Mp = diag{m11,m22,m33} > 0 , (A.6)

Cp(νp) =




0 0 −m22vp
0 0 m11up

m22vp −m11up 0


 (A.7)

and

Dp(νp) = diag{d11(up), d22(vp), d33(rp)} > 0 , (A.8)

where

d11(up) = −Xu −X|u|u
∣∣up

∣∣−Xu3u2
p (A.9a)

d22(vp) = −Yv − Y|v|v
∣∣vp

∣∣− Yv3v2p (A.9b)

d33(rp) = −Nr −N|r|r
∣∣rp

∣∣ . (A.9c)

The coefficient matrix

S = diag{2.5, 2.5, 5.0} (A.10)

is factored into (A.5) to amplify the inertia, making the
planned trajectories more sluggish.

The dynamic thruster model from (Pedersen, 2019) is
excluded from the OCP in order to keep the run times
down. Instead, forces from milliAmpere’s two thrusters are
decomposed in the surge and sway directions, and used
directly as inputs:

up =
[
fx1 fy1 fx2 fy2

]�
, (A.11)

where fx1 represents a force in surge direction from
thruster 1, fy2 represents a force in sway direction from
thruster 2, etc. This is mapped to forces and moments in
surge, sway and yaw by the function

τp(up) =



1 0 1 0
0 1 0 1
0 l1 0 l2


up . (A.12)

The parameters l1, l2 ∈ R are the distances from the
vessel’s origin to its thrusters.

A.3 Tracking controller model

For the feed-forward terms in the DP controller, we also
use a simplified version of the simulation model (A.4):

Mpνp +Dp(νp)νp = τff . (A.13)

The DP controller was originally developed for station
keeping, and does not contain the C matrix. Otherwise,
the matrix values in (A.13) are equal to those in the
planning model (A.5).


