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Achieving the energy-related and environmental targets for nations and municipalities is largely depen-
dent on the existing built stock. It plays a pivotal role in the accomplishment of these targets through the
implementation of energy efficiency and flexibility programs, involving the deployment of distributed
energy resource management technologies, refurbishment of building envelopes and upgrading of indoor
environmental control equipment. Spatial awareness about urban energy use enables to prioritise the
areas where these solutions will be most effective and balanced with the plans for new constructions.
Large-scale building energy mapping, however, must cope with heterogeneity of buildings within the
built stock, absence of detailed information and multiple sources of uncertainty that stem from the com-
plex and dynamic properties of the phenomenon at a building level. One of the key challenges in the dis-
cipline is to account for these uncertainties while maintaining the rational model complexities and data
needs. This study, therefore, suggests a parsimonious top-down probabilistic modelling recipe to enable
geospatial energy mapping and analysis. Under such modelling principles, an inverse propagation of
uncertainties is carried out from the status quo of the built stock. The proposed framework is based on
probabilistic sampling with prior parametric univariate density estimation and statistical hypothesis
testing. Consolidation with the exogenous influencing factors is facilitated through the measure of statis-
tically significant difference. This approach is exemplified with the data from two sources: the cadastral
system and the energy performance certificates registry. A case study developed for Trondheim (Norway)
quantified the central tendency and dispersion in the distributions of the simulated bulk total annual
energy use by buildings per 1� 1 km grid cell over the urban territory. The results suggest that best esti-
mates of these values vary between 11 MWh � y�1 and 141 GWh � y�1 depending on the grid cell. A mea-
sure of dispersion in the simulated results is highly correlated with these estimates. Robust handling of
uncertainties and the possibility to accommodate a variety of modelling objectives make this approach
practical for energy mapping with a flexible spatial resolution that may facilitate numerous applications
in energy planning. A collection of methods for univariate density estimation discussed in this study
together with the empirical data are accessible through Built Stock Explorer:https://builtstockexplorer.
indecol.ntnu.no. This open web application for knowledge discovery in building energy data enables to
reproduce some of the results presented in the article.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Built stock is perceived as holding a large potential for mitigat-
ing the environmental impacts directly or indirectly associated
with its final energy use [1], which reached 128 EJ globally in
2019 [2]. Improving the energy performance of buildings, there-
fore, is being supported through regulatory mechanisms at various
levels of governance. These mechanisms, usually initiated at a
national or municipality levels, are targeting the solutions at dis-
tricts or neighbourhoods [3] and focused primarily on well-
reasoned infrastructural transformations [4], retrofitting and
upgrading programs [5] and more sustainable energy management
technologies [6].

An effective strategic energy planning of these and the related
solutions relies on geospatial information in several ways. Spatial
awareness enables to priortise the areas of high energy use, where
the technical, economic, and environmental feasibility of relevant
measures may be justified. Such solutions could lead to multiple
benefits, e.g. decrease the total energy use and reduce the costs
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Nomenclature

CDF Cumulative distribution function, page 12
i.i.d. Independent identically distributed (sample), page 24
KS Kolmogorov–Smirnov (test), page 14
MC Monte-Carlo (simulation), page 7
MLE Maximum likelihood estimation, page 13
PDF Probability density function, page 5

r.v. Random variable, page 7
SD Standard deviation, page 9
SS Sample size, page 14
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of energy by avoiding transmission losses, support the integration
of non-dispatchable renewables, enhance the reliability and resili-
ence of power grid through peak load smoothing and frequency
control. Given the anticipated growth of the electric vehicles fleet,
a more favourable deployment of charging stations can also be
accommodated by spatially-informed energy planning [7]. Another
important reason for mapping the energy bottlenecks is studying
the contribution of buildings to the atmospheric heating – a phe-
nomenon known as urban heat island [8,9].

The need for spatial analysis of urban energy use prompted
numerous attempts to complement built stock energy information
with geospatial data [10,11]. The availability of multiple studies
indicates a widespread interest in developing the means to enable
such analysis. Building level [12,13], block area [14], square grid
cell [8,15,9] and local authority [16] are the most common choices
of spatial or administrative resolution that such analysis is focused
on.

Energy performance of buildings, however, is characterised as
highly complex, complicated and dynamic phenomena, which is
attributed to numerous factors of physical and occupancy-related
origins [17]. At a larger scale, the associated uncertainties are
amplified by the diversity of buildings, variations in their exposure
to the outdoor conditions, ageing processes, use/maintenance
practices and other. Determining the energy performance of build-
ings at the large scale given these explanatory factors is the subject
of built stock energy modelling [18]. It is, amongst other important
applications, an essential component of geospatial energy map-
ping. Following both, the original classification system proposed
by Swan and Ugursal [19] and its recent revision [20], the prevail-
ing practices for spatially-explicit built stock energy modelling cor-
respond to the bottom-up approach. Bottom-up reasoning enables
to infer energy use at the aggregated level based on the informa-
tion available at a lower spatial level. Several studies suggested
engineering-based (‘‘white-box”) models as the means for building
energy mapping [15,9,12,21]. Other authors make use of ‘‘black-
box” methods [22] instead [14,23,13]. As opposed to bottom-up
methods, top-down approach implies spatial downscaling proce-
dures from a broader aggregated scope to the city- district- or
building-level. Studies [8,9,24–26] suggested top-down methods
as suitable for examining spatial variations of energy use for
numerous purposes.

Regardless of which, bottom-up or top-down, approach is used,
the attempts are made to model the phenomenon that lacks either
detailed and complete knowledge or order or pattern or coherence
or a combination of these. Booth et al. [27], systematized the
uncertainties behind bottom-up engineering-based built stock
models by their origins: a) variability of energy use due to chance
within the identical buildings (aleatory uncertainties); b) hetero-
geneity of buildings within groups or typologies; and c) epistemic
uncertainties which accommodate lack of knowledge about the
phenomenon, the choice of inadequate model parameters and/or
the risk of obtaining a biased model. These are also applicable to
‘‘black-box” methods that seek to approximate the uncertainties
and assume a likewise deterministic relationship between the
variables.
2

Probabilistic modelling enables to account for uncertainties and
to address the limitations of approximating them in a determinis-
tic alternative [27]. At a building level, the available studies quan-
tify the uncertainties probabilistically in either forward or inverse
manner [28]. Forward uncertainty propagation is dominated by
sampling methods, where the inputs of the model are intentionally
varied to obtain the likely variations of model outputs. Amongst
the built stock energy studies, forward propagation principles were
used to account for the epistemic uncertainties [27,29,30]. Inverse
uncertainty propagation methods aim to relate the observed
empirical data to both known and unknown model parameters
and/or built stock properties. Given the underlying statistical infer-
ence approach, Tian et al. [28] categorised the inverse uncertainty
analysis practices in the discipline as either frequentist or Baye-
sian. Whereas the former consists of methods for operating solely
on empirical data, the latter also accommodates the prior knowl-
edge and beliefs to aid the inferential statistics. In the context of
built stock energy modelling, inverse Bayesian-based inference is
advocated in studies [16,31,32]. Built stock energy studies with fre-
quentist inference were not found in the domain-specific
literature.

If combined with the inverse uncertainty propagation princi-
ples, top-down modelling reveals numerous useful properties.
Both, aleatory uncertainties and heterogeneity of buildings are
reflected in the built stock energy data at the aggregated spatial
level. A step-wise disaggregation of this data with exogenous fac-
tors naturally conveys the associated uncertainties in an inverse
manner. An empirically inferred probability density function
(PDF) is a proxy for central tendency and variability due to yet
unexplained uncertainty at each of these steps. Consequently,
every subsequent disaggregation may lead to better estimates of
uncertainties and thus, higher modelling accuracy. If the rational
disaggregation steps are reflected in the structure of the model,
numerous advantages directly or indirectly stem from the
following:

� Uncertainties can be quantified at each level of the step-wise
disaggregation, which enables a modeller to make judgements
about the quality of the model and to control the trade-off
between the expected accuracy gains versus additional data
feed;

� The levels of sensitivity to adding the exogenous factors can be
quantified through statistical hypothesis testing. This can pre-
vent from using the redundant or insignificant model inputs
and thus, to address the overfitting;

� Data requirements to achieve the necessary level of modelling
details can be calculated beforehand. This enables to set up
and efficiently manage the data collection process.

Despite these substantial advantages, top-down probabilistic
modelling remains poorly explored within the discipline. This arti-
cle, therefore, is motivated by the need to elaborate on the work-
flow, methods, and procedures that such modelling may involve.
It is shown that this modelling approach may facilitate spatially-
explicit energy mapping with a flexible spatial resolution and the
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varying levels of details. Exemplification is made through the case
study developed for Trondheim, Norway. Section 2 Method
explains the non-parametric probabilistic model, data resources
that the model relies on and a collection of methods which are
illustrated using the available data. All these components are fur-
ther synthesised into a coherent computational procedure used
to obtain the estimates of bulk total annual energy use over
1� 1 km geospatial grid. Section 3 Results provides both, interme-
diate and final outputs obtained through this procedure. Section 4
Discussion evaluates the strengths, weaknesses and potential fur-
ther developments for such modelling. Extra care is taken to elab-
orate on the capabilities of top-down models to account for an
increasingly detailed architectural and technical information
needed for built stock energy research. And to discuss the role of
statistical inference in further shaping the available domain knowl-
edge. The Conclusions (Section 5) summarise the findings made in
this study, reflect upon potential opportunities and barriers for fur-
ther developments.

2. Method

The proposed procedural framework facilitates estimation of
bulk (for all buildings) total (for all energy sources) annual energy
use in geospatial zones. This can be achieved with a non-
parametric model described in Section 2.1. Two data sources,
namely the National Cadastral System (Section 2.2.1) and the
Energy Performance Certificates (EPC) dataset (Section 2.2.2) pro-
vide the inputs into the model. Whereas accurate information on
geospatial positioning, size and type of buildings and dwellings is
available, the data on real energy performance are relatively scarce
and available only at a city level. Therefore, the computational pro-
cedure involves Monte-Carlo (MC) simulation and considers the
energy use intensity of buildings as a continuous random variable
(r.v.). Inferring the properties of this r.v. from the available sample
is the subject to density estimation procedure described in Sec-
tion 2.3. Section 2.4 provides the description of a comprehensive
computational procedure used to achieve the desired results –
the estimates of central tendency and dispersion of bulk total
annual energy use by buildings per geospatial zone.

The smallest element of built stock accounted for in the model
(Section 2.1) is a building unit,1 which enables to harmonise the
data and to preserve the consistency across all steps of the study.
Also, this allows to explicitly account for the energy performance
of buildings that have a mixed use purpose, e.g. offices and apart-
ments across multiple floors of the same building.

2.1. Probabilistic model

The simplest non-parametric model for estimating the bulk
total annual energy use Ezone tot of a geospatial zone consisting of
j 2 ½0;m� units can be defined as:

Ezone tot ¼
Xm
j¼0

ðaj � rjÞ ðkWh � y�1Þ ð1Þ

where:

aj – heated floor area (m2) of jth unit;

rj – energy use intensity (kWh �m�2 � y�1) of jth unit.
1 The smallest element registered (in the cadastral system) or certified (in the EPC
system): dwelling if residential use purpose; the section or the whole building
otherwise.

3

The need to account for exogenous variables (disaggregation),
in order to reflect the properties specific to the group of units,
entails modifying the Eq. (1). A generalised form of the top-down
model in Eq. (1) accepts t categorical variables, each of which has
kt 2 ½0; lt � categories:
Ezone tot ¼
Xl1
k1¼0

Xl2
k2¼0

. . .
Xlt
kt¼0

Xm
j¼0

ðak1 ;k2 ;::;kt ;j � rk1 ;k2 ;::;kt ;jÞ ðkWh � y�1Þ

ð2Þ
For this study, the generalised model in Eq. (2) is adapted to accom-
modate the typology-specific information. Thus, a model for esti-
mating bulk total annual energy use Ezone tot of a geospatial zone
consisting of n building types with m units is defined as:
Ezone tot ¼
Xn
i¼0

Xm
j¼0

ðai;j � ri;jÞ ¼
Xn
i¼0

Ai � RT
i ðkWh � y�1Þ ð3Þ
where:

ai;j – heated floor area (m2) of jth unit of the ith type;

ri;j – energy use intensity (kWh �m�2 � y�1) of jth unit of the ith

type;
Ai ¼ ai;0 . . . ai;m½ � – a rowmatrix containing the known values of

heated floor area (m2) of all m units of the ith type;

RT
i ¼ ri;0 . . . ri;m½ �T ¼

ri;0
. . .
ri;m

2
4

3
5 – a column matrix containing the

unknown values of energy use intensity (kWh �m�2 � y�1) of all

m units of ith type.

Obtaining Ezone tot without knowing the exact values of RT
i repre-

sents an inverse probability estimation problem: ‘‘given the known
univariate distribution of the uncertain model input, estimate the
distribution of uncertain model output by repetitive random sam-
pling of these inputs”. This procedure is referred to as Monte Carlo
simulation. With top-down reasoning, the distribution of RT

i is
inferred from higher spatial level, i.e. from the data available for
the city.

Since the model in Eq. (3) applies in-sample summation, the
simulated output tends towards normal distribution (Fig. 1) as
the number of simulations gets larger, according to the Central
Limit Theorem. Therefore, the output across simulation trials is
well described by two parameters: a measure of central tendency
given by the mean value l and the dispersion properties quantified
by standard deviation (SD) r.
Fig. 1. Mean and standard deviation in the univariate distribution of simulated
results.
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2.2. Data sources

2.2.1. The size and structure of built stock
The known inputs of the Eq. (3) are the values of heated floor

area and building type for each unit within the geospatial zone.
This information is being collected, updated and made available
through the Norwegian Cadastral system which is managed by
the Norwegian Mapping Authority. The Norwegian Cadastral sys-
tem was established in 2010 following the guidelines and the
requirements of the Land Act 2005, offering a reliable, transparent
and updated registry of all land users [33]. Currently, the registry
contains almost 5 millions of registered properties nationwide,
classified according to the Standard for building types [34].

Concerning the Trondheim municipality, the cadastral system’s

registry contains more than 92000 units covering 12 km2 of total
constructed floor area, 83% of which is residential. A spatial join
of the attributes of these units enables the analysis and simulation
per geospatial zones with a flexible spatial resolution, ranging from
the individual building to the city level. A square grid of 1� 1 km is
an arbitrary choice of spatial resolution made to exemplify the
computational procedures proposed in this study. Fig. 2 illustrates
this geospatial grid over the urban territory and some attributes of
the built stock per grid cell analysed: total constructed floor area
(colour intensity) and the share of residential in the constructed
floor area (marker size). The figure suggests that high construction
density is present in the historical centre of the city and in the
more industrialised southern part. These areas are often associated
with a higher rate of non-residential units. The majority of the
urban territory, however, is represented by sparse construction
density and is dominated by residential buildings.

2.2.2. Energy performance of built stock
Inferring the statistical properties of the r.v. energy use inten-

sity (kWh �m�2 � y�1) per building type in Trondheim is based on
the Norwegian EPC dataset. EPC dataset is the component of the
Fig. 2. Spatial variabilities of total constructed floor area and the sh

4

Norwegian Energy Labelling System for Houses and Dwellings – a
mechanism established to support the progress towards low
energy use in communities and nationwide. The Norwegian EPC
Scheme follows the implementation of the Energy Performance
of Buildings Directive (EPBD), similarly to the other EU’s Member
States [35,36].

Hence, the Norwegian EPC scheme has been in place since 2010
intended to ensure Norway’s compliance with the EPBD 2002/91/
EC, to improve building energy awareness and to promote high
energy performance. By 2016, more than 670 000 certificates were
issued. The background for certification, legislative and practical
framework in the Norwegian context was discussed in source [37].

The total annual energy use (kWh � y�1) per certified unit is vol-
untarily specified and registered in approx. 10% of all certificates.
These values, normalised per unit of heated floor area (m2), consti-
tute an empirical sample of 4660 records representing dwelling/
building units registered in Trondheim. Fig. 3 illustrates the uni-
variate distribution of energy use intensity in this sample for both,
non-residential (NR) and residential (RE) units. The figure demon-
strates that the statistical properties of energy use intensity,
accommodated by the shape of the density histogram, vary signif-
icantly per building type. This applies to such parameters as dis-
persion (range of values and variance), central tendency (mean,
median, and mode), skewness and kurtosis. Accounting for these
distinct properties is expected to positively contribute to the accu-
racy of best estimates and the margins of error provided by the
built stock model.

2.3. Density estimation

To simulate RT
i for the arbitrary number of units, one must know

the relative likelihood of its values to occur. This information is
communicated with two properties of a parameterised theoretical
r.v: PDF and cumulative distribution function (CDF). Deciding
which distribution type and parameters characterise the theoreti-
are of residential buildings per geospatial zone in Trondheim.



Fig. 3. Univariate distribution of energy use intensity per building type in Trondheim.
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cal continuous r.v. can be carried out within the density estimation
procedure consisting of:

1. Fitting (parameterising) each available distribution type indi-
vidually based on the empirical sample;

2. Quantifying the goodness-of-fit;
3. Finding the theoretical parameterised distribution that charac-

terises the sample best.

Maximum likelihood estimation (MLE) [38,39] is one way to fit
the parameters of the theoretical distribution to the sample. In
MLE, the objective is set as: given the observed sample
x : ½x1; x2; x3; . . . ; xn� and the theoretical continuous PDF pXðxjhÞ, find
the vector h of parameters that are most likely to generate such
sample. This is achieved through maximising the log-likelihood
function:

f ðh; xÞ ¼ maxh ln
Yn
i

pXðxijhÞ
" #( )

¼ maxh
Xn
i

ln½pXðxijhÞ�
( )

ð4Þ

Finding the objective function in Eq. (4), represents a multivariate
unconstrained optimisation problem with potentially noisy (non-
smooth) functions. An effective search method for the problems of
this kind is downhill simplex (Nelder–Mead) method [40–42]
which is also known as a generalisation of dichotomic search to
higher dimensions. Depending on the distribution type, vector h
may have between two and five parameters, meaning that the sim-
plex takes a form of a triangle, tetrahedron, pentachoron or 5-
simplex accordingly. Convergence to the optima is carried out
through stepwise improvement of the initial guess without com-
5

puting the gradients. The exit condition is either achieving the
desired error tolerance or lack of progress in objective function
compared to previous iterations.

Fig. 4 illustrates the results of the MLE-based fitting of some
theoretical distributions to the empirical sample (also shown in
Fig. 3) of detached houses in Trondheim. It is shown that the PDFs
(Fig. 4 [A]) and CDFs (Fig. 4 [B]) follow the shape of sample distri-
bution with various precision. This entails deciding which distribu-
tion describes the sample best and requires quantitative metrics to
facilitate the decision.

The goodness-of-fit between the continuous theoretical distri-
bution and the empirical sample may be studied with a non-
parametric Kolmogorov–Smirnov (KS) test [43,44]. The KS test
quantifies the difference between the empirical CDF represented
by the step-function and the CDF of the theoretical distribution
(as shown in Fig. 4 [B]). The test returns two values of interest:
the Dn statistic (Eq. 5) and the measure of statistical significance
(p-value).

Dn for the sample with sample size (SS) n is the supremum (the
maximum or the bound) of the absolute difference between the
CDF of a theoretical distribution P0ðxÞ and the empirical CDF

P̂nðxÞ [45]:

Dn ¼ sup
x
jP0ðxÞ � P̂nðxÞj ð5Þ

The p-value corresponds to the survival function (1� CDF) in the
asymptotic distribution of Dn at

ffiffiffi
n

p � Dn. In statistical hypothesis
testing, p-value serves as the basis for accepting or rejecting the
hypotheses about the conformity between distributions. Low p-
value suggests statistically significant evidence against the asserted



Fig. 4. Sample density [A] and the empirical CDF [B] with fitted PDFs and CDFs accordingly for some theoretical distributions.
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null hypothesis: ‘‘sample x is generated by the r.v. X with the PDF
pXðxjhÞ”. The threshold value a for statistical significance has to be
chosen prior to the experiment. The null hypothesis, therefore, is
rejected under the condition p < a and is failed to be rejected
otherwise.
2.4. Computational framework

The components of the probabilistic model (Section 2.1)
together with methods and procedures discussed in Section 2.3
are organised in a computational framework (Fig. 5).

Density estimation component is designed to find the parame-
terised theoretical distributions that describe the energy use inten-
sity of distinct building types. The process starts with obtaining a
subset of the sample with energy use intensity corresponding to
particular building type in the city. For each of the available theo-
retical distributions, their parameters are fitted with MLE using the
downhill simplex method. MLE is terminated either if the objective
function is found with the absolute error tolerance � 6 1 � 10�10 or
if the maximum number of iterations N � 200 (N – the number of
simplex’s dimensions) is achieved. The KS test is then carried out
with the CDFs of an empirical sample and of a fitted distribution.
The null hypothesis is rejected under the condition p < 0:05. At
the end of the loop, the most suitable distribution amongst those
passing the test is selected. This choice is based on comparing
the associated D statistic and selecting the smallest. The procedure
is then repeated for all building types in Trondheim.

Within the simulation component, the primary loop carries out
iterations over the grid cells. In each cell, a secondary loop iterates
over the building types that are present which is followed by
retrieving a row matrix Ai. A series of 10000 Monte-Carlo trials
are then carried out using the Mersenne Twister [46,47] pseudo-
random number generator. At each trial, a columnmatrix RT

i is sim-
ulated as a r.v. using the previously found parameterised distribu-
tion that characterises this building type. The dot product Ai � RT

i is
computed per trial and stored as one likely value of total energy
use by the typology in the cell. When the iterations over the build-
ing types are complete, the total energy use across simulation trials
per typology are aggregated to the grid cell level. This output forms
a normal distribution, the mean value l and the standard deviation
r for which are computed.
6

3. Results

The output of Density Estimation component, as discussed in
Sections 2.3 and 2.4, are the parameterised distributions that are
found to represent the data generation processes for individual
building types in Trondheim. This information is summarised,
together with the metrics for goodness-of-fit and sample statistic
(minimum/maximum values and the sample size) in Table 1.

Vector h of distribution’s parameters in Table 1 is structured as
h : ½h1; . . . ; hk�1; hk�. Two last elements in the list hk�1 and hk are loca-
tion (l) and scale (s) parameters accordingly. Any additional shape
parameters, if applicable, are at the beginning of this list.

An example of interpreting the information provided in Table 1
is the following: energy use intensity of ‘‘RE. house, terraced” in
Trondheim conforms to Johnson SU distribution parameterised
by vector ½�0:392; 1:309; 108:848; 40:094�. The difference
between the empirical CDF of a sample with the size 407 and the
CDF of this theoretical distribution is found to be 0.02. This differ-
ence is insignificant (p > a : 0:96 > 0:05), thus implying a failure
to reject the asserted null-hypothesis ‘‘the empirical sample is gen-
erated by Johnson SU r.v. with these parameters”. The empirically
evident range of values taken by the r.v. is
½25; 623� kWh �m�2 � y�1. Energy use intensity of ‘‘RE. house, ter-
raced” in Trondheim within this range, therefore, can be simulated
as the Johnson SU r.v. that has the PDF of a form:

f ðx; a; b; l; sÞ ¼ b

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�l

s Þ
2 þ 1

q / aþ b log
x� l
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� l
s

� �2

þ 1

s0
@

1
A

0
@

1
A

ð6Þ

where:

x – energy use intensity (kWh �m�2 � y�1);
/ – normal PDF;
a; b; l; s – a list of parameters identified with MLE:
½a; b� ¼ ½�0:392; 1:309� – distribution-specific shape
parameters;
½l; s� ¼ ½108:848; 40:094� – location and scale parameters
accordingly.

The outputs of a probabilistic model (Eq. (3) in Section 2.1), pro-
duced within the Simulation component (Section 2.4) using the
parameterised distributions listed in Table 1 are the estimates of
the mean (l) and the SD (r) of the bulk total annual energy use



Fig. 5. The flowchart of computational procedures (Column or row matrices are denoted by asterisk �. Otherwise, a single categorical or numerical value is returned.).

Table 1
Sample information and parameterised distributions identified per building type in Trondheim.

Building type Distribution Parameters D p-value Min Max SS

NR. facility, educational Mielke Beta-Kappa [6.444, 5.037, �0.446, 172.923] 0.06 0.85 55 602 117
NR. facility, industrial Folded Cauchy [2.612, 47.979, 57.731] 0.06 0.87 48 698 80
NR. facility, medical Log-laplace [3.662, �0.615, 264.554] 0.06 1.00 90 573 31
NR. facility, warehouse Alpha [3.785, �68.437, 771.015] 0.11 0.98 65 353 17
NR. hotel Inverse Gaussian [0.365, 136.117, 324.874] 0.12 0.93 167 390 17
NR. office, advanced Logistic [210.129, 51.094] 0.03 1.00 15 535 128
NR. office, simple Tukey-Lambda [�0.087, 205.013, 38.051] 0.04 0.99 51 524 129
NR. shop, advanced Maxwell [20.864, 219.505] 0.08 0.99 115 703 28
NR. shop, simple Exponentially modified normal [1.036, 154.399, 88.784] 0.06 0.93 33 680 80

RE. apartment Mielke Beta-Kappa [2.641, 5.967, �0.348, 163.23] 0.01 0.91 12 467 1844
RE. house, chained Vonmises (non-circular) [3.808, 131.935, 69.196] 0.07 0.67 66 349 103
RE. house, detached Exponentially modified normal [1.374, 82.776, 26.539] 0.01 1.00 12 422 881
RE. house, other Tukey-Lambda [�0.156, 157.477, 27.537] 0.04 0.98 17 516 136
RE. house, quad Johnson SU [�0.726, 1.561, 121.128, 67.087] 0.04 0.83 22 438 243
RE. house, semi-detached H Rice [1.477, 44.969, 53.336] 0.04 0.99 51 276 124
RE. house, semi-detached V Exponentially modified normal [0.645, 111.087, 34.003] 0.03 0.98 16 292 295
RE. house, terraced Johnson SU [�0.392, 1.309, 108.848, 40.094] 0.02 0.96 25 623 407
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Fig. 7. The relationship between mean and standard deviation of simulated bulk
total annual energy use per geospatial zone.
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per grid cell. These attributes are displayed in Fig. 6. Colour inten-
sities in the figure illustrate spatial variations of l, whereas the
diameter of markers is proportional to r.

Fig. 6 facilitates the analysis of the city’s energy hotspots (areas
with high l) and where the additional information may be needed
(high r). Examining these results against the data on the built
stock in Fig. 2 demonstrates that the mean of the simulated bulk
total annual energy use in Fig. 6 is correlated with the built area
density and the share of energy-intensive non-residential build-
ings. The energy hotspots are located in the centre of the city
and the industrial southern suburbs. Remote, mostly residential
areas, which are known to have low unit density, are associated
with relatively low energy use. Standard deviation correlates with
mean of simulated bulk total annual energy use in the geospatial
zones. Further analysis suggests a roughly linear relationship
(Fig. 7) between l and r.

The scatter plot in Fig. 7 presents the results separated into two
groups based on the arbitrary condition c P 0:1 and c < 0:1 where
c is the coefficient of variation (c ¼ r=l). More detailed analysis
suggested that c exceeds 0.1 for those grid cells where constructed
units density is sparse or, alternatively, dense but with a high share
of non-residential build area (above 60%). For most of the areas
where energy use is high, c remains below 0.1. According to the
empirical interpretation of normal distribution, c < 0:1 suggests
at least 67% of confidence that the true value of bulk total annual
energy use in the spatial zone is within the range l� 10%. Simi-
larly, l� 20% is the 95% confidence range.
4. Discussion

Through the case study developed for Trondheim, this article
demonstrates a top-down modelling approach with the inverse
uncertainty propagation for urban energy mapping purposes.
Methodically, it implies spatial downscaling of the energy use
intensity values from the city-level to the finer resolution. As a
Fig. 6. Spatial variation of the mean and the standard deviation in sim
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result, the probabilistic estimates of bulk total annual energy use
per geospatial zone may be obtained. Random sampling used to
compute these estimates enables to address aleatory uncertainties
and heterogeneity discussed by Booth et al. [27]. The model in Eq.
(3) does not contain any parameters and does not assume any rig-
orous knowledge about the factors that drive the phenomenon,
thus eliminating the associated epistemic uncertainties.

Typology-specific density estimation of energy use intensity
carried out at the city-level enabled to downscale the analysis to
1� 1 km square grid. This choice of spatial resolution was arbi-
trary and can be substituted in the model with any other spatial
or administrative boundaries. The parsimonious model design
options enable the upper and lower boundaries to be anywhere
between national and the building levels accordingly.

Within the modelling framework, disaggregation by exogenous
influencing factors is supported and may lead to more accurate
estimates. The simplest top-down model (Eq. (1)), for example,
would contain a single parameterised r.v. that simulates energy
intensity of all units with no regards to any other exogenous fac-
ulated bulk total annual energy use per grid cell in Trondheim.
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tors in the computational framework (Section 2.4). In this study,
disaggregation by building types is beneficial because typology-
specific r.v. evidently conveys a more detailed empirical informa-
tion about the unique data generation process, i.e. relative likeli-
hood of energy use intensity values to occur. Such disaggregation
in a top-down manner may be done further to reach the necessary
levels of technical details. Fig. 8 illustrates one of the plausible next
steps in the disaggregation procedure to reflect distinct energy per-
formance in ‘‘NR. apartment” given the Construction Year (CY).

Fig. 8 illustrates that the originally bimodal distribution at a
higher (Fig. 8 [A]) level may be successfully disaggregated into at
least two unimodal groups (Fig. 8 [B]). The basis for disaggregation
in this case is arbitrary set to the year 1955, which is the first
threshold between construction year classes defined for the Nor-
wegian built stock within the TABULA [48] system. The empirical
evidence supports such archetypes definition, since the two sam-
ples are characterised by substantially distinct statistical proper-
ties. Stricter energy efficiency standards for buildings, together
with the other contributing factors, directly or indirectly led to
the observable shift of central tendency between the two distribu-
tions. Dispersion is also affected by regulatory, technological, and
socio-economic transformations.

A measure of dispersion quantifies yet unexplained uncertain-
ties. By examining this parameter, a modeller may decide whether
the remaining level of uncertainty is acceptable to address the pur-
pose of the modelling or if further disaggregation is needed. If the
latter, additional exogenous factors may be tested. Two distribu-
tions in Fig. 8 [B] are associated with the dispersion smaller than
the composite (Fig. 8 [A]), meaning that the construction period
explains a portion of the original uncertainties.

Statistical significance of the difference between the disaggre-
gated distributions suggests the level of sensitivity to disaggrega-
tion by the exogenous factors. Since the resulting distributions in
Fig. 8 [B] are distinct, it is plausible to disaggregate by construction
period. The reverse statement also holds true – mutually conform-
ing distributions exhibited by disaggregated groups suggest a little
or no benefit from disaggregation. The previously mentioned KS
test may be used to quantify the difference between the two
empirical samples. A null hypothesis for testing is formulated as:
‘‘two samples are drawn from the same continuous distribution”,
and high p-value (p > a) implies a failure to reject this null hypoth-
esis. An example of such pairwise testing of samples with the sig-
nificance threshold a ¼ 0:05 is presented in Table 2.

Test 1 in Table 2 resulted in a large D-statistic. If the null
hypothesis is true, obtaining such a large value of D by chance is
unlikely given the samples sizes. This likelihood is reflected by
the negligibly low p-value which suggests to reject the asserted
null-hypothesis. This indicates high sensitivity to the construction
period. The null hypothesis cannot be rejected in Test 2 and there-
fore, these two samples are found to conform even though they
Fig. 8. Univariate distribution of energy use intensity of apartments in Trondheim:
[A] composite; [B] disaggregated by construction period.
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represent distinct archetypes in TABULA. Higher likelihood of
apartments from Period 1 to be in their renovated state may
explain the absence of statistically significant difference between
energy use intensities of samples in Test 2.

The disaggregation procedure discussed above reveals the
source of both, advantages and limitations of the proposed
approach: if exogenous factors of influence on energy use intensity
are not represented in the model, they are assumed consistent
between the upper and the lower spatial levels. Practically, it sug-
gests that the model needs to reflect only those factors that are
known to lead to spatial variations of energy use. Otherwise, the
unexplained uncertainty of energy use intensity entails larger dis-
persion in the simulated results. Although the most essential oper-
ations for density estimation and probabilistic simulation can be
automated, the choices behind disaggregation procedures remain
manual. This entails that the choice of the acceptable unexplained
uncertainty level and the number of categories for disaggregation
must involve domain knowledge even if these judgements are sup-
ported by quantitative metrics.

The available sample size is an important aspect that represents
a source of epistemic uncertainty associated with the proposed
modelling approach. Density estimation with insufficient sample
size may suggest the type of distribution or the parameters that
poorly describes the data generation process and should be
avoided whenever possible. A frequentist-based density estimation
discussed in this article may inform empirically the choice of prior
distribution in Bayesian inference, which may lead to the need for
fewer samples and higher reliability of the latter. Therefore, com-
plementing the two approaches may be beneficial for future stud-
ies. A rational threshold a of statistical significance for the p-value
needs to be established in the discipline to support the coherence
between the studies alike. Moreover, a rigorous recommendation
on the domain-specific smallest sample size for density estimation
is not yet available. Therefore, this study agrees with Booth et al.
[27] on the need for adapting the existing practices from other
domains, e.g. physics, medicine, and economy to assist overcoming
these challenges in built stock energy modelling. The implications
of data quality can be regarded as an additional source of epistemic
uncertainty in modelling. High accuracy and soundness of conclu-
sions made through statistical inference, similarly to other tech-
niques that rely on data, require independent and identically
distributed (i.i.d.) random samples. A practical way to obtain such
data is through stratified (e.g. block) design of the experiment.
Substituting such sample with potentially biased data may entail
inaccuracies. It is, for example, debatable if any of the EPC system’s
designs is capable of providing randomised i.i.d. samples, because
the sole phenomenon of certification is under the strong influence
of numerous socio-techno-economic tendencies that may cause
the bias.

Given the availability and high quality of empirical data, how-
ever, virtually any level of technical details and end-uses may be
reached through such modelling. No obstacles are anticipated in
evaluating the implications of altering building envelope, energy
supply systems and/or indoor environmental quality at a large
scale. Similar approaches can also accommodate energy use for
source-specific space heating, hot water supply, plug loads and
other through multivariate distributions, e.g. copulas. Currently,
these capabilities of top-down modelling are underestimated and
poorly explored in the domain. It is, however, shown through this
study that handling aleatory uncertainties and heterogeneity of
buildings yields numerous benefits, mitigating the ‘‘performance
gap” being one of them. It is also evident that data-enabled knowl-
edge discovery and modelling, facilitated by statistical inference
and probabilistic programming, may complement already estab-
lished architectural and engineering-based foundations of built
stock energy research. Synthesising the methods from these



Table 2
Pairwise KS test results on conformity between samples from various construction periods for apartments in Trondheim

Test Period 1 (SS) Period 2 (SS) D p-value Null-hypothesis

1 1800 6 CY 6 1955(592) 1955 < CY 6 2018(1250) 0.256 1:212 � 10�23 p < 0:05: Reject

2 1955 < CY 6 1980(642) 1980 < CY 6 2000 (147) 0.086 0:323 p > 0:05: Failed to reject
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domains is also the key objective set for the future developments
of Built Stock Explorerhttps://builtstockexplorer.indecol.ntnu.no.
5. Conclusions

This study draws attention to the topic of urban energy map-
ping, where the uncertainties must be eliminated to the best pos-
sible extent while keeping data collection efforts rational. A
proposed probabilistic top-down modelling approach is shown to
have a high potential for addressing this trade-off. Probabilistic ori-
gins naturally account for aleatory uncertainties behind the phe-
nomena and for the heterogeneity of buildings through
parameterising the random variables. Disaggregation by exoge-
nous factors conveys these uncertainties without the loss of infor-
mation. Non-parametric model structure enables to address the
epistemic uncertainties, associated with approximations and sim-
plifications that are necessary otherwise. A suggested modelling
approach offers adaptiveness to the purpose of the modelling and
the associated level of details. The key benefits of the approach
emerge from the ability to quantify and control the uncertainties
while adding the explanatory (exogenous) factors to the model.

The results suggest that the typology-specific energy use inten-
sity can be represented by parameterised random variables. With
these random variables and the information on geospatial coordi-
nates, size and type of buildings, bulk total annual energy use
can be estimated at a spatially downscaled area, e.g. 1� 1 km grid
cell.

The coefficient of variation for most of Trondheim’s energy hot-
spots remains below 0.1, which makes the results already suitable
for many practical applications. Urban areas of high energy use, for
example, can be prioritised for developing refurbishment strate-
gies and/or deploying more efficient energy supply solutions. By
resolving the energy-related bottlenecks first, higher energy and
environmental performance of built stock may be achieved within
a shorter time horizon. These results may also aid the planning of
new construction and the energy-intensive units with a minimum
intervention into the existing infrastructure for energy generation
and distribution purposes.

Considering the additional factors of influence on building
energy performance may further improve the accuracy of the mod-
elling. The feasibility of using these factors can be guided by statis-
tical hypothesis testing. Currently, a substantial barrier for such
modelling is the absence of both, established practices for defining
the levels of statistical significance and the recommendations on
sample size for such tasks. These and the related challenges entail
a yet unresolved epistemic uncertainty associated with the pro-
posed modelling approach.

The instruments and the techniques discussed in this article
may produce reliable insights into the spatial variabilities of the
building energy use. They lay the foundations for the work ahead
which will synthesise the probabilistic status quo with the proba-
bilistic forecasting of future developments in the built stock. And
hence, will assist with establishing the pathways towards higher
efficiency of the built environment.
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