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Abstract: As an alternative to reduced-attitude control of fixed-wing unmanned aerial vehicles
using roll and pitch angles, we propose to use a global representation that evolves on the two-
sphere. The representation of reduced attitude is invariant to rotations about the inertial gravity
axis, which makes it well suited for banked turn maneuvers. With the relative airspeed viewed
as an exogenous input, a nonlinear controller for almost semiglobal exponential tracking of
reduced attitude is presented. For the regulation case, asymptotic convergence is almost global,
and the relationship to a classical approach using Euler angles is established. In addition to being
singularity-free, a benefit of the presented approach is that the proportional action is pointed
along the shortest direction on the sphere. The performance of the controller is demonstrated
in numerical simulations.
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1. INTRODUCTION

The attitude control system provides the main stabiliza-
tion function in autopilots for fixed-wing unmanned aerial
vehicles (UAVs). It enables a UAV to follow commands
originating from outer-loop guidance schemes, thus allow-
ing fully automatic flight. Guidance controllers typically
achieve path-following or waypoint-tracking capabilities by
controlling climb and turn rates through roll and pitch
commands to the inner-loop attitude controller (Beard and
McLain, 2012). Turning is not achieved by controlling yaw
angle or turn rate directly, but rather through banked-turn
maneuvers.

The orientation, or attitude, of a fixed-wing aircraft rel-
ative to an inertial reference frame is represented, both
globally and uniquely, by an element of the special or-
thogonal group SO(3), which is the set of 3 by 3 rotation
matrices. The Euler angles given by roll, pitch and yaw
provide a minimal, local coordinate system on SO(3), but
will suffer from “gimbal-lock” singularities (Markley and
Crassidis, 2014).

In the last decades, coordinate-free geometric attitude
controllers, designed directly on SO(3), have been pro-
posed in the literature, without the need for attitude
parametrizations, and with no singularities (Chaturvedi
et al., 2011). Another advantage of these approaches is
that such controllers are often geodesic in the sense that
proportional action is designed to steer the vehicle along
the shortest path in the physical rotation space, whereas
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controllers based on Euler angles are not. These advan-
tages are desirable when the controlled vehicle is subject
to large angle rotations, e.g. a UAV recovering from large
attitude errors resulting from severe wind gusts (Johansen
et al., 2014).

Controllers designed on SO(3), or using quaternions (Wen
and Kreutz-Delgado, 1991), control the full attitude, and
therefore can not be directly applied to fixed-wing aircraft
using banked turn maneuvers. Instead of studying the
full attitude, some authors consider a reduced-attitude
representation, evolving on the two-sphere, S2 ⊂ R3 (Bullo
et al., 1995). In this space of reduced attitude, all rotations
that are related by a rotation about some fixed axis, are
considered the same (Chaturvedi et al., 2009).

Control systems with reduced attitude evolving on S2
have previously been studied in the context of spin-axis
stabilization of satellites (Bullo et al., 1995), pendulum
stabilization (Chaturvedi et al., 2009), path-following con-
trol of underwater vehicles (Wrzos-Kaminska et al., 2019),
control of multirotor UAVs (Casau et al., 2019) and for
general rigid bodies (Mayhew and Teel, 2013).

In this paper, we present a smooth, nonlinear reduced-
attitude controller for fixed-wing UAVs, in a coordinate-
free manner, using a global, singularity-free attitude rep-
resentation on S2. The chosen reduced-attitude represen-
tation is independent of the yaw angle and thus enables
traditional banked-turn maneuvers. A consequence of this
is that the presented approach fits directly into existing
control architectures that rely on roll and pitch control
in the inner loop. Also, no lateral/longitudinal decoupling
assumptions are used in the design.

Reduced-Attitude Control of Fixed-Wing
Unmanned Aerial Vehicles Using

Geometric Methods on the Two-Sphere �

Erlend M. Coates ∗ Dirk Reinhardt ∗ Thor I. Fossen ∗

∗ Center for Autonomous Marine Operations and Systems,
Department of Engineering Cybernetics, Norwegian University of

Science and Technology, 7491 Trondheim, Norway
(e-mail: {erlend.m.l.coates,dirk.p.reinhardt,thor.fossen}@ntnu.no).

Abstract: As an alternative to reduced-attitude control of fixed-wing unmanned aerial vehicles
using roll and pitch angles, we propose to use a global representation that evolves on the two-
sphere. The representation of reduced attitude is invariant to rotations about the inertial gravity
axis, which makes it well suited for banked turn maneuvers. With the relative airspeed viewed
as an exogenous input, a nonlinear controller for almost semiglobal exponential tracking of
reduced attitude is presented. For the regulation case, asymptotic convergence is almost global,
and the relationship to a classical approach using Euler angles is established. In addition to being
singularity-free, a benefit of the presented approach is that the proportional action is pointed
along the shortest direction on the sphere. The performance of the controller is demonstrated
in numerical simulations.

Keywords: Aircraft control, Attitude control, Nonlinear control systems, Autonomous vehicles

1. INTRODUCTION

The attitude control system provides the main stabiliza-
tion function in autopilots for fixed-wing unmanned aerial
vehicles (UAVs). It enables a UAV to follow commands
originating from outer-loop guidance schemes, thus allow-
ing fully automatic flight. Guidance controllers typically
achieve path-following or waypoint-tracking capabilities by
controlling climb and turn rates through roll and pitch
commands to the inner-loop attitude controller (Beard and
McLain, 2012). Turning is not achieved by controlling yaw
angle or turn rate directly, but rather through banked-turn
maneuvers.

The orientation, or attitude, of a fixed-wing aircraft rel-
ative to an inertial reference frame is represented, both
globally and uniquely, by an element of the special or-
thogonal group SO(3), which is the set of 3 by 3 rotation
matrices. The Euler angles given by roll, pitch and yaw
provide a minimal, local coordinate system on SO(3), but
will suffer from “gimbal-lock” singularities (Markley and
Crassidis, 2014).

In the last decades, coordinate-free geometric attitude
controllers, designed directly on SO(3), have been pro-
posed in the literature, without the need for attitude
parametrizations, and with no singularities (Chaturvedi
et al., 2011). Another advantage of these approaches is
that such controllers are often geodesic in the sense that
proportional action is designed to steer the vehicle along
the shortest path in the physical rotation space, whereas

� This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, grant no. 223254
NTNU AMOS, and no. 261791 AutoFly.

controllers based on Euler angles are not. These advan-
tages are desirable when the controlled vehicle is subject
to large angle rotations, e.g. a UAV recovering from large
attitude errors resulting from severe wind gusts (Johansen
et al., 2014).

Controllers designed on SO(3), or using quaternions (Wen
and Kreutz-Delgado, 1991), control the full attitude, and
therefore can not be directly applied to fixed-wing aircraft
using banked turn maneuvers. Instead of studying the
full attitude, some authors consider a reduced-attitude
representation, evolving on the two-sphere, S2 ⊂ R3 (Bullo
et al., 1995). In this space of reduced attitude, all rotations
that are related by a rotation about some fixed axis, are
considered the same (Chaturvedi et al., 2009).

Control systems with reduced attitude evolving on S2
have previously been studied in the context of spin-axis
stabilization of satellites (Bullo et al., 1995), pendulum
stabilization (Chaturvedi et al., 2009), path-following con-
trol of underwater vehicles (Wrzos-Kaminska et al., 2019),
control of multirotor UAVs (Casau et al., 2019) and for
general rigid bodies (Mayhew and Teel, 2013).

In this paper, we present a smooth, nonlinear reduced-
attitude controller for fixed-wing UAVs, in a coordinate-
free manner, using a global, singularity-free attitude rep-
resentation on S2. The chosen reduced-attitude represen-
tation is independent of the yaw angle and thus enables
traditional banked-turn maneuvers. A consequence of this
is that the presented approach fits directly into existing
control architectures that rely on roll and pitch control
in the inner loop. Also, no lateral/longitudinal decoupling
assumptions are used in the design.

Reduced-Attitude Control of Fixed-Wing
Unmanned Aerial Vehicles Using

Geometric Methods on the Two-Sphere �

Erlend M. Coates ∗ Dirk Reinhardt ∗ Thor I. Fossen ∗

∗ Center for Autonomous Marine Operations and Systems,
Department of Engineering Cybernetics, Norwegian University of

Science and Technology, 7491 Trondheim, Norway
(e-mail: {erlend.m.l.coates,dirk.p.reinhardt,thor.fossen}@ntnu.no).

Abstract: As an alternative to reduced-attitude control of fixed-wing unmanned aerial vehicles
using roll and pitch angles, we propose to use a global representation that evolves on the two-
sphere. The representation of reduced attitude is invariant to rotations about the inertial gravity
axis, which makes it well suited for banked turn maneuvers. With the relative airspeed viewed
as an exogenous input, a nonlinear controller for almost semiglobal exponential tracking of
reduced attitude is presented. For the regulation case, asymptotic convergence is almost global,
and the relationship to a classical approach using Euler angles is established. In addition to being
singularity-free, a benefit of the presented approach is that the proportional action is pointed
along the shortest direction on the sphere. The performance of the controller is demonstrated
in numerical simulations.

Keywords: Aircraft control, Attitude control, Nonlinear control systems, Autonomous vehicles

1. INTRODUCTION

The attitude control system provides the main stabiliza-
tion function in autopilots for fixed-wing unmanned aerial
vehicles (UAVs). It enables a UAV to follow commands
originating from outer-loop guidance schemes, thus allow-
ing fully automatic flight. Guidance controllers typically
achieve path-following or waypoint-tracking capabilities by
controlling climb and turn rates through roll and pitch
commands to the inner-loop attitude controller (Beard and
McLain, 2012). Turning is not achieved by controlling yaw
angle or turn rate directly, but rather through banked-turn
maneuvers.

The orientation, or attitude, of a fixed-wing aircraft rel-
ative to an inertial reference frame is represented, both
globally and uniquely, by an element of the special or-
thogonal group SO(3), which is the set of 3 by 3 rotation
matrices. The Euler angles given by roll, pitch and yaw
provide a minimal, local coordinate system on SO(3), but
will suffer from “gimbal-lock” singularities (Markley and
Crassidis, 2014).

In the last decades, coordinate-free geometric attitude
controllers, designed directly on SO(3), have been pro-
posed in the literature, without the need for attitude
parametrizations, and with no singularities (Chaturvedi
et al., 2011). Another advantage of these approaches is
that such controllers are often geodesic in the sense that
proportional action is designed to steer the vehicle along
the shortest path in the physical rotation space, whereas

� This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, grant no. 223254
NTNU AMOS, and no. 261791 AutoFly.

controllers based on Euler angles are not. These advan-
tages are desirable when the controlled vehicle is subject
to large angle rotations, e.g. a UAV recovering from large
attitude errors resulting from severe wind gusts (Johansen
et al., 2014).

Controllers designed on SO(3), or using quaternions (Wen
and Kreutz-Delgado, 1991), control the full attitude, and
therefore can not be directly applied to fixed-wing aircraft
using banked turn maneuvers. Instead of studying the
full attitude, some authors consider a reduced-attitude
representation, evolving on the two-sphere, S2 ⊂ R3 (Bullo
et al., 1995). In this space of reduced attitude, all rotations
that are related by a rotation about some fixed axis, are
considered the same (Chaturvedi et al., 2009).

Control systems with reduced attitude evolving on S2
have previously been studied in the context of spin-axis
stabilization of satellites (Bullo et al., 1995), pendulum
stabilization (Chaturvedi et al., 2009), path-following con-
trol of underwater vehicles (Wrzos-Kaminska et al., 2019),
control of multirotor UAVs (Casau et al., 2019) and for
general rigid bodies (Mayhew and Teel, 2013).

In this paper, we present a smooth, nonlinear reduced-
attitude controller for fixed-wing UAVs, in a coordinate-
free manner, using a global, singularity-free attitude rep-
resentation on S2. The chosen reduced-attitude represen-
tation is independent of the yaw angle and thus enables
traditional banked-turn maneuvers. A consequence of this
is that the presented approach fits directly into existing
control architectures that rely on roll and pitch control
in the inner loop. Also, no lateral/longitudinal decoupling
assumptions are used in the design.

Reduced-Attitude Control of Fixed-Wing
Unmanned Aerial Vehicles Using

Geometric Methods on the Two-Sphere �

Erlend M. Coates ∗ Dirk Reinhardt ∗ Thor I. Fossen ∗

∗ Center for Autonomous Marine Operations and Systems,
Department of Engineering Cybernetics, Norwegian University of

Science and Technology, 7491 Trondheim, Norway
(e-mail: {erlend.m.l.coates,dirk.p.reinhardt,thor.fossen}@ntnu.no).

Abstract: As an alternative to reduced-attitude control of fixed-wing unmanned aerial vehicles
using roll and pitch angles, we propose to use a global representation that evolves on the two-
sphere. The representation of reduced attitude is invariant to rotations about the inertial gravity
axis, which makes it well suited for banked turn maneuvers. With the relative airspeed viewed
as an exogenous input, a nonlinear controller for almost semiglobal exponential tracking of
reduced attitude is presented. For the regulation case, asymptotic convergence is almost global,
and the relationship to a classical approach using Euler angles is established. In addition to being
singularity-free, a benefit of the presented approach is that the proportional action is pointed
along the shortest direction on the sphere. The performance of the controller is demonstrated
in numerical simulations.

Keywords: Aircraft control, Attitude control, Nonlinear control systems, Autonomous vehicles

1. INTRODUCTION

The attitude control system provides the main stabiliza-
tion function in autopilots for fixed-wing unmanned aerial
vehicles (UAVs). It enables a UAV to follow commands
originating from outer-loop guidance schemes, thus allow-
ing fully automatic flight. Guidance controllers typically
achieve path-following or waypoint-tracking capabilities by
controlling climb and turn rates through roll and pitch
commands to the inner-loop attitude controller (Beard and
McLain, 2012). Turning is not achieved by controlling yaw
angle or turn rate directly, but rather through banked-turn
maneuvers.

The orientation, or attitude, of a fixed-wing aircraft rel-
ative to an inertial reference frame is represented, both
globally and uniquely, by an element of the special or-
thogonal group SO(3), which is the set of 3 by 3 rotation
matrices. The Euler angles given by roll, pitch and yaw
provide a minimal, local coordinate system on SO(3), but
will suffer from “gimbal-lock” singularities (Markley and
Crassidis, 2014).

In the last decades, coordinate-free geometric attitude
controllers, designed directly on SO(3), have been pro-
posed in the literature, without the need for attitude
parametrizations, and with no singularities (Chaturvedi
et al., 2011). Another advantage of these approaches is
that such controllers are often geodesic in the sense that
proportional action is designed to steer the vehicle along
the shortest path in the physical rotation space, whereas

� This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, grant no. 223254
NTNU AMOS, and no. 261791 AutoFly.

controllers based on Euler angles are not. These advan-
tages are desirable when the controlled vehicle is subject
to large angle rotations, e.g. a UAV recovering from large
attitude errors resulting from severe wind gusts (Johansen
et al., 2014).

Controllers designed on SO(3), or using quaternions (Wen
and Kreutz-Delgado, 1991), control the full attitude, and
therefore can not be directly applied to fixed-wing aircraft
using banked turn maneuvers. Instead of studying the
full attitude, some authors consider a reduced-attitude
representation, evolving on the two-sphere, S2 ⊂ R3 (Bullo
et al., 1995). In this space of reduced attitude, all rotations
that are related by a rotation about some fixed axis, are
considered the same (Chaturvedi et al., 2009).

Control systems with reduced attitude evolving on S2
have previously been studied in the context of spin-axis
stabilization of satellites (Bullo et al., 1995), pendulum
stabilization (Chaturvedi et al., 2009), path-following con-
trol of underwater vehicles (Wrzos-Kaminska et al., 2019),
control of multirotor UAVs (Casau et al., 2019) and for
general rigid bodies (Mayhew and Teel, 2013).

In this paper, we present a smooth, nonlinear reduced-
attitude controller for fixed-wing UAVs, in a coordinate-
free manner, using a global, singularity-free attitude rep-
resentation on S2. The chosen reduced-attitude represen-
tation is independent of the yaw angle and thus enables
traditional banked-turn maneuvers. A consequence of this
is that the presented approach fits directly into existing
control architectures that rely on roll and pitch control
in the inner loop. Also, no lateral/longitudinal decoupling
assumptions are used in the design.

Reduced-Attitude Control of Fixed-Wing
Unmanned Aerial Vehicles Using

Geometric Methods on the Two-Sphere �

Erlend M. Coates ∗ Dirk Reinhardt ∗ Thor I. Fossen ∗

∗ Center for Autonomous Marine Operations and Systems,
Department of Engineering Cybernetics, Norwegian University of

Science and Technology, 7491 Trondheim, Norway
(e-mail: {erlend.m.l.coates,dirk.p.reinhardt,thor.fossen}@ntnu.no).

Abstract: As an alternative to reduced-attitude control of fixed-wing unmanned aerial vehicles
using roll and pitch angles, we propose to use a global representation that evolves on the two-
sphere. The representation of reduced attitude is invariant to rotations about the inertial gravity
axis, which makes it well suited for banked turn maneuvers. With the relative airspeed viewed
as an exogenous input, a nonlinear controller for almost semiglobal exponential tracking of
reduced attitude is presented. For the regulation case, asymptotic convergence is almost global,
and the relationship to a classical approach using Euler angles is established. In addition to being
singularity-free, a benefit of the presented approach is that the proportional action is pointed
along the shortest direction on the sphere. The performance of the controller is demonstrated
in numerical simulations.

Keywords: Aircraft control, Attitude control, Nonlinear control systems, Autonomous vehicles

1. INTRODUCTION

The attitude control system provides the main stabiliza-
tion function in autopilots for fixed-wing unmanned aerial
vehicles (UAVs). It enables a UAV to follow commands
originating from outer-loop guidance schemes, thus allow-
ing fully automatic flight. Guidance controllers typically
achieve path-following or waypoint-tracking capabilities by
controlling climb and turn rates through roll and pitch
commands to the inner-loop attitude controller (Beard and
McLain, 2012). Turning is not achieved by controlling yaw
angle or turn rate directly, but rather through banked-turn
maneuvers.

The orientation, or attitude, of a fixed-wing aircraft rel-
ative to an inertial reference frame is represented, both
globally and uniquely, by an element of the special or-
thogonal group SO(3), which is the set of 3 by 3 rotation
matrices. The Euler angles given by roll, pitch and yaw
provide a minimal, local coordinate system on SO(3), but
will suffer from “gimbal-lock” singularities (Markley and
Crassidis, 2014).

In the last decades, coordinate-free geometric attitude
controllers, designed directly on SO(3), have been pro-
posed in the literature, without the need for attitude
parametrizations, and with no singularities (Chaturvedi
et al., 2011). Another advantage of these approaches is
that such controllers are often geodesic in the sense that
proportional action is designed to steer the vehicle along
the shortest path in the physical rotation space, whereas

� This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, grant no. 223254
NTNU AMOS, and no. 261791 AutoFly.

controllers based on Euler angles are not. These advan-
tages are desirable when the controlled vehicle is subject
to large angle rotations, e.g. a UAV recovering from large
attitude errors resulting from severe wind gusts (Johansen
et al., 2014).

Controllers designed on SO(3), or using quaternions (Wen
and Kreutz-Delgado, 1991), control the full attitude, and
therefore can not be directly applied to fixed-wing aircraft
using banked turn maneuvers. Instead of studying the
full attitude, some authors consider a reduced-attitude
representation, evolving on the two-sphere, S2 ⊂ R3 (Bullo
et al., 1995). In this space of reduced attitude, all rotations
that are related by a rotation about some fixed axis, are
considered the same (Chaturvedi et al., 2009).

Control systems with reduced attitude evolving on S2
have previously been studied in the context of spin-axis
stabilization of satellites (Bullo et al., 1995), pendulum
stabilization (Chaturvedi et al., 2009), path-following con-
trol of underwater vehicles (Wrzos-Kaminska et al., 2019),
control of multirotor UAVs (Casau et al., 2019) and for
general rigid bodies (Mayhew and Teel, 2013).

In this paper, we present a smooth, nonlinear reduced-
attitude controller for fixed-wing UAVs, in a coordinate-
free manner, using a global, singularity-free attitude rep-
resentation on S2. The chosen reduced-attitude represen-
tation is independent of the yaw angle and thus enables
traditional banked-turn maneuvers. A consequence of this
is that the presented approach fits directly into existing
control architectures that rely on roll and pitch control
in the inner loop. Also, no lateral/longitudinal decoupling
assumptions are used in the design.

Reduced-Attitude Control of Fixed-Wing
Unmanned Aerial Vehicles Using

Geometric Methods on the Two-Sphere �

Erlend M. Coates ∗ Dirk Reinhardt ∗ Thor I. Fossen ∗

∗ Center for Autonomous Marine Operations and Systems,
Department of Engineering Cybernetics, Norwegian University of

Science and Technology, 7491 Trondheim, Norway
(e-mail: {erlend.m.l.coates,dirk.p.reinhardt,thor.fossen}@ntnu.no).

Abstract: As an alternative to reduced-attitude control of fixed-wing unmanned aerial vehicles
using roll and pitch angles, we propose to use a global representation that evolves on the two-
sphere. The representation of reduced attitude is invariant to rotations about the inertial gravity
axis, which makes it well suited for banked turn maneuvers. With the relative airspeed viewed
as an exogenous input, a nonlinear controller for almost semiglobal exponential tracking of
reduced attitude is presented. For the regulation case, asymptotic convergence is almost global,
and the relationship to a classical approach using Euler angles is established. In addition to being
singularity-free, a benefit of the presented approach is that the proportional action is pointed
along the shortest direction on the sphere. The performance of the controller is demonstrated
in numerical simulations.

Keywords: Aircraft control, Attitude control, Nonlinear control systems, Autonomous vehicles

1. INTRODUCTION

The attitude control system provides the main stabiliza-
tion function in autopilots for fixed-wing unmanned aerial
vehicles (UAVs). It enables a UAV to follow commands
originating from outer-loop guidance schemes, thus allow-
ing fully automatic flight. Guidance controllers typically
achieve path-following or waypoint-tracking capabilities by
controlling climb and turn rates through roll and pitch
commands to the inner-loop attitude controller (Beard and
McLain, 2012). Turning is not achieved by controlling yaw
angle or turn rate directly, but rather through banked-turn
maneuvers.

The orientation, or attitude, of a fixed-wing aircraft rel-
ative to an inertial reference frame is represented, both
globally and uniquely, by an element of the special or-
thogonal group SO(3), which is the set of 3 by 3 rotation
matrices. The Euler angles given by roll, pitch and yaw
provide a minimal, local coordinate system on SO(3), but
will suffer from “gimbal-lock” singularities (Markley and
Crassidis, 2014).

In the last decades, coordinate-free geometric attitude
controllers, designed directly on SO(3), have been pro-
posed in the literature, without the need for attitude
parametrizations, and with no singularities (Chaturvedi
et al., 2011). Another advantage of these approaches is
that such controllers are often geodesic in the sense that
proportional action is designed to steer the vehicle along
the shortest path in the physical rotation space, whereas

� This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, grant no. 223254
NTNU AMOS, and no. 261791 AutoFly.

controllers based on Euler angles are not. These advan-
tages are desirable when the controlled vehicle is subject
to large angle rotations, e.g. a UAV recovering from large
attitude errors resulting from severe wind gusts (Johansen
et al., 2014).

Controllers designed on SO(3), or using quaternions (Wen
and Kreutz-Delgado, 1991), control the full attitude, and
therefore can not be directly applied to fixed-wing aircraft
using banked turn maneuvers. Instead of studying the
full attitude, some authors consider a reduced-attitude
representation, evolving on the two-sphere, S2 ⊂ R3 (Bullo
et al., 1995). In this space of reduced attitude, all rotations
that are related by a rotation about some fixed axis, are
considered the same (Chaturvedi et al., 2009).

Control systems with reduced attitude evolving on S2
have previously been studied in the context of spin-axis
stabilization of satellites (Bullo et al., 1995), pendulum
stabilization (Chaturvedi et al., 2009), path-following con-
trol of underwater vehicles (Wrzos-Kaminska et al., 2019),
control of multirotor UAVs (Casau et al., 2019) and for
general rigid bodies (Mayhew and Teel, 2013).

In this paper, we present a smooth, nonlinear reduced-
attitude controller for fixed-wing UAVs, in a coordinate-
free manner, using a global, singularity-free attitude rep-
resentation on S2. The chosen reduced-attitude represen-
tation is independent of the yaw angle and thus enables
traditional banked-turn maneuvers. A consequence of this
is that the presented approach fits directly into existing
control architectures that rely on roll and pitch control
in the inner loop. Also, no lateral/longitudinal decoupling
assumptions are used in the design.

Reduced-Attitude Control of Fixed-Wing
Unmanned Aerial Vehicles Using

Geometric Methods on the Two-Sphere �

Erlend M. Coates ∗ Dirk Reinhardt ∗ Thor I. Fossen ∗

∗ Center for Autonomous Marine Operations and Systems,
Department of Engineering Cybernetics, Norwegian University of

Science and Technology, 7491 Trondheim, Norway
(e-mail: {erlend.m.l.coates,dirk.p.reinhardt,thor.fossen}@ntnu.no).

Abstract: As an alternative to reduced-attitude control of fixed-wing unmanned aerial vehicles
using roll and pitch angles, we propose to use a global representation that evolves on the two-
sphere. The representation of reduced attitude is invariant to rotations about the inertial gravity
axis, which makes it well suited for banked turn maneuvers. With the relative airspeed viewed
as an exogenous input, a nonlinear controller for almost semiglobal exponential tracking of
reduced attitude is presented. For the regulation case, asymptotic convergence is almost global,
and the relationship to a classical approach using Euler angles is established. In addition to being
singularity-free, a benefit of the presented approach is that the proportional action is pointed
along the shortest direction on the sphere. The performance of the controller is demonstrated
in numerical simulations.

Keywords: Aircraft control, Attitude control, Nonlinear control systems, Autonomous vehicles

1. INTRODUCTION

The attitude control system provides the main stabiliza-
tion function in autopilots for fixed-wing unmanned aerial
vehicles (UAVs). It enables a UAV to follow commands
originating from outer-loop guidance schemes, thus allow-
ing fully automatic flight. Guidance controllers typically
achieve path-following or waypoint-tracking capabilities by
controlling climb and turn rates through roll and pitch
commands to the inner-loop attitude controller (Beard and
McLain, 2012). Turning is not achieved by controlling yaw
angle or turn rate directly, but rather through banked-turn
maneuvers.

The orientation, or attitude, of a fixed-wing aircraft rel-
ative to an inertial reference frame is represented, both
globally and uniquely, by an element of the special or-
thogonal group SO(3), which is the set of 3 by 3 rotation
matrices. The Euler angles given by roll, pitch and yaw
provide a minimal, local coordinate system on SO(3), but
will suffer from “gimbal-lock” singularities (Markley and
Crassidis, 2014).

In the last decades, coordinate-free geometric attitude
controllers, designed directly on SO(3), have been pro-
posed in the literature, without the need for attitude
parametrizations, and with no singularities (Chaturvedi
et al., 2011). Another advantage of these approaches is
that such controllers are often geodesic in the sense that
proportional action is designed to steer the vehicle along
the shortest path in the physical rotation space, whereas

� This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, grant no. 223254
NTNU AMOS, and no. 261791 AutoFly.

controllers based on Euler angles are not. These advan-
tages are desirable when the controlled vehicle is subject
to large angle rotations, e.g. a UAV recovering from large
attitude errors resulting from severe wind gusts (Johansen
et al., 2014).

Controllers designed on SO(3), or using quaternions (Wen
and Kreutz-Delgado, 1991), control the full attitude, and
therefore can not be directly applied to fixed-wing aircraft
using banked turn maneuvers. Instead of studying the
full attitude, some authors consider a reduced-attitude
representation, evolving on the two-sphere, S2 ⊂ R3 (Bullo
et al., 1995). In this space of reduced attitude, all rotations
that are related by a rotation about some fixed axis, are
considered the same (Chaturvedi et al., 2009).

Control systems with reduced attitude evolving on S2
have previously been studied in the context of spin-axis
stabilization of satellites (Bullo et al., 1995), pendulum
stabilization (Chaturvedi et al., 2009), path-following con-
trol of underwater vehicles (Wrzos-Kaminska et al., 2019),
control of multirotor UAVs (Casau et al., 2019) and for
general rigid bodies (Mayhew and Teel, 2013).

In this paper, we present a smooth, nonlinear reduced-
attitude controller for fixed-wing UAVs, in a coordinate-
free manner, using a global, singularity-free attitude rep-
resentation on S2. The chosen reduced-attitude represen-
tation is independent of the yaw angle and thus enables
traditional banked-turn maneuvers. A consequence of this
is that the presented approach fits directly into existing
control architectures that rely on roll and pitch control
in the inner loop. Also, no lateral/longitudinal decoupling
assumptions are used in the design.
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1. INTRODUCTION

The attitude control system provides the main stabiliza-
tion function in autopilots for fixed-wing unmanned aerial
vehicles (UAVs). It enables a UAV to follow commands
originating from outer-loop guidance schemes, thus allow-
ing fully automatic flight. Guidance controllers typically
achieve path-following or waypoint-tracking capabilities by
controlling climb and turn rates through roll and pitch
commands to the inner-loop attitude controller (Beard and
McLain, 2012). Turning is not achieved by controlling yaw
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ative to an inertial reference frame is represented, both
globally and uniquely, by an element of the special or-
thogonal group SO(3), which is the set of 3 by 3 rotation
matrices. The Euler angles given by roll, pitch and yaw
provide a minimal, local coordinate system on SO(3), but
will suffer from “gimbal-lock” singularities (Markley and
Crassidis, 2014).

In the last decades, coordinate-free geometric attitude
controllers, designed directly on SO(3), have been pro-
posed in the literature, without the need for attitude
parametrizations, and with no singularities (Chaturvedi
et al., 2011). Another advantage of these approaches is
that such controllers are often geodesic in the sense that
proportional action is designed to steer the vehicle along
the shortest path in the physical rotation space, whereas
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controllers based on Euler angles are not. These advan-
tages are desirable when the controlled vehicle is subject
to large angle rotations, e.g. a UAV recovering from large
attitude errors resulting from severe wind gusts (Johansen
et al., 2014).

Controllers designed on SO(3), or using quaternions (Wen
and Kreutz-Delgado, 1991), control the full attitude, and
therefore can not be directly applied to fixed-wing aircraft
using banked turn maneuvers. Instead of studying the
full attitude, some authors consider a reduced-attitude
representation, evolving on the two-sphere, S2 ⊂ R3 (Bullo
et al., 1995). In this space of reduced attitude, all rotations
that are related by a rotation about some fixed axis, are
considered the same (Chaturvedi et al., 2009).

Control systems with reduced attitude evolving on S2
have previously been studied in the context of spin-axis
stabilization of satellites (Bullo et al., 1995), pendulum
stabilization (Chaturvedi et al., 2009), path-following con-
trol of underwater vehicles (Wrzos-Kaminska et al., 2019),
control of multirotor UAVs (Casau et al., 2019) and for
general rigid bodies (Mayhew and Teel, 2013).

In this paper, we present a smooth, nonlinear reduced-
attitude controller for fixed-wing UAVs, in a coordinate-
free manner, using a global, singularity-free attitude rep-
resentation on S2. The chosen reduced-attitude represen-
tation is independent of the yaw angle and thus enables
traditional banked-turn maneuvers. A consequence of this
is that the presented approach fits directly into existing
control architectures that rely on roll and pitch control
in the inner loop. Also, no lateral/longitudinal decoupling
assumptions are used in the design.
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The reduced-attitude representation allows for a conve-
nient decomposition of the dynamics and a natural cor-
responding decoupling of the control objective into two
parts: 1. Reduced-attitude (roll/pitch) control, and 2. Con-
trol of the angular velocity about the inertial z-axis (turn
rate control). Since only two control torques are needed to
control the reduced attitude, there is one degree of freedom
left to do turn rate control, which essentially performs turn
coordination, providing damping about the inertial z-axis,
and reducing the sideslip angle.

Almost semiglobal exponential tracking of reduced atti-
tude is established using Lyapunov methods. In the spe-
cial case of regulation, a stronger almost global asymp-
totic stability result is established. Because of topological
constraints when dealing with compact manifolds (Bhat
and Bernstein, 2000), the latter is the strongest possible
stability result possible for continuous attitude control
systems (Chaturvedi et al., 2011). Using hybrid control
however, the region of attraction can be made global as
shown in e.g. Mayhew and Teel (2013). Applications of
hybrid methods to the attitude control of fixed-wing UAVs
are explored further in our companion paper (Reinhardt
et al., 2020).

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Notation

The three-dimensional special orthogonal group is the set

SO(3) = {R ∈ R3×3 : R�R = I3, detR = 1}, (1)

where I3 ∈ R3×3 is the identity matrix. An element
R ∈ SO(3) is called a rotation matrix and transforms
vectors from a body-fixed frame to an inertial reference
frame.

For any a, b ∈ R3, the matrix S(a) = −S�(a) ∈ so(3)
is the skew-symmetric matrix such that S(a)b = a × b.
From properties of the cross product, S(a)b = −S(b)a and
S(a)a = 0.

The two-sphere S2 ⊂ R3 is defined by

S2 = {x ∈ R3 : ‖x‖ = 1}, (2)

where ‖x‖ =
√
x�x is the Euclidean norm. The tangent

space at a point x ∈ S2 can be identified with the vectors
v ∈ R3 that are orthogonal to x:

TxS2 = {v ∈ R3 : x · v = 0}, (3)

and the tangent bundle TS2 is the set

TS2 = {(x, v) : x ∈ S2, v ∈ TxS2}. (4)

The normal space NxS2 is the orthogonal complement of
TxS2, given by the set of vectors parallel to x, or

NxS2 = {w ∈ R3 : w · v = 0 for all v ∈ TxS2}. (5)

Define the orthogonal and parallel projections Π⊥
x : R3 →

TxS2 and Π
‖
x : R3 → NxS2 by

Π⊥
x = I3 − xx� = −S2(x), Π‖

x = xx�. (6)

Then, any vector v ∈ R3 can be written as the sum

v = Π⊥
x v +Π

‖
xv.

Explicit time arguments will be used for state variables
only when considering specific solutions, or for signals and

functions in general when we want to highlight that time-
varying exogenous signals are considered. At some points
we will use a slight abuse of notation and write e.g. V (t) for
a Lyapunov function evaluated along system trajectories,
when we really mean V (x(t)).

Lastly, the positive real numbers will be denoted R+, the
set of 3 by 3 symmetric positive definite matrices will be
denoted P3

+, and the maximum and minimum eigenvalues
of a square matrix A will be denoted λmax(A), λmin(A),
respectively.

2.2 UAV Attitude Dynamics

We will consider the following control-affine, fully actuated
attitude dynamics for a fixed-wing UAV:

Ṙ = RS(ω) (7)

Jω̇ = f(ω, vr, δt) +G(ω, vr)u, (8)

where ω = [p q r]� ∈ R3 is the body-fixed angular veloc-
ity, J ∈ P3

+ is the inertia matrix, vr = [vr1 vr2 vr3 ]
� ∈ R3

is the body-fixed (air) relative velocity, δt ∈ [0, 1] is the
throttle, and u = [δa δe δr]

�, where δa, δe, δr ∈ R are
the aileron, elevator and rudder control surface deflection
angles, respectively.

Let Ma(vr, ω) denote the aerodynamic moments that
are independent of the control u, and Mt(δt) denote
the reaction torque from the propeller. The drift term
f(ω, vr, δt) can then be written as follows:

f(ω, vr, δt) = S(Jω)ω +Ma(vr, ω) +Mt(δt). (9)

Let the airspeed Va, angle of attack α and sideslip angle
β be defined by

Va = ‖vr‖ =
√
v2r1 + v2r2 + v2r3 (10)

α = atan2 (vr1 , vr3) , β = atan2 (vr2 , vr1) , (11)

where atan2(y, x) is the four-quadrant inverse tangent.
Since Va, α and β are functions of vr, as a slight abuse
of notation, the latter will be used as function argument
for compactness.

Following Beard and McLain (2012), Stevens et al. (2016),
the aerodynamic moment vector, and control effectiveness
matrix G(ω, vr) can be written in general form as

Ma(ω, vr) =
1

2
ρV 2

a S

[
bCl(α, β, ω)
cCm(α, β, ω)
bCn(α, β, ω)

]
(12)

G(ω, vr) =
1

2
ρV 2

a S



bClu(α, β, ω)

�

cCmu(α, β, ω)
�

bCnu
(α, β, ω)�


 , (13)

where ρ, S, b, c ∈ R+ is the density of air, the wing plan-
form area, the wingspan and the aerodynamic chord, re-
spectively. The functions Cl, Cm and Cn are roll, pitch and
yaw moment coefficients, respectively, while the vector-
valued functions Clu , Cmu and Cnu map control surface
deflections to torques.

Assumption 1. The control effectiveness matrix G(ω, vr)
has full rank.

From (13), it is clear that a consequence of this assumption
is that a strictly positive airspeed is required, i.e. Va ≥ V a
for some V a ∈ R+.
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The reduced-attitude representation allows for a conve-
nient decomposition of the dynamics and a natural cor-
responding decoupling of the control objective into two
parts: 1. Reduced-attitude (roll/pitch) control, and 2. Con-
trol of the angular velocity about the inertial z-axis (turn
rate control). Since only two control torques are needed to
control the reduced attitude, there is one degree of freedom
left to do turn rate control, which essentially performs turn
coordination, providing damping about the inertial z-axis,
and reducing the sideslip angle.

Almost semiglobal exponential tracking of reduced atti-
tude is established using Lyapunov methods. In the spe-
cial case of regulation, a stronger almost global asymp-
totic stability result is established. Because of topological
constraints when dealing with compact manifolds (Bhat
and Bernstein, 2000), the latter is the strongest possible
stability result possible for continuous attitude control
systems (Chaturvedi et al., 2011). Using hybrid control
however, the region of attraction can be made global as
shown in e.g. Mayhew and Teel (2013). Applications of
hybrid methods to the attitude control of fixed-wing UAVs
are explored further in our companion paper (Reinhardt
et al., 2020).

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Notation

The three-dimensional special orthogonal group is the set

SO(3) = {R ∈ R3×3 : R�R = I3, detR = 1}, (1)

where I3 ∈ R3×3 is the identity matrix. An element
R ∈ SO(3) is called a rotation matrix and transforms
vectors from a body-fixed frame to an inertial reference
frame.

For any a, b ∈ R3, the matrix S(a) = −S�(a) ∈ so(3)
is the skew-symmetric matrix such that S(a)b = a × b.
From properties of the cross product, S(a)b = −S(b)a and
S(a)a = 0.

The two-sphere S2 ⊂ R3 is defined by

S2 = {x ∈ R3 : ‖x‖ = 1}, (2)

where ‖x‖ =
√
x�x is the Euclidean norm. The tangent

space at a point x ∈ S2 can be identified with the vectors
v ∈ R3 that are orthogonal to x:

TxS2 = {v ∈ R3 : x · v = 0}, (3)

and the tangent bundle TS2 is the set

TS2 = {(x, v) : x ∈ S2, v ∈ TxS2}. (4)

The normal space NxS2 is the orthogonal complement of
TxS2, given by the set of vectors parallel to x, or

NxS2 = {w ∈ R3 : w · v = 0 for all v ∈ TxS2}. (5)

Define the orthogonal and parallel projections Π⊥
x : R3 →

TxS2 and Π
‖
x : R3 → NxS2 by

Π⊥
x = I3 − xx� = −S2(x), Π‖

x = xx�. (6)

Then, any vector v ∈ R3 can be written as the sum

v = Π⊥
x v +Π

‖
xv.

Explicit time arguments will be used for state variables
only when considering specific solutions, or for signals and

functions in general when we want to highlight that time-
varying exogenous signals are considered. At some points
we will use a slight abuse of notation and write e.g. V (t) for
a Lyapunov function evaluated along system trajectories,
when we really mean V (x(t)).

Lastly, the positive real numbers will be denoted R+, the
set of 3 by 3 symmetric positive definite matrices will be
denoted P3

+, and the maximum and minimum eigenvalues
of a square matrix A will be denoted λmax(A), λmin(A),
respectively.

2.2 UAV Attitude Dynamics

We will consider the following control-affine, fully actuated
attitude dynamics for a fixed-wing UAV:

Ṙ = RS(ω) (7)

Jω̇ = f(ω, vr, δt) +G(ω, vr)u, (8)

where ω = [p q r]� ∈ R3 is the body-fixed angular veloc-
ity, J ∈ P3

+ is the inertia matrix, vr = [vr1 vr2 vr3 ]
� ∈ R3

is the body-fixed (air) relative velocity, δt ∈ [0, 1] is the
throttle, and u = [δa δe δr]

�, where δa, δe, δr ∈ R are
the aileron, elevator and rudder control surface deflection
angles, respectively.

Let Ma(vr, ω) denote the aerodynamic moments that
are independent of the control u, and Mt(δt) denote
the reaction torque from the propeller. The drift term
f(ω, vr, δt) can then be written as follows:

f(ω, vr, δt) = S(Jω)ω +Ma(vr, ω) +Mt(δt). (9)

Let the airspeed Va, angle of attack α and sideslip angle
β be defined by

Va = ‖vr‖ =
√
v2r1 + v2r2 + v2r3 (10)

α = atan2 (vr1 , vr3) , β = atan2 (vr2 , vr1) , (11)

where atan2(y, x) is the four-quadrant inverse tangent.
Since Va, α and β are functions of vr, as a slight abuse
of notation, the latter will be used as function argument
for compactness.

Following Beard and McLain (2012), Stevens et al. (2016),
the aerodynamic moment vector, and control effectiveness
matrix G(ω, vr) can be written in general form as

Ma(ω, vr) =
1

2
ρV 2

a S

[
bCl(α, β, ω)
cCm(α, β, ω)
bCn(α, β, ω)

]
(12)

G(ω, vr) =
1

2
ρV 2

a S



bClu(α, β, ω)

�

cCmu(α, β, ω)
�

bCnu
(α, β, ω)�


 , (13)

where ρ, S, b, c ∈ R+ is the density of air, the wing plan-
form area, the wingspan and the aerodynamic chord, re-
spectively. The functions Cl, Cm and Cn are roll, pitch and
yaw moment coefficients, respectively, while the vector-
valued functions Clu , Cmu and Cnu map control surface
deflections to torques.

Assumption 1. The control effectiveness matrix G(ω, vr)
has full rank.

From (13), it is clear that a consequence of this assumption
is that a strictly positive airspeed is required, i.e. Va ≥ V a
for some V a ∈ R+.

Remark 1. For common parametrizations based on con-
stant control effectiveness coefficients (Beard and McLain,
2012; Stevens et al., 2016), it can be shown that the full
rank condition corresponds to primary control coefficients
being larger than the coefficients associated with sec-
ondary roll-yaw coupling effects. The full rank assumption
is therefore reasonable for most common fully actuated
control surface configurations.

Throughout the text, the throttle δt and relative velocity
vr, and therefore also α, β and Va (as functions of vr), will
be treated as known time-varying input signals.

Remark 2. Note that since the translational subsystem
(see Stevens et al. (2016)) depends on R, ω and u,
the relative velocity vr is not truly an exogenous signal.
Nevertheless, as a decoupling maneuver, we will assume
that it is a known signal available for feedback. This
should be considered when integrating the control system
developed in this paper in UAV GNC systems, e.g. using
bandwidth separation.

2.3 Reduced Attitude

Let e3 = [0 0 1]� be fixed in the inertial frame. Transform-
ing e3 to the body-fixed frame gives the reduced-attitude
vector Γ ∈ S2 defined by

Γ = R�e3. (14)

This particular choice of reduced-attitude representation
has been applied to stabilized the inverted equilibrium
manifold of the 3-D pendulum in Chaturvedi et al. (2009),
and corresponds to the direction of gravitational accel-
eration, expressed in the body-fixed frame, and is thus
invariant to rotations about the inertial z-axis. The latter
can be seen by expanding (14) using the roll-pitch-yaw
Euler angle parametrization:

Γ = [− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)]
�
, (15)

where φ ∈ [−π, π] is the roll angle, and θ ∈ [−π/2, π/2] is
the pitch angle.

Using (6), we can perform an orthogonal decomposition
of the angular velocity ω with respect to Γ such that
ω = ω⊥ + ω‖, where

ω⊥ � Π⊥
Γω ∈ TΓS2 ω‖ � Π

‖
Γω ∈ NΓS2. (16)

Differentiating (14) using (7) gives

Γ̇ = Γ× ω = Γ× ω⊥ ∈ TΓS2. (17)

The parallel component ω‖ is the angular velocity about
the inertial z-axis (expressed in the body-fixed frame), and

clearly does not influence Γ̇.

Differentiating (16) and using (17) gives

ω̇⊥ = Π⊥
Γ ω̇ + ω⊥ × ω‖ (18)

ω̇‖ = Π
‖
Γω̇ + ω‖ × ω⊥, (19)

where we have also applied the identity a�Sa = 0 for any
a ∈ R3 and S ∈ so(3).

2.4 Reference System

Let a time-varying reduced-attitude reference vector
Γd(t) ∈ S2 satisfy

Γ̇d = Γd × ωd, (20)

where ωd ∈ TΓd
S2. We will assume that the desired

angular velocity is uniformly bounded, i.e. ‖ωd‖ ≤ B, and
that ω̇d is continuous.

Consider the projection of ωd onto the tangent space TΓS2,
given by Π⊥

Γωd ∈ TΓS2. Using (6), (17) and the fact that
a�S(b)c = b�S(c)a = c�S(a)b for any a, b, c ∈ R3, the
derivative can be found to satisfy

d

dt
(Π⊥

Γωd) = Π⊥
Γ ω̇d + ω⊥ ×Π

‖
Γωd +Π

‖
Γ(ωd × ω⊥). (21)

2.5 Potential Function

Let a smooth configuration error function Ψ: S2×S2 → R
be defined by

Ψ(Γ,Γd) =
1

2
‖Γ− Γd‖2 = 1− Γd · Γ. (22)

The function Ψ measures the “distance” between two
points Γ and Γd on S2, and is clearly positive definite
with respect to Γ = Γd. There are two critical points:
A minimum when Γ = Γd, and a maximum when Γ =
−Γd. In subsequent Lyapunov analysis, Ψ will be used
as pseudo-potential energy. When Γd is constant, we
write Ψ(Γ) and also remove Γd as an argument of the
corresponding Lyapunov function.

2.6 Error States

To design proportional feedback on S2, let a configuration
error vector eΓ : S2 × S2 → TΓS2 be given by

eΓ = Γ× Γd, (23)

and define the angular velocity error as

eω = ω⊥ −Π⊥
Γωd = Π⊥

Γ (ω − ωd) ∈ TΓS2. (24)

From (18) and (21), the derivative of eω can be written as

ėω = Π⊥
Γ

(
ω̇ − ω̇d + ω⊥ × (ω‖ −Π

‖
Γωd)

)
−Π

‖
Γ(ωd × eω).

(25)

The error vector eΓ can be viewed as a gradient vector
field on S2 induced by the potential function Ψ (Lee et al.,
2011), and it vanishes at the critical points of Ψ. The
error terms eΓ and eω are also compatible in the sense
that Ψ̇ = e�ω eΓ, which will cancel with the proportional
feedback term defined later when calculating the derivative
of a Lyapunov function. The error vector eΓ is geodesic in
the sense that its direction defines an axis of rotation which
connects Γ and Γd with the shortest possible curve on S2.
Remark 3. Other configuration error vectors (with corre-
sponding potential functions) on S2 could be used in place
of (23), without changing the general approach considered
in this paper. For instance, alternative error vectors that
do not vanish when approaching −Γd (at the cost of being
undefined at this point) can be found in Bullo et al.
(1995), Chaturvedi and McClamroch (2009) and Ramp
and Papadopoulos (2015).

2.7 Control Objective

Let an orthogonal decomposition of the control input
vector u be given by u = u⊥+u‖, where J−1G(ω, vr)u

⊥ ∈
TΓS2, and J−1G(ω, vr)u

‖ ∈ NΓS2.

The control objective can be stated as follows:
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Reduced-Attitude Tracking. Design a state-feedback con-
trol law u⊥ such that Γ(t) → Γd(t) and eω(t) → 0 as
t → ∞.

A special case of reduced-attitude tracking is the case when
Γd is constant, so ωd = 0 and eω = ω⊥. We can formulate
the following regulation problem:

Reduced-Attitude Regulation. Design a state-feedback
control law u⊥ such that Γ(t) → Γd constant and ω⊥(t) →
0 as t → ∞.

The remaining degree of freedom provided by u‖ is in the
nullspace of the orthogonal projection and as such does
not interfere with the control of reduced attitude. It should
be used for turn coordination and to stabilize the parallel
component of angular velocity.

3. MAIN RESULT

This section introduces the main result for reduced-
attitude tracking control for fixed-wing UAVs, where a
control law u⊥ is given. The design of a control law using
the remaining degree of freedom, given by u‖ is treated in
Section 4.

Proposition 1. (Reduced-Attitude Tracking). Consider the
reduced-attitude error dynamics defined by (8), (17),
and (25), assuming Va ≥ V a > 0 and that the control
effectiveness matrix G(ω, vr) has full rank. With kp ∈ R+

and Kd ∈ P3
+, let a smooth tracking control law u⊥

satisfying J−1G(ω, vr)u
⊥ ∈ TΓS2 be given by

u⊥ = G−1(ω, vr)J

(
− kpeΓ −Π⊥

ΓKdeω

−Π⊥
Γ J

−1f(ω, vr, δt)− ω⊥ × (ω‖ −Π
‖
Γωd) + Π⊥

Γ ω̇d

)
.

(26)

With δt, vr treated as bounded, time-varying exogenous
signals, the closed-loop error system has two equilibrium
solutions given by (Γ, eω) = (±Γd, 0). The desired equilib-
rium (Γd, 0) is exponentially stable, with region of expo-
nential convergence given by

Ψ(Γ(0),Γd(0)) ≤Ψ (27)

‖eω(0)‖ ≤
√

2kp

(
Ψ−Ψ(Γ(0),Γd(0))

)
, (28)

for some Ψ < 2, where 2 is the maximum value of Ψ, at-
tained at Γ = −Γd. The additional undesired equilibrium
(−Γd, 0) is unstable.

Additionally, if ωd = 0, the desired equilibrium (Γd, 0) is
almost globally asymptotically stable.

Proof. See Appendix A.

For almost all Ψ(Γ(t0),Γd(t0)), eω(t0) (excluding Γ(t0) =
−Γd(t0)), some kp can be chosen such that (27), (28) is
satisifed. The equilibrium (Γd, 0) is therefore said to be
almost semiglobally exponentially stable (Lee, 2015).

Remark 4. By exploiting passivity-properties in the Lya-

punov design, the term −ω⊥ × (ω‖ −Π
‖
Γωd) in (26) could

be replaced by −Π⊥
Γωd × (ω‖ − Π

‖
Γωd), without changing

V̇ . This would also remove the seemingly unneeded cross

product term in (29). However, this would give a closed-
loop system that depends on ω‖, and invalidate several
arguments used in the proof.

Remark 5. A notable property of the control law (26)
is that since the control effectiveness matrix G(ω, vr)
given by (13) contains a factor of V 2

a , the inverse matrix
G−1(ω, vr) contains a factor of 1/V 2

a . This means that the
control law includes airspeed scaling. Also note that in-
stead of compensating for the entire drift term f(ω, vr, δt),
only the orthogonal projection is compensated for.

Parts of the proof is inspired by Lee (2016), where a
tracking controller for a double integrator system on S2 is
presented. However, Lee (2016) considers an inertial frame
representation of reduced attitude, as opposed to (14),
which is defined in the body-fixed frame. Also, no dy-
namics, or parallel component of the angular velocity is
considered. In addition to compensating for the dynamics,
compared to Lee (2016), the controller (26) allows a matrix
gain Kd, projects the feedforward term ω̇d to TΓS2, and
adds an additional term −ω⊥ × ω‖ to compensate for the
“coriolis” term that appears when ω‖ is nonzero.

In the special case of regulation, where ωd = 0, and
eω = ω⊥, the control law (26) reduces to

u⊥ = G−1(ω, vr)J

(
− kpeΓ −Π⊥

ΓKdω
⊥

−Π⊥
Γ J

−1f(ω, vr, δt)− ω⊥ × ω‖
)
.

(29)

The closed-loop system in this case is autonomous. This
means that LaSalle’s invariance theorem (Khalil, 2002)
can be applied. Inspired by the methodology presented
for the 3-D pendulum in Chaturvedi et al. (2009), this can
be combined with local analysis of the linearized closed-
loop dynamics at the equilibria to show almost global
asymptotic stability. However, the linearized dynamics
in Chaturvedi et al. (2009) evolve on R5, since the state
space includes the full angular velocity ω. In Lee et al.
(2011), a closed-loop 3-D pendulum system is analyzed,
with angular velocity in TΓS2 and with linearization evolv-
ing on R4, but only for very specific numerical values of
the controller gains. The proof of almost global asymptotic
stability follows Chaturvedi et al. (2009), but is adjusted
to use a linearization on R4 instead of R5, inspired by Lee
et al. (2011), but done in full generality. In addition, a
matrix gain Kd is used instead of a scalar.

4. TURN COORDINATION

The control law defined by (26) does not inject damping
about the axis defined by Γ. The control u‖ can be utilized
to do this. Let a reference for the angular velocity about
the vertical axis of the inertial frame be given by the
equation for a coordinated turn with zero sideslip (Beard
and McLain, 2012):

ω
‖
d = ψ̇dΓ, ψ̇d =

g

Va
tan(φ). (30)

Note that care needs to be taken to avoid the singularity at
Γ3 = 0, corresponding to φ = ±π/2, either by constraining
the value of φ used in (30), or by using the reference
instead. A controller that adds damping about Γ without
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Reduced-Attitude Tracking. Design a state-feedback con-
trol law u⊥ such that Γ(t) → Γd(t) and eω(t) → 0 as
t → ∞.

A special case of reduced-attitude tracking is the case when
Γd is constant, so ωd = 0 and eω = ω⊥. We can formulate
the following regulation problem:

Reduced-Attitude Regulation. Design a state-feedback
control law u⊥ such that Γ(t) → Γd constant and ω⊥(t) →
0 as t → ∞.

The remaining degree of freedom provided by u‖ is in the
nullspace of the orthogonal projection and as such does
not interfere with the control of reduced attitude. It should
be used for turn coordination and to stabilize the parallel
component of angular velocity.

3. MAIN RESULT

This section introduces the main result for reduced-
attitude tracking control for fixed-wing UAVs, where a
control law u⊥ is given. The design of a control law using
the remaining degree of freedom, given by u‖ is treated in
Section 4.

Proposition 1. (Reduced-Attitude Tracking). Consider the
reduced-attitude error dynamics defined by (8), (17),
and (25), assuming Va ≥ V a > 0 and that the control
effectiveness matrix G(ω, vr) has full rank. With kp ∈ R+

and Kd ∈ P3
+, let a smooth tracking control law u⊥

satisfying J−1G(ω, vr)u
⊥ ∈ TΓS2 be given by

u⊥ = G−1(ω, vr)J

(
− kpeΓ −Π⊥

ΓKdeω

−Π⊥
Γ J

−1f(ω, vr, δt)− ω⊥ × (ω‖ −Π
‖
Γωd) + Π⊥

Γ ω̇d

)
.

(26)

With δt, vr treated as bounded, time-varying exogenous
signals, the closed-loop error system has two equilibrium
solutions given by (Γ, eω) = (±Γd, 0). The desired equilib-
rium (Γd, 0) is exponentially stable, with region of expo-
nential convergence given by

Ψ(Γ(0),Γd(0)) ≤Ψ (27)

‖eω(0)‖ ≤
√
2kp

(
Ψ−Ψ(Γ(0),Γd(0))

)
, (28)

for some Ψ < 2, where 2 is the maximum value of Ψ, at-
tained at Γ = −Γd. The additional undesired equilibrium
(−Γd, 0) is unstable.

Additionally, if ωd = 0, the desired equilibrium (Γd, 0) is
almost globally asymptotically stable.

Proof. See Appendix A.

For almost all Ψ(Γ(t0),Γd(t0)), eω(t0) (excluding Γ(t0) =
−Γd(t0)), some kp can be chosen such that (27), (28) is
satisifed. The equilibrium (Γd, 0) is therefore said to be
almost semiglobally exponentially stable (Lee, 2015).

Remark 4. By exploiting passivity-properties in the Lya-

punov design, the term −ω⊥ × (ω‖ −Π
‖
Γωd) in (26) could

be replaced by −Π⊥
Γωd × (ω‖ − Π

‖
Γωd), without changing

V̇ . This would also remove the seemingly unneeded cross

product term in (29). However, this would give a closed-
loop system that depends on ω‖, and invalidate several
arguments used in the proof.

Remark 5. A notable property of the control law (26)
is that since the control effectiveness matrix G(ω, vr)
given by (13) contains a factor of V 2

a , the inverse matrix
G−1(ω, vr) contains a factor of 1/V 2

a . This means that the
control law includes airspeed scaling. Also note that in-
stead of compensating for the entire drift term f(ω, vr, δt),
only the orthogonal projection is compensated for.

Parts of the proof is inspired by Lee (2016), where a
tracking controller for a double integrator system on S2 is
presented. However, Lee (2016) considers an inertial frame
representation of reduced attitude, as opposed to (14),
which is defined in the body-fixed frame. Also, no dy-
namics, or parallel component of the angular velocity is
considered. In addition to compensating for the dynamics,
compared to Lee (2016), the controller (26) allows a matrix
gain Kd, projects the feedforward term ω̇d to TΓS2, and
adds an additional term −ω⊥ × ω‖ to compensate for the
“coriolis” term that appears when ω‖ is nonzero.

In the special case of regulation, where ωd = 0, and
eω = ω⊥, the control law (26) reduces to

u⊥ = G−1(ω, vr)J

(
− kpeΓ −Π⊥

ΓKdω
⊥

−Π⊥
Γ J

−1f(ω, vr, δt)− ω⊥ × ω‖
)
.

(29)

The closed-loop system in this case is autonomous. This
means that LaSalle’s invariance theorem (Khalil, 2002)
can be applied. Inspired by the methodology presented
for the 3-D pendulum in Chaturvedi et al. (2009), this can
be combined with local analysis of the linearized closed-
loop dynamics at the equilibria to show almost global
asymptotic stability. However, the linearized dynamics
in Chaturvedi et al. (2009) evolve on R5, since the state
space includes the full angular velocity ω. In Lee et al.
(2011), a closed-loop 3-D pendulum system is analyzed,
with angular velocity in TΓS2 and with linearization evolv-
ing on R4, but only for very specific numerical values of
the controller gains. The proof of almost global asymptotic
stability follows Chaturvedi et al. (2009), but is adjusted
to use a linearization on R4 instead of R5, inspired by Lee
et al. (2011), but done in full generality. In addition, a
matrix gain Kd is used instead of a scalar.

4. TURN COORDINATION

The control law defined by (26) does not inject damping
about the axis defined by Γ. The control u‖ can be utilized
to do this. Let a reference for the angular velocity about
the vertical axis of the inertial frame be given by the
equation for a coordinated turn with zero sideslip (Beard
and McLain, 2012):

ω
‖
d = ψ̇dΓ, ψ̇d =

g

Va
tan(φ). (30)

Note that care needs to be taken to avoid the singularity at
Γ3 = 0, corresponding to φ = ±π/2, either by constraining
the value of φ used in (30), or by using the reference
instead. A controller that adds damping about Γ without

interfering with the banked turn manuever is then given
by

u‖ = G−1(ω, vr)J
(
−ktc(ω

‖ − ω
‖
d)−Π

‖
ΓJ

−1f(ω, vr, δt)
)
,

(31)
where ktc ∈ R+ is a scalar design parameter.

As an alternative to (31), for some kβ ∈ R+, consider
the following control law, which is designed to drive the
sideslip angle to zero:

u‖ = G−1(ω, vr)J Π⊥
Γ (kββe3). (32)

5. COMPARISON WITH CONTROLLER BASED ON
EULER ANGLES

In this section, the geometric controller presented in Sec-
tion 3 will be compared to a controller based on Euler
angles. For Kω ∈ P3

+, consider the cascaded dynamic
inversion based controller

u = G−1(ω, vr)J

(
−Kω(ω− ω̄d)−J−1f(ω, vr, δt)

)
, (33)

where the bar in ω̄d is introduced to distinguish it from
ωd in (20). The desired angular velocity is computed
using (30) and linear state feedback from the roll and pitch

regulation errors φ̃ � φ− φd, θ̃ � θ − θd as follows:

ω̄d = T−1(φ, θ)




−kφφ̃

−kθ θ̃
g

Va
tan(φ)


 (34)

where kφ, kθ ∈ R+, and T−1(φ, θ) is the inverse of the
Euler angle transformation matrix, given by (Beard and
McLain, 2012)

T−1(φ, θ) =

[
1 0 − sin(θ)
0 cos(φ) cos(θ) sin(φ)
0 − sin(φ) cos(θ) cos(φ)

]
(35)

for θ �= ±π/2. Note that the third column is Γ (see (15)).

Remark 6. Apart from the dynamic inversion term, this
controller has similar structure as the control architecture
used in the PX4 open source autopilot (Meier et al., 2015).

To compare the geometric controller from Section 3 with
the Euler angle controller (33)-(35), we consider the reg-
ulation case with ωd = 0, and set Kd = Kω = kdI3,
kθ = kφ = kp/kd, and (31) is used for u‖ with ktc = kd.

For the geometric controller, the closed-loop angular ve-
locity dynamics then become

ω̇ = −kpeΓ − kdω + kdω
‖
d, (36)

while for the controller based on Euler angles, the closed-
loop dynamics are

ω̇ = −kpeθφ − kdω + kdω
‖
d, (37)

where we have introduced the following error vector:

eθφ �

[
φ̃

kθ
kφ

θ̃ cos(φ) − kθ
kφ

θ̃ sin(φ)

]�
. (38)

The only difference between (36) and (37) lies in the
proportional error vectors. By calculating Γ · eθφ =

−φ̃ sin(θ) �= 0, we see that eθφ /∈ TΓS2, so the proportional
action has a different direction than the geodesic direction
defined by eΓ. The error vectors also have different mag-
nitude, but this can be changed using a different potential
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Fig. 1. Tracking scenario: Roll, pitch and angular velocity
error.

function (see Remark 3). In the numerical simulation study
of Section 6 we will normalize the magnitude of the error
vectors by redefining eΓ as e′Γ = ‖eθφ‖ · eΓ/‖eΓ‖, which
enables us to compare the controllers on equal grounds.

6. NUMERICAL EXAMPLE

This section presents some simulation results using a
model of the Aerosonde UAV (Beard and McLain, 2012)
with a simple PI controller for airspeed and a constant
reference of 35m/s. In the tracking example, (32) is used
for u‖, while (31) is used in the regulation case. The
angular velocity is initialized to zero in both cases, while
the controller parameters are set to kp = 9.5, Kd = 8I and
kβ = 10.

6.1 Tracking

Consider a tracking scenario, where a trajectory (Γd(t),
ωd(t), ω̇d(t)) has been generated using (15), φd(t) =
60 π

180 cos(0.1 · 2πt), θd(t) = 30 π
180 cos(0.08 · 2πt) and their

analytical first and second order derivatives. Initial re-
duced attitude is set using φ(0) = −70◦ and θ(0) = −30◦.
Fig. 1 shows that reduced attitude, visualized using roll
and pitch angles, converge to the desired trajectory from
large initial errors, while the angular velocity error goes
to zero. Angle of attack, sideslip and control surface de-
flection angles, which attain reasonable values throughout
the maneuver, are displayed in Fig. 2.

6.2 Regulation

Now consider a regulation case, where ωd = 0. The
constant reference is generated using φd = 60◦ and
θd = 30◦. Initial roll and yaw angles are set to zero,
while θ(0) is calculated using a trim routine. As explained
in Section 5, the magnitude of the error vector (23) is
scaled for comparison with the Euler angle controller.
Fig. 3 shows that the UAV performs a banked turn
maneuver with approximately constant turn rate, and
roll and pitch angles converge in both cases. For this
specific manuever, the geometric controller seem to have
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Fig. 2. Tracking scenario: Angle of attack (AoA), sideslip
angle (SSA) and control surface deflection angles.
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a slightly faster response in pitch. The difference can
be more clearly understood by looking at Fig. 5. The
response of the geometric controller is shown to make the
UAV take the shortest path between Γ and Γd, while the
controller based on Euler angles does not. Fig. 4 might
indicate that this makes the geometric controller spend
less control energy. However, the sideslip angle is smaller,
which also reduces the magnitude of the compensated drift
term f(ω, vr, δt). Further investigation should compare the
two controllers when f(ω, vr, δt) is unknown, and integral
action is implemented.

Appendix A. PROOF OF PROPOSITION 1

A.1 Equilibrium Points

Differentiating (23), applying the identity S(a)S(b) −
S(b)S(a) = S(S(a)b) and combining with (8), (25), (26)
gives the non-autonomous closed-loop error system

ėΓ = −S(ωd)eΓ − S(Γd)S(Γ)eω (A.1)

ėω = −kpeΓ −Π⊥
ΓKdeω −Π

‖
Γ(ωd × eω), (A.2)
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Fig. 4. Regulation scenario: Angle of attack, sideslip angle
and norm of control input.

Fig. 5. Regulation scenario: Trajectories on the two-sphere.
Solid: Geometric controller. Dashed: Controller based
on Euler angles.

which gives the equilibrium condition[
−S(ωd) −S(Γd)S(Γ)
−kpI3 −S2(Γ)KdS

2(Γ)− ΓΓ�S(ωd)

] [
eΓ
eω

]
=

[
0
0

]
,

(A.3)
where we have used the fact that −S2(Γ)eω = eω.
For (A.3) to be satisfied for all t, where the time-
dependence is implicit through Γd(t), ωd(t), we get eΓ =
eω = 0. Note that, when ωd = 0, the matrix above is rank-
deficient, with v = [0 w]� as a basis of the nullspace,
where w is parallel to Γ. But eω lies in TΓS2. Thus,
equilibrium solutions are given by (Γ, eω) = (±Γd, 0).

A.2 Exponential Tracking

Consider the Lyapunov-like function V : TS2 × S2 → R≥0

V1(Γ, eω,Γd) = kpΨ(Γ,Γd) +
1

2
e�ω eω. (A.4)

Differentiating along closed-loop trajetories of (A.2) gives
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a slightly faster response in pitch. The difference can
be more clearly understood by looking at Fig. 5. The
response of the geometric controller is shown to make the
UAV take the shortest path between Γ and Γd, while the
controller based on Euler angles does not. Fig. 4 might
indicate that this makes the geometric controller spend
less control energy. However, the sideslip angle is smaller,
which also reduces the magnitude of the compensated drift
term f(ω, vr, δt). Further investigation should compare the
two controllers when f(ω, vr, δt) is unknown, and integral
action is implemented.

Appendix A. PROOF OF PROPOSITION 1

A.1 Equilibrium Points

Differentiating (23), applying the identity S(a)S(b) −
S(b)S(a) = S(S(a)b) and combining with (8), (25), (26)
gives the non-autonomous closed-loop error system

ėΓ = −S(ωd)eΓ − S(Γd)S(Γ)eω (A.1)

ėω = −kpeΓ −Π⊥
ΓKdeω −Π

‖
Γ(ωd × eω), (A.2)
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which gives the equilibrium condition[
−S(ωd) −S(Γd)S(Γ)
−kpI3 −S2(Γ)KdS

2(Γ)− ΓΓ�S(ωd)

] [
eΓ
eω

]
=

[
0
0

]
,

(A.3)
where we have used the fact that −S2(Γ)eω = eω.
For (A.3) to be satisfied for all t, where the time-
dependence is implicit through Γd(t), ωd(t), we get eΓ =
eω = 0. Note that, when ωd = 0, the matrix above is rank-
deficient, with v = [0 w]� as a basis of the nullspace,
where w is parallel to Γ. But eω lies in TΓS2. Thus,
equilibrium solutions are given by (Γ, eω) = (±Γd, 0).

A.2 Exponential Tracking

Consider the Lyapunov-like function V : TS2 × S2 → R≥0

V1(Γ, eω,Γd) = kpΨ(Γ,Γd) +
1

2
e�ω eω. (A.4)

Differentiating along closed-loop trajetories of (A.2) gives

V̇1 = kpe
�
ω eΓ + e�ω

(
−kpeΓ −Π⊥

ΓKdeω −Π
‖
Γ(ωd × eω)

)

(A.5)

= −e�ωKdeω ≤ −λmin(Kd)‖eω‖2 ≤ 0, (A.6)

where the last term in (A.5) disappears since eω ∈ TΓS2,
and we have used the property e�ωΠ

⊥
Γ = (Π⊥

Γ eω)
� = eω.

For initial conditions satisfying (27), (28), we get V1(t0) ≤
kpΨ. Since V1(t) is non-increasing, we get:

kpΨ(Γ(t),Γd(t)) ≤ V1(t) ≤ V1(t0) ≤ kpΨ, (A.7)

which means that Ψ(Γ(t),Γd(t)) ≤Ψ. For the sublevel set

L2 =
{
Γ,Γd ∈ S2 : Ψ(Γ,Γd) ≤Ψ

}
, we can bound Ψ by

1

2
‖eΓ‖2 ≤ Ψ(Γ,Γd) ≤

1

2−Ψ
‖eΓ‖2. (A.8)

Now, consider the Lyapunov function candidate

V2(Γ, eω,Γd) = V1 + ce�ω eΓ. (A.9)

Using (A.8), we can derive upper and lower bounds

1

2
z�M1z ≤ V2 ≤ 1

2
z�M2z, (A.10)

where z = [‖eΓ‖ ‖eω‖]� and

M1 =

[
kp −c
−c 1

]
, M2 =




2kp

2−Ψ
c

c 1


 . (A.11)

Differentiating V2 along the closed-loop trajectories gives

V̇2 = −e�ωKdeω + cė�ω eΓ + ce�ω ėΓ. (A.12)

The cross terms can be bounded as follows:

‖e�ω ėΓ‖ ≤ ‖eω‖ ‖ωd‖ ‖eΓ‖+ ‖eω‖2 ≤ B‖eω‖‖eΓ‖+ ‖eω‖2
(A.13)

‖e�Γ ėω‖ ≤ −kp‖eΓ‖2 + λmax(Kd)‖eΓ‖‖eω‖, (A.14)

which leads to

V̇2 = −e�ωKdeω + cė�ω eΓ + ce�ω ėΓ ≤ −z�M3z, (A.15)

where the matrix M3 is given by

M3 =




ckp −c (B + λmax(Kd)))

2

−c (B + λmax(Kd)))

2
λmin(Kd)− c




(A.16)
If c is chosen to satisfy

c < min

{√
kp,

4kpλmin(Kd)

4kp + (B + λmax(Kd))
2

}
, (A.17)

then M1, M2 and M3 are all positive definite.

By following similar arguments as in the proof of Theo-
rem 4.10 in Khalil (2002), we get that V2(t) and ‖z(t)‖
converges exponentially to zero, which in turn means that
(Γ(t), eω(t)) converges exponentially to (Γd(t), 0), with the
region of exponential convergence given by (27) and (28).

A.3 Instability of Undesired Equilibrium

To show that the undesired equilibrium is unstable, define

W = 2kp−V2 ≥ −1

2
‖eω‖2− c‖eω‖‖eΓ‖+kp(2−Ψ(Γ,Γd)).

(A.18)
At the undesired equilibrium (−Γd, 0), we have W = 0,

and Ẇ = −V̇2 is positive definite from (A.15). Now

consider Γ arbitrarily close to −Γd. In this case, the term
2−Ψ(Γ,Γd) is positive, and we can choose ‖eω‖ sufficiently

small such that W > 0 and Ẇ > 0. By Theorem 4.3
in Khalil (2002), the equilibrium (−Γd, 0) is unstable.

A.4 Almost Global Regulation

When ωd = 0, (A.6) reduces to V̇1 = −(ω⊥)�Kdω
⊥ ≤ 0,

so the set given by

Ω � {(Γ, ω⊥) ∈ S2 × TΓS2 :
V1(Γ(t), ω

⊥(t)) ≤ V1(Γ(t0), ω
⊥(t0))}

(A.19)

is positively invariant. Since S2 is compact, all sublevel sets
of V1 are compact, which means that the set Ω is compact.
Let E be set of points in Ω where V̇1 = 0. In E, ω⊥ = 0,
which when inserted into (A.2) and using (23) leads to
Γ = ±Γd. By Theorem 4.4 in Khalil (2002) (LaSalle), every
solution starting in Ω then converges asymptotically to one
of the equilibrium solutions (±Γd, 0). Local asymptotic
stability of the desired equilibrium point, as well as the
instability of the undesired equilibirum follows from Sec-
tions A.2 and A.3. To establish almost global asymptotic
stability of the desired equilibrium we will study the local
structure of the undesired equilibrium.

Let a perturbation of the equilibrium solution (Γ(t), ω⊥(t))
= (Γe, 0) be given in terms of a perturbation parameter ε
as (Γε(t, ε), ω

⊥
ε (t, ε)) = (e−εS(η(t))Γe, εδω(t)), which satis-

fies η(t) · Γe = δω(t) · Γe = 0 for all t. Now, consider the
perturbed equations of motion (17), (A.2) given by

Γ̇ε(t, ε) = Γε(t, ε)× ω⊥
ε (t, ε) (A.20)

ω̇⊥
ε (t, ε) = −kpΓε(t, ε)× Γd −Kdω

⊥
ε (t, ε) (A.21)

+ Γε(t, ε)Γ
�
ε (t, ε)Kdω

⊥
ε (t, ε).

Differentiating both sides with respect to ε and inserting
ε = 0 gives the linearized set of equations ẋ = A(Γe)x,
where x = [η δω]�. For Γe = −Γd, we get

A(−Γd) � A =

[
0 I3

−kpS
2(Γd) −S2(Γd)KdS

2(Γd)

]
,

(A.22)
where the relation −S2(Γd)δω = δω has been used to add
the last factor in the lower right element of the matrix.

The state space has dimension six, but in reality, the
system evolves on a four-dimensional subspace according
to the constraints

Cx =

[
Γ�
e 0
0 Γ�

e

] [
η
δω

]
=

[
0
0

]
, (A.23)

which is respected by the linearized dynamics, in the sense
that CA = 0.

If decomposing eigenvectors vi of A into vi = [v�i1 v�i2]
�,

it follows from the equation Av = λv that eigenvalue-
eigenvector pairs of A need to satisfy

vi2 = λivi1 (A.24)

−kpS
2(Γd)vi1 − S2(Γd)KdS

2(Γd)vi2 = λivi2. (A.25)

Inserting (A.24) into (A.25) and pre-multiplying with the
complex conjugate transpose v̄�i1 of vi1 gives

aλ2 + bλ− c = 0, (A.26)
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where

a = v̄�i1vi1 > 0 (A.27)

b = v̄�i1[−S2(Γd)]Kd[−S2(Γd)]vi1 ≥ 0 (A.28)

c = kpv̄
�
i1[−S2(Γd)]vi1 ≥ 0, (A.29)

since the matrix −S2(Γd) is positive semi-definite. The
coefficients b and c are only (simultaneously) zero when
−S2(Γd)vi1 = 0, i.e. when vi1 has the form vi1 = z1Γd for
some z1 ∈ C. In this case, (A.26) reduces to aλ2 = 0, so
λ1 = 0 is an eigenvalue of A with algebraic multiplicity
two, corresponding to the eigenvector v1 = [z1Γ

�
d 0�]�.

However, since A has rank five, the geometric multiplicity
of λ1 is one. To get a full Jordan basis, we choose the
generalized eigenvector v2 = [z2Γ

�
d z1Γ

�
d ]

�, which satisfies
(A− λ1I)v2 = Av2 = v1, for z2 ∈ C.

The solutions of the linearized system defined by (A.22)
can be written in terms of its Jordan form as

x(t) = c1e
λ1tv1 + c2e

λ1t(v1t+ v2) +

6∑
i=3

cihi(t), (A.30)

where the functions hi(t) depend on the vectors vj , j ∈
{1, . . . , 6}, the eigenvalues λk, k = {2, 3, 4, 5} and their
multiplicities. The constants ci depend on the intial con-
dition x(0) =

∑6
i=1 civi, which satisifies Cx(0) = 0. Since

the vectors v1, v2 do not satisfy the constraints (A.23),
c1 = c2 = 0, so the solution x(t) does not depend on λ1.

Since A ∈ R6×6 is a rank five matrix, we know that
no other eigenvectors are parallel to v1, so for all re-
maining eigenvector pairs, a, b, c > 0. Since (A.26) has
two solutions, we know from the quadratic formula that
from the remaining eigenvalues λk, k = {2, 3, 4, 5}, two
are positive, and two are negative. This confirms that
the undesired equilibrium point (Γ, ω⊥) = (−Γd, 0) is
unstable. Moreover, the stable eigenspace corresponding to
the two negative eigenvalues is the tangent space to a two-
dimensional stable invariant manifold M, where all trajec-
tories starting in M converge to the undesired equilibrium
point (Guckenheimer and Holmes, 1983). Since the zero
eigenvalue has no influence on the solution, all trajectories
converging to the undesired equilibrium lie in M. We
conclude that all trajectories except those starting in M
converge to the desired equilibrium. Since the dimension
of M is two, it has measure zero in the state space TS2,
and we say that the domain of attraction of the desired
equilibrium point is almost global.
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