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Abstract: This paper explores transverse coordinates for the purpose of orbitally stabilizing
periodic motions of nonlinear control-affine dynamical systems. It is shown that the dynamics
of any (minimal or excessive) set of transverse coordinates, which are defined in terms of a
particular parameterization of the motion and a strictly state-dependent projection operator
recovering the parameterizing variable, admits a (transverse) linearization along the target
motion, with explicit expressions stated. Special focus is then placed on a generic excessive set of
orthogonal coordinates, revealing a certain limitation of the “excessive” transverse linearization
for the purpose of control design. To overcome this limitation, a linear comparison system is
introduced and conditions are stated for when the asymptotic stability of its origin corresponds
to the asymptotic stability of the origin of linearized transverse dynamics. This allows for the
construction of feedback controllers utilizing this comparison system which, when implemented
on the dynamical system, renders the desired motion asymptotically stable in the orbital sense.
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1. INTRODUCTION

We consider the task of orbitally stabilizing periodic solu-
tions of nonlinear dynamical systems, defined by

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm. (1)

Here the notion of asymptotic orbital (Poincaré) stability
simply means the asymptotic convergence to the periodic
orbit (i.e. the set of all the states along the solution) and
not to a specific point-in-time along a trajectory (see e.g.
Leonov (2008)). In this regard, we recall the following.

Theorem 1. (Andronov–Vitt). A nontrivial, T -periodic so-
lution x∗(t) = x∗(t + T ) of a smooth dynamical system
ẋ = F (x) on Rn is asymptotically orbitally stable if the
first approximation, δẋ = ∂F

∂x (x∗(t))δx, has one simple
zero characteristic exponent and the remaining (n − 1)
characteristic exponents have strictly negative real parts.

It thus follows that the stability of a periodic orbit is
equivalent to the stability of an (n − 1)-dimensional sub-
system of the first approximation along the nominal solu-
tion. At the same time, the Andronov–Vitt theorem also
highlights a limitation of the first approximation for the
purpose of feedback design for (1) due to its non-vanishing
(zero characteristic (Floquet) exponent) solution. It would
therefore clearly be beneficial to instead just target the
(n− 1)-dimensional subsystem directly, which it turns out
is equivalent to only considering the dynamics transverse
to the orbit. Indeed, it is known that a periodic solution is
asymptotically stable in the orbital sense if (and only if)
the dynamics transverse to the flow along the nominal or-
bit are asymptotically stable (Hauser and Chung (1994)).
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The design of orbitally stabilizing feedback controllers can
therefore be boiled down to two main steps: 1) Find a
(minimal) set of (n−1) independent transverse coordinates
which vanish on the orbit and are non-zero away from
it; and then 2) Design a controller (by some means)
which stabilizes the origin of these coordinates. Here
the latter step is commonly achieved by linearization of
the dynamics of these coordinates along the solution, a
so-called transverse linearization, allowing for feedback
design utilizing well-known linear control techniques.

While there exists constructive procedures for finding
such a minimal set of coordinates for certain classes of
systems (Shiriaev et al., 2010; Banaszuk and Hauser,
1995)), finding (n − 1) independent coordinates can be
challenging in the general case. The main contribution
of this paper is therefore to show that one instead can
utilize an excessive set of transverse coordinates. In fact,
we show that any such set (minimal or excessive) will do
(see Proposition 5). In this regard, we also provide explicit
expressions for the linearized transverse dynamics of any
(minimal or excessive) set of transverse coordinates (see
Theorem 6 in Sec. 3).

In order to provide some further insight into- and highlight
a limitation of the transverse linearization for an excessive
set of coordinates (see Sec. 4.1) with the limited space
available, we subsequently focus mainly on a generic set
of easy-to-compute orthogonal coordinates introduced in
Sec. 4. In this regard, this paper’s second major contri-
bution is the introduction of a linear comparison system
for these coordinates, which can be used for orbitally
stabilizing feedback design for systems of the form (1)
(see Proposition 11 in Sec. 4.2). In order to illustrate the
proposed scheme, we consider a constructive example in
Sec. 5, before, lastly, we state some concluding remarks.

On Excessive Transverse Coordinates for
Orbital Stabilization of Periodic Motions �

Christian Fredrik Sætre Anton Shiriaev

Department of Engineering Cybernetics, NTNU, Trondheim, Norway.
{christian.f.satre,anton.shiriaev}@ ntnu.no

Abstract: This paper explores transverse coordinates for the purpose of orbitally stabilizing
periodic motions of nonlinear control-affine dynamical systems. It is shown that the dynamics
of any (minimal or excessive) set of transverse coordinates, which are defined in terms of a
particular parameterization of the motion and a strictly state-dependent projection operator
recovering the parameterizing variable, admits a (transverse) linearization along the target
motion, with explicit expressions stated. Special focus is then placed on a generic excessive set of
orthogonal coordinates, revealing a certain limitation of the “excessive” transverse linearization
for the purpose of control design. To overcome this limitation, a linear comparison system is
introduced and conditions are stated for when the asymptotic stability of its origin corresponds
to the asymptotic stability of the origin of linearized transverse dynamics. This allows for the
construction of feedback controllers utilizing this comparison system which, when implemented
on the dynamical system, renders the desired motion asymptotically stable in the orbital sense.

Keywords: Orbital stabilization, transverse coordinates, transverse linearization.

1. INTRODUCTION

We consider the task of orbitally stabilizing periodic solu-
tions of nonlinear dynamical systems, defined by
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Fig. 1. Illustration of the transverse surface formed by Λ(·).
2. PRELIMINARIES AND KEY IDEA

Consider the control-affine system (1) with f : Rn → Rn

continuously differentiable and g(x) = [g1(x), . . . , gm(x)]
with (locally) Lipschitz continuous vector fields gi : Rn →
Rn. Let x∗(t) = x∗(t+T ) denote a bounded, T -periodic so-
lution of the undriven system (u ≡ 0) satisfying ‖ẋ∗(t)‖ >
0 for all t ≥ 0, and let

η∗ := {x ∈ Rn : x = x∗(t), t ∈ [0, T )}
denote the corresponding closed orbit. Suppose this orbit
admits a regular C2-parameterization, defined by

xs : S → η∗, s �→ xs(s), xs(s+ sT ) = xs(s), (2)

such that the parameterizing variable, s ∈ S := [s0, s0 +
sT ), is strictly monotonically increasing along η∗ and
‖ d
dsxs(s)‖ = ‖x′

s(s)‖ > 0 for all s ∈ S. Further suppose
that a projection operator, x �→ p(x) ∈ S, in accordance
with the following definition is known for this curve.

Definition 2. A mapping p : Rn → S is said to be a
projection operator onto the orbit η∗ if it is twice contin-
uously differentiable within some tubular neighbourhood
X ⊂ Rn of η∗ and it is a left inverse of the curve (2), that
is s = p(xs(s)) for all s ∈ S. �

The idea behind such a projection operator is simply
that, within some tubular neighbourhood, it allows one to
project the current states down upon the nominal orbit
and consequently define some measure of the distance
to it. For instance, consider the set Λ(ŝ) := {x ∈ X :
p(x) = ŝ}, that is, the set of states in a neighbourhood
of η∗ mapped to some particular ŝ ∈ S. As illustrated
in Figure 1, it traces out a hypersurface, whose geometry
is clearly dependent on the choice of p(·). This surface
(manifold) of dimension (n− 1) is analogous to a moving
Poincaré section (Leonov, 2006) which moves along with
the trajectory and is locally transverse to its flow. It
follows that if one can define a set of coordinates evolving
upon- and spanning these sections, and then enforce, by
some control action, strict contraction of these coordinates
towards their origin (the orbit), then the desired trajectory
must be asymptotically stable in the orbital sense.

Note that this concept is in many ways both similar to-
and inspired by Zhukovski stability (see, e.g., Leonov et al.
(1995); Leonov (2008)). Roughly speaking, this notion of
stability, which implies orbital stability (Leonov, 2008),
utilizes parameterizations to “align” perturbed trajecto-
ries in space while not considering their divergence in time.
Our approach, however, differs by the fact that, whereas
Zhukovski considered reparameterizations of perturbed
trajectories in terms of a “rescaling of time”, we consider a
completely state-dependent projection operator as defined
in Def. 2. This has, for the purpose of control design, the
benefit that it allows one to define the aforementioned

state-dependent distance measure, further allowing for the
design of completely state-dependent orbitally stabilizing
feedback controllers. Such a feedback, if found, then results
in an autonomous closed-loop system which admits the
desired solution as an attractive limit cycle.

Notation: ‖ · ‖ denotes the Euclidean norm. For a twice-
continuously differentiable (C2-) function x �→ h(x), we
denote byDh(·) = [ ∂h

∂x1
(·), . . . , ∂h

∂xn
(·)] its Jacobian matrix,

while if h : Rn → R, we denote by D2h(·) its symmetric,
n × n Hessian matrix. If hs(s) := h(xs(s)), then h′

s(s)
denotes the derivative d

dshs(s).

3. EQUIVALENCE BETWEEN COORDINATES AND
THE TRANSVERSE LINEARIZATION

In regards to the aforementioned distance measure, con-
sider

z⊥ := x− xs(p(x)). (3)

In some sense, they are the simplest measure of such a
distance, but their definition is also clearly dependent on
the choice of the projection operator p(·). In particular,
they must evolve upon some hypersurface such as those
formed by the set Λ(·). But z⊥ ∈ Rn, and so they are an
excessive set of coordinates upon this surface. In fact, they
are not a valid change of coordinates either, as the map
x �→ z⊥ is evidently not a diffeomorphism.

To see this more clearly, consider the Jacobian matrix
Dz⊥(x). Taking the time-derivative of (3), we obtain

ż⊥ = Dz⊥(x)ẋ = Dz⊥(x)f(x) +Dz⊥(x)g(x)u. (4)

It follows that, sufficiently close the orbit, a variation in
the states, δx, relates to a variation in the coordinates (3)
through Ω(s) := Dz⊥(xs(s)):

δz⊥ = Ω(s)δx. (5)

Similarly, by defining Γ(s) := Dp(xs(s)), we find that

δs = Γ(s)δx.

Thus for (3) to be a valid (local) change of coordinates,
the matrix function Ω(s) must necessarily be everywhere
invertible. However, as is clear by the following statement,
which is just a straightforward consequence of the relation

Γ(s)x′
s(s) ≡ 1 ∀s ∈ S, (6)

obtained from s = p(xs(s)) (see Def. 2), this can never be
the case for non-constant solutions of the form (2).

Lemma 3. The matrix function

Ω(s) := Dz⊥(xs(s)) = In − x′
s(s)Γ(s) (7)

is a projection matrix (i.e. Ω2(s) = Ω(s)), its rank is always
(n− 1), while Γ(s) := Dp(xs(s)) and x′

s(s) :=
d
dsxs(s) are

its left- and right annihilators, respectively. � 1

From Lemma 3 it is clear that we have Ω(s)δz⊥ =
Ω2(s)δx = δz⊥, and therefore the relation Γ(s)δz⊥ =
Γ(s)Ω(s)δz⊥ ≡ 0 must always hold. We can thus infer that,
sufficiently close to the nominal orbit, the coordinates (3)
are orthogonal to the gradient of the projection operator
p(·) and hence locally transverse to the nominal flow of
the orbit. Indeed, it is important to note that the relation
(6) does not imply that ΓT(s) is necessarily in the span of

1 Proofs of all the statements are given in the extended version of
this paper which is available on the arXiv: arXiv:1911.06232.
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x′
s(s). Rather, if θ(s) ∈ (−π

2 ,
π
2 ) denotes the angle between

ΓT(s) and x′
s(s) in their common plane, then, as a direct

consequence of the inner product Γx′
s = ‖Γ‖‖x′

s‖ cos(θ),
there exists some continuously differentiable unit vector

function qT⊥(s) : S → Rn within kerx′
s
T
(s), such that

Γ(s) =
x′
s
T
(s)

‖x′
s(s)‖2

+ tan(θ(s))
q⊥(s)

‖x′
s(s)‖

. (8)

Consequently, the coordinates (3) are in general only lo-
cally transverse to the flow of the orbit and not necessarily
orthogonal to it. Moreover, they must be an excessive set of
transverse coordinates as rank Ω(s) = n−1. Nevertheless,
we will show shortly that the asymptotic stability of their
origin in fact implies the asymptotic stability of any other
valid set of transverse coordinates, and, therefore, also the
asymptotic stability of the nominal orbit.

Let us start by giving a formal definition of what we mean
when we refer to a “valid set of transverse coordinates”.
In this regard, consider a C2-function y⊥ : S × Rn → RN ,
together with a projection operator p(·). Note that we will
distinguish between the partial- and total derivative of y⊥
with respect to x as follows:

Dy⊥(s, x) =
∂y⊥
∂x

(s, x) +
∂y⊥
∂s

(s, x)Dp(x).

Definition 4. A C2-function y⊥ : S ×X → RN , N ≥ n−1,
is said to be a valid set of transverse coordinates for the
curve (2) if it vanishes on it, i.e. y⊥(s, xs(s)) ≡ 0, and for

all s ∈ S it satisfies rank ∂y⊥
∂x (s, xs(s)) = min(N,n) and

rank Dy⊥(s, xs(s)) = n− 1. �

For the case N = n − 1, we will refer to y⊥ as a minimal
set of transverse coordinates by the fact that the mapping
(y⊥, s) �→ x is then a diffeomorphism in some non-zero
neighbourhood of η∗. One the other hand, whenever N ≥
n, we will refer to them as excessive coordinates.

Suppose y⊥ is a valid set of coordinates by Def. 4. Differ-
entiating, we find that their dynamics are described by

ẏ⊥ = Dy⊥(s, x) [f(x) + g(x)u] . (9)

Our task will now be to linearize the dynamics of y⊥
along the orbit η∗ in order to obtain a linear (periodic)
system, the so-called linearized transverse dynamics, which
we then can use to design orbitally stabilizing feedback.
Towards this end, we observe that since y⊥(s, xs(s)) ≡ 0,
we must have ẏ⊥(s, xs(s)) ≡ 0. Therefore, by defining

Π(s) :=
∂y⊥
∂x

(s, xs(s)),

it is implied that the following relation must hold:

∂y⊥
∂s

(s, xs(s)) = −Π(s)x′
s(s). (10)

Thus, sufficiently close to the orbit, it is true that

δy⊥ = Dy⊥(s, xs(s))δx = Π(s)Ω(s)δx,

and hence, by (5), we obtain

δy⊥ = Π(s)δz⊥. (11)

This naturally leads us to the following unsurprising state-
ment, which simply shows that there is a certain stability
equality between all sets of transverse coordinates.

Proposition 5. The origin of a valid set of transverse
coordinates y⊥ is asymptotically stable if and only if the
origin of the coordinates z⊥ is asymptotically stable. �

Now, let Ψ(s) := Dy⊥(s, xs(s)) and consider the differen-
tiable matrix function Π† : S → Rn×N , defined by

Π†(s) :=





Ω(s)ΨT(s)[Ψ(s)ΨT(s)]
−1

if N = n− 1,

Π−1(s) if N = n,

[ΠT(s)Π(s)]
−1

ΠT(s) if N > n.

(12)

This allows us to state the main result of this section.

Theorem 6. Let y⊥ ∈ RN be a valid set of transverse
coordinates together with a projection operator p(·). Then
the linearization of their dynamics (9) evaluated along the
solution (2) is described by the constrained (differential-
algebraic) linear-periodic system

d

dt
δy⊥ =

[
Π(s)A⊥(s) + Ξ(s)

]
Π†(s)δy⊥ +Π(s)B⊥(s)u

0 = Γ(s)Π†(s)δy⊥ (13)

where

A⊥(s) := Ω(s)A(s)− x′
s(s)x

′
s
T
(s)D2p(xs(s))ρ(s)

Ξ(s) := ρ(s)
∂

∂x

[
∂y⊥
∂x

(s, x)x′
s(s) +

∂y⊥
∂s

(s, x)

] ∣∣∣∣∣
x=xs(s)

B⊥(s) := Ω(s)B(s)

given A(s) := Df(xs(s)), B(s) := g(xs(s)), ρ(s) :=
Γ(s)f(xs(s)) and with Π†(·) as defined in (12).

Remark 7. As xs : S → η∗ is a regular parameterization,
and thus ρ(s) := Γ(s)f(xs(s)) = ṡ∗(s) > 0, one can utilize
the fact that d

dsδy⊥ = 1
ρ(s)

d
dtδy⊥ in order to solve (13). �

While there exists several known explicit expressions for
transverse linearizations in the literature (see e.g. (Hauser
and Chung, 1994, Proposition 1.4), (Mohammadi et al.,
2018, Theorem 12), (Shiriaev et al., 2010, Theorem 2),
(Leonov et al., 1995, Equation (4.23))), they are all only
valid for a specific class of coordinates or for specific
choices of the projection operator. Theorem 6, on the
other hand, provides explicit expressions valid for any
set of transverse coordinates, and just as importantly,
for any choice of the projection operator. Also note that,
while Theorem 12 in Mohammadi et al. (2018) provides
equivalent expressions for the case when N = n − 1,
the proof of their statement is only valid whenever θ(s),
as defined in (8), is exactly zero for all s ∈ S. This is
due to their use of the pseudo-inverse of Ψ as Π†, i.e.

Π†(s) = ΨT(s)[Ψ(s)ΨT(s)]
−1

(cf. dH†
ϕ(ϑ) therein). While

that requires Ω(s) = ΩT(s) for Γ(s)Π†(s)δy⊥ = 0 to hold,
and thus also the relation δx = Π†(s)δy⊥+x′

s(s)δs between
the differentials, it is here satisfied directly by the slight
modification of Π† as given by (12).

In order to provide further insight into the transverse
linearization of an excessive set of coordinates with the
limited space remaining, we will in the sequel focus on a
specific set of orthogonal coordinates.

4. A GENERIC SET OF EXCESSIVE ORTHOGONAL
COORDINATES

Consider again the excessive coordinates previously de-
fined in (3), namely z⊥ := x− xs(s). Using the first-order
Taylor expansions ofDp(·) and f(·) about η∗, one can show
that the transverse dynamics (4) then can be rewritten as

ż⊥ = A⊥(s)z⊥ +Ω(x)g(x)u+∆(s, z⊥), (14)
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we must have ẏ⊥(s, xs(s)) ≡ 0. Therefore, by defining

Π(s) :=
∂y⊥
∂x

(s, xs(s)),

it is implied that the following relation must hold:

∂y⊥
∂s

(s, xs(s)) = −Π(s)x′
s(s). (10)

Thus, sufficiently close to the orbit, it is true that

δy⊥ = Dy⊥(s, xs(s))δx = Π(s)Ω(s)δx,

and hence, by (5), we obtain

δy⊥ = Π(s)δz⊥. (11)

This naturally leads us to the following unsurprising state-
ment, which simply shows that there is a certain stability
equality between all sets of transverse coordinates.

Proposition 5. The origin of a valid set of transverse
coordinates y⊥ is asymptotically stable if and only if the
origin of the coordinates z⊥ is asymptotically stable. �

Now, let Ψ(s) := Dy⊥(s, xs(s)) and consider the differen-
tiable matrix function Π† : S → Rn×N , defined by

Π†(s) :=





Ω(s)ΨT(s)[Ψ(s)ΨT(s)]
−1

if N = n− 1,

Π−1(s) if N = n,

[ΠT(s)Π(s)]
−1

ΠT(s) if N > n.

(12)

This allows us to state the main result of this section.

Theorem 6. Let y⊥ ∈ RN be a valid set of transverse
coordinates together with a projection operator p(·). Then
the linearization of their dynamics (9) evaluated along the
solution (2) is described by the constrained (differential-
algebraic) linear-periodic system

d

dt
δy⊥ =

[
Π(s)A⊥(s) + Ξ(s)

]
Π†(s)δy⊥ +Π(s)B⊥(s)u

0 = Γ(s)Π†(s)δy⊥ (13)

where

A⊥(s) := Ω(s)A(s)− x′
s(s)x

′
s
T
(s)D2p(xs(s))ρ(s)

Ξ(s) := ρ(s)
∂

∂x

[
∂y⊥
∂x

(s, x)x′
s(s) +

∂y⊥
∂s

(s, x)

] ∣∣∣∣∣
x=xs(s)

B⊥(s) := Ω(s)B(s)

given A(s) := Df(xs(s)), B(s) := g(xs(s)), ρ(s) :=
Γ(s)f(xs(s)) and with Π†(·) as defined in (12).

Remark 7. As xs : S → η∗ is a regular parameterization,
and thus ρ(s) := Γ(s)f(xs(s)) = ṡ∗(s) > 0, one can utilize
the fact that d

dsδy⊥ = 1
ρ(s)

d
dtδy⊥ in order to solve (13). �

While there exists several known explicit expressions for
transverse linearizations in the literature (see e.g. (Hauser
and Chung, 1994, Proposition 1.4), (Mohammadi et al.,
2018, Theorem 12), (Shiriaev et al., 2010, Theorem 2),
(Leonov et al., 1995, Equation (4.23))), they are all only
valid for a specific class of coordinates or for specific
choices of the projection operator. Theorem 6, on the
other hand, provides explicit expressions valid for any
set of transverse coordinates, and just as importantly,
for any choice of the projection operator. Also note that,
while Theorem 12 in Mohammadi et al. (2018) provides
equivalent expressions for the case when N = n − 1,
the proof of their statement is only valid whenever θ(s),
as defined in (8), is exactly zero for all s ∈ S. This is
due to their use of the pseudo-inverse of Ψ as Π†, i.e.

Π†(s) = ΨT(s)[Ψ(s)ΨT(s)]
−1

(cf. dH†
ϕ(ϑ) therein). While

that requires Ω(s) = ΩT(s) for Γ(s)Π†(s)δy⊥ = 0 to hold,
and thus also the relation δx = Π†(s)δy⊥+x′

s(s)δs between
the differentials, it is here satisfied directly by the slight
modification of Π† as given by (12).

In order to provide further insight into the transverse
linearization of an excessive set of coordinates with the
limited space remaining, we will in the sequel focus on a
specific set of orthogonal coordinates.

4. A GENERIC SET OF EXCESSIVE ORTHOGONAL
COORDINATES

Consider again the excessive coordinates previously de-
fined in (3), namely z⊥ := x− xs(s). Using the first-order
Taylor expansions ofDp(·) and f(·) about η∗, one can show
that the transverse dynamics (4) then can be rewritten as

ż⊥ = A⊥(s)z⊥ +Ω(x)g(x)u+∆(s, z⊥), (14)

where ‖∆(·, z⊥)‖ = O(‖z⊥‖2). The choice of notation in
Theorem 6 thus becomes clear by its following corollary.

Corollary 8. The constrained linear-periodic system
d

dt
δz⊥ = A⊥(s)δz⊥ +B⊥(s)u, Γ(s)δz⊥ = 0, (15)

corresponds to the linearization along (2) of the dynamics
of the excessive set of coordinates defined in (3). �

As previously stated, the coordinates z⊥ will depend upon
the choice of p(·). While there in general will exist many
valid candidates for this projection operator, all with
different properties and resulting in different transverse
hypersurfaces (moving Poincaré sections) on which the
coordinates z⊥ evolve, we will from now on consider those
satisfying the orthogonality condition:

x′
s
T
(s)z⊥ ≡ 0. (16)

Note that this is locally equivalent to s = argmins∈S ‖x−
xs(s)‖2, and so the Jacobian of this p(·) is given by

Dp(x) =
x′
s
T
(s)

‖x′
s(s)‖2 − x′′

s
T(s) (x− xs(s))

, (17)

while, moreover, it can be shown that ∆(·) then satisfies

x′
s
T
(s)∆(s, z⊥) ≡ 0 (Leonov, 2006). In addition, using

(16) and that D2p(xs(s))ρ(s)z⊥ =
x′
s(s)x

′
s
T(s)

‖x′
s(s)‖4 AT(s)z⊥, the

matrix function A⊥(·) can be simplified to

A⊥(s) := Ω(s)A(s)− x′
s(s)x

′
s
T
(s)

‖x′
s(s)‖2

AT(s). (18)

Thus the linearized transverse dynamics are given accord-

ing to Corollary 8 with (18) and Γ(s) = x′
s
T
(s)/‖x′

s(s)‖2.
Note that the coordinates (3) together with the orthogo-
nality condition (16) have been considered several times
times before in relation to the study of the (in-)stability of
solutions of autonomous dynamical systems (see e.g. Borg
(1960); Hartman and Olech (1962); Zubov (1999); Leonov
(2006); Hauser and Chung (1994)). However, they have
not, to our best knowledge, been used together for the pur-
pose of designing orbitally stabilizing feedback controllers
for nonlinear systems of the form (1). For this purpose,

however, the relation x′
s
T
(s)δz⊥ ≡ 0 is of particular inter-

est. This is because, unlike a minimal set of coordinates
in which the transversality condition Γ(s)Π†(s)δy⊥ = 0 in
(13) is satisfied directly through Π†, it must be satisfied
through the coordinates themselves for an excessive set.

4.1 Limitations of the excessive transverse linearization

Consider the linear system

ẏ = A⊥(s)y +B⊥(s)u (19)

corresponding to (15), with A⊥ as in (18) but without the

transversality condition x′
s
T
(s)y ≡ 0. It can be shown that

the undriven system (u ≡ 0) then has the solution

y‖ =
x′
s(s)

‖x′
s(s)‖2ρ(s)

=
x′
s(s)

x′
s
T(s)fs(s)

, (20)

whose characteristic exponent 2 evidently is exactly zero.
Moreover, an additional (n − 1) linearly independent so-
lutions of the undriven system can be found, which we
2 The number (or the symbols, ±∞), given by the formula
lim supt→+∞

1
t
ln ‖x(t)‖ is called the characteristic exponent of the

continuous function x : [0,∞) → Rn (Leonov, 2006).

denote y1⊥(·), . . . , y
n−1
⊥ (·), and which form a basis of the

kernel of Γ(s) for a given s ∈ S (it can be shown that
d
dt (y

T
‖ y

i
⊥) ≡ 0), and hence satisfy condition (16). Using

these solutions, let Φ⊥(s) = [ϕ1
⊥(s), . . . , ϕ

n−1
⊥ (s)] denote a

smooth normalized basis of the kernel of Γ(s), with ϕi
⊥(·)

defined by ϕi
⊥(s(t)) = yi⊥(t)/‖yi⊥(t)‖, and let Φ†

⊥ denote

its pseudo-inverse, that is Φ†
⊥ := (ΦT

⊥Φ⊥)
−1

ΦT
⊥.

Consider now the first approximation (variational) system
of (1) along the curve (2):

d

dt
δx = A(s)δx+B(s)u. (21)

The following statement can be seen as analogous to the
Andronov-Vitt theorem for the system (19).

Proposition 9. The system (19) has (n− 1) linearly inde-
pendent solutions of the form Φ⊥(s(t))ξ⊥(t) with ξ⊥ ∈
Rn−1 a solution to the (n− 1)-dimensional system

ξ̇⊥ = ΦT
⊥(s)A(s)Φ⊥(s)ξ⊥ +Φ†

⊥(s)B(s)(s)u. (22)

In addition, it has a solution with a non-vanishing part in
the direction of (20) regardless of the control input u. �

An important consequence of Proposition 9 is the fact that
the origin of the system (19) can never be asymptotically
stabilized. That is to say, even if one can find some feed-
back asymptotically stabilizing the origin of the system
(15), and consequently the periodic orbit, the system (19)
will regardless have a non-vanishing solution whose char-
acteristic exponent is zero. Thus the usefulness of this
system in terms of control design is limited due to its
non-stabilizable subspace. On the other hand, we can infer

that if the pair (ΦT
⊥AΦ⊥,Φ

†
⊥BΦ⊥) is stabilizable, then we

can stabilize the orbit utilizing some controller designed
to stabilize the subsystem (22). The obvious alternative is
therefore to try to directly stabilize this subsystem. Yet,
this requires knowledge of the basis Φ⊥(·).
Clearly it would instead be beneficial to find some way of
stabilizing the subsystem (22) without the need to form
Φ⊥(·). In this regard, we will introduce next a linear
comparison system of (19), for which, under conditions
we state in Proposition 11, the asymptotic stability of
its origin implies asymptotic stability of the origin of the
subsystem (22) and consequently the asymptotic orbital
stability of the nominal solution.

4.2 The existence of a comparison system

Suppose we left-multiply both sides of (19) by the matrix
function Ω(s). Utilizing its properties (see Lemma 3), one
can then rewrite the system on several different equivalent
forms, with the following among them:

Ω(s) [ẏ − Ω(s) (A(s)y +B(s)u)] = 0. (23)

Consider, therefore, the linear-periodic system

ẇ = Ω(s)A(s)w +Ω(s)B(s)v, w ∈ Rn, v ∈ Rm, (24)

corresponding to the terms inside the brackets of the
descriptor system (23) being set to zero. Roughly speaking,
we will show that if there exists a feedback of the form
v = K(s)w which “sufficiently” stabilizes the origin of
this comparison system, then the controller u = K(s)δz⊥
stabilizes the origin of the linearized transverse dynamics
(15) as well. Thus this comparison system can allow
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one to find a stabilizing feedback for (15) without the
need to circumvent the uncontrollable subspace always
present in (19) and without having to compute the Hessian
D2p(·). Indeed, there are several connections between
these systems, such as the following spectrum condition.

Lemma 10. Consider the system (1) with the feedback
u = K(p(x))[x − xs(p(x))] for some Lipschitz continuous
matrix function K : S → Rm×n. Then the (minimal) sum
of the characteristic exponents of the systems (19), (21)
and (24) are the same. �

Suppose, therefore, that a (Lipschitz continuous) matrix
function K : S → Rm×n exists such that the largest
characteristic exponents, λM , of the closed-loop system

ẇ = Ω(s) (A(s) +B(s)K(s))w (25)

satisfies λM < 0; i.e. we assume (24) is stabilizable. Let
W (t) denote the state transition (Cauchy) matrix for this
system. Then, by a small modifications of theorems 2 and 4
in Leonov and Kuznetsov (2007), there exists some number
C > 0 and a scalar functions ζ : [0,∞) → R satisfying

lim
t→∞

1

t

∫ t

τ

ζ(σ)dσ = λM ∀τ ≥ 0, (26)

such that the following inequality

‖W (t)W−1(τ)‖ ≤ C exp

(∫ t

τ

ζ(σ)dσ

)
∀t ≥ τ ≥ 0 (27)

is satisfied. The main result of this section follows.

Proposition 11. Let p(·) be taken as to satisfy (16). Sup-
pose that ‖A(s)‖ ≤ α for all s ∈ S and that the inequality

λM < −Cα ≤ 0 (28)

holds. Then the controller u = K(s)z⊥ with s = p(x)
asymptotically stabilizes the origin of the system (14)
and consequently renders the periodic solution of the
dynamical system (1) asymptotically orbitally stable.

Remark 12. The value of the above statement is not in
the condition (28) per se. Rather, its importance is simply
due to the fact that it shows the possibility of orbitally
stabilizing the solution by designing a stabilizing feedback
for the comparison system (24). Indeed, the condition (28)
is by no means unique, and similar conditions can be stated
using, for example, Lyapunov’s second method. �

It is also of practical importance to note that if a controller
v = K(s)w stabilizing the origin of the comparison system
(24) has been designed, then one does not need to check
the conditions of the theorem. That is to say, one can
instead utilize the Andronov–Vitt theorem on the first
approximation system δẋ = (A(s) + B(s)K(s)Ω(s))δx to
validate that it will also be a stabilizing controller for (15);
or, equivalently, check that the system (19) has (n − 1)
characteristic multipliers within the unit circle. As yet
another alternative, one can utilize the following.

Lemma 13. If the system (24) under the controller v =
K(s)Ω(s)w has one simple zero characteristic exponent
and the remaining (n − 1) characteristic exponents have
strictly negative real parts, then the controller u = K(s)z⊥
asymptotically stabilizes the origin of the system (14). �

This again shows that one does not need to compute
the Hessian of p(·) in order to validate the stability of
the orbit. Moreover, this has an additional advantage
compared to the Andronov–Vitt theorem arising whenever

the dynamical system has a periodic solution only in the
presence of some non-zero nominal control input υ(s(t)) ≡
u∗(t), i.e.

d
dtxs(s) = f(xs(s)) + g(xs(s))υ(s). As then the

matrix A(·) of the first approximation is given by

A(s) =

[
∂f

∂x
+ gυ′(s)Γ(s) +

m∑
i=1

∂gi
∂x

υi(s)

]∣∣∣∣∣
x=xs(s)

,

one needs to compute υ′(s) in order to utilize the
Andronov-Vitt Theorem, whereas it can be omitted in the
transverse linearization, and consequently for the compar-
ison system (24), due to the condition Γ(s)δz ≡ 0.

We illustrate the above scheme in a simple example next.

5. ILLUSTRATIVE EXAMPLE

Consider the system

ẋ1 = x2 + x1x3 + x1u (29a)

ẋ2 = −x1 + x2x3 + x2u (29b)

ẋ3 = u (29c)

which for u ≡ 0 has a family of periodic orbits given by

ηa = {x ∈ R3|x2
1 + x2

2 = a2, x3 = 0, a > 0}. (30)

This system has previously been considered in Banaszuk
and Hauser (1995), where a (transverse) feedback lin-
earizing approach was utilized in order to find a mini-
mal set of transverse coordinates. More specifically, they
showed that by taking θ = − arctan(x2/x1), there ex-
ists a pair of transverse coordinates (σ1, σ2), defined as

σ1 := log
(√

x2
1 + x2

2

)
−log(a)−x3 and σ2 := x3, such that

(x1, x2, x3) �→ (θ, σ1, σ2) is a diffeomorphism everywhere
except (x1, x1) = (0, 0). Moreover, the dynamics of θ

is trivial (θ̇ = 1) while the dynamics of the transverse
coordinates (σ1, σ2) are linear: σ̇1 = σ2, σ̇2 = u. While
this is clearly a convenient choice of coordinates, and illus-
trates the possibility of finding a minimal set of coordinate
that can greatly simplify control design, it also shows the
challenge of finding a (convenient) set of coordinates even
for such a simple, low dimensional system.

Let us therefore instead consider s = p(x) = atan2 (x1, x2)
with ṡ∗(t) = ρ(s(t)) = 1, which here satisfies the orthogo-
nality condition (16) (atan2(·) denotes the four-quadrant
arctangent function), and which lets us parameterize the
orbit ηa by xs(s) = [a sin(s), a cos(s), 0]T. The linearized
transverse dynamics (19) then becomes

dy

ds
=

[
0 1 a sin(s)
−1 0 a cos(s)
0 0 0

]
y +

[
a sin(s)
a cos(s)

1

]
u, (31)

while its comparison system (24) is given by

dw

ds
=



− sin(2s)

2 sin2(s) a sin(s)

− cos2(s) sin(2s)
2 a cos(s)

0 0 0


w+

[
a sin(s)
a cos(s)

1

]
v. (32)

Taking a = 1, we designed a stabilizing controller for
the comparison system (24), in which the found con-
troller gains can be seen in Figure 2. These gains corre-
spond to the feedback matrix K(s) = [k1(s), k2(s), k3] =
−BT

⊥(s)R(s) with R(s) = RT(s) the positive definite solu-
tion to the periodic Riccati differential equation

dR

ds
+ΩATR+RΩA+ I3 −RB⊥B

T
⊥R = 0.
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one to find a stabilizing feedback for (15) without the
need to circumvent the uncontrollable subspace always
present in (19) and without having to compute the Hessian
D2p(·). Indeed, there are several connections between
these systems, such as the following spectrum condition.

Lemma 10. Consider the system (1) with the feedback
u = K(p(x))[x − xs(p(x))] for some Lipschitz continuous
matrix function K : S → Rm×n. Then the (minimal) sum
of the characteristic exponents of the systems (19), (21)
and (24) are the same. �

Suppose, therefore, that a (Lipschitz continuous) matrix
function K : S → Rm×n exists such that the largest
characteristic exponents, λM , of the closed-loop system

ẇ = Ω(s) (A(s) +B(s)K(s))w (25)

satisfies λM < 0; i.e. we assume (24) is stabilizable. Let
W (t) denote the state transition (Cauchy) matrix for this
system. Then, by a small modifications of theorems 2 and 4
in Leonov and Kuznetsov (2007), there exists some number
C > 0 and a scalar functions ζ : [0,∞) → R satisfying

lim
t→∞

1

t

∫ t

τ

ζ(σ)dσ = λM ∀τ ≥ 0, (26)

such that the following inequality

‖W (t)W−1(τ)‖ ≤ C exp

(∫ t

τ

ζ(σ)dσ

)
∀t ≥ τ ≥ 0 (27)

is satisfied. The main result of this section follows.

Proposition 11. Let p(·) be taken as to satisfy (16). Sup-
pose that ‖A(s)‖ ≤ α for all s ∈ S and that the inequality

λM < −Cα ≤ 0 (28)

holds. Then the controller u = K(s)z⊥ with s = p(x)
asymptotically stabilizes the origin of the system (14)
and consequently renders the periodic solution of the
dynamical system (1) asymptotically orbitally stable.

Remark 12. The value of the above statement is not in
the condition (28) per se. Rather, its importance is simply
due to the fact that it shows the possibility of orbitally
stabilizing the solution by designing a stabilizing feedback
for the comparison system (24). Indeed, the condition (28)
is by no means unique, and similar conditions can be stated
using, for example, Lyapunov’s second method. �

It is also of practical importance to note that if a controller
v = K(s)w stabilizing the origin of the comparison system
(24) has been designed, then one does not need to check
the conditions of the theorem. That is to say, one can
instead utilize the Andronov–Vitt theorem on the first
approximation system δẋ = (A(s) + B(s)K(s)Ω(s))δx to
validate that it will also be a stabilizing controller for (15);
or, equivalently, check that the system (19) has (n − 1)
characteristic multipliers within the unit circle. As yet
another alternative, one can utilize the following.

Lemma 13. If the system (24) under the controller v =
K(s)Ω(s)w has one simple zero characteristic exponent
and the remaining (n − 1) characteristic exponents have
strictly negative real parts, then the controller u = K(s)z⊥
asymptotically stabilizes the origin of the system (14). �

This again shows that one does not need to compute
the Hessian of p(·) in order to validate the stability of
the orbit. Moreover, this has an additional advantage
compared to the Andronov–Vitt theorem arising whenever

the dynamical system has a periodic solution only in the
presence of some non-zero nominal control input υ(s(t)) ≡
u∗(t), i.e.

d
dtxs(s) = f(xs(s)) + g(xs(s))υ(s). As then the

matrix A(·) of the first approximation is given by

A(s) =

[
∂f

∂x
+ gυ′(s)Γ(s) +

m∑
i=1

∂gi
∂x

υi(s)

]∣∣∣∣∣
x=xs(s)

,

one needs to compute υ′(s) in order to utilize the
Andronov-Vitt Theorem, whereas it can be omitted in the
transverse linearization, and consequently for the compar-
ison system (24), due to the condition Γ(s)δz ≡ 0.

We illustrate the above scheme in a simple example next.

5. ILLUSTRATIVE EXAMPLE

Consider the system

ẋ1 = x2 + x1x3 + x1u (29a)

ẋ2 = −x1 + x2x3 + x2u (29b)

ẋ3 = u (29c)

which for u ≡ 0 has a family of periodic orbits given by

ηa = {x ∈ R3|x2
1 + x2

2 = a2, x3 = 0, a > 0}. (30)

This system has previously been considered in Banaszuk
and Hauser (1995), where a (transverse) feedback lin-
earizing approach was utilized in order to find a mini-
mal set of transverse coordinates. More specifically, they
showed that by taking θ = − arctan(x2/x1), there ex-
ists a pair of transverse coordinates (σ1, σ2), defined as

σ1 := log
(√

x2
1 + x2

2

)
−log(a)−x3 and σ2 := x3, such that

(x1, x2, x3) �→ (θ, σ1, σ2) is a diffeomorphism everywhere
except (x1, x1) = (0, 0). Moreover, the dynamics of θ

is trivial (θ̇ = 1) while the dynamics of the transverse
coordinates (σ1, σ2) are linear: σ̇1 = σ2, σ̇2 = u. While
this is clearly a convenient choice of coordinates, and illus-
trates the possibility of finding a minimal set of coordinate
that can greatly simplify control design, it also shows the
challenge of finding a (convenient) set of coordinates even
for such a simple, low dimensional system.

Let us therefore instead consider s = p(x) = atan2 (x1, x2)
with ṡ∗(t) = ρ(s(t)) = 1, which here satisfies the orthogo-
nality condition (16) (atan2(·) denotes the four-quadrant
arctangent function), and which lets us parameterize the
orbit ηa by xs(s) = [a sin(s), a cos(s), 0]T. The linearized
transverse dynamics (19) then becomes

dy

ds
=

[
0 1 a sin(s)
−1 0 a cos(s)
0 0 0

]
y +

[
a sin(s)
a cos(s)

1

]
u, (31)

while its comparison system (24) is given by

dw

ds
=



− sin(2s)

2 sin2(s) a sin(s)

− cos2(s) sin(2s)
2 a cos(s)

0 0 0


w+

[
a sin(s)
a cos(s)

1

]
v. (32)

Taking a = 1, we designed a stabilizing controller for
the comparison system (24), in which the found con-
troller gains can be seen in Figure 2. These gains corre-
spond to the feedback matrix K(s) = [k1(s), k2(s), k3] =
−BT

⊥(s)R(s) with R(s) = RT(s) the positive definite solu-
tion to the periodic Riccati differential equation

dR

ds
+ΩATR+RΩA+ I3 −RB⊥B

T
⊥R = 0.
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Fig. 2. Controller gains stabilizing (32).

With this controller, the characteristic exponents of (31)
were approximately (0,−1.73,−1), implying the asymp-
totic stability of the orbit by Proposition 9; while for the
system (32) they were approximately (−0.86 ± 0.5i,−1),
showing it is indeed an orbitally stabilizing controller as
we would expect from Proposition 11.

Let us now also demonstrate a certain limitation of Propo-
sition 11 by instead considering the feedback

u(z⊥) = − [sin(s) cos(s) 1] z⊥ (33)

which stabilizes the system (31), and consequently asymp-
totically stabilizes the orbit (30) for any a > 0. More
specifically, it can be shown that the modified periodic
Riccati differential equation

ΩT
[dR⊥

ds
+AT

⊥R⊥ +R⊥A⊥ + I3 −R⊥B⊥B
T
⊥R⊥

]
Ω = 0,

has a family of solutions given by

R⊥(s) = Ωi(s)




1
a 0 0
0 1

a 0
0 0 1


Ωj(s) + k



cos2(s) − sin(2s)

2 0

− sin(2s)
2 sin2(s) 0
0 0 0




for any k ∈ R and i, j ∈ {0, 1}, such that (33) corre-
sponds to u(z⊥) = −BT

⊥(s)R⊥(s)z⊥. Therefore, by tak-

ing V = δzT⊥R⊥(s)δz⊥, we have V̇ ≤ −‖δz⊥‖2 imply-
ing the asymptotic stability of the nominal solution. On
other hand, in accordance with Proposition 9, it can be
shown that the closed-loop system, i.e. Acl(s) := A⊥(s)−
B⊥(s)B

T
⊥(s)R⊥(s), without the orthogonality condition

(16) has the solution x′
s(s) with characteristic exponent

equal to zero. Its two other independent solutions are

[0, 0, e−t]T and
[
sin(s(t)), cos(s(t)), le(a−1)t + e−at

a−1

]T
with

l ∈ R. Taking l = 0, their characteristic exponents equals
−1 and −a, respectively, again implying the asymptotic
stability of the nominal solution.

Consider now the comparison system (32) with the above
controller, i.e. v(w) = − [sin(s) cos(s) 1]w. It too has
x′
s(s) as a solution, while it can be shown that −1 and

−a are the characteristic exponents of the two remaining
independent solutions (although note these solutions are
different to those of (31) given above). We can there-
fore utilize Lemma 13 to validate that the controller is
asymptotically orbitally stabilizing, but we cannot utilize
Proposition 11 for this purpose.

So why is not the origin of the comparison system (32)
asymptotically stable under the controller (33)? It turns
out that the existence of the solution x′

s(s) is clear simply

by noticing that B⊥(s)B
T
⊥(s)R⊥(s) ≡ K̂(s)Ω(s) given

K̂(s) :=

[
a 0 a sin(s)
0 a a cos(s)

sin(s) cos(s) 1

]
.

Thus u(w) = K(s)w ≡ 0 for any w ∈ span(x′
s(s)). It

follows that a controller asymptotically stabilizing the
linearized transverse dynamics (15) will not necessarily
asymptotically stabilize the comparison system (24). On
the other hand, it is quite interesting to note that all
the characteristic exponents of both the systems ˙̂y =(
A⊥(s) − K̂(s)

)
ŷ and ˙̂w =

(
Ω(s)A(s) − K̂(s)

)
ŵ have

strictly negative real parts and sum to (−2a− 1).

6. CONCLUDING REMARKS

In this paper, we have provided analytical expressions of
the linearized transverse dynamics of any valid (minimal
or excessive) set of transverse coordinates. In addition, we
have defined a generic set of easy-to-compute orthogonal
coordinates and shown a certain equivalence between their
stability and that of any other valid set. It was further
demonstrated that their origin could be stabilized by sta-
bilizing a comparison system of the linearized transverse
dynamics. This of course relies on the stabilizability of
this comparison system, such that conditions for its sta-
bilizability, as well as the connection to the stabilizability
of the linearized transverse dynamics are topics of inter-
est and requiring further study. The presented approach
nevertheless lays the foundations for further development
and generalizations, such as, for example, its extension to
hybrid dynamical systems and to non-periodic motions.
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