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Abstract: We consider a dynamic network of sensors that cooperate to estimate parameters
of multiple targets. Each sensor can observe parameters of a few targets, reconstructing the
trajectories of the remaining targets via interactions with “neighbouring” sensors. The multi-
target tracking has to be provided in the face of uncertainties, which include unknown-but-
bounded drift of parameters, noise in observations and distortions introduced by communication
channels. To provide tracking in presence of these uncertainties, we employ a distributed
algorithm, being an “offspring” of a consensus protocol and the stochastic gradient descent. The
mathematical results on the algorithm’s convergence are illustrated by numerical simulations.
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1. INTRODUCTION

Recently, multi-agent systems and multi-agent technolo-
gies have attracted enormous attention for the research
community due to numerous applications in control the-
ory (Olfati-Saber et al., 2007; Ren and Cao, 2011), dis-
tributed optimization (Boyd et al., 2011; D.Bertsekas and
Tsitsiklis, 1989), mobile robotics (Bullo et al., 2009; Ren
et al., 2007; Virágh et al., 2014) and modeling of com-
plex natural and societal processes (Bar-Yam, 1997; Bhat-
tacharya and Vicsek, 2010; Easley and Kleinberg, 2010;
Proskurnikov and Tempo, 2018). It is known that teams
of relatively simple and inter-replaceable agents applying
a distributed algorithm can solve complex problems more
efficiently than centralized systems, being more reliable
and resilient. Unlike centralized solutions, multi-agent al-
gorithms do not require collecting all data at a single node
of the system; each agent communicates only with a few
“neighbouring” (adjacent) agents.

One of the classical applications of multi-agent algorithms
is multi-target tracking by networked sensors such as e.g.

� The theoretical part Sections I-VI of this work was supported
SPbSU by Russian Science Foundation (project no. 19-71-
10012). The obtaining of experimental results in Section
VII was supported by the Russian Fund for Basic Research
(project no. 20-01-00619). E-mails: n.amelina@spbu.ru,

victoria@grenka.net, o.granichin@spbu.ru,

ivanskiy.yuriy@gmail.com, jiang@ntnu.no,

anton.p.1982@ieee.org, anna.sergeenko98@gmail.com

radars, sonars, infrared (IR) sensors or cameras (Black-
man, 2004; Chen et al., 2015; He et al., 2018; Tugnait,
2004). Typically, a single agent has a limited range and
can observe trajectories of few targets, so the information
fusion requires cooperation between multiple agents. In
large sensor networks, the quality of an individual sensor’s
measurements is often sacrificed for the low price and
replaceability of the sensors. Besides this, the measure-
ments reported by each sensor are typically distorted by
clutter and noises. The models of targets (e.g. maneuvering
objects) may be also partially uncertain due to e.g. drifting
parameters.

Another application that has motivated the development
of multi-target tracking theory is the air traffic control
(ATC) and surveillance (Isaksson and Gustafsson, 1995;
Li and Bar-Shalom, 1993; Oh et al., 2008). As the air
traffic becomes denser, the centralized computation of its
“live” radar map gets more complicated, so distributed
algorithms can be used to increase the ATC system’s
performance. Tracking and classification of different ob-
jects which has to be done by vehicles with the usage
of cameras, radars, and lidars are other problems at the
crossroad of computer vision, sensor fusion and intelligent
transportation (Battiato et al., 2015; Zou et al., 2019).

Traditionally, multi-target tracking problems have been
handled by tools from filtering theory and advanced statis-
tics such as e.g. multiple hypothesis tracking (MHT), inter-
acting multiple model (IMM) methods, probabilistic data
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et al., 2007; Virágh et al., 2014) and modeling of com-
plex natural and societal processes (Bar-Yam, 1997; Bhat-
tacharya and Vicsek, 2010; Easley and Kleinberg, 2010;
Proskurnikov and Tempo, 2018). It is known that teams
of relatively simple and inter-replaceable agents applying
a distributed algorithm can solve complex problems more
efficiently than centralized systems, being more reliable
and resilient. Unlike centralized solutions, multi-agent al-
gorithms do not require collecting all data at a single node
of the system; each agent communicates only with a few
“neighbouring” (adjacent) agents.

One of the classical applications of multi-agent algorithms
is multi-target tracking by networked sensors such as e.g.

� The theoretical part Sections I-VI of this work was supported
SPbSU by Russian Science Foundation (project no. 19-71-
10012). The obtaining of experimental results in Section
VII was supported by the Russian Fund for Basic Research
(project no. 20-01-00619). E-mails: n.amelina@spbu.ru,

victoria@grenka.net, o.granichin@spbu.ru,

ivanskiy.yuriy@gmail.com, jiang@ntnu.no,

anton.p.1982@ieee.org, anna.sergeenko98@gmail.com

radars, sonars, infrared (IR) sensors or cameras (Black-
man, 2004; Chen et al., 2015; He et al., 2018; Tugnait,
2004). Typically, a single agent has a limited range and
can observe trajectories of few targets, so the information
fusion requires cooperation between multiple agents. In
large sensor networks, the quality of an individual sensor’s
measurements is often sacrificed for the low price and
replaceability of the sensors. Besides this, the measure-
ments reported by each sensor are typically distorted by
clutter and noises. The models of targets (e.g. maneuvering
objects) may be also partially uncertain due to e.g. drifting
parameters.

Another application that has motivated the development
of multi-target tracking theory is the air traffic control
(ATC) and surveillance (Isaksson and Gustafsson, 1995;
Li and Bar-Shalom, 1993; Oh et al., 2008). As the air
traffic becomes denser, the centralized computation of its
“live” radar map gets more complicated, so distributed
algorithms can be used to increase the ATC system’s
performance. Tracking and classification of different ob-
jects which has to be done by vehicles with the usage
of cameras, radars, and lidars are other problems at the
crossroad of computer vision, sensor fusion and intelligent
transportation (Battiato et al., 2015; Zou et al., 2019).

Traditionally, multi-target tracking problems have been
handled by tools from filtering theory and advanced statis-
tics such as e.g. multiple hypothesis tracking (MHT), inter-
acting multiple model (IMM) methods, probabilistic data
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1. INTRODUCTION

Recently, multi-agent systems and multi-agent technolo-
gies have attracted enormous attention for the research
community due to numerous applications in control the-
ory (Olfati-Saber et al., 2007; Ren and Cao, 2011), dis-
tributed optimization (Boyd et al., 2011; D.Bertsekas and
Tsitsiklis, 1989), mobile robotics (Bullo et al., 2009; Ren
et al., 2007; Virágh et al., 2014) and modeling of com-
plex natural and societal processes (Bar-Yam, 1997; Bhat-
tacharya and Vicsek, 2010; Easley and Kleinberg, 2010;
Proskurnikov and Tempo, 2018). It is known that teams
of relatively simple and inter-replaceable agents applying
a distributed algorithm can solve complex problems more
efficiently than centralized systems, being more reliable
and resilient. Unlike centralized solutions, multi-agent al-
gorithms do not require collecting all data at a single node
of the system; each agent communicates only with a few
“neighbouring” (adjacent) agents.

One of the classical applications of multi-agent algorithms
is multi-target tracking by networked sensors such as e.g.
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radars, sonars, infrared (IR) sensors or cameras (Black-
man, 2004; Chen et al., 2015; He et al., 2018; Tugnait,
2004). Typically, a single agent has a limited range and
can observe trajectories of few targets, so the information
fusion requires cooperation between multiple agents. In
large sensor networks, the quality of an individual sensor’s
measurements is often sacrificed for the low price and
replaceability of the sensors. Besides this, the measure-
ments reported by each sensor are typically distorted by
clutter and noises. The models of targets (e.g. maneuvering
objects) may be also partially uncertain due to e.g. drifting
parameters.

Another application that has motivated the development
of multi-target tracking theory is the air traffic control
(ATC) and surveillance (Isaksson and Gustafsson, 1995;
Li and Bar-Shalom, 1993; Oh et al., 2008). As the air
traffic becomes denser, the centralized computation of its
“live” radar map gets more complicated, so distributed
algorithms can be used to increase the ATC system’s
performance. Tracking and classification of different ob-
jects which has to be done by vehicles with the usage
of cameras, radars, and lidars are other problems at the
crossroad of computer vision, sensor fusion and intelligent
transportation (Battiato et al., 2015; Zou et al., 2019).

Traditionally, multi-target tracking problems have been
handled by tools from filtering theory and advanced statis-
tics such as e.g. multiple hypothesis tracking (MHT), inter-
acting multiple model (IMM) methods, probabilistic data
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association filters (PDAF) etc. (Blackman, 2004; Li and
Bar-Shalom, 1993; Tugnait, 2004). All of these methods,
however, assume that some statistical characteristics of the
uncertain parameters are known. In this paper, we are con-
cerned with situation where the uncertain targets’ param-
eters and sensor noises may be fully unknown yet supposed
to be bounded (Granichin and Amelina, 2015), which
makes many statistical methods inapplicable. Besides this,
we take into account communication constraints, which
always arise in practice and may be considered from several
perspectives. On the one hand, communication constraints
may be incorporated into the dynamics of the communi-
cation graph (the network’s “topology”). This is conve-
nient if the same communication channel has to be shared
among multiple users, and each pair of sensors can commu-
nicate only during some interval allocated by an external
scheduler. On the other hand, communication constraints
may be interpreted as costs of data transmission. Such
costs may e.g. penalize the power consumed by trans-
mitters and receivers, processor time spent on processing
the messages etc. The presence of unknown-but-bounded
disturbances, time-varying communication graph and com-
munication costs differs our problem from standard multi-
target tracking problems addressed in the literature and
leads to a problem of non-stationary mean-risk functional
optimization which is to be solved in a distributed way.

The traditional approach to mean-risk functional opti-
mization is based on the maximum likelihood estima-
tor and stochastic approximation (SA) algorithms with
slowly decaying step-size (Blum, 1954; Kiefer et al., 1952;
Kushner and Yin, 2003; Robbins and Monro, 1951). SA
algorithms use minimal information about random param-
eters and are very robust, although their convergence is
rather slow. They have found numerous applications in
adaptive signal processing, adaptive resource allocation,
and artificial intelligence. In the case where the compu-
tation of the cost function’s gradient during an opera-
tion is troublesome, it can be approximated by a “noisy
gradient” computed using 2d random samples (where d
is the dimension of the space). This idea naturally leads
to the simultaneous perturbation stochastic approximation
(SPSA) algorithms introduced by Spall (1992). SPSA may
be considered as a special random search technique since
the estimate of the optimum is updated by shifting in a
randomly chosen direction rather than the direction of the
steepest descent. At the same time, the gradient estimate
is “almost” unbiased and on average the algorithm will
nearly follow the steepest descent direction.

The study of distributed optimization has started long be-
fore the recent “boom” in multi-agent control (D.Bertsekas
and Tsitsiklis, 1989; Tsitsiklis et al., 1986) and, in fact,
has led to very general results on multi-agent coordina-
tion (Blondel et al., 2005). Most studied are methods for
convex optimization, e.g. the alternating direction method
of multipliers (ADMM) (Boyd et al., 2011) and subgra-
dient methods (Nedic and Ozdaglar, 2009; Rabbat and
Nowak, 2004). For non-convex optimization, methods of
surrogate functions have been used (Di Lorenzo and Scu-
tari, 2016; Zhu and Mart́ınez, 2010).

This paper extends a number of results on SPSA algo-
rithms published in the previous works of the authors.
In (Granichin and Erofeeva, 2018; Granichin and Amelina,

2015), the SPSA algorithm is applied to an unconstrained
problem of optimal target tracking. One of the main limi-
tations is the property of strong convexity of the minimized
mean-risk functional. In (Erofeeva et al., 2019; Granichin
et al., 2019) this assumption was weaken by combining
SPSA with the consensus algorithm from Amelina et al.
(2015). In (Granichin et al., 2019), target tracking noisy
measurements has been considered (where the noise does
not need to satisfy standard statistical assumptions such
as randomness, independence at different time instants or
zero mean properties), and the cost constraints related to
the network topology have been introduced.

Unlike the aforementioned works, in this paper we consider
the situation where each sensor has a limited number of
neighboring sensors with which it can communicate at
each step. Due to this limitation, which is important in
many practical problems, we suggest to use a randomized
communication graph. Besides this, we apply the new
SPSA algorithm to the tracking of multiple targets by
a network of heterogeneous sensors, extending thus our
previous results from (Erofeeva et al., 2019; Granichin
et al., 2019).

The rest of this paper is organized as follows. Section 2
provides notations used in the paper. The formal problem
is stated in Section 3. In Section 4 we suggest to use
randomized topology to reduce a number of simultaneous
connections between agents at each iteration. The modified
SPSA-based consensus algorithm for tracking with differ-
ent step-sizes is introduced in Section 5. The main result
concerning stability properties of the proposed algorithm is
shown in Section 6. In Section 7, we consider a simulation
which illustrates the operability of the algorithm. Section 8
concludes the paper.

2. GRAPH THEORY

In subsequent sections we use the following notations.

Consider a dynamic network system of n intelligent collab-
orating sensors (agents). Without loss of generality, agents
in the network system are numbered. Let N = {1, . . . , n}
be the set of agents, i ∈ N be the number of an agent,
and E be the set of edges. ∀i ∈ N let N i be a subset of
all agents: N i ⊂ N , which are able to send information to
agent i. The corresponding adjacency matrix is denoted as
A = [ai,j ], where ai,j > 0 if agent j is connected to agent
i (i.e. if there is an arc from j to i) and ai,j = 0 otherwise.
Denote GA the graph corresponding to adjacency matrix
A. (Throughout the paper, the agent index i is used as a
superscript and not as an exponent.)

Define the weighted in-degree of node i as the sum of i-th
row of matrix A: deg+i (A) =

∑n
j=1 a

i,j and deg+max(A) as
the maximum in-degree of nodes contained in the graph
GA. D(A) = diagn(col{deg

+
1 (A), . . . ,deg+n (A)}) is the cor-

responding diagonal matrix. Henceforth, col{x1, . . . ,xn}
denotes a vector obtained by stacking the specified vectors
one on top of each other. diagn(b) is a square diagonal
matrix with elements of a vector b on the diagonal and
other elements equal to zero. Let L(A) = D(A) − A be
the Laplacian of graph GA. [·]T is a vector or matrix
transpose operation, 〈·, ·〉 is a scalar product of two vec-

tors. ‖A‖ is the Frobenius norm: ‖A‖ =
√∑

i

∑
j(a

i,j)2.
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cerned with situation where the uncertain targets’ param-
eters and sensor noises may be fully unknown yet supposed
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makes many statistical methods inapplicable. Besides this,
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eters and are very robust, although their convergence is
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tation of the cost function’s gradient during an opera-
tion is troublesome, it can be approximated by a “noisy
gradient” computed using 2d random samples (where d
is the dimension of the space). This idea naturally leads
to the simultaneous perturbation stochastic approximation
(SPSA) algorithms introduced by Spall (1992). SPSA may
be considered as a special random search technique since
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is “almost” unbiased and on average the algorithm will
nearly follow the steepest descent direction.
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and Tsitsiklis, 1989; Tsitsiklis et al., 1986) and, in fact,
has led to very general results on multi-agent coordina-
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This paper extends a number of results on SPSA algo-
rithms published in the previous works of the authors.
In (Granichin and Erofeeva, 2018; Granichin and Amelina,

2015), the SPSA algorithm is applied to an unconstrained
problem of optimal target tracking. One of the main limi-
tations is the property of strong convexity of the minimized
mean-risk functional. In (Erofeeva et al., 2019; Granichin
et al., 2019) this assumption was weaken by combining
SPSA with the consensus algorithm from Amelina et al.
(2015). In (Granichin et al., 2019), target tracking noisy
measurements has been considered (where the noise does
not need to satisfy standard statistical assumptions such
as randomness, independence at different time instants or
zero mean properties), and the cost constraints related to
the network topology have been introduced.

Unlike the aforementioned works, in this paper we consider
the situation where each sensor has a limited number of
neighboring sensors with which it can communicate at
each step. Due to this limitation, which is important in
many practical problems, we suggest to use a randomized
communication graph. Besides this, we apply the new
SPSA algorithm to the tracking of multiple targets by
a network of heterogeneous sensors, extending thus our
previous results from (Erofeeva et al., 2019; Granichin
et al., 2019).

The rest of this paper is organized as follows. Section 2
provides notations used in the paper. The formal problem
is stated in Section 3. In Section 4 we suggest to use
randomized topology to reduce a number of simultaneous
connections between agents at each iteration. The modified
SPSA-based consensus algorithm for tracking with differ-
ent step-sizes is introduced in Section 5. The main result
concerning stability properties of the proposed algorithm is
shown in Section 6. In Section 7, we consider a simulation
which illustrates the operability of the algorithm. Section 8
concludes the paper.

2. GRAPH THEORY

In subsequent sections we use the following notations.

Consider a dynamic network system of n intelligent collab-
orating sensors (agents). Without loss of generality, agents
in the network system are numbered. Let N = {1, . . . , n}
be the set of agents, i ∈ N be the number of an agent,
and E be the set of edges. ∀i ∈ N let N i be a subset of
all agents: N i ⊂ N , which are able to send information to
agent i. The corresponding adjacency matrix is denoted as
A = [ai,j ], where ai,j > 0 if agent j is connected to agent
i (i.e. if there is an arc from j to i) and ai,j = 0 otherwise.
Denote GA the graph corresponding to adjacency matrix
A. (Throughout the paper, the agent index i is used as a
superscript and not as an exponent.)

Define the weighted in-degree of node i as the sum of i-th
row of matrix A: deg+i (A) =

∑n
j=1 a

i,j and deg+max(A) as
the maximum in-degree of nodes contained in the graph
GA. D(A) = diagn(col{deg

+
1 (A), . . . ,deg+n (A)}) is the cor-

responding diagonal matrix. Henceforth, col{x1, . . . ,xn}
denotes a vector obtained by stacking the specified vectors
one on top of each other. diagn(b) is a square diagonal
matrix with elements of a vector b on the diagonal and
other elements equal to zero. Let L(A) = D(A) − A be
the Laplacian of graph GA. [·]T is a vector or matrix
transpose operation, 〈·, ·〉 is a scalar product of two vec-

tors. ‖A‖ is the Frobenius norm: ‖A‖ =
√∑

i

∑
j(a

i,j)2.

Re(λ2(A)) is the real part of the second eigenvalue of
matrix A ordered by the absolute magnitude; λmax(A) is
the eigenvalue of matrix A with maximum absolute magni-
tude; 1n = (1, . . . , 1)T is the vector of n-times replication
of ones; ei = (. . . , 0, 1, 0, . . .)T is the unit orth-vector from
Rn with all zeros except single one at i-th row; Id is the
identity matrix d × d. A ⊗ B is the Kronecker product
defined for any matrices A and B.

3. MULTISENSOR-MULTITARGET PROBLEM

Consider a distributed network of n intelligent sensors
(agents) that have m targets in their zone of visibility
whose state vectors are to be estimated.

Let N = {1, 2, . . . , n} be the set of sensors, M =
{1, 2, . . . ,m} be the set of targets. At time instant t

sit = [si,1t , · · · , si,dt ]T ∈ Rd is the current state vector of

sensor i, i ∈ N , rlt = [rl,1t , · · · , rl,dt ]T ∈ Rd is the state
vector of target l, l ∈ M, θt = col{r1t , . . . , rmt } is the
common state vector of all targets. Two cases d = 2 and
d = 3 are the most interesting from the practical point of
view.

We assume that at time instant t sensor i is able to measure
the squared distance

ρ(sit, r
l
t) = ‖rlt − sit‖2 =

d∑
d′=1

(
rl,d

′

t − si,d
′

t

)2

to moving target rlt. It is well-known that sensor i can
estimate state rlt if it gets similar data from d other sensors
j1, . . . , jd ∈ N i, which are its neighbours. For each such
column u = col{i, j1, . . . , jd, l} of (d + 2) naturals denote

ρ̄qt (u) = ρ(sit, r
l(u)
t ) − ρ(s

jq
t , r

l(u)
t ), q = 1, . . . , d. Here and

after, l(u) is the map defining the last component of u. In
this case, we get d equations

ρ̄qt (u) =

d∑
d′=1

(s
jq,d

′

t − si,d
′

t )(2r
l(u),d′

t − s
jq,d

′

t − si,d
′

t )

q = 1, . . . , d, which allow us to derive

rlt = [Cu
t ]

−1Du
t (1)

when matrix Cu
t > 0 is positive definite. Here we define

Cu
t = 2



(sj1t − sit)

T

· · ·
(sjdt − sit)

T


, Du

t =



ρ̄1t (u) + ‖sj1t ‖2 − ‖sit‖2

· · ·
ρ̄dt (u) + ‖sjdt ‖2 − ‖sit‖2


.

Denote U i the set of all vectors u with the first element
i and |U i| the amount of elements in U i. So, for any

u ∈ ∪i∈Ui we would like to find estimates r̂
l(u)
t of target

l(u) state vector r
i,l(u)
t that

ft(u, r̂
l(u)
t ) = ‖r̂l(u)t − [Cu

t ]
−1Du

t ‖2 → min
r̂
l(u)
t

. (2)

The overall multisensor–multitarget problem can be for-
mulated as following minimization problem: at each time

t, to find the overall estimate θ̂t = col{r̂1t , . . . , r̂mt } that
minimizes the loss function

F̄t(θ̂t) =
∑
i∈N

f̄ i
t (θ̂t) =

∑
i∈N

1

|U i|
∑
u∈Ui

ft(u, r̂
l(u)
t ) → min

θ̂t

.(3)

4. RANDOMIZED TOPOLOGY

Suppose that each sensor i ∈ N at every time instant t
is able to measure with noise the squared distance to one
target and to gather data only from two its neighbors.
To satisfy these constraints at each time instant t we
suggest to choose randomly independently and uniformly
one ui

t from U i
t for each sensor (agent) i ∈ N (as in

gossip algorithm Boyd et al. (2011)). In fact, we randomize
topology graph GA in a such manner as in Amelina et al.
(2014). At each time instant t we use a randomly chosen
subgraph GBt ⊂ GA with adjacency matrix Bt which rows

contain not more than two nonzero entries: bi,jt > 0 if
j ∈ ui

t.

Assume each sensor i ∈ N at time instant t for chosen

estimates r̂
l(ui

t)
t gets residuals observation

yit = ft(u
i
t, r̂

l(ui
t)

t ) + vit (4)

with unknown–but-bounded noise vit.

Let (Ω,F , P ) be the underlying probability space corre-
sponding to the sample space Ω with σ-algebra of all events
F and the probability measure P , and E be a mathemat-
ical expectation symbol. Denote Ft the σ-algebra of all
probabilistic events which happened up to time instant
t = 1, 2, . . . , EFt is a symbol of the conditional mathemat-
ical expectation with respect to the σ-algebra Ft.

It is not so hard to prove that according to definitions we
have

f̄t(θt) = EFt−1
ft(u

i
t, r̂

l(ui
t)

t ). (5)

Hence, multisensors-multitargets estimation problem can
be reformulated as distributed non-stationary mean-risk
optimization problem (see Erofeeva et al. (2019)):

F̄t(θ̂t) =
∑
i∈N

EFt−1
ft(u

i
t, r̂

l(ui
t)

t ) → min
θ̂t

. (6)

5. SPSA-BASED CONSENSUS ALGORITHM

Considered problem (6) with residuals observation model
(4) is similar to the distributed tracking problem studied
in Erofeeva et al. (2019) where simultaneous perturbation
stochastic approximation-based consensus algorithm was
proposed. In this paper we generalize early proposed
algorithm to the case when network topology randomly
changes with time.

Let ui
k and ∆i

k, k = 1, 2, . . . , i ∈ N , be observed
sequences of independent random vectors from Nd+2 and
from Rd. The sequence of appointments ui

k has uniform
distribution on pre-defined sets of indices which are de-
termined by matrix B2k and availabilities for server i
to observe target l. ∆i

k has Bernoulli distribution with
each component independently taking values ± 1√

d
with

probabilities 1
2 . This sequence is usually called the simul-

taneous test perturbation. Let us take fixed nonrandom

initial vectors θ̂i0 ∈ Rmd, i ∈ N , positive step-size α, gain
coefficient γ, and choose the scale of perturbation β > 0.

We consider the algorithm with two observations of dis-
tributed sub-functions f̄ i

t (θ) for each agent i ∈ N for
constructing sequences of points of observations {xi

t} and

estimates {θ̂it} of overall state vectors of all targets:
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


xi
2k = θ̂i2k−2 + βel(ui

k
) ⊗∆i

k,

xi
2k−1 = θ̂i2k−2 − βel(ui

k
) ⊗∆i

k,

θ̂i2k−1 = θ̂i2k−2,

θ̂i2k = θ̂i2k−1 − α

[
el(ui

k
) ⊗∆i

k

yi2k − yi2k−1

2β
+

γ
∑
j∈N i

t

bi,jt (θ̂i2k−1 − θ̂j2k−1)


 .

(7)

The formulation of problem (6) says about one minimized

common vector θ̂t. We consider n parallel sequences of
estimates. In the next section we give the main theoretical
result of this paper that all these n sequences converge to
the neighbour of the true overall vector θt of all targets.

Algorithm (7) is similar to corresponding one in Erofeeva
et al. (2019): but in the latter we use brackets above

defined random coefficients bi,jt instead of ai,j .

Consider the last equation of the algorithm (7): the first
part is similar to SPSA-like algorithm from Granichin and
Amelina (2015) and the second one coincides with a local
voting protocol (LVP) from Amelina et al. (2015), where it
was studied for stochastic networks in the context of load
balancing problem. The SPSA part represents a stochastic
gradient descent of sub-functions f̄ i

ξt
(θ), and LVP part

is determined for each agent i by the weighted sum of
differences between the information about the current
estimate θ̂i2k−1 of agent i and available information about
the estimates of its neighbors.

Further, we use notation θ̄t = col{θ̂1t , . . . , θ̂nt } for the
common vector of estimates of all agents at time instant t.
Also we introduce the following notations:

ȳt = diagn(col{y1t , . . . , ynt }),
∆̄t÷2 = col{el(ui

t÷2
) ⊗∆1

t÷2, . . . , el(ui
t÷2

) ⊗∆n
t÷2}.

Using the notations introduced above, algorithm (7) can
be rewritten in the following form

θ̄2k = θ̄2k−1 − α

[(
ȳ2k − ȳ2k−1

2β
⊗ Imd

)
∆̄k+

γ(L(B2k−1)⊗ Imd)θ̄2k−1

]
. (8)

6. MAIN RESULT

This section presents Theorem 1 for the convergence of
estimates generated by algorithm (7).

First, let us formulate assumptions about the movement
of targets, noise, disturbances, and network topology.
Assumption 1: Denote the differences ξlt = rlt − rlt−1,
l ∈ M. a) Norms of changing of targets’ positions are
uniformly bounded: ∀l ∈ M ‖ξlt‖ ≤ δ < ∞, or E‖ξlt‖2 ≤ δ2

and E‖ξlt|‖ξlt−2‖ ≤ δ2 if a sequence {ξlt} is random;

b) all matrices C
ui

k

2k , C
ui

k

2k−1 are invertible and ∀i, k E‖Qi
k‖2 ≤

q̄δ2, where Qi
k = [C

ui
k

2k ]
−1D

ui
k

2k − [C
ui
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2k−1]
−1D

ui
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Assumption 2: For k = 1, 2, . . . , the successive differences
ṽik = vi2k − vi2k−1 of observation noise are bounded: |ṽik| ≤
cv < ∞, or E(ṽik)2 ≤ c2v if a sequence {ṽit} is random.
Assumption 3: For any i, j ∈ N a) vectors ui

k, ∆
i
k, k =

1, 2, . . . , i ∈ N , are mutually independent; b) ui
k, ∆

i
k,

ξl2k−1, ξ
l
2k, and si2k−1, si2k, (if they are random) do not

depend on the σ-algebra F2k−2; c) if ξl2k−1, ξ
l
2k, v̄

i
n are

random, then random vectors ui
k, ∆

i
k, and elements si2k−1,

si2k, ξ
l
2k−1, ξ

l
2k, v̄

i
n are independent.

Assumption 4: a) For all i ∈ N , j ∈ N i
t weights bi,jt are

independent random variables with mean values (mathe-

matical expectations): Ebi,jt = bi,jav , and bounded variances:
E‖L(Bt)− L(Bav)‖2 ≤ σ2

B where Bav = [bi,jav ].
b) Graph GBav is strongly connected.

To analyze the quality of estimates we apply the following
definition for the problem of minimum tracking for mean-
risk functional (6).

Definition. A sequence of estimates {θ̄2k} has an asymptot-
ically efficient upper bound L̄ > 0 of residuals of estimation
if ∀ε > 0 ∃k̄ such that ∀k > k̄√

E‖θ̄2k − 1n ⊗ θ2k‖2 ≤ L̄+ ε.

Denote L̄ = L(Bav), λ̄2 = Re(λ2(L̄)), λ̄max = λ
1
2
max(L̄TL̄),

µ = 2γλ̄2 − α(γ2λ̄2
max + 4γλ̄max + 2q̄δ2

β2 + 4 + γ2σ2
B).

The following theorem shows the asymptotically efficient
upper bound of estimation residuals provided by algo-
rithm (7).

Theorem 1: If Assumptions 1–4 hold, and positive constant

α is sufficiently small: α < min(2γλ̄2/γ
2(λ̄2

max+σ2
B)+

q̄δ2

β2 +

2; 1/µ)
then the sequence of estimates provided by algorithm (7)
has an asymptotically efficient upper bound which equals

L̄ =
1

µ

(
h+

√
h2 + lµ

)
, (9)

where h = δ(2γ
√
nmλ̄max + 6

√
m +

√
q̄ + αγλ̄max(

√
q̄ +

2
√
m)+ α

β2 (q̄δ
2+2β2)(2

√
m+

√
q̄)), l = n( α

2β2 c
2
v+δ2( 4mα +

8m+ 4
√
m
√
q̄ + α

2β2 (q̄δ
2 + 2β2)(2

√
m+ q̄)2)).

See the proof of Theorem 1 in Appendix.

Remarks. 1. The observation noise vt in Theorem 1 can be
said to be almost arbitrary since it may either be nonran-
dom but bounded or it may also be a realization of some
stochastic process with arbitrary internal dependencies. In
particular, to prove the results of Theorem 1, there is no
need to assume that vt and Ft−1 are independent.

2. The result of the Theorem 1 shows that for the case
δ = 0 (all targets do not change the position with time)

we have L̄ = cv
√
α

β
√
2µ

. Under any noise level cv this bound can

be made infinitely small by choosing sufficiently small α.
At the same time, in the case of moving targets, the bigger
norm of changes δ can be compensated by choosing a
bigger step-size α. This leads to a tradeoff between making
α smaller because of noisy observations and making α
bigger due to the drift of optimal points.

7. SIMULATION

In this section, we consider the numerical experiment,
which illustrates the performance of the suggested algo-
rithm (7).
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The formulation of problem (6) says about one minimized

common vector θ̂t. We consider n parallel sequences of
estimates. In the next section we give the main theoretical
result of this paper that all these n sequences converge to
the neighbour of the true overall vector θt of all targets.

Algorithm (7) is similar to corresponding one in Erofeeva
et al. (2019): but in the latter we use brackets above

defined random coefficients bi,jt instead of ai,j .
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(θ), and LVP part

is determined for each agent i by the weighted sum of
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ȳt = diagn(col{y1t , . . . , ynt }),
∆̄t÷2 = col{el(ui

t÷2
) ⊗∆1

t÷2, . . . , el(ui
t÷2

) ⊗∆n
t÷2}.

Using the notations introduced above, algorithm (7) can
be rewritten in the following form

θ̄2k = θ̄2k−1 − α

[(
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To analyze the quality of estimates we apply the following
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See the proof of Theorem 1 in Appendix.

Remarks. 1. The observation noise vt in Theorem 1 can be
said to be almost arbitrary since it may either be nonran-
dom but bounded or it may also be a realization of some
stochastic process with arbitrary internal dependencies. In
particular, to prove the results of Theorem 1, there is no
need to assume that vt and Ft−1 are independent.

2. The result of the Theorem 1 shows that for the case
δ = 0 (all targets do not change the position with time)

we have L̄ = cv
√
α

β
√
2µ

. Under any noise level cv this bound can

be made infinitely small by choosing sufficiently small α.
At the same time, in the case of moving targets, the bigger
norm of changes δ can be compensated by choosing a
bigger step-size α. This leads to a tradeoff between making
α smaller because of noisy observations and making α
bigger due to the drift of optimal points.

7. SIMULATION

In this section, we consider the numerical experiment,
which illustrates the performance of the suggested algo-
rithm (7).

Consider an example of distributed network of 3 planar
intellectual sensors (agents) that have in their zone of
visibility 6 planar targets whose state vectors are to
be estimated. Algorithm (7) working on each node has
the following parameters: α = 0.05, β = 0.1, γ = 0.1.
We consider three types of noise: uniformly distributed
random variable falling within the interval [−1; 1], an
unknown constant, and periodic oscillation near +1 and
−1. For the last one we switch from +1 to −1 every 50th
iteration and add 0.1 sin(k).

The points l = 1 . . .m start their motion at the posi-
tion consisting of randomly chosen components from the
interval [0; 100]. Dynamics of the targets motion is as
follows: rlt = rlt−1 + χl

t−1. Let χl
t−1 be a random vector

uniformly distributed on the ball of radius equal to 0.2.
Observers don’t move and their coordinates are random
values uniformly distributed in interval [100; 120].

Figures 1, 2 show that there exists the time instant t
starting with which the estimations converge to the actual
value and move next to it.
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Fig. 1. Residuals f i,l
t (ui

t, r
i,l
t ) obtained by nodes.

Figure 3 shows that we provide the estimations that are
typical of every noise, due to similar behaviour of residuals
observed with different types of it.

8. CONCLUSION

In this paper we propose the new state estimation method
for networked systems with randomized topology combin-
ing Simultaneous Perturbation Stochastic Approximation
and the consensus algorithm. The SPSA algorithm itself
is well-studied and may be used in various applications.
However, the new approach makes it possible to relax the
assumption regarding the strong convexity of the mini-
mized mean-risk functional. This assumption may not be
fulfilled in the distributed optimization problems. We have
obtained a finite bound of residual between estimates and
time-varying unknown parameters. We have also applied
the new algorithm on the multisensor-multitarget problem
and validated it through simulation.
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Fig. 2. The estimates r̂i,lt obtained by nodes and actual

targets positions ri,lt . (Empty circles denote sensor
positions, targets movement is depicted as a series
of shaded circles and plus signs show the estimated
target positions.) The figure shows sparse data for
clarity: each 50th position of targets and the esti-
mates.

Fig. 3. Average residuals f i,l
t (ui

t, r
i,l
t ) observed with dif-

ferent types of noise: (1) — uniformly distributed
random variable falling within the interval [−1; 1], (2)
— an unknown constant, (3) — periodic oscillation
near +1 and −1.

APPENDIX

The following Lemma 1 in Granichin et al. (2009) is
instrumental to the proof of Theorem 1.

Lemma 1 Granichin et al. (2009): If ek > 0, µ, α > 0,
0 < µα < 1, h, l ≥ 0,

e2k ≤ (1− µα)e2k−1 + 2αhek−1 + αl, k = 1, 2, . . .

then ∀ε > 0 ∃K such that ∀k > K the following inequality

holds: ek ≤ 1
µ (h+

√
h2 + lµ) + ε.

The proof of Theorem 1: Denote di
t = θ̂i

2� t−1
2 � − θt,

d̄t = col{d1
t , . . . ,d

n
t }, where �·� is a ceiling function,
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νk = ‖d̄2k‖, s̄k = α
2β ((ȳ2k − ȳ2k−1) ⊗ Imd)∆̄k, v̄t =

col{ṽ1t , . . . , ṽnt }.
Let F̄k−1 = σ{Fk−1, v̄2k−1, v̄2k, ξ2k−1, ξ2k, ∆̄k} be the σ-
algebra of probabilistic events generated by Fk−1, v̄2k−1,

v̄2k, ξ2k−1, ξ2k,∆̄k, and F̃k−1 = σ{Fk−1, v̄2k−1, v̄2k, ξ2k−1,
ξ2k},

Fk−1 ⊂ F̃k−1 ⊂ F̄k−1 ⊂ Fk.

According to the algorithm (8), we have

νk = ‖θ̄2k−2 − 1n ⊗ θ2k − s̄k − αγ(L(B2k−2)⊗ Imd)d̄2k−2‖
since it is not so hard to prove that (L(B2k−2) ⊗
Imd)1n ⊗ θ2k−2 = 0 based on the properties of Laplasian
matrix L(B2k−2). By virtue of Assumption 4 we get
EF̄k−1

(L(B2k−2) − L̄)d̄2k−2 = 0, where L̄ = L(Bav), and

taking the conditional expectation over σ-algebra F̄k−1 we
derive

EF̄k−1
ν2k = ‖ḡk‖2 + α2γ2σ2

Bν
2
k−1−

2〈ḡk,EF̄k−1
s̄k〉+ EF̄k−1

‖s̄k‖2, (10)

where ḡk = (Imnd−αγL̄⊗Imd)d̄2k−2+1n⊗ (θ2k−2−θ2k).

Denote ∆i,q
k the q-th component of vector ∆i

k, q =

1, 2, . . . , d, and d
i,l(ui

k)
2k−1 the components of di

2k−1 corre-
sponded to target l ∈ M. Non-zero components of s̄k equal
to

(yi2k − yi2k−1)∆
i,q
k = (f̃ i

k + ṽik)∆
i,q
k ,

where

f̃ i
k = f2k(u

i
k, r̂

l(ui
k)

2k−2 + β∆i
k)− f2k−1(u

i
k, r̂

l(ui
k)

2k−2 − β∆i
k) =

(2β∆i
k −Qi

k)
T(2d

i,l(ui
k)

2k−1 −Qi
k).

By virtue of Assumption 3 we have EF̃k−1
ṽk∆

i
k = 0,

EF̃k−1
(∆i

k)
T(2d

i,l(ui
k)

2k−1 − Qi
k) = 0. Hence, taking the con-

ditional expectation over σ-algebra F̃k−1 of both sides of
the (10) and using observation model (4), we can assert
for EF̃k−1

ν2k as follows

EF̃k−1
ν2k = ‖ḡk‖2 + α2γ2σ2

Bν
2
k−1

+2α
∑
i∈N

〈−d
i,l(ui

k)
2k−2 + αγL̄di,l(ui

k)
2k−2 − (θ2k−2 − θ2k),

2d
i,l(ui

k)
2k−1 −Qi

k〉+
α2

4β2

∑
i∈N

EF̃k−1

(
ṽik + f̃ i

k

)2

‖∆i
k‖2. (11)

Under fulfilment of Assumption 4b, we have λ̄2 > 0 (see
Olfati-Saber and Murray (2004)). Hence, for the first term
in (11) we derive

‖ḡk‖2 ≤ d̄T
2k−2(Imnd − αγ(L̄ ⊗ Imd))

T×
(Imnd − αγ(L̄ ⊗ Imd))d̄2k−2 + 2αγ×

d̄T
2k−2(Imnd − αγ(L̄ ⊗ Imd))

T1n ⊗ (θ2k−2 − θ2k)+

‖1n ⊗ (θ2k−2 − θ2k)‖2 ≤ (1− 2αγλ̄2 + α2γ2λ̄2
max)ν

2
k−1+

4αγ
√
nmλ̄maxδνk−1 + 4nmδ2.

Note that 0 ≤ (1 − 2αγλ̄2 + α2γ2λ̄2
max) ≤ 1 according to

condition of Theorem 1.

Considering Assumption 1, and d
i,l(ui

k)
2k−1 = d

i,l(ui
k)

2k−2 +
(θ2k−2 − θ2k−1) we can evaluate the third term in (11)
as following

· · · ≤ 2α(2
√
mδ +

√
q̄δ)νk−1+

4α2γλ̄maxν
2
k−1 + 2α2γλ̄max(

√
q̄δ + 2

√
mδ)νk−1+

8α
√
mδνk−1 + 4αn

√
mδ(2

√
mδ +

√
q̄δ).

Consider the squared difference (ṽik + f̃ i
k)

2 which can be
represented as sum of three terms

ṽik + f̃ i
k = a1 + a2 + a3,

where a1 = ṽik, a2 = −(Qi
k)

T(2d
i,l(ui

k)
2k−1 −Qi

k),

a3 = (2β∆i
k)

T(2d
i,l(ui

k)
2k−1 −Qi

k).

The first two terms do not depend on ∆i
k and

EF̃k−1
aq∆

i
k‖∆i

k‖2 = 0, q = 1, 2, by virtue the Assump-

tion 3. Hence, we derive EF̃k−1
(ṽik + f̃ i

k)
2‖∆i

k‖2 ≤

EF̃k−1
(a1 + a2)

2 + a23 ≤ EF̃k−1
2a21 + 2a22 + a23.

We need to estimate EFk−1
a2q, q = 1, . . . , 3. Taking the

conditional expectation over σ-algebra Fk−1, by virtue
Assumptions 1–3 we evaluate

EFk−1
a21 ≤ c2v, EFk−1

a22 ≤ q̄δ2(4‖di,l(ui
k)

2k−2 ‖2 + 4δ(2
√
m+

√
q̄)‖di,l(ui

k)
2k−2 ‖+ δ2(2

√
m+

√
q̄)2), EFk−1

a33 ≤ 4β2

(4‖di,l(ui
k)

2k−2 ‖2+4δ(2
√
m+

√
q̄)‖di,l(ui

k)
2k−2 ‖+δ2(2

√
m+

√
q̄)2).

Taking the conditional expectation over σ-algebra Fk−1

for the last term in (11) we get

α2

4β2
EFk−1

∑
i∈N

(ṽik + f̃ i
k)

2‖∆i
k‖2 ≤

α2

2β2
(nc2v + 4(q̄δ2 + 2β2)ν2k−1 + 4δ(q̄δ2 + 2β2)(2

√
m+

√
q̄)νk−1 + nδ2(q̄δ2 + 2β2)(2

√
m+

√
q̄)2).

Summing up the bounds and taking the conditional ex-
pectation over σ-algebra Fk−1, we derive the following
from (11)

EFk−1
ν2k ≤ (1− µα)ν2k−1 + 2αhνk−1 + αl. (12)

By virtue condition of Theorem 1, we have αµ < 1. Taking
the unconditional expectation of both sides of (12), we see

that all conditions of Lemma 1 hold for ek =
√
Eν2k .

This completes the proof of Theorem 1.
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2k−1 corre-
sponded to target l ∈ M. Non-zero components of s̄k equal
to

(yi2k − yi2k−1)∆
i,q
k = (f̃ i

k + ṽik)∆
i,q
k ,

where

f̃ i
k = f2k(u

i
k, r̂

l(ui
k)

2k−2 + β∆i
k)− f2k−1(u

i
k, r̂

l(ui
k)

2k−2 − β∆i
k) =

(2β∆i
k −Qi

k)
T(2d

i,l(ui
k)

2k−1 −Qi
k).

By virtue of Assumption 3 we have EF̃k−1
ṽk∆

i
k = 0,

EF̃k−1
(∆i

k)
T(2d

i,l(ui
k)

2k−1 − Qi
k) = 0. Hence, taking the con-

ditional expectation over σ-algebra F̃k−1 of both sides of
the (10) and using observation model (4), we can assert
for EF̃k−1

ν2k as follows

EF̃k−1
ν2k = ‖ḡk‖2 + α2γ2σ2

Bν
2
k−1

+2α
∑
i∈N

〈−d
i,l(ui

k)
2k−2 + αγL̄di,l(ui

k)
2k−2 − (θ2k−2 − θ2k),

2d
i,l(ui

k)
2k−1 −Qi

k〉+
α2

4β2

∑
i∈N

EF̃k−1

(
ṽik + f̃ i

k

)2

‖∆i
k‖2. (11)

Under fulfilment of Assumption 4b, we have λ̄2 > 0 (see
Olfati-Saber and Murray (2004)). Hence, for the first term
in (11) we derive

‖ḡk‖2 ≤ d̄T
2k−2(Imnd − αγ(L̄ ⊗ Imd))

T×
(Imnd − αγ(L̄ ⊗ Imd))d̄2k−2 + 2αγ×

d̄T
2k−2(Imnd − αγ(L̄ ⊗ Imd))

T1n ⊗ (θ2k−2 − θ2k)+

‖1n ⊗ (θ2k−2 − θ2k)‖2 ≤ (1− 2αγλ̄2 + α2γ2λ̄2
max)ν

2
k−1+

4αγ
√
nmλ̄maxδνk−1 + 4nmδ2.

Note that 0 ≤ (1 − 2αγλ̄2 + α2γ2λ̄2
max) ≤ 1 according to

condition of Theorem 1.

Considering Assumption 1, and d
i,l(ui

k)
2k−1 = d

i,l(ui
k)

2k−2 +
(θ2k−2 − θ2k−1) we can evaluate the third term in (11)
as following

· · · ≤ 2α(2
√
mδ +

√
q̄δ)νk−1+

4α2γλ̄maxν
2
k−1 + 2α2γλ̄max(

√
q̄δ + 2

√
mδ)νk−1+

8α
√
mδνk−1 + 4αn

√
mδ(2

√
mδ +

√
q̄δ).

Consider the squared difference (ṽik + f̃ i
k)

2 which can be
represented as sum of three terms

ṽik + f̃ i
k = a1 + a2 + a3,

where a1 = ṽik, a2 = −(Qi
k)

T(2d
i,l(ui

k)
2k−1 −Qi

k),

a3 = (2β∆i
k)

T(2d
i,l(ui

k)
2k−1 −Qi

k).

The first two terms do not depend on ∆i
k and

EF̃k−1
aq∆

i
k‖∆i

k‖2 = 0, q = 1, 2, by virtue the Assump-

tion 3. Hence, we derive EF̃k−1
(ṽik + f̃ i

k)
2‖∆i

k‖2 ≤

EF̃k−1
(a1 + a2)

2 + a23 ≤ EF̃k−1
2a21 + 2a22 + a23.

We need to estimate EFk−1
a2q, q = 1, . . . , 3. Taking the

conditional expectation over σ-algebra Fk−1, by virtue
Assumptions 1–3 we evaluate

EFk−1
a21 ≤ c2v, EFk−1

a22 ≤ q̄δ2(4‖di,l(ui
k)

2k−2 ‖2 + 4δ(2
√
m+

√
q̄)‖di,l(ui

k)
2k−2 ‖+ δ2(2

√
m+

√
q̄)2), EFk−1

a33 ≤ 4β2

(4‖di,l(ui
k)

2k−2 ‖2+4δ(2
√
m+

√
q̄)‖di,l(ui

k)
2k−2 ‖+δ2(2

√
m+

√
q̄)2).

Taking the conditional expectation over σ-algebra Fk−1

for the last term in (11) we get

α2

4β2
EFk−1

∑
i∈N

(ṽik + f̃ i
k)

2‖∆i
k‖2 ≤

α2

2β2
(nc2v + 4(q̄δ2 + 2β2)ν2k−1 + 4δ(q̄δ2 + 2β2)(2

√
m+

√
q̄)νk−1 + nδ2(q̄δ2 + 2β2)(2

√
m+

√
q̄)2).

Summing up the bounds and taking the conditional ex-
pectation over σ-algebra Fk−1, we derive the following
from (11)

EFk−1
ν2k ≤ (1− µα)ν2k−1 + 2αhνk−1 + αl. (12)

By virtue condition of Theorem 1, we have αµ < 1. Taking
the unconditional expectation of both sides of (12), we see

that all conditions of Lemma 1 hold for ek =
√
Eν2k .

This completes the proof of Theorem 1.
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