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Abstract Malware analysis and detection is currently one of the major topics in the
information security landscape. Twomain approaches to analyze and detect malware
are static and dynamic analysis. In order to detect a running malware, one needs to
perform dynamic analysis. Different methods of dynamic malware analysis produce
different amounts of data. The methods that rely on low-level features produce
very high amounts of data. Thus, machine learning methods are used to speed
up and automate the analysis. The data that fed into machine learning algorithms
often requires preprocessing. Feature selection is one of the important steps of data
preprocessing and often takes significant amount of time. In this paper we analyze
the Intersection Subtraction (IS) feature selection method that was first proposed and
used on a high dimensional dataset derived from the behavioral malware analysis. In
our work, we assess its computational complexity and analyze potential strengths and
weaknesses. In the end, we compare Intersection Subtraction and Information Gain
(IG) feature selection methods in term of potential classification performance and
time complexity. We apply them to the dataset of memory access patterns produced
bymalicious and benign executables. As the result we found, that the features selected
by IS and IG are very different. Nevertheless, machine learning models trained with
IS-selected features performed almost as good as those trained with IG-selected
features. IS allowed to achieve the classification accuracy of more than 99%. We
also show, the IS feature selection method is faster than IG what makes it attractive
to those who need to analyze high dimensional datasets.

Sergii Banin
Department of Information Security and Communication Technology, NTNU, Gjøvik, Norway,
e-mail: sergii.banin@ntnu.no
? The research leading to these results has received funding from the Center for Cyber and
Information Security, under budget allocation from the Ministry of Justice and Public Security of
Norway

1

sergii.banin@ntnu.no


2 S.Banin

1 Introduction

Today many researchers from different research areas have to deal with big amounts
of data. Various statistical methods are used to process and understand data that is
too big or complex for human analysis. Part of these methods are called machine
learning: "the automatic modeling of underlying processes that have generated the
collected data" [22]. Currently, machine learning is one of the most used approaches
when there is a need to predict certain qualities of objects or events. Machine learn-
ing algorithms can be divided into supervised (classification and regression) and
unsupervised (clustering). In this paper we focus on the classification: prediction of
a class (type) of a sample based on its features (properties). Machine learning is
widely used in different fields such as medicine, biology, manufacturing [24] or in-
formation security [31] [4]. In information security, machine learning is extensively
used in production and research, as the amounts of data that need to be processed
are enormous. Especially, machine learning is actively used for malware analysis
and detection. According to AV-TEST Institute, there are more than 350,000 new
malware samples detected every day [3]. The developers of the anti-virus solutions
and researchers work on finding a way to detect malware without having to search
through the entire database of already known malware. Moreover, they try to find
methods that allow detecting previously unknown malware. The common practice
is to find certain characteristics that are common to many malware samples. As the
number of malware is very big and growing [3] the machine learning methods are
used to deal with the emerging amount of data. Machine learning methods rely on
features: properties of objects that are being studied. There are two main types of
features that can be extracted from malware: static and dynamic. Static features are
extracted directly from the malicious file without a need to launch it. Static features
are relatively easy to extract, but at the same time it is easier to change them with
a use of obfuscation or encryption [1]. However, malware becomes malicious only
after it has been launched. The features that occur after the launch of malware are
called dynamic, or behavioral features. We can divide dynamic features into high-
and low-level features [6]. File and network activity, API [2] and system calls are
some of the high-level features, while opcodes, memory access operations [38] or
hardware performance counters are considered to be low-level ones. We name dy-
namic features that emerge from the system’s hardware as the low-level features [5]
[21] [25]. To represent a certain behavioral event with low-level features we need to
record and process a significantly bigger amount of data. For example, to describe
an API call on the high level we only need its name and arguments passed to it on
the call. However, if we decide to record a sequence of opcodes or memory access
operations invoked by the API call we’ll end up with hundreds if not thousands of
events. In this paper, we address a problem that arises from the number of low-level
features one needs to record and process while doing dynamic malware analysis.

While machine learning provides good opportunities for automation and analy-
sis, the data that is used by machine learning algorithms has to be preprocessed.
Various methods of data preprocessing are described in the literature: discretization
of continuous features, attribute binarization, the transformation of discrete features
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into continuous, dimensionality reduction and so on [22]. The first three of the afore-
mentioned methods are mostly used when the chosen machine learning algorithm
works only with a certain type of data. For example, the Naive Bayes classifier needs
discrete data to provide a useful outcome. On its turn, dimensionality reduction is
often needed, when the amount of features in the dataset is too big. Having too many
features can result in increased model training times and model overfitting. There
are several ways to reduce dimensionality: feature subset selection, feature extraction
and principal components analysis (PCA) [22]. Feature extraction is aimed at finding
a set of new features that are constructed as a function of original features. On its
turn, PCA finds a new coordinate system with a focus on making the axes aligned
with the highest variance of the data. These methods, however, make it harder to
analyze the results achieved by the machine learning model: it is sometimes im-
portant to understand which features contribute the most towards the classification
performance of a model. In such cases, in order to reduce the dimensionality, one
may apply feature (subset) selection. With feature selection it is possible to select
a certain amount of best features based on a certain feature quality measure while
keeping the original features intact.

Feature selection is aimed at the dimensionality reduction. Ironically, when the
amount of features becomes too big (for example millions as in [8] or [5]) the fea-
ture selection becomes a very computationally intense task. The datasets where the
number of features is much bigger than the number of learning samples are called
High-dimensional low (small) sample size (HDLSS/HDSSS) datasets. Sometimes
there are so many features [8], that commonly used machine learning packages sim-
ply can not handle such datasets. Storing such a dataset in the single file or database
table becomes a problem as well. Thus, the use of the common machine learning
packages becomes impossible since they require data to be stored in one piece. On
its turn, developing and implementation of a custom machine learning package can
take more time than actual data collection and be a hard task for the researchers that
don’t have enough expertise in software development.

In this paper we focus on the feature selection method that was developed and
used in [8] to detect malware based on the memory access patterns. In [8] the dataset
contained almost six millions of binary features and 1204 samples divided into two
classes. The features represented sequences of memory access operations generated
by malicious and benign software. The feature took value 1 if it was generated by a
sample, and 0 if not. Utilized feature selection method was aimed at removing those
features, that are present (take value 1) in the samples of both classes. Thus, it is
named Intersection Subtraction (IS) feature selection method. This method helped
authors of [8] to reduce feature space from 6M of features to 800. With the use of
selected features, it became possible to train a classification model that achieved
98% classification accuracy for the two-class dataset. In this paper, we provide an
additional analysis of the IS feature selection method and discuss its advantages
and disadvantages. We also compare its performance with an Information Gain [22]
feature selection method in a similar malware detection problem. We run our tests
on the newer and larger dataset of malicious and benign executables. We show how
machine learning models trained with features selected by IS feature selection per-
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form compared to those selected by IG.
The remainder of the paper is arranged as follows. In Section 2 we describe the

problem and provide an overview of related articles. In Section 3 we describe the
IS feature selection method, theoretically assess its strengths and weaknesses and
explain the context in which IS might be used. In the Section 4 we describe our
experimental setup, compare feature sets selected by IS and IG, and train machine
learning algorithms with the use of selected features. In Section 5 we discuss our
findings and outline the future work. In the last Section 6 we summarize our findings
and provide conclusions.

2 Background

In this section, we describe the problem area and provide an overview of the papers
related to HDLSS datasets and feature selection.

2.1 Problem description

While talking about the optimal size of the dataset to be used in machine learning
model training, different authors consider different dataset sizes to be optimal. The
size of the dataset consists of a number of samples and features. In various sources
[26] [15] one can find suggestions, that a minimal amount of samples for training
should be between 50 and 80, while 200 and more samples are expected to bring
increased accuracy and significantly smaller error rates. Other authors have shown
that it is important to have at least 20 to 30 samples per class [11]. When talking
about the number of features it is generally considered, that the fewer features there
are in the dataset - the better it is for machine learning algorithm [8] [5] [7] [22].
Some authors advise utilizing the rule of 10: in order to train a model with a good
performance, one needs to have ten times more samples than the number of features
[23]. However, in some cases, the number of features can be significantly higher than
the number of learning samples. This may happen due to the context of the research
and the nature of data. For example, in [8] the authors describe a novel malware
detection approach. They record memory access operations performed by malicious
and benign executables, split them into n-grams of various sizes and use those n-
grams as features for training the machine learning models. Each feature could take
value 1 or 0 if the n-gram represented by the feature was or was not generated by
the sample respectively. The sequence of memory access operations is a sequence
of Reads (R) and Writes (W). In their work, authors record a first million of memory
access operations performed by each executable after it was launched. Afterwards,
the sequence of memory access operations is being split into the set of overlapping
n-grams of a size 96. Since memory access operations take only two possible values
(R and W), the potential feature space of the above-mentioned approach is 296 if a
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sequence of memory access operations would be completely random. However, as
the same authors mention in their next paper [5], the memory access operations are
not random. Thus in [8] their initial feature space is "only" about 6M of features.
They had 1204 samples divided into two classes. This can be considered a good
sample size based on what was suggested in [11] [15]. However, the amount of
features generated under such experimental design makes it impossible to follow
"the rule of 10". A straightforward approach in such conditions could be to simply
use all the data for training the machine learning model. However, just the storage of
a complete dataset from [8] would take more than 6GB of space. Popular machine
learning frameworks such as Weka [19] or Scikit-learn [26] are not suited to load
and handle so much data. This shows a need for dimensionality reduction. In the
works similar to [8] or [5] it is important to keep the original features in order to be
able to interpret results. For example, having the results from [8] it might be possible
to understand which memory access patterns make malicious behavior distinctive
from the benign behavior. Thereby, dimensionality reductionmethods such as feature
extraction or PCA are not applicable in such cases. On its turn, feature selection can
help to select a subset features without hindering their original state.

Feature selection methods can be divided into several categories: filter, wrapper
and embedded methods. Filter methods choose features based on a certain quality
measure such as Pearsons correlation, Chi-square, mutual information and so on.
Wrapper methods choose features based on the classification performance of the
target machine learning model trained with the use of those features [33]. Wrapper
methods are very computationally intense since for every possible feature subset
there is a need to train and test the machine learning model. Embedded methods,
as the name states, are embedded in the machine learning algorithms. Algorithms
such as Decision Trees [22] perform feature selection simultaneously with model
training.However, the computational overhead is higher than one of the filtermethods
and such algorithms are susceptible to overfitting [9] and are not suitable for high
dimensional data [33]. So for the research similar to [8] the most suitable approach
for dimensionality reduction will be a filter-based method. In the case of (very) high
dimensional data, it is crucial to have a feature selection method with the lowest
possible computational overhead. The perfect feature selection method will have a
computational complexity of O(n) that is linear to a number of features n. But such a
method does not exist, since filter methods are aimed to select features that represent
classes (and consequently samples) in the best possible way [22]. Thereby, while
choosing the feature selection method to work on the high dimensional dataset it is
desirable to choose a method with the computational complexity of O(mn) where m
is the number of samples in the dataset.

The use of different filter-based feature selection methods are described in various
papers. Information Gain [7] [24], Correlation-based feature selection [5] [17] and
ReliefF [17] are some of the common feature selection methods. Information Gain
(IG) ranks features based on entropy in respect to the classes and can be described
as "the amount of information, obtained from the attribute A, for determining the
class C" [22]. Basically, in order to perform a feature selection based on IG one have
to calculate probabilities of an attribute to take certain values and relevant class-
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conditional probabilities. This results in a computational complexity around O(mn),
where n is the amount of features and m is the amount of samples. Correlation-based
Feature selection method (CFS) was proposed in [18] and is aimed at selecting the
subset of features that have a high correlation to the class but low correlation between
each other. By doing so it is possible to find a subset of features with minimal
redundancy. The problem with this method, is that it requires to calculate a pairwise
correlation matrix between all of the n features and m classes which requires m((n2−
n)/2) operations. The feature selection search could require an additional (n2 − n)/2
operations in a worst-case scenario. With a potential computational complexity of
O(m((n2 − n)/2) + (n2 − n)/2) the use of CFS for high dimensional data becomes
very problematic. For example, just storing of correlation matrix needed for 6M
of features in [8] would require at least 18 TB of space. Thus, in order to apply
CFS on high dimensional datasets it might be useful to first reduce a feature space
with another, less computationally intense, feature selection method and only after
apply the CFS [5]. ReliefF ranks features based on their ability to separate close
samples from the different classes [22]. In order to perform feature selection with
ReliefF, it is first important to calculate a distance matrix between all samples.
The resulting computational complexity of the method can be roughly estimated as
O(n((m2 − m)/2)) that is almost m/2 times more than the one of the IG. Having a
large n makes the use of ReliefF less favorable than IG.

Based on the assumptions about the computational complexity of the above-
mentioned feature selection methods one can make a conclusion, that IG might
be one of the best choices when it comes to the high dimensional datasets. The
problem is that even the feature selection methods with O(mn) complexity become
slow with the large numbers of n. And as we mentioned above, common machine
learning packages are not suitable to work with big datasets. Thus, a researcher that
needs to perform feature selection on such datasets is forced to develop a custom
implementation of feature selection algorithm with regards to the data in interest. In
this case, inefficient implementation of the common feature selection algorithm may
result in significant use of time and even inability to obtain results (e.g. due to the
lack of virtual memory). For example, the Information Gain of a feature is calculated
with the following formula:

Gain(A) = −
∑
k

pk log pk +
∑
j

pj

∑
k

pk | j log pk | j

where pk is the probability of the class k, pj is the probability of an attribute to
take jth value and pk | j is the conditional probability of class k given jth value
of an attribute [22]. This shows, that it is necessary to "count" how many times
each attribute takes a certain value in total and when a certain class is given. Lets
rewrite previously mentioned computational complexity of IG as O(nTqmeaureIG)

where TqmeaureIG = f (m) is the computational time needed to calculate the quality
measure (Information Gain in this case) of a feature. We will need TqmeaureIG

later, to show that the IS feature selection method works faster than IG, which is
important when working with high dimensional datasets. Thus, it is easy to see that
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the inefficient implementation of IG can significantly increase the time needed to
obtain the results. As we will later show, it is possible to overcome this problem with
a Intersection Subtraction feature selection method.

2.2 Literature overview

In this subsection, we refer to papers where authors addressed the problems related
to HDLSS datasets and feature selection on them. In the [12] authors outline both
curses and blessings of high dimensionality. By blessings of dimensionality, they
mention the phenomenon of measure concentration and the success of asymptotic
methods. While talking about curses of dimensionality authors outline several areas
where they can occur: optimization, function approximation and numerical integra-
tion. They also stress attention to the fact, that many "classical" statistical methods
are based on the assumption, that the amount of features n is less than the amount
of samples m, while m→ ∞. However, these methods may fail if n > m, especially
when n→∞. Other authors in [14] outline the following challenges of high dimen-
sionality: "(i) high dimensionality brings noise accumulation, spurious correlations
and incidental homogeneity; (ii) high dimensionality combined with large sample
size creates issues such as heavy computational cost and algorithmic instability"
[14]. As well as authors of [12] they outline, that traditional statistical methods may
fail when used on high dimensional data. The authors of [40] review the perfor-
mance and limitations of several common classifiers such as Naive Bayes, Linear
Discriminant Analysis, Logistic regression, Support Vector Machines and Distance
Weighted Discrimination in the case of two-class classification problem on HDLSS
datasets. They also say, that if the number of features n → ∞ and both classes are
from the same distribution "the probability that these two groups are "perfectly"
separable converges to 1" [40]. In simple words, it means, that with a large enough
amount of features it should be possible to construct a set of rules (build a classifier)
that will perfectly fit (overfit) the training data. This fact outlines the importance of
thorough feature selection. It will improve the capability of machine learning algo-
rithms to create models with good generality and interpretability. The model with
good generality is the model that is capable of generalizing over the dataset; such
model would not be significantly changed if the number of samples in the dataset
is slightly increased/decreased [40]. A model with good interpretability makes the
analysis of the model itself easier. The fewer features are involved during the training
the easier it is to analyze the obtained model. For example, authors of [5] underline
the importance of the fact, that having 29 features instead of 6M or 15M helps in the
understanding of the underlying processes. They performed multinomial (10 class)
malware classification with the use of features constructed from memory access
patterns. Similarly to [8], they used memory access 96-grams as features. Such fea-
ture, if found to be important in the classification, can not be directly understood
by a human analyst. Thus, in [6] they made an attempt to interpret memory access
sequences with more high-level system events (API calls). Such analysis would be
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much harder if they had millions of features instead of 29.
Various authors addressed the problem of feature selection on HDLSS datasets

more specifically. For example same authors in [36] and [37] present possible im-
provements to the PCA in HDLSS cases. In [36] they propose a way to estimate
singular value decomposition of the cross data matrix. Later, in [37] authors explore
the impact of the geometric representation of HDLSS data on a possibility to con-
verge the dataset to an n-dimensional surface. The authors of [13] propose a nonlinear
transformation of HDLSS data. They showed, how transformation based on inter-
point distances helps to increase final classification accuracy. In the [39] the authors
propose a hybrid feature selection method that is based on antlion optimization and
grey wolf optimization methods (ALO-GWO). They evaluate the performance of the
proposed method on several HDLSS datasets. The authors show that the ALO-GWO
feature selection method provides a good balance between the performance of mod-
els and the ability to reduce a feature space. The above-mentioned papers addressed
the problem of feature selection on HDLSS. However, the number of features in
the dataset used in those papers rarely exceeded several tens of thousands (e.g. in
[39]). On their turn, authors of [16] during the test of their feature selection method
used a dataset with more than 3M of features. In their work, they proposed a feature
selection method based on bijective soft sets (BSSReduce). They claim, that the
computational complexity of the method is O(m)where m is the number of samples.
This might have been a perfect feature selection method for the HDLSS datasets.
However, after reviewing the provided algorithms, it looks like their approach relies
on the precomputed bijective soft sets that have to contribute to the computational
complexity as well. Nevertheless, the results of testing the BSSReduce on the several
HDLSS datasets showed, that it is capable of significant dimensionality reduction
while keeping a competitive level of the trained models performance. It could be use-
ful to compare BSSReduce with our method, unfortunately, authors of BSSReduce
did not provide the source code of their tool. An approach different from the previ-
ously mentioned papers is present in the [5]. The authors of the paper did not focus
on feature selection. However, they needed to reduce feature space in two HDLSS
datasets from 6M and 15M of features. Authors said that "models should be simple
enough" [5] to make their analysis easier. In order to reduce a large feature space,
they performed feature selection in two steps. On the first step, they used custom
implementation of Information Gain feature selection to reduce feature space to 50K
and fewer features. On the second step, they took the best 5K feature selected by
IG and used them in CFS implementation from Weka. This resulted in 29 features
selected by CFS. The models trained with just 29 features performed almost as good
as a model trained on 5K and more features. For Naive Bayes and Support Vector
Machine algorithms, smaller feature set even allowed to increase the performance
of trained models. Such approach has its own limitations. CFS is aimed at selecting
features that are not correlated with each other. However, since the first feature selec-
tion step utilizes IG, there is no guarantee that features passed to the CFS does not
have a strong mutual correlation. But as we mentioned above, running CFS on the
HDLSS dataset with millions of features requires enormous computational resources
and sometimes impossible.
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3 Intersection Subtraction selection method

In this section, we describe the IS feature selection method and evaluate its strengths
and weaknesses.

3.1 The context

Before describing the Intersection Subtraction feature selection method we need
to describe a context under which its use becomes meaningful. This method was
developed during the research described in [8]. The task was to detect malware
based on thememory access traces. To do this,malicious and benign executableswere
launched together with custom-built Intel Pin [20] tool. The raw data consisted of the
first 1M of memory access operations performed by each executable. The sequences
contained W for each write operation and R for each read operation performed by
an executable. These sequences were later divided into a set of overlapping n-grams
of various sizes. For example, a sequence [WWRWRR] of a length 6 can be divided
into the set of 4-grams in the following way: [WWRW,WRWR,RWRR]. The n-grams
were directly used as features for machine learning models training. Each feature got
value 1 if the corresponding n-gram was generated by the sample regardless of the
number of times it was encountered in the trace of a certain sample. In other cases,
the feature got value 0. As the goal of the [8] was to be able to detect malware, it
is possible to state, that features that obtain 1 (are present within a certain class)
pose greater interest. Such approach allows to state, that presence of certain memory
access n-grams is the sign of malicious behavior. The dataset from [8] was nearly
balanced and samples were divided into two classes. So the context of the use of the
proposed feature selection method is the following: two-class classification problem
on a balanced dataset with binary features.

3.2 Feature selection algorithm

The feature space in [8] was around 6M of unique memory access n-grams of a
size 96. By the time of writing, authors were not able to implement any common
feature selection method (for example IG) to operate on such dataset. Thus, they
implemented the following feature selection method. It includes the following steps:

1. Construct two vectors of features for each class. The feature is included in the
vector of the class if the corresponding memory access n-gram was generated
by a sample from this class.

2. Having two vectors constructed, remove from them features that are present in
both vectors. Having this done we obtain two vectors of class-unique features.
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In other words, we subtracted an intersection of two feature sets from both of
them.

3. Decide on the size of the final feature set k.
4. From each of the class-unique features vectors select k/2 features with the highest

class-wise frequency. A class-wise frequency is the proportion of samples within
the class that generate a corresponding memory access n-gram.

5. Use the k selected features to construct the final dataset with reduced dimen-
sionality.

The resulting dataset is later used to build machine learning models. The operation
performed in Step 2 is quite similar to the symmetric difference of two sets. However,
we prefer to say that we subtract intersection from both sets, as we need those sets to
be separated until the last step. It is also worthmentioning, that having an intersection
of two feature sets allows to explore features that fell into it. It might be useful for
additional analysis of the results [8].

3.3 Computational complexity

Lets discuss the potential computational complexity of Intersection Subtraction (IS)
feature selection. As data is already labeled (samples divided into two classes) the
feature vectors from the Step 1 are ready from the beginning. Step 2 requires finding
an intersection of two sets. Imagine we have two sets A and B with cardinality
of a and b respectively. In order to find the intersection of A and B we need to
compare all elements of set A with all elements of set B. Such operation will have
a computational complexity of O(ab). Let’s denote the intersection of A and B as
C = A∩ B with cardinality c. Subtracting the elements of C from A and B, similarly
to the previous operation, will have the computational complexity of O(ac + bc).
The resulting computational complexity of O(ab + ac + bc) may look quite high
already, since both a and b are large in case of HDLSS datasets. However, the real
implementation of IS feature selection with the use of Python programming language
shows, that execution of the Step 2 does not take significant time (see Section 4). First
of all, according to [28], subtraction A-C (set difference) will have computational
complexity of O(a). So we can already rewrite previously mentioned computational
complexity of Step 2 with O(ab + a + b). Moreover, if we are not interested in the
intersection C itself, we can utilize two operations A-B and B-A in order to obtain
sets of class-unique features. Complexity of such approach will be O(a+b). The Step
4 requires the calculation of class-wise frequencies of the features. In our particular
case, when features are binary, we only need to count how many samples from each
class has value 1 of a certain feature. The Step 4 will then have O((a−c)m+(b−c)m)
computational complexity. Here, m is the number of samples in the dataset, a-c is
the amount of class-unique features from set A and b-c - from set B. It is also worth
mentioning, that Step 4 can be optimized. Let’s assume that the dataset is perfectly
balanced, so we have two classes with m/2 samples. Since our IS feature selection
is aimed on finding class-unique features, we can only search for 1s among a-c and
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b-c features of m/2 samples of each class. So the Step 4 can be optimized to have
a complexity of O((a − c)m/2 + (b − c)m/2). Lets now try to assess the overall
computational complexity of the IS feature selection. Let us have the initial amount
of features a+b=n and m samples. The amount of features from intersection c is
normally smaller than both a and b (here we assume, that A 1 B and B 1 A). Having
this we can conclude, that the complexity of Step 2 O(ab + a + b) after substitution
will be smaller than O(n2) for all a > 1. On its turn, the complexity of Step 4
O((a− c)m/2+ (b− c)m/2) should be smaller than O(mn). The resulting complexity
of O(ab+ a + b+ (a − c)m/2+ (b− c)m/2) should be smaller than O(n2 +mn). The
feature selection method where the upper boundary of computational complexity is
described with n2 is not what we outlined in Section 2 as a good feature selection
method for HDLSS dataset. Lets now make a substitution similar to the one we
made in Section 2. First, lets substitute m with TqmeaureIS = g(m) which is the
time needed to calculate class-wise frequency of a feature. Second, the time Tin
needed to find whether a certain feature from one set is present in another set (to
find an intersection, or to subtract these features from the set) is relatively small.
Thus, the updated computational complexity of IS feature selection will be smaller
than O((nTin)2 + nTqmeaureIS) which can be smaller than O(nTqmeaureIG) of IG.
We will prove this in Section 4.

3.4 Theoretical assessment

In this subsection, we discuss potential outcomes of the IS feature selection. As we
already mentioned, IS feature selection is potentially faster than a more common
IG feature selection. This makes IS attractive for the high dimensional datasets.
However, speed comes with a price. Let’s look at the potential disadvantages of IS
feature selection. As we described at the beginning of this section, the use of this
method makes more sense when we are interested in finding features the presence of
which poses particular interest. However, it might happen, that in the dataset will be
no class-unique features. In other words, it will be impossible to say, that if a certain
feature of a sample takes value 1, then this sample belongs to a certain class. In
such case, it will be impossible to find an intersection of two feature sets. The other
problem is potential information loss due to intersection removal. Imagine we have a
dataset that is represented in the Table 1. It has 4 features and 4 samples labeled into
two classes C1 and C2. IS feature selection will remove features f1 and f3 since they
obtain value 1 (are present) in both classes. The remaining features f2 and f4 will
not allow us to generate a rule that will be able to distinguish between samples s2
and s4. This example is quite small, but on the larger dataset removing a feature that
takes value 1 in e.g. all samples of one class and only in one sample of another class
can lead to the inability of building a model with good performance. Such feature
would be most likely selected by IG feature selection. The last disadvantage of the
IS feature selection is potentially poor performance on the multinomial datasets.
If we increase the number of classes we will end up in the situation of growing
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Table 1 Sample dataset 1
f1 f2 f3 f4

s1 1 1 1 0 C1
s2 1 0 0 0 C1
s3 1 0 1 1 C2
s4 0 0 1 0 C2

intersection size. In such case, the IS will remove more features from the feature
space resulting in increased information loss. We begin with the description of our
dataset and experimental environment. Later, we explain the basics ofmemory access
operations and explain the way we record and process the data.

4 Experimental evaluation

In this sectionwe describe experimental evaluation of the IS feature selectionmethod.
We show how IS feature selection can be applied for malware detection. During
experimental evaluation we compare performance of features selected by IS and IG.
On the Figure 1we depict general data-flowof our experiments.We start by recording
memory access operations produced by benign and malicious executables. After, we
split sequences of memory access operations into n-grams. Then we apply feature
selectionmethods to select best features (n-grams). In the end,we use these features to
train machine learning models and compare performance of the models trained with
a use of features selected by different feature selection methods. Before presenting
the results achieved by machine learning models, we show the experimental time
complexity of the IS and IG feature selection methods. We also check how similar
the feature sets selected by different methods are.

We now proceed with the description of our dataset, experimental environment
and the way we collect and process the data.

4.1 Dataset

In this work we use dataset similar to the one used in [7]. It consists of 2098 benign
and 2005 malicious Windows executables. Malicious executables were downloaded
as part of VirusShare_00360 pack available at VirusShare [35]. Malicious samples
belong to the following malware families: Fareit, Occamy, Emotet, VBInject, Ursnif,
Prepscram, CeeInject, Tiggre, Skeeyah, GandCrab. According to the VirusTotal [32]
reports, our samples were first seen (first submission date) between March 2018 and
March 2019. Benign executables are the real software downloaded from Portable
Apps [27] in September 2019.
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Fig. 1 The flow of data collection and feature selection

4.2 Experimental environment

In order to perform dynamic malware analysis, we need to avoid the influence of any
environmental changes, so that all executables are launched in similar conditions. To
achieve this we used an isolated Virtual Box virtual machine (VM) withWindows 10
guest operating system. VMs were launched on the Virtual Dedicated Server (VDS)
with 4-cores Intel Xeon CPU E5-2630 CPU running at 2.4GHz and 32GB of RAM
with Ubuntu 18.04 as a main operating system.

4.3 Memory access operations

The executables used on Windows operating systems are compiled into the files
in PE32 format. Files of PE32 format contain header and sections. The header
contains the metadata that is used by operating system in order to properly load
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an executable into memory and prepare all the necessary resources. The sections
contain information about imported and exported functions, resources, data and the
executable code. The executable code is stored in the binary form which can be
represented as opcodes. Opcodes (or assembly commands) are the basic instructions
that are executed by theCPU. Execution of some instructionswill not requirememory
access. Foe example execution of MOV EAX,EBX opcode will not result in memory
access, since data is being moved between registers in the CPU. At the same time,
MOV EDI, DWORD PTR [ebp-0x20] will generate a Read (R) memory access,
since the data has to be read from the memory. On its turn, the ADD DWORD
PTR [EAX],ECX will require Reading (R) the value from the memory location
addressed by [EAX] and then Writing (W) the result of the addition to the memory.
The sequences of opcodes were previously proven to be a source of effective features
for malware detection [10] [34] [30]. When the sequence of opcodes is executed
it generates a sequence of memory access operations. Two previous statements
allow for memory access sequences to be a potential source of features for malware
detection [8]. Under our experimental design we use only the type of memory access
operation: R for Read and W for Write. We do not use the value that is transferred to
or from the memory as well as the address of the memory region in use.

4.4 Data collection

Each malware sample was launched on the clean snapshot of VM. During the
execution of each sample, we recorded the first million of memory access operations
produced after the launch. This was done with the help of a custom-built Intel
Pin [20] tool that was launched together with the sample inside the VM. The VM
had all built-in anti-virus features disabled to make malware run properly and also
because they kept interrupting the work of Intel Pin. The automation of VM and data
collection were performed with the help of Python 3.7 scripts.

The memory access traces were first stored in the separate files. After, they were
split into the sequence of overlapping n-grams of the size 96 (96-grams). We choose
n-gram size (as well as the amount of recorded memory accesses) based on the
conclusions of their effectiveness drawn in [8]. The n-grams of memory access
operations for each sample are then stored in the MySQL table. This table took 28.5
GB of storage.

4.5 Feature selection and machine learning algorithms

We implemented IS feature selection algorithm with Python. The custom implemen-
tation of IG feature selection algorithmwas similar to one in [7]. That implementation
allows to run feature selection in multiple threads, which significantly speeds up the
process. We found, that samples produced more than 5.5M of unique n-grams (fea-
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tures). Benign samples generatedmore than 4.5M of features, while malicious - more
than 1M of features. When performing IS feature selection we found, that benign and
malicious samples shared almost 600K common features. Subtraction of those fea-
tures resulted in almost 4M and 430K of class-unique benign and malicious features
respectively. According to the algorithm from Section 3 we selected 50,30,15,10
and 5 thousands of features. We selected a similar amount of features with the IG
feature selection algorithm as well. Similarly to [5], [6] and [7] we wanted to reduce
feature space even more, so that our models are simple enough for future human
analysis. Thus, we used CFS feature selection method from Weka [19] to select the
most relevant and least redundant features from 50K features selected by IS and IG.
As the result we obtained 15 features from IS-based 50K feature set, and 9 features
from IG-based 50K feature set. As CFS appends features to the feature set until
the increase of its merit is no longer possible, it is impossible to control the final
amount of selected features unless the GreedyStepwise search is applied. However,
such search never finishes its work when applied to the larger feature sets in our
experimental environment. We wanted to compare the performance of IS and IG
with the CFS as well. So we tried to select the same number of features with IG and
IS. However, CFS selected 15 features. And as the IS have to select equal amount
of features from each class (Section 3) we decided to select 14 features with IS (7
from each class).

The selected features were later used to build machine learning models. The data
that is actually fed into mechine learning algorithms is basically a bitmap of presence
[8]: if a certain sample (row) generates a certain feature (column), then this feature
takes value 1 for this sample. In the opposite case the feature takes value 0. We used
the following machine learning algorithms fromWeka: k-Nearest Neighbors (kNN),
RandomForest (RF), Decision Trees (J48), Support Vector Machines (SVM) and
Naive Bayes (NB) with the default Weka [19] parameters. We assessed the quality
of the models with 5-fold cross validation [22]. Accuracy (ACC) as the amount of
correctly classified samples and F1-measure (F1M) that takes into account precision
and recall were chosen as evaluation metrics. Further in this section, we present the
classification performance of the machine learning models.

4.6 Time complexity

One of the reasons to use IS feature selection is that it is relatively faster than the other
common methods. In this subsection, we provide time taken by IS and IGmethods to
select 50K of features from the initial 5.5M distinct features. It took 302 seconds (∼5
minutes) for IS to select 50K features. In contrast, the IG used 18,560 seconds (∼5.15
hours) to select 50K features when running in one thread. While being launched in
16 threads, IG used 1168 seconds (∼20 minutes) to select 50K features. Further
increase in the number of threads does not make sense, since this is the maximum
amount of threads available at our VDS. As we can see, single-threaded IS works
3.8 times faster than IG ran with 16 threads and 61.5 times faster than IG ran with
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one thread. To find an intersection of benign and malicious feature sets the IS used
1.18 seconds as the average of 1000 runs. It has used an additional 0.7 seconds to
subtract intersection from both feature vectors. The actual implementation of our
feature selection algorithms did not load the entire dataset at the same time. Thus,
it is impossible to directly measure the time needed to calculate the quality measure
of a single feature, since it is calculated in iterations. But indirect assessment (we
divide overall time by the total amount of features to go through) showed, that IS
needed around 5.5 · 10−5s to assess a single feature, and IG needed 2.12 · 10−4s and
3.4 ·10−3s to assess a single feature with 16 and 1 thread respectively. It is important
to mention, that the times provided are relevant to our data structure and the way
we store our data. For instance, the fact that we stored memory access n-grams for
each sample in a separate cell of the database table could affect the time needed to
perform feature selection.

4.7 Analysis of selected feature sets

Here we analyze how different are the feature sets selected by IS and IG. In the
Table 2 the Feature amount column shows the size of the feature set for IS and
IG methods; the Common features column shows the number of similar features
selected by IG and IS for the corresponding feature set size; the Difference ratio
column shows the ratio of the distinct features and is calculated as (Feature amount
- Common features)/Feature amount. As we can see, most of the features selected by

Table 2 Difference between feature sets selected by IS and IG.
Feature amount Common features Difference ratio

50K 994 0.98
30K 994 0.97
15K 979 0.93
10K 955 0.9
5K 812 0.84

IG/IS 9/14 0 1

the ISmethod are different from those selected by IG. It complies with the theoretical
assessment of IS (see Section 3), where we explained that IS may discard features
with potentially high information gain only because they get value 1 in both classes.
As we mentioned before, we used CFS feature selection on the feature sets of the
size 50K. It is worth mentioning that CFS selected completely different features
when working with 50K feature sets selected by IS or IG. When using IG and IS to
select the same amount of features as selected by CFS we also obtained completely
different feature sets.
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4.8 Classification performance

In this subsection, we present the classification performance achieved by the ma-
chine learning algorithms. Tables 3 and 4 contain evaluation metrics of machine
learningmodels trained with the feature sets of a different length selected by different
feature selection algorithms. There, FSL stands for feature set length, ACC stands
for accuracy and F1M stands for F1-measure. As we can see, both feature vectors al-
lowed to achieve a quite high classification accuracy. The best performing RF model
that used 10K features selected by IG managed to classify 99.9% of the samples
correctly. On its turn, features selected by IS allowed to build kNN and RF models
with an accuracy of 99.8%. As we can see, in most cases models built with the use
of features selected by IS have slightly lower classification performance. However,
the difference in accuracy or F1-measure between IS and IG features is most of the
time less than 1%. Thus, it is hard to conclude whether the features selected by IG is
significantly better than those selected by IS. There is one exception for NB models
built with the use of 50K features. As it is possible to see, the NB model trained with
50K features selected by IG has significantly lower accuracy and F1-measure than
the one trained with 50K features selected by IS. This difference might be explained
by the nature of features selected by IS and the limitations of the NB method. While
building the model, Naive Bayes assumes that features are independent. However,
Information Gain feature selection potentially selects a lot of mutually correlated
features. The IS does not take into account the mutual correlation between features as
well. However, there should be less correlated features selected by IS, since one half
of the features will not have 1s in one of the classes and vice versa. These properties
of Naive Bayes were studied in [29]. Even though CFS selected completely different
features in IS and IG cases, the models built with those features showed a quite
similar classification performance. We will discuss this in Section 5. When we used
IS and IG to select the number of features similar to CFS we found, that models
built with these features perform slightly worse if compared to the models built with
features selected by CFS. This finding can be explained by the natures of CFS and IS
algorithms. The IS will select features with higher class-wise frequency. However,
such features might correlate with each other. Thus, these features might have a
strong correlation with each other bringing redundant information to the model. In
contrast, CFS will try to select a feature set that has as little redundant information
as possible. Looking once again in the Tables 3 and 4 we can conclude, that both
feature selection methods performed quite good under our experimental setup while
selecting feature sets that are very different to each other.

Important notice. The results from the Table 3 is similar to part of the results
provided in [7]. This happened because our papers share the same dataset. Also the
data collection processes have only minor differences: in this paper we recorded the
first million of memory access operations, while methodology of [7] is to record the
first million of memory access operations unless a certain stopping criteria is met.
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Table 3 Classification performance with a use of features selected by IG
kNN RF J48 SVM NB

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50K 0.996 0.996 0.996 0.996 0.997 0.997 0.983 0.983 0.693 0.671
30K 0.996 0.996 0.997 0.997 0.998 0.998 0.986 0.986 0.983 0.983
15K 0.996 0.996 0.998 0.998 0.998 0.998 0.991 0.990 0.983 0.983
10K 0.998 0.998 0.999 0.999 0.998 0.998 0.992 0.991 0.983 0.983
5K 0.995 0.995 0.997 0.997 0.997 0.997 0.988 0.988 0.983 0.983
9 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988

CFS 9 0.997 0.997 0.997 0.997 0.996 0.996 0.997 0.997 0.988 0.988

Table 4 Classification performance with a use of features selected by IS
kNN RF J48 SVM NB

Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

IS

50K 0.991 0.991 0.997 0.997 0.997 0.997 0.983 0.983 0.982 0.982
30K 0.996 0.996 0.997 0.997 0.997 0.997 0.983 0.983 0.985 0.985
15K 0.998 0.998 0.998 0.998 0.997 0.997 0.984 0.984 0.983 0.983
10K 0.998 0.998 0.997 0.997 0.997 0.997 0.985 0.985 0.983 0.983
5K 0.998 0.998 0.998 0.998 0.997 0.997 0.985 0.985 0.983 0.983

14(7+7) 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983
CFS 15 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.983 0.983

5 Discussion and Future work

In this section we discuss our findings and limitations that should be applied to the
possible conclusions made based on the presented results. As we were able to see,
IS feature selection works faster than IG. The main reason to this is the fact that the
selection of features based on its class-wise frequency requires less computations.
However, it is important to understand, that all measurements of time complexity pre-
sented in this paper are specific to our conditions (available computational resource,
structure of the data, implementation of feature selection algorithms) and might dif-
fer in other conditions. The theoretical assessment of the IS feature selection method
predicted, that features selected by IS might bring less information about samples
and classes than those selected by IG. But the experimental evaluation showed only
marginal difference in classification performance. Under our experimental setup,
only the amount of features selected by CFS could be considered as a proof of our
theoretical assessment. The CFS selected more features from IS-selected feature set
to gain similar merit (what resulted in similar classification performance). As we
mentioned before, CFS adds features to the feature set until its merit stops growing.
These facts show, that features selected by IS possess less information. Thus, on
the small feature sets, we need more features selected by IS than those selected by
IG. As we compared classification performance of machine learning methods we
found, that under certain conditions NBmight perform better when using IS-selected
features. This fact can be explored more thoroughly in the future work. The method
was tested on a nearly balanced dataset, and we selected the equal amount of features
to represent both classes. The use of other approach in the selection of the desired
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amount of features or applicability on the imbalanced datasets is left for the future
work.

The IS feature selection method is quite simple in implementation. However, as
we discussed in Section 3, its applicability limited to the cases where we are inter-
ested in the fact of presence of a certain feature in the class. Thus, when features are
not binary or discreet, the applicability of IS feature selection is questionable. It is
possible, however, to binarize continuous variables [22], but this a separate topic and
it is out of scope of this paper. There is also a number of possible improvements and
modifications that can be applied to the IS feature selection method in the future.
For example, we can decrease the time complexity of IS in the following way. When
we calculate class-wise frequencies of features we might limit the search space by
the samples that produce this feature. Rough estimation suggest, that it may halve
the time needed to perform IS feature selection. Another modification that can be
implemented in IS feature selection is introduction of the degree of membership to
the intersection. For example, a certain feature f might occur in both classes C1 and
C2. These classes have mC1 and mC2 samples respectively. The feature f is present
in m f

C1 samples of a class C1 and m f
C2 samples of class C2. For example, we may

exclude feature from the intersection if:

max(
m

f
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mC1
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m

f
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)

min(
m

f
C1

mC1
,
m

f
C2

mC2
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> ε

Basically, we keep a feature if it represents ε times bigger fraction of samples of one
class than fraction of samples of the other class. Such approach may decrease an
information loss, but will contribute to the increase of computational complexity of
IS feature selection method. And thus will make IS less attractive feature selection
method.

It is also important to outline the following observation. IS and IG selected
quite different feature sets. Moreover, CFS selected completely different features
from those preselected by IS and IG. Nevertheless, classification performance of the
machine learning models appeared to be very similar when using different feature
sets. This raises the following question: do the mentioned feature selection methods
always select the best feature set or do they find one of the several similarly good
feature sets? This question is left open for the future studies.

6 Conclusions

In this paper, we studied the performance of Intersection Subtraction feature selection
on malware detection problem. We showed, that with the use of IS feature selection
onHDLSS dataset it is possible to correctly classifymore than 99% of the benign and
malicious samples. Themain contribution of this paper is the direct comparison of IS
and IG feature selection methods under the same conditions. We found, that most of
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the features selected by IS and IG are different. The classification performance of the
machine learning models trained with the use of quite different feature sets appeared
to be very similar. Even though the models trained with IG-selected features showed
marginally better performance, the single-thread implementation of the IS feature
selection method worked 3.8 times faster than the 16-threads implementation of IG.
This makes Intersection Subtraction feature selection attractive when it comes to the
analysis of HDLSS datasets. The IS feature selection may help when it is not known
yet whether the data is useful for the classification task at all. The number of features
might so big, that it is pointless to spend time running more common (also slower)
feature selection methods. Thus, with certain above-mentioned limitations, the IS
feature selection may be successfully applied to HDLSS datasets.
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