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Abstract 

We present a model of strain-hardening in materials with twinning-mediated plasticity. While 

the model is largely phenomenological, it was motivated by microstructural considerations and 

can be claimed to be physically sound. Using simple, yet sensible, assumptions regarding the 

stress-driven twinning kinetics and dislocation-twin interactions, constitutive equations 

governing the strain hardening behaviour were obtained and solved numerically. The solutions 

were compared with the experimental data on uniaxial deformation of pure magnesium and 

Mg alloy ZK60, and this comparison substantiated the validity and practicality of the model 

proposed. 
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1. Motivation and Background 

 

The strain hardening behaviour of pure face-centred cubic (FCC) and body-centred cubic (BCC) 

metals is governed by the kinetics of dislocation slip, which is generally accepted and well-

understood [1]. With the development of new structural materials whose microstructural 

evolution and the mechanical response are governed or affected by deformation twinning, 

understanding of the kinetics of this process and its interaction with lattice dislocations 

becomes crucial [2, 3]. In particular, comprehensive work has been highlighting the role of 

twinning in high strength austenitic steels with TWIP (TWinning Induced Plasticity) [4, 5], 

nanostructured materials [6-8], titanium [9], as well as magnesium and its alloys [10]. Common 

to all these materials is the preponderance of twinning that can be regarded as a key mechanism 

affecting nearly all aspects of their mechanical behaviour. Specifically, for Mg and its alloys 

having a hexagonal close-packed (HCP) structure, the strain hardening behaviour exhibits 

remarkable features, including a concave shape of the stress-strain curve and a pronounced 

asymmetry of the yield strength with respect to tension/compression, which are attributable to 

twinning [11-15]. Unlike the dislocation slip-controlled plasticity, which is understood in great 

detail, the role of twinning and its kinetics in the strain hardening process in low stacking fault 

energy FCC and HCP metals and alloys has been rationalised to a much lesser extent. This is 

particularly true for the description of twin accumulation in the course of deformation. Bouaziz 

and Guelton [16] suggested that the volume fraction of twins F  in high manganese TWIP steels 

can be derived using the first-order kinetics assumption similar to that made by Olson and 

Cohen [17] for the martensitic transformation. In that approach, F as a function of strain   

takes the form ( )1 expF m= − − , where m  is a parameter that depends on the stacking fault 

energy. This way of expressing the evolution of the twin volume fraction is very simple and 
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convenient, and it captures the exponential trend to saturation in a general manner. However, 

the approach itself is to be applied with care. First and foremost, there are reasons to believe 

that the twinning kinetics is stress-driven, rather than strain-driven [18-20]. This type of kinetics 

is obviously not covered by empirical relations of the ( )F F =  form, cf. [16, 21-23].  

In the last decade, multiple theoretical approaches were applied to describe twinning 

and dislocation slip phenomena in different materials at various length scales [24]. Specifically 

for HCP metals and alloys, the atomistic calculations [25, 26] were employed to simulate the 

mechanisms of twin nucleation, growth and twin boundary–dislocation interactions at 

microscale. At macroscale, a variety of crystal-plasticity models have been developed with the 

focus on texture evolution and the related anisotropy of the mechanical response and strain 

hardening characteristics of Mg and its alloys during monotonic and cyclic deformation [27-38]. 

Among the theories of strain hardening of materials where twinning is an essential deformation 

mode, a recent model due to Sahoo et al. [39] stands out as an attempt to combine the two-

phase character of twin-containing materials, the polycrystal plasticity aspects, and the semi-

empirical hardening behaviour of the matrix grains in which deformation twins are embedded.  

Despite these partial successes of modelling, there is still a need for physically sound, 

reliable, and computationally economical phenomenological models of strain hardening in 

materials with twinning-mediated plasticity. Therefore, the main purpose of this study was to 

develop a model that would satisfy the mentioned need and consider the stress-driven twinning 

kinetics as an essential element of the constitutive description. As an outcome of this work, we 

present a robust microstructure-motivated phenomenological model of strain hardening in 

materials exhibiting concurrent dislocation slip and twinning and validate it by experimental 

data available for magnesium.  
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2. The Model 

Beyond the yield point, the total strain ε in a material is comprised by the elastic, el , and 

plastic, 
pl , components taken additively: 

 
el pl =  +    (1) 

Conventional tension or compression tests are performed at the constant total strain rate  &: 

 D T

el pl plconst
E E

 
 =  +  = = +  = +  +    (2) 

where   is the flow stress and E  is the Young’s modulus. (Henceforth, a dot denotes a time 

derivative.) The plastic stain rate pl  in the deforming specimen is determined by the evolution 

of the dislocation and twinning subsystems with the corresponding plastic strain rates 1  and 

T . An increment of the plastic shear strain, d pl , is taken as a weighted sum of two 

contributions: the one due to dislocation slip, d D , and the other due to deformation twinning, 

d T = T dF. Here T is the shear strain produced when a twin is formed and dF is an increment 

of the twin volume fraction F.  This ‘elementary’ shear strain T  is constant for a given crystal 

structure and twin system. Accordingly, the plastic shear strain increment is expressed as   

 (1 ) D T

pld F d dF = −  +    (3) 

Converting the shear strains to axial ones through the Taylor orientation factor M, and passing 

from differentials to derivatives, Eq. (3) can be rewritten as: 

 (1 ) D T

pl u T

F
F

M
 = −  +    (4) 

where D

u  denotes the plastic strain rate in the untwinned regions. Accordingly, ( )1D D

uF = −   

holds. The texture-dependent orientation factor for the twinning subsystem is defined 

as
( )
1TM

SF
=


 [40] with SF denoting the Schmid factor for the corresponding twin 
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system. The angle brackets denote averaging over the Euler angle   between the c axis of an 

HCP crystal and the loading axis:  

 
( )

( )
/2

0

1TM d
SF



=   
   (5) 

with ( )   denoting the texture dependent distribution function of the Schmid factor SF over 

  (see [21] for details).  

             To avoid confusion, we would like to state that Eqs. (3) and (4) do not imply the use of 

any form of a rule of mixtures for strain in the matrix and the twinned material (the iso-stress 

Sachs approach). Neither does the model invoke an iso-work assumption of Ref.[39]. Rather, it 

represents the ansatz made in the seminal publication by Bouaziz and Guelton [16] for the 

plastic strain increment for the entire material, with no distinction being made between the 

untwinned matrix and the twinned material. Our analysis (not included in the present paper) 

shows that the contribution from extra terms that would enter Eq. (4) if the iso-stress approach 

were taken are negligible and can be disregarded safely. 

By combining Eqs. (2) and (4) the total strain rate is expressed as: 

 (1 ) D T

u T

F
F

E M


 = + −  +   (6) 

The plastic strain rate associated with dislocation slip, D

u& , can be naturally recovered from the 

time-proven Kocks-Mecking-Estrin (KME) dislocation kinetics approach whereby the details of 

dislocation accumulation and recovery are implemented explicitly in first-order differential 

equations describing the dislocation density evolution [41-43]. In this single internal variable 

formulation, the total dislocation density  , which is considered as the key intrinsic variable of 

state, evolves according to an ordinary first-order differential equation ( ) ( ) ( )D

ut t g  = , in 

which both dislocation storage and dislocation recovery terms are encompassed in the ( )g   
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function. A second internal variable of our model is the twin volume fraction F, the evolution of 

which will be discussed below.   

In this work, a modified version of the KME [44] dislocation kinetic equation is proposed 

with the aim to account for the dislocation-twin interaction: 

 0
2 3

D

u

kd
M k k F

dt b

  
=  −  −  

 
  (7) 

This equation includes a dislocation storage term determined by the dislocation mean free 

path  , a dynamic dislocation recovery term 
2k   governed by the second-order dislocation 

annihilation kinetics, and an extra recovery term proportional to the volume fraction of twins F , 

which arises due to dislocation-twin interaction. The coefficients 0 2 3k , k , k  are parameters 

controlling the rates of the corresponding reactions. The third term on the right-hand side of Eq. 

(7) constitutes the chief difference from the original KME version. This term accounts for the 

dynamic dislocation recovery due to the interaction of lattice dislocations with twin boundaries.  

These interactions are quite complex, as suggested by experimental and theoretical 

studies conducted at different length scales - from atomic [45] and nano- [46] levels to micro- 

and macro-scales [1, 47, 48]. The computational work by Serra and Bacon [49, 50] who 

investigated the annihilation of a basal dislocation by a twin boundary and the activation of 

twinning dislocation sources deserves special mention. However, the dislocation-twin boundary 

processes, especially for the dynamic case involving twin boundary motion, are not fully 

understood. Just like ordinary grain boundaries, twin boundaries serve as sources and/or sinks 

of dislocations. Besides, twin boundaries obstruct the transmission of dislocations from one 

side of the twin boundary to the other [6], thus impeding dislocation motion and increasing the 

dislocation accumulation rate. One might thus expect that twin boundaries would give rise to 

increased dislocation density accumulation. This picture is not unequivocal, though, as 

dislocations can effectively transmit slip across twin boundaries by activation of dislocation 
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sources on the opposite side of a boundary [51-54]. Perhaps somewhat counter-intuitively, the 

general belief is that, on balance, the dislocation density is reduced, rather than increased, due 

to dislocation interactions with twin boundaries. Since the early work by Müllner and 

Solenthaler [55] it has been broadly recognised that deformation twinning significantly 

facilitates the dynamic dislocation recovery. As a result of the twin-stimulated recovery, the 

residual dislocation density is markedly lower if deformation twinning is active compared to 

that observed after pure dislocation slip-mediated deformation. This is supported by [56] 

where it was observed that profuse twinning in severely deformed Hadfield steel was 

accompanied with a reduction of the dislocation density.  Thus, the contribution of deformation 

twinning to strain hardening is seen to be two-fold: (i) due to its influence on the dislocation 

density accumulation through the reduction of the dislocation mean free path, as reflected in 

the first term of Eq.(7), and (ii) due to an extra contribution to the dislocation annihilation rate 

represented by the third term in the equation. 

Effects of latent twin hardening due to formation of sessile dislocations at the twin 

boundaries [52, 53] are not considered here.  Besides, we do not distinguish between different 

dislocation slip systems and types of dislocations, thereby reducing a complex crystal plasticity 

problem to its simplified single internal variable version. 

The Taylor relation  

 0
ˆGbM =  +     (8) 

that links the flows stress to the total dislocation density involves the shear modulus G and the 

‘friction’ stress 0 ; the factor ˆ 0.1...0.5 =  depends on, but is not very sensitive to the 

deformation mode [57], temperature, and strain rate [58]. The Taylor relation holds 

ubiquitously for virtually any dislocation configurations in deforming metals and alloys and is a 

pivotal ingredient of the dislocation-based plasticity theories. Using this relation, after simple 
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rearrangements in Eq.(7), we obtain an equation for the plastic strain rate associated with 

dislocation slip D& in the form: 

 
( ) ( )

( )
( )

2

0 3 0

2

20

2 0

2
D

u

k F

ˆk M GbM
k M

b

 −   +  − 
 =


−  − 



  (9) 

The dislocation mean free path   is determined by the preponderant obstacles to dislocation 

slip, of which the immobile (forest) dislocations stored in the grain interior and the grain 

boundaries are most commonly included in different versions of the KME equations. Since the 

twin boundaries act as strong obstacles to dislocation slip, the value of the dislocation mean 

free path can be obtained from [16, 23, 59]: 

 
1 1 1

mD t
= +


  (10) 

where mD  is the mean grain size and t is the mean inter-twin spacing which can be related to 

the mean twinning plate thickness h through Fullman’s stereological equation [60, 61] 

 
2

2

h
F

t h
=

+
 (11) 

By eliminating t from Eqs. (10) and (11), the following expression for  is obtained:  

 
( )

1 1

2 1m

F

D h F
= +

 −
  (12) 

By substituting Eq. (12) for 1/   in Eq. (9), one obtains an equation for the strain rate 

accommodated by dislocation slip: 

 
( ) ( )

( )
( )

( )

2

0 3 0

2 2

0 2 0

2

1

2 1

D

u

m

k F

F
ˆk Mb GM k M

D h F

 −   +  − 
 =

 
 + −  −  

− 

  (13) 

By plugging Eq.(13) into Eq. (6) the equation for the total strain rate takes the following form: 
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( ) ( )( )

( )
( ) ( )

( )

3 0

2

0

2 0

0

1 2

ˆ 1

2 1

T

T

m

F k F F

E Mk Mb GM F
k M

D h F

−  +  − 
 = + + 

 
+ −  −  

 −  − 

  (14) 

Solving the latter equation for   requires an explicit form of the twin volume fraction as a 

function of time ( )F F t= . Following the approach proposed in [20] for the stress-driven 

twinning kinetics, the following additional assumptions are made: (i) there exists a critical stress 

below which no twinning occurs; (ii) the stress required for twin nucleation is higher than that 

for twin propagation; (iii) under a stress exceeding the critical twin nucleation stress, a twin 

nucleates, propagates lengthwise through the grain and acquires a length L, which is of the 

order of the grain size D ( ~L D ), as illustrated schematically in Fig. 1a and as is often observed 

in experiment [62, 63]. The results of direct video observations corroborating the proposed 

scenario are shown in Fig. 1b and in greater detail in Fig. 2. We note that this assumption works 

particularly well for polycrystals with relatively small grains [64]; (iv) the average thickness of 

the nucleated twin, h , is generally assumed to be independent of grain size or twin length 

following the arguments present in [65]; however, (v) if the generated twin of length L is in 

equilibrium, Friedel’s formula relating the twin width to its length and the applied stress holds 

[66] (see also [67] and [19]): 

2 2

T T T TG h G h

L
M M

D
  =         (15) 

 In the present work, we confine ourselves to the simplest approximation where we do 

not account for the twin-induced changes in the grain size distribution. Neither do we 

distinguish between the twins operating on different twinning systems. Note that, since the 

thickness of the freshly nucleated twin is small and is considered constant, dislocation slip in 

the twinned regions is not taken into account in the present version of the model. It can easily 

be included in future model extensions, though. As a matter of fact, the in situ optical 

microscopy evidence for magnesium suggests that under uniaxial compression, deformation 
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twins within a grain were formed on a single slip system starting from a coarse grain and 

progressing to finer and finer grains. This is demonstrated by a sequence of images in Fig. 2, 

which illustrates the key assumptions of the model regarding the twinning behaviour in 

polycrystalline Mg (see [63] for experimental details).  

In terms of grain size, grains in polycrystalline aggregates are commonly distributed log-

normally [68] with the probability density function given by: 

2

ln( / )1
( ) exp

2 2

m

D D

D D
f D

D  

  
 = −     

      (16) 

where mD  is the mean grain size defined as ( )
max

min

D

m
D

D D f D dD=    and 2

D  is the variance of 

the distribution. The log-normal distribution is commonly observed as a result of random 

nucleation and growth processes, such as crystallisation or recrystallisation [69, 70], e.g. during 

magnesium fabrication. 

 The volume of a twin generated in a grain of size D  will be proportional to 2D h . The 

grains with a size in the interval from D  to D dD+  will contribute a differential of the twin 

volume fraction dF given by 

 ( )
2

3

m

hD
dF f D dD

D
=  (17) 

where 
T TN =  is a model parameter that contains as a factor the fraction of grains capable 

of undergoing twinning and the average number of twins per grain 
TN . The coefficient T  is 

texture dependent [65, 71], and it can be determined experimentally. According to [72], its 

value ranges from 0.3-0.5. In reality, the average number of twins per grain TN  depends on 

grain size [62, 65, 73, 74]: fewer twins are observed in smaller grains compared to grains of 

similar orientation but larger in size. Deformation twins appear as thin lenticular (HCP) or plate-

like (FCC) reoriented layers bounded by near-parallel twin boundaries, Figs. 1 and 2. Capolungo 
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et al. [65] found h to be rather insensitive to grain size and orientation. Kumar et al. [75] 

noticed correctly that the widely reported grain size effects on the geometry of twins refer 

predominantly to late stages of twin growth, rather than to an early stage of twin nucleation 

where the twin thickness does not increase considerably, Figs. 1 and 2. This assertion was 

further exploited by Wu et al. [76] in developing a constitutive model of twin nucleation and 

propagation in magnesium. 

It should also be noted that a recent statistical analysis of features of early twinning in 

polycrystalline titanium deformed to small strains (below 2%) did not reveal their sensitivity to 

grain size or grain orientation [77]. Rather, this early twinning was associated with 

incompatibility stresses between deforming neighbouring grains. The relevance of such effects 

to twinning in magnesium is yet to be investigated and, if appropriate, they can be included in 

the present model in a phenomenological way. 

Using Friedel’s formula, Eq. (15), and combining it with Eqs. (16) and (17), the twin 

volume fraction was obtained in [20] as a solution of the following differential equation: 

( )
( )

( )

3

2

2

2
3

3

ln
2

exp
4

1

22

cr

m

c

T T

m

T

D

r

D

T

G h

h G Dd

M

MF d

dt dtD





  − 
 

=   − 

  
     −
 
 
 

 
         (18) 

The Heaviside function ( )cr  −   is introduced to account for the critical stress cr  required 

for the onset of twinning. When this stress is reached during loading, all grains with the size 

greater than 

 
2

T T

c

c

M h G
D




                                                         (19) 

will undergo twinning. Thus, being footed on Eqs. (15)-(17), the model tacitly assumes that 

coarse grains yield first and as the stress increases beyond the twin initiation stress, smaller and 

smaller grains become engaged in the generation of twins. This was corroborated by direct 
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video observations [20] and the results of statistical analysis of  1012  twin lamellae 

performed by Lou et al. [78] on a hot-rolled AZ31 alloy. 

 Equations (14) and (18) represent a complete set of equations describing the strain 

hardening behaviour, which accounts for the evolution of interacting dislocation and twin 

subsystems. This set of equations can be represented in a compact form as an autonomous 

non-linear set of first-order differential equations 
( )

( )
1

2

;

;

F

F F

 =  


=  

&

&
, with ( ), 1, 2i i =  being 

transcendental functions whose explicit form is given in the Appendix. 

  

3. Model verification 

3.1. Verification method 

To obtain the model parameters entering Eqs. (14) and (18), the model predictions were fitted 

to the experimental data by minimising the objective function defined as 

 model data 2

1

( ) ( ( ) )
N

i i

i

f p p
=

=  −    (20) 

Here model( )ip is the stress vector obtained by solving the set of Eqs. (14) and (18) for a given set 

of parameters denoted symbolically as p ; data

i  is the stress vector obtained experimentally, and 

N is the number of readings in the stress vector. The input for the optimisation algorithm is the 

initial set of parameters 0p . At each iteration, the parameters are varied within a pre-set range of 

permissible values. The model system is solved numerically with this set of parameters, and the 

solution is used to calculate the objective function. The iterations continue until the objective 

function, Eq. (20), is minimised.  

For solving the set of equations (14) and (18) numerically, the LSODA/LSODE (Livermore 

Solver for Ordinary Differential Equations) method - a popular solver for initial value problems 

for sets of ordinary differential equations [79] - was employed. This procedure determines the 
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stiffness of the problem and applies different solvers to stiff and non-stiff systems. For stiff 

problems, the backward differentiation method is used. If the problem is not stiff, the Adams 

predictor-corrector method is applied. 

In this study, two optimisation methods were employed to find the adjustable 

parameters
0 1 3, ,k k k . The first method used was the AMPGO optimisation algorithm (Adaptive 

Memory Programming for Global Optimization [80]), which is a multi-start method based on 

adaptive memory programming, which involves memory structures that are superimposed on a 

local optimiser. The differential evolution (DE) method [81] we employed as well is another 

popular stochastic direct search technique which is widely used for optimisation. The DE 

algorithm optimises a problem by iteratively trying to improve a candidate solution with regard 

to a given measure of quality. The advantage of the DE strategy is that it makes few or no 

assumptions about the problem and can search very large spaces of candidate solutions. 

Interested readers are encouraged to refer to the above references for further details of the 

optimisation procedures, algorithms, and codes. Optimisation based on both methods used in 

the present work returned similar results.  

 

3.2. Materials and testing 

The capacity of the proposed approach for modelling strain hardening was tested on samples 

with different manufacturing histories and various grain size distributions, texture, and 

mechanical responses. Below, the results will be first demonstrated on several examples of 

tension and compression tested pure (99.95%) magnesium in the as-cast state, for which detailed 

microstructural results were reported earlier by some of the present authors in [82]. Here, the 

dislocation density as well as the volume fraction of twins were available from the neutron 

diffraction results reported in [82], which made this material an ideal candidate for model 

verification. Furthermore, the same specimen was also independently tested using the in situ 
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acoustic emission (AE) method (see [82] for detail). In brief, the AE data were acquired 

continuously in a thresholdless mode of operation with a 16 bits resolution at 2 Msamples/s 

rate. The dataset was processed following the non-supervised adaptive sequential k-means 

(ASK) clustering procedure developed in [83] to discriminate between contributions from 

different modes of plastic deformation. Specifically, twinning and dislocation slip on different 

systems can be distinguished by this method reliably [84, 85] and their kinetics can be followed 

separately or in parallel. The signals stemming from different sources are discriminated on the 

statistical basis using the normalised AE power spectral density as the input for comparison 

with the Kullback-Liebler distance as a measure of similarity/dissimilarity between AE spectra 

generated by different mechanisms, which are finally assigned to corresponding clusters. In 

addition, the experimental and the simulated stress-strain curves for Mg after hot extrusion at 

350oC with an extrusion ratio of 10:1 will be compared as a model validation exercise. Finally, the 

quality of the model prediction will also be demonstrated for a weakly textured annealed alloy 

ZK60 (Mg–5.8Zn–0.44Zr, in wt.%, see [84, 86] for details of the microstructure and mechanical 

properties). 

To evaluate grain size distributions in all specimens tested, optical microscopy and 

electron back-scattered diffraction were employed. Typical examples of the binarised images 

showing the grain morphology in the specimens tested are shown in Fig. 3. For grain size 

measurements, the ImageJ software [87] was used in conjunction with the equivalent diameter 

method. Since the grains were nearly equiaxed, this method rendered almost the same result 

as the standard ASTM linear intercept method for the mean grain size. Corresponding grain size 

distributions are shown in Fig. 4, where the histograms represent the experimental data and 

the solid lines are obtained using the non-linear curve fitting by the log-normal function. One 

can see that the assumption of log-normal grain size distributions holds reasonably well for all 

specimens tested. The values of the parameters of these distributions are shown in Table 1. 
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These values were used in the model calculations. The elastic moduli E and G for Mg were 

taken as 44 and 16.3 GPa, respectively. The values of ̂ =0.3, b=3.5×10-10 m, 
T =0.129 and 

M=4.5 were kept constant in all calculations. Following Capolungo et al. [65], the average twin 

thickness h was initially set at 2 m and then optimised to fit the experimental data. (We note 

that the variation of h in this optimisation exercise was not very large.) Other model 

parameters are also listed in Table 1. 

 

3.3. Experimental results and comparison with the model 

The model presented in the foregoing section reproduces the observed stress-strain response 

of all materials tested reasonably well, as illustrated in Figs. 5-7. An important feature is the 

ability of the model to capture the concave-upward trend in the stress-strain curves, which is 

commonly associated with twinning, and which is pronounced in magnesium to a certain extent 

depending on texture and grain size. 

Figure 5 also compares the model predictions for the total dislocation density and the 

twin volume fraction with that estimated from neutron diffraction data for both tension and 

compression tests of pure Mg (specimen (a) in Figs.3 and 4). It is obvious that the model fits the 

data for the dislocation density well (within the experimental scatter of () estimates by the 

neutron diffraction technique). The model performs less satisfactorily with regard to the second 

key internal variable, which underestimated by theoretical predictions. The reason is that the 

model in its present form, which assumes the constancy of h during deformation, does not 

account for twin growth commonly observed in magnesium and its alloys. It does predict the 

correct functional dependence ( )F  , though, and can, in principle, be further fine-tuned to 

experiments showing larger saturation values for the twin volume fraction. This would require a 

separate kinetic equation for twin thickening. We should like to emphasise that even without 



 

 16 

such fine-tuning, the model shows good qualitative agreement with experimental results. It 

should also be noted that the model is in better agreement with the F() data for tension than 

compression. As was shown in [72, 82], the evolution of twinning in randomly oriented Mg 

polycrystals is markedly different in these two cases. When a tensile load is applied, the 

number of nucleated twin variants within a single grain increases with the increasing Schmid 

factor (SFT) for extension twinning. For an ideally oriented grain (SFT=0.5) all six possible twin 

variants can be observed, which mutually hinder twin growth. Furthermore, twinning can occur 

in grains with very low SFT
 as well [72]. By contrast, in the case of compression, only one or two 

variants nucleate in suitably oriented grains, and these twins can thicken readily. There is a 

threshold value for the deviation of the crystallographic c-axis from the loading direction 

(46°51’), above which no twinning occurs in compression [88]. Finally, the overall fraction of the 

“twinning-oriented” grains (SFT> 0.3) is much higher in compression (~ 40% vs. ~20% in 

tension). This means that in tension there is a greater number of nucleated twins. A higher twin 

volume fraction observed in compression can be attributed to twin thickening – a process 

which is not captured by the present model. 

The remarkable agreement between the ASK-powered AE-based assessment of the 

kinetics of dislocation slip and deformation twinning and the model predictions is particularly 

noteworthy. This is illustrated in Figs. 5b and 7 for polycrystalline as-cast Mg (specimen (a) in 

Figs. 3 and 4). Dislocation slip and deformation twinning generate AE signals with markedly 

different waveform features, and their relative contributions evolve during deformation in 

distinctly different ways. Salient differences between these two mechanisms are commonly 

associated with the shapes of the AE waveforms and the amplitude and power of the AE signals 

(low amplitude/low power AE with a broad spectrum and pronounced low-frequency 

component for dislocation slip as opposed to high amplitude/high power AE with a 

predominant high frequency component in the spectral density for twinning). It should be 
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noted that AE is capable to detect only the stage of twin nucleation and propagation (i.e. the 

length-wise growth) [89]. Since the twin thickening is a substantially (orders of magnitude) 

slower process than nucleation [90], it is below the detection limit of the AE method. This 

means that the twin-induced AE is directly related to the number and the length of the 

nucleated twins [90]. Thus, with appropriate calibration, the kinetics of the evolution of the 

twin volume fraction can be recovered by means of AE using the cumulative AE power (or 

energy) as a parameter proportional to the transformed (twinned) volume [85]. Direct video 

observations [91] and more precise data of SEM EBSD [92] and neutron diffraction [72, 93] 

show that twin accumulation follows a sigmoidal curve with a trend to saturate, which is in fair 

agreement with the integral AE measurements and the model predictions of the current work, 

Fig. 5. 

To get a better insight in the model’s performance, it is instructive to observe the 

behaviour of the strain rate components D and T as functions of strain individually. These 

components were calculated using Eq. (9) and associating T with the second term on the right-

hand side of Eq.(4) ( T Tc F / M=  ), respectively. Results are shown in Fig. 6 (a), where the model 

predictions are presented vis-à-vis the relative (normalised) AE activity assessed separately for 

dislocation slip and twinning. Figure 6 (b) provides further details based on a juxtaposition of AE 

and neutron diffraction data [82] and making a distinction between the different AE classes, 

including those associated with basal slip, non-basal slip, and twinning. It is seen that the model 

predicts that at the onset of plastic flow, the dislocation slip dominates, the corresponding rate of 

plastic deformation increases, reaches its maximum and then drops off when twinning is 

activated and the strain rate it contributes becomes considerable. Apparently, both mechanisms 

operate concurrently throughout the test. However, it is the twinning activity that is responsible 

for the concavity of the stress-strain curve, which occurs at the same time as a maximum in T .  It 

is remarkable that AE reflecting the activity of both deformation modes behaves in very much the 
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same manner as the corresponding strain rates, Fig. 6a. The commonly observed fact that AE 

detects considerable twinning from the very beginning of deformation contradicts the model 

prediction of a low overall contribution of twinning at the early deformation stages. One should 

bear in mind, however, that AE is extremely sensitive to twinning so that even a very fine 

individual twin is detectable by AE. Therefore, despite the values of T  being quite small, 

twinning-induced AE is detected. This AE component increases and then diminishes in parallel 

with T  in excellent agreement with the model predictions. Similarly, although in a mirror-like 

manner, the dislocation-related AE component exhibits a minimum when the D value is lowest 

and T is highest. 

Finally, it is of interest to discuss the role of the last term on the right-hand side of Eq.(7), 

which refers to the rate of dislocation density reduction due to the interaction of dislocations 

with growing twins. When dislocations are ‘harvested’ by a growing twin, the kinetics of their 

density evolution is controlled by the rate of twin volume fraction accumulation (time derivative 

dF/dt) and the magnitude of the rate parameter 3k . A family of model stress-strain curves with 

different 3k values was simulated for a given ( )F t , as shown in Fig. 8. One can notice that an 

increase in the 3k  value reduces the strain hardening rate and gradually “straightens” the 

concavity of the stress-strain curves, which is particularly pronounced in the strain range where 

the twin volume fraction changes most rapidly. The strikingly different stress-strain response of 

pure Mg in tension and compression suggests that the contribution of the different mechanisms 

to the overall strain hardening has strong directionality. In line with the discussion given in 

Section 3.3, this accounts for the variability of the values of the parameters k1, k2, and k3 listed in 

Table 1.     
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4. Conclusions 

The main thrust of the present paper is on the strain hardening mechanisms and the role of the 

interplay between the dislocation slip and mechanical twinning in the deformation behaviour of 

materials with twinning-mediated plasticity. We presented a microstructurally-motivated 

phenomenological model of strain hardening tuned for magnesium and its alloys, although, in 

principle, it can be adapted for other materials prone to deformation twinning. The stress-

driven nature of grain size dependent mechanical twinning is central to the model. The general 

frame of the model is provided by the two internal variables approach, with the total 

dislocation density and the twin volume fraction as intrinsic variables evolving in the process of 

straining. Using simple, yet sensible, assumptions regarding the stress-driven twinning kinetics 

and dislocation-twin interactions, constitutive equations governing the strain hardening 

behaviour were obtained and solved numerically. The solutions were compared with the 

experimental stress-strain curves for pure Mg and the Mg alloy ZK60. The evolution of the twin 

volume fraction and the dislocation density during uniaxial loading was assessed independently 

by the acoustic emission and neutron diffraction methods in situ. Very good agreement 

between experimental observations and model predictions was found, thus supporting the 

general approach and the specific assumptions made. Despite its simplicity, the model recovers 

the mechanical behaviour of Mg and its alloys faithfully. Quite importantly, it accounts for a 

characteristic concave shape of the deformation curves caused by the twinning activity.  It also 

reflects the complexity of interplay between the two major deformation modes that results in 

characteristically different deformation stages corresponding to the different activity of the 

underlying deformation mechanisms. 
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Appendix. 

The explicit form of the set of constitutive equations is represented as: 
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Table 1. Parameters used in calculations 

Parameter 

Sample 

Mg (as-cast) 

fine grain 

compression 

Mg (as-cast) 

fine grain 

tension 

Mg (as cast)  

coarse grain 
Mg (extruded) ZK60 

Grain 
structure 

Fig. 3a Fig. 3a Fig. 3b Fig. 3c Fig. 3d 

Grain size 
distribution 

Fig. 4a Fig. 4a Fig. 4b Fig. 4c Fig. 4 d 

Stress-
strain curve 

Fig. 4b Fig. 4a Fig. 7a Fig. 7b Fig. 7c 

0 , MPa 3 0.7 2.3 3.5 10 

h , m 2.5 3.7 5 1.9 0.6 

TM  2.5 2.3 2.5 2.2 2.23 

0k  44 810 2 53 542 

2k  1 251 50 1.9 59 

3k , m-2 10 650 100 77 5 

mD , m 95 88 500 54 82 

D  0.19 0.5 1.07 0.39 0.20 

  2.71 1.90 3.9 3.65 3.04 

&, s-1 1x10-3 1x10-3 8.4x10-4  1.7x10-4 7x10-4 

cr , MPa 3 12 0.02 5 96 
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Figure 1. Schematics of twin nucleation, propagation and growth (a) and direct video 

observation (b) illustrating this process in pure Mg under compression at the strain rate 
31 10− =   s-1; the arrow labeled “a” on the second snapshot points to a freshly emerged 

twin. The successive snapshots were taken at a rate of 50 fps. (The experimental setup is 

described in [62].) 

 

 
Fig. 2. Sequence of frames from a video record of deformation twinning in as-cast 

polycrystalline magnesium under uniaxial compression at a strain rate of   = 5×10-3 s-1; the 
first “reference” frame was taken at the total strain of 2×10-4 ; the time (in seconds) is 

indicated in the upper right corner of each frame. 
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Figure 3. Examples of binarised microscopic images used to evaluate the grain size 

distributions in pure Mg and Mg alloy ZK60: (a) as-cast Mg with comparatively small 

grain size, (b) as-cast Mg with coarse grains and a large variance of grain shapes and 

dimensions, (c) hot-extruded Mg, and (d) hot-pressed ZK60. 
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Figure 4. Grain size (the area-based effective diameter) distributions for examples shown in 

Fig. 1: (a) as-cast Mg with relatively small grain size (b) as-cast Mg with coarse grains and 

a large variance of grain shapes and dimensions, (c) hot-extruded Mg, and d) hot-pressed 

ZK60.  (The ImageJ software was used to obtain these distributions from binarised maps.) 
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Figure 5. Stress-strain curves for in situ tension (a) and compression (b) testing of the as-

cast polycrystalline Mg samples (corresponding to case (a) in Figs. 3 and 4) and their 

approximation by model results. Measured (symbols) and predicted (solid lines) total 

dislocation density and twin volume fraction are shown for comparison. The dashed lines 

represent the cumulative AE power normalised to unity obtained for the AE cluster 

associated with twinning.  
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Figure 6. Results of the modelling of the stress-strain behaviour during in situ compression 

testing of the as-cast polycrystalline Mg sample (same as in Fig.5) and the calculated plastic 

strain rates accommodated by the principal deformation modes: dislocation slip and 

twinning.  The in situ AE results characterising the activity of both mechanisms are plotted 

alongside the predicted evolution of D&  and T&  for comparison. 
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Figure 7. A comparison between the calculated and the experimental stress-strain curves 

for pure Mg with different grain size distributions and Mg alloy ZK60 deformed in 

compression at room temperature. The labelling of the sub-figures (a-с) corresponds to 

that in Figs. 3 (b-d) and 4 (b-d). 
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Figure 8. A family of calculated stress-strain curves illustrating the effect of the dislocation 

annihilation due to the twin-dislocation interaction (In these calculations, k3 in Eq. (7) was 

varied while all other parameters of the model were kept constant.) 

  
 


