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Arch-shaped axially magnetized bodies tend to appear frequently in electrical machine analysis such as in overhang parts of classical
radial-flux machines as well as in main parts of axial-flux machines. The calculation of 3-D fields originating from these bodies is
demanding. 3-D FEA suffers from high computational burden as well as no knowledge of the field origin. Analytic techniques involve
the use of elliptic integrals and complex numbers for numerical evaluation, which makes them significantly slower than 3-D FEA.

In this paper, a new analytical technique is proposed to speed up the computation by factor 20 for the global magnetic field created
by a generic magnetized body, by removing complex numbers and reducing the analytic equations significantly without any loss of
precision. As a result, it can compete with conventional 3-D FEA. In addition, integral methods may contribute to the wider use of
parallel processing techniques. The original expressions for the vector potential are also provided, which has its own benefits and
applications. Finally, the showcased magnetized body is assessed against 3-D FEA and discussed in terms of practical applications.

Index Terms—Arched magnets, 3-D magnetic fields, cylindrical coordinates, analytical formulation, non-linear magnetized bodies,
integral calculation, vector potential, permanent magnets (PMs), supra-conductive coils.
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Fig. 1: Example of a multipole generic axially magnetized body
in free space with radial and axial parameters corresponding to
the nomenclature (r1, r2, z1, z2 and ~M ).

I. NOMENCLATURE

The nomenclature of this paper is adopted from well-
known terminology [1], where the variables are described in
the following.

1) ϕ1, ϕ2, φ = ϕ−ϕ′, and α [defined in eq. (9)] are angles
[rad].

2) r1, r2, r, and r′ are radial distances [m]
3) γ = z′ − z, z1, z2, z, and z′ are axial distances [m].
4) ~H (magnetic field) is the ~H-field in this paper [A/m].
5) ~B (magnetic flux density) is ~B-field in this paper [T].

Manuscript received July 5, 2019; revised January 3, 2020 and February
25, 2020; accepted April 28, 2020. Corresponding author: F. Maurer (e-mail:
frederic.maurer@me.com).

6) ~A (magnetic vector potential) is the ~A-field in this paper
[Wb/m].

7) ~M (magnetization vector) is the ~M -field in this paper
[T].

Fig. 3 defines the quantities and subscripts geometrically.

II. INTRODUCTION

THE computation of sophisticated 3-D ~H-fields and ~A-
fields is a classical problem in electrical machine analysis.

This field problem can be divided into separate contributions,
one originating from coils. The other one is the contribution
from magnetized bodies (in particular arch-shaped in this
paper) that tend to appear in the machine geometries (e.g.,
machine overhangs). In particular, the combination of radial
and axial fields appear as an edge-effect in the classical radial-
flux machines [2]–[5]. Overhang structures can sometimes be
used to increase the flux density in the air gap. For a detailed
analysis, it is normal to distinguish between different overhang
parts and non-overhang regions [6]–[8]. Fig. 1 depicts a generic
axially magnetized overhang segment of a classical four-pole
machine. In axial flux machines, the 3-D fields become more
dominant along the path of the main magnetic circuit [9]–[14].
Moreover, the halbach-type axial-flux machines [11]–[14] use
smaller arch-shaped permanent magnets (PMs) interacting with
ferromagnetic materials and embedded coils. Slotless structures
of axial-flux machines are analyzed [13], [14], with or without
back-iron. They use magnetic disks made by arch-shaped PMs,
which could also be depicted by the generic body of Fig. 1.
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Fig. 2: Flowchart depicting the calculation of the global 3-D magnetic field from arch-shaped axially magnetized bodies. The
methodology highlights how to interface them with adjacent windings or other external magnetization sources.

In general, analytical methodologies are needed for efficient
design optimization of electrical machines [15]–[18] as they
have a lower memory requirement than 3D-FEA. In addition,
they yield ”on-demand” calculation1 and they provide knowl-
edge of the field origin. Several methodologies have been pro-
posed, including the integral field calculation method [19], the
green’s functions method [20] and the Bessel functions method
[21], [22]. Still, the computational complexity of such analytic
techniques is high. In general, the ~A-field is overlooked in these
methods. What’s more, there exist generalized methodologies
that can be extended to not only cover linear PMs but to any
general magnetizable body (such as iron parts and non-linear
PMs) [23], [24] as it will be explained in the next paragraph.
So, these novel analytic formulae for both the 3-D ~H-fields and
~A-fields constitute the pavement for many application cases of
advanced analysis in electrical machines [7].

Magnetized bodies containing ferromagnetic materials need
to take the non-linear iron saturation into account. A method
has been developed [25], which requires the computation of the
magnetic field generated for a given magnetization. In [25], the
magnetic field ( ~B) is conventionally defined as ~B = µ0( ~H +
~M), where ~M is the magnetization vector, which can origin

from a linear material ( ~M = µ0(µr − 1) ~H) or from remanent
flux density, ~Br = µ0µr ~Hc where ~B = µ0µr ~H + ~Br, or from
a ferromagnetic material with non-linear characteristic ( ~M =
η( ~H)). In this particular case, [25] details an algorithm with
known current-carrying conductors (coils). This is for example
the case in PMs and a non-linear magnetizable iron. Compared

1An ”on-demand” calculation is a calculation, where only the needed field
points are computed. The calculation is done on the requested points, while a
finite-element calculation requires the computation to be done on the complete
mesh, even if one is interested only in the result at some points.

to 3-D FEA, the method developed in [25] permits to obtain the
~A-field produced by a given magnetization using only scalar
potentials for each node instead of a ~A-field for each node
for the 3-D FEA approach which is significantly reducing the
memory needed for such computations.

The practical implementation of these novel formulae uses
the elliptic integral calculation algorithms developed in [26]–
[28], which reduces the calculation time by at least one order
of magnitude compared to published methods [29].

A. Literature Review on Analytical Field Computation

Extensive work has been devoted to the 3-D ~H-field calcula-
tion problem, while the literature on the 3-D ~A-field calculation
is more sparse in comparison, due to its prior limited practical
applications. However, the ~A-field is a very practical variable
in field simulations, due to its straightforward relationship to
the induced voltage.

In general, there are two main models used to compute
the ~H-field and ~A-field of magnetized bodies, namely, the
Colombian approach [30] and the Amperian approach [31].
There are some possible simplifications of the analytic formulas
for the ~H-field, namely, a 2-D approximation [32]. Moreover,
the ~H-field can be calculated using Heuman’s Lambda function
[33] or using separation of variables in polar coordinates
applied to magnetic gears [34]. Selvaggi [35] introduce a ~H-
field calculation employing toroidal harmonics.

B. Contributions of this paper

This paper advocates the need for an analytic approach
for a rapid and precise numerical field computation of elliptic
integrals [26]–[28]. Novel simplified integral field calculation
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expressions are proposed to take full advantage of the hy-
brid analytic-numerical model, thus reducing significantly the
computational costs. As demonstrated in the introduction, our
approach using a generic arch-shaped magnetized body (see
Fig. 3) allow to represent a wide range of machine problems.
The speed-up of the proposed novel equation for the ~H-field
is due to the following improvements:

1) The number of equations in the formulation of the
magnetic equations is reduced from 12 to 6.

2) No complex numbers are employed in the calculation,
which reduces the computation costs since the evaluation
of imaginary values is strictly avoided.

C. Outline

The remainder of the paper is organized as follows. In
Section III, the basic integrals for the generic problem are
briefly presented. In Section IV, the novel reduced expressions
are derived. In Section V, the expressions are evaluated in a
generalized case study. Finally, Section VI concludes the paper.

III. BASIC INTEGRALS DESCRIBING A MAGNETIZED BODY

This section introduces the theoretical fundamentals of a
generic arch-shaped magnetized body that are typically found in
electrical machine analysis. In addition, basic integrals for the
novel reduced magnetic expressions of the body are introduced.

z2
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Fig. 3: Schematic representation of a primitive magnetized body
with ~M in cylindrical coordinates where ex = ~ex.

Fig. 3 depicts a generic arch-shaped magnetizable body us-
ing the nomenclature of Section I. It is presented in cylindrical

coordinates as well as the definitions and denominations of
the used variables. ~M is the constant magnetization vector,
which is oriented along ~ez . It coincides with ~ez′ , the local (or
source) axial unitary vector of the coordinate system (r′,φ,z′).
The global coordinate system is given by (r,ϕ,z).

The integral
∫
φ

is taken over the tangential coordinate φ
of the local cylindrical coordinate system (integration over
φ = ϕ − ϕ1 to φ = ϕ − ϕ2). Similarly,

∫
r

∫
z

is the surface
integral over the radial and axial coordinates r′ (integration
over r = r1 to r = r2) and z′ (integration over z = z1
and z = z2) of the local (or source) cylindrical coordinate
system. In the calculation, #»r is the vector to the point where
the potential vector respectively field is calculated, while #»r ′

is a vector pointing to a point located in the source volume to
be integrated (refer to Fig. 3) and µ0 the permeability of the
vacuum (4π10−7 N/A2). Refer to Section I for the definition
of the variables used in this article.

The magnetization ( ~M ) have been considered as uniformly
constant to stay within the same hypothesis as ”usually” em-
ployed in the literature (refer to [31], [36]–[38] among others).
This leads to comparable results with older contributions, for
the sake of fairness. It is possible to take a non-constant
magnetization into account by dividing the magnetized body
into smaller domains, with a constant magnetization over each
sub-domain.

In deriving the ~A-field as a function of the ~M -field, there
is only one expression [39], is not very easy to use in the case
of an analytic integration. This formula can be simplified using
a ”curl” version of the integration [39] by parts, yielding

~A( #»r ) =
1

4π

∫∫∫
V

~∇′ × ~M( #»r ′)

| #»r − #»r ′|
dV ′

+
1

4π

∫∫
∂V

~M × ~dσ
′

| #»r − #»r ′|
. (1)

which is used in this paper.
In the case of an axially magnetized body with constant

magnetization, its divergence as well as its rotation are null,
so that the Amperian approach is chosen, leading to a direct
integration to obtain the ~H-field. The basic equations for the
~H-field then become

~H( #»r ) =
1

4πµ0

∫∫∫
V

(
~∇′ × ~M( #»r ′)

)
×
(

#»r − #»r ′
)

| #»r − #»r ′|3
dV ′

+
1

4πµ0

∫∫
∂V

(
~M( #»r ′)× ~n

)
×
(

#»r − #»r ′
)

| #»r − #»r ′|3
(2)

where ~n is the normal unit vector pointing out of the surface
∂V of the volume V.

IV. NOVEL REDUCED ANALYTIC EXPRESSIONS

This section derives the proposed novel generic expressions
for a primitive magnetized body from first principles of integral
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field calculation. First, the mathematical transformations are
given. Then, the ~H-field and ~A-field is treated in separate
subsections.

A. Mathematical variables and transformations

The following additional variables (namely B, D, G, β1, β2
and β3), which have been defined in [1] and will be used in
the mathematical development hereafter.

B2(φ) = r2 + r′2 − 2rr′ cos(φ) (3)

D2(φ) = γ2 +B2(φ) (4)

G2(φ) = γ2 + r2 sin(φ) (5)
β1(φ) = (r′ − r cos(φ))/G(φ) (6)
β2(φ) = γ/B(φ) (7)
β3(φ) = γ(r′ − r cos(φ))/[r sin(φ)D(φ)]. (8)

The integrals along the tangential coordinate are transformed
into elliptic integrals. An angle transformation is used [1],
which is defined by

φ = π − 2α. (9)

Moreover, the elliptic integral coefficients are formulated

k2 =
4rr′

γ2 + (r + r′)2
(10)

a2 = γ2 + (r + r′)2 (11)

n2 =
4rr′

(r + r′)2
. (12)

These constants and the angle transformation lead to the
following expressions

B2(α) = r2 + r′2 − 2rr′ cos(φ) (13)

= (r + r′)2(1− n2 sin(α)2)
D2(α) = γ2 +B2(φ) = a2(1− k2 sin(α)2). (14)

In addition, G(φ) will be expressed as

G−2(α) =
1

2
√
γ2 + r2

( 1

(
√
γ2 + r2 − r)(1− n21 sin(α)2)

(15)

+
1

(
√
γ2 + r2 + r)(1− n22 sin(α)2)

)
,

where

n21 =
2r

r −
√
γ2 + r2

(16)

n22 =
2r

r +
√
γ2 + r2

. (17)

B. Improved equations for the magnetic field ( ~H-field)

In this subsection, eq. (3) will be further modified. Replac-
ing | #»r − #»r ′| by D(φ), using the fact that the magnetization is
considered to be only along the z-axis and that the divergence
of the magnetization is null, lead to the following expression
to be integrated

~H(r, ϕ, z) =
M

4πµ0

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
r′

D(φ)3

r − r′ cos(φ)−r′ sin(φ)
γ

∣∣∣z′=z2
z′=z1

,

(18)

where D(φ) is given by eq. (4) and is a function of r′ and
z′ but these two variables are not mentioned explicitly to stay
consistent with the notation defined in [1].

[36] integrates eq. (18), but its expressions for the radial
and axial component differs from this paper. It has been possi-
ble to find novel analytic expressions requiring the calculation
of fewer elliptic integrals of the third kind and without the
usage of complex numbers for both components. The tangential
component has the same expression as in [36].

To obtain the improved analytic expressions, integrate over
the angle φ is needed, integrating the expressions only once
per part. The formulas for the sine-function and further cosine-
function of the double of the argument are utilized to obtain
the compact expressions. The radial component (Hr) and the
axial component (Hz) are treated in separated subsection.

1) Radial magnetic field (Hr-component)
Starting from the radial component of eq. (18), first an

integration over r′ is done. One obtains

Hr =
M

4πµ0

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′r′
r − r′ cos(φ)

D(φ)3

∣∣∣z′=z2
z′=z1

=
M

4πµ0

∫ ϕ2

ϕ1

dφ
r(r2 + γ2 − rr′ cos(φ))

G2(φ)D(φ)

+
cos(φ)(r′(γ2 − r2 cos(2φ)) + r(r2 + γ2) cos(φ))

G2(φ)D(φ)

− cos(φ) sinh−1
(
β2(φ)

)∣∣∣r′=r2
r′=r1

∣∣∣z′=z2
z′=z1

. (19)

This integral is composed of two terms: Ir1 and Ir2, where the
term M

4πµ0
have been omitted (i.e., Hr =

M
4πµ0

(Ir1+Ir2)). The
first term can be converted to an elliptic integral. One obtains

Ir1 =

∫ ϕ2

ϕ1

dφ
r(r2 + γ2 − rr′ cos(φ))

G2(φ)D(φ)

+
cos(φ)(r′(γ2 − r2 cos(2φ)) + r(r2 + γ2) cos(φ))

G2(φ)D(φ)

= −2
∫ α2

α1

dα
α0 + α2 sin(α)

2 + α4 sin(α)
4 + α6 sin(α)

6

G2(α)D(α)
,

(20)
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which can be computed using the formulas of [40] and numer-
ically evaluated using the algorithms developed in [26]–[28].
For Ir2, using one integration by parts leads to

Ir2 =−
∫ ϕ2

ϕ1

dφ
[
cos(φ) sinh−1

(
β2(φ)

)]
=− sin(φ) sinh−1

(
β2(φ)

)∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

−rr′γ
∫ ϕ2

ϕ1

dφ
sin(φ)

B2(φ)D(φ)︸ ︷︷ ︸
I

. (21)

The remaining integral I (highlighted in Eq. 21) will be
transformed into an elliptic integral

I = −rr′γ
∫ ϕ2

ϕ1

dφ
sin(φ)

B2(φ)D(φ)

=
8γrr′

(r + r′)2a

∫ α2

α1

dα
sin(α)2 − sin(α)4

(1− n2 sin(α)2)
√
1− k2 sin(α)2

.

(22)

These elliptic integrals can also be solved using the formulas of
[40] and numerically evaluated using the algorithms developed
in [26]–[28].

2) Axial magnetic field (Hz-component)
For the axial component of the ~H-field given by eq. (18),

first an integration over r′ is performed. The obtained expres-
sion can be directly transformed into an elliptical integral,
which is solved using the formulas of [40] and numerically
evaluated using the algorithms developed in [26]–[28], yielding

Hz =
M

4πµ0

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
γr′

D(φ)3

∣∣∣z′=z2
z′=z1

= − Mγ

4πµ0

∫ ϕ2

ϕ1

dφ
r2 − r′r cos(φ) + γ2

G2(φ)D(φ)

∣∣∣r′=r2
r′=r1

∣∣∣z′=z2
z′=z1

=
2Mγ

4πµ0

∫ α2

α1

dα
α0 + α2 sin(α)

2

G2(α)D(α)

∣∣∣r′=r2
r′=r1

∣∣∣z′=z2
z′=z1

. (23)

As a result, the total number of elliptic integrals of the
third kind to be computed has been reduced to 6 compared to
12 in [36]. In addition, there are no more complex numbers
to evaluate inside the expressions, which also reduces the
computational time as well.

C. Original development for the vector potential ( ~A-field)

For the ~A-field presented in Section III, one starts with
eq. (1), then replaces | #»r − #»r ′| by D(φ) and then compute
the needed vector products. In the considered case of an axial
magnetization, the ~A-field fundamental integrals given by eq.

(1) can be reduced to the following integrals to be computed
analytically

~A =
µ0M

4π

∫ r2

r1

dr′
∫ z2

z1

dz′
1

D(φ)

−10
0

∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

+
µ0M

4π

∫ ϕ2

ϕ1

dφ

∫ z2

z1

dz′
r′

D(φ)

sin(φ)
cos(φ)

0

∣∣∣r′=r2
r′=r1

. (24)

This subsection first develops the expressions for the radial
component (Ar) and then for the tangential component (Aφ),
utilizing eq. (25).

1) Radial vector potential (Ar-component)
The first integral of the radial component becomes

Ar = −
µ0M

4π

∫ r2

r1

dr′
∫ z2

z1

dz′
1

D(φ)

∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

= −µ0M

4π

∫ z2

z1

dz′ sinh−1
(
β2(φ)

)∣∣∣r′=r2
r′=r1

∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

= −µ0M

4π

(
− γ + r sin(φ)

)
tan−1

( γ

r sin(φ)

)
− r sin(φ) tan−1

(
β3(φ)

)
+ γ sinh−1

(
β1(φ)

)
+
(
r′ − r cos(φ)

)
sinh−1

(
β2(φ))

)∣∣∣r′=r2
r′=r1

∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣z′=z2
z′=z1

.

(25)

The second integral of the radial component can be easily
integrated performing first an integration over dφ and then dz′

resulting in very simple analytic functions.

2) Angular vector potential (Aϕ-component)
The integral for the tangential component is solved integrat-

ing first over dz′ and then dφ. One obtains after integration over
dz′

Aϕ =
µ0M

4π

1

2
r′2
∫ ϕ2

ϕ1

dφ cos(φ) sinh−1
(
β2(φ)

)
(26)

The integration will be done using integration by parts leading
to

Aϕ =
µ0M

4π

1

2
r′2
∫ ϕ2

ϕ1

dφ cos(φ) sinh−1
(
β2(φ)

)
=
µ0M

4π

1

2
r′2 sin(φ) sinh−1

(
β2(φ)

)
+
µ0M

4π

1

2
r′3r

∫ ϕ2

ϕ1

dφ
sin(φ)2

B2(φ)D(φ)︸ ︷︷ ︸
Y

. (27)
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The last integral can be transformed into an elliptic integral
denoted Y (highlighted in Eq. 27)

Y = −r′3r
∫ ϕ2

ϕ1

dα
4 sin(α)2(1− sin(α)2)

B2(α)D(α)

= −r′3r
∫ ϕ2

ϕ1

dα
4 sin(α)2(1− sin(α)2)

B2(α)D(α)

= −r′3r
∫ ϕ2

ϕ1

dα
4 sin(α)2 − 4 sin(α)4

B2(α)D(α)
, (28)

which can be numerically evaluated using the algorithms de-
veloped in [26]–[28]. In fact, the case considering r = 0 is
trivial and leads to simple analytic expressions.

V. VALIDATIONS FOR A MAGNETIZED BODY

This section verifies the expressions of Section IV for case
studies of the arch-shaped axially magnetized body, without
any claim to represent exact elements of a particular machine
overhang segment or any other geometry. Some overhang
parts are usually approximated with axial magnetization to
simplify the analysis. For the sake of simplicity, only one arch-
segment was considered in the validation. However, according
to the principle of superposition, a complete overhang geometry
could be extrapolated from the same approach. In addition,
the varying impact of the magnetization vector from adjacent
windings could also be included (as outlined in Fig. 2).

In emulating a realistic scenario, an axial constant magne-
tization vector inside the body was picked to corresponding to
a remanent flux density of 1 Tesla. It is a common value used
in many publications (refer to [36]–[38] among others). No
suitable TEAM-problem was identified for the magnetic body
geometry and earlier investigations did not provide accurate
enough data for replicability purposes [36]. As a consequence,
this paper follows a similar methodological validation ap-
proach, as presented in [41] for the ~H-field and one for the
~A-field. For the ~H-field, the 3-D FE results were obtained with
a converging solution, i.e., the mesh density was incrementally
increased until the final value is settled for the 5 to 7 digits
precision in some key points. For the ~A-field, there were lack
of computational resources, but the validation inside the body
was of particular focus.

First, the proposed ~H-field calculation is validated in Sec-
tion V-A. Then, a case study of improved computational speed
is presented in Section V-B. Finally, the ~A-field is validated in
Section V-C.

A. Validation of the ~H-field using 3-D FE simulations

The 3-D FE simulations of this subsection use the scalar
approximation with global cartesian field quantities. The com-
parison is made for the body defined in Fig. 3 with parameters
specified in Table I (a given constant and uniform remanent

TABLE I: Specification of the magnetized body used in the
case study to validate the magnetic field ( ~H-field) with 1 Tesla
remanent magnetization.

Parameter Description Value Unit
rl Inner radius 350 mm
r2 External radius 650 mm
ϕ1 First tangential angle -π/4 rad
ϕ2 Second tangential angle π/4 rad
zl Lower axial component -250 mm
z2 Upper axial component 250 mm

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Path length [m]

-2.5
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M
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]

105

Hz (Ox) - ana.

Hz (Ox)

Hx (Oz)
Hz (Oz)

Hz (Otheta)

Hz (Ox) - FE
Hx (Oz) - ana.
Hx (Oz) - FE
Hz (Oz) - ana.
Hz (Oz) - FE
Hz (Otheta) - ana.
Hz (Otheta) - FE

Fig. 4: Comparison between analytic formulas ( ~H-field) and 3-
D FE calculation on different paths (defined in Section VII-B
and in Fig. 11) with a uniform axial ~M in a magnetized body
(refer to Fig. 3 and Table I for the specification).

TABLE II: Mean value of the ~H-field difference for the
magnetized body (Table I) one different paths (defined in Fig.
11) as per Figs. 4 and 6 with 1 Tesla uniform remanent
magnetization.

Component Path Difference (A/m)
Hz Ox 636.58
Hx Oz 244.89
Hz Oz 283.10
Hz Otheta 911.64
Hx Diag 920.27
Hy Diag 823.48
Hz Diag 926.82

magnetization of 1 Tesla in the axial direction). The validation
paths are defined in Section VII.

Figs. 4 and 6 show the results of the comparison for the
~H-field calculation, while Figs. 5 and 7 present the relative
difference between the analytic computation and the numerical
simulation. All curves indicate excellent agreement with 3-
D FE, which clearly validates the predictability of the novel
analytic expressions of the ~H-field.
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Fig. 5: Relative difference between analytic formulas ( ~H-field)
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body (refer to Fig. 3 and Table I for the specification).
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D FE calculation on different paths (defined in Section VII-B
and in Fig. 11) with a uniform axial ~M in a magnetized body
(refer to Fig. 3 and Table I for the specification).

Table II present the mean value of the ~H-field difference
for the cases shown in Figs. 4 and 6. The mean value is
significantly higher for Diag as the path passes through point
singularities which are difficult to catch using FE computation.
For the other cases, the mean value is low and could be
improved using a denser mesh, but it would be beyond the
computing power of the laboratory.
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Fig. 7: Relative difference between analytic formulas ( ~H-field)
and 3-D FE calculation on different paths (defined in Section
VII-B and in Fig. 11) with a uniform axial ~M in a magnetized
body (refer to Fig. 3 and Table I for the specification).

B. Computational speed case study for the ~H-field

This subsection is dedicated to highlighting the improve-
ment in computational speed as a result of the novel formulation
without complex numbers and with less elliptic integrals. A
case study based on the magnetized body defined in table III is
done comparing the computational speed of the novel formulas
presented in this paper and the formulas presented in [36] on
the ten validation paths defined in section VII-B and depicted in
Fig. 11. The computations have been performed in the Matlab
environment, applying Fukushima’s calculation methods for
this work, while the built-in functions have been used for the
equations developed in [36] as they contain complex numbers.
The computer has four cores and 16GB RAM. The results of
the case study are shown in Fig. 8. The computation time is
different depending on the chosen path, as they have a different
number of points (refer to the caption of Fig. 8).

The case study reveals a speed increase of about factor 20,
which demonstrates the advantage of the novel formulas com-
pared to the ones published in [36]. The reduced computational
time is due to the reduction of the number of elliptic integrals
and the Fukushima method to compute the elliptic integrals.

C. Validation of the ~A-field using both 3-D FE simulations
and numerical integration

Finally, this subsection validates the ~A-field expression in a
two-step approach. First, from numerical integration and then
with comparison against 3D-FEA. Numerical integration of
the integral expression is assessed against the novel analytic
expression. They are compared in Table IV, where Ar and Aϕ
are evaluated from both methods. The differences are very small
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TABLE III: Specification of the magnetization body used in the
case study to validate the vector potential ( ~A-field) numerically
and to assess the computational speed. The numerical value of
the parameters is derived from the one used in [36].

Parameter Description Value Unit
rl Inner radius 25 mm
r2 External radius 28 mm
ϕ1 First tangential angle -π/8 rad
ϕ2 Second tangential angle π/8 rad
zl Lower axial component 0 mm
z2 Upper axial component 3 mm

for both components, around 100 times the double machine
precision (ε = 1.11e−16). This step confirms the exactitude of
the novel expressions.

In a second validation step, the expression is assessed
against a 3-D FE simulation using the ~A-field formulation. In
fact, the challenge is that the 3-D FE leads to high memory
requirements even for small simulation volumes. As a result, the
second step focused the computational resources on achieving
a good precision inside the magnetic body, with outliers outside
due to courser mesh. The inherent memory limitations of the
computer laboratory are challenging when working with a
three-component vector field for numerical computation.

The curves are compared with a 3-D FEA, where the
magnetized body parameters (refer to Fig. 3) is also defined
in Table I. The curves (refer to Figs. 9 and 10) for the ~A-
field has a higher errors outside the magnetic body due to the
coarser mesh outside. The curves match quantitatively inside
and qualitatively outside along the validation paths. The 3-
D FEA is very memory intensive as they require four-node

TABLE IV: Simplified sample assessment of magnetized
body (Table II) with an observer located at (r, ϕ, z) =
(0.024m, 0rad, 0.0015m) with 1 Tesla uniform remanent mag-
netization.

Comp. Equation Analytic eval. Numerical int. Dev.
Ar Eq. (25) 0.018797279Wb/m 0.018797279Wb/m < 100ε
Aϕ Eq. (26) 0.919063950Wb/m 0.919063950Wb/m < 100ε
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Fig. 9: Comparison between analytic formulas ( ~A-field) and 3-
D FE calculation on different paths (defined in Section VII-B
and in Fig. 11) with a uniform axial ~M in a magnetized body
(refer to Fig. 3 and Table I for the specification).

vector elements to compute the ~A-field potential, which limits
the maximal number of nodes due to the limited computing
power available at the laboratory.

The curves of Fig. 10 are worth considering as they provide
a sense for the numerical precision of the 3D-FEA. Theoret-
ically, the curves shall all be equal to zero, also at the edges
of the validation paths. Finally, the analytic expressions of eqs.
(25) and (26) can be considered as validated because numerical
integration reveals a very good quantitative agreement and the
3-D FE agrees well inside the magnetic body.

VI. CONCLUSION

This article showcases the utility of an improved 3-D
integral field computation method of the ~H-field and the ~A-
field originating from arch-shaped magnetized bodies, which
constitutes the pavement for many applications in electrical
machines. A peculiar case study confirms the superiority of the
proposed analytic formulations in comparison with alternative
approaches [36]. Moreover, validity of the expressions has been
assessed in the 3-D FEA environment. The main highlights of
the paper are the following.
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and 3-D FE calculation on different paths (defined in Section
VII-B and in Fig. 11) with a uniform axial ~M in a magnetized
body (refer to Fig. 3 and Table I for the specification).

1) The novel expressions for the ~H-field reduces the number
of elliptic integrals from 12 to 6 and with no need for
complex numbers.

2) The numerical speed-up of about factor 20 is achieved
utilizing the algorithms developed by Fukushima and was
shown in a case study of the ~H-field.

3) In addition, the expressions for the ~A-field have been
validated against numerical integration, and they present
an error below 100 times double machine precision (ε). In
addition, they have been assessed quantitatively against
3-D FE.

This paper combines two advancements, namely, our novel
equations and the algorithms of Fukushima. As a result, this
work enables advanced 3-D electrical machine analysis with
low memory requirement and computational time. In addition,
the individual contributions of each magnetized body can be
easily identified. The ”on-demand” calculation provides the
field quantities only at the needed locations, thus reducing also
the computational needs in obtaining any given result.

The original expressions for the ~A-field are a fundamental
contribution paving the way to a wider application of integral
methods such as hybridizing 3-D integral field overhang models
with 2-D FE core models in transient simulations of electrical
machines [7]. Moreover, they can be used for ultra-fast paramet-
ric studies of diverse overhang lengths and parts in radial flux
machines or for efficient optimizations in axial-flux machines.

Future works will handle the ~A-field expression for the
radial and the tangential magnetization in a way that a magnetic
element with any magnetization can be modelled.

VII. APPENDIX

A. Case of r = 0

In the case r = 0 one gets

Hr = −
M

4πµ0

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
r′2 cos(φ)

D(φ)3

∣∣∣z′=z2
z′=z1

= − M

4πµ0
sin(φ)

(
sinh−1

(r′
γ

)
− r′√

γ2 + r′2

)∣∣∣r′=r2
r′=r1

∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣z′=z2
z′=z1

.

(29)

In the case r = 0 one gets

Hz =
M

4πµ0

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
γr′

(γ2 + r′2)3/2

∣∣∣z′=z2
z′=z1

= − Mγ

4πµ0
φ

1√
γ2 + r′2

∣∣∣r′=r2
r′=r1

∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣z′=z2
z′=z1

. (30)

When r = 0 ones gets

Ar =
µ0M

4π

∫ r2

r1

dr′
∫ z2

z1

dz′
1√

γ2 + r′2

∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

=
µ0M

4π
φ
∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

∫ z2

z1

dz′ sinh−1
( r′
|γ|

)∣∣∣r′=r2
r′=r1

=
µ0M

4π
φ

(
r′ sinh−1

( γ
r′

)
+ γ sinh−1

( r′
|γ|

))∣∣∣r′=r2
r′=r1

∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣z′=z2
z′=z1

(31)

B. Validation paths

The magnetic field is compared on ten paths which are given
by the following expressions

Ox =


t with t ∈ [−1, 1], 200 samples
0

0

(32)

OxOy+ =


t with t ∈ [−1, 1], 200 samples
1

0

(33)

Oy =


0

t with t ∈ [−1, 1], 200 samples
0

(34)

Oz =


0

0

t with t ∈ [−1, 1], 200 samples
(35)
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OzD =


−0.126
0.55

t with t ∈ [−1, 1], 400 samples
(36)

RD =


t cos(22.5π/180)

t sin(22.5π/180)

0.147 with t ∈ [0, 1], 400 samples
(37)

OTheta =


0.5 cos(t)

0.5 sin(t)

0 with t ∈ [−π/2, π/2], 750 samples
(38)

ThetaBis =


0.5 cos(t)

0.5 sin(t)

0.125 with t ∈ [−π/2, π/2], 750 samples
(39)

ThetaD =


0.5 cos(t)

0.5 sin(t)

−0.206 with t ∈ [−π/2, π/2], 750 samples
(40)

Diag =


t with t ∈ [−1, 1], 350 samples
t idem
t idem

. (41)

The validation paths are depicted in Fig. 11.
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Fig. 11: Schematic representation of the validation paths used
to validate the novel expressions.
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