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H I G H L I G H T S

• Moving window is combined with regression analysis for prediction of degradation.

• The algorithm is tested on degradation data from two offshore applications.

• The predictions are accompanied by confidence intervals.

• The algorithm predicts the degradation accurately in the short and medium terms.

• The results are promising for improving performance-based maintenance.
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A B S T R A C T

Performance-based maintenance of machinery relies on detection and prediction of performance degradation.
Degradation indicators calculated from process measurements need to be approximated with degradation
models that smooth the variations in the measurements and give predictions of future values of the indicator.
Existing models for performance degradation assume that the performance monotonically decreases with time.
In consequence, the models yield suboptimal performance in performance-based maintenance as they do not
take into account that performance degradation can reverse itself. For instance, deposits on the blades of a
turbomachine can be self-cleaning in some conditions. In this study, a data-driven algorithm is proposed that
detects if the performance degradation indicator is increasing or decreasing and adapts the model accordingly. A
moving window approach is combined with adaptive regression analysis of operating data to predict the ex-
pected value of the performance degradation indicator and to quantify the uncertainty of predictions. The al-
gorithm is tested on industrial performance degradation data from two independent offshore applications, and
compared with four other approaches. The parameters of the algorithm are discussed and recommendations on
the optimal choices are made. The algorithm proved to be portable and the results are promising for improving
performance-based maintenance.

1. Introduction

Performance-based maintenance of industrial machinery relies on
an assessment of the current condition of the machinery and on prog-
nosis of future loss of performance [1,2]. Loss of performance is com-
monly caused by degradation, defined as a ‘detrimental change in

physical condition, with time, use, or external cause’ [3].
Hong et al. [4] indicate that degradation could be characterized by a

degradation indicator that calculates the loss of performance as the
machine operates. However, the calculation can be difficult because the
mathematical formula is based on physics that is not always well un-
derstood, and also because the calculation makes use of operational
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measurements. A degradation indicator calculated from operational
measurements can be highly variable if the calculation does not account
for disturbances. Short-term variability caused by disturbances can
mask the overall trend of the indicator.

Verheyleweghen and Jäschke [5] proposed a framework that shows
how diagnostics and prognostics can help to optimize the operation of
energy-relevant systems. The subsea gas compression system in their
study can be assessed by analyzing vibration data to gain insights about
the reliability of the system. Reliability is the 'ability of an item to
perform a required function under given conditions for a given time
interval' [3]. Their proposed framework leads to better decision-making
and therefore an optimal strategy for profit maximisation considering
the expected system degradation. In a similar way, Mahamad et al. [6]
used a prediction of the remaining useful lifetime to improve reliability
and reduce maintenance cost. Their approach could handle noisy data
and was able to reduce operating costs by scheduling maintenance in a
better way.

While the two aforementioned works aim to predict reliability, the
work in this article considers degradation of efficiency in a compressor
affected by fouling.

Predictive models are an important key to optimize washing sche-
dules for gas turbine or compressors systems. Stalder [7] reviewed the
state of the art of washing technology and highlighted the improve-
ments for the turbine efficiency. Similarly, Aretakis et al. [8] perform
an economic analysis of compressor washing. While these analyses
compare different washing patterns, they assume very simple de-
gradation patterns that are predictable. However, the data in this paper
shows that degradation patterns are not always foreseeable and there-
fore more advanced prognostics are required. Therefore, a research gap
can be closed, as these advanced algorithms will allow for optimized
scheduling of compressor washing and restore efficiency, thus leading
to energy savings. Schulze Spüntrup et al. [9] presented such an ap-
plication, but they also assume a linear degradation pattern. This proves
the possibility of scheduling maintenance actions based on specific
degradation indicators. A more advanced model for the degradation
indicator will enable results that are adaptive to the real-world changes
in industrial turbomachinery.

Maintenance decisions will be based on the degradation indicator.
Hence there is a need to estimate the true trend of the degradation
indicator from the calculated degradation indicator, where calculated
degradation indicator means the values calculated directly from process
measurements. This can be done by fitting a low order regression model
to the calculated values of the indicator, in order to provide a smoother
estimate of the true value. The functional form of the regression model
should be based on physical considerations, for instance it is known that
degradation from fouling follows an exponential trend. A review of the
state of the art in Section 2.2 will show that previous approaches have
assumed that degradation is non-decreasing [10–14]. However, this is
not true in general because some modes of operation can reduce de-
gradation. For instance, compressor blades can be self-cleaning under
some conditions. Hence there is a need for an improved structure of the
regression model that can adapt to both increasing and decreasing be-
haviour of the degradation indicator.

The regression model can also be used to extrapolate the smoothed
value of the degradation indicator. This will give a prediction of the
future trend, which is useful for maintenance scheduling. Such pre-
dictions must be accompanied by confidence intervals if they are to be
used for decision-making in an industrial setting [15].

This study proposes a data-driven algorithm for improved estima-
tion and prediction of a degradation indicator for turbomachinery. It
combines a moving window approach with adaptive regression analysis
to predict the expected value of degradation and quantify the un-
certainty of the prediction. The algorithm is tested on industrial de-
gradation data from offshore compressors and is compared with four
other approaches from the literature. The parameters of the algorithm
such as the prediction window and the threshold for model adaptation

are discussed, and the paper provides recommendations for optimal
choices of these parameters.

The article is structured as follows. Table 1 and Table 2 give lists of
abbreviations and nomenclature. Section 2 gives a brief summary of
relevant previous work, followed by Section 3 that discusses turbo-
machinery degradation in the context of maintenance events in in-
dustrial settings. Then the new algorithm is described, with examples of
its predictive performance in Section 4. Section 5 presents an industrial
case study showing the application of the algorithm to the industrial
data sets, while Section 6 gives a comparison with other approaches.
The paper ends with conclusions and recommendations.

2. Background and state of the art

Degradation of turbomachinery is typically associated with fouling,
i.e. deposits forming on the surfaces inside the equipment. However,

Table 1
Abbreviations and names.

Abbreviation Explanation

CT Tuning data set from offshore compressor
C1, C2, C3 Test data sets from offshore compressor
P1, P2, P3, R Selected time windows
E1, E2, E3, ES Maintenance events
T1 Test data set from offshore turbine
ADP Adaptive Degradation Prediction, the proposed algorithm
Mean Mean value approximation
Linear Linear regression over varying window
LinearC Linear regression over fixed window
Fixed Exponential Exponential approximation with fixed starting point

Table 2
Nomenclature.

Symbol Explanation

d Degradation indicator
d Estimated degradation indicator

Y Measured performance variable, healthy
YD Measured performance variable, degraded

Efficiency calculated from measurements, healthy
D Efficiency calculated from measurements, degraded

0 Performance efficiency after maintenance event
Expected performance efficiency without degradation

t Time
tk

i Time instant k in i-th window

b b,i i
0 1 Coefficients of linear regression in i-th approximation window

Random error
Expected standard deviation

b b b, ,i i i
0 2 3 Coefficients of exponential regression in i-th approximation window

Degradation increment to detect
Scaled degradation increment to detect

K i Number of samples in i-th window
N Number of approximation windows for data set
Pi Sum of squared errors in i-th prediction window
t0 A point for prediction
Ti

Start Beginning of i-th approximation window

Ti
End End of i-th approximation window

i
Start Beginning of i-th detection window
i
End End of i-th detection window

Tapp Default approximation and detection window

Ti
app Actual i-th approximation window

i
app Actual i-th detection window

Tpred Prediction window
Tf Period of calculations

A half of prediction interval
y Linear approximation in a detection window
m c, Coefficients of the linear approximation y in a detection window
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measuring the level of fouling is only possible during manual inspec-
tions. To get an insight into the current degradation without performing
an inspection, a degradation indicator is used.

2.1. Efficiency degradation

Typically, the degradation indicator d shows a relative deviation of
the performance variables from the healthy values [16]:

=d Y Y
Y

D
(1)

where Y denotes the healthy value, and YD is the value in a degraded
state. Usually, efficiency is the performance variable used for de-
gradation assessment, with =Y denoting the expected efficiency and

=YD D showing the actual value, with D as the efficiency in degraded
state [17]. The expected value Y can be calculated based on data from
the manufacturer of the turbomachinery or has to be estimated from
thermodynamics [12]. The actual value D can be obtained from mea-
surements using simplified thermodynamic relationships based on ex-
perimental correlations to find unknown thermodynamic quantities
[18]. For the purpose of this work, it is assumed that the degradation
indicator d is available in real-time.

2.2. Degradation modelling for turbomachinery

This paper proposes a data-driven algorithm that models the de-
gradation indicator from Eq. (1) as a function of time. Modelling de-
gradation as a function of time has been described by Meeker and Es-
cobar [19]. They proposed a classification of approximation functions
that includes a linear form and a negative exponential form i.e. a curve
with a rate of change that slows down as it approaches an asymptote.
They classified the main approaches to degradation modelling that had
already been in use for modelling turbomachinery degradation. A re-
view of methods used for degradation modeling, including reliability
analysis in industrial applications was done by Bagdonavičius et al.
[20] and Bagdonavičius and Nikulin [21], who indicated that regres-
sion models are well-suited for these purposes.

Tarabrin et al. [17] described fouling of a compressor as having an
exponential approach to an asymptotic value that was reached after
1000–2000 h of operation. Cicciotti [12] used such a model in a real-
time framework. Assuming that the degradation started immediately
after the compressor was turned on, he fitted the exponential model to
degradation data as new data points arrived and the window used for
approximation increased. The expanding window allowed him to adapt
to the varying time of stabilisation of the degradation indicator. He also
considered maintenance events that could restore partial performance,
but the exponential model was assumed strictly increasing. A similar
approach was also assumed by Puggina and Venturini [10] who ap-
proximated degradation of a simulated gas turbine as a linear function
of time.

Li and Nilkitsaranont [13] considered a simulated gas turbine en-
gine in which the simulation included degradation and added random
noise. The degradation was a linear function of time initially and then
started to change more rapidly. They estimated the underlying de-
gradation by linear regression and then switched to fitting of a quad-
ratic form to follow the more rapid degradation. They were able to give
predictions with confidence intervals for the remaining useful life.

Tsoutsanis and Meskin [22] also simulated a gas turbine and pro-
posed a moving window approach with adaptation of the window size.
They assumed degradation was monotonically increasing, and treated it
as locally linear within each window. They showed a good fit between
predictions of degradation from extrapolation from the previous
window and the actual degradation.

Other prognostic models for this were developed by Hanachi et al.
[23] and Kiakojoori and Khorasani [24]. While they differ in their
methodology (a regression-based prognostic model and a dynamic

neural network), their output is a prognosis of the degradation of gas
turbines. Fentaye et al. [25] proposed an approach based on neural
networks to overcome the difficulties related to disturbances. However,
they did not test the method with real operating data from an industrial
machine. Fentaye et al. [26] presented a survey on degradation mod-
elling methods used in gas processing turbomachinery. As indicated by
Cavarzere and Venturini [27] who compared regression with more
complex tools, such as Kalman filtering or Bayesian forecasting, the
regression is well suited to linear and nonlinear modelling and will be
used in the current work.

2.2.1. Problem statement
It is problematical to apply the approaches discussed above to real

data from offshore compressors and turbines. In practice, the under-
lying degradation indicator is not strictly increasing. Also, the de-
gradation indicator calculated from operational measurements is sig-
nificantly affected by disturbances, making it challenging to estimate
and predict the true underlying degradation.

2.2.2. Contributions of the paper
The current work addresses the problem of detection and prediction

of performance degradation in offshore turbomachines and presents a
real data set with degradation of efficiency. It proposes an algorithm
that uses both linear and exponential regression in an expanding
moving window framework. It estimates the underlying degradation
indicator in between maintenance events, makes predictions of future
degradation, and gives confidence bounds for the predictions.

The paper gives guidelines for tuning the parameters of the algo-
rithm, and shows that the tuning settings are portable from one ma-
chine to another. The performance of the algorithm is tested in an
online monitoring scheme applied to data from offshore gas processing
facilities. The benefit of using an on-line updated approximation model
is that the underlying performance degradation indicator would be
available for decision-making about when to perform maintenance.
This will result in additional operational profits and reduced energy
consumption, as argued by Aretakis et al. [8] and Schulze Spüntrup
et al. [9].

3. Industrial data for efficiency degradation

3.1. Degradation of compressor efficiency

The studies on degradation modelling in this paper used a data set
from an offshore compressor, courtesy of Equinor ASA, and a data set
from an offshore turbine from Brekke et al. [28]. These data sets are
discussed now, in order to introduce, motivate and explain the pro-
blems that will be addressed in the paper.

Fig. 1 shows the efficiency D of an offshore compressor. The data
were collected over a period of approximately two years, with one
sample per day. The black line represents the efficiency calculated from
temperature and pressure measurements using the approach described
by Campbell et al. [29] and Mokhatab et al. [18] who combined ther-
modynamics with experimental formulas to estimate unknown ther-
modynamic quantities. The black line is noisy, but shows a clear long-
term trend (dashed red line). Prediction of this trend is the objective of
this work. The noisy spikes show short-term variations, typically due to
variations in the gas composition. These variations mask the underlying
trend. Their influence on the prediction will be discussed in Section 6.

The overall degradation of efficiency consists of various types. Each
can be (partly) reversed by specific maintenance actions [8,30]. The red
triangular area at the top of Fig. 1 denotes the non-recoverable de-
gradation, which can only be reversed by exchanging the internal parts
of the compressor. The three maintenance types, online washing, offline
washing and compressor inspection, reverse effects such as fouling. Online
washing is the least expensive option and quick, but cannot remove all
the deposits on the compressor blades. As the online washing cannot
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fully remove the deposits, a remainder builds up which requires offline
washing. Offline washing is more thorough and removes more deposits
than online washing. During a compressor inspection, the compressor is
shut down and the casing opened which enables better washing and a
check of all mechanical components in the compressor system. The
trend data in Fig. 1 aligns well with the cleaning events at the end of the
episodes C1, C2, and C3, and shows that the efficiency of the com-
pressor was restored. After the compressor inspection was performed at
the end of the episode CS, only the non-recoverable degradation re-
mained.

3.1.1. Determining the degradation of efficiency by smoothing of data
As indicated in Section 2, the value of expected efficiency is ne-

cessary to calculate the degradation indicator d according to Eq. (1) or
its modification from Eq. (1)

=d D (2)

The expected efficiency in Eq. (1) and (2) can be taken to be the effi-
ciency after a complete overhaul, which can be calculated, = 0.

Fig. 2 shows the degradation indicator calculated from episode CT
in Fig. 1. The calculated degradation indicator needs to be smoothed in
order to give a better estimate of the true underlying value. The ex-
ponential model fits more accurately than a linear trend. This is ex-
pected because according to Syverud [31], the rate of increase of
fouling slows down as the deposits built up.

Fig. 3 shows the three periods that were used for testing the algo-
rithm. They are also noisy and indicate a need for a smoothing algo-
rithm. Moreover, the red lines confirm that neither linear nor ex-
ponential approximations are good enough.

3.1.2. Degradation of turbine efficiency
A further industrial data set comes from a GE LM2500 engine

Fig. 1. Efficiency degradation with maintenance types over a period of approximately 18 months. The episodes (C1, C2, C3, CS, CT) are used for developing and
testing the algorithm. Each episode ends with a maintenance event (E1, E2, E3, ES).

Fig. 2. Degradation indicator for the compressor from period CT.
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operating offshore in the Norwegian Sea and was obtained from Brekke
et al. [28] using software developed by Rohatgi [32]. The original data
were collected during a period of operation of approximately three
months without maintenance events that could mitigate the loss of
performance. The samples were collected every minute and this work
uses the first sample from each day.

The degradation indicator for the turbine is presented in Fig. 4 and
cannot be approximated with either linear or exponential trend.

3.1.3. Summary
The degradation data presented in Figs. 2–4 confirms that there is a

need for improved approximation algorithms that would capture the

changes in the degradation indicator, at the same time smoothing the
noisy variations in the datasets. As indicated by Zagorowska et al. [33],
a good candidate for the approximation of the degradation indicator
would combine both linear and exponential functions. The algorithm
proposed in the current work presents a model that switches in a sys-
tematic way between these two functional forms.

4. Algorithm description

The aim of the algorithm is to estimate the value of the underlying
degradation indicator d from the calculated degradation indicator d
shown as the black lines in Figs. 2–4. Section 3 evinced that a single
linear or exponential approximation is insufficient for the estimation of
d . This section introduces a moving window algorithm with a model for
the underlying degradation that has constant, linear, and exponential
terms:

= + +d t b b t b b t( ) exp( )i i i
0 1 2 3 (3)

where i denotes the current approximation window. It adapts by
switching between a linear and exponential approximation as the
window moves. The switching is done by adjusting the values of the
model parameters b i

0 to b i
3, as described in Section 4.2.1.

4.1. Moving windows

The algorithm makes use of three moving windows:

• An approximation window in which the measured degradation in-
dicator (black lines in Figs. 2–4) is approximated with either a linear
or an exponential function. The i-th approximation window is de-
fined by a time interval = +T T T T T[ , ] [ , ]i i i i i

Start End Start Start app .
• A detection window needed for switching the functional form in the

Fig. 3. Degradation indicator for the compressor divided in periods.

Fig. 4. Degradation indicator for a turbine from Brekke et al. [28] (T1).
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approximation window. The i-th approximation window is defined
as a time interval = +[ , ] [ , ]i i i i i

Start End Start Start app .
• A prediction window in which the model fitted to data in the ap-

proximation window is extrapolated. It is defined by an interval
+T T T[ , ]i i

End End pred with constant Tpred.

Online smoothing of the calculated degradation indicator, and its
forward prediction, require a moving window approach because of the
varying nature of the degradation indicator. Fig. 5 illustrates the idea of
a moving approximation window. The i-th approximation window
starts at Ti

Start, ends at Ti
End and lasts for Ti

app. The subsequent approx-
imation window, +i 1, is described with +Ti

Start
1 and +Ti

End
1. The time dif-

ference between the ends of two consecutive windows,
= +T T Tf

i i
End End

1, is constant, and characterises the update rate of the
approximation. The dots on the time axis denote the measurement in-
stants tj

i in i-th window.
The approximation window Ti

app and the difference between two
consecutive starting points for the approximation

= +T T T T{0, }i i
f,Start Start

1
Start f are derived from the adaptation proce-

dure described in subsequent sections.

4.2. Fitting of the model to data within an approximation window

4.2.1. Numerical considerations
Identification by regression of all four parameters b0 to b3 in Eq. (3)

can give non-unique estimates. If the underlying degradation indicator
does not change much within a window, as seen for instance from 0.5 to
1 months in Fig. 4, then the linear term dominates and there are many
combinations of b b b, ,1 2 3 that would fit such data. In this case, the al-
gorithm must select one combination. This is done by setting b2 to zero
when the underlying degradation indicator does not change sig-
nificantly within a window. The model is then linear, = +d b b t0 1 , and
is fitted to the data in the approximation window using linear regres-
sion.

On the other hand, the underlying degradation indicator changes
significantly at other times, as seen for instance between 1.5 and
2 months in Fig. 4. The literature reviewed in Section 2.2 shows that,
for underlying physical reasons, an exponential model provides a good
fit during such periods. If the underlying degradation indicator changes
significantly within a detection window then the parameter b1 is set to
zero and the model is = +d b b b texp( )0 2 3 . The model is fitted using
non-linear regression.

The above arguments suggest that adaptation requires an assess-
ment for each window of whether there has been a significant change in
the underlying degradation indicator within the window. This is done
with a parameter as described in Appendix C.

An additional logical step is needed when starting to use the ex-
ponential model, because it is necessary to determine the starting point
for exponential approximation. This is done by examining whether
significant changes in the value of d began in the current (i-th) window,
or in the previous window. If there was no significant change in the
previous window, it means that the degradation indicator only started
to increase or decrease significantly in the current window. The middle

of the current detection window is taken as a starting point for the
exponential approximation, and the exponential model is fitted to the
data in the second half of the window. Taking the middle of the de-
tection window as a starting point for the approximation results in
shortening of the approximation window from the default value Tapp to
Tapp

i . This is to ensure that the exponential model is fitted to the non-
linear part from the detection window.

4.2.2. Linear regression
It is assumed that the observed value of d t( )ji at each time moment

= …t T T j K[ , ], 1, ,j
i i i i

Start End , with K i denoting the number of samples
in i-th approximation window, is a random variable [34], whose mean
value is the true underlying value of the degradation indicator at time t .ji

The expected value of the degradation indicator d at each t E d t, ( ( )),j
i

j
i is

a smoothed estimate of the true underlying value of the degradation
indicator. Such an estimate removes variability that is present when the
degradation is calculated from operating data. The expected value is
calculated as:

= +E d t b b t( ( ))j
i i i

j
i

0 1 (4)

where b b,i i
0 1 are unknown coefficients found using linear regression.

The estimated degradation indicator in i-th approximation window
T T[ , ]i i

Start End is

= +d b b ti i
0 1 (5)

4.2.3. Nonlinear regression
When linear regression is not sufficient, an exponential model is

used in i-th approximation window:

= +f t b b b b t( , ) exp( )i i i i
0 2 3 (6)

The model (6) is obtained from Eq. (3) by setting =b 01 . Using non-
linear regression with constraints b b,i i

0 2 and >b 0i
3 yields an

estimate of the degradation indicator in i-th approximation window
T T[ , ]i i

Start End

=d f t b( , )i (7)

To find the parameters in both linear and non-linear cases, the function
fit from the Curve Fitting Toolbox in Matlab is used.

4.3. Determining the change in degradation

The process for choosing the functional form for approximation is
conducted in i-th detection window by fitting a linear model of the form

= +y mx c to the data within the detection window, where x is time.
Although this looks similar to the linear model = +d b b t0 1 discussed
earlier, y is not necessarily the same as d . The quantity d is an estimate
of the true underlying value of the degradation indicator within the
approximation window. If it transpires from the analysis in the detec-
tion window that a linear model is appropriate for the given approx-
imation window, then =d y in the approximation window. However, y
will be generated for all detection windows, even for those where an
exponential model is appropriate. If an exponential model is

Fig. 5. Explanation of moving approximation window, adapted from Zagorowska et al. [33].
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appropriate, then y is not the same as d throughout the approximation
window.

An estimate of the change in d from the start to the end of the
detection window is given by =y m ( )End Start , where m is the
gradient of the fitted straight line, and i

End and i
Start are the times at

the end and start of the i-th detection window.

4.4. Choosing the model structure

The model structure is chosen by comparing y in i-th detection
window with

=
T
· i

app

app (8)

where is a constant parameter and = Tmin{ , }i i i
app app End Start .

The selection of an appropriate value for is discussed in Appendix C.
Eq. (8) can be rewritten

=
>

T

T

, if

, if

i i

T
i i

app End Start
·( )

app End Start
i i
End Start

app (9)

The first case is valid if the default window is used for detection,
whereas the second case is used after shortening of the window, as
indicated in Section 4.2.1.

If y , then the underlying degradation will be determined
using linear regression by setting parameter b2 to zero and fitting the
model = +d b b t0 1 to the data in the approximation window. If

>y , the underlying degradation will be determined from nonlinear
regression by fitting the model = +d b b b texp( )0 2 3 . The test uses y
rather than y because the degradation indicator can decrease in some
circumstances.

The logical steps in the algorithms are presented in the flow chart in
Fig. 6. The left path represents fitting the linear model, the middle path
represents the first window after detection that >y , and the right
hand path presents fitting the exponential model in subsequent win-
dows. The three blocks are described in detail in Appendix A.

4.5. Prediction intervals

Prediction consists of extrapolation of the approximating linear or
exponential function into the future, i.e. for +t T T T[ , ]i i

end end Pred . The
uncertainty of the prediction is captured by prediction intervals as-
suming that the errors = d di are normally distributed [34].

4.5.1. Prediction intervals
The prediction intervals at a selected percentile 100(1 ) at time

=t t0 are given by:

+d t d t d t( ) ( ) ( )0 0 0 (10)

with

= +t a aA A(1 ( ) )K/2, 2
2

0
1

0i T T (11)

where t K/2, 2i is the 100(1 ) percentile of Student’s t-distribution
with K 2i degrees of freedom and where 2 is the estimated variance
of d. The a0 is a vector of derivatives of f t b( , )i calculated at t0 and A is
a matrix of derivatives of f t b( , )i calculated at times

+t T T T[ , ]p
i

Start End predi with f t b( , )i given by the appropriate form of
the right hand side of Eq. (3). The formulas for a0 and A for the linear
and exponential cases are given in Table B.5 in Appendix B. The nu-
merical values for were obtained in Matlab using the function
predint.

The prediction intervals given by Eq. (10) show that 100(1 )% of
the data points in the prediction window will fall in the prediction in-
terval. This paper assumes = 5 which means that 95% of the data
points will be within the prediction interval.

Fig. 7 illustrates the prediction intervals in the online moving
window algorithm for four windows, R and P1, P2, P3. Window R is
enlarged in the bottom right and presents the approximation (thick
solid red curve) of the degradation indicator (black) in the current
window. The red dotted line shows the expected value d in the pre-
diction window defined by Tpred (light green shading). The thin blue line
shows the prediction intervals for data from the approximation window
T T[ , ].i i

Start End The dotted lines show the prediction intervals for
+t T T T[ , ].i i

End End pred
Windows P1, P2, and P3 present how the prediction intervals de-

pend on the size of the approximation window. The shortest approx-
imation window P1 has the largest prediction intervals. As indicated by
Montgomery and Runger [34], the prediction interval is a decreasing
function of the number of samples K i. Therefore, increasing number of
samples K i in i-th approximation window, for example by expanding
the duration of the time window P1 to P2 and P3, results in narrowing
of the prediction intervals. The same effect can be obtained by in-
creasing the number of samples for fixed window size.

5. Industrial case study

The proposed adaptive algorithm was applied to real data sets
coming from off-shore applications as described in Section 3. For the
purpose of this work, the data from Fig. 1 were divided in two sets:

• Tuning data (CT) were used for tuning of the algorithm
• Test data were used for comparison with other approaches (C1, C2

and C3 in Fig. 1)

The objective of testing the algorithm on data sets coming from the
same compressor that was used for tuning is to evaluate the adaptation
method and the quality of predictions. Furthermore, the algorithm is
tested on the turbine data set T1 to evaluate whether the settings of the
algorithm are portable.

5.1. Tuning

To apply the algorithm from Section 4 to industrial data, it is ne-
cessary to define the values of its settings: the default approximation
window Tapp, the prediction window Tpred, and the desired threshold .
The values of the settings can be found by analysing historical datasets.
The algorithm was tuned using the tuning data set CT. Then the same
settings were applied to test data C1, C2, C3 and T1 to analyse the
accuracy of prediction and the influence of the tuned parameters on the
performance.

The value of Tf was set to one day, as the new values of the de-
gradation indicator were available once per day.

This section discusses the choice of the approximation and predic-
tion window and presents the results of the tuning. Further details on
the choice of the detection threshold are in Appendix C.

5.1.1. Approximation window
As indicated by Tarabrin et al. [17], compressor degradation due to

fouling typically increases over 1000–2000 h of operation (42–84 days)
and then stabilizes. Thus, all variations shorter than 42 days in the
calculated degradation indicator (the black lines in Fig. 1) are con-
sidered to be due to disturbances. This suggests that the default window
size should be in the range 42–84 days of operation to mitigate the
influence of the disturbances. The approximation window for the
compressor was chosen to be 42 days, =T 42app , to capture the fastest
degradation, while being longer than variations due to disturbances.

Syverud [31] indicated that the duration of disturbances would
depend on the type of the turbomachinery. Thus, a procedure for
adapting the approximation window to a different piece of equipment is
shown in Section 5.2.2.
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5.1.2. Prediction window
The prediction window will have an impact on the accuracy of the

prediction and the prediction interval. Two cases are considered:

• =T 10pred days - short-term prediction window
• =T 30pred days - medium-term prediction window.

The choice of the prediction window depends on the application. In the
current work, short-term predictions are applicable to scheduling of
online washings, whereas medium-term predictions relate to offline
washings [9].

Both prediction windows were explored in order to examine their
influence on the algorithm and to give a recommendation that would be
portable to other applications. They were chosen to make sure that the
approximation window and the prediction window together fit in
2000 h, as this is the maximal expected duration of a single degradation
period, from the start to stabilisation:

+ = + = <T T 42 10 52 days 84 daysapp pred (12)

for the short prediction =T 10pred days and

+ = + = <T T 42 30 72 days 84 daysapp pred (13)

Fig. 6. Flowchart of the Adaptive Degradation Prediction algorithm (ADP).
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for medium-term prediction with =T 30pred days.

5.1.3. Tuning results
The default Tapp, θ, and Tpred were chosen based on the knowledge

about past degradation data. Following the discussions in Sections
5.1.1, 5.1.2 and Appendix C, the default values were set to:

= =T 42, 0.005app for =T 10pred days (short term prediction), and
= 0.006 for =T 30pred days (medium term prediction). The objective of

this section is to illustrate the results of the algorithm applied to period
CT, before testing it on the data sets from C1, C2, C3, and T1.

The results of approximation and prediction on the data set CT are
depicted in Fig. 8. Figs. 8a and b show the degradation indicator d
(black) with the approximating functions d (red) for the two prediction
periods, =T 10pred days and =T 30pred days. In both cases, the red ap-
proximation d follows the underlying trend of the degradation in-
dicator. However, the influence of the prediction window Tpred is no-
ticeable in the third month, where the red curves are above the black
indicator, i.e. the prediction diverges from the value calculated from
the measurements if the prediction window is longer. However, when
the approximation adapts to the significant changes of the degradation
indicator, the predictions become accurate.

The moments when the algorithm switches from fitting of a linear
model to fitting of an exponential model are visible in Figs. 8c and d.
Red filled circles show that was exceeded (black horizontal lines), i.e.
where >y . The first red circle means that a check is performed on
the value of y in the preceding window. As it is the first one, the
algorithm chooses the middle path in Fig. 6, and uses exponential ap-
proximation in the second half of the current window. The middle point
of the window is then fixed, whereas TEnd increases as new data arrive.
As long as the change was detected, the algorithm approximated the
degradation indicator with an exponential function over an expanding
approximation window (right hand path in Fig. 6). When a change was
no longer detected, y (left path in Fig. 6), the algorithm switched
to linear approximation (grey circles). Subsequently, the degradation
indicator increased again, and the algorithm detected that >y and
switched back to exponential approximation (month four for both

=T 10pred days and =T 30pred days).

5.1.4. Prediction intervals for tuning data set
As long as the algorithm is detecting >y , the approximation

window is extended from the value T
2

app . Therefore, the uncertainty of
prediction is reduced because more data points are available for ap-
proximation. The reduction of the uncertainty is also visible in the
prediction intervals, as both for =T 10pred days and =T 30pred days, the
prediction intervals are wide at the beginning, but then they narrow
down and follow the degradation indicator more closely. Fig. 8a shows
the prediction intervals for the whole data set and indicates resetting of
the prediction intervals when >y was detected, as the prediction
intervals widen in month four.

The longer approximation window resulted in detecting longer
periods when y (there are more grey circles between the
threshold lines for longer Tpred). A period with y means that there
are fewer switches between linear and exponential approximation. This
tendency for less frequent changes had an impact on the prediction
intervals. As the detection of >y is related to shortening of the
approximation window, frequent changes result in frequent short-
enings, and, in consequence, fewer datapoints are used for approx-
imation. Hence shorter approximation windows yield more uncertainty
and wider prediction intervals. Therefore, the more frequently >y
is detected, the more uncertain the prediction.

5.2. Testing

The values of the parameters used for testing come from the tuning
procedure, described in Section 5.1, and gathered in Table 3.

5.2.1. Testing on compressor data sets
The results of application to the data sets C1, C2, and C3 are de-

picted in Fig. 9. The left column shows the approximation for =T 10pred
days, and the right side shows the approximation for =T 30pred . In both
cases, the red curves follow the trend of the black degradation in-
dicator. Nonetheless, Fig. 9 shows that medium term predictions are
less accurate than short-term prediction. In particular, the inaccuracies
are visible for C3 in the third month (Fig. 9f), where the algorithm
underestimates future degradation values in the medium-term window
compared to the shorter prediction window in Fig. 9f. This is due to the

Fig. 7. An online application of the algorithm on the tuning data set, with the structure of a time window in window R, and presenting the expanding approximation
windows in time windows P1, P2, and P3.
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assumption that the underlying degradation indicator can be approxi-
mated by extrapolation of the same function for +t T T T[ , ]i i

End End pred .
The medium-term prediction window resulted also in more un-

certainty in the prediction, characterized by the blue prediction inter-
vals. The prediction intervals for =T 30pred days are approximately
twice as wide as the prediction intervals for the shorter window. In
particular after detection of >y resulting in a shortening of the
approximation window, the prediction intervals increases for medium
term window.

The results confirm that tuning of the algorithm enables application
for multiple periods of degradation for the same compressor. The set-
tings of the algorithm can be applied for real time approximation and
prediction of the degradation indicator after tuning on a historical da-
taset.

5.2.2. Testing for turbine data set
To further evaluate the performance of the algorithm and to check

the portability of the settings, the algorithm was applied to the data set
T1 from an offshore turbine. Contrary to the previous data sets, the data
set T1 is shorter (three months). The stabilisation periods are also of
comparable duration to period with increasing degradation indicator
(two weeks). For instance, in the first month in Fig. 10, the black de-
gradation indicator stabilizes around 0.012 after two weeks and

remains around this value for another two weeks. To follow the un-
derlying degradation indicator, the default approximation window was
fixed to two weeks, =T 14app days. It is also assumed that the de-
gradation indicator d in a turbine is similar to the degradation indicator
in a compressor. Therefore, the value of for a turbine has the same
interpretation as discussed in Section 5.1, but with a shorter Tapp. The
parameter = comp is scaled to = turb using the formula:

=
T

Tturb
comp app,turb

app,comp (14)

where Tapp,turb denotes the default approximation window for the tur-
bine, Tapp,comp denotes the default approximation window for the com-
pressor.

The prediction windows of 3.5 and 7 days were chosen to fulfill
+ <14 3.5 21 days and + <14 7 21 days which was considered the

length of a period when >y for the turbine dataset by Zagorowska
et al. [33]. The corresponding values of are = 0.0017 for 3.5 days
and = 0.002 for 7 days.

The results of the application of the algorithm to the data set T1 are
depicted in Fig. 10. Again, the red curves follow the underlying de-
gradation indicator d for both short and medium term prediction.
However, due to more pronounced transitions between fitting of an
exponential model and fitting of a linear model, the inaccuracies

Fig. 8. Application of the algorithm to the tuning data set CT for =T 10pred days in (a) and =T 30pred days in (b), together with respective y
iapp

(c and d).

Table 3
Algorithm settings for the case studies.

Compressor (CT, C1, C2, C3) Turbine (T1)

Medium-term prediction window =T 30 dayspred , = 0.006 =T 7 dayspred , = 0.002
Short-term prediction window =T 10 dayspred , = 0.005 =T 3.5 dayspred ,

= 0.0017
Default approximation window =T 42 daysapp =T 14 daysapp
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resulting from the longer prediction window are more visible
(Fig. 10b). The algorithm overestimates the degradation in weeks three
and 10, i.e. when the underlying degradation indicator stabilizes. When
the degradation indicator starts to increase, the predictions under-
estimate the underlying value, which is visible in week eight. The in-
accuracies suggest that the algorithm should be primarily applied for
short-term prediction. However, the prediction intervals (dashed blue
lines) capture the uncertainty related to medium term prediction and
can be used for decision support in planning.

The T1 data set also shows how the algorithm successfully adapts to
decreasing values of the underlying degradation indicator. In weeks 3–5
and 10–12, a decrease in the indicator was detected, and the algorithm
switched from a linear to a decreasing exponential function. These
transitions for both prediction windows are depicted in Fig. 10c and d.
The red filled circles denoting >y are below the threshold, so the
linear approximation used for detection is decreasing and <y .

Finally, the dashed blue lines in Fig. 10a and b show the influence of
the number of samples on the prediction intervals. The prediction in-
tervals are narrower for the turbine data set than for the compressor
data set, despite shorter approximation windows. The narrow intervals
were obtained thanks to frequent sampling, i.e. for the turbine data set
the degradation data is available every minute, whereas the compressor
had one sample per day.

6. Comparison with prediction with other approaches

The algorithm was compared with four other approaches:

• Mean value over constant approximation window (Mean), 42 days
for the compressor and 14 for the turbine

• Linear regression over constant approximation window (LinearC),
42 days for the compressor and 14 for the turbine

Fig. 9. Results for test data sets, C1, C2, C3, for the offshore compressor.
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• Linear regression over varying approximation window as the algo-
rithm (adaptation of the algorithm proposed by Tsoutsanis et al.
[14]) (Linear)

• Exponential approximation with fixed starting point and expanding
approximation window [12] (Fixed Exponential)

6.1. Performance metric for comparison

The performance of the algorithms was measured by a performance
metric given by Eq. (15):

=
=

I P
Ki

N i

i
1 (15)

where

=
=

P d t d t( ( ) ( ))i

k

K

k
i

k
i

1

2
i

(16)

where i denotes the number of windows for each data set, K i is the
number of samples in i-th prediction window, = …k K1, , i and d t( )k

i

denotes the estimated value of the degradation indicator at time tk
i . The

metric from Eq. (15) measures the error between the expected de-
gradation indicator d and the measured values d. Thus, the smaller the
value of I, the better the prediction. The metric from Eq. (15) is
equivalent to integrating the mean value of a sum of squares of the
differences in each prediction window +T T T[ , ]i i

End End pred over the
whole data set. Taking the mean value mitigates the influence of short
spikes in the data set.

6.2. Compressor comparison

The performance of the algorithm was assessed against other ap-
proaches over the two prediction windows, 10 days and 30 days. The
results of the comparison for the tuning data set from Fig. 2 are depicted
in Fig. 11 which shows the value of Pi as a function of the window
number i for both prediction windows =T 10pred days (Fig. 11a) and and

=T 30pred days (Fig. 11b). The red curve with dots depicts the perfor-
mance of Adaptive Degradation Prediction, ADP, the light blue with
crosses curve shows the results of the linear approximation over the
same window as the algorithm, Linear, dotted magenta presents the
linear approximation over the fixed window =T 42app days, LinearC,
dark blue with circles curve shows exponential approximation with
expanding approximation window, Fixed Exponential, and dashed
green shows the results of averaging over constant =T 42app days,
Mean.

The red curve with dots shows that the ADP algorithm presented in
this paper with moving window and switching ability gives the best
results. This result is also confirmed in the first and sixth rows in
Table 4. For both prediction windows, =T 10pred and =T 30pred , the ADP
in the first part ( <i 50) behaves like the Fixed Exponential approx-
imation (dark blue with circles) and is better than both linear approx-
imations (light blue with crosses and dotted magenta). In particular for
medium-term prediction window, i.e. longer Tpred, the linear approx-
imations were inaccurate at the beginning. This is due to the fact that
the linear approximations do not follow the underlying degradation
indicator and assume that it can be approximated by extrapolation of a

Fig. 10. Application to the turbine data set T1 from Brekke et al. [28]. The results of approximation are in a and b and the corresponding values of y
iapp

in c and d.
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linear function. As the linear approximations at the beginning use the
data from the first 1.5 months from Fig. 2, they overestimate the de-
gradation indicator. In the second part ( >i 50), the ADP was able to
follow the underlying degradation indicator, whereas the Fixed Ex-
ponential approximation was no longer good enough. This is because
Fixed Exponential approximation extrapolates the approximation from
the first three months into the future, whereas Fig. 2 shows that the
underlying degradation indicator started to increase in month four.

Table 4 compares the three data sets C1, C2, and C3 (rows 2–4 and
7–9) using the metric I from Eq. (15). The values show the difference in
percentage from the best obtained value for each data set, thus zero
means that the method performed the best. For short term prediction
linear approximations are enough, but their performance decreases for
medium-term prediction. This is due to the fact that the linear ap-
proximation does not follow the underlying degradation indicator over
the whole data set, as indicated in Fig. 3, and is not able to predict
correctly. In all cases, the worst results were obtained for mean value
approximation which predicts the degradation indicator to be constant.

6.3. Turbine comparison

Fig. 12 shows the value of Pi as a function of the number of window
i for both prediction windows =T 3.5pred days (Fig. 12a) and =T 7pred
days (Fig. 12b) for the turbine data for five algorithms: ADP (red),
Linear (light blue with crosses), LinearC (dotted magenta), Fixed Ex-
ponential (dark blue with circles) and Mean (dashed green).

All the algorithms presented in Fig. 12 give a high error at the be-
ginning (window number smaller than five). This is a result of choosing
the default = =T 2app app weeks. It can be seen in Fig. 10 that the
underlying degradation indicator is increasing in this period. Thus,

extrapolating the approximating model into the future overestimates
the value of the underlying degradation indicator, which is also con-
firmed in Figs. 10a and b where the red curves are above the black
curve in week three. The best results in this period are obtained from
the approximation with the Mean value showed with dashed green in
Fig. 12 because it averages the expected degradation indicator over two
weeks and does not overestimate future values. Nonetheless, ADP was
able to adapt to the underlying degradation indicator, and as a result
gave the best predictions from window six.

Furthermore, all the approaches in Fig. 12 based on moving window
framework, i.e. ADP (red), Linear (light blue with crosses), and LinearC
(dotted magenta) yield smaller values of Pi in windows 40–60, com-
pared with Fixed Exponential (dark blue with circles) and Mean (da-
shed green). This is because the Mean algorithm estimates the future
degradation indicator based data until week seven, while it starts to
increase in week eight. Therefore, the Mean algorithm underestimates
the future degradation indicator. The Fixed Exponential algorithm tries
to fit one exponential model to the whole data set available to that
point. Therefore, it is not able to take into account the increasing period
in week eight. Using a moving window approach results in removing
older data from the approximation window, and in consequence, the
ADP, Linear, and LinearC algorithms are able to better follow the un-
derlying degradation indicator.

Contrary to the results for the tuning data set depicted in Fig. 11, for
the data set from Fig. 4, the linear approximation over a constant
window, LinearC (pink dotted line in Fig. 12), has a similar perfor-
mance as the ADP (red line). This is due to the fact that the prediction
window for the turbine data set is shorter than for the compressor.
Therefore, it is more likely that the extrapolated values would follow
the underlying degradation indicator more closely over a shorter time
period. This is also confirmed by comparing the performance of LinearC
method in Fig. 12a and b. In both cases, the ADP (red) and the LinearC
(magenta) are close, but for =T 7pred days, the value of Pi for LinearC is
higher than the value for ADP, which means that linear approximation
is well suited for shorter prediction windows.

The confirmation of the best results for the turbine data set is in
rows five and 10 in Table 4.

7. Potential impact of the algorithm for power optimisation

Large turbomachines in oil and gas applications can require up to
80 MW and process up to 500 000 m3 per hour [35]. The loss of effi-
ciency due to fouling can vary from machine to machine, but it can
reach up to 10% as indicated by Fentaye et al. [26]. The loss of effi-
ciency is then translated into increased power consumption of up to
4.5% for large compressors [36]:

Fig. 11. Comparison with other approaches for the tuning data set CT. Legend: red with dots – ADP; light blue with crosses – Linear; dotted magenta – LinearC; dark
blue with circles – Fixed Exponential; dashed green – Mean.

Table 4
Value of performance indicator I for five algorithms, for two prediction win-
dows. The values show the difference in percentage from the best obtained
value for each data set: CT, C1, C2, C3 for the compressor, T1 for the turbine

Data set and prediction
window

ADP Linear LinearC Fixed
Exponential

Mean

1. CT – short 0 50 28 22 211
2. C1 – short 2 6 2 0 27
3. C2 – short 4 0 0 4 143
4. C3 – short 5 5 0 5 141
5. T1 – short 0 30 10 70 30
6. CT – medium 0 124 81 38 252
7. C1 – medium 0 8 4 1 55
8. C2 – medium 0 25 15 15 205
9. C3 – medium 18 5 0 14 241
10. T1 – medium 0 38 23 54 23
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= +P P h d( )D (17)

where PD is the power in degraded state, P is the power in up state, and
h d( ) is a function translating the degradation indicator d to the effects it
has on power. The ability to predict the degradation would enable
improved operation of the machinery in two ways described in the
subsequent sections.

7.1. Impact on performance-based maintenance

The expected value of degradation can be used for maintenance
scheduling to provide the optimal schedule of washings and minimise
the overall power consumption. Optimisation frameworks for main-
tenance scheduling with degradation modelling have been proposed by
Hovland and Antoine [37], Nørstebø et al. [38], Xenos et al. [36],
Schulze Spüntrup et al. [9], who all used linear models of degradation
to minimise the power PD in large oil and gas applications. Zulkafli and
Kopanos [39] proposed a framework for maintenance scheduling for
utilities, including compressor systems and modelled degradation as
piecewise-linear between maintenance events. These frameworks
would benefit from the more accurate model of degradation as provided
by the new algorithm. In particular, the prediction would be more ac-
curate and might extend the time between the maintenance activities
such as compressor washings, or, conversely, accelerate an activity to
prevent a failure.

7.2. Impact on decision support

The new algorithm may be used for decision support. In particular,
the prediction bounds can provide an estimate of expected power in-
crease over the prediction window Tpred. Denoting the lower prediction
bound as dlower and the upper prediction bound as dupper, Eq. (17)
yields:

+ < < +P h d P P h d( ) ( )Dlower upper (18)

Some industrial sites, in particular in off-shore settings, are not
equipped with the infrastructure for online maintenance. The estimates
obtained in Eq. (18) might help creating the decision-support en-
vironment for design changes, such as investing in a system for online
washing. Knowing the prediction bounds of the power consumption
will make it possible to assess the uncertainties in the payback time for
the investment.

At the same time, the prediction intervals provided by the algorithm
can be used for optimisation under uncertainty, as they indicate the
value of probability that the data points will be within the interval. As
an example, the optimisation framework for a gas transport network
proposed by Cay et al. [40] can be extended to include uncertainty in

degradation, not only in demand.

8. Discussion and conclusions

8.1. Synopsis

A data-driven algorithm for online prediction of turbomachinery
degradation has been presented. The algorithm is based on time-trend
analysis and combines a moving window approach with adaptive re-
gression analysis and predicts the expected value of degradation and
quantifies the uncertainty of the prediction. The adaptive switching
between regression functions is also decided in a moving window
fashion. The algorithm was used to predict the expected values of future
degradation indicator and to quantify the uncertainty of the prediction
by providing upper and lower prediction intervals in each window. An
optimisation scheme was used for tuning of the parameters of the al-
gorithm, such as the approximation and prediction window, and the
threshold for change detection. The influence of the parameters was
demonstrated and their impact on the accuracy of the prediction has
been discussed. The adaptation properties were demonstrated in com-
parison with four window-based approaches: linear regression over a
fixed and a varying approximation window, exponential regression, and
analysis of mean value in a fixed window.

8.2. Discussion

The results using real data from industrial case studies show that the
algorithm predicts the degradation indicator accurately in the short and
medium terms. The moving window framework combined with non-
linear regression allows adaptation of the algorithm to the variations of
the trend of the degradation indicator in between maintenance periods.
A possible extension of the algorithm would be to adjust it for adap-
tation taking into account maintenance activities and the abrupt im-
provements denoted by E1, E2, E3, and ES in Fig. 1. This would allow a
uniform analysis of degradation throughout extended periods of time.

The varying prediction intervals emphasize the uncertainty of the
prediction. Thus, they provide additional information about the de-
gradation indicator that can be used for scheduling under uncertainty.
The predictions can be used as an input to decision-support systems
such as production and maintenance scheduling systems. The benefit of
using an online updated approximation function is that changes in the
performance degradation are considered in the decision-making process
of when to perform maintenance. As indicated in the turbine case study,
the prediction intervals depend on the number of samples in the data
set. Thus, increasing the sampling frequency when collecting the data
would further improve the predictions and narrow down the prediction
intervals.

Fig. 12. Comparison of different approaches for turbine from Brekke et al. [28]. Legend: red with dots – ADP; light blue with crosses – Linear; dotted magenta –
LinearC; dark blue with circles – Fixed Exponential; dashed green – Mean.
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The new algorithm assumes also that degradation data are available
in real time. This indicates that both the efficiency in degraded state
and the expected efficiency in up state have to be calculated online to
use Eq. (1). Still, the new algorithm requires only one data set for
tuning compared to more complex approaches based on machine
learning and data science, such as neural networks. The new algorithm
tackles in this way the challenges of insufficient data indicated by
Fentaye et al. [26], who indicated that one of the challenges for most
algorithms is the unavailability of data due to lack of sensors or their
quality.

8.3. Conclusions

This study shows that it is possible to combine the existing ap-
proaches in degradation modelling to improve the accuracy of the
prediction, thus making the algorithm useful in industrial performance-
based application. Integrating the predictions results in industrial ap-
plications would lead to improved operations and energy savings by
enabling performance-based maintenance.
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Appendix A. Variable detection and approximation window sizes

As indicated in Fig. 6 there are three possible paths for setting the sizes of the detection and the approximation window. By default, at the beginning
the detection and prediction windows are the same with = +T Ti i

app app
1 and = =T T,i i i i

Start Start End End. This case represents the left path in Fig. 6, so
y . The i-th approximation window starts at Ti

Start, ends at Ti
End and lasts for Ti

app. The subsequent approximation window, +i 1, is described with
+Ti

Start
1 and +Ti

End
1. The time difference between the ends of two consecutive windows, = +T T Ti i

f End End
1, is constant, and characterises the update rate of the

approximation. The dots on the time axis of Fig. 5 denote the measurement instants tj
i in i-th approximation and detection windows.

If >y , the size of the approximation window and the detection window is derived as follows. The algorithm detects that the exponential
model is suitable in i-th detection window, so =Th h

Start Start and =Th h
End End, for h i. The i-th approximation window is calculated as

=T T Th h
app End Starth and is equal to the detection window apph. Then the +i 1 approximation window is shortened with =+T Ti i

Start
1

Start that will remain
fixed as long as the change is detected, and = ++T T Ti i

fEnd
1

End . This corresponds to the middle path in Fig. 6.
Next, the algorithm moves to the right hand path in Fig. 6. If the shortened window is smaller than the default value Tapp, the detection window

will be the same as the approximation window, because =T T T T Tmin{ , }i i i i
app End Start End Start. The value of Ti

Start is then fixed as long as the change is
detected =+T Ti j i

Start Start, whereas = ++T T jT ,i j i
fEnd End where j is the number of detection windows where a change is detected. The fixed starting point

and increasing endpoint of the approximation window indicate that the approximation window will expand as long as >y is detected. The
detection window, +i j

app is calculated from the formula + +T T Tmin{ , }i j i j
app End Start . The detection window is then set as =+ +Ti j i j

End End and
=+ + + +T T T T Tmin{ , }i j i j i j i j

Start End app End Start . If the change is not detected any more, the approximation window and the detection window become the same
again, =Tm m

Start Start and =Tm
End
m

End with = =T Tm m
app app app.

The variable windows are depicted in Fig. A.13. The top axis shows the detection window, whereas the bottom one presents the approximation
window. The exponential model is chosen in i-th detection window and applied in approximation windows until +i j iteration. The prediction
window is omitted for clarity as Tpred is constant.

Fig. A.13. Variable detection and prediction windows for adaptation.
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Appendix B. Formulas for calculation of prediction intervals

Table B.5 presents the formulas for calculating the prediction intervals for both the linear and the exponential model.

Appendix C. Tuning of detection threshold

The next step is to find , i.e. to define how big a change is considered significant. The procedure to find is based on historical data and has two
steps:

• Finding the minimal and maximal value of y
Tapp

over the whole range of the tuning data set to find the range for

• Running an optimization procedure that finds a value of such that the prediction error is minimised

Fig. C.14 shows the values of y
Tapp

over the whole period, for fixed i
app and Tpred. As = Ti

app app for all i, =~ from Eq. (9). The minimal value of
y

Tapp
was denoted with a diamond, = ×0.5 10y

T
4

app
, and the maximal value with a filled circle, = ×6.5 10y

T
4

app
. This is equivalent to a change of

between 0.02% and 2.7% of degradation indicator d during the approximation window Tapp. As Tapp was constant, =y and the value of is
therefore sought in range [0.002, 0.027].

To find , an indicator measuring the mean difference P between the value calculated from the measurements, dk
i , and the expected degradation

d t( )k
i in the i-th prediction window is used

=
= =

P
d t d t

N

( ( ) ( ))i
N

k
K

k
i

k
i

1 1
2i

(19)

where +t T T T[ , ]k
i i
End End pred denotes the i-th prediction window with = …k K1, , i and = …i N1, , with N denoting the number of windows for the

whole tuning data set.
To show the influence of on prediction accuracy measured by the indicator (19), an exhaustive search was performed for [0.002, 0.027]. As

indicated with a square in Fig. C.15, the smallest value of P was obtained for = 0.005 for =T 10pred days, and = 0.006 for =T 30pred days. These
values were also confirmed with Global Optimisation Toolbox in Matlab.

Fig. C.15 also shows that overly small and overly large values of would result in inaccurate predictions. If is too small, for example if < 0.003
for the tuning data CT >y is detected more often. This forces the algorithm to use the exponential approximation for longer periods which

Table B.5
Parameters for calculating the prediction intervals for linear and exponential models.

Linear model Exponential model

=

=

a

t[1 ]

f t bi

bi
f t bi

b i0
( 0, )

0

( 0, )

1

0

T

T

=

=

a

b t t b b t[1 exp( ) exp( )]

f t bi

bi
f t bi

bi
f t bi

bi0
( 0, )

0

( 0, )

2

( 0, )

3

3 0 0 2 3 0

T

T

=

=

= …

t
t

t

A

1
1

1

f tp i

b i
f tp bi

b i
p Ki

K
i

( , )

0

( , )

1 1, ,

1
2

=

=

= …

b t t b b t
b t t b b t

b t t b b t

A

1 exp( ) exp( )
1 exp( ) exp( )

1 exp( ) exp( )

f tp i

b i
f tp bi

b i
f tp bi

bi
p Ki

Ki Ki Ki

( , )

0

( , )

2

( , )

3 1, ,

3 1 1 2 3 1
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3 2 3

Fig. C.14. Minimal (diamond) and maximal (full circle) value of y
Tapp

in i-th window.
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results in overestimating the value of the degradation indicator as indicated in Fig. 3. At the same time, if is too large, > 0.011, a linear regression
would be used for prediction, as the y . As presented in Fig. 3, linear approximation underestimates the degradation indicator.
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