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Abstract

Re-ranking algorithms are used to improve the effectiveness of multimedia re-

trieval systems. However, they are usually very computationally costly, and

therefore demand the specification and implementation of efficient and effective

big multimedia analysis approaches.

Recently proposed unsupervised iterative re-ranking methods present good

accuracy and significant potential for parallelization, leading us to explore ef-

ficiency vs. effectiveness trade-offs. In this paper, we introduce a class of un-

supervised iterative re-ranking algorithms and present a model that can be

used to guide their implementation for parallel architectures. We also analyze

the impact of the parallelization on the performance of three algorithms that

belong to the proposed class: Contextual Spaces, RL-Sim, and Contextual Re-

Ranking. The experiments show speedups that reach up to 6.0× for Contextual

Spaces Re-Ranking, 16.1× for RL-Sim Re-Ranking, and 3.3× for Contextual

Re-Ranking. These results demonstrate that the proposed parallel program-

ming model can be successfully applied to improve the scalability of multimedia

retrieval systems.
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1. Introduction

The increasing popularity of multimedia data acquisition and sharing tech-

nologies has contributed to the generation of large multimedia collections in re-

cent years. This scenario demands the creation of effective and efficient retrieval

services. In the context of supporting image searches, one possible approach5

relies on the use of Content-Based Image Retrieval (CBIR) systems. Several

studies have demonstrated that unsupervised techniques can significantly im-

prove the results of CBIR systems in terms of either effectiveness (quality of

retrieved images) [1–4] or efficiency (time spent to obtain the results) [5, 6].

As the effectiveness of these systems is very dependent on the distance metrics10

adopted, substantial work [2, 7–13] has also been conducted with the aim of

improving the computation of these metrics.

More recently, unsupervised iterative re-ranking algorithms [3, 10, 13–15]

were proposed to improve the effectiveness of retrieval tasks by exploiting con-

textual information. The goal of these approaches is to mimic the behavior of15

humans considering specific contexts when judging the similarity of objects.

Usually, these methods replace pairwise similarities by more global affin-

ity metrics that consider the relationships among collection images, which are

encoded in ranked lists. In an iterative process, pairwise distances between

images are recomputed and ranked lists are updated to reflect the contextual20

information incorporated in these new distances.

One drawback of all of these solutions, however, is the large computational

effort required to execute them. In short, this means that while these re-ranking

algorithms are effective, they lack in efficiency, making them inappropriate for

handling big multimedia data. That being said, we note that the unsupervised25

iterative re-ranking algorithms mentioned have good potential for paralleliza-

tion, and thus we can increase their efficiency by taking advantage of parallel
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architectures.

Advances on Graphics Processing Unit (GPU) hardware and programming

models have enabled general-purpose computation on these devices. Among30

other accelerators, General-Purpose Graphic Processing Units (GPGPUs), as

they are known, are present on several of the Top-500 high-performance com-

puting systems list [16]. The increasing popularity of GPGPUs has led to the

development of heterogeneous computing architectures [17] and the use of highly

parallel heterogeneous devices, such as a single chip that integrates a GPU35

and a Central Processing Unit (CPU), also named Accelerated Processing Unit

(APU). These devices have execution and programming models that are differ-

ent from traditional General-Purpose Processors (GPPs), meaning that simple

recompilation techniques do not apply when porting parallel applications to

these heterogeneous systems and the responsibility of choosing the correct tools40

and reimplementing the algorithms is left to the programmer.

In this paper, we propose a unified model that intends to simplify the par-

allelization of a class of unsupervised iterative re-ranking algorithms. Figure 1

provides an overview of the parallel execution, including the steps that may

be computed sequentially and the ones that should be performed in parallel.45

As Initialize Data Structures and Normalize Distances are very simple proce-

dures which may not benefit from parallel execution due to overhead, they are

executed sequentially. On the other hand, Update Distances and Ranked List

Re-sorting should be parallelized to improve performance. The sequence of all

steps is performed iteratively.50

Global Syncronization

Serial

Parallel Update Distances

Perform along T iterations

Ranked List
Re­sorting

Initialize 
Data Structures

Normalize 
Distances

Figure 1: Overview of the parallel execution of the unified iterative re-ranking model.
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Our solution is validated through the implementation of recently proposed

algorithms that belong to this class, namely Contextual Spaces Re-Ranking [10],

RL-Sim Re-Ranking [3], and Contextual Re-Ranking [13]. Other studies that

report efficiency results [14, 15] do not evaluate parallelization strategies and

therefore will not be included in our analysis.55

Using OpenCL [17], we were able to test our implementations in different

environments, showing that the model properly handles many design challenges,

such as synchronization and concurrency issues. By choosing an open standard

for programming heterogeneous devices which is supported by several hardware

accelerator vendors instead of other popular, yet proprietary solutions such as60

CUDA, we increase the portability of the code, thus making our tests closer to

real-world applications, where the same parallel algorithm must be executed in

multiple settings.

This study differs from our previous efforts [18–20] with regard to four main

aspects: (i) it presents a detailed description of a class of unsupervised iterative65

re-ranking algorithms; (ii) it introduces a unified model that generalizes the

implementation of these algorithms for parallel architectures; (iii) it shows how

this model can be used to simplify the parallelization of algorithms that belong

to the proposed class; and (iv) it validates our method on many parallel devices,

including APUs and different GPUs.70

This paper is organized as follows: Section 2 discusses related work. Section 3

presents a class of unsupervised iterative re-ranking algorithms, while Section 4

describes methods that belong to this class. Section 5 briefly outlines parallel

solutions for these re-ranking algorithms using OpenCL. The experimental setup

and results are reported in Section 6. Finally, Section 7 states our conclusions75

and some possible research venues to be considered in future work.

2. Related Work

This section describes other studies that are related to the topic of this paper.

Section 2.1 introduces image retrieval and re-ranking techniques. Section 2.2
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describes the use of GPUs for general-purpose computations and Section 2.380

discusses parallelization of CBIR methods, focusing on GPGPU approaches.

Finally, Section 2.4 introduces other efforts to model image retrieval algorithms.

2.1. Image Retrieval and Re-Ranking in CBIR Tasks

Content-Based Image Retrieval (CBIR) systems aim at retrieving the ele-

ments in a collection that are most similar to a given query image. In order to85

do so, it is necessary to have a metric to make comparisons, which is generally

obtained by computing a predefined distance measure between the query image

and each one of the collection images. Traditional distance metrics, such as the

Euclidean distance, are often adopted in these cases and are able to express the

pairwise similarity between any two images.90

However, these approaches fail to return satisfactory results in many situ-

ations, mainly due to the well-known semantic gap problem [21–23]. This has

motivated research attempts to improve distance metrics in CBIR systems in

the past few years [2, 7–13, 24], leading to promising results considering several

approaches and post-processing techniques [25–28].95

The use of context can also play an important role in CBIR applications;

nonetheless, traditional systems usually perform only pairwise image analysis

(i.e., they compute similarity or distance measures considering only pairs of

images) [4]. Because of this, many CBIR approaches [7, 8, 10, 12, 14, 23, 24, 29]

were recently proposed to improve the effectiveness of retrieval tasks by replacing100

the use of pairwise similarities with more global affinity metrics that consider

the relationship among collection objects without needing labeled training data.

Figure 2 shows an example of how the use of contextual information can

improve the result of CBIR systems. Let ρ(ix, iy) be the distance between

images x and y and suppose that image 5 (i5, with continuous green border)105

is the query image. We see that image 9 (i9) is close to the top of the query’s

ranked list, so we analyze i9’s ranked list looking for images that are similar

to it (this ranked list is indicated by the red arrow pointing to i9 with dashed

green border). We find out that image 20 (i20, with dotted orange border) is
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close to the top of i9’s ranked list. Therefore, since i9 is similar to i5, we can110

improve i5’s rank by moving i20 closer to the top.

(iρ 5,i5)=0

Query Image

(iρ 5,i9)=0.2 (iρ 5,i7)=0.5 (iρ 5,i3)=0.8

(iρ 9,i9)=0 (iρ 9,i3)=0.3 (iρ 9,i20)=0.9

(iρ 7,i7)=0 (iρ 7,i5)=0.5 (iρ 7,i3)=0.7

Figure 2: Example of the use of contextual information. The image with dotted orange border

(i20) is close to the top of i9’s ranked list. Given that i9 is close to the top of i5’s ranked list,

i20 should be as well.

Our focus in this paper is on unsupervised learning approaches, meaning

that the methods analyzed consider only the domain of object instances and no

labeled training data are needed. Since labeling is often a laborious and time-

consuming task, whereas it is far easier to obtain unlabeled data, these tech-115

niques often represent a very attractive solution. Additionally, we adopted an

iterative strategy to process contextual information with the goal of re-ranking

the images returned at top positions of ranked lists [3, 10–12, 30].

2.2. General-Purpose Computing on GPUs (GPGPUs)

Graphics Processing Units (GPUs) are power-efficient, massively-parallel120

computing devices and their use as parallel processors is fast emerging due

to the fact that they combine high computation power and low price.

Once specially designed for computer graphics, today’s GPUs have support

for accessible programming frameworks such as OpenCL (described in Sec-

tion 5.1) and are attracting researchers who employ them for general-purpose125

computing due to their extensive data processing capability [31]. As these de-

vices are particularly suitable for highly data parallel problems, using them is
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an interesting approach for multimedia applications that need a large amount

of computing resources [32].

Gunarathne et al. [33] designed a GPU-based solution for iterative statistical130

applications and implemented three iterative statistical algorithms (K-Means,

Multi-Dimensional Scaling, and PageRank) using OpenCL. We note that it-

erative algorithms in general are at the core of several scientific applications,

and have traditionally been parallelized and optimized for large multiprocessors,

either based on shared memory or clusters of interconnected nodes.135

OpenCL and GPUs were also used by Strong and Gong [34], who accelerated

their Self-Sorting Map (SSM) algorithm for organizing and visualizing multime-

dia, making it possible to arrange millions of items in a structured layout with

no overlap within seconds.

Wu et al. [35] presented a study on efficient execution of the PageRank140

algorithm on GPUs. They analyzed the characteristics of the sparse matrices

used in PageRank and implemented a fast sparse matrix-vector multiplication

(SpMV) using a modified Compressed Sparse Row (CSR) format.

A GPGPU approach with a large number of processing units for on-line

machine learning was introduced by Xiao, McCreath, and Webers [36]. Their145

work considers the Stochastic Gradient Descent algorithm, discussing a parallel

solution, its performance gain, and variations in accuracy.

A GPU-based approach for computing large-scale distance matrices was pro-

posed by Arefin et al. [37]. Distance matrices contain pairwise distances and

have a wide range of usage in several fields of scientific research, e.g., machine150

learning, image analysis, and information retrieval. Their work splits these

matrices into sub-matrices and uses GPUs to divide computational tasks and

data.

Machine learning tasks on GPUs were also addressed by other studies such as

Cano et al. [38], who evaluated the Pittsburgh rule-based classifiers on GPUs by155

considering a model that parallelizes the fitness computation. Their experimen-

tal study supports the conclusions about the efficiency and high performance of

GPUs for this type of task.
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2.3. Parallel Image Retrieval and Re-Ranking

In addition to the applications described in Section 2.2, GPGPU approaches160

can also benefit image retrieval tasks.

Strong and Gong [39] discussed how to efficiently organize a collection of im-

ages based on their similarities with the objective of facilitating photo browsing

and searching. Their method generates a feature vector for each image in the

collection and then uses these vectors to train a Self-Organizing Map (SOM)165

with the help of GPUs.

Another image retrieval technique exploiting GPUs was developed by Pham,

Morin, and Gros [40]. They presented two algorithms implemented for GPUs

that retrieve images using Factorial Correspondence Analysis (FCA), which

reduces dimensions and limits the number of elements considered during the170

search. They adapted the FCA method, normally applied to textual data anal-

ysis, to handle images using Scale-Invariant Feature Transformation (SIFT)

local descriptors.

Zhu et al. [41] introduced a GPU-based, high-throughput image retrieval

algorithm. Their work analyzed the parallelism in the implementation of the175

local descriptor SURF and mapped tasks on a GPU through the use of block-

level parallelism. In another research venue, image searches based on local

descriptors were accelerated by using indexing schemes that exploit distributed

CPU-GPU platforms [42]. Parallel computing on GPUs is also pointed to as a

promising, efficient solution for other image retrieval tasks [43].180

2.4. Modeling Unsupervised Algorithms for Image Retrieval

Most methods in the field of unsupervised learning algorithms for image

retrieval follow the same principle: first, the manifold, defined by the provided

affinity matrix, is interpreted as a weighted graph; then, the pairwise affinities

are re-evaluated in the context of all other elements by diffusing the similarity185

values through this graph. Donoser and Bischof [25] revisited algorithms that

follow this pattern and derived a generic framework for this type of technique.
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Unlike their study, we address the design of a parallelization model for a class

of algorithms that is based on iterative re-ranking methods. Also, we evaluate

the proposed approach by using the model to parallelize three algorithms that190

belong to this class.

Given that both image re-ranking and GPGPUs are relatively recent ap-

proaches, to the best of our knowledge, there are no other studies about parallel

models for efficient image re-ranking computation with the help of GPUs.

3. Introducing a Class of Unsupervised Iterative Re-Ranking Algo-195

rithms

This section presents the class of unsupervised iterative re-ranking algo-

rithms considered in our study. The execution of these algorithms relies on

using contextual information about the image collection, such as: (i) distances

for all pairs of images in the collection; and (ii) lists that rank all images in200

increasing order of their distances to queries (considering each collection image

as a query).

The methods start using traditional pairwise distance measures (e.g., mea-

sures obtained using the Euclidean distance) to express the distance between

each pair of images in the collection. These distances are then used to analyze205

the relationships among images and to create new measures that regard global

affinity, improving the results of the CBIR system. Nonetheless, whenever the

method recomputes the distances, it also needs to update the ranked lists in

order to reflect the newly incorporated contextual information, thus creating

two separate tasks that must be performed.210

Taking that into consideration, we can categorize unsupervised iterative re-

ranking algorithms as a class that is represented by two main steps:

1. Update Distances: the re-ranking algorithm analyzes the contextual in-

formation defined in terms of the relationships among images, which is

encoded in the distances among images and ranked lists. Based on this215

analysis, it is possible to compute new distances for each pair of images.
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Different algorithms may use distinct approaches for this recomputation:

similarity between ranked lists [3], image processing techniques [13], clus-

tering methods [12], among others.

2. Re-sort Images to Generate New Ranked Lists (or simply, Ranked List220

Re-sorting): the ranked lists should present the retrieved images in an

increasing order of distance. To ensure the consistency between the ranked

lists and new distances, the algorithm sorts collection images according to

their new distances to the query.

Additionally, it is necessary to execute auxiliary operations such as initial-225

izing data structures before the first step and normalizing the new distances

before the second. This normalization guarantees that the distance from an

image i to an image j is the same as from j to i. Due to the iterative nature of

the methods, all tasks must be repeated a certain number of times (T ).

Figure 3 summarizes the main steps of the class of re-rank algorithms con-230

sidered in this work.

Figure 3: Typical steps in the considered class of re-ranking algorithms.

4. Iterative Re-Ranking Methods

This section presents a brief description of three iterative re-ranking ap-

proaches that belong to the class of algorithms described in Section 3: Con-

textual Spaces Re-Ranking [10], RL-Sim Re-Ranking [3], and Contextual Re-235

Ranking [13]. For each method, we describe how each step of Figure 3 is imple-

mented.

In this section, we use the following convention: C is an image collection of

size N and D is an image descriptor. The distance function ρ defined by D can
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be used to compute the distance ρ(imgi,imgj) for all imgi, imgj ∈ C in order240

to obtain an N × N distance matrix, A. The examples given in this section

are based on data from the MPEG-7 image collection [44] with the CFD shape

descriptor [45].

4.1. Contextual Spaces Re-Ranking Algorithm

The Contextual Spaces Re-Ranking algorithm [10] relies on Contextual Spaces245

to exploit image relationships in the context of the query instead of just using

pairwise distances. Contextual Spaces are bi-dimensional representations of an

image collection regarding two reference images, imgi, imgj ∈ C. They are

constructed considering the nearest neighbors of a query image, which are the

elements that are most similar to the query according to a descriptor. Similar250

reference images, like the ones in Figure 4, produce a Contextual Space that

looks like the one depicted in Figure 6. Dissimilar reference images, such as the

ones in Figure 5, produce a Contextual Space analogous to Figure 7.

Image i: Image j:

Figure 4: Similar reference images.

Image i: Image j:

Figure 5: Dissimilar reference images.
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Figure 6: Contextual Space for two similar

reference images.
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Figure 7: Contextual Space for two dissimi-

lar reference images.

This method implements the steps from Figure 3 as follows:
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1. Initialize Data Structures: The distance matrix A is taken as input.255

2. Update Distances: The re-ranking algorithm takes into account the

distances between each nearest neighbor and the other collection images

and uses this information to calculate new distances. This information is

encoded by k contextual spaces defined in terms of the k-nearest neighbors

of a query.260

3. Normalization: Let t be the current iteration. For all images i, j ∈ C,

set distances At+1[i, j] = At+1[j, i] = min(At+1[i, j], At+1[j, i]).

4. Ranked List Re-sorting: The image collection is then re-ranked based

on these new distances.

This process is repeated iteratively, further improving the effectiveness of265

the results each time it is performed.

4.2. RL-Sim Re-Ranking Algorithm

The RL-Sim Re-Ranking algorithm [3] characterizes contextual information

by computing the similarity among ranked lists. This is possible due to the

intuitive premise that, in general, if two images are similar, their ranked lists270

should be similar as well.

This method implements the steps from Figure 3 as follows:

1. Initialize Data Structures: The distance matrix A is taken as input.

2. Update Distances: This algorithm uses the contextual distance mea-

sure, which is defined regarding the similarity/dissimilarity of ranked lists,275

i.e., the distance between two images is updated by taking into account

the similarity of their ranked lists. While the distance value ρ(imgi,imgj)

between two images imgi, imgj ∈ C considers only the relationship be-

tween them, their respective ranked lists, Ri, Rj , also include the distances

from these images to all other collection images. Figure 8 illustrates the280

distance computation process.

3. Normalization: Let t be the current iteration. For all images i, j ∈ C,

set distances At+1[i, j] = At+1[j, i] = min(At+1[i, j], At+1[j, i]).
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Figure 8: Updating the distance matrix based on the similarity of a ranked list.

4. Ranked List Re-sorting: The image collection is re-ranked based on

the new distances defined in terms of the similarity of ranked lists.285

4.3. Contextual Re-Ranking Algorithm

The Contextual Re-Ranking algorithm [13] is an approach that obtains con-

textual information based on context images. A context image is a grayscale

image representation of distance matrices computed by CBIR descriptors. It

contains information about all distances among images and also the spatial re-290

lationship between each query image and its ranked list. Figure 9 is an example

of two similar images and Figure 11 shows its respective grayscale image repre-

sentation. Figure 10 depicts the case where the images are not similar, resulting

in the context image in Figure 12.

This method implements the steps from Figure 3 as follows:295

1. Initialize Data Structures: The distance matrix A is taken as input.

2. Update Distances: The main idea of this re-ranking algorithm consists

of processing the contextual information of a query image imgi ∈ C by

constructing context images for this image and each one of its k-nearest

neighbors. The results of the processed contextual information are stored300

in an affinity matrix W , which is an N×N matrix where W [k, l] represents

the similarity between images imgk and imgl. Image processing techniques
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Image i: Image j:

Figure 9: Similar reference images.

Image i: Image j:

Figure 10: Dissimilar reference images.

Figure 11: Context image for similar refer-

ence images.

Figure 12: Context image for dissimilar ref-

erence images.

are then used to process the context images created. In particular, a

median filter is applied to improve the quality of distance scores. The

affinity matrix W is then updated and the same process is performed for305

all images in the collection.

3. Normalization: Let t be the current iteration. A new distance ma-

trix At+1 is computed as the inverse of the affinity matrix W . After-

wards, for all images i, j ∈ C, set distances At+1[i, j] = At+1[j, i] =

min(At+1[i, j], At+1[j, i]).310

4. Ranked List Re-sorting: The image collection is re-ranked based on

the new distances At+1[i, j].

5. Parallelization of Re-Ranking Algorithms Using OpenCL

In this section, we propose a parallelization model to simplify the acceleration

of the algorithms that belong to the class presented in Section 3. We also show315

how we used this model to implement the algorithms described in Section 4.
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We start by briefly introducing the OpenCL standard and then, later, we

describe its use in the parallelization of the considered re-ranking algorithms.

5.1. OpenCL Overview

OpenCL is an open industry standard introduced in 2009 for general pur-320

pose task-parallel and data-parallel programming of CPUs, GPUs, and other

accelerators. It is a framework comprised of a language, an API, libraries, and

a runtime system.

In OpenCL, a program is executed on a device, which can be a multi-core

CPU, a GPU, or another processor (e.g., DSPs and Cell/B.E.). These devices325

typically contain one or more compute units (CUs), which in turn are composed

of one or more virtual scalar processors, called processing elements (PEs), and

local memory. PEs within a CU execute a single stream of instructions as either

Single Instruction/Multiple Data (SIMD) units, executed in lock-step, or Single

Program/Multiple Data (SPMD) units, allowing each PE to maintain its own330

program counter.

A kernel is a function declared in an OpenCL program and is executed on an

OpenCL device. Kernels are dynamically compiled and scheduled for execution

by a command sent to a command-queue. When a kernel is invoked on a device,

an instance of its execution is called a work-item. Work-items are executed by335

one or more PEs as part of a work-group executing on a CU [46]. ND-Ranges are

N-dimensional index spaces (where N is one, two, or three) to which OpenCL

maps all work-items to be launched. It is possible to specify how these mapped

work-items are divided into work-groups [46, 47].

Besides these terms defined by the Khronos Group, AMD also introduces the340

concept of wavefronts as groups of work-items executed in lock-step on a CU.

They compose work-groups, and having the size of a work-group be a multiple

of the size of its wavefronts benefits the performance of the program [47].

5.2. Parallel Implementation of Re-Ranking Algorithms

Given the importance of efficiency in real-world scenarios, we propose a345

model that facilitates the parallelization of the class of re-ranking algorithms
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considered in our study. Even though the presented parallelization strategy

requires the use of synchronization mechanisms, it is still a favorable compromise

between the performance and the simplicity of the implementation, since it

shows efficiency gains (as discussed in Section 6) and provides a straightforward350

way to divide the main steps of iterative re-ranking algorithms into different

independently parallelizable kernels.

The model is illustrated in Figure 1 and in the upper part of Figure 13,

named “General Parallelization Model”.

General Parallelization Model

Perform along T iterations

Initialize 
Data Structures

Update Distances

Normalize 
Distances

Ranked List
Re­sorting

Global Synchronization

Parallelization of the Unified Iterative Re­Ranking Model

Serial step

Parallel step

Different for
each algorithm

Global
synchronization

Initialize 
Data Structures

Update Distances

Normalize 
Distances

Ranked List
Re­sorting

Perform along T iterations

Compute New 
Distance Matrix

Contextual Spaces

Compute Similarity
among Ranked Lists

RL­Sim

Re­Ranking Algorithms Fitting the Model

Create and Process
Context Images

Process Matrix
W Updates

Compute Normalized
Distance Matrix

Contexual Re­Ranking

Figure 13: Overview of the division of steps for parallelizing the unified iterative re-ranking

model and how re-ranking algorithms fit the parallelization structure.

The two more computationally-intensive steps, “Update Distances” and “Ranked355

List Re-sorting”, are a good fit for parallelization techniques, since they consist

of operations that can be performed on independent data. For example, in the
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first step, the calculation of the distance between a pair of images does not affect

other calculations within the same iteration, and in the second, each ranked list

can be independently re-sorted.360

The lower part of Figure 13, named “Re-Ranking Algorithms Fitting the

Model”, illustrates how each re-ranking algorithm considered in our study is

parallelized according to the model. Sections 5.2.2 and 5.2.3 give further details

about how the main steps were parallelized.

5.2.1. Modeling the OpenCL Kernels365

The first relevant choice required for designing parallel solutions using OpenCL

consists of modeling the kernels. The simplest solution would be designing the

re-ranking algorithm in a single OpenCL kernel, repeatedly executed at each

iteration. However, some steps must be completed in a predefined order. For

example, ranked lists can only be re-sorted after the distances among images370

have been re-computed. Consequently, barriers must be enforced to ensure the

correctness of data dependencies between different steps of the algorithm.

Although barriers are available in OpenCL, they only provide synchroniza-

tion among commands in command-queues and work-items in the same work-

group. In order to obtain synchronization among work-groups (which we refer375

to as “global synchronization”), it is necessary to either use atomic operations

in global memory or separate operations into different kernels [46]. We chose the

latter option and designed the parallel re-ranking algorithms using two different

kernels, one for each step.

Between the execution of the two kernels, a straightforward normalization380

process is required. Since this also depends on all distances being updated

beforehand, computing this minor step inside the first kernel would require a

barrier for global synchronization. Considering that this process presents low

computational cost, creating a new kernel for this operation may not be prof-

itable due to the introduction of overhead. Therefore, we can simply compute385

this normalization step using a serial implementation that runs on the CPU

host device.
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The same occurs with the initialization of the data structures that are used in

the algorithms, such as the matrix that stores the distances at the beginning of

each iteration. We leave the evaluation of different approaches for implementing390

these serial steps as future work.

5.2.2. Implementation of the “Update Distances” Step

This section presents how the first step, which is related to the task of

updating distances, was parallelized for each re-ranking algorithm discussed in

this paper. In each iteration of the algorithms, the “Update Distances” step395

calculates new distances among the collection images, generating new values

that are used as input for the next iteration. We refer to the number of images

in the collection being used as N .

Contextual Spaces Re-Ranking. Let K be the number of images used to create

the contextual space of a query image in a given iteration of the Contextual400

Spaces Re-Ranking algorithm.

Considering the distance between the query and each of its K-nearest neigh-

bors, the “Update Distances” kernel of this method calculates the new distance

between a pair of collection images. Since each of these computations can be

performed independently, we have a two-dimensional ND-Range with N × N405

work-items executing this kernel. This division fits well the capabilities of de-

vices that have many computational cores, such as GPUs.

Furthermore, a few optimizations were implemented to improve the perfor-

mance of the execution on GPUs, for example, changing the way the kernel

accesses the ranked lists matrix to obtain the K-nearest neighbors.410

By setting each ranked list in a column (instead of the usual approach of

having one list per row), a work-item x that attempts to access the k-th ele-

ments of its ranked list can benefit from the fact that a work-item y may have

recently accessed the same position of a nearby list, as shown in Figure 14. This

happens because the value that x needs is in the same cache line as a value that415

was recently accessed and thus will already be cached when x tries to read it.
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Exploiting this type of coalesced access greatly increases the cache hit ratio,

leading to better execution times.

Ranked lists matrix

k ­ 2

...

k ­ 1

k

k + 1

...

Work­item x

Work­item y

Figure 14: Work-item y accesses the dark blue position of row k, bringing the values in the

light blue positions to the cache memory as well. Work-item x subsequently accesses a value

that is already cached.

RL-Sim Re-Ranking. Let ψ be the function that represents the similarity of

ranked lists, which is used to calculate new distances, and λ be the number420

of images in each ranked list that are considered when the distances are rede-

fined [3].

The “Update Distances” kernel of the RL-Sim Re-Ranking algorithm is re-

sponsible for computing the distances between one image and all other col-

lection images. This kernel is executed by N × λ work-items divided into a425

two-dimensional OpenCL ND-Range. Every work-item computes the function

ψ between the current image and one of the images at the top λ positions of each

of the N ranked lists. This kernel division aims at avoiding divergent control

flows among work-items, as this can cause GPUs to be under-utilized and result

in a performance decrease of the execution in these devices.430

A total of N2×λ comparisons are made per iteration. This number becomes

considerably large when dealing with extensive image collections and, since the

N ×λ operations done for an image do not depend on the calculations done for

the others, this parallelization approach is applicable.
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Contextual Re-Ranking. In order to calculate new distances, the Contextual435

Re-Ranking algorithm must first create and process context images for each

collection image being used as the query. Consider that K is the number of

context images created for each query image in a given iteration and that W is

the affinity matrix that stores the result of the contextual information.

Since W needs to be completely computed before starting the calculation440

of the new distances, we decided to model the “Update Distances” step of this

algorithm as two OpenCL kernels with a simple serial operation in between. As

explained in Section 5.2.1, this division allows global synchronization between

the different parts of the computation.

For each of the query’s K-nearest neighbors, the first kernel constructs a445

context image, applies image processing techniques (thresholding and filtering),

and obtains the resulting black pixels. Based on these pixels, it computes the

increment values that are later used to update W . This kernel is executed by a

one-dimensional ND-Range with N work-items.

The performance of this kernel was optimized through the use of direct450

updates to the matrix W (as opposed to the use of synchronized calculations

stored on a temporary matrix). We note that concurrently accessing the same

elements of W , as illustrated in Figure 15, may lead to the loss of some of the

increments. Global synchronization mechanisms could be used to prevent these

losses; however, experiments show that, due to the small number of conflicts,455

this does not significantly affect the effectiveness of the re-ranking algorithm

and the lack of synchronization greatly improves the overall performance [18].

Nevertheless, this procedure creates an element of non-determinism, leading to

the possibility of different ranked lists being created in each execution.

The serial operation executed after the first kernel consists in simply deter-460

mining the maximum distance value between two images in the distance matrix.

This value is then used for normalization purposes when computing the new dis-

tances.

The task that remains for the second kernel is the actual computation of the

new distance matrix. In the same way as the previously described algorithms,465
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Affinity Matrix W
Work­item

Work­item

Work­item

Work­item

Figure 15: Increments being directly made on matrix W. Some updates made to positions

altered by more than one work-item are lost.

each value of the new matrix can be independently computed. However, unlike

the other methods, the Contextual Re-Ranking algorithm computes the dis-

tance matrix based on the values in W , requiring an additional kernel. Still,

the computation is quite straightforward, allowing us to perform a few more

optimizations.470

Let imgx and imgy be images in the collection and ρ(imgx, imgy) the dis-

tance from imgx to imgy. The kernel is responsible for calculating both ρ(imgx,

imgy) and ρ(imgy, imgx) for all y > x and then normalizing these distances. In

this scenario, instead of two dimensions and N × N work-items (one for each

position of the matrix), we use a single dimension with N work-items. To ac-475

commodate this implementation, the proposed model is adapted to not consider

the serial normalization step afterwards.

Even though the kernels presented in this subsection are parallelized through

the execution of N work-items each, which is arguably less than some of the

previously discussed methods, the optimizations made in combination with the480

fact that N is a large number for big image collections favor this parallelization

approach.
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5.2.3. Implementation of the “Ranked List Re-sorting” Step

Since all algorithms described in Section 4 perform the same operations in

the second step (re-sorting ranked lists), it is possible to use the same approach485

for all of them when designing the corresponding kernel.

Let N be the number of images in a collection. The “Ranked List Re-sorting”

step re-sorts N ranked lists (one for each collection image being used as query).

Considering that there is no dependency between the computations done for

each ranked list, we can execute each sorting operation in parallel. A kernel490

that sorts one ranked list is used for this and the execution uses an ND-Range

with a single dimension containing N work-items.

Due to the fact that the impact of the sorting step on ranked lists is usually

small (that is, most of the changes occur only in the beginning of the ranked

lists), we use the insertion sort algorithm, which performs well when the input495

is almost sorted. In this situation, insertion sort can overcome other efficient

sorting algorithms [48].

Although this approach has good results for CPUs, an algorithm specifically

designed to run on GPUs must be chosen to improve the performance in this

device. Nevertheless, this study is out of the scope of this paper and the eval-500

uation of this step in Section 6 focuses only on the comparison between serial

and parallel times for the implementations running on CPUs.

6. Validation

This section presents the results of the experiments conducted to assess the

impact of the parallel strategies proposed in Section 5. We compare segments505

corresponding to each step of the re-ranking algorithms considering executions

in C/C++ and OpenCL.

In several occasions throughout this section, we abbreviate the kernel names

in order to refer to them more easily. The “Ranked List Re-sorting” kernel is

simply named “Sort”, the “Process Context Images” kernel is named “Image”,510

and the “Update Distances” kernel is referred to as “Dist”.
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6.1. Experimental Setup

We executed tests on four different machines. For simplicity, these systems

are named APU, FirePro, HD7950, and R9-290x. All test machines have the

AMD APP SDK 2.9.1 and OpenCL 1.2. The remaining software environment515

installed in each of them is described in Table 1.

Table 1: Software environment for each of the test machines.

Name Operating System

APU Linux 3.16.0-33-generic Ubuntu 14.04.2

FirePro Linux 3.16.0-31-generic Ubuntu 14.04.2

HD7950 Linux 3.11.0-15-generic Ubuntu 12.04.4

R9-290x Linux 3.13.0-24-generic Ubuntu 14.04

Table 2 presents the hardware specifications that we consider relevant to

compare the machines in the scope of our experiments. We note that the ma-

chines FirePro, HD7950, and R9-290x possess discrete GPUs, while the machine

APU has an integrated GPU.520

Table 2: Hardware environment for each of the test machines.

Name CPU CPU Cores RAM GPU Shaders GPU Memory

APU

AMD A8-3850

APU @

2.90 GHz

4 physical 32 GB
Radeon HD

6550D
400 512 MB DDR3

FirePro

Intel Core

i7-3770 @

3.40 GHz

4 physical

(8 logical)
32 GB

ATI FirePro

V7800
1440 2 GB GDDR5

HD7950

Intel Xeon

E3-1240 v3 @

3.40 GHz

4 physical

(8 logical)
24 GB

AMD

Radeon HD

7950

1792 3 GB GDDR5

R9-

290x

Intel Xeon

E5-2630 v2 @

2.60 GHz

6 physical

(12 logical)
32 GB

AMD

Radeon R9

290x

2816 4 GB GDDR5

For our main experimental analysis, we used a well-known shape database
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called MPEG-7 [44], which is commonly used in the evaluation of CBIR re-

ranking algorithms and contains 1,400 shapes divided into 70 classes. The CFD

shape descriptor [45], which presents significant effectiveness gains for various

re-ranking methods, was used to compare the collection images.525

6.2. Performance Results

We executed a set of experiments to evaluate the performance of the re-

ranking algorithms implemented in OpenCL in comparison to the serial imple-

mentations in C/C++. The C/C++ code was compiled using g++ with the

-O3 flag and we measured the run times by calculating the average of 10 exe-530

cutions with corresponding 95% confidence intervals. The notation shown on

Table 3 is used in this subsection to represent which implementation of a kernel

was used in a certain test case.

Table 3: Notation used in Section 6.2 to represent kernel implementations.

Notation Meaning

s-CPU OpenCL implementation of the “Sort” kernel running on the CPU

s-GPU OpenCL implementation of the “Sort” kernel running on the GPU

s-Serial C/C++ implementation of the “Sort” kernel

i-CPU OpenCL implementation of the “Image” kernel running on the CPU

i-GPU OpenCL implementation of the “Image” kernel running on the GPU

i-Serial C/C++ implementation of the “Image” kernel

d-CPU OpenCL implementation of the “Dist” kernel running on the CPU

d-GPU OpenCL implementation of the “Dist” kernel running on the GPU

d-Serial C/C++ implementation of the “Dist” kernel

As noted in Section 5.2.3, the graphs included in this subsection do not dis-

play the information relative to the execution of the “Sort” kernels on GPUs.535

Since memory transfer times for serial executions are always zero, this informa-

tion is also not included in the graphs.

Tables containing the speedups obtained on the parallel test cases are pre-

sented bellow each graph. Each table line describes a different test case, and the
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underlined kernels in the first column represent the kernel or kernel combination540

for which the speedup is being analyzed.

6.2.1. Contextual Spaces Re-Ranking Algorithm

Figure 16 shows the results for the “Sort” kernel of the Contextual Spaces

Re-Ranking algorithm. For each test machine, three total execution times are

presented: two execution and memory transfer times for the OpenCL version of545

the “Sort” kernel running on the CPU (Exec. s-CPU + Mem. Transf. s-CPU)

and one execution time for the C/C++ version of the “Sort” kernel (Exec.

s-Serial). One of the Exec. s-CPU + Mem. Transf. s-CPU bars is labeled

d-CPU and corresponds to the s-CPU/d-CPU test case (both OpenCL “Sort”

and “Dist” kernels executed on the CPU), while the other is labeled d-GPU and550

refers to the s-CPU/d-GPU test case (OpenCL “Sort” kernel executed on the

CPU and OpenCL “Dist” kernel executed on the GPU).

Figure 16: Comparison between total execution times for the “Ranked List Re-sorting” kernel

of the Contextual Spaces Re-Ranking algorithm.

Taking into account both the execution and memory transfer times of the
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parallel implementations, we see that our approach leads to good speedups on

all machines. Several factors, such as caching, may interfere with the execution555

time of the kernels, possibly explaining the differences between the test cases.

We intend to further investigate the causes of this execution time variation in

future studies.

The execution time comparison for the “Dist” kernel is shown in Figure 17.

Again, all parallelizations resulted in improved kernel performance. Since the560

operations of this kernel are not costly and can be easily parallelized, consider-

ably better results are expected from the GPU executions. However, we note

that this is not the case for two of the machines. Although the execution time

for HD7950 was better, this machine presented a high memory transfer time,

leading to an overall smaller speedup. In the case of FirePro, the speedup is565

better only by a slight margin. This could be explained by the fact that the

this machine’s CPU is a more recent model than the GPU.

Figure 17: Comparison between total execution times for the “Update Distances” kernel of

the Contextual Spaces Re-Ranking algorithm.
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The best kernel combinations are presented in Figure 18. For the APU and

R9-290x machines, the best combination of OpenCL kernels is when “Sort”

is running on the CPU and “Dist” is on the GPU. On the other hand, for570

the FirePro and HD7950 machines, the best combination of OpenCL kernels is

when both “Sort” and “Dist” are executed on the CPU. As we can see, the total

execution time of the parallelized version is faster than a single serial kernel,

even when memory transfer times are considered.

Figure 18: Comparison between total execution times for the best kernel combinations of the

Contextual Spaces Re-Ranking algorithm.

6.2.2. RL-Sim Re-Ranking Algorithm575

Figure 19 illustrates the results for the “Sort” kernel of the RL-Sim Re-

Ranking algorithm. Although its implementation is similar to the kernel from

Contextual Spaces Re-Ranking, we see that the results present some differences

in comparison to Figure 16. This is due to the fact that fewer changes in the

ranked lists are required in this step in comparison to the previous algorithm,580
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leading to the kernel running up to ten times faster in RL-Sim. In this scenario,

memory transfer times are much more prominent, since less computation is being

performed. Still, the parallelization of this kernel results in positive speedups.

Figure 19: Comparison between total execution times for the “Ranked List Re-sorting” kernel

of the RL-Sim Re-Ranking algorithm.

Figure 20 shows the results for the “Dist” kernel. This kernel does a lot more

computation than the previous one and this becomes evident by comparing their585

serial running times. As mentioned before, a possible explanation for the poor

GPU speedup for FirePro in comparison to the CPU is the difference in hardware

generation. Further studies are needed to explain the performance of the GPU

on the APU machine, but we speculate that the work-item division used might

not favor this hardware, as it has less shader processing units and less GPU590

memory than the other machines.

Since we obtained good speedups for the second kernel and it dominates

the execution time, the best kernel combinations yield fine speedups as well, as

displayed in Figure 21. We see that the best OpenCL kernel combinations for
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Figure 20: Comparison between total execution times for the “Update Distances” kernel of

the RL-Sim Re-Ranking algorithm.

Figure 21: Comparison between total execution times for the best kernel combinations of the

RL-Sim Re-Ranking algorithm.
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the APU and FirePro machines happen when both “Sort” and “Dist” are being595

executed on the CPU. As for HD7950 and R9-290x, the best OpenCL kernel

combination is the “Sort” kernel running on the CPU and the “Dist” kernel on

the GPU.

6.2.3. Contextual Re-Ranking Algorithm

By analyzing Figure 22, we see that the case of the “Sort” kernel of the Con-600

textual Re-Ranking algorithm is analogous to what was observed for the same

kernel in the RL-Sim Re-Ranking algorithm. This time, the kernels run up to al-

most six times faster than they did for Contextual Spaces Re-Ranking, and once

more the faster kernel execution time increases the impact of memory transfers

on the total execution time of the operation. Nevertheless, the parallelization605

presents positive speedups when compared to the serial execution.

Figure 22: Comparison between total execution times for the “Ranked List Re-sorting” kernel

of the Contextual Re-Ranking algorithm.
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Figure 23 displays the results for the “Image” kernel. The lack of perfor-

mance of the GPU executions in comparison to the CPU could be explained by

the fact that this kernel contains several control flow statements. In the OpenCL

GPU model of parallelism, a single instruction is executed over all work-items610

in a wavefront in parallel. If work-items within a wavefront diverge, all paths

are executed serially and the total time to execute the branch is the sum of each

path time [47].

Figure 23: Comparison between total execution times for the “Process Context Images” kernel

of the Contextual Re-Ranking algorithm.

The results for the “Dist” kernel are presented in Figure 24. Similarly to

the case of the “Sort” kernel that is depicted in Figure 22, the amount of com-615

putation performed is small, which leads to memory transfer playing a more

prominent role in the kernel’s total execution time. We see that for almost all

cases, this causes the total execution time for the parallelized versions to be

larger than the serial time.
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Figure 24: Comparison between total execution times for the “Update Distances” kernel of

the Contextual Re-Ranking algorithm.

We leave the study of techniques that improve memory transfer time as fu-620

ture work. However, it is worth mentioning that by looking only at the execution

times, it is possible to draw a few conclusions about the parallelization of this

kernel. We explore this in Table 4, which shows the speedups considering only

the execution times. The results indicate that the chosen approach, although

leading to reasonable speedups on the CPU, does not favor the GPU utilization.625

One possible reason for this is the fact that by giving different loads to each

work-item, we balance the work distribution better on the CPU, but also create

divergent paths which cause the GPU’s resources to be underutilized.

Overall, the “Dist” kernel represents a minor part of the total execution time

of the Contextual Re-Ranking algorithm, so it is possible to see in Figure 25 that630

the best kernel combination gives us performance gains. We observe that this

is mainly due to the results obtained for the “Image” kernel, which occupies
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Table 4: Speedups considering only the execution times from the “Update Distances” kernel

of the Contextual Re-Ranking algorithm.

Test Case
Speedup

APU

Speedup

FirePro

Speedup

HD7950

Speedup

R9-290x

s-CPU/i-CPU/d-CPU 2.2× 2.8× 3.0× 3.6×

s-CPU/i-CPU/d-GPU 0.3× 0.6× 0.8× 0.7×

s-CPU/i-GPU/d-CPU 1.3× 2.5× 2.5× 2.3×

s-CPU/i-GPU/d-GPU 0.3× 0.6× 2.3× 0.7×

most of the execution time. On all test machines, the best OpenCL kernel

combination is that of the case where the “Sort”, “Image”, and “Dist” kernels

are all running on the CPU.635

Figure 25: Comparison between total execution times for the best kernel combinations of the

Contextual Re-Ranking algorithm.
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7. Conclusion

In this paper, we described a class of unsupervised iterative re-ranking al-

gorithms used for CBIR applications and proposed a unified model to simplify

their acceleration exploiting parallel architectures.

We also designed and implemented parallel versions of three algorithms that640

belong to this class using the OpenCL framework. This allowed us to vali-

date the results through experiments on different CPUs and GPUs by making

only a few modifications to the code. The total execution times we obtained

demonstrate that significant speedups can be reached with this technique.

By using the model, we were able to create a straightforward approach to645

splitting each algorithm into independently parallelizable kernels. To improve

the performance of the tests made on GPUs, various important questions were

addressed during the design of the parallel algorithms as well, such as the need

for global synchronization in OpenCL, the concurrent access of data structures,

and the impact of memory access patterns. Experimental results have demon-650

strated that the proposed parallel programming model can be successfully ap-

plied to accelerate the processing of multimedia retrieval services.

Future work involves exploring tuning approaches, simultaneous execution

of kernels on CPUs and GPUs, and the use of our parallel implementations in

Web-scale image datasets.655
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