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ABSTRACT

Two-dimensional (2D) transition metal carbides, corbonitrides, and nitrides (named as
MXenes) have become of the fastest growing family of 2D materials in terms of compositions
and their applications in different areas. One of the least explored properties of MXenes is their
mechanical properties. While the basic elastic properties of MXenes have been studied by first-
principles, the effects of temperature on the elastic properties have never been explored. In this
study, we investigate temperature-dependent structural and mechanical properties of the
titanium-containing MXenes (Ti,+;C, 0, (n = 1, 2)) based on the first-principles calculations
combined with quasi-harmonic approximation. The effective Young’s modulus of a single
layer of Ti,CO, and Ti;C,0, is calculated to be 565 and 482 GPa, respectively, at 0 K. By
increasing temperature to 1000 K, Young’s moduli of Ti,CO, and Ti;C,0, decrease to 469
GPa and 442 GPa, respectively, which indicates a larger reduction in stiffness in thinner
MXenes at higher temperatures. Our calculations of the temperature-dependent bond strengths
within MXenes showed that titanium and carbon atoms in Ti;C,0, form stronger bonds than
Ti,CO; and atomic bonds in Ti,CO, lose their stiffness more than Ti;C,0, with increasing
temperatures. Our study extends MXenes applications to high-temperature applications, such

as structural composite components and aerospace coatings.

INTRODUCTION

Two-dimensional (2D) materials have attracted much attention and are widely studied due to
their diverse applications in the fifteen years. Although graphene is the most recognized 2D

material!, other examples of 2D materials are transition metal dichalcogenides (e.g., NbSe, and
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MoS,)?, hexagonal boron nitrides (A-BN)3, and black phosphorous*. A large family of 2D
transition metal carbides, carbonitrides, and nitrides (MXene) have been introduced in 2011
with the general formula of M, X,,T, (n= 1, 2, and 3)>°, where M is an early transition metal,
X stands for carbon and/or nitrogen, and T, represents the surface termination (—O, —OH, and

—F).

Ti3C,T, was the first MXene synthesized in 2011°. To date, about thirty different MXene
compositions have been synthesized, while a large number have been predicted theoretically’8.
Among all the experimentally synthesized and theoretically predicted MXenes, titanium
carbide MXenes are still the most extensively applied and studied®. The effects of different
surface terminations on the stabilization, mechanical properties, and electronic properties of
Ti3C, T, are studied using DFT>7%10_ 1t was predicted that the oxygen functional groups provide

the most thermodynamic stabilization as compared to other surface terminations.

MXenes have unique combinations of properties and have been explored in different areas such
as electromagnetic interference (EMI) shielding'!, wireless communication'?, membranes!'3,
Li-ion batteries'*!, purifiers'6, catalysts!'’, electronics!¥2%, optical®!, thermoelectric?>23,
sensing devices**?*, and photocatalytic reactions’®?’. One of the least explored areas in the

MXenes field is MXenes mechanical properties and their structural applications.

MXenes are predicted to have high Young’s modulus in the range of 400-1000 GPa, depending
on the composition, surface terminations, and the number of layers’-?2834 and all are predicted
to be stronger than their MAX phases®?. It is found that surface terminations could make
MXenes more mechanically flexible than their pristine MXenes. Additionally, the strength of
MXenes functionalized by O is higher than those of terminated by F or OH3'*5, It is shown
that oxygen functional groups make a stronger bonding with the outer transition metal layers,
because oxygen atoms gain more charges from transition metal atoms, compare to other types

of surface terminations®3%31:35_ It is also reported that the strength of MXenes decreases by
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increasing the thickness of MXene monolayer (increasing n) 2831, Graphene is known as the
strongest 2D material with Young’s modulus of almost 1 TPa for a graphene sheet made by
mechanical exfoliation*®. However, mechanical exfoliation can only produce small amounts of
pure graphene and large-scale production is very difficult if not impossible3’. One method that
can be easily scaled up is solution-processing. By solution-processing of graphene, graphene
oxide is produced, which has a significantly lower Young’s modulus of 200 GPa%. MXenes
are a family of 2D materials than can be solution-processed. The measured Young’s modulus
for a solution-processed Ti;C,T, was determined at room temperature to be 330 + 30 GPa>.
This high value of Young’s modulus makes Ti;C,T, MXene the stronger solution-processed

2D material®.

Although much attention has been devoted to the mechanical properties of bare and
functionalized MXenes using DFT calculations at 0 K, temperature-dependent mechanical
properties of MXenes have not been studied. Therefore, it is not possible to compare the DFT
calculations and the experimental results unless the experimental results are measured at 0 K
and are corrected for zero-point vibration effects, which are not present in standard DFT
calculations®>*°, Understanding the behavior of MXenes at different temperatures is required
to pave way for their applications including surrounding high-temperatures such as structural

composite applications*!.

In this paper, we study the temperature-dependent structural and mechanical properties (elastic
constants, Young’s modulus, Poisson’s ratio, and in-plane stiffness) of Ti,CO, and Ti;C,0,
MXenes using density functional theory combined with quasi-harmonic approximation (DFT-
QHA)**> method by considering zero-point energy. We also provide details of comparisons
with previous theoretical results and some experimental results for graphene, and for both bare

and functionalized Ti,;C, 0, (n =1, 2). Our findings provide information on how the structural
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and mechanical properties of the corresponding MXenes change with temperature, which is
useful for MXenes high-temperature applications.

I. THEORETICAL METHODS

DFT calculations in conjunction with projector augmented wave (PAW) potentials are
performed using the Vienna Ab-initio Simulation Package (VASP)*¥¢, The generalized
gradient approximation (GGA) using the functional of Perdew, Bruke and Ernzerhof (PBE)*7:48
are chosen as the exchange-correlation functional. A Conjugate gradient scheme is applied with
an iterative relaxation of the atomic positions with the residual forces acting on each atom of
0.01 eV/A and a total energy convergence of 107 eV/cell. The cut-off energy of 550 eV is set
for all the calculations. For the crystal optimization of a 1 x 1 x 1 unit cell of 2D Ti,;C, 0, (n
=1, 2) MXenes, a 16 x 16 x 1 Monkhorst—Pack* k-point mesh for the Brillouin zone sampling
is used. Different cut-off energies and k-point meshes are tested until the energy convergence
criterion of 1 meV is achieved with these computational parameters. The Methfessel-Paxton
smearing scheme with a smearing width of 0.1 eV is used for the determination of partial

occupancies.

The monolayer of Ti,.;C,0, (n = 1, 2) MXenes consists of single (» = 1) or double (n = 2)
hexagonal layers of C atoms which are sandwiched between n + | monoatomic hexagonal Ti
planes (Fig. 1). We build the MXene monolayers with the functional groups associated with
the most energetically stable configuration predicted”!%2°, as shown in Fig. 1. For performing
DFT calculations, monolayers are placed at the base of the simulation cell and a large vacuum
region of 20 A is added above the upper layer along the z-direction to avoid interactions

between a single MXene sheet and the periodically repeated images.
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(a) Ti:CO:

Figure 1. Top-view (top) and side-view (bottom) of 4x4x1 supercell of (a) Ti,CO, and (b) Ti;C,0, structures.

After structural optimization, thermal properties and temperature-dependent mechanical
properties of MXenes are studied by first-principles through phonon calculations performed by
density functional perturbation theory (DFPT)>%>!. The phonon dispersions are calculated by
using the PHONOPY code*#? within a 4 x 4 x 1 supercell of the MXene monolayers to
guarantee the convergence of phonon dispersion. The k-points of 4 x 4 x 1 generated with the
Monkhorst—Pack#’ scheme are applied and the cut-off energy of 550 eV is set. To ensure
adequate precision of the generated force constants, the criterion for energy convergence is set
to 10-8 eV/cell. Since considering the long-range dispersion forces are necessary for the precise
description of the atomic interactions of MXenes during tensile deformation, we employed the
correction according to the Grimme method>? for the van der Waals interaction (DFT-D2).
However, the Coulomb effect (U) for the localized 3d electrons of Ti atoms is ignored since it

has been tested and a negligible effect on the results has been noticed.

We employed the quasi-anharmonic approximation (QHA)*, in which the anharmonicity
volume dependence of phonon properties are applied. The temperature-dependent properties
of MXenes are calculated by combining DFT with QHA (DFT-QHA)**#2. By knowing the

phonon frequencies, the energy level of the system and Gibbs energy can be determined, and
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further thermodynamic properties can be calculated. The pressure value is zero and the
Gibbs energy is equal to the Helmholtz free energy. The Helmholtz free energy F at given
temperature and volume are computed using F(T, V) = Eppr(V) + Fyin(T, V), where Eppr(V) is

the DFT total energy and F.;,(T, V) is the vibrational free energy3*+042,

In the following, we briefly describe the method employed for calculating temperature-
dependent lattice parameters and mechanical properties of 2D Ti,.,C,0, (n = 1, 2) MXenes
from phonon density of states by using the QHA. More details of the calculation for 3D and
2D crystals are found in Refs.>3* and Ref.>%, respectively.
A. Temperature-dependent structural optimization

The Helmholtz energy is a function of all lattice parameters in a crystal. Then, the non-
equilibrium Helmholtz energy should be minimized based on the multiple variable functions
(i.e., lattice parameters) to find the Helmholtz energy at equilibrium state, which is currently
not possible by using the first-principles method. Hence, in order to avoid the full

minimization of non-equilibrium Helmholtz energy, we derived the Helmholtz energy
. . . . L a
functions with one deformation strain &, which is defined as € = / a (a and aq are the

equilibrium and strained lattice parameters). Therefore, the non-equilibrium Helmholtz energy
can be calculated as:

F[X(e);T] = E[X(&)] + Fyio[ X(e):T], (D
where E[X(¢)] is the total energy of the specific deforming configuration. F,;,[X(g); T] is the
vibrational Helmholtz free energy calculated from phonon density states using the DFT-QHA.
For a fixed deformation mode, the equilibrium Helmholtz energy, which is only a function of
temperature T, can be obtained by determining the minimum point of the non-equilibrium

Helmholtz energy curve with respect to the deformation strain € at each temperature.

F*[}:T] = min{E[X(e)] +Fuin[X(e):T1}, )
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By solving Eq. (2), the equilibrium deformation strain £} at given temperature T can be found,
and, then the lattice parameters can be calculated. Since Ti,.;C,0, (n = 1, 2) MXenes has
hexagonal symmetry, we chose the biaxial deformation tensor with & up to + 3% and
increments of 0.5% to obtain the equilibrium lattice parameter at each temperature from 0

to 1000 K and increments of 50 K. The &Y is obtained by polynomial fitting the non-

equilibrium Helmholtz free energies at each temperature, as shown in Sec. Il A. Then, the
lattice parameter for hexagonal MXenes can be determined as:
ar = (1 + €¥)a,, (3)
where aq is the optimized lattice parameter at 0 K calculated from the DFT calculation and ar
is the equilibrium lattice parameter at temperature T.
B. Temperature-dependent elastic constants

After calculating the equilibrium lattice parameter at each temperature, we calculated the
isothermal elastic constants, which can be deliberated as strain derivatives of the Helmholtz
free energy using Eq. 1. Due to the basic symmetry of a hexagonal MXene sheet, the elastic
constant matrix is contained only two independent elastic constants of ¢;; and c,. To calculate
these two constants, two sets of deformed crystals are required to be built that lead to two sets
of the Helmholtz energy F[X(g); T] curves with respect to strain € at a given temperature. We
chose one uniaxial deformation tensor (i.e., (g, 0, 0, 0) and one biaxial deformation tensor (i.e.,
(g, 0, &, 0) as two deformation modes to execute the QHA calculations for the temperature-
dependent elastic constants of c¢f; and c],. Then, the two sets of the Helmholtz energy per unit
cell area with respect to the strain € are calculated with € up to + 3% and increments of 0.5%
at different temperatures from 0 to 1000 K and increments of 50 K. For the two deformation
modes, the curves of the Helmholtz energy per unit cell area with respect to the deformation
strain € are obtained by the polynomial fitting. Further, the second-order derivatives of these

curves with respect to the deformation strain € corresponds to the independent elastic constants
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or their linear combination. The isothermal elastic constants are calculated by solving the
following system of linear equations giving the correlation between these second-order strain

derivatives and the linear combination of isothermal elastic constants.

T T
c11=D1
[2c{1 +2cf; = D%} @

where DT and D are the second-order strain derivatives of the Helmholtz free energy under
the two deformation modes, and, c}; and c]; are the elastic constants at a given temperature

and zero pressure. After calculating the clastic constants, Young’s modulus (E) and Poisson’s

ratio (v) are calculated for small deformation applied on a hexagonal MXene using:

T _ (D = (?

T
11

(5)
T
I = 612/0{1 ©6)

C. Temperature-dependent in-plane stiffness constant

The in-plane stiffness (C) is a more representative parameter for the strength than Young’s
modulus for 2D materials since the thickness of a monolayer structure is uncertain. The in-
plane stiffness (C) has extensively been used for 2D materials at 0 K31323¢, We calculated this
parameter for the MXene monolayers by fitting the initial slope of the stress-strain curve under
biaxial tension at different temperatures. In order to achieve the stress-strain curves, first, it is
required to obtain the equilibrium lattice configuration at each temperature and, then, stretch
the crystal with the constant growth of Ae = 0.005. Second, the crystal is relaxed while the
lattice parameters are fixed to confirm that the other dominant stress perpendicular to the
direction of tension is zero. After obtaining the configuration lattice X(¢)" at given temperature
T, the Helmholtz energy for that configuration is calculated using Eq. 1. Finally, the stress-

strain curves are obtained by:
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1+ edF(e, T)
oe T) =, a > 7

where o(g, T) and V(g)T are the stress and volume of the structure under the strain of g, and F(e,

T) is the Helmholtz energy of the deformed crystal. Since forces are averaged over the entire
system including the vacuum space in DFT calculations, the stress is scaled by Hy dg, where H
is the cell length along the z-direction and d is the effective thickness of the MXene

monolayers, in order to avoid the effect of the vacuum region.

II. RESULTS AND DISCUSSION

In order to study temperature-dependent mechanical properties of 2D Ti,.;C,0, (n = 1, 2)
MXenes, first, we focus on the geometry optimization at different temperatures in order to have
an understanding of the structural and atomic spacing behavior of MXenes with temperature.
Then, we present results for temperature-dependent mechanical properties of MXenes such as
elastic constants, Poisson’s ratio, Young’s modulus, and in-plane stiffness. The results are
compared with the previously published studies on Ti,.;C, 0, (n = 1, 2) MXenes, Bulk TiC,
pristine Ti,C, and pristine TizC; at 0 K.
A. Temperature-dependent structural optimization

Fig. 2a shows the calculated a lattice parameter (a-LPs) of Ti,CO; and Ti;C,0, MXenes with
respect to temperature. For calculating the a-LPs of MXenes, we first calculated their
Helmbholtz energy with respect to thirteen different volumes under biaxial deformation tensor
at different temperatures, as shown in Figs. 2b-2¢. The calculated Helmholtz energies are
represented by the filled blue circles in Figs. 2b-2¢. The twenty curves are obtained by fitting
to the equation of states (EOS) at temperatures from 0 to 950 K with 50 K steps. The minimum
values of each curve are illustrated by the cross red symbols in Figs. 2b-2¢ which are the
equilibrium Helmholtz energies at the temperatures and the respective equilibrium volumes are

simultaneously found.
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Figure 2. (a) Temperature-dependent « lattice parameters of Ti,CO, and Ti;C,0, MXenes. Helmholtz energy of
(b) Ti,CO, and (¢) Ti3C,0, MXenes as a function of volume at a temperature from 0 K to 950 K with 50 K steps
are illustrated by filled blue circles, which are fit by the solid blue curves. The minimum energy of the curves is
shown by the red symbols which determine the equilibrium volumes at each temperature. The red solid lines
passing through the equilibrium volumes are guides to the eye.

The MXenes’ a-LPs are plotted by using obtained equilibrium volumes at each temperature,
as shown in Fig. 2a. In the present study, the a-LPs of 3.037 A and 3.089 A are calculated for
Ti,CO, and Ti3;C,0, MXenes at 0 K, respectively. The presently calculated lattice constants
are close to previously calculated values of 3.0323! A and 3.0352° A for Ti,CO, and 3.1057 A
for TizC,0,. The results show that the lattice parameter of MXenes does not considerably
change at temperatures T < 100 K unlike single-layer graphene with a negative thermal
expansion at temperatures T < 400 K38, By further increasing temperature, the a-LPs start
expanding and at 1000 K their values become 3.070 A (1.09 %) and 3.113 A (0.78 %) for
Ti,CO, and Ti5;C,0, MXenes, respectively. Based on these values, Ti,CO; has slightly larger
growth in interatomic distances than Ti;C,0, with increasing temperature. This could indicate
that surface functionalization has a greater effect on the bond strength in the thinner MXenes.
It was found by valence X-ray photoelectron spectroscopy (XPS) spectra that the Ti-C bond
strength of Ti,.;C, T, MXenes depends on the carbon content and atomic layer thickness, and
it is weaker in Ti,CT, than that in Ti;C,T,.> In our calculations, we assumed that oxygen
terminations stay on MXenes’ surfaces and no surface terminations dissociations occur because

of increase in the temperature above ~ 550 °C. It was observed recently that heating Ti-
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containing MXenes in an inert environment leads to dissociation of MXene flakes

terminations®.

In order to better understanding of temperature dependence of bond strengths, we employed
the crystal orbital Hamilton population (COHP) analysis®! to calculate the bond strengths of
the MXenes. The COHP analysis indicates bonding, nonbonding, and antibonding
contributions to the band-structure energy using localized atomic basis sets and the energy
integration of the COHP calculations (ICOHP) for a pair of atoms up to the Fermi energy
provides the bond strength.®? It is worth noting that the strength of the covalency and not the
iconicity of a bond is considered by the ICOHP, which is characterized by the number of
electrons of a specific atom shared with other atoms when forming chemical bonds. More

details of ICOHP calculations can be found in the works of Khazaei et al.®3-%4,

Fig. 3 shows the results of temperature-dependent ICOHP and atom-atom distance calculations
for Ti—O, Ti—C, Ti-Ti, and C—C bonds in Ti,CO, and Ti3C,0, MXenes. The results of ICOHP
indicate that the bond strengths between titanium and carbon atoms in Ti;C,0; are stiffer than
those in Ti,CO, while oxygen atoms form stronger bonds with outer titanium atoms in Ti,CO,
than Ti;C,0,. This indicates that more charge is transferred from the Ti atoms to oxygen
surface atoms in thinner Ti,CO; than thicker Ti;C,0,. Generally, the bond strengths become
weaker at higher temperatures as the atom-atom distances increase; however, our results show
that the C—C bond in Ti;C,0, decreases slightly by increasing the temperature, which leads to
higher ICOHP energy (possibly stiffer C-C bonds) (Figs. 3g and 3h). The weakening of the
bond strengths is more significant in Ti,CO, than Ti;C,0,, especially for Ti—Ti bond. Since
the bonds between various atoms within Ti,CO; lose their stiffness more than Ti;C,0, at higher
temperatures, we would expect a larger effect on the mechanical properties for Ti,CO, rather

than Ti;C,0, at those temperatures.

11
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Figure 3. Temperature-dependent integrated crystal orbital Hamilton population (ICOHP) and atom-atom
distance between various atoms in the MXenes. (a)-(b) Ti-O, (c)-(d) Ti-C, (e)-(f) Ti-Ti, and (g)-(h) C-C bonds.
The solid lines indicate the polynomial fit to the results.

B. Temperature-dependent elastic constants

We calculated temperature-dependent elastic constants and Poisson’s ratio using the
methodology explained in Sec. II. Then, Young’s modulus is calculated from the elastic
constants using Eq. 5. In previous DFT studies’!-*2, Young’s modulus was calculated directly

by a linear fit to the stress-strain curve and, hence, no elastic constants were reported.

Fig. 4a shows the results of temperature-dependent elastic constants (c;; and c¢;3) of Ti,CO,
and Ti3C,0,. Generally, the elastic constants for MXenes decrease with increasing temperature.
This decrease is more significant for Ti,CO, so that its ¢;, becomes less than that of Ti;C,0,
at temperatures higher than 600 K. The larger change of elastic constants in Ti,CT, might be
due to temperature effect on the bond strengths within thinner MXenes that the bonds between

different atoms lose their stiffness more significantly at higher temperatures in Ti,CO; than

Ti3C,0, (See Fig. 3)
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Figure 4. Temperature-dependent (a) elastic constants (c¢;; and cy,), (b) Poisson’s ratio, and (¢) Young’s
modulus of Ti,CO, and Ti;C,0, MXenes.

In order to have a more precise comparison, the calculated elastic constants, Poisson’s ratio,
and Young’s modulus of MXenes at three different temperatures of 0 K, 300 K, 1000 K are
listed in Table 1; furthermore, the previously calculated elastic constants of graphene by DFT-
QHA with considering zero-point energy at the corresponding temperatures taken from Ref.>
are also presented. The results show that ¢;; of Ti,CO, decreases by almost 4.5% and 21% at
300 K and 1000 K, respectively, while the changes in its ¢, are almost doubled to 8.5% and
42.3% at the similar temperatures. The elastic constants of Ti3C,0, are less varied than Ti,CO,,
and Ti3C,0; ¢ decreases by almost 2.1% and 8.0% at 300 K and 1000 K, respectively, while
c12 decreases by almost 2.4% and 6.5% at the corresponding temperatures. In comparison to
graphene with E of 1173 GPa, it is found that Ti,.;C,0, MXenes are less stiff, particularly
Ti5C,0,. Additionally, MXenes’ stiffness values decrease more than that of graphene at higher
temperatures, especially for Ti,CO,. However, as it was described before and in previous
studies?®?° comparing Ti,.;C,T, to graphene oxide as a solution-processed material is more
accurate because of graphene oxide and MXenes have surface functionalization. It was found
that the stiffness of graphene (at ~1100 GPa) reduces drastically to ~ 210 GPa, which is less
than that of Ti,.;C, T, by oxygen functionalization?®. Therefore, the mechanical properties of
one-atom-thick monolayer graphene could be affected stronger by surface functionalization
than the few-atom-thick Ti,. ;C,O, flakes.

Table 1. Elastic constants, Poisson’s ratio (v), and Young’s modulus (E) for Ti,.;C,0, (n = 1, 2)
MXenes at 0 K, 300 K, and 1000 K. For comparison, the DFT-QHA calculated elastic constants and

13
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Young’s modulus for graphene as given in Ref.>® are also stated. The values are in GPa. The percentage
of variation are listed in parentheses

Temperature (K) | ¢y (GPa) | ¢z (GPa) v E (GPa)

0 627.03 196.49 0.312 565
Ti,CO, 300 ' 598.79 (4.5%) L 179.72 (8.5%) | 0.300(3.8%) | 545 (3.5%)
1000 ' 495.16 (21.0%) ' 113.34 (42.3%) | 0.229 (26.6) | 469 (17.0%)

0 531.96 162.04 0.304 482
Ti;C,0, 300 1 520.54 (2.1%) ' 158.17 (2.4%) | 0.304 (0.0%) | 472 (2.1%)
1000 | 489.23 (8.0%) 15144 (6.5%) | 0.309 (1.6%) | 442 (8.3%)

0 1208.78 208.81 0.173 1173
graphene 300 ' 1205.76 (0.25%) ' 205.56 (1.6%) | 0.171 (1.16%) | 1171 (0.2%)
1000 ' 1178.46 (2.5%) L 192.76 (7.7%) | 0.164 (5.2%) | 1147 (2.2%)

The calculated Poisson’s ratio and Young’s modulus of MXenes at different temperatures are
shown in Figs. 4b and 4c. The calculated results at 0 K in addition to the available DFT results
for the MXenes are given in Table 2 as well as Young’s modulus of graphene calculated by
DFT-QHA by considering zero-point energy at the corresponding temperatures taken from

Ref.%.

We calculated E = 565 GPa at 0 K for Ti,CO, MXene, which is very close to E = 567 GPa of
Ref3! and E = 570 GPa of Ref.3? calculated by a linear fit to the stress-strain curve under
uniaxial tensile strains using ab initio method. The calculated Young’s modulus of 482 GPa
for Ti;C,0, MXene at 0 K in our study is also very close the value of 484 GPa calculated by
DFT of Ref.3!, while our calculated Young’s modulus varies from the value of 369 GPa derived
by DFT of Ref.?? due to difference in the layer thickness applied. For Ti;C,T,, our calculated
Young’s modulus value is 482 GPa, which is higher than the 333 + 30 GPa? effective Young’s
modulus determined experimentally for Ti;C,T, MXene at room temperature. At 472 GPa, our
calculated Young’s modulus value at room temperature is still significantly higher than the
experimentally measured one. The main reason for the lower value for the measured Young’s
modulus (333 + 30 GPa) is the presence of defects and also the mixture of surface functionality
(-0, —OH, and —F) in the solution-processed Tiz;C,T, MXene3%3. It was found that oxygen
functionalized MXenes causes a larger elastic constant ¢;; comparing to those functionalized

with —F or —OH because of more significant charge transfer from the inner Ti—C bonds to the

14



Physical Chemistry Chemical Physics

outer surface ones by oxygen atoms3%-33, In the present study, the value of 482 GPa is calculated

for a Ti3C, monolayer functionalized only by oxygen and without any defects.

Comparing the calculated values of Young’s modulus for Ti,C and Ti;C, and the values
calculated for Ti,CO; (565 GPa) and Tiz;C,0, (482 GPa) (see Table 2) in this study indicates
that surface functionalization leads to decrease in Young’s modulus of the MXenes.
Additionally, these values show that thinner MXenes are mechanically stiffer than the thicker

MXenes with similar compositions.

Our results of temperature-dependent Poisson’s ratios of MXenes in Fig. 4b shows that the
Poisson’s ratios decrease slightly with temperature for Ti,CO,, while Poisson’s ratio remains
almost constant with increasing temperature for Ti;C,O, (Fig. 4b). This means that shear
modulus decreases marginally with a smaller percentage than that of the moduli in tension and
compression for Ti;CO; at higher temperatures, while shear modulus and moduli in tension
and compression decrease with almost the same rate for Ti;C,0, at higher temperatures. Our
calculated results show that Young’s modulus of Ti,CO, decreases by 3.5% and 17.0% at 300
K and 1000 K, respectively, while it decreases less for Ti;C,O, by 2.1% and 8.3% at those
temperatures (Fig. 4c). It is mainly because of the larger expansion in the interatomic distances
and consequently more decrement in the bond strengths (Fig. 3) of Ti,CO, than that of Ti;C,0,
at higher temperatures, which might be resulted from the greater effect of the surface

functionalization on the thinner MXenes.

Table 2. In-plane stiffness constant (C), Poisson’s ratio (v), and Young’s modulus (E) of Ti,. ,C,0; (n
=1, 2) MXene monolayers at 0 K. The in-plane stiffness constant, and Young’s moduli are in GPa. The
available first-principle results for the corresponding M Xenes are included in parentes. For comparison,
the previously calculated results for bulk TiC and 2D pristine Ti,.,C, (n=1, 2) monolayers are also listed
inside the parentheses.

C : E (GPa) E v
Ti,CO, 735, (745)% | 565, (567, (570) | 0.312. (0.303)*2
Ti;C,0, 616 | 482,(369)%, (4841 | 0.304
Bulk TiC - L (524)Y, (450)6566 (0.237)%7
Pristine TL,C | (70492 1 (588)"", (577)2 (513) | (0.366), (0.266)"7, (0.23)**
Pristine ! !
LG, - RGO (0.241)%
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C. Temperature-dependent in-plane stiffness constant

As stated in Sec I1, because of the reduced dimensionality of 2D materials, it is more compatible
to define the in-plane stiffness, C, rather than the classical 3D Young’s modulus. We calculated
this property for MXenes by fitting the initial slope of the stress-strain curves under biaxial

tension at 0 K, 300 K, 600 K, and 900 K (Fig. 5).

We first compare our DFT-QHA results of the biaxial tensile stress-strain curve for Ti,CO,
and Ti;C,0, at 0 K with the available DFT results of Refs.3%32, which gives a good match, as
shown in Fig. §. The strain-stress curve for Ti;C,T, (T = F and H) are also illustrated in Fig.
5b of Ref.?%, which shows that MXene with the oxygen functional group possesses the highest
in-plane stiffness. Then, the stress-strain curves for MXenes at other temperatures are
calculated and the values of in-plane stiffness, C, are extracted from at the corresponding

curves, as shown in Fig. 6.

q) 70 — = 40
(@) Biaxial: Ti2CO2 (b)
60 | | —@—Present Study &
4  Guoetal. (2015)
50| # Chakraborty et al. (2017) 30}
o )
o
Q a0t 2. /
bﬁ o 20l '/
@301 g S 3
2 o Biaxial; Ti3C2T2
@20 2 1B -/ —a— Present Study: Ti3aC202
I / —a— Fu et al. (2016): TisC202
10 —v—Fu et al (2016): TiaCzF2
Fu et al. (2016): TisaC2(OH)2
O 1 1 1 L L 1
0.00 0.02 0.04 006 008 0.10 0.12

O L L 1 1 L 1 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Strain, & Strain, £

Figure 5. Strain-stress curve of (a) Ti,CO, and (b) Ti;C,T, (T=0, OH, and F) under biaxial tensile strain at 0 K
compared with theoretical studies taken from Refs.3%-32,

Temperature-dependent strain-stress curves (Figs. 6a and 6b) show an insignificant difference
between the elastic properties at different temperatures. The relatively larger difference
between the stress-strain curves of Ti,C,0, at different temperatures compared with that of

Ti3C,0, (Fig. 6¢) can be attributed to larger lattice expansion Ti,CO; than Ti;C,0; at higher
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temperatures (Fig. 2a). Larger thermal expansion of Ti,CO, compare to Ti;C,0; leads to the

weakening of bond strength between atoms to a higher degree (Fig. 3).

(a) 70 ) — (c) 750
iaxi Biaxial .
Biaxial a0k Fen Qoo Ti.CO:
60F o T=0K [ Ti C O w 700F
—o—T = 300 K : - o
=500 T2 i 1iQ 50 e—T=600K Q 6501
& e T-900K co| &30 [e-T=900K| <
a0t S, @ 600 f
b (o} - } o @
a 30| . 5 20+ £
g Ti2CO2 g @ 0]
= = @
@ 20} 2 S 500}
10+ = e
10} £ 450 11:C.0:
0 ; \ ‘ \ A ‘ o . ; 400 | A : ;
000 002 004 006 008 010 012 0.00 002 004 006 008 010 0.12 200 400 600 800 1000
Strain, € Strain, € Temperature (K)

Figure 6. Strain-stress curve of (a) Ti,CO, and (b) Ti;C,0, under biaxial tensile strain at 0 K, 300 K, 600 K,
and 900 K. (c) Temperature-dependent in-plane stiftness constant of Ti,CO, and Ti;C,0,.

The in-plane stiffness for Ti,CO, is calculated 735 GPa at 0 K, which agrees well with the
previous DFT calculation results with the value of 745 GPa32. We also calculated in-plane
stiffness of 467 GPa for Ti;C,0; at 0 K. By increasing the temperature, the calculated in-plane
stiffnesses of MXenes are decreased (Fig. 6¢), and for Ti,CO; (Ti;C,0,), the values decrease
to 720 (457) GPa, 705 (445) GPa, and 680 (430) GPa at 300 K, 600 K, and 900 K, respectively.
This softening trend is affected by weaker interactions between the atoms due to stronger

vibrations at higher temperatures.

Both phonon and elastic stabilities play an important role in the lattice stability conditions of
the material. By investigating both stability conditions, we can understand whether the failure
of'the material is because of the loss of the elastic stability or phonon instability before applying
the maximum stress. Many 2D materials are reported to experience phonon softening such as
graphene®’—%°, BN, Mo0S,%%70. Therefore, we calculated the phonon dispersions for Ti,CO,
and Ti;C,0, at state-free state, the biaxial tensile, and compressive strain of 1%, 2%, and 3%
in the basal plane. We found there are no imaginary modes for Ti,CO, and Ti;C,0, at state-
free state (see Figs. S1 and S2 in Supplementary information). The phonon spectra of
considered MXene systems fulfill the strictest condition for dynamical stability without

imaginary modes at a state-free state. Even for the tensile as well as compressive strain states,
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the increase of imaginary modes is marginal. These small branches of imaginary modes might
be associated with the finite size of the supercell applied in this study. In addition, a finite
temperature of the experimental condition might further modify the dynamical stability of the
monolayer since our phonon calculations are at 0 K374°, Therefore, these structures could be
even more stable under experimental conditions. Overall, our results indicate that the imaginary

mode enhancement is stronger for Ti;C,0; than Ti,CO..

In this study, the stress-strain curves for small biaxial tensile loadings are only used for the
initial slope and the in-plane stiffness constant calculations. Since the results of DFT-QHA is
not reliable in the presence of imaginary modes*®, we did not deform the crystal largely to

calculate the critical strain at different temperatures.

[II. CONCLUSIONS

In conclusion, we report temperature-dependent mechanical properties of Ti,,;C, 0, (n =1, 2)
MXenes. Our theoretical calculations predict that Ti,CO, is stiffer than Ti;C,0O,; however,
Ti,CO; softens more than Ti;C,0, with increasing temperature up to 1000 K. It is mainly
originated from the larger expansion of the interatomic distances within Ti,CO, compare to
those of TizC,0,. The bond strength calculations indicate that the chemical bonding between
titanium and carbon atoms is stronger in thicker Ti;C,0O, than thinner Ti,CO,, while oxygen
atoms bonds are stronger to outer titanium atoms in Ti,CO, than in Ti3C,0,. Our analyses show
that the bonds between various atoms in Ti,CO; lose their stiffness more than Ti;C,0; at higher
temperatures. This paves the way for an accurate design of MXenes for their high-temperature
applications such as structural composite applications and EMI shielding coatings in aerospace.

ACKNOWLEDGMENTS

The authors would like to acknowledge and greatly appreciate the financial support from VISTA which is a basic
research program in collaboration between the Norwegian Academy of Science and Letters, and Statoil. The
authors would also like to thank the Department of Mechanical and Industrial Engineering at the Norwegian
University of Science and Technology (NTNU). The authors also acknowledge generous grants of high-
performance computer time from both Vilje and UNINETT Sigma.

REFERENCES

18



Physical Chemistry Chemical Physics Page 20 of 24

I'K.S. Novoselov, A.K. Geim1, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, 1. V.
Grigorieva, and A.A. Firsov, Science (80-. ). 306, 666 (2004).

2 J.N. Coleman, M. Lotya, A.O. Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A.
Gaucher, S. De, R.J. Smith, I. V Shvets, S.K. Arora, G. Stanton, H. Kim, K. Lee, G.T. Kim,
G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty,
A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. Mccomb,
P.D. Nellist, and V. Nicolosi, Science (80-.). 331, 568 (2011).

3 D. Pacil, J.C. Meyer, C. Girit, and A. Zettl, Appl. Phys. Lett. 92, 212 (2008).

4L.Li, Y. Yu, GJ. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, and Y. Zhang, Nat.
Nanotechnol. 9, 372 (2014).

> M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and
M.W. Barsoum, Adv. Mater. 23, 4248 (2011).

6 M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W.
Barsoum, ACS Nano 6, 1322 (2012).

7 B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, Nat. Rev. Mater. 2, 16098 (2017).
8Y. Gogotsi and B. Anasori, ACS Nano 13, 8491 (2019).

° M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, and S. Yunoki, J. Mater. Chem. C 5, 2488
(2017).

10M. Khazaei, A. Mishra, N.S. Venkataramanan, A.K. Singh, and S. Yunoki, Curr. Opin.
Solid State Mater. Sci. 23, 164 (2019).

I'F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, and Y. Gogotsi,
Science (80-. ). 353, 1137 (2016).

12 A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, and Y. Gogotsi, Sci. Adv. 4,
eaau0920 (2018).

13 C.E. Ren, M. Alhabeb, B.W. Byles, M. Zhao, B. Anasori, E. Pomerantseva, K.A.
Mahmoud, and Y. Gogotsi, ACS Appl. Nano Mater. 1, 3644 (2018).

14 M. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, and Y.
Gogotsi, Nano Energy 30, 603 (2016).

15 M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, and M.W. Barsoum, J.
Am. Chem. Soc. 135, 15966 (2013).

16.Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, and Y. Tian, J. Am. Chem.
Soc. 136, 4113 (2014).

17G. Fan, X. Li, Y. Ma, Y. Zhang, J. Wu, B. Xu, T. Sun, D. Gao, and J. Bi, New J. Chem. 41,
2793 (2017).

18 B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt, P.R. Kent, S.J. May, S.J. Billinge,
M.W. Barsoum, and Y. Gogotsi, Nanoscale Horizons 1, 227 (2016).

19.J L. Hart, K. Hantanasirisakul, A.C. Lang, B. Anasori, D. Pinto, Y. Pivak, J.T. Van Omme,
S.J. May, Y. Gogotsi, and M.L. Taheri, Nat. Commun. 10, 522 (2019).

20 M. Khazaei, M. Estili, N.S. Venkataramanan, T. Sasaki, Y. Sakka, C. Chung, M. Arai, and
Y. Kawazoe, Adv. Funct. Mater. 23, 2185 (2013).

21 H. Lashgari, M.R. Abolhassani, A. Boochani, S.M. Elahi, and J. Khodadadi, Solid State

19



Page 21 of 24

Physical Chemistry Chemical Physics

Commun. 195, 61 (2014).
22 H. Kim, B. Anasori, Y. Gogotsi, and H.N. Alshareef, Chem. Mater. 29, 6472 (2017).

23 M. Khazaei, M. Arai, T. Sasaki, M. Estili, and Y. Sakka, Phys. Chem. Chem. Phys. 16,
7841 (2014).

24 8. Cho, B. Anasori, C. Kim, Y. Choi, J. Kim, and Y. Gogotsi, ACS Nano 12, 986 (2018).

2 X.F.Yu, Y.C. Li, J.B. Cheng, Z.B. Liu, Q.Z. Li, W.Z. Li, X. Yang, and B. Xiao, ACS
Appl. Mater. Interfaces 7, 13707 (2015).

26 7.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya, Y.
Gogotsi, T.F. Jaramillo, and A. Vojvodic, ACS Energy Lett. 1, 589 (2016).

27L.Y. Gan, D. Huang, and U. Schwingenschlogl, J. Mater. Chem. A 1, 13672 (2013).

28 G. Plummer, B. Anasori, Y. Gogotsi, and G.J. Tucker, Comput. Mater. Sci. 157, 168
(2019).

2 A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, and A. Sinitskii,
Sci. Adv. 4, eaat0491 (2018).

30 7 H. Fu, Q.F. Zhang, D. Legut, C. Si, T.C. Germann, T. Lookman, S.Y. Du, J.S. Francisco,
and R.F. Zhang, Phys. Rev. B 94, 1 (2016).

31'7. Guo, J. Zhou, C. Si, and Z. Sun, Phys. Chem. Chem. Phys. 17, 15348 (2015).

32 P. Chakraborty, T. Das, D. Nafday, L. Boeri, and T. Saha-Dasgupta, Phys. Rev. B 95,
184106 (2017).

3 M. Kurtoglu, M. Naguib, Y. Gogotsi, and M.W. Barsoum, MRS Commun. 2, 133 (2012).
3S. Wang, J.X. Li, Y.L. Du, and C. Cui, Comput. Mater. Sci. 83, 290 (2014).

35 X.H. Zha, K. Luo, Q. Li, Q. Huang, J. He, X. Wen, and S. Du, Eur. Lett. 111, 26007
(2015).

36 C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science (80-.). 321, 385 (2008).
37 M. Yiand Z. Shen, J. Mater. Chem. A 3, 11700 (2015).

38 J.W. Suk, R.D. Piner, J. An, and R.S. Ruoff, ACS Nano 4, 6557 (2010).

3 A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).

40 A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).

41J. Guo, B. Legum, B. Anasori, K. Wang, P. Lelyukh, Y. Gogotsi, and C.A. Randall, Adv.
Mater. 30, 1801846 (2018).

42 A. Togo, L. Chaput, 1. Tanaka, and G. Hug, Phys. Rev. B 81, 174301 (2010).
43 G. Kresse and J. Furthmiiller, Comput. Mater. Sci. 6, 15 (1996).

4 @G. Kresse and J. Furthmiiller, Phys. Rev. B - Condens. Matter Mater. Phys. 54, 11169
(1996).

4 G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

46 G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

47].P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

48 J.P. Perdew, M. Ernzerhof, and K. Burke, Phys. Rev. Lett. 77, 3865 (1996).

20



Physical Chemistry Chemical Physics Page 22 of 24

49 H.J. Monkhorst and J.D. Pack, Phys. Rev. B Solid State 5188 (1976).

0 P.G.S.B.S. de G. Andrea Dal Corso, J. Chem. Phys. 134, (2011).

31 X. Gonze and C. Lee, Phys. Rev. B - Condens. Matter Mater. Phys. 55, 10355 (1997).
32 8. Grimme, J. Comput. Chem. 27, 1787 (2006).

33 R. Khaledialidusti, A.K. Mishra, and A. Barnoush, AIP Adv. 9, 065021 (2019).

>4 T. Shao, B. Wen, R. Melnik, S. Yao, Y. Kawazoe, and Y. Tian, J. Appl. Phys. 111, 083525
(2012).

33 T. Shao, B. Wen, R. Melnik, S. Yao, Y. Kawazoe, and Y. Tian, J. Chem. Phys. 137,
(2012).

6 M. Topsakal, S. Cahangirov, and S. Ciraci, Appl. Phys. Lett. 96, (2010).
S7N. Zhang, Y. Hong, S. Yazdanparast, and M.A. Zaeem, 2D Mater. 5, (2018).
3 D. Yoon, Y. Son, and H. Cheong, Nano Lett. 11, 3227 (2011).

3% M. Magnuson, J. Halim, and L.-ake Nislund, J. Electron Spectros. Relat. Phenomena 224,
27 (2018).

%0 M. Seredych, C.E. Shuck, D. Pinto, M. Alhabeb, E. Precetti, G. Deysher, B. Anasori, N.
Kurra, and Y. Gogotsi, Chem. Mater. 31, 3324 (2019).

61 R. Dronskowski, M. Festkbrperforschung, and P.E. Blochl, J. Phys. Chem. 8617 (1993).

%2 M. Kiipers, P.M. Konze, S. Maintz, S. Steinberg, A.M. Mio, O. Cojocaru-Mir@din, M.
Zhu, M. Miiller, M. Luysberg, J. Mayer, M. Wuttig, and R. Dronskowski, Angew. Chemie,
Int. Ed. 56, 10204 (2017).

63 M. Khazaei, A. Ranjbar, K. Esfarjani, and D. Bogdanovski, Phys. Chem. Chem. Phys. 20,
5879 (2018).

64 M. Khazaei, J. Wang, M. Estili, A. Ranjbar, S. Suehara, M. Arai, K. Esfarjani, and S.
Yunoki, Nanoscale 11, 11305 (2019).

% Q. Yang, W. Lengauer, T. Koch, M. Scheerer, and 1. Smid, J. Alloys Compd. 309, 5
(2000).

%V I. Ivashchenko, P.E.A. Turchi, A. Gonis, L.A. Ivashchenko, and P.L. Skrynskii, Metall.
Mater. Trans. A Phys. Metall. Mater. Sci. 37, 3391 (2006).

67 C.A. Marianetti and H.G. Yevick, Phys. Rev. Lett. 245502, 1 (2010).
%8 C. Si, W. Duan, Z. Liu, and F. Liu, Phys. Rev. Lett. 226802, 1 (2012).
% E.B. Isaacs and C.A. Marianetti, Phys. Rev. B 184111, 2 (2014).

70T, Li, Phys. Rev. B 235407, 1 (2012).

21



Page 23 of 24 Physical Chemistry Chemical Physics

Supporting Information

Temperature dependent mechanical properties of 2D Ti,;C,0, (n =1, 2)
MXene monolayers

Rasoul Khaledialidusti,”! Babak Anasori,"? Afrooz Barnoush'

Department of Mechanical and Industrial Engineering, Norwegian University of Science and
Technology (NTNU), 7491 Trondheim, Norway.
2 Department of Mechanical and Energy Engineering, and Integrated Nanosystems Development
Institute, Purdue School of Engineering and Technology, Indiana University — Purdue University
Indianapolis, Indianapolis, IN 46202, USA.

Dynamical stability
The phonon spectra of 2D Ti,,,C,O, (n = 1, 2) at state-free state and biaxial tensile and

compressive strain of 1%, 2%, and 3% in the basal plane.
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Figure S1. Phonon dispersion curves for Ti,CO, at state-free state and biaxial tensile and compressive strain of
1%, 2%, and 3% in the basal plane.
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Figure S2. Phonon dispersion curves for Ti;C,0, at state-free state and biaxial tensile and compressive strain of
1%, 2%, and 3% in the basal plane.



