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Abstract

Artificial spin ice (ASI) are systems of coupled nanomag-
nets arranged on a 2D lattice. ASIs are promising comput-
ing substrates due to the rich variety of emergent behavior,
accompanied by considerable control and flexibility. Compu-
tational models may exploit the small-scale dynamics of the
individual elements, or large-scale emergent behavior of the
resulting metamaterial. We investigate the computational ca-
pabilities of “pinwheel” ASI, whose emergent ferromagnetic
patterns can be observed at different scales. Within a reser-
voir computing framework, we examine how key system pa-
rameters affect performance using well-established reservoir
quality metrics. As reservoir output, we consider system state
at different granularities, ranging from individual magnets to
the collective state of multiple magnets. Our results show that
pinwheel ASI exhibits excellent computing capacity, includ-
ing evidence of fading memory. Interestingly, a wide range of
output granularities result in good performance, offering new
insights into the scalability and robustness of reservoirs based
on self-organized collective behavior. The apparent flexibil-
ity in output granularity show that ASIs have computational
properties at different abstraction levels, from the small-scale
dynamics of simple elements, to the large-scale spatial pat-
terns of the metamaterial.

Introduction
In ASI, each nanomagnet behaves as a macrospin, analo-
gous to the atomic spins in bulk materials. Collectively, the
macrospins form a magnetic metamaterial, whose emergent
properties can be controlled directly by the placement, ori-
entation and shape of the nanomagnets.

Coupled nanomagnetic systems are ideal for studies re-
lated to self-organization and emergence. A wide range
of emergent phenomena has been discovered in ASIs, e.g.,
collective ferromagnetic/antiferromagnetic ordering (Skle-
nar et al., 2019), domain wall propagation (Li et al., 2019),
avalanche dynamics (Mengotti et al., 2011), and phase tran-
sitions (Levis et al., 2013).

Furthermore, established nanofabrication methods make
ASIs readily available for real-world exploration. Unlike
atomic spins, the mesoscopic size of the nanomagnets en-
ables direct observation of the macrospin states through

magnetic microscopy. Micromagnetic simulations are fea-
sible for smaller systems (Leliaert et al., 2018; Jensen et al.,
2018), while large-scale behavior can be captured by meso-
scopic models (Jensen et al., 2020).

As systems of coupled spins, ASIs are natural substrates
for neuromorphic computing. Like biological computing
systems, the coupled nanomagnets form large spatial net-
works of nonlinear nodes, where computation is closely
linked to memory. Computation in neuromorphic systems is
inherently parallel, the result of interactions between large
numbers of simple elements.

An alternative view is ASI as a metamaterial: when ob-
served at larger scales, magnetic patterns emerge as a result
of the underlying macrospin interactions. The metamate-
rial view is a natural fit for material computation (Stepney
et al., 2018). Compared to bulk materials, metamaterials
offer considerable control and flexibility, and opens for the
design of exotic substrates with unusual physical behavior.
Furthermore, computation with large-scale emergent phe-
nomena offers an inherent robustness, as small differences
in the underlying state are washed out in the aggregate view.

Here, we explore the computation arising from these alter-
nate ASI views. By observing the system at different scales
(adjusting the amount of ”squinting”), it is possible to move
gradually between the two views: at the smallest scale we
have the network of spins, while at larger scales we approach
the metamaterial. How does the scale of observation affect
computation? This question has practical implications for
computing devices based on ASI, where the readout of mag-
netic state necessitates sensor circuitry with an associated
cost. Note that the same is true for all physical comput-
ing devices: readout of state has a cost which scales with a
growing number of outputs.

Specifically, we investigate the computational properties
of “pinwheel” ASI within a Reservoir Computing (RC)
framework. Using established RC metrics, we study how
key system parameters affect performance. We consider
different output granularities to define the reservoir nodes,
ranging from single magnets to the aggregate of multiple
magnets.
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Figure 1: The emergent behavior of ASI is a result of the placement and orientation of the nanomagnets. (a) Square ASI consists
of horizontal and vertical magnets arranged on a square lattice. (b) Square ASI favors antiferromagnetic order, resulting in
domains of zero net magnetization (white regions). (c) Pinwheel ASI is obtained by rotating each magnet in square ASI by
45◦ about its center. (d) Pinwheel ASI exhibits long-range ferromagnetic order, supporting formation of domains with coherent
magnetization. The systems shown in (b) and (d) are 25 × 25 square and pinwheel ASI, respectively, each consisting of 1300
magnets. The arrows in (b) and (d) indicate the collective magnetization of the four circled magnets in (a) and (c), respectively.

Background
Artifical Spin Ice
ASIs have received considerable interest over the last
decade, primarily as a model system for the study of fun-
damental physics. The name “artificial spin ice” stems
from the use of engineered systems to mimic the arrange-
ment of molecules in water ice. Established nanofabrica-
tion techniques coupled with the ability to directly observe
macrospin states, has enabled the study of a wide range of
physical phenomena in ASI (Skjærvø et al., 2020).

In ASI systems, each nanomagnet behaves as a binary
mesoscopic spin. The small size ensures a uniform internal
magnetization (a single-domain state), while an elongated
shape constrains the orientation of the magnetization to lie
along the long axis (a binary state).

The artificial spins are coupled via the magnetic dipole-
dipole interaction: each magnet is subject to the stray mag-
netic field of neighboring magnets.

The particular arrangement and orientation of the magnets
is referred to as the geometry, which effectively defines the
nature of the magnet-magnet interactions. Fig. 1a depicts
square ASI, which consists of horizontal and vertical mag-
nets arranged on two square lattices. The sub-lattice with
vertical magnets is placed at an offset from the sub-lattice
with horizontal magnets, as indicated by the different col-
ors. Pinwheel ASI is shown in Fig. 1c, and is obtained by
rotating each magnet in square ASI by 45◦ about its center.

Some geometries result in antiferromagnetic ordering,
where domains of zero net magnetization are energetically
favorable. Fig. 1b shows the collective magnetization in
square ASI, with the emergence of antiferromagnetic do-
mains (white regions). In antiferromagnetic systems, only
the boundaries of the domains have an observable magne-
tization at larger scales. Pinwheel ASI, on the other hand,

exhibits ferromagnetic behavior, i.e., the magnets form do-
mains with coherent magnetization of non-zero magnitude.
Fig. 1d shows emergent ferromagnetic patterns as found in
pinwheel ASI. Ferromagnetic domains are also clearly visi-
ble at large scales, making pinwheel ASI ideal for our study.

There are a myriad of ways to tune the behavior of ASIs.
For example, the lattice spacing (distance between magnet
centers) determines the size of the anti- or ferromagnetic do-
mains: a smaller spacing results in larger domains. Small
changes to the geometry can result in fundamentally differ-
ent behavior. Novel geometries provide a seemingly endless
playground for exploration of self-organization and emer-
gence in-materio. In addition, there are several ways to
tune behavior externally, without altering the system, e.g.,
through an external magnetic field or temperature.

Reservoir Computing
Reservoir Computing (RC) is a methodology which allows
a dynamical system to be exploited for computation (Jaeger,
2001; Maass et al., 2002). The key component is the dy-
namical system, which is referred to as the reservoir. An
input signal perturbs the reservoir, which, as a result of its
inherent properties, produces a complex dynamic response.
The reservoir functions as a nonlinear kernel with memory,
maintaining a rich repertoire of nonlinear input transforma-
tions. Subsequently, a linear readout layer is trained to pro-
duce some desired function as a weighted sum of reservoir
states. Crucially, the readout layer is the only trained part
of the system, i.e., both the input layer and the reservoir re-
mains unchanged.

State of the art performance has been obtained using RC
methods for a variety of tasks, both with classical neural
reservoirs (Lukoševičius and Jaeger, 2009) as well as a range
of physical reservoirs (Tanaka et al., 2019). A variety of
magnetic reservoirs have been proposed, such as magnetic
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tunnel junctions (Furuta et al., 2018), spin torque oscilla-
tors (Torrejon et al., 2017) magnetic skyrmions (Prychy-
nenko et al., 2018), magnetic thin-films (Nakane et al., 2018)
and dipole coupled nanomagnets (Nomura et al., 2019). The
latter two examples bear some resemblance to ASIs, as mag-
netic metamaterials consisting of dipole coupled nanomag-
nets.

Good reservoirs are nonlinear, high dimensional dynami-
cal systems with rich dynamics. Interactions between nodes
in the reservoir facilitates the formation of nonlinear mem-
ory, i.e., where the state of a node is a nonlinear function of
current and previous inputs. Crucially, the reservoir should
have the echo-state property which, informally, means the
reservoir gradually forgets over time.

ASIs are promising reservoirs since they exhibit many of
the above-mentioned properties. Magnetic switching is in-
herently nonlinear, hence a large number of magnets is a
high-dimensional nonlinear system. Magnetic dipole-dipole
interactions enable the flow of information between nodes,
with the potential for memory formation. Reservoir state
can be observed directly as the state of individual spins, or
through emergent patterns at coarser granularities.

As dynamical systems, ASIs exhibit a large number of at-
tractors, due to the highly degenerate energy landscape. Ear-
lier work has shown that different attractors can be reached
by encoding input as a global external magnetic field (Jensen
et al., 2018). Consequently, the system state forms a spatial
representation of input history, i.e., exactly the kind of be-
havior sought in a reservoir.

Reservoir quality
A range of methods have been proposed to evaluate reser-
voir quality, ranging from benchmark tasks such as speech
recognition and signal classification, to more generic mea-
sures such as memory capacity (Jaeger, 2002) and informa-
tion processing capacity (Dambre et al., 2012).

In this work, we employ two generic measures re-
lated to signal classification, namely the kernel-quality and
generalization-capability (Legenstein and Maass, 2005).

Kernel-quality is a measure of how well the reservoir is
able to separate temporal input patterns. It is estimated by
perturbing the reservoir with m different input signals. At
the end of each signal, the reservoir states are recorded as the
columns of an n×m matrix MK where n is the number of
reservoir nodes. Computing the rank K of this matrix gives
a measure of kernel-quality (higher is better). If the kernel
rank K = m, then it is guaranteed that any assignment of
target outputs can be implemented by a linear readout. If
K < m, the kernel rank can still be viewed as a measure of
computational power, since it is a measure of the number of
”degrees of freedom” the readout has available.

Kernel-quality is insufficient alone as a measure of reser-
voir quality. A complementary property is the reser-
voir’s ability to generalize to new unseen input signals.

Generalization-capability is measured the same way as
kernel-quality, except the n×mmatrixMG is now the reser-
voir states after seeing m similar input signals. We wish for
the generalization rank G of this matrix to be low, meaning
the reservoir states are similar and should generalize well.

A good reservoir maximizes K while minimizing G,
hence a combined measure of computing capacity Q can
be obtained by simply taking the difference: Q = K − G
(higher is better). Q is a measure of the usable nodes in
the reservoir, i.e., nodes with both good kernel-quality and
generalization-capability.

Theoretically, the information processing capacity is
bounded by the number of reservoir nodes n (Dambre et al.,
2012). Since the rank of a matrix is bounded by its smallest
dimension, one should choose m ≥ n to avoid saturation of
the measures before the theoretical limit. ThusK,G ∈ [1, n]
and Q ∈ [1− n, n− 1], where Q = n− 1 indicates the best
possible performance, while Q ≤ 0 indicates a reservoir
with no usable computing capacity.

When comparing reservoirs with different numbers of
nodes, the normalized rank r provides a measure of com-
putational power per node: r = R/n where R is the ma-
trix rank. We denote the normalized versions of K, G and
Q as k, g and q, respectively. Thus, k, g ∈ [1/n, 1] and
−1 < q < 1 with q = 1 − 1/n indicating the best possi-
ble performance while q ≤ 0 represents a reservoir with no
usable capacity (Haynes et al., 2015).

Methods
Magnetic model
For our computational study, we use the flatspin ASI simu-
lator, which enables fast simulations of dynamics in coupled
spin systems (Jensen et al., 2020). In flatspin, magnets are
modeled as point dipoles with binary state. Each dipole is
affected by neighboring magnets through magnetic dipole-
dipole interactions, as well as a global external field.

Dynamics in flatspin are deterministic, modeled as a se-
ries of single spin flips. A spin may flip (switch state) if the
total magnetic field acting on it is sufficiently strong, i.e.,
exceeds its intrinsic coercive field, and is directed in the op-
posite direction of its magnetization.

The global parameter α scales the strength of the dipole-
dipole interactions. A large value of α denotes a high degree
of coupling between the spins. An increase in α is equivalent
to reducing the lattice spacing between all magnets.

Input encoding
As input we consider temporal binary patterns, i.e., the in-
put is a function u(t) ∈ {0, 1} for discrete time t = 0..T .
For each input bit we cycle the external field at a fixed field
strength H at an angle determined by the input bit: φ0 for
0 and φ1 = φ0 + 90◦ for 1. The 90◦ offset ensures both 0
and 1 will perturb the system with the same amount of force
(due to the pinwheel geometry). To break symmetry, we set
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Figure 2: (a) A reservoir node contains one or more spins: shown here are nodes with one, four and 12 spins. (b) 10 × 10
pinwheel ASI has 220 spins, shown here with a 7× 7 grid superimposed. Summing the magnetization of the spins in each cell
results in the coarse-grained view shown in (c). The length of the arrows indicates the magnitude of the magnetization.

φ0 = 7◦, which causes each input bit to affect magnets in
one sub-lattice slightly more than the other. We use a small
angle to still allow switching to occur in both sub-lattices.

Output granularity
As reservoir output we record the magnetization of the ASI.
The number of reservoir nodes n depends on the granular-
ity of observation (the level of ”squinting”). Fig. 2a illus-
trates nodes containing different numbers of magnets: a sin-
gle spin, four magnets and twelve magnets. Each group of
magnets results in two reservoir nodes, one for each vector
component of the collective magnetization.

At the finest granularity, we resolve the binary state of
individual spins, i.e., the number of reservoir nodes n equals
the number of spins N .

To define coarse-grained nodes, we superimpose a regular
S × S grid onto the ASI, as shown in Fig. 2b. The magne-
tization of the spins within each grid cell is then summed to
produce an aggregate output vector, as shown in Fig. 2c. For
an S × S grid, we obtain n = 2S2 reservoir nodes, as each
grid cell results in two nodes.

The grid won’t necessarily align with the underlying ASI
geometry, thus the number of magnets within each grid cell
may vary. This can be seen in Fig. 2b, where some cells
contain four magnets while others contain five.

A decrease in the number of grid cells results in an in-
crease in state resolution, as nodes can take more possible
values. Hence, a coarse-grained view offers more computa-
tional power per node, at the cost of fewer nodes.

When multiple magnets are aggregated, the reservoir state
is effectively degenerate: there will be multiple spin config-
urations which produce the same vector sum.

Experiment setup
We consider systems of 10 × 10 pinwheel ASI, consisting
of N = 220 stadium-shaped nanomagnets with dimensions
220 nm× 80 nm× 20 nm, and parameters hk = 200mT,
b = 0.41, c = 1.0, β = 1.5 and γ = 3.9.

Due to manufacturing imperfections there will always be
variation in the coercive fields of the magnets. Hence, we
apply a disorder of 5% to the coercive fields h(i)k of each
magnet i, i.e., the coercive fields are sampled from a normal
distribution with mean hk and standard deviation 0.05hk.
We define an ASI sample as a set ofN coercive fields {h(i)k }.

We start with an initially polarized ASI, such that the total
magnetization is saturated towards the right (as illustrated in
Fig. 1c). Next, the input signal is applied through the exter-
nal field. For kernel-quality we use m = 220 random binary
input signals, each 100 bits in length. For generalization-
capability, we use m = 220 random binary input signals
where the first 40 bits are random and the remaining 60 bits
are equal across the signals. Hence the generalization rank,
at the end of the input signal, is a measure of how sensitive
the system is to inputs older than 60 time steps.

In the following, we vary the strength of the external field
H and the coupling strength α. For each experiment we
generate 30 ASI samples, and take the average rank.

Full visibility First, we consider reservoirs with full vis-
ibility of the 220 magnets as output (n = 220 reservoir
nodes). For each ASI sample, we sweep the coupling
strength α and the strength of the external field H , and mea-
sure the corresponding K, G and Q. We sweep 16 values of
α in the range 3e−5 to 3e−3, which roughly corresponds to
lattice spacings from 1000 nm to 215 nm. For each α value,
we sweep 16 values of H in the range 66mT to 81mT.

Output granularity Next, we investigate how the out-
put granularity affects performance. Grids of size 1 × 1 to
10 × 10 are superimposed onto the ASI, resulting in n = 2
to n = 200 reservoir nodes. For each n we calculate the
corresponding K, G and Q. When comparing performance
across different number of nodes n, we use the normalized
rank measures k, g and q. We maintain the same number of
input patterns m = 220, i.e., independently of n.
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Figure 3: Average (a) kernel rank K, (b) generalization rank G and (c) computing capacity Q = K − G, as a function of the
parameters H and α.
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Figure 4: Average kernel rank K, generalization rank G and
computing capacity Q, along the ridge lines of Fig. 3, i.e.,
for each α value, the highest value ofK, G andQ is plotted.

Results
Full visibility
Fig. 3 shows the results of the parameter sweep of H and
α, as heatmaps of the average kernel rank K, generalization
rank G and computing capacity Q = K − G. Each cell in
the heatmap is the average of the 30 different ASI samples.

All measures exhibit a ridge line in the H–α plane, which
drops quickly for low α values. The ridge shows an apparent
linear relationship between H and α, in terms of computa-
tional performance.

As can be seen in Fig. 3a, kernel rank K is generally high
along the ridge. In Fig. 3b, a similar but thinner ridge is
apparent for the generalization rank G. The K and G ridges
are in the same location of the H–α plane. In Fig. 3c, the
ridge line of their differenceQ is shifted slightly to the right.

Fig. 4 plots K, G and Q along the ridge lines in Fig. 3,
as a function of α, i.e., for each α value, the highest value
of K, G and Q is plotted. A general trend is a decline in
both K and G as α is increased. K nearly saturates for
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Figure 5: Average generalization rank G over time. The
dashed line marks where the input signals transition from
being different to being identical.

1e−3 < α < 2e−3 with ranks as high as 215 on average
(recall that the maximum rank is 220). The Q ridge, on the
other hand, is fairly flat as a function of α, with an apparent
maximum for α = 1.02e−3 and H = 78mT. However,
we note that the standard deviation of K (and hence Q) is
significantly higher for large values of α.

Fig. 5 shows how G evolves over time, i.e., measured
after being perturbed with each of the 100 input bits, for
α = 1.02e−3 and H = 78mT. Recall that after the first
random 40 bits, the input signals are identical for the re-
maining 60 bits. As can be seen in Fig. 5, the average rank
drops quickly at t = 40, after which there is a somewhat
gradual decline. Inspecting the trajectories of G for the in-
dividual ASI samples reveals that there are variations in the
behavior: for some samples, the rank drops quickly, while
others exhibit a more gradual decline.

Output granularity
Fig. 6 shows similar heatmaps of K, G and Q, but using
a coarse-grained output with a 5 × 5 grid (n = 50 nodes).
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Figure 6: Average (a) kernel rank K, (b) generalization rank G and (c) computing capacity Q = K − G, as a function of the
parameters H and α, using an output granularity of n = 50 nodes (5× 5 grid).
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Figure 7: Average normalized kernel rank k, generalization rank g and computing capacity q = k − g, as a function of the
number output of nodes n. The reservoir parameters are α = 1.02e−3 with (a) H = 78mT and (b) H = 79mT.

Compared to the heatmaps using full visibility of all magnets
(Fig. 3), both K and G exhibit wider ridge lines. As a con-
sequence, the Q ridge is shifted diagonally towards higher
H and α values. Saturation of K is still obtained for large
regions of parameter space (here the maximum rank is 50).

Comparing the heatmaps from all granularities (not
shown), a general trend is that, as output becomes more
coarse-grained, the Q ridge line moves diagonally in the
heatmaps towards higher H and α.

Fig. 7 shows the average normalized rank measures k, g
and q = k − g, as the number of reservoir nodes n are in-
creased (resulting from the increasing number of grid cells).
For completeness, the plots also include results with full vis-
ibility at n = 220.

Fig. 7a shows the measures for α = 1.02e−3 and H =
78mT, i.e., the parameters with the best performance from
the full visibility experiment. As can be seen, a decrease in
n results in poor generalization g and hence a decrease in
performance per node q. There’s an apparent peak of q ≈

0.6 for n = 162.
Fig. 7b shows the same plot for an increased field strength

of H = 79mT. With a stronger field, much better general-
ization is obtained. In this case, we observe an increase in
q as n is decreased, with an apparent peak at q ≈ 0.8 for
n = 50.

Discussion
Full visibility
Our investigation of the H–α parameter space demonstrates
salient features of ASI reservoirs. For most values of α,
there exists a corresponding critical field strength H , which
is neither too weak (resulting in little activity), nor too strong
(causing all magnets to switch).

Clearly, spin interactions play a crucial role in the for-
mation of a complex dynamic response, since low α values
result in poor kernel-quality. Intuitively, in an uncoupled
system, the state of the spins will only be affected by the
current input. Memory formation requires sufficient flow of
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information between the spins. If the coupling is too weak,
the current state will be completely overwritten by new in-
put, and all history of previous inputs is lost.

The saturation of kernel rank, shown in Fig. 3a, demon-
strates excellent input separation for large regions of param-
eter space. In these cases, the ASI states contain sufficient
information to discriminate between all the input signals.
However, the reservoirs with the highest kernel-quality suf-
fer from poor generalization-capability. High generalization
rank is evidence of chaotic dynamics, where the initial dif-
ference in states persists for a long time.

The measure of computing capacity Q (Fig. 3c) exhibited
a ridge line which, compared to the ridge lines of K and
G (Fig. 3a and Fig. 3b), is shifted slightly towards stronger
fields (largerH). A stronger external field will consequently
result in more spin flips per input, thus overwriting more
of the system state. Indeed, chaotic reservoirs may still be
used successfully, as long as the input is sufficiently strong
to drive its dynamics out of the chaotic regime (Ozturk and
Principe, 2005).

The decrease in kernel-quality as function of coupling
strength α is expected, since the size of ferromagnetic do-
mains increase with α, and hence there is less variation in the
spin states. Smaller domains result in more diverse spatial
patterns, and consequently a richer repertoire of input trans-
formations. However, the parameter regions with the highest
kernel-quality have very poor generalization-capability, re-
sulting in poor overall performance. As a result, the capac-
ity measure Q predicts no significant difference in perfor-
mance between loosely and highly coupled systems. Still,
the higher variance observed for large α values is evidence
that the particular ASI sample, i.e., the set of coercive fields,
plays a more important role for highly coupled ASIs com-
pared to the loosely coupled systems.

The observed gradual decrease in generalization rank over
time is clear evidence of fading memory, where past input is
gradually forgotten over time. The plot in Fig. 5 is remark-
ably similar to the time-wise separation observed in neural
microcircuits (Maass et al., 2004). Although there are varia-
tions in the behavior, the results indicate that ASI reservoirs
can indeed exhibit the echo-state property.

Output granularity
Our results revealed that a change of output granularity
affects the performance landscape in the H–α parameter
space. Parameters which perform well with full visibility
of all spins perform poorly with a coarse-grained view.

As the number of spins per node is increased, the areas
in the parameter space with good performance move to-
wards stronger fields and higher coupling (compare Figs. 3c
and 6c). Interestingly, a small increase in field strength
seems to be sufficient to improve performance under a
coarse-grained view (Figs. 7a and 7b).

Under a coarse-grained view, one might expect that the

more strongly coupled systems would have a benefit, since
larger magnetic domains would still be visible without sig-
nificant information loss. However, we find no evidence of
this in our results. In fact, the strongly coupled systems ap-
pear to perform worse, regardless of output granularity.

Since the computational capacity is bounded by the num-
ber of reservoir nodes (Dambre et al., 2012), it would seem
like full visibility of all spins is always beneficial. However,
in any physical reservoir there will be a cost associated with
measurement of state, placing practical limits on the number
of output nodes. Additionally, a coarse-grained view brings
some additional benefits, which we discuss below.

The normalized rank measures (Figs. 7a and 7b) revealed
that, for a system consisting of binary elements, the com-
puting capacity per node q can be increased by combining
multiple elements into one node. The increase can be at-
tributed primarily to an increase in the degrees of freedom
per node, i.e., as a node can take more possible values. This
was confirmed by thresholding the aggregate values, effec-
tively making the grid cells ”super-spins”, which resulted in
a fairly flat q across the different granularities (not shown).

For a given number of reservoir nodes, it should be pos-
sible to maximize performance by scaling up the underlying
system, while maintaining a fixed-size coarse-grained view.

Another potential benefit of a coarse-grained view is ro-
bustness: the output will be less sensitive to small differ-
ences in the underlying spin state. If a spin inadvertently
flips, e.g., due to noise, its immediate effect will be small
under a coarse-grained view. With full visibility, however,
the readout may be more sensitive to a single spin flip.

The results show that, at least for pinwheel ASI, there is a
great degree of freedom in choosing the output granularity.
We may observe the system at a range of different scales,
and still obtain good performance.

Conclusion
ASIs are promising computing substrates due to the wide
variety of emergent behavior, which can be directly con-
trolled by the system geometry. We have shown how the in-
herent properties of pinwheel ASI result in complex spatio-
temporal patterns that can be readily exploited for compu-
tation. Our experiments demonstrate excellent computing
capacity in terms of well-established reservoir quality mea-
sures. We find clear evidence of fading memory, suggesting
the presence of the crucial echo-state property.

An exciting finding is that good performance can also be
obtained with a coarse-grained metamaterial view of the sys-
tem. Although the size of our magnetic system was fixed,
our results indicate that ASI reservoirs are scalable, both in
terms of the number of nodes as well as the computing ca-
pacity per node. The apparent flexibility in output granular-
ity show that ASIs have computational properties at different
abstraction levels, from the small-scale dynamics of simple
spins, to the large-scale spatial patterns of the metamaterial.
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The fact that meaningful computations can be obtained with
a very coarse-grained view of the substrate, shows that phys-
ical ASI reservoirs are not only possible, but also practical.
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