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Summary

With autonomy offering a number of benefits in robotics applications, such
as increased safety, better consistency and reliability, reduced environmental
impact and higher efficiency, it is not surprising that the topic has seen an
increase in interest from both the research community as well as commercial
and defence industries. In the maritime sector, autonomy has mostly been
limited to autonomous underwater vehicles (AUVs), where the operational
conditions allow for only limited or delayed communication, making direct or
remote control by humans difficult. In recent years however, the focus has
shifted to include autonomous surface vehicles (ASVs), with applications such
as surveying and mapping, surveillance, and transportation. In order to deliver
on the promises of autonomy for ASVs, one of the challenges that needs to be
overcome, is designing robust, efficient and safe control systems, enabling the
ASVs to plan their mission, make decisions based on sensory feedback, and
command the vehicle control surfaces.

This thesis presents topics related to optimization and control of ASVs. This
includes low-level motion control, mid-level local trajectory planning and colli-
sion avoidance (COLAV), and high-level global trajectory planning. The main
part of the thesis, is a collection of peer-reviewed articles, six journal articles
and three conference papers. In addition to the article collection, the initial
part of the thesis contains an introduction to the main topics of low-level mo-
tion control, mid-level local trajectory planning and COLAV and high-level
global trajectory planning. This provides context to the publications, and
explains the relationship between the different publications.

In the context of performing autonomous marine operations, one of the first
tasks, is to plan a high-level path or trajectory in order to meet the mission
objective. This should be done in a way that accounts for geographical data
as well as the limitations of the ASV, in order to ensure that the vessel is able
to follow the plan without having to worry about colliding into known static
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Summary

obstacles. As part of this thesis, we present three papers concerned with plan-
ning high-level global trajectories, which in addition to planning collision free
trajectories for ASVs, also finds a trajectory which optimizes a performance
measure, such as energy, time and distance. The proposed planning methods
combine classical combinatorial planning algorithms and convex optimization
into a new class of hybrid methods, which improves both the performance of
the algorithms and the optimality of the planned trajectory.

Once an ASV is following the high-level global trajectory new obstacles such as
other moving vessels and unmapped landmasses may be detected, leaving the
initial global trajectory no longer feasible. To solve this problem, a mid-level
local trajectory planner is needed, in order re-plan parts of the trajectory such
that collisions with the obstacles is avoided. As part of this thesis, we present
four papers concerned with planning mid-level local trajectories. Three of these
papers focus on the problem of docking and berthing in confined waters, in a
way that accounts for the vessel geometry, the harbor layout, and unmapped
obstacles from exteroceptive sensors. The fourth paper discusses the problem
of risk assessment and COLAV during transit, and proposes a novel approach
for representing dynamic obstacles with both measurement and behavioural
uncertainty.

Once a trajectory has been planned, we would like to execute the plan by ma-
neuvering the ASV. This process, called motion control, involves controlling
the actuators and control surfaces of the vessel in a way that follows a course,
path or trajectory. For marine vessels, motion control is complicated by the
unpredictable nature of the marine environment, and the complex hydrody-
namic interactions, which can very significantly during operations. As part of
this thesis, we present two papers on reinforcement learning (RL)-based mo-
tion control for marine vessels, which demonstrate how on-line learning can be
used to optimize the performance of the motion control system.
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1 | Introduction

This chapter contains a brief motivation for the topics covered in this thesis, a
summary of the main contributions, an overview of the publications presented
in the thesis, and finally a outline of the thesis.

1.1 Motivation

In late 1946, Mr. D. S. Harder of the Ford Motor Company introduced the
word automation, meaning self-acting, moving or acting on its own. The term
was initially used in the context of manufacturing, to describe work that could
be done with little to no human intervention. However, automation was quickly
adopted outside of manufacturing, and was used to describe a variety of sys-
tems, where mechanical, electrical, or computerized actions are used to control
a process, and reduce the need for human effort, intelligence and intervention.
While the term automation was first introduced in 1946, its history dates back
back much further. In ancient times mechanisms such as water floats were used
to automatically control water level [1], and during the industrial revolution,
mechanisms such as the governor, used to measure and regulate the speed of a
machine, helped lay the foundation of the field of automatic control and con-
trol theory [2]. With the advent of computers, automation has become more
accessible and more powerful, allowing for even more complex processes to be
automated. In recent years, this has lead to the rise of autonomy, meaning
independent or having its own laws, where even the complex decision making
is being left to computers, allowing the system to not only act on its own, but
also be self-governing, and operating without human intervention.

In the maritime industry, research into ship automation started in the early
1870s, with the German Navy conducting experiments on automatic steering.
This was done by using electric motors connected to the rudder of torpedo

1



Introduction

boats, and controlled by relays connected to the magnetic needle of a compass
[3]. This early work saw only limited success, but research into the problem
continued, and going into the 1920s, work by Nicolas Minorsky on the auto-
matic steering problem [4] helped lay the foundation of control theory with
his formal discussions on the topic [5]. In 1922 automatic steering became
commercially available with the invention of the gyropilot, a heading autopilot
produced by the Sperry Corporation. The gyropilot was initially installed on
the cargo and passenger ship Munargo, and within 10 years, more than 400
gyropilots were in service [3]. Since then, marine vessels have become increas-
ingly automated, with most commercial vessels having some form of autopilot,
and many newer vessels having advanced motion control systems, such as dy-
namic positioning (DP), allowing vessels position to be controlled with a high
degree of accuracy and maneuverability.

Autonomy in the maritime industry, has mostly been limited to autonomous
underwater vehicles (AUVs), where the operational conditions allow for only
limited or delayed communication, making direct or remote control by humans
difficult. For AUV operations, the mission and objectives are typically spec-
ified by a human operator ahead of time, which the vehicle then performs
autonomously once it has been launched. While autonomy has historically
been used to get around the problem of limited and delayed communication,
autonomy also offers a number of other benefits, such as increased safety, better
consistency and reliability, reduced environmental impact and higher efficiency.
In recent years, this has increased the interest in using autonomy for tasks
where human operators have traditionally been in control. The most promi-
nent example of this is the researcher effort into autonomy in the automotive
industry, where the goal is to develop self driving technology for transportation
of both passengers and goods [6, 7].

Similar to other industries, research into autonomy for surface vessels has also
increased in recent years, with applications such as surveying and mapping,
surveillance, and transportation, being of interest both for commercial and gov-
ernment use. In the defence sector a number of countries are looking at small
autonomous surface vehicles (ASVs) and unmanned surface vehicles (USVs)
for surveillance and reconnaissance, such as the Norwegian Defence Research
Establishment’s Odin platform [8]. Larger vessels have also been built, such
as the Defense Advanced Research Projects Agency (DARPA) Sea Hunter, de-
signed to detect and track submarines over long periods of time [9]. In the
commercial sector, there has been increasing interest in autonomous passen-
ger and cargo transport, with the world’s first autonomous car ferry Falco,
developed by Rolls-Royce Commercial Marine, entering into service in 2018
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[10]. Since then, both the Finnish company Wärtsilä and Norwegian company
Kongsberg Maritime have demonstrated similar autonomy solutions on car fer-
ries in Norway [11, 12]. A number fully electric autonomous cargo vessels have
also been proposed, including the ReVolt by DNV (then DNV GL) [13] (see
Figure 1.1), Yara Birkeland [14], and ASKO zero-emission autonomous vessel
[15]. Autonomous passenger vessels have also been proposed, such as the small
autonomous urban passenger ferry milliAmpere (see Figure 1.2), designed as
an alternative to bridges or manned ferries [16].

With autonomy offering a number of benefits, such as increased safety, better
consistency and reliability, reduced environmental impact and higher efficiency,
it is not surprising that there has been an increase in interest and research on
the topic. Despite this, we are arguably still at a crossroads between autonomy
and automation, with one of the major challenges being that of trusting the
systems to safely perform the desired task in a wide range of operational con-
ditions. This is further complicated when introducing learning based compo-
nents into the autonomy systems, resulting in the need for trusting any future
changes that the learning system may make. This means that most existing
systems are still considered automatic, as they rely on having a human in the
loop to ensure the system operates safely. In order to deliver on the promises
of full autonomy for ASVs, one of the challenges that needs to be overcome,
is designing robust, efficient and safe control system, enabling the vehicle to
plan its mission, make decisions based on sensory feedback, and command the
vehicle control surfaces. In this thesis we look at different approaches to the
different layers of the control system, with a particular focus on optimization
based methods.

1.2 Contributions

While working towards this thesis, several algorithms and methods for opti-
mization based motion control, reactive planning, collision avoidance and tra-
jectory planning, were developed. These contributions are discussed in detail
in Chapter 3, with a summary given below.

• Two reinforcement learning (RL) based motion control methods for
ASVs, based on approximate dynamic programming (ADP) and model
predictive control (MPC) respectively. The methods rely on RL and
system identification (SYSID) in order to optimize the closed loop
performance of the control system, and were tested in simulations as
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Figure 1.1: The ReVolt, a 1 : 20 scale model autonomous cargo concept vessel
developed by DNV (then DNV GL).

Figure 1.2: The milliAmpere, an experimental autonomous urban passenger
ferry developed by NTNU.
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1.3. Publications

well as full-scale experiments. Based on the results, we show how
our proposed methods are able to perform online learning in order to
optimize the closed loop performance, and outperform other traditional
control approaches.

• A mid-level local trajectory planning method for docking and berthing of
ASVs, which can use map data and ranging sensors in order to plan safe
collision free docking maneuvers. In addition to testing the method in
simulations, the method was also implemented on a small urban passen-
ger ferry and tested with full scale experiments, with very good results.
To the authors knowledge, this is the most comprehensive treatment of
the docking problem in academia to date.

• A space-time obstacle representation for predicting the movement of dy-
namic obstacles under both measurement and behavioural uncertainty.
Using the proposed representation, we show how it can be used in var-
ious optimization based mid-level local trajectory planners for collision
avoidance (COLAV), in a way that is both robust and computationally
efficient.

• Two different high-level optimization based trajectory planners, used to
plan optimal model based trajectories for ASVs in static environments
with polygonal spatial constraints. Compared to existing methods, the
methods proposed in this thesis allow for planning model based optimal
trajectories using an exact polygon representation of the geographical
data.

1.3 Publications

Given below, is the list of original publications which were written as a result
of the work on the thesis. There is a total of nine publications, consisting
of three conference articles and six journal articles. The articles are ordered
chronologically by date of publication, however the recommended (thematic)
reading order, illustrated in Figure 1.3, is high-level planning (Paper G and
Paper E), mid-level planning (Paper A, Paper D, Paper F and Paper H), and
finally low-level motion control (Paper B, Paper C and Paper I).
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“Reinforcement Learning-based MPC for Tracking Control of ASVs: The-
ory and Experiments”. In: Review (2021)

H Andreas B Martinsen and Anastasios M Lekkas. “Two space-time
obstacle representations based on ellipsoids and polytopes”. In: IEEE
Access 9 (2021). doi: 10.1109/ACCESS.2021.3103323

1.4 Outline

The rest of the thesis is structured as follows: Chapter 2 contains background
on the topics covered in the publications. Chapter 3 gives an in-depth presenta-
tion of the contributions of the publications. Chapter 4 concludes, summarizes
and reflects on the work, and discusses some directions for future work. Fi-
nally, Chapter 5 contains the publications that were written as a result of the
work on this thesis.
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Figure 1.3: Hierarchical control system illustrating the relationship between
the different abstraction layers and publications.
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2 | Background

The control system for an ASV is typically designed hierarchically, where the
different abstraction layers are responsible for specific tasks [26–28]. Depend-
ing on the task, the abstraction layers may differ significantly, with the two
main layers traditionally being guidance and control. In this architecture the
guidance layer is responsible for calculating the desired behaviour such as speed
and heading, while the control layer is responsible for moving the actuators in
order to follow the desired behaviour. With the growing complexity of ASVs,
it is useful to split guidance in two, giving a three layered approach. These
levels consist of high-level global planning, mid-level local trajectory planning,
and low-level motion control, as illustrated in Figure 2.1.

The main task of the high-level global trajectory planner is to plan a feasible
trajectory given a specific mission or objective. High level planning is typically
only executed once, at the start of the mission, and considers only known static
obstacles such as geographical map data.

The resulting nominal trajectory from the high-level global trajectory planner
is then passed to the mid-level local trajectory planner, which is tasked with
re-planning a modified trajectory when the need arises, in order to ensure colli-
sion avoidance. Mid-level local planning typically involves using exteroceptive
sensors and situational awareness, in order to identify obstacles which were
not known to the high-level planner. To account for the changing environment
and the limited field of view of the exteroceptive sensors, the mid-level local
planning is typically performed iteratively as new information is gathered from
the exteroceptive sensor and situational awareness systems.

The modified trajectory from the mid-level local planner is then passed on to
the low-level motion control, which is tasked with controlling the vessel actu-
ators and control surfaces in order to accurately track the modified trajectory.
The low-level motion control is performed using feedback control, allowing the
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Figure 2.1: Hierarchical control system illustrating the three main abstraction
layers of an ASV control system.

vessel to account for model uncertainty and environmental disturbances.

In the rest of this chapter, we will present some background on each of these
three abstraction layers, with a particular focus on optimization-based ap-
proaches.

2.1 High-level global trajectory planning

In robotics, global trajectory planning, illustrated in Figure 2.2, is the process
of finding a time-parametric continuous sequence of configurations, called a
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2.1. High-level global trajectory planning

Start

Goal

Environment
constraint

Differential
constraints

Figure 2.2: Trajectory planning problem

trajectory, which move the robot safely from some initial configuration to a
goal configuration [29]. To be successful in the real world, the trajectory plan-
ner must be able to consider a variety of different constraints. This includes
environment constraints, such as static and dynamic obstacles, and differential
constraints, which arise from the kinematics and dynamics of the robot. A tra-
jectory is called a feasible trajectory if it connects the initial configuration and
the goal configuration in a way that satisfies both the environment constraints
and the differential constraints. This means that the robot should be able to
follow the feasible trajectory since it satisfies the differential constraints, and
that the trajectory should not lead to any collisions since it satisfies the envi-
ronment constraints. In general, trajectory planning problems can have more
than one feasible trajectory. This allows for searching through the trajectories
in order to find the ”best” feasible trajectory with respect to some performance
measure. This is called optimal trajectory planning, and the objective is often
to find trajectories that minimize either energy, distance or time. Due to a
potentially large number of obstacles, actuators, as well as complex kinematics
and dynamics, trajectory planning is in general a difficult problem, and find-
ing only a single feasible trajectory can be computationally expensive. This is
further complicated with optimal trajectory planning, as it requires searching
all feasible trajectories in order to find the trajectory that optimizes a given
performance measure. In order to solve the global trajectory planning prob-
lem, a wide range of methods have been proposed, with most methods falling
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(a) Combinatorial methods check all
combinations of a given discretization to
generate a search tree.

(b) Sampling-based methods randomly
sample actions/states to generate a
search tree.

Figure 2.3: Illustration of the different classes of roadmap methods, with black
dots representing the waypoints, and the blue and red curves representing
collision-free and colliding trajectory segments respectively.

into one of two main categories, namely roadmap methods and complete path
methods [29–31].

The main goal of roadmap methods is to find a sequence of waypoints, which,
when connected, result in an obstacle-free piecewise-linear path. The path can
then be smoothed and turned into a feasible trajectory that complies with the
vehicle dynamics. Roadmap methods can be further split into two distinct
categories, namely, combinatorial methods and sampling-based methods, as
illustrated in Figure 2.3. Combinatorial methods, divide the continuous space
into structures that capture all spatial information needed to solve the mo-
tion planning using simple graph search algorithms such as Dijkstra [32] or A?

[33]. For many complex problems however, combinatorial methods may lead
to search spaces so large that the methods are not be computationally feasible.
For these problems, sampling-based methods are often used instead. Sampling-
based methods, rely on using randomly sampled subset of states or actions.
This creates a randomly sampled discretization of the continuous search space,
and hence limits the computational complexity at the cost of accuracy and
completeness of the discretization. Some notable combinatorial methods in-
clude coarse planning with path smoothing, in where a mesh, grid or potential
field is used to plan a course path [34–36], and then a method using curve
segments, splines or motion primitives is used to refine the trajectory [37–43].
Notable sampling-based methods include probabilistic roadmap (PRM) [44],
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2.1. High-level global trajectory planning

(a) Piecewise methods such as multiple
shooting and collocation connect multi-
ple trajectory segments to form a full tra-
jectory.

(b) Continuous methods such as pseu-
dospectral and single shooting, use high-
degree polynomials and simulation to
represent the entire trajectory.

Figure 2.4: Illustration of the different classes of complete path methods, with
the dots representing the start and endpoints of the trajectory segments, and
the blue curves showing how the trajectory can be optimized from one iteration
to the next.

rapidly-exploring random tree (RRT) [45–47], and random-walk planners [48,
49].

Complete path methods on the other hand, produce a continuous parameter-
ized trajectory by explicitly taking into account the motion equations of the
robot and the full continuous search space. As a result, these methods gener-
ate a trajectory that is both obstable-free and feasible, without further need of
refinement or smoothing. Most complete path methods rely on some form of
mathematical optimization. For some simple problems an analytical solution
exists, as is the case for Dubins paths [50] and Reeds-Shepp [51]. In general,
however, researchers must resort to numerical optimization, where handling
complex constraints is challenging and getting stuck in local optima is not
uncommon. Notable numerical methods, illustrated in Figure 2.4, include par-
ticle swarm optimization (PSO) [52, 53], single and multiple shooting meth-
ods [54] which are based on simulation, collocation methods [55], which are
based on function approximation of low-degree polynomials, and pseudospec-
tral methods [56], which are based on function approximation of high-degree
polynomials.

In the context of high-level global trajectory planning for ASVs, the goal is to

13



Background

Globally
optimal
trajectory

Locally
optimal
trajectory

non-convex
environment
constraint

Optimal
discrete
trajectory

Figure 2.5: Complete path methods can only guarantee convergence to locally
optimal trajectories, while roadmap methods are only able to find the optimal
trajectory of the discretization.

use geographical data such as maps, in order to plan a feasible trajectory from
an initial starting location to a goal destination. In coastal regions, trajectory
planning is often complicated by the complex structure of the geographical
data making up the environment constraints. These constraints will often
make the trajectory planning problem non-convex, see Figure 2.5, meaning
that most optimization-based complete path methods can not be guaranteed to
find the globally optimal trajectory. For roadmap methods the non-convexity
is typically not a problem, as they search the entire discretized search space.
However, the optimality of roadmap methods is limited by the underlying
discretization. This has lead to hybrid trajectory planning methods, where
both roadmap methods and complete path methods are combined in order
to get improved performance and optimality. In recent years, these hybrid
methods have shown a lot of promise when it comes to optimal trajectory
planning for ASVs [21, 23, 57, 58], giving methods with optimality similar to
complete path methods, and performance, in terms of computational efficiency,
similar to roadmap methods.
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Figure 2.6: Local planning for collision avoidance.

2.2 Mid-level local trajectory planning

In conceptual autonomous marine operations, global trajectory planning can
be implemented as a first step, in order to find an initial trajectory which will
complete the desired objective, and is feasible with respect to known static
obstacles and the ASV kinematics and dynamics. Once the ASV is following
the initial global trajectory new obstacles such as other vessels and unmapped
landmasses may be detected, leaving the initial global trajectory no longer
feasible. To solve this problem, local trajectory planning is used to re-plan
parts of the trajectory in order to account for the additional obstacles.

In the rest of this section we will discuss two different scenarios where local
trajectory planning is of importance for ASVs. The first scenario pertains to
maneuvering in open waters, where we need to perform COLAV with respect
to dynamic obstacles, such as other vessels. The second scenario pertains to
precision maneuvering in confined areas, such as docking and berthing, where
both unmapped static obstacles and the ASV geometry must be considered for
safely performing the desired objective.
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Dynamic obstacles and COLAV

With increasing interest in autonomy solutions in the maritime industry, it be-
comes increasingly important to develop robust and efficient methods for risk
assessment and collision avoidance. This is especially true for dynamic obsta-
cles, for which accurate obstacle predictions are complicated by measurement
and tracking uncertainties, as well as uncertainties in the future behaviour of
the obstacle, as illustrated in Figure 2.6. A major component of developing
robust and efficient methods for obstacle avoidance, is the underlying obstacle
representation. In order for the obstacle representation to be practical, it needs
to be able to capture the shape and movement of the obstacle in a way that is
robust, allowing for both measurement uncertainties, as well as uncertainties
in the obstacle behavior. Additionally, the obstacle representation must be
suitable for planning, in order to allow for performing COLAV.

With the commercialisation of radar after World War II, there was a growing
interest in studying how these systems could be used to aid mariners when
navigating at sea. Into the 1960s and 1970s, technology had progressed to
where vessel tracking and risk assessment systems could be integrated into the
radar systems. These early systems, mostly relied on the method known as
closest point of approach (CPA) for assessing collision risk, by computing the
distance and point in time when two vessels are at their closest, given that
the vessels have a known constant velocity [59]. While these early systems
provided valuable feedback to the operator, they were not true COLAV system,
as they still relied on the operator to take appropriate action in order to avoid
collisions. Since these early days, research into COLAV has seen significant
interest, and has resulted in a wide variety of COLAV algorithms, with most
methods falling into one of two main categories, namely reactive and deliberate
COLAV methods [27].

Reactive COLAV methods, often called sense-act methods, perform little to
no planning, and are for the most part designed to only perform short term
maneuvers in order to avoid collisions. These methods are typically computa-
tionally cheap, which makes them well suited for responding to sudden changes
in the environment in a way that works well for avoiding immediate danger.
However, since these methods only consider a short planning horizon, they are
prone to making sub-optimal decisions in terms of the overall mission and ob-
jective. One of the most notable reactive COLAV methods, is velocity obstacle
(VO), which has been rediscovered and published multiple times [60–62]. VO
works by by computing the set of all velocities that will result in a collision,
and hence collision avoidance can be performed by choosing a velocity which
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2.2. Mid-level local trajectory planning

does not fall within the VO. Additional extension to the VO representation al-
low for kinematic constraints and obstacle behaviour and uncertainty [63–65],
with other similar reactive methods such as dynamic window (DW) methods,
allowing for accounting for the vessel dynamics [66]. Other notable reactive
planners include artificial potential fields [67], multi-objctive optimization [68]
and set-based methods [69] which can in corporate the international regula-
tions for preventing collisions at sea (COLREGs), and control barrier functions
[70], which can consider vessel dynamics and actuator constraints.

Deliberate methods, as opposed to reactive methods, consider larger amounts
of information in order to plan multiple maneuvers, typically over a longer time
horizon. This makes deliberate methods more computationally expensive, but
allow for better long term planning with respect to the overall mission objec-
tive, as well as better behaviour in terms of following COLREGs. Deliberate
COLAV methods have much in common with the high-level global trajectory
planning methods, with the main difference being the inclusion of dynamic
obstacles, and a typically shorter planning horizon. Similarly to the high-
level global planning methods, deliberate COLAV methods can be split into
roadmap methods and complete path methods. Early methods were mostly
optimization-based complete path methods [71–74]. In recent years however,
focus has shifted to roadmap methods, as they are more computationally ef-
ficient, and reliable for physical implementations. Notable roadmap methods
include RRT [75], scenario-based MPC, and brancing-course MPC [76].

When designing control architectures with COLAV systems today, both delib-
erate and reactive methods are often used in a two layer approach [27]. This
allows for a COLAV system which builds on the complimentary strengths of
the different algorithms. Typically this leads to a robust and fast reactive layer
which is used mostly as a last resort, and a slower and more complex deliberate
layer which performs trajectory planning in accordance with the COLREGs,
i.e. the rules of the road at sea.

Static obstacles and Docking and Berthing

The problem of automatics docking and berthing is an important part of per-
forming autonomous transportation. Planning a docking trajectory is in gen-
eral a local trajectory planning problem, where the goal is to move from an
initial pose to a target docking pose and eventually performing a controlled
collision with the quay or berth, as seen in Figure 2.7. Since docking typi-
cally is performed in confined waters and close proximity to both mapped and
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Figure 2.7: Local planning for docking and berthing.

unmapped obstacles, it is important to have accurate positioning data and
situational awareness in order to plan and perform safe docking maneuvers.

Traditionally, docking large underactuated vessels have required the use of sup-
port vessels, such as tug boats, in order to push and pull the vessel to perform
the docking maneuver. This has lead to research into synchronizing the move-
ment of multiple tugboats, in order to perform the desired maneuvers [77–80].
With many newer vessels being fully actuated, or even over-actuated, research
has shifted to seeking methods for automatically performing docking without
the use of additional support vessels. This has lead to a number of different ap-
proaches, including artificial potential field methods [81], fuzzy control systems
that change behaviour based on predetermined rules [82–84], Learning-based
methods using artificial neural networks (ANNs) [77, 80, 85–91] and deep learn-
ing (DL) [92–94], as well as rule-based expert systems [95]. However, the most
promising methods rely on optimization-based planning [17, 19, 22, 96–103],
where trajectories are planned using convex optimization. These methods are
often preferable, as they allow for explicitly including dynamics and constraints
when planning a trajectory.

When performing docking it is important to have accurate and reliable po-
sitioning systems in place, in order to determine the position of the vessel
hull relative to the quay or berth. Unfortunately most methods proposed in
academia lack experimental validation, with only a handful having performed
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Figure 2.8: Low-level motion control of surface vessels, where the objective is
to control the thrusters, and hence the forces X and Y , and torque N , in order
to follow a desired course, path or trajectory.

experiments [19, 22, 93, 104]. Within industry, several companies have de-
veloped and demonstrated automatic docking systems [10–12], however details
about the different approaches remain sparse. While high precision global nav-
igation satellite system (GNSS) can be used to perform docking, it is important
to note that this also requires the position of the berth to be well known, which
may not always be the case. In order to overcome these problems, the use of
quay-mounted laser or radar ranging systems [104–106] is often used in larger
ports, in order to independently identify the position and velocity of the vessel
relative to the quay. For full autonomy, relying on quay mounted positioning
systems may not be sufficient, and additional vessel mounted ranging systems
must be used to ensure that the docking operation can be performed safely
and without relying on land-based infrastructure[22]. Relying on additional
exteroceptive sensors with a limited field of view, means that only a local re-
gion around the vessel can be considered during the planning. This typically
also necessitates the use of re-planning as new information is gathered, a trait
that is common for most local planners.
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Figure 2.9: Timeline of vessel motion control, based on [156].

2.3 Low-level motion control

Once a trajectory has been planned, it is tracked by computing and executing
appropriate maneuvers. This process, called motion control, involves control-
ling the actuators and control surfaces of the vessel in a way that follows a
course, path or trajectory (see Figure 2.8). Designing efficient motion con-
trol system for ASVs typically requires the need for an accurate mathematical
model describing the dynamics of the vessel. This is complicated by the un-
predictable nature of the marine environment, and the complex hydrodynamic
interactions, which can very significantly during operations. This has lead to
extensive research on the topic of motion control for marine vessels, utilizing
ideas from virtually every branch of control engineering (see Figure 2.9).

The first commercially successfully motion control system was the gyropilot,
developed by the Sperry Corporation [3]. This was enabled by the invention of
the gyrocompass, which as opposed to traditional magnetic compasses, was not
effected by magnetic disturbances generated by electrical equipment on steel
vessels. As the gyrocompass enabled reliable compass measurement, early
research mostly focused on the problem of course control using simple three
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term feedback control laws, which today is known as proportional-integral-
derivative (PID) control [4].

With the rise of offshore drilling in the early 1960s, DP was invented in order
for the drilling vessels to be able maintain the position and heading by using
its own thrusters. The first DP systems were manually controlled by human
operators, but this was quickly changed in favour of using three decoupled PID
controllers, to control the horizontal motion of the vessel (surge, sway and yaw).
For these early systems, a challenging problem was wave induced disturbances
entering the feedback loop. This however changed with the development of the
Kalman filter and the linear–quadratic regulator (LQR), motivating the use of
linear–quadratic–Gaussian (LQG) controllers for optimal filtering and control
for both DP and course control.

The successful results with LQG controllers for both course control and DP sys-
tems, and the commercial availability of GNSS systems, such as GPS, resulted
in a growing interest for path and trajectory tracking control for vessels in tran-
sit. In the mid 1990s, the problem of trajectory tracking for underactuated
vessels gained significant attention. Since underactuated vessels have fewer in-
dependent controls than degrees of freedom, linearizing the vessel model about
the desired constant position and orientation results in a linear model that is
not controllable, and hence controlling underactuated vessels is an inherently
nonlinear problem. This lead to research into nonlinear control methods, in-
cluding feedback linearization, backstepping and lyapunov baesed methods, for
path and trajectory tracking as well as dynamic positioning and course control.

With the increase in processing power the last decade, more computationally
demanding control methods have been made possible. One of these methods is
MPC, which is a popular approach for optimizing the closed loop performance
of complex systems subject to constraints. MPC works by solving an optimal
control problem (OCP) at each control interval in order to find an optimal
policy. The optimal control problem seeks to minimize the sum of stage costs
over a horizon, provided a model of the system and the current observed state.
While MPC is a well-studied approach, and an extensive literature exists on
analysing its properties [157, 158], the closed loop performance heavily relies
on the accuracy of the underlying system model, which naturally presents
challenges when significant unmodeled uncertainties are present.

As early as the 1970s, adaptive control methods were used to adapt vessel
motion control systems in order to account for uncertain and time varying
model parameters. In recent years, the availability of large amounts of data
combined with processing power has allowed for new learning-based control
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methods. One of these methods is RL, which is a subfield of machine learning
(ML), designeed to tackles the problem of optimal sequential decision mak-
ing under uncertainty. The roots of RL can be traced back to the artificial
intelligence (AI) community in the 60’s [159, 160]. Since then the field has
come a long way, evolving in several directions to become one of the most
active research areas at the intersection of ML, AI and control theory. Con-
trary to other machine learning methods, RL does not rely on a prerecorded
dataset, but rather learns from evaluative feedback through a process of trial
and error. Similarly to optimal control, this feedback comes in the form of a
hand-engineered reward or cost function, which assigns a reward, or penalty, to
the actions that result in desired, or undesired, outcomes, respectively. Given
the reward or cost function, the job of the RL algorithm is to find a state-action
mapping, known as the policy (the analog of a controller, in control engineering
terminology), that maximizes the expected future reward given the problem
constraints and uncertainties. In recent years, RL has proved to be useful as
an adaptive control approach for motion control of marine vessels.
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3 | Contributions

The main contributions of this thesis can be split into four separate categories,
with each publication contributing to one of the categories. The four categories,
and respective publications are given as follows:

• Optimization-based trajectory planning in static polygonal environments

– Paper E "Two-Stage Optimized Trajectory Planning for ASVs Un-
der Polygonal Obstacle Constraints: Theory and Experiments"

– Paper G "Optimal Model-Based Trajectory Planning With Static
Polygonal Constraints"

• Docking and berthing of ASVs

– Paper A "Autonomous docking using direct optimal control"

– Paper D "Trajectory Planning and Control for Automatic Docking
of ASVs with Full-Scale Experiments"

– Paper F "Optimization-Based Automatic Docking and Berthing of
ASVs Using Exteroceptive Sensors: Theory and Experiments"

• Obstacle representation for collision avoidance and risk assessment

– Paper H "Two space-time obstacle representations based on ellip-
soids and polytopes"

• Reinforcement learning-based motion control

– Paper B "Reinforcement learning-based tracking control of USVs
in varying operational conditions"

– Paper C "Combining system identification with reinforcement
learning-based MPC"
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– Paper I "Reinforcement Learning-based MPC for Tracking Control
of ASVs: Theory and Experiments"

In the rest of this chapter, we will provide an in-depth description of the con-
tributions to each of the four categories, as well as the individual contributions
of each publication.

3.1 Optimization-based trajectory planning in static
polygonal environments

When performing high-level global trajectory planning for ASVs, the goal is
to find a feasible trajectory from an starting location to a goal destination.
Due to the complexity of the geographical data making up the environment
constraints, trajectory planners have traditionally relied on roadmap methods
[35, 161]. In recent years, as the focus on lower emissions and more energy
and cost efficient solutions has increased, complete path methods have gained
popularity, as they allow for planning optimal trajectories. In order to use
optimization based approaches, a common approach is to simplify the environ-
mental constraints using for example constraint ellipses [31, 57, 162], as they
offer a more computationally efficient representation when using numerical op-
timization methods. Unfortunately, using simplified environment constraints
will in general lead to sub-optimal solutions, and does not solve the problem of
getting stuck in local optimal solutions. As part of this thesis, we have devel-
oped two different hybrid planning approaches, which combine both roadmap
methods and complete path methods, for planning optimal trajectories subject
to polygonal environment constraints. Using hybrid approaches we are able to
get around the problem of complete path methods getting stuck in local op-
timum, while also improving computation efficiency. Additionally, allowing
for the use of polygonal constraints, eliminates the need for simplifying the
environment constraints, resulting in globally optimal trajectories.

In Paper E "Two-Stage Optimized Trajectory Planning for ASVs Under Polyg-
onal Obstacle Constraints: Theory and Experiments", we develop a high-level
global trajectory planner, for planning energy-optimal trajectories for ASVs
under the influence of external disturbances, subject to polygonal environ-
ment constraints. The method is hybrid planning approach, which finds the
optimal trajectory by solving an OCP, i.e. a complete path methods, which is
warm-started by the solution of a hybrid A? search algorithm (See Figure 3.1).
Similarly to the planning method in [58, 163], we use a set of motion primi-

24



3.1. Optimization-based trajectory planning in static . . .

Generate feasible trajec-
tory using hybrid A?

Optimize trajectory
using OCP-solver

Starting location, goal desti-
nation, environmental distur-
bances differential constraints
and environment constraints

Feasible initial guess

Optimized trajectory

Figure 3.1: Block diagram of the high-level global trajectory planner function-
ality in Paper E "Two-Stage Optimized Trajectory Planning for ASVs Under
Polygonal Obstacle Constraints: Theory and Experiments".

tives in order to compute an initial feasible trajectory guess, before optimizing
the final trajectory. Our method however, improves upon this by employing
a search heuristic, which allows for the addition of external disturbances such
as wind. Additionally, we use an alternative method to calculate the convex
envelopes in preparation for the trajectory optimization stage, and we pro-
pose an alternative obstacle representation, which scales more efficiently with
the number of polygons and polygon edges in the environment constraints, in
terms of the number of optimization variables.

In Paper G "Optimal Model-Based Trajectory Planning With Static Polyg-
onal Constraints" we consider the problem of optimal motion planning for a
particle-like vehicle, moving on a 2D surface with polygonal obstacles. To
this end, we introduce a hybrid method, which combines graph search on a
pre-computed constrained Delaunay triangulation (CDT), with convex opti-
mization for path refinement (see Figure 3.2). The proposed method allows
for planning a globally optimal trajectory for a dynamical system subject to
static polygonal constraints. The main contributions is this paper is how we
combine hybrid planning with polygonal constraints and triangulation based
spatial discretization. Contrary to other hybrid methods such as [57, 58, 164],
where initial trajectories are planned using motion primitives and state space
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Figure 3.2: Block diagram of the high-level global trajectory planner func-
tionality in Paper G "Optimal Model-Based Trajectory Planning With Static
Polygonal Constraints".

discretizations, and refined using numerical optimization, our method employs
an iterative approach of searching various triangle sequences, and refinement
by optimizing the trajectory through the sequence of triangles. Polygonal con-
straints allow for complex constraints to be used in the planning algorithm.
Very few optimization-based planning methods exist that are able to handle
these types of constraints. Existing methods often lead to computationally
expensive mixed integer optimization problems [165], rely on using inner ap-
proximations of the free space [17, 166], or non-convex elliptical approximations
[31]. Our method relies on using a triangulation of the environment, similar to
[34, 167] but instead of straight-line paths, it optimizes the path as a polyno-
mial spline, similar to [168]. Combining these concepts, the proposed method
is able to efficiently plan globally optimal trajectories for a dynamical system
subject to static polygonal constraints.

3.2 Docking and berthing of ASVs

The problem of automatic docking and berthing is an important part of per-
forming autonomous transportation, and hence the problem has seen a lot of
interest, with a variety of solutions. Our main contribution to this field, is a
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Figure 3.3: Block diagram of the mid-level docking planner in Paper A "Au-
tonomous docking using direct optimal control".

novel approach for formulating the docking problem as an OCP, which can be
used as a mid-level local trajectory planner in order to find an optimal collision
free docking trajectory. Due to the complexity of performing docking, most
of the existing methods rely on simplifying the docking problem, making the
approaches unsuitable for real world use. We address this by proposing a state
of the art method which considers both the differential constraints arising form
the vessel dynamics, and the the environment constraints given by a map of
the harbor layout, range data from exteroceptive sensors, and the vessel ge-
ometry. Additionally, we provide full-scale experiments on the experimental
autonomous urban passenger ferry milliAmpere, seen in Figure 1.2, showing
that the proposed method is suitable for real world use.

In Paper A "Autonomous docking using direct optimal control", we present
a method for framing the problem of autonomous docking, by formulating
an OCP that takes into account vessel dynamics in the form of its dynamic
model, as well as collision avoidance by planning trajectories within a convex
set, based on the harbor layout. In order to execute the trajectory, the problem
is formulated as a nonlinear model predictive control (NMPC) problem, where
the OCP is solved iteratively, with the the first control action applied to a
vessel simulation at each time step, illustrated in Figure 3.3. Inspired by the
MPC-based DP approaches in [134, 169], the docking problem is formulated
as a NMPC, with the addition of robust singularity avoiding control allocation
[170], for an overactuated model supply vessel. In order to ensure that the
planned docking maneuvers are safe and collision free, a novel approach for
adding spatial constraints is proposed. This approach ensures the vessel stays
within a safe convex region, in a way that also accounts for the shape and size
of the vessel.
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Experiments".

In Paper D "Trajectory Planning and Control for Automatic Docking of ASVs
with Full-Scale Experiments", we build on the docking method proposed in
Paper A in order to make the docking planner possible to run in real time on the
experimental urban passenger ferrymilliAmpere, seen in Figure 1.2. In order to
make the control system more robust to external disturbances and computation
delays caused by the solving the OCP, the docking planner and motion control
system are decoupled, as illustrated in Figure 3.4. Additionally, slack variables
are added to deal with feasibility issues that can arise when running real-world
experiments, and the cost function is changed to give more desirable docking
trajectories. The last addition is an algorithm for dynamically updating the
convex spatial constraints, based on the position of the vessel, and a map
of the harbor. By making these modifications, we show that the proposed
docking planner is able to plan successful collision-free docking maneuvers in
full-scale experiments on the experimental autonomous urban passenger ferry
milliAmpere.

In Paper F "Optimization-Based Automatic Docking and Berthing of ASVs
Using Exteroceptive Sensors: Theory and Experiments", we further developed
the docking planner from from Paper A and Paper D. The main contribution
from the previous papers, is the addition of ranging data from on board extero-
ceptive sensors (see Figure 3.5), such as light detection and ranging (LIDAR)
point clouds, and ultrasonic distance sensors. Including these additional exte-
roceptive sensors, we show how the vessel is able to plan and perform docking
maneuvers in a harbor area, without the need for land-based sensor systems
or manually updating the harbor map, even if the harbor layout changes. In
this paper, we also provide additional improvements to the docking planner
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Figure 3.5: Block diagram of the mid-level docking planner in Paper F
"Optimization-Based Automatic Docking and Berthing of ASVs Using Ex-
teroceptive Sensors: Theory and Experiments".

cost function in order to get improved docking trajectories. Additionally we
provide details on the algorithm for dynamically creating the convex spatial
constraints, in a way that combines known map data, together with the rang
data from the exteroceptive sensors. In order to validate the method, we pro-
vide additional full-scale experiments on the experimental autonomous urban
passenger ferry milliAmpere, seen in Figure 1.2.

3.3 Obstacle representation for risk assessment and
collision avoidance

With increasing interest in autonomy solutions in the maritime industry, it
becomes increasingly important to develop robust and efficient methods for
risk assessment and collision avoidance. This is especially true for dynamic
obstacles, for which accurate trajectory predictions is complicated by both
measurement and behavioral uncertainties.

In Paper H "Two space-time obstacle representations based on ellipsoids and
polytopes", we develop a novel method for generating a space-time obstacle
representation, which accounts for uncertainty in both measurements, as well as
the future behaviour of the obstacle. The method relies on projecting the area
occupied by the obstacle forward in time, using a set of velocities representing
the possible maneuvers that the obstacle may take. Additionally, we show
how the proposed space-time obstacle can be efficiently implemented both as
convex polytopes and ellipsoids, which can be used for both risk assessment
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local trajectory planner in Paper H "Two space-time obstacle representations
based on ellipsoids and polytopes".

and collision avoidance. In order to show the flexibility of the method, we
provide several examples of how the proposed space-time representation can
be used in mid-level local trajectory planners, in order to plan optimal collision
free trajectories for a surface vessels.

3.4 Reinforcement learning-based motion control

Control of marine vehicles is a challenging problem, mostly due to the unpre-
dictable nature of the sea and the difficulty in developing accurate mathemat-
ical models to represent the varying marine vehicle dynamics. As discussed in
section 2.3, this has lead to a wide variety of methods, utilizing virtually every
branch of control engineering.

One promising class of method for performing motion control for marine ves-
sels, is RL, which has seen a resurgence in interest over the past few years,
motivated by breakthroughs in deep reinforcement learning (DRL). Compared
to conventional methods, RL has several advantages. Similarly to adaptive
control, RL is a learning-based control method. This means that it can be
used to learn how to control the vessel without the need for modeling the com-
plex vessel dynamics. RL is also an optimization based method, this means
the not only can RL be used to learn how to perform motion control, but it
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conditions".

can learn to perform motion control in a way that optimizes the closed loop
performance.

In Paper B "Reinforcement learning-based tracking control of USVs in varying
operational conditions", we present a RL based motion control system for tra-
jectory tracking control of fully-actuated surface vessels. The approach is based
on approximate dynamic programming (ADP), which uses RL to optimize a
stabilizing nonlinear control law. Our paper extend the work by Kamalapurkar
et al. [135, 171] in order to build a trajectory tracking control system for a
fully-actuated USV. Conceptually, the approach is quite similar to DP, but
extends to higher velocity operational domains, while also trying to optimize
tracking performance and compensate for environmental forces. The proposed
method combines elements from RL, Lyapunov stability theory and SYSID, in
order to learn a stabilizing feedback control law and a model based feedforward
control law, as illustrated in Figure 3.7. In addition to validating the proposed
control scheme in simulations, the method was also implemented on the ReVolt
test platform (see Figure 1.1), allowing for experimental validation.

In Paper C "Combining system identification with reinforcement learning-
based MPC", we propose a novel method for combining MPC, RL and SYSID,
in order to optimize the closed loop performance of a MPC based control
scheme. Inspired by the work of Gros and Zanon [172, 173], where RL and
MPC are combined by allowing RL to use MPC as a function approximator.
Our paper further extends this by using SYSID in order to aid the RL by
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improving the the accuracy of the MPC model. The paper explores a number
of methods for combing the RL and SYSID objectives, in order to minimize
the plant model mismatch while not affecting the closed loop performance of
the MPC.

In Paper I "Reinforcement Learning-based MPC for Tracking Control of ASVs:
Theory and Experiments", we propose a model based RL approach for trajec-
tory tracking of surface vessels, illustrated in Figure 3.8. The approach builds
on the work in Paper C, and extends it use a NMPC in order to perform the
trajectory tracking in combination with control allocation. In order to opti-
mize performance, the NMPC and model parameters are updated using RL
and SYSID. This allows the proposed method to compensate for model mis-
match and environmental forces, with a focus on optimizing the closed loop
performance of the trajectory tracking controller, rather than simply fitting
the MPC model to the real system dynamics. In order to run the proposed
control scheme in real-time, we implemented it using advanced-step nonlinear
model predictive control (asNMPC). Additionally, simulations were performed
on the USV ReVolt (see Figure 1.1), and both simulations as well as sea trials
were performed on the autonomous urban passengers ferry milliAmpere (see
Figure 1.2).
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In this chapter we will conclude the thesis by summing up some of its main
contributions. Additionally, we will include some reflections around the work,
and finally look at the current state of autonomous marine operations, and
suggest some future research directions in terms of the topics discussed in this
thesis.

4.1 Conclusion

This thesis contains contributions with novel solutions to the problems of high-
level global trajectory planning, mid-level local trajectory planning, including
docking and COLAV, and low-level motion control for ASVs. The contribu-
tions are centered around optimization-based methods, with the aim of de-
veloping safer, more efficient, and more robust algorithms for enabling au-
tonomous marine operations.

The high-level global trajectory planning methods in this thesis were designed
with the purpose of planning optimal trajectories for ASVs in static environ-
ments. This means that the methods needed to be model-based and consider
constraints and dynamics imposed by the vessel, in order to allow the planner
to find the optimal trajectory. In terms of static constraints, the proposed
methods rely on a polygon representation of geographical data. This type of
representation has several advantages, such as facilitating easy import of ex-
isting map data, typically represented as polygons, and allowing to use exact
high resolution geographical data, which results in more optimal trajectories
compared with other common map representations. The polygon represen-
tation does however come with some drawbacks, with the main issues being
the non-convex nature of general polygons, and how to represent them as
constraints in an optimization problem. In our case, we solve this by uti-
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lizing different hybrid planning approaches, that combine roadmap methods
with optimization-based complete path methods. The two approaches that
we present in this thesis build on similar principals, with the main difference
being the underlying discretization. In Paper E discretization is performed us-
ing motion primitives. This approach is less computationally demanding then
the spatial discretization in Paper G, however using the spatial discretization
offers better guarantees in terms of global optimality.

A high-level global trajectory planner that only considers static obstacles is
insufficient when unmapped obstacles and dynamic obstacles, such as other
vessels, are present. This motivates the need for a mid-level local trajectory
planner, tasked with re-planing the trajectory in order to account for the ad-
ditional obstacles.

In terms of mid-level local trajectory planning, our main focus has been on
the problem of docking and berthing. The progress on this problem has been
iterative, where our first contribution to the problem was a novel approach to
handling the vessel and harbor geometry that allowed us to develop a NMPC-
based docking controller. This approach relies on using a convex outer ap-
proximation of the vessel geometry, and a convex inner approximation of the
harbor, in order to ensure the maneuvers planned by the NMPC are collision
free. With our second publication on the topic, we built on the approach
by proposing a method for automatically generating the spatial constraints
as convex inner approximations of the harbor layout, based on map data of
the harbor. Additionally, we proposed separating the low-level control and
the model-based docking planner. This has several advantages, including bet-
ter steady-state disturbances rejection, faster feedback control, and improved
robustness to failures in the NMPC planner, allowing for the method to be
implemented on a physical platform. In the third and final paper we include
exteroceptive sensor data, in order to account for unmapped obstacles. This
resulted in a fully autonomous docking system, capable of planning and ex-
ecuting the necessary maneuvers for safely docking an ASV. To the author’s
best knowledge, this is the most comprehensive treatment of the docking and
berthing problem for ASVs in the current literature.

In addition to the docking problem, we also look at the COLAV problem for dy-
namic obstacles, which also falls under the mid-level local trajectory planning.
Our main contribution is a space-time obstacle representation, which accounts
for uncertainty in both measurements, as well as the future behaviour of the
obstacle. The method works by projecting the area occupied by the obstacle
forward in time, in order to find the space-time volume which the obstacle can
occupy. Additionally, we show how the proposed obstacle representation can
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be used for both reactive as well as optimization-based deliberate COLAV.

In order to accurately follow the planned trajectories and compensate for dis-
turbances, low-level motion control is needed. In this thesis, the main focus in
terms of motion control has been on model-based RL approaches, allowing for
optimizing the closed loop performance of the motion control system through
evaluative feedback. The first publication on the topic is based on ADP, where
the parameters of a model-based feedforward controller and a stabilizing feed-
back controller are learned from data collected online. The second approach
uses a parametric NMPC, combined with SYSID and RL to learn model pa-
rameters online. Using both simulations and experiments, we show that adding
a learning component can improve the control performance over conventional
motion control methods.

While planning, COLAV and motion control are all topics that have seen
significant interest over the years, it is only recently that the push for autonomy
has seen a need for developing systems which incorporate all these elements in
a robust and efficient way. This is especially true when developing methods
which work not only in simulations, but also work experimentally. One of the
main contribution of this thesis is the inclusion of experimental results for a
number of the proposed methods. These results demonstrate the feasibility
of the methods in practice, and highlight some important aspects to consider
when designing and implementing the methods on physical platforms.

4.2 Reflections

While our work has focused on optimization-based trajectory planning and
control for ASVs, the topics that have been discussed have given the work a
broad scope which encompasses several fields, including optimization, control
theory, ML, AI, planning, COLAV, situational awareness, and more. This has
lead to a number of insights and reflections which deserve their own discussion.

When starting the work on this thesis, I had recently finished my masters the-
sis on using DRL for end-to-end path following and control of marine vehicles
[153–155]. While the end-to-end approach was interesting from a research per-
spective, the approach would typically involve hour of training on a simulator,
equating to weeks and months of real world training, limiting the practicality
of the method. An other major drawback of using DRL for an end-to-end ap-
proach, was certifying the stability and safety of the closed loop control, as the
resulting control structure was typically too complex to analyze with classical

35



Discussion

methods. These problems were my main inspiration to research model-based
RL approaches, where we impose a model and control structure into the RL
framework. The benefits of this is that training can typically be done much
faster, as the search space is limited, and the closed loop stability can be in-
vestigated using known methods. On the other hand, this restricts the model
and controller, however this is arguably a small price to pay, when consider-
ing that these methods can be used not only in simulations, but in real-world
experiments, as we demonstrate in Paper B and Paper I.

One of the main benefits of using RL-based methods for control, is the ability
to make self-optimizing closed-loop controllers, which can learn how to best
control a plant without the need for comprehensive model identification and
controller tuning. Unfortunately, it is not as simple as just replacing a classi-
cal control scheme with a RL-based method. Typically, it is still necessary to
model the plant as it is used for training purposes in model-free RL approaches,
and integrated into the control scheme for model-based RL approaches. Learn-
ing, which is one of the key ideas that make RL such a powerful tool, is also one
of its biggest weaknesses. Since learning in general requires a trial and error
procedure in order to explore and improve, additional safety measures need
to be put into place when learning is performed on-line. The learning process
can also be sensitive to measurement noise and external disturbances, further
complicating the learning process. The reward or cost function, which is also
one of the main strengths of RL, can also be considered one of its drawbacks.
Depending on the task we want to perform, designing a reward or cost function
to achieve the desired goal, can be quite difficult and require multiple itera-
tions of careful hand engineering to get right. In many applications, applying
RL can significantly improve the closed loop performance of a control prob-
lem. However, applying RL in a way that is robust and efficient, is typically
time consuming and adds significant complexity to the controller design, when
compared with classic control methods.

While the work on this thesis was initially going to be mostly theoretical and
simulation based, the availability of different experimental platforms enabled
us to also perform experimental validation. Before starting the work on this
thesis I had no prior experience performing experimental work. Having expe-
rienced the limited practicality of the methods from the work on my masters
thesis, one of my goals was to develop methods which were not limited to sim-
ulations, but could also be used in practice. While developing the RL-based
approach in Paper B, we were given access to a high fidelity simulator of the
ReVolt platform by DNV (then DNV GL). After being able to show that the
method worked in simulations, I was eager to see if the method would be able
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to work on the physical platform. Thinking the implementation would be fairly
straightforward, I quickly realized that that was not the case, running into nu-
merous errors in the existing codebase, hardware failures, a leaking hull and
poor weather conditions. Later on, similar problems also arose when working
with the milliAmpere platform, causing me to spend a lot of time on issues not
necessarily directly related to the methods we were testing. While this work
was quite frustrating at times, it was definitely worth it when we were able
to run the planned experiments, with results similar to those of the simula-
tions. This also gave me a huge appreciation for experimental work, seeing the
additional work needed to get things running, as well as the additional robust-
ness requirements needed for the control methods to work with the additional
process and measurement noise.

For our work on both high-level and mid-level planning, our main focus was on
optimization-based complete path methods. These methods have the benefit
of being able to plan optimal trajectories, which for ASVs can be especially
useful for energy optimization. The optimal trajectories are however only as
accurate as the models they are based on, this means that for a practical appli-
cation, with plant model mismatch and unmodeled environmental forces, the
planned optimal trajectory will no longer be the true optimal trajectory. In
the case of energy optimization for ASVs, trying to follow the planned optimal
trajectory may in fact require significantly more energy to accurately track,
due to the mismatch. This begs the question of how much benefit, if any, there
is to planning an optimal trajectory as opposed to a suboptimal trajectory.
In combination with the added complexity and computational demand of the
optimization-based complete path methods, certain problems may be better
solved using simpler combinatorial methods. This may be especially true for
COLAV, where it is crucial to be able to quickly act on changes in the environ-
ment in order to avoid collisions, and the optimality of the maneuvers may not
be as important. In the existing literature, this problem is often dealt with by
having a two-layered approach to the mid-level planning, where reactive meth-
ods are used to react to immediate dangers, without any significant planning,
wile deliberate methods are used to plan over a longer horizon, when there
is no immediate danger. In this approach, relatively slow optimization-based
complete path methods may be better suited for deliberate planning then for
reactive planning.

Our work contributes towards the vision of fully autonomous vessels. We never
combined the contributions into a fully autonomous system, while our methods
could theoretically be combined using the control hierarchy in Figure 2.1, as
shown in [28], to form a complete automatic transit and docking system. We
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are still far from a fully autonomous system able to handle complex human
machine interactions, condition monitoring, situational awareness, and react-
ing to a plethora of unforeseen events. Luckily, these are all active areas of
research, and we will likely see integration taking place in the near future.

4.3 Future work

In terms of high-level global planning for ASVs, there is still much work that
can be done. Furthering our proposed approaches, there is still a question of
computational demand. For optimization-based methods, the number of deci-
sion variables will tend to grow linearly with the length of the path, something
that may make the methods computationally infeasible for planning long tra-
jectories. An other area of of improvement is to incorporate better models
of the vessel energy consumption, this may include hotel loads, as well as in-
corporating the true energy expenditure of the propulsion system, including
various losses. Our proposed approaches are hybrid planning approaches, and
combine the benefits of both roadmap methods and complete path methods,
which is still a relatively new area of research and deserves more attention in
future work.

For docking and berthing, our proposed approach is based on formulating the
problem as an optimization problem. Formulating the optimization objective
function and constraints in order to get "sensible" behaviour, is in general
a difficult problem. To this end, setting up additional criteria in terms of
the docking maneuvers, and formulating these as an objective function and
constraints that can be used in the optimization problem, is an area of re-
search where more work can be done. An other area to explore is the use of
other methods then optimization for solving the planning and docking prob-
lem. While other approaches based on ANNs, fuzzy control, artificial potential
fields and rule based expert systems exist, they do not solve the problem as
comprehensively, and do not include experimental validation. Using some of
the insights provided in our research, exploring the possibility of incorporating
other planning approaches, including roadmap methods and hybrid methods,
is an other avenue which can be explored. In real world docking and berthing,
two of the main reasons for collisions, is the the close proximity to dynamic
obstacles, such as other vessels, and correctly accounting for difficult envi-
ronmental conditions. These are also two important areas which should be
addressed in future research.

For COLAV, our proposed space-time obstacle representation is promising,
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however it still remains to be seen how it performs in practice. It would also
be interesting to look at the possibility of extending the proposed method to
allow for time-varying velocity uncertainties, and thus make the method more
general. Additionally, using the space-time obstacle representation together
with other trajectory planning and collision avoidance methods would also be
interesting, as well as further studying how to best represent the initial obstacle
shapes in order to promote COLREGs compliance.

In the context of learning-based motion control, it would be interesting to
look more into how to perform more robust and safe parameter updates. This
is important as care must be taken in order to avoid problematic parameter
updates caused by for example noisy and inaccurate measurements. This is
mostly a problem when running on a physical platform, and in our case it was
solved using batches of transitions, and sufficiently small learning rate. Addi-
tionally, considering different vessel models, including under-actuated vessels
may be interesting. This may for the most part be applicable for MPC-based
approaches, but is still an area which deserves more attention.

For optimization-based approaches in a hierarchical control structure such as
the one suggested in this thesis (see Figure 2.1), the true performance in terms
of optimality is highly dependant on how the different layers of the control
hierarchy interact. In general this could mean that, while the planned trajec-
tory is optimal with respect to an objective, the actual performance may be
degraded by a motion control system struggling to accurately follow the de-
sired trajectory. In this thesis we have for the most part looked at the different
hierarchical layers separately, without considering the coupling between lay-
ers. Studying the control structure as a whole when designing and optimizing
the performance is an area which has received little attention, but should be
considered in future works.

While we are getting closer to fully autonomous marine operations, there are
still a number of hurdles to overcome. Today, technology has progressed to the
point where there are commercially available systems that have proven them-
selves capable of performing marine operations such as ferry crossings without
the need for human intervention. However the systems are mostly considered
automatic, as they are still being monitored and supervised by crew. In order
to get to a point where vessels are fully autonomous, we need to continue im-
proving everything from planning, COLAV, motion control, navigation, sensor
systems, situational awareness, condition monitoring and human machine in-
teractions. This is key in order to get to a point were the systems are robust
and redundant enough that that we can overcome the final hurdle of building
trust in them.
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This chapter contains the original publications which were written as a result of
the work on this thesis. The articles are reprints of the original publications,
formatted to fit the thesis. The work is ordered chronologically by date of
publication, however the recommended (thematic) reading order, illustrated in
Figure 1.3, is high-level planning (Paper G and Paper E), mid-level planning
(Paper A, Paper D, Paper F and Paper H), and finally low-level motion control
(Paper B, Paper C and Paper I).
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Autonomous docking using direct optimal control

Andreas B. Martinsen1, Anastasios M. Lekkas1, and Sebastien Gros1

1Department of Engineering Cybernetics, Norwegian University of Sci-
ence and Technology (NTNU), Trondheim, Norway

Abstract: We propose a method for performing autonomous docking of marine
vessels using numerical optimal control. The task is framed as a dynamic position-
ing problem, with the addition of spatial constraints that ensure collision avoidance.
The proposed method is an all-encompassing procedure for performing both docking,
maneuvering, dynamic positioning and control allocation. In addition, we show that
the method can be implemented as a real-time MPC-based algorithm on simulation
results of a supply vessel.

Keywords: Docking, Optimal Control, Autonomous vehicles, Numerical Optimiza-
tion, Path planning

1 Introduction

For most larger vessels, docking has historically been performed by utilizing external
help from support vessels such as tug boats. The main reasons for this has been
limits in terms of maneuverability as well as limits in the accuracy of the human
operators when dealing with relatively slow dynamical systems. With the increasing
usage of azimuth thrusters, marine vessels have become increasingly maneuverable.
In addition to this, interest in autonomous ferries, and cargo vessels has increased in
recent years. Despite this, and contrary to topics such as path following/tracking and
control allocation, research on autonomous docking for surface vessels has seen little
attention. While there are some methods such as [1–3] developed for Autonomous
Underwater Vehicles (AUVs), which use fuzzy control schemes for different stages of
the docking process. While [4] and [5] have developed methods for Unmanned Surface
Vehicles (USVs) based on target tracking and artificial potential fields respectively.
These existing approaches are usually quite limited, do not take into account the
underlying vessel model, and make few guarantees in terms of safety.

In this paper, we present a method for framing the problem of autonomous docking
as a optimal control problem. Our proposed method is similar to methods used for
dynamic positioning [6, 7], with the addition of control allocation optimization [8],
and spatial constraint, which ensure the vessel operates safely without colliding.
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Figure 1: 3-DOF vessel centered at (x, y), with surge velocity u, sway velocity v,
heading ψ in a North-East-Down (NED) reference frame.

2 Vessel Model

2.1 Kinematics

When modeling vessels for the purpose of autonomous docking, we assume the vessel
moves on the ocean surface at relatively low velocities. In addition to this we assume
that effects of the roll and pitch motions of the vessel are negligible, and hence have
little impact on the surge, sway and yaw of the vessel. The mathematical model
used to describe the system can then be kept reasonably simple by limiting it to
the planar position and orientation of the vessel. The motion of a surface vessel
can be represented by the pose vector η = [x, y, ψ]> ∈ R2 × S, and velocity vector
ν = [u, v, r]> ∈ R3. Here, (x, y) describe the Cartesian position in the earth-fixed
reference frame, ψ is yaw angle, (u, v) is the body fixed linear velocities, and r is the
yaw rate, an illustration is given in Figure 1. Using the notation in [9] we can describe
a 3-DOF vessel model as follows

η̇ = J(ψ)ν, (1)
Mν̇ +D(ν)ν = τ , (2)

where M ∈ R3×3, D(ν) ∈ R3×3, τ and J(ψ) ∈ SO(3) are the inertia matrix, damp-
ening matrix, control input vector, and rotation matrix respectively. The rotational
matrix J(ψ) ∈ SO(3) is given by

J(ψ) =



cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (3)

and is the rotation from the body frame to the earth-fixed reference frame.
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2.2 Thrust configuration

The control surfaces of the vessel are specified by the thrust configuration matrix
T (α) ∈ R3,nthrusters which maps the thrust f from each thruster into the surge, sway
and yaw forces and moments in the body frame of the vessel given the thruster angles
α.

τ = T (α)f (4)

Each column T i(αi) in T (α) gives the configuration of the forces and moments of a
thruster i as follows:

Ti(α)fi =




Fx
Fy

Fylx − Fxly


 =




fi cos(αi)
fi sin(αi)

fi(lx sin(αi)− ly cos(αi))


 (5)

where αi is the orientation of the thruster in the body frame, and fi is the force
it produces. Selecting the orientation α and force f of the thrusters in order to
generate the desired force τ is called the thrust allocation problem. While there are
numerous ways of solving the thrust allocation problem [10], for our purpose we want
to include the thrust allocation as part of the optimization for performing the docking
operations. This allows us to take into account physical thruster constraints such as
force saturation and feasible azimuth sectors.

αi,min ≤ αi ≤ αi,max
fi,min ≤ fi ≤ fi,max

In order to avoid singular thruster configurations, we add a penalty on the rank
deficiency of the thrust configuration matrix, as proposed by [8]. The singular con-
figuration cost is given as the following.

ρ

ε+ det
(
T (α)W−1T>(α)

) (6)

Here ε > 0 is a small constant in order to avoid division by 0, ρ > 0 is the weighting
of the maneuverability, and W is typically diagonal matrix, weighting each individ-
ual thruster. A constraint on the singular configuration may alternatively be added,
however in our implementation this is added as a cost, which means that avoiding sin-
gular thrust configurations become more important when close to the desired docking
position.

It should be noted that both the singular configuration cost in (6) and the thrust
configuration matrix in (4) are both highly nonlinear due to the trigonometric func-
tions, adding them as costs and constraints in an optimization problem will therefor
in general cause the problem to become non-convex.
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1

2

3

Figure 2: Thruster configuration for vessel, where 1 and 2 are azimuth thrusters, and
3 is a tunnel thruster.

2.3 Summary of model

The model used for the simulations is based on the SV Northern Clipper from [11].
The model is a 3 Degree of Freedom (3-DOF) linear model on the form:

η̇ = J(ψ)ν,

Mν̇ +Dν = T (α)f

For thruster configuration, we used two azimuth thrusters in the stern and one tunnel
thruster in the bow, giving configuration seen in Figure 2. Additionally saturations
were added to the force generatetd by the thrusters, where the maximum thrust for
the azimuth thrusters and tunnel thrusers respectively were 1/30 and ±1/60 of the
dry ships weight. For the azimuth thrusters additional constraints were added, this
included a maximum turnaround time of 30s per revolution, and a maximum angle of
±170◦ giving a 20◦ forbidden sector illustrated in figure 2, which ensures the thrusters
do not produce thrust that directly work against eachother, which may cause damage,
this additionally reflects the movement of real world azimuth thrusters which have a
finite turning radius. Additional details on the vessel model, and specific parameters
are given in Appendix A.

3 Autonomous Docking

3.1 Obstacle avoidance

Docking of autonomous vessels is a complex problem, which includes planning and
performing maneuvers to control a vessel to a desired orientation and position, while
adhering to spatial constraint in order to avoid collisions. Given a desired position
xd, yd and a desired heading ψd, we define the docking problem as maneuvering a
vessel as close to the desired pose as possible, with out the vessel going aground, or
running into obstacles, i.e. adhering to spatial constraints.

In order to ensure the vessel does not collide we define a safety margin around the
vessel which obstacles should not enter. Given a set Sv representing the vessel, the
convex hull

Conv(Sv)
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gives the boundary points of the vessel which form a polyhedron around the vessel.
By dilating the set representing the vessel by a desired safety margin M, we get the
following polyhedron representing the safety boundary surrounding the vessel.

Sb = Conv(Sv ⊕M) (7)

For our simulations we used a safety margin of 10% giving the safety boundary Sb
seen in Figure 3, which is a polyhedron in the body frame of the vessel consisting of
five vertices.

In order to ensure safe operating conditions, we define a operating region in terms
of spatial constraints Ss for the vessel. The operating region is chosen as the largest
convex region that encompasses the desired docking position, while not intersecting
with obstacles or land. Choosing the spatial constraints and vessel boundary in this
way, safe operations are ensured when Sb ⊆ Ss, i.e. the vessel with the safety margin
is contained within the spatial constraints, this is illustrated in Figure 3. Using the
fact that the spatial constraints are a convex polyhedron:

Ss = {x|Asx ≤ bs}

we have that the vessel is within the spatial constraints so long as all the vertices of
the vessel boundary follow the linear inequality representing the spatial constraints.

Sb ⊆ Ss ⇐⇒ Asx
NED
i ≤ bs ∀xNEDi ∈ Vertex(Sb) (8)

Since the Vertexes of the vessel boundary are given in the body frame of the vessel we
need to transform them from the body frame to the NED frame, giving the following
nonlinear constraints.

As

(
R(ψ)xbi +

[
x
y

])
≤ bs ∀xbi ∈ Vertex(Sb) (9)

Where R is the rotation from the body frame to NED.

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(10)

This can directly be implemented as inequality constraints in an optimization prob-
lem, and ensures the vessel is contained within a predefined safe region.

While this constraint is easily implemented in a nonlinear programming (NLP) prob-
lem, the constraint is not convex. This means the constraint will enforce safety
requirements, however the NLP may not converge to a global optimum.

3.2 Optimal control problem (OCP)

Using the model, and constraints discussed in the previous sections, with the desired
docking pose ηd = [xd, yd, ψd]

>, we can formulate the following nonlinear continuous
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Sb

Sv

Ss

E

N

Figure 3: Vessel Sv with safety boundary Sb with black dashed line, and spatial
constraints Ss as blue dotted line, in the NED frame. The vessel will always lie
within the spatial constraints Ss as long as all the vertices of Sb lie within the spatial
constraints.

time optimal control problem.

J∗ = min
η,ν,f ,α

∫ T

0

{
||η − ηd||2Qη + ||ν||

2
Qν

+ ||f ||2Rf+

ρ

ε+ det
(
T (α)W−1T>(α)

)
}
dt (11a)

subject to:
η̇ = J(ψ)ν (11b)
Mν̇ +Dν = T (α)f (11c)

As

(
R(ψ)xbi +

[
x
y

])
≤ bs ∀xbi ∈ Vertex(Sb) (11d)

fmin ≤ f ≤ fmax (11e)
αmin ≤ α ≤ αmax (11f)
|α̇| ≤ α̇max (11g)
Initial conditions on η,ν,f ,α (11h)

Where we minimize cost (11a), subject to the dynamic model constraints (11b) and
(11c), the spatial constraints (11d), the saturation constraint (11e), (11f) and (11g),
and the initial conditions (11h) over the time horizon T . For this problem we have
opted to use a simple quadratic penalty in order to ensure the vessel converges to
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the desired pose, however Huber penalty functions as discussed in [12, 13] may give
better performance for large pose deviations.

3.3 Implementation

In order to implement the proposed docking system we need to solve the OCP in the
previous section. This can be done in multiple ways, however the two main classes of
methods are sequential methods, such as direct single shooting [14], and simultaneous
methods such as direct multiple shooting [15], and direct collocation [16]. For this
approach we chose to use direct collocation, in where implicit numerical integration
of the ODE constraints (11b) and (11c), as well as the objective function (11a), is
performed as part of the nonlinear optimization. In the collocation method, the
numerical integration is performed by fitting the derivatives to a degree d Legendre
polynomial, with known integral, within N set time intervals called shooting intervals.
The shooting intervals are then connected to create the full time horizon, by enforcing
constraints on the shooting gaps between intervals.

For this problem we opted to use direct collocation for several reasons. Comparing
direct collocation with multiple shooting, they both offer the same stability in terms
of the optimization, however direct collocation offers a speedup, as the numerical
integration is performed as part of the optimization, and not offloaded to a separate
integration routine, giving the optimization problem a nice sparsity structure. While
multiple shooting offers more flexibility in terms of the integrator used, the implicit
integrator of the direct collocation is sufficient for our purpose. Comparing single
shooting to direct collocation the single shooting problem has much fewer decision
variables, however the problem often becomes very dense, and hence increases the
computation time, single shooting is also more unstable, as propagating the gradients
through a long time horizon often cause them to become very small (vanish) or very
large (explode), and hence the optimization steps may be oscillatory and unstable.

For the implementation we used CasADi [17] a software framework for easy imple-
mentation of nonlinear optimization and optimal control problems, with IPOPT [18]
an interior point optimizer, for solving the resulting NLP.

Solving the OCP once, gives a open loop trajectory over a time horizon T , which
can be used to perform open loop control, or trajectory tracking. We however wish
to use the OCP as the basis for a Nonlinear Model Predictive Control (NLMPC).
Where at each time step the OCP is solved with the vessel state as initial conditions,
and then only the first predicted control action is performed. This gives a closed
loop control scheme, which makes the method more robust to modeling errors, and
external disturbances due to the feedback.
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Figure 4: Vessel docking performed at Hurtigruten terminal in Trondheim Norway.

Figure 5: Vessel docking performed at Lundevågen harbour in Farsund Norway.

4 Simulation

As a proof of concept, simulations were performed, where the OCP was run as a
closed loop Nonlinear Model Predictive Control (NLMPC). For the OCP we used a
time horizon of T = 300 seconds, with N = 30 time steps, making each time step
T/N = 10 seconds. Using this we performed docking simulations at two different
locations, namely Trondheim harbour and Lundevågen harbour, as seen in Figure
4 and 5 respectively. For the docking at Lundevågen harbour, the vessel state and
control inputs are shown in Figure 6, 7 and 8, and for the docking at Trondheim
harbour, the vessel state and control inputs are shown in Figure 9, 10 and 11. From
the simulations we see an expected behaviour, where the vessel will turn and face
the bow in the direction of travel, as this is the most efficient way of traveling. As
the vessel closes in on the target position, it will start initiating the turn such that
it faces in the desired heading, while simultaneously adhering to the defined spatial
constraints in order to avoid colliding.
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Figure 6: Vessel pose error η − ηd and velocity ν when docking at Lundevågen
harbour.
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Figure 7: Thruster force for docking at Lundevågen harbour, with saturation con-
straints indicated in red.
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Figure 8: Azimuth angles when docking at Lundevågen harbour, with saturation
constraints indicated in red.
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Figure 9: Vessel pose error η−ηd and velocity ν when docking at Trondheim harbour.
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Figure 10: Thruster force for docking at Trondheim harbour, with saturation con-
straints indicated in red.
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Figure 11: Azimuth angles when docking at Trondheim harbour, with saturation
constraints indicated in red.
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5 Conclusion

Based on the results of the simulation, the proposed method works very well, with the
vessel approaching the target poses without violating the spatial constraints. Solving
the open loop optimization problem with zeros as a trivial initial guess takes 2 − 4
seconds, while solving the problem using a warm start, a solution is found in about
0.5 seconds. With a purpose build solver this should take even less time, and ensures
real time feasibility, as demonstrated by [19]. NLP solver for the problem should be
chosen carefully. We fond that IPOPT worked the best, as it was able to consistently
solve the problem from a number of tested initial points, within a reasonable amount
of time. With other solvers outright failing, or using excessive amounts of time.

The method does however have some drawbacks, since the proposed problem is non-
convex due to the rotation of the azimuth thrusters and the vessel rotation, this means
convergence to a global optimum can not be guaranteed. The method will however
converge to a locally optimal solution, which in practise may be good enough, and will
most importantly ensure safe operations. It is also worth noting that the problem is
a finite horizon optimization problem, meaning we are only optimizing over a horizon
T . This means that maneuvers that are optimal over a time horizon longer than T ,
may no longer be optimal over T , meaning the horizon must also be carefully chosen
to get the desired behaviour.

The proposed method seems very promising, however many improvements can be
made. Future research can be done on using more complex nonlinear vessel models,
which may include thrust and azimuth dynamics. Different objective functions may
be implemented, such as minimizing time, until the vessel reaches a terminal set, or
energy expended. The method may also be further generalized by having dynamic
spatial constraints, that use the largest convex set that does not intersect obstacles
centered about the vessel as constraints. This may make the method not only suit-
able for docking, but also for general obstacle avoidance while in transit. While the
proposed docking method has some measures ensuring robustness and safety while
performing docking, future research can be done into making the method able to han-
dle external environmental forces such as wind waves and currents using for example
a scenario based MPC.
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A Vessel model

The vessel model used in the simulations was based on the SV Northern Clipper [11],
where the model parameters were taken form the Marine System Simulator (MSS)
Toolbox [20]. The model used has the following vessel dynamics

η̇ = J(ψ)ν,

Mν̇ +Dν = T (α)f

With the diagonal normalization matrixN = diag([1, 1, L]), and the non-dimensional
(bis-system) given by M bis and Dbis, the mass and dampening matrix are given by
the following.

M = mNM bisN , D = m

√
g

L
NDbisN

M bis =



1.1274 0 0

0 1.8902 −0.0744
0 −0.0744 0.1278


 , Dbis =



0.0358 0 0

0 0.1183 −0.0124
0 −0.0041 0.0308




Where the normalization parameters of length gravity and mass are given as L =
76.2(m), g = 9.8(m/s2) and m = 6000e3(kg) respectively.

For the vessel, we assume two azimuth thrusters in the aft, with one tunnel thruster
in the front giving the thruster position and angle given in Table 1, and the thrust
configuration matrix T (α) is as follows.




cos(α1) cos(α2) 0
sin(α1) sin(α2) 1

lx1
sin(α1)− ly1 cos(α1) lx2

sin(α2)− ly2 cos(α2) lx3
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Table 1: Thruster position and angle
Truster x-position y-position angle

Azimuth 1 lx1
= −35m ly1 = 7m α1

Azimuth 2 lx2 = −35m ly2 = −7m α2

Tunnel 3 lx3
= 35m ly3 = 0m α3 = π

2
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Reinforcement learning-based tracking control of
USVs in varying operational conditions

Andreas B. Martinsen1, Anastasios M. Lekkas1, Sébastien Gros1, Jon
Arne Glomsrud2, and Tom Arne Pedersen2

1Department of Engineering Cybernetics, Norwegian University of Science
and Technology, Trondheim, Norway
2Digital Assurance Program, Group Technology and Research, DNV GL,
Trondheim, Norway

Abstract: We present a reinforcement learning-based (RL) control scheme for
trajectory tracking of fully-actuated surface vessels. The proposed method learns
online both a model-based feedforward controller, as well an optimizing feedback
policy in order to follow a desired trajectory under the influence of environmental
forces. The method’s efficiency is evaluated via simulations and sea trials, with the
unmanned surface vehicle (USV) ReVolt performing three different tracking tasks:
The four corner DP test, straight-path tracking and curved-path tracking. The results
demonstrate the method’s ability to accomplish the control objectives and a good
agreement between the performance achieved in the Revolt Digital Twin and the sea
trials. Finally, we include an section with considerations about assurance for RL-based
methods and where our approach stands in terms of the main challenges.

Keywords: reinforcement learning, trajectory tracking, optimal control, model-based
adaptive control,approximate dynamic programming (ADP), dynamic positioning
(DP), autonomous ships, system identification

1 Introduction

Control of marine vehicles is a challenging problem, mostly due to the unpredictable
nature of the sea and the difficulty in developing accurate mathematical models to
represent the varying marine vehicle dynamics. As a result, considerable research effort
has been dedicated to the topic since the early 90’s [1], resulting in a vast literature
utilizing ideas from virtually every branch of control engineering: Linear, nonlinear,
adaptive, intelligent, optimal, fuzzy and stochastic control approaches, to name a
few, have been developed and tested over the years, and many of their properties
are well understood [2–9]. Due to the fact that the hydrodynamic coefficients, and
consequently the behavior, of a marine vehicle can vary significantly in different
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speed regimes, a common approach has been to design controllers for specific motion
control scenarios. This approach simplifies the vessel modeling process and has led
to dynamic positioning (DP) and station keeping controllers for speeds close to zero,
and trajectory tracking or path following (depending on whether temporal constraints
are considered) controllers when a vessel is in transit mode. Naturally, the main
drawback is that, when moving from one speed regime to another, controllers and/or
models with different properties are needed. Two well-researched ways to achieve such
performance diversity with conventional methods are to design numerous controllers
and switch among them when needed, or to use adaptive approaches. To this end,
research effort has been dedicated to developing flexible methods for updating the
model parameters by, for instance, using system identification methods or parameter
estimation via neural networks [10–16]. In the majority of the aforementioned works,
model-based approaches exploiting human knowledge on hydrodynamics and the laws
of motion were considered.

Reinforcement learning (RL), also known as neuro-dynamic programming or ap-
proximate dynamic programming, is a field of research developed by the Artificial
Intelligence (AI) community for achieving optimal sequential decision making under
system and environment uncertainty. The roots of RL can be traced back to the
60’s and a thorough overview of its evolution can be found in [17, 18]. Contrary to
optimal control theory, RL is based on evaluative, rather than instructive, feedback
and comes in different forms, which may or may not include partial knowledge of the
environment or the system. The process typically involves hand-engineering a reward
function, which assigns a reward, or penalty, to the actions that induce desired, or
undesired, outcomes, respectively. An RL algorithm is then assigned to find a policy
(or controller, in control engineering terminology) that solves the control objective
optimally, given the problem constraints and uncertainties. To sum up, RL algorithms
use the reward function as a guide, and through trial and error, learn to model the
system and its environment, which then leads to a policy that provides an optimal
solution to the assigned problem.

Despite a number of successes for RL on simple problems, including algorithms such
as Q-learning and REINFORCE, the field has seen limited interest. In recent years
there has however been a resurgence of interest due to the development of Deep
Reinforcement Learning (DRL), starting with Deep Mind developing the Deep Q-
Network (DQN) algorithm that achieved superhuman performance in several Atari
games[19], followed by Deep Mind’s AlphaGo algorithm becoming the first computer
program to beat a human champion in the game of Go[20]. Since then, DRL has been
successful in surpassing all previous computer programs in chess and learning how to
accomplish complex robotic tasks [21, 22]. Given DRL’s ability to tackle problems
with high uncertainty, implementations to motion control scenarios involving marine
vessels have been presented recently [23–29]. In most of these works the authors
implemented algorithms pertaining to the class of actor-critic RL methods, which
involves two parts [30]: The actor, where the gradient of the performance is estimated
and the policy parameters are directly updated in a direction of improvement. The
main drawbacks of the actor are that it is prone to variance and the new gradient is
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estimated independently of past estimates. The critic, learns an approximation of the
value function, leading to an approximate solution to the Bellman or Hamilton-Jacobi-
Bellman equation, which then is expected to prescribe a near-optimal policy. The
critic’s main drawback is that it lacks reliable guarantees in terms of near-optimality of
the resulting policy. The actor-critic approach involves the actor improving the policy
parameters’ estimation based on the approximations learned by the critic. In the case
of DRL, one main novelty was the use of two DNNs as function approximators of the
policy and the value function, which resulted in considerably improved performance
compared to previous approaches. However, DNNs have drawbacks, with some of the
most important being lack of transparency and interpretability, lack of robustness,
and inability to generalize to situations beyond their past experiences.

In this paper, we follow and extend the work by Kamalapurkar et al. [31, 32] in order
to build a trajectory tracking control system for a fully-actuated unmanned surface
vehicle (USV). Conceptually, the approach is quite similar to dynamic positioning
(DP)[33], but extends to higher velocity operational domains, while also trying to
optimize tracking performance and compensate for environmental forces[34]. The
method combines elements from reinforcement learning, Lyapunov stability theory
and system identification: We assume the structure of the vessel model is known but
all of its parameters are unknown and have to be estimated online, as well as updated
accordingly when the operational conditions change. Then we derive the tracking
error dynamics for a generic reference trajectory and a stabilizing parametric control
law (the actor), whose parameters are estimated during operation.

In order to validate the control scheme, the proposed method was tested in both in
simulations, and on a physical model of DNV GL’s ReVolt platform.

2 Reinforcement learning-based trajectory tracking

In this section we will derive a trajectory tracking control system for fully-actuated
USVs. Since the approach is a model based reinforcement learning approach, we
will start by looking at at how ASVs can be modeled, and how the models can
be approximated online using system identification. We will derive a feedforward
control law for tracking the desired trajectory, and a feedback control law based on
reinforcement learning, for controlling the drift of the vessel in a way that minimizes a
given cost function.

2.1 Vessel Model

The mathematical model used to describe the system can then be kept reasonably
simple by limiting it to the planar position and orientation of the vessel. The motion
of a surface vessel can be represented by the pose vector η = [x, y, ψ]> ∈ R2 × S, and
velocity vector ν = [u, v, r]> ∈ R3. Here, (x, y) describe the Cartesian position in the
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Figure 1: 3-DOF vessel centered at (x, y), with surge velocity u, sway velocity v,
heading ψ in a North-East-Down (NED) reference frame.

earth-fixed reference frame, ψ is yaw angle, (u, v) is the body fixed linear velocities,
and r is the yaw rate, an illustration is given in Figure 1. Using the notation in [35]
we can describe a 3-DOF vessel model as follows

η̇ = J(η)ν,

Mν̇ +D(ν)ν +C(ν)ν = τThrust + τEnvironment
(1)

where M ∈ R3×3, D(ν) ∈ R3×3, C(ν) ∈ R3×3, τThrust, τEnvironment ∈ R3 and
J(η) ∈ SO(3) are the inertia matrix, damping matrix, coriolis matrix, control input
vector, environmental forces and rotation matrix respectively. The rotational matrix
J(η) ∈ SO(3) is given by

J(η) =




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (2)

and is the rotation from the body frame to the earth-fixed North East Down (NED)
reference frame.

2.2 Model approximation

While the structure of a vessel model, as given above, is well known, the model
parameters are often difficult to find. For our approach we wish to make as few
assumptions on the parameters of the vessel model as possible, and use online system
identification in order to model the vessel based on gathered data. For this we assume

Publications

66



that we know the model structure as given in (1), but that the model parameters are
unknown. Splitting the model into a known and unknown part, we get the following:

ẋ = fθ(x) + f1(x) + g(x)u (3)

where f1(x) and g(x) are known, and fθ(x) is unknown. For the vessel model in (1),
with the state vector x = [η,ν]> and the control vector u = τThrust. We have the
following:

fθ(x) =

[
03×1

−M−1 (D(ν)ν +C(ν)ν − τEnvironment)

]

f1(x) =

[
J(η)ν
03×1

]

g(x) =

[
03×3

M−1

]

hence we assume the mass matrix is known, but the damping and coriolis matrix
are unknown. For the damping and coriolis matrices we assume the vessel has port
starboard symmetry, from [35] this gives the following structure.

C(ν) =




0 0 Yv̇ · v + Yṙ · r
0 0 −Xu̇ · u

−Yv̇ · v + Yṙ · r Xu̇ · u 0


 (4)

D(ν) =



−Xu −X|u|u · |u| 0 0

0 −Yv − Y|v|v · |v| − Y|r|v · |r| −Yr − Y|v|r · |v| − Y|r|r · |r|
0 −Nv −N|v|v · |v| −N|r|v · |r| −Nr −N|v|r · |v| −N|r|r · |r|


 (5)

For the damping matrixD(ν), both linear and nonlinear terms are included. The linear
terms are important for low speed maneuvering and station keeping, while ensuring
the velocity converges exponentially to zero. The nonlinear terms are required as they
dominate at higher velocities. This ensures that the model is able to handle a large
range of velocities, i.e. it can be used for both high speed trajectory tracking and low
speed station keeping and dynamic positioning. For the coriolis matrix, we use only
the added mass terms. Since the structure of the rigid body, and added mass is the
same for the coriolis matrix, the coriolis matrix given above will be able to capture
both the added mass and rigid body dynamics.

In addition to learning the vessel dynamics, we also wanted to be able to compensate
for environmental forces. In order to allow for the environmental forces to be learned,
they are modeled as an additional unknown pressure vector pNED

env = [pNorth, pEast, 0]>

assumed constant in the NED frame. The resulting force in the body frame is then
assumed to be proportional to the cross sectional area of the vessel times the pressure
in the body frame, giving the following relationship.

τ body
Environment = diag([w, l, 0])J>(ν)pNED

Environment (6)
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where w and l are the width and length of the vessel respectively, note that for better
accuracy calculated pressure coefficients based on the design of the hull may be used
instead of the width and length. The unknown parameters are

θ = [Xu̇, Yv̇, Yṙ, Xu, Yv, Yr, Nv, Nr, X|u|u, Y|v|v, Y|v|r, Y|r|v, Y|r|r, N|v|v, N|v|r, N|r|v, N|r|r, pNorth, pEast]
> (7)

and the function fθ(x) can be written as a linear function in θ:

fθ(x) = Y (x)θ (8)

where Y (x) is:

Y (x) =

[
03×3

−M−1

]



0 v · r r2 −u 0 0 0 0 −|u|u 0 0 0 0 0 0 0 0 w cosψ w sinψ
−u · r 0 0 0 −v −r 0 0 0 −|v|v −|v|r −|r|v −|r|r 0 0 0 0 −l sinψ l cosψ
u · v −v · u −r · u 0 0 0 −v −r 0 0 0 0 0 −|v|v −|v|r −|r|v −|r|r 0 0




(9)
We therefore obtain the following parametric model:

ẋ = Y (x)θ + f1(x) + g(x)u, (10)

which is linear in the parameters θ.

Model assumptions

• The vessel is port starboard symmetric, with a structure as given as in (1).

• The vessel dampening is linear and quadratic with respect to the linear and
angular velocity.

• Environmental forces are constant in the NED frame, and proportional to vessel
cross section.

• The vessel is fully actuated.

2.3 Trajectory tracking

In this section we will develop an adaptive feedforward control law which given a
time-varying trajectory, finds the control inputs required to follow the trajectory, given
the model approximation found in the previous section.

When the control objective is to track a bounded continuously differentiable signal xd,
the dynamics of the tracking error e = x− xd can be written as

ė = f(x) + g(x)u− ẋd (11)

Assuming g(x) is bounded and has full column rank for all x [31], then the system is
controllable, which in this case holds as the vessel is fully actuated. This gives the
feedforward control for the reference trajectory as :

ud(xd, ẋd) = g+(xd)(ẋd − f(xd)) (12)
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where g+ is the left Moore–Penrose pseudo-inverse, given as g+ = (g>g)−1g>. Using
a reference model ẋd = hd(xd), the feedforward control for the reference trajectory
can be written as:

ud(xd) = g+(xd)(hd(xd)− f(xd)) (13)

We can then formulate the tracking problem as the following time-invariant optimal
control problem.

[
ė
ẋd

]

︸ ︷︷ ︸
ζ̇

=

[
f(e+ xd) + g(e+ xd)ud(xd)

hd(xd)

]

︸ ︷︷ ︸
F (ζ)

+

[
g(e+ xd)

0

]

︸ ︷︷ ︸
G(ζ)

π (14)

Where π is an input correction for the drift dynamics, which we will define in the next
section. Given the parametric model in (10), the parametric version of the tracking
problem is given as:
[
ė
ẋd

]

︸ ︷︷ ︸
ζ̇

=

[
Y (e+ xd)θ + f1(e+ xd) + g(e+ xd)ud(xd;θ)

hd(xd)

]

︸ ︷︷ ︸
F (ζ;θ)

+

[
g(e+ xd)

0

]

︸ ︷︷ ︸
G(ζ)

π (15)

where the parametric feedforward control for the reference trajectory ud(xd;θ) is
given as:

ud(xd;θ) = g+(xd)(hd(xd)− Y (xd)θ − f1(xd)) (16)

Given the formulation above, with the feedforward control for the reference trajectory
ud(xd), and the optimal model parameters θ∗, the exact feedforward control for the
reference trajectory is possible to compute. The dynamics above guarantee trajectory
tracking when ė = 0, i.e. when the tracking error is zero. When the tracking error is not
zero however, we need to control the drift dynamics in order to ensure convergence to
the desired trajectory by designing the feedback control π(t) such that limt→∞ e(t) = 0.
The objective of the optimal control problem is to design the feedback control law
π(t) such that it minimizes a given cost function.

2.4 Approximate optimal control of drift dynamics

In the previous section we developed a feedforward control law ud(xd;θ) for tracking
a desired trajectory. Due to inaccuracies in model approximation and disturbances,
using only the feedforward control law, the vessel will experience drift. In order to
compensate for the inevitable drift, we will in this section develop a feedback control
law π(·), which controls the drift dynamics in a way that optimizes a given cost
function. We will additionally show how the parameters of the feedback control law
can be learned by using reinforcement learning.

The optimal control problem we wish to solve is that of minimizing the cost function:

J(ζ,π) =

∫ ∞

t0

r(ζ(τ),π(τ))dτ (17)
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Where r(·) is scalar function defining the local cost, and should not be confused with
the yaw rate. The cost function is defined as:

r(ζ,π) = Q(ζ) + π>Rπ (18)

where R � 0 is a positive definite symmetric matrix. And Q(ζ) is a positive definite
function. Assuming that a minimizing control policy π(·) exists, the optimal value
function is given as:

V ∗(ζ) = min
π(τ), τ∈[t0,∞)

∫ ∞

t0

r(ζ(τ),π(τ))dτ (19)

We can now note that for a small time step ∆t, the above expression can be formulated
as:

V ∗(ζ(t)) = min
π(τ), τ∈[t,t+∆t)

∫ t+∆t

t

r(ζ(τ),π(τ))dτ + V ∗(ζ(t+ ∆t))

Taking the limit of this as ∆t→ 0, for the optimal value function under the optimal
policy, we get[36]:

V ∗(ζ(t)) = min
π(t)

r(ζ(t),π(t)) + V ∗(ζ(t)) + V̇ ∗(ζ(t))

Simplifying this we get the Hamilton-Jacobi-Bellman (HJB) equation for the optimal
control problem as follows:

H∗ = V̇ ∗(ζ) + r(ζ,π∗(ζ))

= ∇ζV ∗(ζ)>ζ̇ + r(ζ,π∗(ζ))

= ∇ζV ∗(ζ)> (F (ζ) +G(ζ)π∗(ζ)) + r(ζ,π∗(ζ)) = 0

(20)

WhereH∗, π∗ and V ∗ is the optimal hamiltonian, policy and value function respectively.
From calculus of variation [37] we have the Hamiltonian minimization condition, which
states that a value function V is the optimal Value function if and only if there exists
a controller π(·) and trajectory ζ(·) under π(·) satisfy the equation:

∇ζV (ζ)> (F (ζ) +G(ζ)π(ζ)) + r(ζ,π(ζ))

= min
π̂∈U
{∇ζV (ζ)> (F (ζ) +G(ζ)π̂(ζ)) + r(ζ, π̂(ζ))} (21)

The necessary conditions for this to hold are:

∇π
(
∇ζV (ζ)> (F (ζ) +G(ζ)π(ζ)) + r(ζ,π(ζ))

)
= 0 (22)

which gives the closed form solution of the optimal controller as:

G>(ζ) (∇ζV (ζ)) +∇πr(ζ,π) = 0⇔
2Rπ = −G>(ζ) (∇ζV (ζ))⇔
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π∗(ζ) = −1

2
R−1G>(ζ) (∇ζV (ζ)) (23)

Hence assuming that an optimal controller exists, the closed form solution given by
the HJB equation is given by (23). Note that the value function is assumed time
independent, and hence we are looking for a stationary solution of the HJB equation.
This holds true, as the reformulation into a trajectory tracking problem (15) gives a
time independent system.

The Universal Approximation theorem [31, Property 2.3] states that a single layer
neural network can simultaneously approximate a function and its derivative given
a sufficiently large number of basis functions. Using this, we can approximate any
continuous function as:

V (x) = W>σ(x) + ε(x) (24)

where W is the weighting matrix, σ(x) is the vector of basis functions, and ε(x)
is the approximation error, which can be made arbitrarily small by increasing the
number of basis functions. Note that the basis functions can here be chosen to be any
parameterization, such as Radial-Basis functions, polynomials or even a Fourier series.
Using this we can represent the value function as a neural network which is linear in
the parameters, giving the optimal value function:

V ∗(ζ) = W>σ(ζ) + ε(ζ) (25)

and the optimal policy as a feedback control law on the form:

π∗(ζ) = −1

2
R−1G>(ζ)

(
∇ζσ(ζ)>W +∇ζε>(ζ)

)
(26)

By making the parameterizations sufficiently rich, we make the approximation error
small. We can then use the approximations given below, for the value function and
control policy respectively.

V̂ (ζ; Ŵ c) = Ŵ
>
c σ(ζ) (27)

π̂(ζ; Ŵ a) = −1

2
R−1G>(ζ)∇ζσ(ζ)>Ŵ a (28)

In order to find the parameters Ŵ c and Ŵ a, we will in the next section find update
laws, based on reinforcement learning, to be able to optimize performance online.

Unfortunately, policy (28) does not account for the saturating constraints, such as
the maximum force the actuators of the physical vessel can produce. In order to
account for the actuator limitations, we propose a different control policy which uses
a saturating function[36] in order to avoid this problem. Using the following cost
function:

r(ζ,π) = Q(ζ) + 2

m∑

i=1

ri

∫ πi

0

tanh−1(ξ)dξ (29)
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where ri is the ith entry of the diagonal of R, i.e. R = diag([r1, r2 . . . rm]). Figure 2
shows a comparison of the saturating input cost, and a pure quadratic cost. Performing
the same analysis as for the quadratic penalty, we can get the following saturating
control law:

π∗(ζ) = − tanh

(
1

2
R−1G>(ζ) (∇ζV (ζ))

)
(30)

Since tanh(·) saturates at ±1, this means that the feedback control law π will saturate
at ±1, the outputs can then be easily scaled to fit other bounds. It can be shown that
since tanh(·) is a monotonically increasing continuously differentiable function, the
control law satisfies the first order necessary conditions, and the second order sufficient
conditions of the Hamiltonian minimization condition. This means that if an optimal
controller exists the closed form solution is given by (30). Using an approximation we
get the following approximate optimal policy

π̂(ζ; Ŵ a) = − tanh

(
1

2
R−1G>(ζ)∇ζσ(ζ)>Ŵ a

)
(31)

It should be noted, that while the policy in (31) uses a value function approximation
in order to approximate the optimal policy, the parameters Ŵ a are not the same as
the parameters Ŵ c in the value function approximation in (27). In this way we can
separate the learning of the policy and value function, this is known as an actor critic
method, where the value function is known as the critic, and the policy is known as an
actor. The intuitive reason for doing this, is that it allows the critic to learn the value
function resulting from the behaviour of the policy, and in this way it ca critique the
policy. Similarly, the policy or actor, can learn to improve its performance based on
the criticism of the critic. How the learning is performed is further discussed in the
next section.

2.5 Update laws

Now that we have expressed the control laws ud(xd; θ̂), π̂(ζ; Ŵ a) and value function
V̂ (ζ; Ŵ c), the challenge becomes finding update laws for the parameters of the system
identification θ̂, the critic Ŵ c and the actor Ŵ a. For the model parameters θ̂, we
will use methods from system identification and adaptive control, to try to optimize
the fit between the parameterized model, and the observed vessel states. For the actor
and critic parameters Ŵ a and Ŵ c, we will use model based reinforcement learning
to find the parameters that gives the optimal value function, and consequently the
optimal feedback control policy.

For the system identification parameters θ̂, the goal is to find the parameters for
which the model behaves as similarly as possible to the observed behaviour. Running
our physical system, and collecting observations (ẋi,xi,ui) i ∈ 1, 2, . . . , N , we can
formulate a least squares optimization problem for finding the parameters that minimize
the difference between the observed state derivative ẋi and the parametric model (3)
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Figure 2: Comparison between saturating cost (29) and quadratic cost (18). Here the
quadratic cost is scaled by ln(4).

as follows.

θ∗ = argmin
θ̂

N∑

i=1

1

2
||ẋi − Y (xi)θ̂ − f1(xi)− g(xi)ui||22

︸ ︷︷ ︸
L(θ̂)

This is a linear least squares optimization problem for which there exists a closed form
solution, however we can also solve the problem by performing stochastic gradient
decent on the parameters θ̂, as follows:

θ̂ ← θ̂ −∇θ̂L(θ̂)

The gradient decent law above, works in discrete iteration, however we can reformulate
it as a an ordinary differential equation (ODE). Doing some further changes motivated
by the stability analysis of the convergence of the parameter estimates, we get the
concurrent learning based approach proposed in [38] as:

˙̂
θ(t) = ΓθY

>(x(t))x̃(t) +
kθ
N

Γθ

N∑

i=1

Y >(xi)
(
ẋi − f1(xi)− g(xi)ui − Y (xi)θ̂

)
(32)

where Γθ is a parameter weight matrix, and kθ is a scalar weight factor. Assuming that
the prerecorded data is sufficiently rich such that the matrix

∑N
i=1 Y

>(xi)Y (xi) is full
rank, the parameter error can be shown to converge. As the convergence rate of the
system identifier is proportional to the minimum singular value of

∑N
i=1 Y

>(xi)Y (xi),
replacing data in the data stack can be done by using a singular value maximizing
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algorithm [39] in order to get faster convergence. Note, that since we are assuming a
sufficiently rich prerecorded data set, we no longer need persistence of excitation (PE),
in order to guarantee parameter convergence.

In order to find the update laws for the critic or value function parameters Ŵ c, we
need a way of evaluating the optimality of the value function given the the current
parameters. For this we look back at the HJB equation (20) given as:

0 = r(ζ,π∗(ζ)) +∇ζV ∗(ζ)> (F (ζ) +G(ζ)π∗(ζ))

Substituting the estimates V̂ and π̂ for the optimal value function V ∗ and optimal
policy π, we can formulate the Bellman error as the error in the HJB equation as
follows:

δ(ζ; θ̂, Ŵ c, Ŵ a) = Q(ζ) + π̂>(ζ; Ŵ a)Rπ̂(ζ; Ŵ a)︸ ︷︷ ︸
r(ζ,π̂(ζ;Ŵ a))

+∇ζV̂ (ζ; Ŵ c)
>
(
F (ζ; θ̂) +G(ζ)π̂(ζ; Ŵ a)

) (33)

The Bellman error can intuitively be thought of as the error between the optimal value
function under the policy, and the estimates. Since the goal for the value function
or critic is to find the parameters W c that best approximates the value function,
a natural choice becomes to find the parameters that minimize the bellman error.
With reinforcement learning we can use a data stack of prerecorded state transitions
ζi(t) = [xi − xd,i,xd,i]> i ∈ 1, 2, . . . N , to formulate the following optimization
problem:

min
Ŵ c

N∑

i=1

1

2
δ(ζi; θ̂, Ŵ c, Ŵ a)2

This is a nonlinear optimization problem, but we may again use a methods like
gradient decent in order to iteratively learn parameters that improve the optimization
problem given above. Writing the gradient decent in terms of an ODE, and making
some changes motivated by a stability analysis[31]. A least-squares update law with
forgetting factor[40] can be formulated for the critic as follows:

˙̂
W c(t) = −kc,1Γ(t)

ω(ζ(t), t)

ρ(ζ(t), t)
δ̂(ζ(t), t)− kc,2

N
Γ(t)

N∑

i=1

ω(ζi(t), t)

ρi(ζi(t), t)
δ̂(ζi(t), t) (34)

Γ̇(t) =

{
βΓ(t)− kc,1Γ(t)ω(ζ(t),t)ω>(ζ(t),t)

ρ2(ζ(t),t) Γ(t) If ||Γ|| ≤ Γ̄

0 Otherwise
(35)

In critic update law above kc,1 and kc,2 are scalar learning rates, while Γ is an adaptive
weight matrix, and β is a scalar forgetting factor, which controls how previous data
samples are discounted. For brevity of notation we used the functions ω(·), ρ(·) and
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δ̂(·) defined as:

ω(ζ, t) = ∇ζσ(ζ)
(
F (ζ; θ̂(t)) +G(ζ)π̂(ζ; Ŵ a(t))

)

ρ(ζ, t) = 1 + ω>(ζ, t)Γ(t)ω(ζ, t)

δ̂(ζ, t) = δ(ζ; θ̂(t), Ŵ c(t), Ŵ a(t))

Here, ω can be considered a regressor vector, while ρ is a normalization factor, and δ̂
the Bellman error.

The actor update law (36) is chosen such that it learns from the critic, while at the
same time trying to stay close to the initial control law.

˙̂
W a(t) = proj

(
−ka,1

(
Ŵ a(t)− Ŵ c(t)

)
− ka,2

(
Ŵ a(t)−W 0

))
(36)

In the actor update law above, the first term will make the actor parameters follow
the critic parameters, while the second term will try to keep the actor parameters
close to the initial parameters W 0. ka,1 and ka,2 are scalar learning rates for the two
terms. A smooth projection[40] is added such that the actor weights are within a
predefined region, for which the control law is stable. Any smooth projection can be
chosen, however we chose a projection ensuring the actor weights were bounded within
a region of the initial weights W 0.

2.6 Stability analysis

For the system identification paremeters θ, we consider the candidate Lyapunov
function:

Vp(x) = θ̃
>

Γ−1
θ θ̃, (37)

where θ̃ = θ̂−θ∗ is the difference between the predicted and optimal model parameters.
Assuming the system is time invariant, (including time invariant environmental forces
in the NED frame), and given a positive definite weighting matrix Γθ. The time
derivative of the candidate lyapunov function is:

V̇P (x) = 2θ̃
>

Γ−1
θ θ̇

= 2θ̃
>

Γ−1
θ ΓθY (x)>x̃+

2kθ
N
θ̃
>

Γ−1
θ Γθ

N∑

i=1

Y >(xi)x̃i
. (38)

Using the fact that: x̃ = ẋ− f1(x)− Y (x)θ̂ − g(x)τ = −Y (x)θ̃ we get:

V̇P (x) = −2x̃>x̃− 2kθ
N
θ̃
>

N∑

i=1

(
Y >(xi)Y (xi)

)
θ̃ ≤ 0, (39)

hence the model error x̃ and parameter error θ̃ converge exponentially to zero as
t→∞. We can also note that the rate of the parameter convergence is given by the
singular values of

∑N
i=1

(
Y >(xi)Y (xi)

)
.
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For the RL update laws in (34), (35) and (36), it can be shown that under a number of
strict assumptions, a system on the form given in (15), with an unconstrained policy, is
uniformly ultimately bounded in terms of the error dynamics e, as well as the weights
and parameters W a, W c and θ. The stability analysis can be found in [31]. For our
purposes, we further constrain the parameters W a of the feedback control law by
projecting them into a region close to a known stable initial parameterization. Closed
loop stability is important for assurance of the control system, this is further discussed
in section 4.

2.7 Reference model

When generating a reference path, we must ensure that it is sufficiently smooth in order
to be able to say something about the convergence to the path. In practice however,
we may have a signal which is discrete, defining the desired pose only at certain
times. In order to smooth the trajectory we therefor use a reference model, which
tracks the discrete reference pose, and generates a continuous reference trajectory pose
ηd = [xd, yd, ψd]

> and velocity vector νd = [ud, vd, rd]
>. For the pose we can make a

reference model on the following form:


η̇d
η̈d...
η d


 =




0 I 0
0 0 I

−Ω3 −(2∆ + I)Ω2 −(2∆ + I)Ω





ηd
η̇d
η̈d


+




0
0

Ω3


ηref (40)

Where Ω = diag([ω1, . . . , ωn]) and ∆ = diag([δ1, . . . , δn]). Choosing ∆ = I ensures
the reference model is critically damped, while Ω controls the rate of convergence of
the states. We must also generate the velocity vector, however based on the pose, the
velocity can be calculated as:

νd = J>(ηd)η̇d

ν̇d = −S([0, 0, rd]
>)J>(ηd)η̇d + J>(ηd)η̈d

(41)

where −S([0, 0, rd]
>)J>(ηd) = J̇

>
(ηd), and S(ω) is the skew symmetric matrix:

S([ω1, ω2, ω3]>) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




The reason we here use a third order filter for the reference model, is to ensure a
smooth pose, velocity, and acceleration, even when a step in the reference is observed.
This ensures that the feedforward control for the reference trajectory (16) can track
the reference.

A block diagram of the final control structure is given in Figure 3. The diagram shows
how the controller is split into a feedback control law π, and a feedforward control law
ud. Where the Reference filter is used to generate the pose and velocity reference xd,
and the the data stack collected from observing vessel transitions, is used to update
the parameters of the control laws.
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Ref model ud(xd, θ̂)

π(ζ, Ŵ a)

V (ζ, Ŵ c)

Vessel

Data stack

ηref xd τ x, ẋ

Figure 3: Block diagram of the proposed control scheme, solid lines represent state and
control signals, while dashed lines represent adaption signals. Note that the underlying
vessel dynamics considered are unknown, and includes thrust allocation and state
estimation.

3 Experiments

In this section we present the results form simulations, and sea trials on the ReVolt test
platform (see Figure 4), when using the control scheme proposed in the previous section.
We will first present the implementation details for the for the control algorithm. After
that we will briefly present the experimental platform, before finally presenting the
simulation, and sea trial results for varying operational conditions. The experiments
include both low speed dynamic positioning, and high speed trajectory tracking.

3.1 Implementation details

For the implementation the parameter update laws (32), (36), (35) and (34) were
implemented with a 4th order Runge-Kutta integration scheme, with a timestep of 0.1
seconds. Additionally the reference model in (40) and (41) were implemented, also
using a 4th order Runge-Kutta scheme, in order to generate the reference trajectory
xd = [ηd,νd]

> and its derivative ẋd = hd = [η̇d, ν̇d]
>.

For the parameterization of the system identifier, the θ and Y (x) were chosen as in
(7) and (9), while for the actor and critic, the parameterization σ(ζ) was chosen as the
vector of all the second order cross terms of the position and velocity error in the body

B. Reinforcement learning-based tracking control of USVs in . . .

77



frame ebody = [η̃body, ν̃] where η̃body = J>(η)η̃, giving the following expression:

Wσ(ζ) =
∑

xi∈ebody

∑

xj∈ebody

wi,jxixj (42)

The reason that we use the error in the body frame, is the assumption that the cost is
invariant to rotations when in the body frame, as this is the same frame the dynamics
of the system are given in. The initial conditions for the actor and critic weights were
chosen such that they matched the continuous time algebraic Riccati equation for a
simplified linear model of the vessel.

For the control law, the constrained closed form controller (30) was used. And the
output was scaled to fit the max thrust and torque τ̄ = 1√

3
[50.0, 20.0, 32.0]> the

vessel is able to produce. While [50.0, 20.0, 32.0]> is the max force the vessel is able
to produce in each direction individually, due to the coupling between thrusters, we
assume the maximum thrust in any given coupled direction can be approximated by
the an ellipse with axis lengths 50.0, 20.0 and 32.0. Since the proposed method only
allows us to constrain thrust in each individual direction, we use the largest inner
approximation of the ellipse as our thrust bound, giving the max thrust and torque
as τ̄ given above.It should be noted, that while this constrains the thrust, we can
still not guarantee that the vessel is able to produce the desired amount of thrust
as τ̄ is only an inner approximation of the elliptic approximation, whereas the true
thrust bound may be much more complex. It should also be noted that using the inner
approximation τ̄ as a bound, means we are not able to fully utilize the full thrust
that the vessel has to offer. One way of solving these issues would be to include the
thrust allocation as part of the problem formulation, however this is beyond the scope
of this paper. It should also be noted that the desired thrust vector includes both the
path tracking control law and drift correction τThrust = ud(xd; θ̂) + π̂(ζ; Ŵ a) where
the saturation is only considered in the drift controller and not the path tracking
control law. This means the desired path should be generated in a way that satisfies
the thrust constraints.

For the state cost functionQ(ζ) a quadratic cost on the formQ(ζ) = [η̃body, ν̃]>Q[η̃body, ν̃]
was chosen, where Q is a positive definite weight matrix. Given as:

Q =




1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 0.0 0.0 0.0
0.0 1.0 10.0 0.0 0.0 0.0
0.0 0.0 0.0 10.0 0.0 0.0
0.0 0.0 0.0 0.0 10.0 0.0
0.0 0.0 0.0 0.0 0.0 10.0




The weight matrix is given as a mostly diagonal matrix, with a small cross term
between the position error in sway direction, and heading error. The cross term is
added in order to encourage the vessel to travel in the surge direction when there is a
large position error, as this is the most efficient direction of travel.
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Figure 4: ReVolt test platform courtesy of DNV GL

The data stack that was used consisted of 100 samples, and a singular value maxi-
mization scheme was implemented in order to increase the convergence rate. Using a
purely singular value maximization based data selection scheme, while giving good
performance on a stationary system, does not work for time varying system, and hence
does not allow for estimating the slowly varying environmental forces. In order to
account for this, weighting of the singular value maximization, and data sample age
was used in order to save recent samples with high singular values.

3.2 Experimental platform

The ReVolt, shown in Figure 4, is a 1 : 20 scale model of a autonomous concept vessel
developed by DNV GL in collaboration with NTNU. The model is 3 meters long, 0.72
meters wide, and weighs 257 kg. ReVolt has a top speed of 2 knots (approximatly 1
m/s) with a total combined engine power of 360 W. The thrust configuration is given
as in Figure 1, with two identical stern thrusters, and one slightly less powerful bow
thruster, all of which are fully rotatable azimuth thrusters, and are controlled by an
optimization based thrust allocation (TA) algorithm. The vessel state is estimated
using a nonlinear observer consisting of an Extended Kalman Filter (EKF), and
combines measurements from a Global Navigation Satellite System (GNSS) with
Real-Time Kinematic (RTK) correction data, on board accelerometer, gyroscope and
compass. This provides accurate heading and position down to ±0.2◦ and ±1 cm. A
description of the ReVolt hardware and software is given in table 1.

While the physical vessel was used for the sea trials, a high fidelity Digital Twin of
ReVolt, developed by DNV GL, was used for simulation. The Digital Twin is based
on a full 6DOF model, with parameters identified through tow-tank experiments, as
well as frequency domain analysis of a 3D model of the vessel hull. The Digital Twin
allowed for rapidly testing how the proposed control scheme performed under ideal
conditions, as well as under different sea states, ocean currents and wind conditions.
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Onboard computer: Tank-720
Sensors: Xsens MTI-G-710 IMU

Vector VS330 GNSS Receiver
Software: Linux Ubuntu LTS 16.04

ROS Kinetic Kame

Table 1: ReVolt hardware and software specifications

3.3 Simulations and Sea trials

In order to test the proposed control scheme, a number of experiments were devised.
As the control scheme was build to be able to handle both high speed and low speed
maneuvering, we wanted to test both, by doing low speed Dynamic Positioning (DP),
as well as higher speed path tracking.

3.3.1 Dynamic Positioning (DP)

In order to test the Dynamic positioning capabilities of the control method, the four
corner test seen in Figure 5 is used. The four corner DP test is used, as it shows the
tracking capabilities of the vessel for individual degrees of freedom, as well as the
coupled motion of all degrees of freedom, it is also worth noting that the vessel returns
to the initial pose, meaning the test can easily be repeated. The four corner test starts
with the vessel pointing north 0◦, then performs the following commands:

1. Change position l meters due north, and come to a complete stop. This tests
the the surge motion of the vessel.

2. Change position l meters due east, and come to a complete stop. This tests the
the sway motion of the vessel.

3. Change heading 45◦, and come to a complete stop. This tests the the yaw motion
of the vessel.

4. Change position l meters due south, and come to a complete stop. This tests
the the coupled surge and sway motion of the vessel.

5. Change position l meters due west, and heading to 0◦ and come to a complete
stop. This tests coupled motion of all degrees of freedom.

For the box test we chose the box side length l to be 5 meters, and the reference path
was generated by linearly interpolating the the pose between the the commands, with
55 seconds to execute each command and a 5 second pause between commands in
order for the reference filter to catch up to the reference, and ensure that the vessel
comes to a stop. The reference poses used for the experiments are given in Table 2.
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Figure 5: Four corner DP test, for testing trajectory tracking in individual, and
coupled degrees of freedom
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Time [s] 0 55 60 115 120 175 180 235 240 295 300
xr [m] 0 5 5 5 5 5 5 0 0 0 0
yr [m] 0 0 0 5 5 5 5 5 5 0 0
ψr [deg] 0 0 0 0 0 45 45 45 45 0 0

Table 2: Reference pose for four corner DP test, note that the reference that was used
was a linear interpolation of the poses in the table

Figure 6: Simulation results for four corner DP tests

In order to evaluate the performance of the dynamic positioning, The Integral Absolute
Error (IAE) given in (43) was used.

IAE(t) =

∫ t

0

√
(η̄ − η̄d)>(η̄ − η̄d)dt (43)

Where η̄ and η̄d are the normalized pose vectors, normalized between ±5meters in
north and east direction, and ±50◦ in heading, giving the following.

η̄ =

[
x

5
,
y

5
,
ψ

50

]>
, η̄d =

[
xd
5
,
yd
5
,
ψd
50

]>

Running the proposed control scheme in simulations on the Digital-Twin of the ReVolt
vessel, we got the trajectory and errors seen in Figure 6. For the same test performed
on the physical vessel during the sea trials, we got the trajectory and errors seen in
Figure 7.

3.3.2 Path tracking

For both straight line path tracking and curved path tracking, the way-points in Table
3 were used to generate a linearly, and quadratically interpolated path respectively.
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Figure 7: Sea trial results for four corner DP tests
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Figure 8: Integral Absolute Error (IAE) for the Dynamic Positioning task, the gray
and white bands mark the different commands/phases of the four corner test.
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Figure 9: Time-lapse drone photo of four corner DP test. It should be noted that the
time-lapse above is of an early test, where errors in the navigation system resulted in
poor performance.

For the heading, the path direction was used to generate the desired heading, giving
the following reference heading.

ψr = atan2(ẏr, ẋr) (44)

In order to encourage the vessel to converge to path in the surge direction, a small
cross term was added in the state cost function Q(ζ) between the heading error, and
the position error in the surge direction of the body frame. The key insight here, is
that the for large errors in surge, this term will encourage the vessel to turn the bow
towards the desired position, meaning the vessel is encouraged to travel in the surge
direction, which is the most efficient direction of travel, due to the design of the hull.
For our implementation, where pose error is given in the body frame of the vessel, and
the state penalty is given as a quadratic function Q(ζ) = ζ>Qζ, this penalty is added
by simply adding a term to the off-diagonals of Q corresponding to the cross terms
between position error in the y direction, and the heading error.

Running the straight line path tracking on the Digital Twin of the ReVolt vessel we
got the results seen in Figure 10. Running the same tests on the physical vessel, we
got the results seen in Figure 11. As we can see, the proposed control scheme is able
to follow the path quite well.
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Time [s] 0 100 200 300
xr [m] 0 50 100 150
yr [m] 0 0 50 50

Table 3: Reference pose for the straight line path and curved path, note that the
reference that was used was for straight line path tracking was a linear interpolation
of the poses, and the reference pose for the curved path, was a quadratic interpolation
of the poses.

Figure 10: Simulation results for straight line and curved path tracking
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Figure 11: Sea trial results for straight line and curved path tracking
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3.4 Results

Based on the results, the proposed method seems to work very well, in both simulations
and the physical platform. While the simulator has been designed to perform as closely
as possible to the physical platform, there are slight discrepancies that may explain
the performance drop. The main factors of the performance drop is however most
likely due to the measurement and observation noise that is present on the physical
vessel. While the RTK GNSS is able to give a good measurement for the pose of
the vessel, the estimated vessel velocities that the algorithm is dependent on become
very inaccurate, especially at low speeds when the signal to noise ration becomes
small. Another error source is likely the thruster dynamics. While the algorithm above
assumes the desired thrust is produced immediately, in reality producing the desired
thrust vector takes time, as the thrust allocation involves rotating the thrusters to
a given angle, as well as spinning up to a desired motor RPM. An additional source
of error may also have been a vertical stabilizer, which had recently been added to
the vessel between the two rear thrusters, but had not been taken into account in the
thrust allocation algorithm. Overall, the results are quite good, especially considering
the size of the vessel, the relatively low thrust capability, and the precision to which
the maneuvers are performed, even under the uncertainty created by the sensor noise,
and environmental forces.

4 Assurance of RL-based controllers

Assurance is the structured collection of evidence supporting claims and arguments
that a system is safe or fit for its intended purpose. Assurance is required to develop
trustworthy systems and solutions for use in real-world applications. Principles of
assurance can be found in any certification or verification framework, where claims and
arguments most often can be considered requirements of verification, while evidence
is the result from this verification. Two types of verification are used: 1) Product
verification, which performs direct verification of the developed product or system
and produces primary evidence; 2) process verification, which performs verification of
some part of the development process and produces circumstantial evidence. Using
established verification frameworks applied to conventional marine control systems,
experience has shown what requirements and evidence are most important when
verifying these conventional control systems. With novel technology, such as data-
driven methods, the verification requirements and evidence that is needed for assurance
are still unknown, as they pose a new set of challenges when assuring the system.

Data-driven approaches are not new, but with increasing computational power and
abundance of data there has been an increasing interest in these methods. Within
control theory, the field of system identification has been a key part of control
engineering for many years [41, 42], and data-driven modelling for control purposes
has been practiced since. Such models are typically based on the physical properties
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that govern the system, and hence the parameters estimated by such methods may
reflect measurable properties of the system, thus providing benchmarks for verification.
However, most models represent the physical system only within certain operational
limits, e.g. weather or sea states, or for certain vessel speed ranges, which restricts
the validity of the models accordingly.

Contrary to the more static nature of classical data-driven approaches, where tuning
the control parameters relies on offline estimation of the model parameters, in this
paper the key difference is that model based-RL is used for online tuning of both the
vessel model (including an estimation of unknown disturbances) and the control policy
parameters. The vessel model and the control policy are based on proven methods
used in the maritime industry for vessel station keeping and guidance, but there are
still some key issues that must be considered. For instance, the control policy is highly
dependent on an instantaneously valid vessel model, which in turn means the behavior
of the vessel is highly dependant on the validity of the learned model. Both the vessel
model and the control policy parameters are all continuously learned, but it is critical
that all allowed parameter combinations give a sufficiently safe behavior. The proposed
control scheme in this paper continuously learns and updates the parameters in order
to optimize the tracking behaviour. In terms of safety, the main concern is whether
the learned model and policy parameters lead to a safe and acceptable behaviour.
Verifying this in a setting where the parameters are learned online is still an open
problem.

Amodei, et. al.[43] discusses five basic concrete problem areas related to RL and safety,
which must be taken into account for any application of RL.

1. Avoiding Reward Hacking: The first problem, is that of hacking or gaming
the cost function. For the tracking problem in this paper, a positive definite
quadratic penalty on the error dynamics is used. From control theory these
methods are known to converge to the origin, i.e. where the error is zero. This
means the intended behaviour is guaranteed when the policy converges to the
optimal policy.

2. Avoiding Negative Side Effects: The second problem of avoiding negative
side effects, is similar to the first, but addresses the issue of choosing the cost
function such that the optimal policy does not give bad or unintended behaviour.
For the method proposed in this paper, making such guarantees is quite difficult,
as tuning the parameters of the quadratic cost function will still have an effect
on the vessel behaviour when converging to the origin. One example of this is
that we typically want the vessel to approach the path head on if we have a
large deviation between the position we are at, and the desired position. Tuning
the parameters of cost function in order to get this behaviour is not trivial.

3. Scalable Oversight: This pertains to how we can ensure that the RL agent
respects aspects of the objective that are encountered infrequently. In terms
of the trajectory tracking problem, the environment is quite limited, and the
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objective is clearly defined, hence the problem of scalable oversight is of limited
relevance to the work presented in this paper.

4. Safe Exploration: Exploration is necessary in order to improve performance,
but bears risk, and thus performing exploration in a safe manner is not trivial.
Safe exploration also encompasses the evaluation of the quality of the training
data that is gathered. For a real world application, this means accounting
for faulty hardware, and noisy measurements, which may lead to problematic
training data. For the method proposed in this paper, where the system is
learning continuously online, the problem of safe exploration and learning is
highly relevant. Some measures are taken, such as using batches of training data
and restricting the values that the policy parameterization may take. However,
these measures only serve to mitigate potential problems, hence safe exploration
and learning is still an open problem.

5. Robustness to Distributional Shift: This refers to how we can ensure the
agent is robust to changes in the operating environment. For the proposed
method, this is mostly solved by continuously learning online, which ensures
that the agent learns the distributional shift when the environment changes.
However as discussed in the fourth problem of safe exploration, learning online
complicates the matter of ensuring data quality.

In order to produce the evidence needed for verification of data driven methods,
there are two main approaches, namely scenario based verification, and theoretical
verification. Scenario based verification would be to conduct extensive testing in
representative scenarios, which in practice would mean simulation-based testing as
this would be the only feasible online solution. More limited real testing should also be
used, but targeted towards validating the simulation accuracy. Many RL solutions are
in practice not viable without simulation-based training or development and this would
mean the same tool can be utilized both for testing, and offline training. The challenge
in this case would be to induce a representative set of scenarios to prove the safety
or validity of the solution, and such scenario selection is an open question for testing
AI or systems operating in complex environments in general. The second approach
theoretical verification, would be to impose constraints on the RL algorithm in order to
avoid unwanted behaviour. This would entail combining methods from control theory,
a physical or mathematical understanding of the system, and experience or insights
of the control scheme, in order to express and implement various constraints on the
learnable model and policy parameters. This may not conceptually be a new approach
since similar methods already exist, but this approach is difficult to use in practise, as
finding parameter constraints that ensure safe operations is nontrivial.

In conclusion, an assurance framework for technologies such as the one presented in
this paper is an open research question. However, one can with confidence state that it
should include both process and product verification, i.e. considering not only what is
developed, but also how it is developed. This would mean that adequate development
and assurance processes should be developed, including verification methods that can
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produce the required evidence both for efficient development, as well as assurance.
In addition, novel data-driven methods should be combined with prior knowledge,
verified solutions and proven physical or mathematical relations [44]. This, in order to
be able to explain the behaviour, and in turn guarantee that the methods are safe and
fit for the intended purpose.

5 Conclusion

The proposed method performed very well in all three tested tracking scenarios both
in simulations and in sea trials. The method is also versatile, as using it on different
vessels only requires knowledge of the inertia matrix, with the update laws providing
a tool for learning the other model parameters, and a control policy. For future work,
it may be interesting to improve and update the thrust allocation algorithm to get a
smaller error between produced and desired thrust, and investigate whether this results
in better accuracy. Alternatively, feedback from the thrusters can be used to get better
estimates of the thrust vector for use in the data stack, and model estimation. For the
value function, polynomial basis functions were used, and the estimator was linear in
the parameters, which leads to a limited estimation capability. Deep learning methods
could lead to more accurate value function approximation, albeit at the expense of
transparency and interpretability. Procedures for implementing online assurance would
add great value to current research practices. One possible way to do this is by using a
new parameterization of the control law once it has been verified, either by simulation,
or by constraining the parameterization to a set of parameters that is known to be
safe.
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Combining system identification with reinforcement
learning-based MPC
Andreas B. Martinsen1, Anastasios M. Lekkas1, and Sébastien Gros1

1Department of Engineering Cybernetics, Norwegian University of Science and Tech-
nology (NTNU), Trondheim, Norway

Abstract: In this paper we propose and compare methods for combining system
identification (SYSID) and reinforcement learning (RL) in the context of data-driven
model predictive control (MPC). Assuming a known model structure of the controlled
system, and considering a parametric MPC, the proposed approach simultaneously:
a) Learns the parameters of the MPC using RL in order to optimize performance, and
b) fits the observed model behaviour using SYSID. Six methods that avoid conflicts
between the two optimization objectives are proposed and evaluated using a sim-
ple linear system. Based on the simulation results, hierarchical, parallel projection,
nullspace projection, and singular value projection achieved the best performance.

Keywords: Reinforcement Learning, Model predictive control, System identification

1 Introduction

Reinforcement Learning (RL) is a powerful tool for tackling Markov Decision Pro-
cesses (MDP) without depending on a model of the probability distributions underly-
ing the state transitions. Most RL methods rely purely on observed state transitions,
and realizations of the stage cost in order to increase the performance of the control
policy. RL has drawn increasing attention due to recent high profile accomplishments
made possible using function approximators [1]. Notable examples include perform-
ing at super human levels in games such as Go, chess and Atari [2–4], and robots
learning to walk, fly without supervision, and perform complex manipulation [5–7].
Most of these recent advances have been the result of RL with Deep Learning (DL)
by using Deep Neural Networks (DNNs) as function approximators. While systems
controlled by DNNs show a lot of promise, they are difficult to analyze, and in turn
their behaviour is difficult to certify and trust.

Model Predictive Control (MPC) is a popular approach for optimizing the closed loop
performance of complex systems subject to constraints. MPC works by solving an
optimal control problem at each control interval in order to find an optimal policy.
The optimal control problem seeks to minimize the sum of stage costs over a horizon,
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provided a model of the system and the current observed state. While MPC is a well-
studied approach, and an extensive literature exists on analysing its properties [8, 9],
the closed loop performance heavily relies on the accuracy of the underlying system
model, which naturally presents challenges when significant unmodeled uncertainties
are present.

In recent works, such as [10, 11], RL and MPC have been combined, by allowing
RL to use a MPC as a function approximator. This approach allows to combine the
benefits of data-driven optimization from RL with the tools available for analysing
and certifying the closed loop performance of MPC. In this paper we extend the work
by [10], by using a parametric MPC as a function approximator for performing RL,
and combining it with on-line system identification (SYSID). The SYSID component
is added with the purpose of aiding RL when there is a large model mismatch, as well
as helping to improve the accuracy from the resulting MPC trajectory prediction.
The main contribution of the paper are the methods for combining the competing
optimization objectives of the RL and the SYSID in a way that minimizes plant
model mismatch while not affecting the closed loop performance of the MPC. This
paper focuses on the Q-learning approach to RL.

The paper is organized into five sections. Section 2 gives a brief overview of data-
driven MPC, reinforcement learning and system identification. Section 3 describes
several approaches for combining RL and SYSID in order to avoid loss in performance
due to conflicting objectives. Section 4 shows simulation results for the different
proposed methods, and finally, Section 5 concludes the paper.

2 Background

2.1 MPC as function approximator

As in [10], we will use a parametric optimization problem as a function approximator
for reinforcement learning. Given a stage cost L(x,u) we can express the following
MPC problem

min
x,u,σ

λθ(x0) +

N−1∑

i=0

γi
(
L(xi,ui) + Lθ(xi,ui) + ω>σi

)

+ γNV fθ (xN ) (1a)

s.t. xi+1 = fθ(xi,ui), (1b)
h(xi,ui) + hθ(xi,ui) ≤ σi, (1c)
x0 = s, (1d)

where we optimize the state, x, action u and slack variables σ over the time horizon
N . In the optimization problem, λθ(x) is an initial cost modifier, L(x,u) is the stage

Publications

98



cost, Lθ(x,u) is a parametric stage cost modifier, V fθ (x) is a parametric terminal cost
approximation, fθ(x,u) is a parametric model approximation, h(x,u) and hθ(x,u)
are inequality constraints and inequality constraint modifiers, and γ ∈ (0, 1] is the
discount factor. The goal of the RL component is to modify the parameters θ of the
parametric optimization problem in order to find a policy πθ(x) that minimizes the
expected cumulative discounted baseline stage cost:

min
θ

E

[ ∞∑

i=0

γiL̄(xi, πθ(xi))

]
,

where the baseline stage cost L̄ is defined as:

L̄(xi,ui) = L(xi,ui) + ω>max(0, h(xi,ui)).

Here the second term penalizes the constraint violations.

Ideally we would like strict constraints, however this would mean the MPC problem
can become infeasible when model mismatch or disturbances cause constraint viola-
tions. In order to mitigate this problem, a slack penalty ω is used, which is chosen
large enough such that the constraints are only violated when the MPC becomes in-
feasible. For the RL, adding slack constraints is also important, as strict constraints
means a penalty of ∞ for constraint violations, which most RL algorithms are not
able to deal with.

2.2 Value functions and policy

Given the parametric optimization problem (1), we define the parametric action-value
function as:

Qθ(s,a) = min
x,u,σ

(1a) (2a)

s.t. (1b) - (1d), (2b)
u0 = a, (2c)

which trivially satisfies the fundamental equalities underlying the Bellman equation:

Vθ(s) = min
a
Qθ(s,a), (3)

πθ(s) = argmin
a
Qθ(s,a). (4)

2.3 Q-Learning

A classical RL approach is Q-Learning [12]. To perform Q-Learning for MPC we
can use semi-gradient methods [13], which are based on parameter updates driven by
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minimizing the temporal-difference error δ:

δt = yt −Qθ(st,at),

where yt = L̄(xt,ut) + γVθ(xt+1) is the fixed target value. Defining the squared
temporal-difference error as the minimization objective, and assuming that the target
value is independent of the parameterization θ, we get the semi-gradient update:

θ ← θ + αδ∇θQθ(xt,ut), (5)

where α > 0 is the step-size or learning rate. For the classical semi-gradient Q-
learning scheme given in (5), a second order method can be implemented by using
quasi-Newton steps instead of gradient steps. This results in the following update
law:

θ ← θ + αδH−1∇θQθ(xt,ut), (6)

where H = ∇2
θ(yt −Qθ(xt,ut))

2 is the Hessian of the error between the targets and
the action-value function. For a batch of transitions, the problem becomes a nonlinear
least squares problem:

min
θ
ψ(θ), where ψ(θ) =

∑

t

δ2t

which may be solved using a Gauss-Newton method, as proposed in [14]. The modified
Gauss-Newton method gives the following update law:

θ ← θ + α (J>QJQ + λQI)−1J>Qδ︸ ︷︷ ︸
:=∆θQ

, (7)

where JQ is the Jacobian of the action-value function over the batch in use, and δ is
the vector of temporal difference errors:

JQ =




∇θQθ(xt,1,ut,1)
∇θQθ(xt,2,ut,2)

...
∇θQθ(xt,B ,ut,B)


 , δ =




δ1
δ2
...
δB




over the batch B = {(xt,i,ut,i,xt+1,i)|i ∈ 1 . . . B}. The diagonal matrix λQI is
added such that J>QJQ + λQI is positive definite, and acts as a regularization of the
Gauss-Newton method.

It is worth noting that the semi-gradient Q-Learning method given above yields no
guarantee to find the global optimum of the parameter for nonlinear function approx-
imators Qθ. This limitation pertains to most applications of RL relying on nonlinear
function approximators such as the commonly used DNN. It is also worth noting that
in practice the parameterization θ is limited. This means we in general are not able to
fit the Q function globally, but rather that the formulation above fits the Q function
to the distribution from which the samples are drawn.

Publications

100



2.4 System Identification

System identification offers a large set of tools for building mathematical models of
dynamic systems, using measurements of the systems input and output signals. Based
on the data-driven MPC scheme outlined in the previous section, we want an on-line
parameter estimation method compatible with the parametric model. A classical
SYSID approach is the Prediction Error Method (PEM) where the objective is to
minimize the difference between the observed state and the predicted state given the
observed transition (xt,ut,xt+1). For a parametric model approximation of the form:

x̂t+1 = fθ(xt,ut),

the state error e between the parametric model and the observed state can then be
expressed as follows:

et = xt+1 − x̂t+1 = xt+1 − fθ(xt,ut).

In the simplest case, where the state vector x is fully observable, PEM can be per-
formed by minimizing the squared error between the observed state, and the predicted
state:

min
θ
φ(θ), where φ(θ) = e>e

where e collects a batch of measurements ei. This optimization problem can be
tackled via gradient descent, giving the following update law:

θ ← θ − β∇θe>e,

where β is the learning rate. Since θ are all the parameters appearing in the MPC
(1), PEM is in practise only modifying the subset of the parameters θ that appear in
the parametric model. For faster learning, we propose using a second order approach,
and perform quasi-Newton steps on the parameters. One such method is the modified
Gauss-Newton method, which for a batch of transitions reads as follows:

θ ← θ + β (J>f Jf + λfI)−1J>f e︸ ︷︷ ︸
:=∆θf

, (8)

where Jf is the Jacobian of parametric system model, and e is the vector of model
errors over a batch B = {(xt,i,ut,i,xt+1,i)|i ∈ 1 . . . B}.

Jf =




∇θfθ(xt,1,ut,1)
∇θfθ(xt,2,ut,2)

...
∇θfθ(xt,B ,ut,B)


 , e =




xt+1,1 − fθ(xt,1,ut,1)
xt+1,2 − fθ(xt,2,ut,2)

...
xt+1,B − fθ(xt,B ,ut,B)




Similarly to RL, for a batch of transitions, the problem becomes a least-squares prob-
lem, fitting the observed transitions to the parametric model.
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It is worth noting that for a linear parameterization, the Gauss-Newton method gives
convergence to the least squares solution over the batch in one step, when β = 1
and λf = 0. It is also worth noting that since PEM only works on a subset of
the parameters θ, Jf is rank deficient and hence J>f Jf is singular by construction.
Choosing the regularization term λf > 0, will ensure J>f Jf + λfI is nonsingular
and hence invertible. For the regularization parameter λf and λQ we typically want
to choose a small value, to get performance close to the pure Gauss-Newton method,
while only slightly regularizing in order to avoid issues arising form a singular Hessian
approximation.

3 System identification for data-driven MPC

The Prediction Error Method and Reinforcement Learning are modifying the same
parameter vector θ, but operate using two different objectives. RL is targeting policy
optimization by minimizing the temporal difference error against a fixed target, while
PEM is fitting the parametric model to the observed state transitions.

A combination of the two methods then becomes a multi-objective optimization prob-
lem. The simplest approach is to directly combine the steps from both the Q-Learning
and PEM. Using the second order update laws in (7) and (8), with the parameter
updates ∆θQ and ∆θf respectively, we get the following:

θ ← θ + α∆θQ + β∆θf (9)

Here the step-lengths α and β can be thought of as the weighting between the Q-
Learning and SYSID respectively. However, the end goal is arguably to maximize the
closed-loop performance of the MPC scheme rather than minimizing the prediction
error of the model, hence if the two objectives are competing, the RL objective should
be prioritized. This suggests that an alternative to the naive sum of update laws
approach must be considered.

3.1 Hierarchical multi-objective approach

In order to introduce a hierarchy between minimizing the PEM and RL objectives,
we can consider the optimization problem:

min
θ

φ(θ), (10a)

s.t. ∇θψ(θ) = 0, (10b)

which requires θ to minimize the PEM while being a stationary point of the RL
objsective. If ∇2

θψ(θ) ≥ 0 is satisfied at the solution of (10), then θ is a (local)
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minimizer of the RL objective. The KKT conditions associated to (10) read as:

∇θφ(θ) +∇2
θψ(θ)λ = 0, (11a)
∇θψ(θ) = 0. (11b)

A quasi-Newton step on (11) reads as:

∇2
θφ(θ)∆θ +∇2

θψ(θ)λ = −∇θφ(θ), (12a)

∇2
θψ(θ)∆θ = −∇θψ(θ). (12b)

Let us consider a (possibly θ-dependent) nullspace / full-space decomposition of the
RL Hessian ∇2

θψ, i.e. N ,F such that:

∇2
θψ(θ)N = 0, [N F ] full rank, N>F = 0, (13)

and the associated decomposition of the primal step ∆θ:

∆θ = Nn+ Ff . (14)

We then observe that the primal quasi-Newton step given by (12) can be decomposed
into:

N>∇2
θφNn+ N>∇2

θφFf = −N>∇θφ, (15a)

F>∇2
θψFf = −F>∇θψ. (15b)

One can then verify that:

n = −
(
N>∇2

θφN
)† (

N>∇θφ−N>∇2
θφFf

)
, (16a)

f = −
(
F>∇2

θψF
)−1

F>∇θψ, (16b)

where .† stands for the Moore-Penrose pseudo-inverse. Let us label:

∇2
θφ
†
⊥ = N

(
N>∇2

θφN
)†

N>, (17)

the pseudo-inverse of the SYSID Hessian ∇2
θφ projected in the nullpsace of the RL

Hessian. Let us additionally label

∆θHQ = Ff , ∆θHf = Nn. (18)

The primal step ∆θ then reads as:

∆θ = ∆θHQ + ∆θHf , (19a)

∆θHQ = −F>
(
F>∇2

θψF
)−1

F>∇θψ = −∇2
θψ
†∇θψ, (19b)

∆θHf = −∇2
θφ
†
⊥∇θφ+∇2

θφ
†
⊥∇2

θφ∆θHQ . (19c)
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In practice, pseudo-inverses are not always numerically stable. In order to alleviate
this potential issue, we can use regularizations of the PEM and RL Hessians instead,
i.e. we can select λQ, λf > 0 and use:

∆θHQ = −
(
∇2
θψ + λfI

)−1∇θψ, (20a)

∇2
θφ
†
⊥ = N

(
N> (∇2

θφ+ λQI
)N

)−1
N>, (20b)

together with (19c) instead of (19b) and (17). For λQ,f → 0, (20)-(19c) asymptotically
deliver the same steps as (19).

3.2 Projected steps

In this section we will discuss several projections we can perform in order to mitigate
conflicts between the two optimization objectives. As discussed earlier, we typically
want the RL updates to dominate, as these are directly related to the MPC closed-loop
performance.

3.2.1 Parallel projection

We first consider a parallel projection, where the PEM step ∆θf is projected along
the RL step ∆θQ, giving the following projected PEM step

∆θ
‖
f =

∆θQ∆θ>Q
∆θ>Q∆θQ

∆θf

Intuitively, this projection can be thought of as an adaptive step-length for the RL
step, i.e. the SYSID modifies the RL step-length in the direction that improves the
SYSID loss.

3.2.2 Orthogonal projection

Similar to the parallel projection, we may use the orthogonal projection:

∆θ⊥f =

(
I − ∆θQ∆θ>Q

∆θ>Q∆θQ

)
∆θf

The orthogonal projection is dual to the parallel projection, in that it does not effect
the length of the of the RL step. It may however have the drawback of working
against the RL step since we do not account for the sensitivity of the RL objective
in the orthogonal direction. This can be easily be seen in the case where a optimum
of the RL objective is achieved, i.e. δ∇θQθ(x,u) = 0, where any PEM step will in
general push the parameters away form the RL optimum.
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3.2.3 Nullspace projection

Based on the heriarcical optimization problem in (19c), we see that in the particular
case that ∇2

θφ = c−1 ·I holds, the hierarchical optimization problem reduces to simply
projecting the PEM step into the nullspace of the RL step:

∇2
θφ
†
⊥ = cNN>, (21a)

∆θHf = −cNN>∇θφ = −NN>∇2
θφ
−1∇θφ. (21b)

Using this nullspace projection, with the gauss newton approach in (8) we get the
following update law:

∆θNf = NN>∆θf .

Choosing this simplified nullspace projection, the PEM step is projected into a di-
rection for which the value function is not sensitive, hence the gradient step for the
SYSID will not effect the primary goal of optimizing the RL objective. The nullspace
projection may also be thought of as a regularization of the RL objective.

3.2.4 Smallest singular value projection

The nullspace projects the PEM steps into the nullspace of H, i.e. the space where
the singular values of H are zero. As a generalization of the nullspace projection,
we can project the PEM steps into the space where the Hessian is the least sensitive.
Using the singular value decomposition of the Hessian of the temporal difference loss.

UΣV = H

We can extract an orthonomal basis of the p smallest singular values V as the last
p rows of V . The projection into the p smallest singular values is then given by the
following.

∆θSf = V >V∆θf

We can alternatively choose p to be the number of singular values under a certain
threshold. Note that if we choose p to be the number of singular values equal to zero,
the projection becomes equivalent to the nullspace projection. While the nullspace
projection will give no progress ifH is full rank, the singular value projection ensures
some progress on the PEM objective, at a small cost to to the RL objective.

4 Simulations

In this section we will compare the performance of the different RL MPCmodifications
proposed above. In order to gauge the results we consider the following simple linear

C. Combining system identification with reinforcement . . .

105



MPC problem:

min
x,u,σ

N−1∑

i=0

γi
(
||xi||2 +

1

2
||ui||2 + f>

[
xi
ui

]
+ ω>σi

)

+ V0 + γNx>NSxN (22a)

s.t. xi+1 = Axi +Bui + b, (22b)
[

0
−1

]
+ x− σi ≤ xi ≤

[
1
1

]
+ x̄+ σi, (22c)

− 1 ≤ ui ≤ 1 (22d)

where the parameters θ of the optimization problem are given as:

θ = (V0,f ,S,A,B, b,x, x̄)

For the initial model parameter guess used in the MPC we have the following:

A =

[
1.0 0.25
0.0 1.0

]
, B =

[
0.0312
0.25

]
, b =

[
0
0

]

Additionally the terminal cost matrix S was chosen as the solution to the discrete-
time algebraic Riccati equation, while the rest of the parameters were initialized to
zero. For the real process we used the following dynamics:

xi+1 =

[
0.9 0.35
0.0 1.1

]
xi +

[
0.0813

0.2

]
ui +

[
ek
0

]

where ek is uniformly distributed on the interval [−0.1, 0]. The disturbance will have
the effect of pushing the first state towards the lower bound such that the constraint
is violated, and in turn incurring a large cost. To prevent this from happening and
perform optimally, the RL algorithm must modify the parameters θ. In Figure 1 the
states x and action u are shown for the baseline method, which only uses pure RL
steps. As seen in the figure, the constraints on the first state x1 are violated in the
beginning, but by updating the parameters using RL, the system quickly learns to
avoid the constraints, while at the same time staying as close to them as possible in
order to minimize the discounted stage cost.

Running the on-line RL together with the proposed PEM methods, we get the results
seen in Figures 2, 3 and 4. Figure 2 shows the moving average stage cost, which is
a good performance measure of the closed loop performance of the MPC. From the
results we see the the hierarchical, parallel, singular value and nullspace projections
all converge to a slightly better performance than the baseline, while the orthogonal
projection, and weighted sum of steps perform worse then the baseline. The drop
in performance of the orthogonal projection, weighted sum of steps, and to a certain
degree the parallel projection, is the result of competing objectives. This is also
reflected in the parameter error as seen in Figure 3, where the model fit comes at
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Figure 1: Baseline when using only reinforcement learning (7). The optimal uncon-
strained solution would be to regulate the system to x1 = 0, however due to the
constraint, and disturbances this is no longer the case.

the expense of closed loop performance. Looking at the temporal difference error in
Figure 4, we see that most of the proposed methods give faster initial convergence.
This is a result of the improved plant model mismatch which in turn gives better
value function estimates from the MPC. A similar observation can be made in Figure
5 and 6, where the initial model parameters were chosen as a double integrator:

A =

[
1 1
0 1

]
, B =

[
0
1

]
, b =

[
0
0

]
,

giving a lager plant model mismatch. From the results we see that all the proposed
methods have a better initial convergence of the closed loop performance, with the
parallel, singular value and nullspace projections, also giving better final closed loop
performance. For the parameter error, we see a significant improvement of all meth-
ods, except for the hierarchical and nullspace projection, in comparison with the
baseline. The results are in line with the constraints imposed by the different pro-
jections, where the hierarchical and nullspace projection being the most conservative,
and the summation of gradients being the least conservative.

5 Conclusion

In this paper we proposed and tested a number of strategies for combing RL, PEM
and data-driven MPC in order to perform on-line learning and control. The main
contribution is the addition of PEM as an on-line system identification method, which
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Figure 2: Moving average stage cost over 100 steps. Jumps/steps in performance
indicates constraint violations, which results in a large cost.
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Figure 3: Norm of the parameter error for the model parameters A, B and b. Lower
error means the parametric model in the MPC is closer to the simulated model.
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Figure 4: Moving average absolute temporal difference error |δ| over 100 steps.
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Figure 5: Moving average stage cost over 100 steps using poor initial model parame-
ters, we see a clear improvement in performance in the early learning stage.
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Figure 6: Norm of the parameter error for the parametric model with poor initial
model parameters.

is added in order to aid the RL when there is a large plant model mismatch, as well
as help to get better accuracy from the resulting MPC trajectory prediction. The
proposed parallel, singular value and nullspace projection methods show promising
results in terms of decreasing plant model miss-match, and giving slightly better closed
loop MPC performance than using pure RL, while the orthogonal projection, and sum
of steps resulted in improved model fit, however at the cost of closed loop performance
of the proposed MPC scheme. In conclusion, combing PEM with RL, can give better
initial learning when we do not have a good initial guess for the parameters, as well
as lead to better overall performance of the closed loop MPC, without significant
additional computational overhead.

For future work, it is of interest to look at methods for adaptively changing the step-
length of the two objectives. For example choosing a step-length β dependant on
the RL step, may help mitigate the problem of competing objectives, and in turn
improve the performance of the proposed methods. Combining the proposed method
with policy gradient, is also an area of interest, as policy gradient methods offer a
way of directly optimizing the policy.
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Trajectory Planning and Control for Automatic
Docking of ASVs with Full-Scale Experiments∗

Glenn Bitar1, Andreas B. Martinsen1, Anastasios M. Lekkas1, and Morten Breivik1

1Centre for Autonomous Marine Operations and Systems, Department of Engineering
Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim,
Norway

Abstract: We propose a method for performing automatic docking of a small au-
tonomous surface vehicle (ASV) by interconnecting an optimization-based trajectory
planner with a dynamic positioning (DP) controller for trajectory tracking. The tra-
jectory planner provides collision-free trajectories by considering a map with static ob-
stacles, and produces feasible trajectories through inclusion of a mathematical model
of the ASV and its actuators. The DP controller tracks the time-parametrized posi-
tion, velocity and acceleration produced by the trajectory planner using proportional-
integral-derivative feedback with velocity and acceleration feed forward. The method’s
performance is tested on a small ASV in confined waters in Trondheim, Norway. The
ASV performs collision-free docking maneuvers with respect to static obstacles when
tracking the generated reference trajectories and achieves successful docking.

Keywords: Autonomous surface vehicles, automatic docking, model predictive con-
trol, optimal control, path planning

1 Introduction

Autonomous surface vehicles (ASVs) constitute a topic of significant research and
commercial attention and effort. Motivating factors are economy, flexibility, safety
and environmental advantages. Technology developments in this field are rapid, and
the use cases are many, e.g. mapping of the ocean floor, military applications such as
surveillance, and transportation. In addition, the relatively low cost of smaller ASVs
enables novel concepts, for example autonomous urban passenger ferries that are an
alternative to bridges in a city landscape.

To achieve autonomy in transportation operations the following phases must be au-
tomated:

∗This work is supported by the Research Council of Norway through the project number 269116
as well as through the Centres of Excellence funding scheme with project number 223254.
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• Undocking – moving from the quay in a confined harbor area to open waters,

• transit – crossing a canal or large body of water towards the destination harbor,

• docking – moving from open waters towards the docking position along the quay
in a harbor area.

Since this paper focuses on the docking phase, we provide a background on automatic
docking methods. The number of reported existing methods is limited in research
literature and in commercial applications. Methods for docking of autonomous un-
derwater vehicles (AUVs) have been introduced by e.g. Rae and Smith [1], Teo, Goh,
and Chai [2] and Hong et al. [3], but they are of limited value for use with surface
vessels in a confined harbor area, due to the lack of consideration of nearby obstacles.
Tran and Im [4] propose a method for docking of a large ship based on artificial neural
networks to control the ship’s thrusters, which has shown promising simulation re-
sults. However, this method does not include the harbor layout for collision avoidance.
Mizuno, Uchida, and Okazaki [5] propose an optimization-based approach taking into
account known disturbances. An optimal nominal path is generated once, and a lower-
level model predictive controller (MPC) attempts to follow it. This method also does
not include the harbor layout for collision avoidance, and it is not very realistic to
assume known disturbances in such dynamic settings. Commercial demonstrations of
automatic docking have been performed by Wärtsilä1 and Rolls-Royce2 (now Kongs-
berg Maritime). Details about the methods used in these approaches are unavailable
to the public.

The docking method from [6] is a nonlinear model predictive controller (NMPC) that
takes into account vessel dynamics in the form of its dynamic model, as well as collision
avoidance by planning trajectories within a convex set, based on the harbor layout.
Advantages of that approach include explicit handling of static obstacles, planning
of dynamically feasible trajectories, and flexible behavior shaping via the nonlinear
cost function. The method does not handle moving obstacles or account for external
unknown disturbances. Additionally, due to the non-convex shape of the optimal
control problem (OCP), guarantees on run time or feasibility are not provided. In
this paper, we build on [6] and add the following contributions:

• Instead of running the trajectory planner as an MPC controller by using the
inputs directly, the state trajectory is sent to a trajectory-tracking dynamic po-
sitioning (DP) controller to account for disturbances and unmodeled dynamics.

• The thruster model is adjusted to improve run times and convexity properties.

• The cost function is adjusted to deal with the wrap-around problem in the
heading variable, and to avoid quadratic costs on large position deviations.

1Wärtsilä press release: https://www.wartsila.com/twentyfour7/innovation/look-ma-no-han
ds-auto-docking-ferry-successfully-tested-in-norway.

2Rolls-Royce press release: https://www.rolls-royce.com/media/press-releases/2018/03-1
2-2018-rr-and-finferries-demonstrate-worlds-first-fully-autonomous-ferry.aspx.
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Figure 1: The experimental autonomous urban passenger ferry milliAmpere, devel-
oped at NTNU, moored near Brattøra in Trondheim, Norway.

• Slack variables are added to deal with feasibility issues that arise when imple-
menting the method in a real-world scenario.

• Although not detailed in this paper, we have implemented an algorithm that
dynamically updates the convex set which represents the static obstacles. The
set is updated based on the vessel’s current position in the map, which allows
us to use convex constraints in a non-convex map.

By modifying the method from [6], it is shown to produce collision-free and successful
maneuvers in full-scale experiments on the experimental autonomous urban passenger
ferry milliAmpere, seen in Figure 1, in Trondheim, Norway. Although the method is
implemented to solve the docking problem on an autonomous urban passenger ferry,
this is a generic approach that is suitable also for other use cases and vessel types.

The rest of this paper is structured as follows: We introduce the experimental plat-
form milliAmpere in section 2. The trajectory planner used for generating docking
trajectories is presented in section 3, along with the trajectory-tracking DP controller.
section 4 presents the experimental results, and we conclude the paper in section 5.
We present the mathematical models used in the paper in Appendix A.

2 The milliAmpere autonomous ferry platform

For the sea trials, we used the experimental autonomous urban passenger ferry mil-
liAmpere, depicted in Figure 1 and with specifications as listed in Table 1. Developed
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Table 1: milliAmpere specifications.

Dimensions 5m by 2.8m symmetric footprint

Position and heading
reference system

Vector VS330 dual GNSS with RTK capabilities

Thrusters Two azimuth thrusters on the center line, 1.8m aft
and fore of center

Existing control modules Trajectory-tracking DP controller and thrust
allocation system

at the Norwegian University of Science and Technology (NTNU) since 2017, mil-
liAmpere has been an experimental platform where many students have contributed
with control systems as well as hardware solutions. A larger version is being designed
and built by the research group Autoferry.3 Small passenger ferries for urban wa-
ter transport is a novel concept which is being made economically feasible due to
increased availability and advances in both sensor systems and autonomous technol-
ogy. Such a solution is anticipated to make areas that are separated by waterways
more accessible at a lower cost and with less interfering infrastructure than building
a bridge.

For simulation purposes, we have used a surge-decoupled three-degree-of-freedom
model, along with dynamic models for azimuth angles and propeller speeds of the
thrusters. Separate models are also used for planning and trajectory tracking. Since
we are using three different models in the work described in this paper, we place the
model information in Appendix A to improve readability. Parameters and information
about the model identification process are available in [7].

3 Trajectory planning and control

The trajectory planner is an OCP that takes into account the vessel dynamics via a
mathematical model, as well as the harbor layout by including a map as constraints.
The OCP is a modified version of the one developed in [6]. In our case, the OCP runs
at a set rate and provides pose, velocity and acceleration trajectories for an existing
trajectory-following DP controller, as illustrated in Figure 2.

The OCP is described by the following equations:

min
xp(·),up(·),s(·)

∫ t0+T

t0

(
F (xp(t),up(t)) + k

>
s s(t)

)
dt (1a)

3Autoferry website: https://www.ntnu.edu/autoferry.
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Figure 2: Block diagram of the docking system setup. The DP controller and thrust
allocation are existing functions on milliAmpere.

subject to

ẋp(t) = f(xp(t),up(t)) ∀t ∈ [t0, t0 + T ] (1b)
h(xp(t),up(t))− s(t) ≤ 0 ∀t ∈ [t0, t0 + T ] (1c)

s(t) ≥ 0 ∀t ∈ [t0, t0 + T ] (1d)
xp(t0) = x(t0). (1e)

The planned states are denoted xp = [η>p ,ν
>
p ]
>, where ηp = [xp, yp, ψp]

> is the Earth-
fixed pose, and νp = [up, vp, rp]

> is the body-fixed velocity vector. The kinematic
relationship between the pose and velocity vectors is detailed in Appendix A. The
goal of the OCP is to arrive at the constant state vector xd = [η>d ,0

>
3 ]
> while avoiding

collisions, where ηd = [xd, yd, ψd]
> is referred to as the docking pose. The vector x(t0)

is the vessel’s measured state at time t0. The planning horizon is T = 120 s.

The input vector up = [fx1, fy1, fx2, fy2]
> is used to denote the forces decomposed in

surge and sway of milliAmpere’s two actuators, where fx1 represents a force in surge
direction from thruster 1, fy2 represents a force in sway direction from thruster 2, etc.
Details on the mapping from this input to control forces are found in Appendix A.
The cost functional and constraints are elaborated upon in the following subsections.
The OCP is discretized using direct collocation and solved as a nonlinear program
(NLP) with 60 control intervals.

3.1 Cost functional

The cost functional (1a) operates on the trajectories of the states xp(·), inputs up(·)
and slack variables s(·). It consists of a cost-to-go function F (xp(t),up(t)), as well
as a cost-to-go on the slack variables k>s s(t) with the elements of ks having values
large enough (1.0× 103) so that the slack variables are active only when the problem
otherwise would be infeasible.
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The cost-to-go function is

F (xp(t),up(t)) =

H

([
xp(t)− xd
yp(t)− yd

])
+

20 (1− cos(ψp(t)− ψd))+
10 vp(t)

2 + 10 rp(t)
2 +

up(t)
>up(t) /m

2
11 ,

(2)

where the terms are costs on position error, heading error, quadratic sway velocity and
yaw rate, and quadratic input, respectively. The parameter m11 is the system inertia
in surge, detailed in Appendix A. The terms are scaled so that the cost function
becomes dimensionless. The pseudo-Huber function

H(a) = δ2

(√
1 +

a>a
δ2
− 1

)
(3)

with δ = 10m provides a quadratic penalty when the quadrature position errors are
low and linear when they are high.

The resulting cost functional encourages the planned trajectories to converge to the
docking pose ηd with zero velocity, while penalizing sway and yaw rates, as well as the
input forces. Including the docking pose in the cost functional instead of as terminal
constraints allows us to use the planner far away from the dock, when the docking
pose is outside the reach of the planning horizon T . Additionally, if the operator
selects a docking pose that is in violation of the collision constraints, the planner will
accept it and find a feasible pose close to the docking pose.

3.2 Vessel model

Equation (1b) is a simplified model of the vessel dynamics. A diagonalized version
of the surge-decoupled model in [7] is used, with details found in Appendix A. The
kinematic and kinetic models are concatenated to

ẋp = f(xp,up) =

[
R(ψp)νp

(SMp)
−1(−Cp(νp)νp −Dp(νp)νp + τp(up))

]
, (4)

where the time argument is omitted for notational brevity. This equation is included
as dynamic constraints in the OCP.

3.3 Inequality constraints

The inequality constraints (1c) encode collision avoidance criteria as well as state and
input limitations. These constraints are softened by using slack variables and linear
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Figure 3: Spatial constraints illustration.

slack costs that keep the optimization problem feasible should disturbances push the
vessel outside of these boundaries.

To avoid collisions, we specify a set Sv ⊂ R2 representing the footprint of the vessel,
as well as a permissible convex set Ss ⊂ R2. The collision avoidance constraint is to
ensure Sv ⊂ Ss, which can be controlled by checking that the vertices of Sv are within
Ss, as illustrated in Figure 3. Since Ss is a convex polyhedron, we can describe it as

Ss =
{
p ∈ R2 | Asp ≤ bs

}
, (5)

where As ∈ Rk×2 and bs ∈ Rk and k is the number of vertices in the convex set. This
results in the collision avoidance constraint being equivalent to

As

(
R2(ψp(t))v +

[
xp(t)
yp(t)

])
≤ bs∀ v ∈ Vertex(Sv) . (6)

The rotation matrix R2(ψp(t)) is equal to the upper-left R2×2 of (14) in Appendix A.
The set Ss is generated regularly and consists of the eight edges made up of landmasses
in the map that are closest to the vessel in order to form a convex set. Including more
edges increases the accuracy of the inequality constraints, but negatively affects run
time, and we have found eight to be a good compromise.

The thrusters on milliAmpere are each limited in the amount of thrust they are able
to produce, so we place limits on the norms of each individual thruster output:

fxi(t)
2 + fyi(t)

2 ≤ f2max, i ∈ {1, 2} . (7)

There are also limits on the states xp, i.e.

xlb ≤ xp(t) ≤ xub , (8)

which ensure that the OCP does not plan trajectories with out-of-bounds velocities.
The limits are only in effect for the velocities in surge and sway (±1.0m s−1) and the
yaw rate (±5 ° s−1).
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As noted, all these constraints are softened with slack variables to ensure feasibility
when e.g. a disturbance pushes the vessel’s state outside the velocity limits or the
collision avoidance criterion. The constraints are gathered in a single vector, giving
the inequality constraint vector in (1c).

3.4 Trajectory-tracking DP controller

The planned state trajectory and its derivative from the solution of (1) are used as ref-
erence values for a trajectory-tracking DP controller, which was already implemented
on milliAmpere before we added the trajectory planner. There are several reasons
for preferring this approach instead of directly using the thruster commands from the
solution of (1):

• The planner does not account for drift, disturbances or modeling errors, while
the tracking controller does so through feedback.

• While the planner is iteration-based with no formal performance guarantees,
the tracking controller provides a robust bottom layer that acts also as a safety
measure.

• The sampling rate of the planner is too low to stabilize the vessel on its own.

The tracking controller is based on proportional-integral-derivative (PID) action with
feed-forward terms from both velocity and acceleration:

τc(t) = τff(t) + τfb(t) . (9)

The feed-forward term is

τff(t) = Mpν̇p(t) +Dp(νp(t))νp(t) , (10)

with details in Appendix A. An issue with this feed-forward term is that it doesn’t
include coupling Coriolis or damping effects, which may degrade its performance.
This discrepancy is left for the feedback to handle. The PID feedback is

τfb(t) = −R(ψ(t))> ·
(
Kpη̃(t) +

∫ t

0

Kiη̃(τ) dτ +Kd
˙̃η(t)

)
, (11)

with η̃(t) = η(t) − ηp(t). The controller gains are Kp = diag{100, 100, 200}, Ki =
diag{10, 10, 20} and Kd = diag{1000, 1000, 1500} with units that transform the re-
spective elements to force and moment units. The integrator term in (11) has an
anti-windup condition, limiting its contribution to ±[150N, 150N, 200Nm]>.

The control command τc(t) is sent to milliAmpere’s thrust allocation system, detailed
in [8], which sends commanded actuator azimuth angles and propeller speeds to the
actuators.
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3.5 Design tradeoffs

In designing the docking system, it has been necessary to compromise between opti-
mality, performance and robustness. One of the compromises was to separate trajec-
tory planning and motion control. While it would be possible to run the trajectory
planner as an MPC and use the inputs from its solution directly, separation gives
several advantages:

• A PID controller accounts for steady-state disturbances and corrects for mod-
eling errors, as opposed to the MPC approach.

• Using a high-rate feedback controller allows us to run the planner at a low rate,
even though the vessel’s dynamics are quite fast. The planner has run-times
between 0.3 and 0.7 s, which would make it difficult to stabilize the vessel.

• Having a trajectory-tracking controller as the bottom control layer makes the
docking system more robust to situations where the solver fails to find a feasible
solution.

Choosing this hybrid structure, where we separate planning from motion control,
we have achieved flexibility in the trajectory planner, disturbance rejection through
feedback, and robustness to failures in the planning level.

4 Experimental results

Experiments were performed with the milliAmpere passenger ferry in confined waters
in Trondheim, Norway on October 18, 2019. The weather conditions were calm with
winds of 2m s−1 to 3m s−1 and rare gusts of 5m s−1. The vessel is highly susceptible
to wind disturbances, due to its large cross-sectional area above water and low under-
water profile. The confined waters protect against waves and currents, however, the
shallow depth of milliAmpere’s thrusters causes the thrust wake to disturb the hull
when operating close to quay, as is the case in the final docking stage.

To test the docking system, we piloted the ferry to an initial pose around 40m away
from the docking pose, and activated the docking system once we came to a stand-
still. The trajectory planner then calculated state trajectories at a rate of 0.1Hz
towards the docking pose. A higher rate caused frequent resetting of the error be-
tween the planned and measured poses, limiting the effect of the feedback controller
(11). A lower rate would limit the trajectory planner’s ability to take into account
new information. Since the trajectory planner calculates a safe trajectory towards
the docking pose, a rate of 0.1Hz is a well-functioning compromise. Before every run
of the planner, an algorithm quickly calculated a new convex area Ss based on the
vessel’s current position, which served as collision-avoidance constraints in the OCP
(5). State measurements, the planned trajectory and its derivative were fed to the DP

D. Trajectory Planning and Control for Automatic Docking . . .

123



0 20 40 60 80
East [m]

40

50

60

70

80

90

100
No

rth
 [m

]
Measured
Planned
Planned horizon
Docking pose

Figure 4: Overview of milliAmpere’s trajectory during a docking experiment. The
vessel’s pose is depicted at 5 s intervals with green rectangles. The measured position
is drawn in solid green, while the active planned reference is in dash-dotted orange.
The dotted gray lines show the trajectory planner’s reference for the entirety of each
planning horizon, also after a new solution is calculated. The docking pose is marked
with a rectangular bright green dashed outline.

controller at a rate of 10Hz. This is sufficient for motion control, since the vessel’s
dynamics are much slower.

A bird’s eye view of the resulting trajectory is seen in Figure 4, with full-state tra-
jectories in Figure 8. As is seen in Figure 4, milliAmpere is able to safely navigate to
the docking pose by the help of the docking system. The trajectory is collision-free
and slows down nicely when approaching the quay. In the course of the experiment
there were 13 re-planning steps. Figures 5 through 7 show the planned trajectories at
the first, second and third steps, respectively. The figures also show the convex area
that the trajectory planner uses for spatial constraints. Due to how the convex-set
algorithm works, the first step does not include the docking pose in its permissible set,
so the trajectory planner generates a trajectory towards the edge of its constraints.
The vessel is able to closely follow this trajectory until the second step. Here we see
that the vessel’s heading angle is failing to track the planned one. We believe this is
due to milliAmpere’s lack of stability in heading, and due to poor tuning of the DP
controller, which fails to handle tracking of heading and yaw rate at high speeds. In
the third step, the trajectory planner is able to plan all the way towards the docking
pose, and the vessel is able to track the commanded trajectory well, since the speed
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Figure 5: Planned and measured positions from the first step of the planner. In 2 s
intervals, the plot shows the entire planned pose trajectory as gray outlines, and the
first 10 s of the measured pose as green rectangles. The black solid polyhedron shows
the current convex area that represents the spatial constraints from (6).

has decreased.

Figure 8 shows the state trajectories for pose and velocities over time. It can be seen
that the planned trajectories are tracked tightly for the linear positions and velocities.
A notable observation is that the first two plans do not converge to the docking pose,
due to the convex area not including the docking pose. This is corrected as the vessel
approaches the harbor. The heading angle and yaw rate are not converging as well as
the linear velocities, especially at high speeds, as seen from the figure. Additionally,
due to the periodic resetting of the planned trajectory to the current vessel state,
integration is slow in the DP controller, causing steady-state disturbance rejection to
be poor towards the end of the trajectory.

From Figure 9, we see that the solution times of the trajectory planner are in the 0.3 s
to 0.7 s range, which is fast enough to be considered real-time feasible when run at a
period of 10 s. These results are repeatable when docking from and to the same pose,
and similar results are also seen when docking from other locations.
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Figure 6: As Figure 5, but at the second planning step. In this step we see that
the tracking controller struggles to follow the heading commands. We believe this
is due to milliAmpere’s lack of natural stability in heading, as well as due to poor
performance of the DP controller at high velocities.

5 Conclusions and future work

We have demonstrated the capabilities for docking an ASV using an OCP-based
trajectory planner in combination with a DP controller. The solution is tested ex-
perimentally in confined waters in Trondheim, Norway, and produces safe maneuvers.
The maneuvers avoid collision with static obstacles and complete the docking phase,
ending up in a position adjacent to the dock, ready to moor. We have shown that the
combination of an OCP-based trajectory planner and a tracking controller is suitable
for the docking problem. The method is also general, requiring only a geographic
map of sufficient resolution of the harbor environment. This map may be known a
priori, but may also be adjusted with exteroceptive sensors, enabling extensions to
the method with camera, lidar and radar systems, e.g. using simultaneous localization
and mapping techniques.

The experiments have uncovered several possibilities for improvement which are points
for future work. A main conclusion is that although we are able to combine a tra-
jectory planner with an existing tracking controller, the tracking controller must be
well-designed and tuned for the combination to function satisfactorily. The following
points are considered as future work:
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Figure 7: As Figure 5, but at the third planning step. At this slow speed, the tracking
controller is able to follow the planned trajectory well.

• Improve the tuning of the existing DP controller in order to better track the
reference trajectory.

• Include coupling effects in the feed-forward term of the DP controller.

• Investigate other trajectory-tracking controllers.

• Adjust the cost function so that the trajectory planner produces maneuvers that
are more consistent with a harbor pilot’s experience with docking.

• Adjust the trajectory planner to produce more conservative trajectories.

• Develop a disturbance estimator that can provide the trajectory planner with
valuable information.

Future work also includes integrating the docking system in a control structure that
handles all the phases of a ferry transport. The next item in our research is to
integrate systems for the undocking and transit phases. For the undocking phase,
the approach presented in this paper is well suited. For the transit phase, we look to
integrate a version of the method from [9], which can bring the vessel to a location
suitable for docking.
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Figure 8: Measured pose and velocity states during the docking experiments, along
with reference trajectories and docking pose. As in Figure 4, we include the full
horizon of the planned trajectories in dotted gray lines.
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A Mathematical vessel models

In this work, we have used three separate models for the milliAmpere vessel, re-
spectively for simulation, planning in the OCP, and for trajectory tracking with the
DP controller. All of them are based on the surge-decoupled three-degree-of-freedom
model from [7]. The models use the state vector

x =
[
η> ν>

]>
, (12)

with η = [x, y, ψ]> ∈ R2×S being the pose states position north and east of an origin,
and heading angle (yaw), respectively. The velocity vector ν = [u, v, r]> contains
body-fixed surge velocity, sway velocity and yaw rate, respectively. The kinematic
relationship between the pose and velocity is

η̇ = R(ψ)ν , (13)

where

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 (14)

is the kinematic rotation matrix. The kinetic equations that describe the propagation
of ν are different for the three applications.

A.1 Simulation model

When we simulated the approach prior to running full-scale experiments, we used the
surge-decoupled three-degree-of-freedom model from [7]. That model has the form

Mν̇ +C(ν)ν +D(ν)ν = τ (α,n) , (15)

where M ∈ R3×3 is the positive definite system inertia matrix, C(ν) ∈ R3×3 is the
skew symmetric Coriolis and centripetal matrix, and D(ν) ∈ R3×3 is the positive
definite damping matrix. The force vector τ ∈ R3 is a function of the thrusters’
azimuth angles α = [α1, α2]

> and their propeller speeds n = [n1, n2]
>. These values

are modeled dynamically based on commanded values, with details in [7].

A.2 Planning model

For the dynamic constraints in the OCP, we use a simplified version of (15):

SMpν̇p +Cp(νp)νp +Dp(νp)νp = τp(up) , (16)

where Mp, Cp and Dp are diagonalized versions of M, C and D from (15), respec-
tively. The matrices are

Mp = diag{m11,m22,m33} > 0 , (17)
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Cp(νp) =




0 0 −m22vp
0 0 m11up

m22vp −m11up 0


 (18)

and
Dp(νp) = diag{d11(up), d22(vp), d33(rp)} > 0 , (19)

where

d11(up) = −Xu −X|u|u
∣∣up
∣∣−Xu3u2p (20a)

d22(vp) = −Yv − Y|v|v
∣∣vp
∣∣− Yv3v2p (20b)

d33(rp) = −Nr −N|r|r
∣∣rp
∣∣ . (20c)

The coefficient matrix
S = diag{2.5, 2.5, 5.0} (21)

is factored into (16) to amplify the inertia, making the planned trajectories more
sluggish.

The dynamic thruster model from [7] is excluded from the OCP in order to keep the
run times down. Instead, forces from milliAmpere’s two thrusters are decomposed in
the surge and sway directions, and used directly as inputs:

up =
[
fx1 fy1 fx2 fy2

]>
, (22)

where fx1 represents a force in surge direction from thruster 1, fy2 represents a force
in sway direction from thruster 2, etc. This is mapped to forces and moments in
surge, sway and yaw by the function

τp(up) =



1 0 1 0
0 1 0 1
0 l1 0 l2


up . (23)

The parameters l1, l2 ∈ R are the distances from the vessel’s origin to its thrusters.

A.3 Tracking controller model

For the feed-forward terms in the DP controller, we also use a simplified version of
the simulation model (15):

Mpνp +Dp(νp)νp = τff . (24)

The DP controller was originally developed for station keeping, and does not contain
the C matrix. Otherwise, the matrix values in (24) are equal to those in the planning
model (16).
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Two-Stage Optimized Trajectory Planning for ASVs
Under Polygonal Obstacle Constraints: Theory &
Experiments∗

Glenn Bitar1, Andreas B. Martinsen1, Anastasios M. Lekkas1, and Morten Breivik1

1Centre for Autonomous Marine Operations and Systems, Department of Engineering
Cybernetics, Norwegian University of Science and Technology (NTNU), Trondheim,
Norway

Abstract: We propose a method for energy-optimized trajectory planning for
autonomous surface vehicles (ASVs), which can handle arbitrary polygonal maps as
obstacle constraints. The method comprises two stages: The first is a hybrid A?
search that finds a dynamically feasible trajectory in a polygonal map on a discretized
configuration space using optimal motion primitives. The second stage uses the
resulting hybrid A? trajectory as an initial guess to an optimal control problem (OCP)
solver. In addition to providing the OCP with a warm start, we use the initial guess to
create convex regions encoded as halfspace descriptions, which converts the inherent
nonconvex obstacle constraints into a convex and smooth representation. The OCP
uses this representation in order to optimize the initial guess within a collision-free
corridor. The OCP solves the trajectory planning problem in continuous state space.
Our approach solves two challenges related to optimization-based trajectory planning:
The need for a dynamically feasible initial guess that can guide the solver away from
undesirable local optima and the ability to represent arbitrary obstacle shapes as
smooth constraints. The method can take into account external disturbances such as
wind or ocean currents. We compare our method to two similar trajectory planning
methods in simulation and have found significant computation time improvements.
Additionally, we have validated the method in full-scale experiments in the Trondheim
harbor area.

Keywords: Autonomous vehicles, collision avoidance, marine vehicles, motion plan-
ning, polygonal collision-avoidance constraints, trajectory optimization, trajectory
planning.
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1 Introduction

In marine applications, we see efforts to increase the level of autonomy in research,
defense, and commercial applications. Motivated by benefits to costs, safety, and
environmental impact, many actors consider using autonomous vessels in their op-
erations. In 2018, both Wärtsilä and Rolls-Royce Marine (acquired by Kongsberg
Maritime) demonstrated autonomous capabilities with the ferries Folgefonn and Falco,
respectively.1 Both tests included automatic transit and docking. Another example of
commercial use of maritime autonomous technology is when the Japanese shipping
company NYK completed the world’s first maritime autonomous surface ship trial in
2019.2

An essential part of an autonomous marine system is path and trajectory planning,
where the goal is to plan how the vessel will move from its start location to the
goal location. Path planning finds a sequence of collision-free configurations without
temporal constraints, while trajectory planning adds temporal constraints, often
via a time-parametrized state trajectory. Our interests lie within energy-optimized
operations, and since energy consumption is highly sensitive to velocity, we focus on
trajectory planning.

1.1 Background and relevant work

Maritime agencies and research institutions actively research autonomous technology
for, e.g., underwater operations for ocean mapping and monitoring [1] , and autonomous
transportation, focusing on the international regulations for preventing collisions at sea
(COLREGs) [2]. Seto [3] gives an overview of autonomous technologies for maritime
systems, and Pendleton et al. [4] give an overview of autonomy in vehicles in general.
Path and trajectory planning is a crucial technology for enabling autonomy at sea.

In robotics, there are numerous methods developed for path and trajectory planning. A
general introduction to path planning is written by LaValle [5], who looks at the topic
from the perspective of computer science while introducing widespread notation and
nomenclature. Wolek and Woolsey [6] give an overview of model-based approaches to
path planning for ground, surface, underwater, and air vehicles. We can coarsely divide
planning methods into roadmap methods that explore points in the configuration space
that, when connected, build a path between start and goal, and optimization-based
methods that produce connected paths or trajectories using analytical or approximate
optimization. Some advantages of roadmap methods include quickly finding the global
solution of a path planning problem, and they allow for flexible obstacle representations,
e.g., polygonal constraints. On the other hand, roadmap methods are discrete and
are not generally able to find an optimal path or trajectory in a continuous domain.

1https://www.maritime-executive.com/article/rolls-royce-and-wartsila-in-close-race-
with-autonomous-ferries (accessed September 14, 2020).

2https://www.nyk.com/english/news/2019/20190930_01.html (accessed August 31, 2020).
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Optimization-based methods are often slower and subject to finding local optima.
However, they naturally search in the continuous domain. Additionally, gradient-
based methods for solving optimization problems require continuously differentiable
representations of constraints, restricting how we can represent obstacles.

A simple example of roadmap methods is the A? search algorithm [7]. A? is a graph
search algorithm commonly used as a path planner by discretizing a continuous map,
often into a uniform, rectangular grid. A? quickly provides a piecewise linear path from
start to goal. A more involved roadmap method comes from Candeloro, Lekkas, and
Sørensen [8], where the authors discretize a map using a Voronoi diagram, subsequently
refining and smoothing the result to give a curvature-continuous path. These methods
are fast, but lack dynamic feasibility3, and can only be optimal in terms of the
employed map discretization. Roadmap methods also include sampling-based methods.
These methods explore random points to build a roadmap between start and goal.
Examples include the probabilistic roadmap [9], as well as rapidly-exploring random
trees [10] and variations of those. Sampling-based methods are shown to be useful
for planning in high-dimensional configuration spaces, where combinatorial roadmap
methods often run into the so-called curse of dimensionality [11].

Model-based optimization-based methods are researched in automotive, aerial, and
marine applications to create dynamically feasible paths or trajectories. Optimization-
based methods are sometimes used to refine the result of a roadmap search or used as
the primary tool to plan a trajectory. In [12–14], the authors present optimization-
based trajectory planning methods that use smooth representations of rectangles
and ellipses to approximate the obstacle map. This type of representation makes the
optimization problem feasible to solve using gradient-based methods. However, there is
an impractical tradeoff between the representation accuracy and number of constraints
in the optimization problem. Additionally, these shapes may not be generic enough to
represent detailed obstacle maps. By reformulating the obstacle avoidance constraint
and introducing auxiliary optimization variables, Zhang et al. [15] have developed an
alternative method for representing obstacles. This method allows the encoding of
arbitrary convex polygons as smooth optimization constraints by introducing auxiliary
optimization variables. The method works well for a low number of obstacles, but the
optimization problem grows significantly with the number of obstacles and the number
of polygon edges, to the point where it is not feasible to use it for marine applications
with detailed obstacle maps. Bergman et al. [16] propose to bypass the inherent
non-convexity of static obstacle avoidance by calculating a series of convex polytopes
where their vehicle is allowed to move. The method gives smooth, convex obstacle
avoidance constraints for their optimization-based planner, but lacks consideration
of environmental disturbances. An optimization-based trajectory planning method
for autonomous driving developed by Chen, Zhan, and Tomizuka [17] can represent

3We use the term “dynamically feasible” to indicate that a trajectory satisfies dynamic constraints
in the form of model-based differential equations. A path that consists of a smoothed roadmap is
usually feasible in terms of specified a turning radius. This turning radius is dependent on vessel
speed, and the path is thus not dynamically feasible since it is not based on a model that includes
speed.
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polygonal obstacle constraints. Their method is based on linear quadratic control
with an iterative optimization solver. A prerequisite for their method is an initial
dynamically feasible trajectory in order to perform the optimization. However, their
method does not provide a way of determining such a trajectory. This issue is
common with optimization-based methods, and without an initial guess, they are
prone to locking into solutions that represent undesirable local optima, i.e., solutions
that may be far away from the globally optimal solution, as demonstrated in, e.g.,
[14]. In that example, the optimization-based planner finds a poor solution in the
absence of a helpful initial guess. Depending on the objective function, finding a good
initial guess to warm-start an optimization-based planner can be straightforward. In
the case of finding a minimum-distance path, simple roadmap-based methods may
quickly find paths in the discrete domain that lie close to the optimal solution in
the continuous domain. Optimization-based methods can use this type of path as an
initial guess. For energy-based objective functions, for instance, or when introducing
dynamic constraints, creating feasible trajectories to use as initial guesses is more
challenging, and suggests alternative approaches. Zhang et al. [15] propose using the
hybrid A? algorithm [18] to find such a trajectory for an optimization-based solver.
Their application is autonomous parking of a car, described with a dynamical model,
and using a cost function that blends minimum time and control effort. A simplified
dynamical model and cost function is used in the hybrid A? search stage, and the search
solution is used as an initial guess for the optimization-based planner. The method
does not take into account external disturbances. Bergman et al. [16] have developed
a receding-horizon optimization-based planner warm-started by using a graph search
method. The graph search method works on a lattice of a marine vessel’s discretized
state space with optimal state transitions. To facilitate motion in confined harbor
areas, the authors use a cost function that blends distance to obstacles, minimum
time, control effort, and control smoothness. Zhang et al. [19] and Meng et al. [20]
propose optimization-based trajectory planning methods for autonomous driving that
utilize roadmap methods to generate nominal trajectories for geometrical paths and
subsequently use optimization to improve them. In both papers, speed profiles are
handled subsequent from the geometrical path planning.

1.2 Contributions

We have developed a method that plans energy-optimized trajectories in an environment
defined by polygonal obstacles for an autonomous surface vehicle (ASV) under the
influence of external disturbances. Our method is based on continuous optimal control,
and the optimal control problem (OCP) solver is warm-started by the solution of
a hybrid A? search algorithm. The method’s proposed use case is to plan an ASV
voyage’s transit stage before the voyage starts. The method handles only static
obstacles, and is thus suitable for use as the top layer in a hybrid collision avoidance
scheme, as proposed in [2, 21, 22]. Figure 1 shows a high-level block diagram of the
trajectory planning method. The main differences between our method and the planner
described in [16] are that we use a hybrid A? search to calculate the initial guess, which
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Figure 1: A block diagram of the high-level functionality of our proposed trajectory
planning method.

allows us to account for estimated external disturbances, such as wind. Additionally,
we use an alternative method to calculate the convex envelopes in preparation for
the trajectory optimization stage. Like the method in [15], we also use hybrid A?
to generate an initial guess before optimizing. However, we propose an alternative
obstacle representation, which scales more efficiently with the number of polygons and
polygon edges in the obstacle map, in terms of the number of optimization variables.
Our method shares similarities with [23] as well, where the workspace is decomposed
into triangular cells to account for static, polygonal obstacles, and an optimization-
based search finds sub-trajectories in each of the triangular cells. However, that
method does not include an initial guess to warm-start the OCP solver.

Our contributions are as follows:

• We have extended the hybrid A? search developed by Dolgov et al. [18] to the
ASV application by using an energy-based cost function that depends on the
velocity relative to external disturbances such as wind.

• We use a trajectory of pose, velocity, and force from the hybrid A? solution as
an initial guess to a general OCP solver.

• In the OCP, we utilize a sequence of convex polygons to generate a state corridor
in a nonconvex obstacle map. This representation of obstacles causes the OCP’s
obstacle avoidance constraint to be convex, rather than nonconvex. Additionally,
it allows us to easily use polygonal obstacle maps in the gradient-based OCP
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solver, which is generally hard due to their piecewise linear and nonconvex
nature.

• We have compared our method to similar trajectory planning methods and found
significant improvements in terms of run time, with equivalent energy use.

• We have performed full-scale experiments that have validated our method based
on the experimental vessel’s capability to track the resulting trajectory.

1.3 Outline

In Section 2 we cover preliminary information about notation and vessel modeling.
Sections 3 and 4 present the development of our trajectory planning method. In
Section 3, we describe the hybrid A? method that generates the initial guess. The
section covers the generation of motion primitives, two different search heuristics,
and the search algorithm itself. In Section 4, we present the OCP, how we convert
the obstacle map to a sequence of convex polygons, the transcription of the OCP
to a nonlinear program (NLP), and how we solve the NLP using an interior point
method. Section 5 contains simulations and comparisons to other trajectory planning
methods. The results are compared in quantitative measures of planning time and
energy-usage when tracking the trajectories. In Section 6, we present results from
full-scale experiments, which serve as validation of the method and show how well the
experimental vessel can track the produced trajectories. Section 7 gives concluding
remarks.

2 Preliminaries

2.1 Notation

From LaValle [5], we have widely used notation related to path planning. As opposed
to trajectories, a path places no temporal constraints on the following vehicle. Except
for this, the two topics of planning paths and trajectories are similar. We let W := R2

denote the world that contains our vessel and obstacles. The union of obstacles is
O ⊂ W. The free workspace is defined to be Wfree :=W \O.
Our vessel lives in W, but its configuration is better described in the configuration
space

η =
[
x y ψ

]> ∈ C := R2 × S . (1)

Here, x and y are the vessel’s position coordinates North and East of some origin,
respectively, and ψ is its heading angle relative to North. The position coordinates
refer to the vessel’s center of gravity, which is at its centroid. The vector η is referred
to as the vessel’s pose. We denote its footprint in the workspace as a set of points
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A(η) ⊂ W, which defines the vessel’s shape. The set of noncolliding configurations is
thus

Cfree :=
{
η ∈ C |A(η) ∩ O = ∅

}
. (2)

Most path planning algorithms operate on a discretized version of the configuration
space, denoted by Cd ⊂ C. In our work we uniformly discretize the configuration space
on a grid with resolution

rC :=
[
rp rp rh

]>
, (3)

where rp > 0 is the positional resolution and rh > 0 is the angular heading resolution.
Similarly, the discrete free configuration space is denoted Cd,free. While points in the
continuous configuration space are denoted by η, we use a tilde for points in the
discrete configuration space: η̃. The mapping from C to Cd is denoted Key : C 7→ Cd
and is done by rounding η to its closest multiple of rC .

The formal goal of path planning is to find a continuous path, entirely in Cfree,
from a start pose η0 ∈ Cfree to a goal pose ηf ∈ Cfree. In discrete algorithms,
the paths are often piecewise linear, with connections on Cd,free. Generally, this
problem has many solutions, however, we usually also associate the problem with
a definition of an optimal path, e.g., the shortest. In trajectory planning, the goal
is similar, but we have additional kinodynamic constraints to satisfy, e.g., a set of
time-parametrized differential equations. Section 2.2 introduces such constraints in
the form of a mathematical vessel model.

2.2 ASV modeling

Our ASV is modeled as a surge-decoupled three-degree-of-freedom displacement vessel,
with the state vector

x :=
[
η> ν>

]>
∈ X := C × R3 (4)

with η being the pose described in (1), and ν := [u, v, r]> the body-fixed velocity
vector, where u is the surge velocity, v sway velocity and r yaw rate. The state space
is denoted X . The kinematic relationship between the pose and velocity is described
by

η̇ = R(ψ)ν , (5)

where

R(ψ) :=



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 . (6)

The kinetics of the ASV is described by

Mν̇ +C(ν)ν +D(ν)ν = τ + τenv. (7)
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Holonomic
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heuristic

Nonholonomic
w/o obstacles

heuristic

Cost
calculation
Sec. III-C

max

Motion
primitives
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Optimized
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OCP solver
Sec. IV & IV-B

Feasible initial guess

Stage 1

Stage 2

Sec. III-D

Figure 2: Block diagram of the trajectory planning method. Stage 1 refers to the
generation of the initial guess, described in Section 3, and Stage 2 refers to the
trajectory optimization from Section 4.

This notation is widely used for vessel models in the maritime control literature.
Here, M ∈ R3×3 is the positive definite system inertia matrix, C(ν) ∈ R3×3 is the
skew-symmetrix Coriolis and centripetal matrix, and D(ν) ∈ R3×3 is the positive
definite damping matrix. The force vector τ = [X,Y,N ]> ∈ T ⊂ R3 are the control
forces produced by the ASV’s actuators in surge, sway and yaw, respectively, where T
denotes the space of valid inputs. These are in turn governed by dynamical models
of the actuators. For simulation purposes we include those models, but for planning
and control we have simplified the model to let τ be directly controllable. The
environmental forces τenv can come from wind, ocean current and waves. We have
only modeled wind effects for our experimental vessel, and the environmental forces
are a function of relative wind velocity:

τenv = τenv(ψ,ν,Vw), (8)

where Vw ∈ R2 is the wind velocity in North and East components. Matrices M, C
and D, along with the actuator models, as well as a wind model are defined in [24].

The model is concatenated to

ẋ = f(x, τ ,Vw) :=

[
R(ψ)ν

M−1
[
−
(
C(ν) +D(ν)

)
ν + τ + τenv(ψ,ν,Vw)

]
]

(9)

for ease of reference when discussing OCPs later in the paper.
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η ∈ Cη̃ ∈ Cd

Figure 3: Comparison of traditional A? search space to the hybrid A? search space in
a two-dimensional grid. To the left is the commonly found eight-connected uniform
grid associated with A?, where states are associated with grid cell centers. To the
right is the search space of hybrid A?, where states can lie anywhere in the cells.

3 Stage 1: Generating a dynamically feasible initial
guess

As we mention in the introduction, our trajectory planning method comprises two
stages. The entire method, its subcomponents, and their interconnections are illus-
trated in Figure 2. Each subcomponent will be described in this section and the next.
Stage 1 of our method is to find a dynamically feasible trajectory using the hybrid A?
search.

3.1 Hybrid A?

Dolgov et al. [18] developed the hybrid A? algorithm to plan paths for autonomous cars.
Hybrid A? is a variant of the well-known A? algorithm that captures continuous-state
data in discrete search nodes. The search space is discretized, but a continuous state
is associated with each discrete node, as illustrated in Figure 3. An advantage of the
hybrid A? search space is that it does not require the connections between two states in
different nodes to be exact, which allows us to be flexible when using motion primitives
in the discrete search. A disadvantage is that the optimality from traditional A? is no
longer strictly guaranteed due to the merging of continuous and discrete states.

Algorithm 1 is pseudocode for the hybrid A? search. Like an A? search, it uses a
priority queue to keep track of the open set. In Algorithm 1, that functionality is
maintained by the Push and Pop functions. Push adds a key with a priority value to
the open set O, while Pop removes and returns the key with the lowest associated
priority. The mappings State, Cost, and Parent keep track of continuous states,
cost values, and parents associated with discrete keys η̃ ∈ Cd. The mappings are
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Algorithm 1 Hybrid A? search pseudocode.

1: function Hybrid A?(η0,ηf ,Vw,O)
2: η̃0 ← Key(η0), η̃f ← Key(ηf )
3: O ← ∅, C ← ∅
4: Push(O, η̃0, 0)
5: State(η̃0)← η0, Cost(η̃0)← 0
6: while O 6= ∅ do
7: η̃ ← Pop(O)
8: C ← C ∪ {η̃}
9: if η̃ = η̃f then

10: return sequence from η̃0 to η̃f
11: η ← State(η̃)
12: for all P, c,ηn ∈ Primitives(η,Vw) do
13: η̃n ← Key(ηn)
14: if Collision(P,O) or η̃n ∈ C then
15: continue
16: f ← Cost(η̃) + c
17: if η̃n /∈ C ∪O then
18: Cost(η̃n)←∞
19: if f < Cost(η̃n) then
20: Cost(η̃n)← f
21: Parent(η̃n)← η̃
22: State(η̃n)← ηn
23: O ← O \ {η̃n}
24: h← f + Heuristics(ηn,ηf ,Vw)
25: Push(O, η̃n, h)
26: return error, no path found

updated as the search progresses. The function Primitives returns a set of motion
primitives, Collision checks whether there is a collision, and Heuristics returns
heuristic cost estimates. These functions are further described in sections 3.2, 3.4,
and 3.5, respectively.

3.2 Motion primitives

In the hybrid A? search algorithm, new configurations are discovered by propagating
motion primitives from an existing configuration. A motion primitive is a dynami-
cally feasible state trajectory between two configurations in C. Dynamic feasibility,
as discussed in Section 2.1, is inherently satisfied by using motion primitives with
trajectories that satisfy (9). While we search in C, the trajectories are in X , which
means that to feasibly connect two configurations with state trajectories in X , they
must start and end with the same velocities.
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extra long straight
long straight
medium right
medium left

medium straight
short left
short right
short slight left

short slight right
short straight
tiny straight

Figure 4: Motion primitives used in our results.

Motion primitives with varying lengths and turn angles are precomputed using an
OCP. During the search, the primitives are translated and rotated to fit with the
originating configuration. The motion primitives used in our results are shown in
Figure 4.

The OCP used to generate motion primitives is

min
x(·),τ (·)

∫ tf

0

F (x(τ), τ (τ)) dτ (10a)

subject to

ẋ(t) = f(x(t), τ (t),02) t ∈ [0, tf ] (10b)
xlb ≤ x(t) ≤ xub t ∈ [0, tf ] (10c)
τlb ≤ τ (t) ≤ τub t ∈ [0, tf ] (10d)
x(0) = x0 (10e)
x(tf ) = xf . (10f)

The OCP is equal for every primitive, except for the final time tf , the state bounds
(10c) and the final condition (10f), all of which depend on the motion primitive length
L > 0 and direction angle χ. The vessel is assumed to travel with a nominal speed
Unom, which in our results is 1.5m s−1. For a specific primitive defined by (L, χ), the
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Table 1: Motion primitive parameters.

Name Length L [m] Turn angle χ [°]

extra long straight 200 0
long straight 100 0
medium right 50 30
medium left 50 −30
medium straight 50 0
short right 25 30
short left 25 −30
short slight right 25 15
short slight left 25 −15
short straight 25 0
tiny straight 10 0

parameters of (10) are

tf = L/Unom (11a)

xlb =




min(0, L cosχ)
min(0, L sinχ)

min(0, χ)
ulb
−vub
−rub




(11b)

xub =




max(0, L cosχ)
max(0, L sinχ)

max(0, χ)
uub
vub
rub




(11c)

τlb =
[
Xlb −Yub −Nub

]> (11d)

τub =
[
Xub Yub Nub

]> (11e)

x0 =
[
0 0 0 Unom 0 0

]> (11f)

xf =
[
L cosχ L sinχ χ Unom 0 0

]>
. (11g)

The values ulb, uub, vub and rub are velocity bounds, and Xlb, Xub, Yub, and Nub are
bounds on surge force, sway force, and yaw moment, respectively. Table 1 specifies
the parameters (L, χ) in our results, and Table 2 gives the boundary values.
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Table 2: OCP boundary values for motion primitives.

Unom 1.5 m s−1

ulb 0 m s−1

uub 2.5 m s−1

vub 1.5 m s−1

rub 5 ° s−1
Xlb −1000 N
Xub 1000 N
Yub 1000 N
Nub 1800 Nm

The OCP (10) contains a cost-to-go function:

F (x, τ ) =

energy︷ ︸︸ ︷
|ν|> ·|τ |

+ 1000
(
(v/vub)

2 + (r/rub)
2
)

+ 100
(
(X/Xub)

2 + (Y/Yub)
2 + (N/Nub)

2
)
. (12)

The cost’s main contributor is energy spent but includes quadratic costs on velocity
states and input forces. Without these quadratic costs, the OCP becomes significantly
harder to solve. The pure energy part of the cost function makes up ∼95% of the
straight motion primitives’ costs and ∼80% of the costs in turns.

The choice of length and direction parameters L and χ of the primitives are tightly
connected to the resolutions defined in (3). At least one of the motion primitives
must have a length longer than the diagonal of the grid cells defined by the positional
resolution rp in order to be guaranteed to traverse from one cell to another. We use
a positional resolution of rp = 10m, so we need at least one primitive longer than√
2 · 10m ≈ 14.14m. Additionally, one of the primitives should have a length equal to

rp, so that the search does not “jump over” the goal cell. It will also ease the discrete
search if the motion primitives’ direction angles are multiples of the angular resolution
rh. The primitives in Table 1 include these important properties.

The positional resolution greatly affects the performance of the hybrid A? search. A
smaller resolution rp makes the search space denser, which increases the computational
load and time to find a solution, but improves the accuracy of the search.

The OCPs are transcribed to NLPs using direct collocation, and then solved using
an interior point algorithm [25] offline prior to performing any search. The details of
the transcription and solving are the same as in the main OCP-stage of our planning
method – those details are found in Section 4.2.

In Algorithm 1, motion primitives from a configuration η ∈ C are returned by the
function Primitives. This function returns a sequence of geometrical paths P ∈ W,
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the cost of the maneuver c whose calculation is described in Section 3.3, and the
new neighboring state ηn ∈ C. The cost is dependent on the wind velocity Vw. A
mathematical description of the function is

Primitives : C × R2 7→ [W × R+ × C]1,...,M , (13)

where M is the number of motion primitives.

3.3 Cost function

While the OCP that generates the motion primitives uses the generic cost-to-go function
(12), these OCPs are solved offline and have no information about environmental
disturbances. Therefore, we need an alternative method to quickly calculate the
energy usage of each maneuver online, when the disturbances are known or estimated.
For calculating energy exerted to overcome environmental disturbances, we use the
definition of mechanical work:

Wr =

∫ tf

0

|τr|> ·|νr|dt, (14)

where we use the absolute values since there is no energy regeneration in the ASV’s
propulsion system. In this calculation, the subscript (·)r denotes relative values, e.g.,
the force needed to overcome relative wind velocity. The work required to move
through the wind is

Wwind =

∫ tf

0

|τw|> ·
∣∣∣∣∣ν −R(ψ)>

[
Vw
0

]∣∣∣∣∣dt, (15)

where τw is the force needed to overcome wind effects, calculated with our wind model.
We have assumed zero ocean currents for moving through the water since the vessel we
are working with has a very shallow and flat hull. Additionally, we do not have access
to accurate information about ocean currents in our test areas. The work required to
move through the water is then

Wwater =

∫ tf

0

∣∣D(ν)ν
∣∣> ·|ν|dt. (16)

The total energy cost c =Wwind+Wwater is calculated by propagating the integrands of
(15) and (16) over the discretized solution trajectories from (10) with the appropriate
wind velocity. This relative energy formulation is inspired by [26].

3.4 Collision checking

For each solution trajectory generated by (10), the position state trajectories x(·) and
y(·) make up the vessel’s geometrical footprint in W. After translating and rotating
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rc

A

Figure 5: Vessel shape along with the clearance radius rc which defines the footprint
A used for collision checking.

a motion primitive, the geometrical footprint is checked for overlap with O, and a
collision is reported if that is the case. The geometrical footprint is diluted by a
clearance radius rc to account for the shape of the vessel and additional clearance
to keep a proper distance from obstacles. The clearance radius and footprint are
illustrated in Figure 5. Our vessel is rectangular with a shape of 5m by 2.8m, and we
use a clearance radius of rc = 10m. The Collision function in Algorithm 1 performs
the collision checking:

Collision :W ×W 7→ {true, false} . (17)

3.5 Search heuristics

To guide the hybrid A? search, we use heuristic cost functions. These are functions
that estimate the remaining cost from a node in Cd to the goal node. The search will
prioritize exploring nodes with the lowest estimated total cost. In a traditional A?
search, using admissible heuristic functions, i.e., functions that never overestimate the
true cost, maintains a Dijkstra search’s optimality guarantee. However, hybrid A?
does not have any optimality guarantees due to the merging of continuous states in
discrete “bins,” so the heuristic functions’ admissibility is not as important.

Similar to [18], we combine two different heuristic functions. We employ a holonomic
with obstacles heuristic that guides the search towards the two-dimensional cheapest
path, and a nonholonomic without obstacles heuristic that avoids trajectories that the
ASV cannot feasibly follow. Their designs are described in the following, and they are
combined using the maximum of the two heuristics.

The description of the Heuristics function from Algorithm 1 is

Heuristics : C × C × R2 7→ R+, (18)
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Figure 6: 16-connected graph. In this connectivity scheme, edges are added to all
nodes two layers from the center node, unless the travel direction already exists in an
inner layer.

Obstacles
Goal

Figure 7: Example of the holonomic with obstacles heuristic function on a map.
Brighter squares are more costly.

where the function maps the current state η, the goal state ηf , and the wind velocity
Vw to a positive scalar.

3.5.1 Holonomic with obstacles

The holonomic with obstacles heuristic uses a simple model that can move in any
direction without the nonholonomic constraint of moving along the vessel’s heading
angle. It considers the obstacle map O and assigns costs to nodes using a breadth-
first search on a two-dimensional grid with resolution rp. Instead of the standard
eight-connected graph illustrated in Figure 3, we use a 16-connected graph, as seen in
Figure 6, to allow more movement angles. We use the same cost function described in
Section 3.3, which results in a mapping from every node in Cd,free to a positive scalar
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that estimates the remaining cost to navigate to the goal node. Figure 7 shows an
example of the mapping near a harbor.

The 16-connected breadth-first search is limiting since it biases towards paths with
the same directions as the graph connectivity in Figure 6, i.e., on ∼22° increments.
Without disturbances, the error between the real cost function and the heuristic
averages 1.8% in an obstacle-free map of 1 km by 1 km.

Alternative heuristics include the fast marching method, which can calculate a cost
function in the presence of obstacles without bias to particular directions. Standard
implementations of the fast marching method [27] do not support the inclusion of a
directional component in the cost function, on which we rely. Implementations of the
fast marching method subject to a vector field are available [28, 29]. Furthermore,
graph searches with simplified models can function as guiding heuristics, demonstrated
in [15].

Since the calculation of our holonomic-with-obstacle heuristic requires information
about the goal location and disturbances, the mapping has to be calculated online.

3.5.2 Nonholonomic without obstacles

The dual to the holonomic with obstacles heuristic is one that considers nonholonomic
movements without obstacles. This heuristic places high costs on nodes that lead to
trajectories the ASV cannot feasibly follow. It utilizes the motion primitives from
Section 3.2 and performs a breadth-first hybrid A? search from every node in a limited,
rectangular, collision-free grid around the origin of Cd. This results in a mapping from
the included nodes in Cd to a positive scalar and is precomputed offline. The mapping
is translated and rotated to the desired goal node when used in the search. Figure 8
shows the heuristic mapping for different initial heading angles.

Since the environmental disturbances are unknown at the time of precomputation, we
cannot say anything about the effects these disturbances have on the cost. However,
this heuristic is only active in the final part of the search, and we argue that the
energy-optimality criterion is less critical in this stage. Additionally, the optimization
stage described in Section 4 locally optimizes the trajectory accounting for known or
estimated disturbances.

3.6 Search output

A search is completed when the goal node is discovered by a motion primitive. The
result is a chain of nodes from the goal node towards the start node by following their
parents. This chain is reversed, and the resulting sequence of motion primitives are
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Start orientations Goal orientation

Figure 8: Plot of the nonholonomic without obstacles heuristic function for initial
heading angles 0°, 45°, 90° and 180°. Brighter squares are more costly.

concatenated into forming the solution trajectories

x? : [0, t?f ] 7→ X (19a)

τ ? : [0, t?f ] 7→ T , (19b)

which are valid on the time interval [0, t?f ], where t
?
f is the sum of the motion primitive

durations. In practice, these mappings are a discrete sequence of points in the state
and input spaces (X and T ), interpolated to form time-continuous trajectories. The
points’ density depends on the number of shooting intervals used when solving (10).

To summarize Stage 1, it consists of a hybrid A? search guided by two heuristics,
propagating motion primitives that lead from the start pose to the desired end pose.
Since the trajectory so far consists of only the motion primitive maneuvers, it must be
improved to find an optimized trajectory in the continuous search space.
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4 Stage 2: Trajectory optimization

The second stage of the trajectory planner is to solve an OCP that describes the
trajectory planning problem. Stage 2 in Figure 2 shows the subcomponents of this
trajectory optimization. The OCP is similar to (10) in Section 3.2. The initial and
final conditions are different, we include external disturbances, and we have added
obstacle avoidance constraints. Additionally, the final time is a free optimization
variable. We restate the OCP, including the stated changes:

min
x(·),τ (·),tf

∫ tf

0

F (x(τ), τ (τ)) dτ (20a)

subject to

ẋ(t) = f(x(t), τ (t),Vw) t ∈ [0, tf ] (20b)
xlb ≤ x(t) ≤ xub t ∈ [0, tf ] (20c)
τlb ≤ τ (t) ≤ τub t ∈ [0, tf ] (20d)
x(0) = x0 (20e)
x(tf ) = xf (20f)

Ak ·
[
x(tk) y(tk)

]> ≤ bk − rc k = 1, . . . , N (20g)
0 ≤ tf ≤ t?f . (20h)

The initial and final conditions are replaced with the initial and final desired pose,
with zero velocities. The cost-to-go function is the same, as are the velocity and
force bounds. Equation (20g) encodes obstacle avoidance constraints, which will be
described in Section 4.1. Since the final time is a free variable, we place bounds on it
in (20h). The transcription and solution process is described in Section 4.2.

4.1 Convex collision avoidance constraints

The OCP contains obstacle avoidance constraints in the form of halfspaces in the matrix-
vector form (20g). The halfspaces are defined for the points in time tk, k = 1, . . . , N ,
where N is the number of shooting intervals used in the transcription of (20). With
h = tf/N being the shooting interval duration, we have tk = h · k. The convex
regions that define the obstacle avoidance constraints are generated along the solution
of the hybrid A? trajectory, i.e., the initial guess. The positional part of the state
trajectory x?(·) from (19a) is denoted p?(·) = [x?(·), y?(·)]>. For the points in time
tk, k = 1, . . . , N , the parameters Ak ∈ Rmk×2 and bk ∈ Rmk are generated based on
the obstacle map O with p?(tk) being the generator points.

To create the convex region constraints, we use an algorithm that calculates an inner
approximation of the obstacle map based on the polygons’ edges in that map. The
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(a) Line segments of polygonal obsta-
cles.

(b) Compute closest points pc,k to
generator point p?(tk).

(c) Find normal lines to the line seg-
ments from p?(tk) to pc,k, that pass
through pc,k.

(d) Final convex inner approximation.

Figure 9: Illustration of how to compute the convex spatial constraints.
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Path
Corridor
Obstacles
Convex regions
Generator points

Figure 10: Example of convex regions along an arbitrary path with generator points
spaced by 100m. In the OCP the spacing would be ∼1.5m, causing dense overlapping,
resulting in a corridor as depicted in the figure.

process is summarized as follows: Given a generator point p?(tk), grow a circle centered
at p?(tk) until it reaches a point pc,k where it touches an obstacle, and then create
a constraint tangent to the expansion circle at the point at pc,k. Continue growing
and create constraints until no further growth is possible. The process is illustrated in
Figure 9. The parameters Ak and bk are defined by




(pc,k,1−p?(tk))
>

||(pc,k,1−p?(tk))||2
(pc,k,2−p?(tk))

>

||(pc,k,2−p?(tk))||2
...

(pc,k,mk
−p?(tk))

>

||(pc,k,mk
−p?(tk)||2




︸ ︷︷ ︸
Ak

p ≤




(pc,k,1−p?(tk))
>pc,k,1

||(pc,k,1−p?(tk))||2
(pc,k,2−p?(tk))

>pc,k,2

||(pc,k,2−p?(tk))||2
...

(pc,k,mk
−p?(tk))

>pc,k,mk

||(pc,k,mk
−p?(tk))||2




︸ ︷︷ ︸
bk

. (21)

A point p ∈ R2 is inside the convex region if the inequality constraints are satisfied,
which is (20g) in the OCP. The number of halfspaces that make up a specific region is
denoted mk, k = 1, . . . , N , and has an upper limit, in our case 12. The unit dimension
of this inequality is distance, and a subtraction of the right-hand side of (21) shrinks
the convex regions, implicitly increasing the clearance by, e.g., rc, which is the clearance
radius from Figure 5, used in (20g).

Figure 10 shows an example of convex regions using an arbitrary path as the basis for
generator points. For each point in time tk, the OCP may freely adjust the ASV’s
position inside the respective convex region. With dense overlapping, this allows the
ASV to travel inside a corridor along the initial guess.
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The convex regions constrain only a discrete set of points in the state trajectory
(x(tk), k = 1, . . . , N). This limitation means that the points in between can violate the
collision avoidance constraints. However, the vessel’s dynamics restrict the trajectory’s
velocity, thus limiting the movement in a neighborhood around x(tk). Having a short
shooting interval duration h gives satisfactory collision avoidance behavior. In our
results, we use a density of h ≈ 1 s.

4.2 Transcription and solver

To solve the continuous OCP (20), we discretize it into an NLP. We use direct
collocation with three Legendre collocation points per shooting interval to discretize
the dynamics (20b). Both the state and input trajectories are encoded as polynomials
over N shooting intervals. In our results, the number of shooting intervals is determined
by the estimated final time t?f from the hybrid A? results in Section 3.6. An initial
shooting interval duration of h? = 1 s determines N = bt?f/h?c+1, while since the final
time tf is a free variable with upper bound t?f , the actual shooting interval duration
can be shorter. The cost function is determined by propagating the quadrature integral
(20a) along the state and input polynomials. The resulting NLP is

min
w

φ(w) (22a)

subject to

wlb ≤ w ≤ wub (22b)
glb ≤ g(w) ≤ gub . (22c)

The decision variables w include states and inputs at all collocation points, and the
final time tf . The bounds (22b) are box bounds on all the decision variables and
encode the state and input constraints (20c) through (20f), and (20h). The function
g and its bounds in (22c) encode the dynamics (20b) in addition to the obstacle
avoidance constraints (20g).

The NLP is solved using the interior point algorithm “Ipopt” by Wächter and Biegler
[25]. Since the initial guess provided by the hybrid A? algorithm results in minimal
violations of the constraints, the initial value of the auxiliary boundary parameter µ
in Ipopt is set quite low to 1× 10−6, compared to its default value of 1× 10−1. This
reduction causes fast convergence of the solution.

Solving (22) provides the optimal decision variables w�. These are converted to
optimal trajectories

x� : [0, t�f ] 7→ X (23a)

τ � : [0, t�f ] 7→ T , (23b)
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where t�f is the optimal final time. Accurate interpolation of the discrete values
returned from the solver is achieved by using the polynomial definition of the state
and input trajectories.

4.3 Method summary

Figure 2 illustrates how all the subcomponents of our method are connected. Stage 1
performs a discrete search with continuous states using the hybrid A? algorithm guided
by two heuristics and propagating the states with motion primitives. This results in a
dynamically feasible initial guess for an energy-optimized trajectory between the start
and goal poses. The resulting trajectory consists of a sequence of the motion primitives
from Section 3.2, limiting the search space to only those maneuvers. Therefore the
trajectory cannot be optimal with respect to our cost functional. Stage 2 is a trajectory
optimization step that uses the initial guess for two purposes: 1. To provide a sequence
of convex and smooth polygonal constraints that represent a collision-free corridor from
start to goal, and 2. to warm-start the OCP solver. The convex polygonal constraints
are constructed with the process shown in Figure 9 and allow the OCP solver to handle
the inherently nonconvex obstacle avoidance problem easily. Combined, this gives us
a fast solution to (20), which is a locally optimal and dynamically feasible trajectory
between the start and goal poses.

5 Simulation results

In this section, we describe the simulation and control setup used to evaluate our
planning method and present the evaluation itself. We evaluate our method by
performing planning and simulation in various scenarios and wind conditions and
comparing our planner to other methods.

5.1 Simulator and control system

The different trajectory planning methods are tested in a software-in-the-loop vessel
simulator. The simulator comprises dynamic models of the vessel, its actuators,
and its control systems. The vessel model is described in Section 2.2, and the
simulator performs Runge-Kutta 4 integration to propagate the differential equations.
Additionally, the actuators’ propeller and azimuth dynamics are simulated, whose
models are available in [24].

The vessel’s control system for trajectory tracking is divided into two layers, as seen
in Figure 11: A trajectory-tracking dynamic positioning (DP) controller and a thrust
allocation algorithm. The DP controller consists of a PID feedback term and a model-
based feed-forward term for velocity and acceleration. Its details are available in [30,
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Figure 11: Vessel control system architecture.

Section 3.4]. The controller sends the desired force output to the thrust allocation
algorithm, which in turn sends thruster commands to the vessel’s actuators. This
thrust allocation algorithm is described in [31].

For evaluation, energy use is measured by integrating the simulated power output,
similar to the energy-part of (12):

E =

∫ tf

t0

∣∣ν(t)
∣∣> ·
∣∣τ (t)

∣∣ dt. (24)

5.2 Evaluating the effect of including disturbance information

One of the goals while developing the method was the ability to include known or
estimated disturbance effects in both planning stages. To magnify the effects of wind
on planning, we have designed a scenario where the starting point and goal are far
apart, and the vessel is under the influence of crosswinds. Figure 12 shows the scenario
where the plan is to sail from south to north.

The scenario is planned twice. Once when no wind information is included in the search,
assuming that the wind velocity is Vw = [0, 0] when it is, in fact, Vw = [0, 3] m s−1,
and once using the correct wind velocity. The warm start solutions from the hybrid
A? search differ significantly in the two cases, as shown Figure 12. However, the
optimized trajectories of the two plans are nearly identical. Additionally, the power
outputs from the simulated trackings are not that different – the total energy use for
the two scenarios are 170Wh when not accounting for wind in the planning, compared
to 164Wh when including wind information, a mere 3.5% improvement, attributed
mainly to a difference in heading during transit.

In practice, models of how wind affects a ship are uncertain. For such a low improve-
ment, it might not be beneficial to include wind effects when planning a long-term
trajectory. Adding this information may worsen the result if the wind model or wind
velocity estimates are erroneous. Including environmental disturbances may be more
appropriate for other types of vessels or other types of disturbances, such as waves
and ocean currents.
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Figure 12: Comparison of trajectories planned without and with knowledge of simulated
wind conditions. Described in Section 5.2.

5.3 Comparisons to other trajectory planning methods

Our method is compared to two other trajectory planning methods by planning a
trajectory in the same scenario with all three methods. The two other planning
methods are a warm-started optimization scheme developed in [14], labeled C1 in the
plots, and an optimal control-based complete cell decomposition method from [23]
labeled C2. Our method is labeled TP. These two methods are selected for comparison
because they are both optimization-based methods. C1 is similar in terms of the
warm-starting methodology, and C2 is interesting because of the map discretization’s
completeness.
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Figure 13: Elliptic obstacles that approximately match our map. Used when planning
with the C1 method in Section 5.3.1.

5.3.1 C1: Alternative warm-started optimization method

The method developed in [14] uses a similar approach to our method. The main
difference is how the warm start is generated and how the obstacles are represented in
the optimization stage. C1 uses a standard A? search on an 8-connected uniformly
discretized grid to search for the shortest path. That search results in a piecewise linear
path which is converted to a trajectory by smoothing the connections with circular
arcs and adding artificial dynamic information. The trajectory is not dynamically
feasible with respect to the ASV’s model, but it is used as the initial guess for an OCP
solver. The OCP solver represents obstacles as inequalities in the form of ellipses,
which are smooth representations, suitable for an optimization problem, but cannot
accurately represent polygonal maps.

To compare TP to C1, we adjust the cost-to-go function in [14] to be equivalent to (12).
Additionally, we have created elliptic obstacles to approximately match the polygonal
obstacles which define our map, seen in Figure 13. We plan and simulate with zero
wind, and with the initial and final poses, as shown in Figure 14. From the figure,
we see that the resulting trajectories differ only slightly, mainly due to the different
obstacle constraints. In the simulation, the trajectories give equal energy consumption,
both at 52Wh. Figure 15 shows significant positional tracking error at the start and
end of the transit, for both TP and C1. The vessel and its control system cannot
track the acceleration that happens from and to a standstill. The models used in
trajectory planning do not consider actuator dynamics or the control system, which
probably is the cause of these errors. The positional tracking errors are comparable
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Figure 14: Comparison of trajectories planned with different methods from Section 5.3.
Results from our method are labeled TP, while C1 and C2 denote the other planning
methods.

between TP and C1 for the remainder of the transit, with an error of 1m around the
turn and negligible error for the straights. Similar deviations are also evident in the
heading, due to the coupling between linear and angular velocities. The positional
error in Figure 15 is calculated as ||[x(t), y(t)] − [x�(t), y�(t)]||2, while the heading
error is ψ(t)− ψ�(t).

5.3.2 C2: Complete optimization-based cell decomposition

Martinsen, Lekkas, and Gros [23] have developed an optimization-based trajectory
planner that searches for a trajectory by considering sequences of collision-free triangles
from a constrained Delaunay triangulation of the workspace. C2 finds a globally optimal
trajectory for linear models regardless of the inherent non-convex obstacles due to the
cell decomposition by triangulation.

A trajectory with the same initial and final positions, as described in Section 5.3.1, is
generated using a similar cost-to-go function and a simplified dynamic model. Figure 14
shows that also with C2, the trajectory difference is minimal. The differing cost-to-go
function and dynamic model may cause the small differences we see. The slight
difference may be caused by the differing cost-to-go function and the dynamic model
used. As TP and C1, C2 gives an energy consumption of 52Wh. The tracking errors
are similar between TP and C2, with better performance at the start of the trajectory
for C2, as we see in Figure 15.
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Figure 15: Tracking errors from the simulation comparisons. Results from our method
are labeled TP, while C1 and C2 denote the other planning methods.

Table 3: Performance comparisons for simulated planning scenarios in Section 5.3.

Method Energy usage [Wh] Planning time [s]

TP 52 31
C1 52 57
C2 52 785

5.4 Complex scenario

The previous planning scenarios have been simple, with obvious routing choices.
Figure 16 shows a more complex scenario with multiple routing options. Our method
was able to find the most direct and energy-efficient routing and optimized a trajectory
from start to goal in 75 s. The figure also shows the corridor composed of the union
of convex regions that allow the OCP to optimize freely. The resulting trajectory is
dynamically feasible and adheres to the obstacle clearance constraints.

5.5 Conclusions

Including available wind information when planning a scenario yielded negligible
improvements, shown in Section 5.2. Only minor differences are found in the state
trajectories. We conclude that there is no benefit to energy consumption for our
application and vessel model when including wind estimates in trajectory planning.
This conclusion is supported by the fact that there will be significant uncertainties in
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Figure 16: Planning in a map of Sjernarøyane, Norway – a more complex scenario
with multiple routing options. Described in Section 5.4.

both wind estimates and wind force models.

Compared to two other optimization-based trajectory planning methods in Section 5.3,
we have shown that our method produced a similar trajectory with equal energy
consumption. This similarity verifies that our method can find a desirable optimized
trajectory with good energy performance. Significant improvements in runtime are
achieved by using our method in this scenario, highlighted in Table 3.

As we show in Section 5.4, our method can find the most reasonable trajectory
in a complex routing environment, which is a major challenge when using purely
optimization-based trajectory planning methods.

6 Experimental validation

To validate that our method will produce collision-free, dynamically feasible trajectories,
we have applied it in a full-scale experiment with milliAmpere, an experimental
autonomous ferry developed at NTNU, depicted in Figure 17. The specifications of
milliAmpere, its sensors, and control systems are found in Table 4, and it uses the
same control setup as described in Section 5. We tested the planning method and
tracking capabilities in the Trondheim harbor area, using the same scenario as in
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Figure 17: Picture of the experimental autonomous ferry milliAmpere.

Table 4: milliAmpere specifications.

Dimensions 5m by 2.8m symmetric footprint

Position and heading
reference system

Vector VS330 dual GNSS with RTK capabilities

Thrusters Two azimuth thrusters on the center line, 1.8m
aft and fore of center

Existing control modules Trajectory-tracking DP controller and thrust
allocation system

Section 5.3. On the day of testing, we measured a light breeze from North-northeast,
but we were shielded by a breakwater for most of the route, causing us to experience
almost no wind. We tested planning with zero wind and with the measured wind,
finding a difference in measured energy use of 2%, which we deem insignificant given
the measurement uncertainties, and thus we only present the results from planning
with zero wind. Energy use is measured by integrating power as determined by the
voltage and current measured on both the azimuth thrusters’ propeller motors:

E =

∫ tf

t0

(∣∣I1(t) · U1(t)
∣∣+
∣∣I2(t) · U2(t)

∣∣
)
dt, (25)

where Ii and Ui are motor current and voltage, respectively, for i ∈ {1, 2}.
Figure 18 shows an overview of the scenario, including the measured and planned
trajectories, and the warm start. The planned trajectory was naturally equivalent to
the one in Section 5.3, as nothing in the scenario was changed.

Figure 19 shows tracking errors for the tests. The positional error stayed within
1.5m, with an exception at 160 s, which stems from a jump in the GNSS measurement

Publications

164



500 400 300 200 100 0 100
300

200

100

0

100
Measured
Planned
Warm start
Start
Goal

Figure 18: Measured and planned trajectories from validation experiment in Section 6.

experienced during the experiment. The positional tracking error was large at the
beginning of the experiment, where milliAmpere and its control system struggled to
follow the trajectory’s acceleration. The unmodeled thruster dynamics and control
systems can explain this initial lag. Large positional errors were also induced during the
turn near the end of the experiments, which can be explained by the control system’s
poor tracking performance. Heading errors also occurred during the beginning of
the experiment, as well as during the turn. These errors can be attributed to the
coupling between linear and angular velocity, which is unaccounted for in the control
system. milliAmpere’s physical properties, with its shallow and flat hull, make it hard
to control its heading.

Figure 20 shows the distances from the measured and planned positions to the nearest
obstacle. Of course, the planned distance is more than the clearance of rc = 10m
away from obstacles at all times. The measured distance was 9.9m from the closest
obstacle at the nearest, which we consider safe.

Figure 21 shows the measured and planned state trajectories. The referenced jump in
GNSS measurement at 160 s is clearly visible in this plot, where the error propagates
into the velocity estimates. While the plots show jumps in velocity, no such jump was
experienced during the experiment – this is a measurement error. The sway velocity
and yaw rate measurements oscillate, making hard to determine tracking error for
these states. This oscillation may be due to the ship’s natural frequency – it is not
filtered out in the onboard navigation system, but we can see that the measurements
lie around the planned trajectories.

During the experiment, the measured energy use was 245Wh, which is almost five
times the simulated energy estimate. This discrepancy is due to the completely
different approaches used to estimate the energy in simulation and experiments.
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Figure 19: Tracking errors from the validation experiment in Section 6.
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Figure 20: Measured and planned obstacle distances from the validation experiments
in Section 6.

7 Conclusions

Solving the continuous optimal control problem for trajectory planning is difficult and
requires an initial guess close to the globally optimal solution to be a feasible option.
Moreover, since the trajectory planning problem is inherently nonconvex, some clever
encoding of obstacles is needed to reduce complexity, especially when dealing with
polyhedral shapes with discontinuous gradients. We propose a continuous, model-based
method for energy-optimized trajectory planning for ASVs that leverages a discrete
search’s desirable advantages to generate a good initial guess and performs convex
encoding of obstacles to achieve collision avoidance. Our method is based on continuous
optimal control, and the warm starting is provided by the hybrid A? algorithm. We
have compared the method with an optimal control-based complete cell decomposition
method with a similar cost function to find comparable performance in terms of
optimality and significantly improved computational time. A comparison with a warm-

Publications

166



200

0

No
rth

 [m
]

400

200

Ea
st

 [m
] Measured

Planned
Warm start

100

0

He
ad

in
g 

[°
]

0

1

Su
rg

e 
[m

/s
]

1

0

1

Sw
ay

 [m
/s

]

0 100 200 300 400

0

5

Ya
w 

ra
te

 [°
/s

]

Figure 21: Measured and planned state trajectories from the validation experiment in
Section 6.

started optimal control-based method from earlier work by us has shown improved
performance, in addition to being able to use more general obstacle representations.

There are several areas where we can improve our method in further work:

• The search space can be extended to include surge velocity. This extension
would allow the hybrid A? search to look for variations in the speed profile that
could benefit energy efficiency.

• Including velocity in the search space will require modifications to the heuristic
functions. Additionally, to prevent the search from always choosing the slowest
velocity which would be energy optimal, we need to limit the trajectory’s
maximum duration. This constraint could be introduced by computing a map
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with the shortest path, similar to the holonomic with obstacles heuristic, and
constrain the search from selecting nodes that cannot reach the goal within the
time limit with the highest velocity. The fast marching method is appropriate
for this distance map.

• The hybrid A? search is currently a naive Python implementation and contributes
significantly to computation time. Improvements to this implementation would
increase the performance of our method. This issue is also the case for the
construction of the NLP.

• In our work, we have included external disturbances in terms of wind velocity. We
have found that it does not affect the optimized trajectory or energy consumption
in a significant manner. Other environmental effects, such as waves or ocean
currents, can have more of an impact on energy consumption and should be
explored.

• Including the COLREGs in trajectory planning for marine vessels should also
be a priority to further work on this topic.

Acknowledgment

The authors thank Emil H. Thyri at NTNU for his help during the experiments with
milliAmpere. G. Bitar also thanks Marius Thoresen at the Norwegian Defence Research
Establishment for helpful discussions during algorithm implementation.

References

[1] Martin Ludvigsen and Asgeir J. Sørensen. “Towards integrated autonomous
underwater operations for ocean mapping and monitoring”. In: Annual Reviews
in Control 42 (2016), pp. 145–157.

[2] Bjørn-Olav H. Eriksen et al. “Hybrid Collision Avoidance for ASVs Compliant
with COLREGs Rules 8 and 13–17”. In: Frontiers in Robotics and AI 7 (2020),
pp. 1–11. arXiv: 1907.00198 [eess.SY].

[3] Mae L. Seto, ed. Marine Robot Autonomy. 2013.

[4] Scott Pendleton et al. “Perception, Planning, Control, and Coordination for
Autonomous Vehicles”. In: Machines 5.1 (2017), p. 6.

[5] Steven M. LaValle. “Motion Planning. Part I: The Essentials”. In: IEEE Robotics
& Automation Magazine 18 (1 2011), pp. 79–89.

[6] Artur Wolek and Craig A. Woolsey. “Model-Based Path Planning”. In: Sensing
and Control for Autonomous Vehicles. Ed. by Thor I. Fossen, Kristin Y. Pettersen,
and Henk Nijmeijer. Springer International Publishing, 2017, pp. 183–206.

Publications

168



[7] Peter Hart, Nils Nilsson, and Bertram Raphael. “A formal basis for the heuristic
determination of minimum cost paths”. In: IEEE Transactions on Systems
Science and Cybernetics 4.2 (1968), pp. 100–107.

[8] M. Candeloro, A. M. Lekkas, and A. J. Sørensen. “A Voronoi-diagram-based
dynamic path-planning system for underactuated marine vessels”. In: Control
Engineering Practice 61 (2017), pp. 41–54.

[9] L. E. Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional
configuration spaces”. In: IEEE Transactions on Robotics and Automation 12.4
(1996), pp. 566–580.

[10] Steven M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path
Plannning. 1998.

[11] Richard Bellman. Dynamic Programming. Courier Dover Publications, 2003.

[12] Qi Gong, Ryan Lewis, and I. Michael Ross. “Pseudospectral Motion Planning
for Autonomous Vehicles”. In: Journal of Guidance, Control, and Dynamics 32.3
(May 2009), pp. 1039–1045.

[13] Glenn Bitar, Morten Breivik, and Anastasios M. Lekkas. “Energy-Optimized
Path Planning for Autonomous Ferries”. In: Proc. of the 11th IFAC CAMS.
Opatija, Croatia, 2018, pp. 389–394.

[14] Glenn Bitar et al. “Warm-Started Optimized Trajectory Planning for ASVs”. In:
Proceedings of the 12th IFAC Conference on Control Applications in Marine
Systems, Robotics, and Vehicles. Daejeon, South Korea, 2019. arXiv: 1907.02696
[eess.SY].

[15] Xiaojing Zhang et al. “Autonomous Parking Using Optimization-Based Collision
Avoidance”. In: IEEE Conference on Decision and Control (CDC). Miami Beach,
FL, USA, 2018, pp. 4327–4332.

[16] Kristoffer Bergman et al. An Optimization-Based Motion Planner for Au-
tonomous Maneuvering of Marine Vessels in Complex Environments. 2020.
arXiv: 2005.02674 [math.OC].

[17] Jianyu Chen, Wei Zhan, and Masayoshi Tomizuka. “Autonomous Driving Motion
Planning With Constrained Iterative LQR”. In: IEEE Transactions on Intelligent
Vehicles 4.2 (2019), pp. 244–254.

[18] Dmitri Dolgov et al. Practical search techniques in path planning for autonomous
driving. Tech. rep. American Association for Artificial Intelligence, 2008.

[19] Yu Zhang et al. “Hybrid Trajectory Planning for Autonomous Driving in Highly
Constrained Environments”. In: IEEE Access 6 (2018), pp. 32800–32819.

[20] Yu Meng et al. “A Decoupled Trajectory Planning Framework Based on the
Integration of Lattice Searching and Convex Optimization”. In: IEEE Access 7
(2019), pp. 130530–130551.

E. Two-Stage Optimized Trajectory Planning for ASVs Under . . .

169



[21] Giuseppe Casalino, Alessio Turetta, and Enrico Simetti. “A three-layered archi-
tecture for real time path planning and obstacle avoidance for surveillance USVs
operating in harbour fields”. In: Proceedings of the IEEE Oceans ’09 Conference
(May 11, 2009). IEEE. Bremen, Germany, 2009, pp. 1–8.

[22] Petr Švec et al. “Dynamics-aware target following for an autonomous surface
vehicle operating under COLREGs in civilian traffic”. In: 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Tokyo, Japan, 2013,
pp. 3871–3878.

[23] Andreas B. Martinsen, Anastasios M. Lekkas, and Sebastien Gros. Optimal
model-based trajectory planning with static polygonal constraints. submitted for
publication. arXiv: 2010.14428 [eess.SY].

[24] Anders Aglen Pedersen. “Optimization based system identification for the mil-
liAmpere ferry”. MA thesis. Norwegian University of Science and Technology,
2019.

[25] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming”. In: Mathematical
Programming 106 (2005), pp. 25–57.

[26] T. Lee, H. Chung, and H. Myung. “Multi-resolution path planning for marine
surface vehicle considering environmental effects”. In: Proceedings of OCEANS.
Santander, Spain, 2011, pp. 1–9.

[27] J. A. Sethian. “A fast marching level set method for monotonically advancing
fronts”. In: Proceedings of the National Academy of Sciences 93.4 (1996), pp. 1591–
1595.

[28] Clément Pêtrès et al. “Path Planning for Autonomous Underwater Vehicles”. In:
IEEE Transactions on Robotics 23.2 (2007), pp. 331–341.

[29] Santiago Garrido et al. “Fast marching subjected to a vector field – path planning
method for Mars rovers”. In: Expert Systems with Applications 78 (2017), pp. 334–
346.

[30] Glenn Bitar et al. “Trajectory Planning and Control for Automatic Docking
of ASVs with Full-Scale Experiments”. In: Proceedings of the 1st Virtual IFAC
World Congress. 2020. arXiv: 2004.07793 [eess.SY].

[31] Tobias R. Torben, Astrid H. Brodtkorb, and Asgeir J. Sørensen. “Control alloca-
tion for double-ended ferries with full-scale experimental results”. In: Proceedings
of the 12th IFAC Conference on Control Applications in Marine Systems, Robotics
and Vehicles (CAMS). Daejeon, South Korea, 2019.

Publications

170



F. Optimization-Based Automatic Docking and Berthing of . . .

F Optimization-Based Automatic Docking and
Berthing of ASVs Using Exteroceptive Sensors:
Theory and Experiments

Postprint of [22] Andreas B Martinsen, Glenn Bitar, Anastasios M Lekkas,
and Sébastien Gros. “Optimization-Based Automatic Docking and Berthing
of ASVs Using Exteroceptive Sensors: Theory and Experiments”. In: IEEE
Access 8 (2020), pp. 204974–204986. doi: 10.1109/ACCESS.2020.3037171

©2020 Andreas B Martinsen, Glenn Bitar, Anastasios M Lekkas, and
Sébastien Gros. Reprinted and formatted to fit the thesis under the terms of
the Creative Commons Attribution License cb

171

https://doi.org/10.1109/ACCESS.2020.3037171
https://creativecommons.org/licenses/by/4.0/


Publications

Vehicle

High-level
global planner

Mid-level
local planner

Low-level
motion control

Nominal
trajectory

Modified
trajectory

Actuators

Navigation and
sensor systems

Actuator
commands

Objective

Paper G: Optimal Model-Based
Trajectory Planning With Static
Polygonal Constraints

Paper E: Two-Stage Optimized
Trajectory Planning for ASVs Under
Polygonal Obstacle Constraints:
Theory and Experiments

Paper A: Autonomous docking
using direct optimal control

Paper D: Trajectory Planning and
Control for Automatic Docking of
ASVs with Full-Scale Experiments

Paper F: Optimization-Based Au-
tomatic Docking and Berthing of
ASVs Using Exteroceptive Sensors:
Theory and Experiments

Paper H: Two space-time obstacle
representations based on ellipsoids
and polytopes

Paper B: Reinforcement learning-
based tracking control of USVs in
varying operational conditions

Paper C: Combining system identi-
fication with reinforcement learning-
based MPC

Paper I: Reinforcement Learning-
based MPC for Tracking Control of
ASVs: Theory and Experiments

172



Optimization-based Automatic Docking and
Berthing of ASVs Using Exteroceptive Sensors:
Theory and Experiments∗

Andreas B. Martinsen1, Glenn Bitar1,2, Anastasios M. Lekkas1,2, and Sébastien Gros1

1Department of Engineering Cybernetics, Norwegian University of Science and Tech-
nology, Trondheim, Norway
2Centre for Autonomous Marine Operations and Systems, Norwegian University of
Science and Technology, Trondheim, Norway

Abstract: Docking of autonomous surface vehicles (ASVs) involves intricate ma-
neuvering at low speeds under the influence of unknown environmental forces, and
is often a challenging operation even for experienced helmsmen. In this paper, we
propose an optimization-based trajectory planner for performing automatic docking
of a small ASV. The approach formulates the docking objective as a nonlinear optimal
control problem, which is used to plan collision-free trajectories. Compared to recent
works, the main contributions are the inclusion of a map of the harbor and additional
measurements from range sensors, such as LIDAR and ultrasonic distance sensors, to
account for map inaccuracies as well as unmapped objects, such as moored vessels. To
use the map and sensor data, a set generation method is developed, which in real-time
computes a safe operating region, this is then used to ensure the planned trajectory
is safe. To track the planned trajectory, a trajectory-tracking dynamic positioning
controller is used. The performance of the method is tested experimentally on a small
ASV in confined waters in Trondheim, Norway. The experiments demonstrate that
the proposed method is able to perform collision-free docking maneuvers with respect
to static obstacles, and achieves successful docking.

Keywords: Autonomous surface vehicles, Berthing, Collision avoidance, Docking,
Marine vehicles, Motion planning, Optimal control, Trajectory optimization

1 Introduction

Autonomy, and autonomous systems is a rapidly growing area of interest in a wide
variety of industries. This includes the maritime industry, where autonomous surface
vehicles (ASVs) have been proposed for surveying and mapping, surveillance, and

∗This work is supported by the Research Council of Norway through the project number 269116
and through the Centres of Excellence funding scheme with project number 223254.
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transportation, to name a few application areas. With the motivation factors includ-
ing lower costs, higher availability and flexibility, better safety and reliability, and
reduced environmental impact. In the case of transportation, autonomous operations
can be roughly split into the following three phases.

• Undocking – moving from the quay in a confined harbor area to open waters,

• transit – crossing a body of water towards the destination harbor,

• docking – moving from open waters towards the docking position along the quay
in a harbor area.

In this paper we will focus on docking of a vessel in a confined harbor area. While
the method we propose in this paper is able to solve both the docking and undocking
problem, the focus is on docking, as it is the most challenging of the two and requires
very precise movements [1] when performing the final controlled collision with the
quay.

The problem of automatic docking and berthing is an important part of performing
autonomous transportation, and hence the problem has seen a lot of interest, with a
variety of solutions. However, due to the complexity of performing docking, most of
the existing methods rely on simplifying the docking problem, this has lead to a lack
of experimental results. The traditional approach for docking large under-actuated
vessels, requires the use of tug boats, as support vessels, in order to push and pull the
vessel to perform the docking maneuver. This has lead to research into synchronizing
the movement of multiple tugboats, in order to perform the desired maneuvers [2–5].
With many newer vessels being fully actuated, or even over-actuated, research has
shifted to seeking methods for automatically performing docking without the use of
additional support vessels. One such approach to solving the docking problem is via
fuzzy control. The control system is then based on fuzzy logic, and its behaviour
changes based on a set of predetermined rules [6–8]. An other approach for docking,
that has seen a lot of interest, is the use of Artificial Neural Networks (ANNs) [2,
5, 9–15]. For these approaches, an ANN is used as a function approximator for the
policy, and is tasked with learning to imitate pre-recorded docking trajectories, and
hence learning how to perform the docking maneuvers. More recent learning-based
methods have expanded on this by using advances in Deep Learning (DL) [16–18].
Additional approaches include docking using a rule-based expert system [19], dock-
ing by target tracking [20], and docking using artificial potential fields [21]. Within
industry, several companies have developed methods for automatic docking [22–24],
however details about the different approaches remain sparse. The most promising
approaches however, rely on optimization-based planning [25–34], where trajectories
are planned using convex optimization. These methods are often preferable, as they
allow for explicitly including dynamics and constraints when planning a trajectory.

When developing automatic docking systems to facilitate berthing of vessels, it is
important to have accurate and reliable positioning systems in place. This is required
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in order accurately determine the position of the vessel hull relative to the berth.
While this is possible to do using satellite positioning systems, it requires high pre-
cision satellite positioning and the position of the berth must be well known, which
may not always be the case. In order to overcome these problems, the use of quay-
mounted laser or radar ranging systems [35–37] is often used in larger ports, in order
to independently identify the position and velocity of the vessel relative to the quay.

The docking method from [32] is a nonlinear model predictive controller (NMPC)
that takes into account vessel dynamics in the form of its dynamic model, as well
as collision avoidance by planning trajectories within a convex set, based on the
harbor layout. Advantages of this approach include the explicit handling of static
obstacles, the planning of dynamically feasible trajectories, and a flexible behavior
shaping via the nonlinear cost function. The method does not handle moving obstacles
or account for external unknown disturbances. Additionally, due to the non-convexity
of the optimal control problem, guarantees on run time or feasibility are not provided.
In this paper, we build on [32, 33] and propose a novel algorithm for dynamically
creating a convex safety set, based on a map of the environment. We also show
how this method can be combined with sensor data from on board sensors such as
LIDAR pointclouds, and ultrasonic distance sensors, in order to account for missing or
inaccurate map data. This allows to plan and perform docking maneuvers in harbors
without the need for land-based sensor systems, even if the harbor layout changes.
We also propose some modifications to the cost function, in order to generate more
efficient docking trajectories. Finally, we validate the method in full-scale experiments
on the experimental autonomous urban passenger ferry milliAmpere, seen in Figure
1, and show how the proposed approach is able to successfully plan and perform safe
and collision free docking maneuvers in confined waters in Trondheim, Norway. The
contributions of this work can be split into two main categories, namely methodology,
and implementation.

1. Methodology builds on the work in [32], with the following improvements:

• A set generation method for identifying a safe operating region in real-time
(Section 4.1).

• Improvements to the cost function, which give more refined docking ma-
neuvers (Section 3.2).

2. Implementation builds on the work in [33], with the following improvements:

• Addition of exteroceptive sensor data to account for map inaccuracies as
well as unmapped objects (Section 4.2).

• Improved interplay between the tracking controller and planner for better
tracking performance (Section 5.1).

• Improvements to the cost function, which gives better tracking performance
(Section 3.2).
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Figure 1: Experimental platform milliAmpere.

To the authors’ best knowledge, this is the first work to demonstrate fully automatic
docking using only on-board sensors and map data, and use this data to plan a safe
and feasible trajectory in real-time.

2 Vessel Model

This section presents the kinematic, dynamic and thruster models of an ASV, which
have to be taken into account when planning a safe and feasible docking trajectory.

2.1 Kinematics and Dynamics

When modeling vessels for the purpose of autonomous docking, we consider only
the vessel movement on the ocean surface, neglecting the roll, pitch and heave mo-
tions. The mathematical model used to describe the system can then be kept rea-
sonably simple as it is limited to the planar position and orientation of the ves-
sel. Given R as the set of real numbers, S = [0, 2π] as the set of angles, and
SO(n) = {R|R ∈ Rn×n, R>R = RR> = I, det(R) = 1} as the special orthog-
onal group in n dimensions, the motion of a surface vessel can be represented by the
pose vector η = [x, y, ψ]> ∈ R2 × S, and velocity vector ν = [u, v, r]> ∈ R3. Here,
pc = [x, y]> describe the Cartesian position in the Earth-fixed reference frame, ψ is
yaw angle, (u, v) is the body fixed linear velocities, and r is the yaw rate, an illustra-
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(x, y)

E

N

u

v

ψ

lx,1
lx,2

Figure 2: 3-DOF vessel centered at pc = [x, y]>, with surge velocity u, sway velocity
v, heading ψ in a North-East-Down (NED) reference frame.

tion is given in Figure 2. Using the notation in [38] we can describe a 3-DOF vessel
model as follows

η̇ = J(ψ)ν, (1)
Mν̇ +C(ν)ν +D(ν)ν = τ , (2)

where M ∈ R3×3, C(ν) ∈ R3×3, D(ν) ∈ R3×3, τ ∈ R3 and J(ψ) ∈ SO(3) are the
inertia matrix, Coriolis matrix, dampening matrix, control forces and moments, and
transformation matrix, respectively. The transformation matrix J(ψ) is given by

J(ψ) =



cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (3)

and represent the rotation from the body frame to the Earth-fixed reference frame.
For detailed information about the milliAmpere model parameters used in this paper,
the reader is referred to [33].

2.2 Thrust configuration

The control surfaces of the vessel are specified by the thrust configuration matrix
T ∈ R3,nthrusters , which maps the thrust f ∈ Rnthrusters from each thruster into the
surge, sway and yaw forces and moments in the body frame of the vessel

τ = Tf . (4)

Each column T i in T gives the configuration of the forces and moments of a thruster
i as follows:

Tifi =




Fx,i
Fy,i

Fy,i · lx,i − Fx,i · ly,i


 , (5)
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where Fx,i and Fy,i are the forces in the body frame, and lx,i and ly,i is the position of
the thruster in the body frame. Given a desired force vector τ , finding the individual
thruster forces that produce it, is called the thrust allocation problem. While there
are numerous ways of solving the thrust allocation problem [39], in order to account
for the thrust configuration and individual thruster constraints, we want to include
the thrust allocation as part of the optimization and planning for performing the
docking operations. For the milliAmpere vessel, illustrated in Figure 2, there are two
thrusters mounted along the center line of the vessel, giving the following control force
and moments:

τ =




Fx,1
Fy,1

Fy,1 · lx,1


+




Fx,2
Fy,2

Fy,2 · lx,2


 . (6)

3 Trajectory Planning and Control

Automatic docking is a complex problem, which includes planning and performing
maneuvers to control a vessel to a desired orientation and position, while adhering to
spatial constraints in order to avoid collisions. In order to perform the docking, we
expand upon [32, 33], where we use a docking trajectory planner, constructed as an
Optimal Control Problem (OCP). This allows the planner to take into account the
vessel dynamics in terms of a mathematical model, as well as the harbor layout in
terms of a map of landmasses. Additionally we include the use of ranging sensors,
namely ultrasonic distance sensors and LIDAR, in order to account for obstacles not
present in the map of the harbor layout.

3.1 Obstacle avoidance

Given a desired position xd, yd and a desired heading ψd, we define the docking
problem as maneuvering a vessel as close as possible to the desired docking pose
ηd = [xd, yd, ψd]

>, without running the vessel into obstacles, i.e. adhering to spatial
constraints. As proposed in [32], the safe operation of the vessel can be formalised in
terms of the vessel boundary Sv being contained within a convex inner approximation
of the surrounding obstacles Ss, called the spatial constraints, see Figure 3. Since the
safe operating region, given in terms of the spatial constraints Ss, is given as a convex
set, the region can be defined in terms of a set of linear inequality constraints:

Ss = {p ∈ R2 |Asp ≤ bs},

where the matrix As ∈ Rnconstraints,2 and vector bs ∈ Rnconstraints define the linear
inequality constraints. Furthermore, we can note that if both the vessel set Sv and
spatial constraint Ss are convex, then the vessel is contained within the spatial con-
straints so long as all the vertices of the vessel boundary are contained within the
spatial constraints. This is useful as it allows us to simplify the safety constraints to
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Sv

Ss

E

N

Figure 3: The gray convex polytope illustrates the vessel, whereas Sv is the vessel
boundary, and Ss are the spatial constraints. The vessel will always lie within the
spatial constraints Ss as long as all the vertices of Sv lie within the spatial constraints.

the following:
Sv ⊆ Ss ⇐⇒ Asp

n
i ≤ bs ∀pni ∈ Vertex(Sv), (7)

where pni denotes the position of vertex i in the North-East-Down (NED) reference
frame. Since the vertices of the vessel boundary are given in the body frame of the
vessel, we need to transform them from the body frame to the NED frame, giving the
following nonlinear constraints:

As

(
R(ψ)pbi + pc

)
≤ bs ∀pbi ∈ Vertex(Sv), (8)

where pbi denotes the position of vertex i in the body frame, pc = [x, y]> is the vessel
position and R is the rotation from the body frame to NED.

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(9)

The constraints in (8) can be directly implemented as inequality constraints in an
optimization problem, and ensures the vessel is contained within a safe region given
by the spatial constraints.

While this constraint is easily implemented in a nonlinear programming (NLP) prob-
lem, the constraint is not convex. As a result, a feasible solution of the problem is
guaranteed to satisfy the spatial constraints, but we cannot guarantee that the NLP
will converge to a global optimum.

3.2 Optimal control problem

In order to plan a safe trajectory for the vessel, we formulate the problem as the
following continuous time nonlinear optimal control problem:

min
xp(·),up(·),s(·)

∫ t0+T

t0

(
l(xp(t),up(t)) + k

>
s s(t)

)
dt (10a)
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s.t.

ẋp(t) = f(xp(t),up(t)) ∀t ∈ [t0, t0 + T ] (10b)
h(xp(t),up(t))− s(t) ≤ 0 ∀t ∈ [t0, t0 + T ] (10c)

s(t) ≥ 0 ∀t ∈ [t0, t0 + T ] (10d)
xp(t0) = x(t0), (10e)

where xp(t) = [ηp,νp]
> is the planned state trajectory of the vessel, u(t) =

[Fx,1, Fy,1, Fx,2, Fy,1]
>, are the planned thruster forces, and s(t) are slack vari-

ables. The constraint relaxation (10c), is added in order to allow the planner to plan
a trajectory from a possibly infeasible initial pose. This is useful, as it allows for
re-planning the docking trajectory in a model predictive control (MPC) like fashion,
and use low-level controllers to follow the planned trajectory.

The cost function (10a) includes a slack variable cost, and a stage cost. For the slack
variable cost k>s s(t), the gain ks is chosen large enough such that the slack variables
are active only when the non-relaxed constraints are infeasible. The following stage
cost was chosen:

l(xp(t),up(t)) = qx,y · cx,y(ηp(t)) + qψ · cψ(ηp(t))
+ νp(t)

>Qνp(t) + up(t)
>Rup(t).

(11)

The velocity and control actions are penalized with a quadratic penalty, with weight
matricesQ andR. The position cost cx,y(ηp(t)) is chosen as a pseudo-Huber function,
penalizing the difference between the current pose and the docking pose ηd, and is
given as follows:

cx,y(ηp) = δ2

(√
1 +

(xp(t)− xd)2 + (yp(t)− yd)2
δ2

− 1

)
. (12)

Using a pseudo-Huber cost, provides a quadratic penalty when the quadrature position
error is low and linear when the position error is high. This helps with numerical
stability, as well as performance when large position errors are observed [40, 41]. For
the heading cost function cψ(ηp(t)), the following was chosen:

cψ(ηp(t)) =
1− cos(ψp(t)− ψd))

2
e−

(xp(t)−xd)2+(yp(t)−yd)2
2δ2 . (13)

The first factor of the heading cost function is the cost of the heading error, in a form
that avoids the wraparound of the heading. The second part is a Gaussian function,
which discounts the heading error when far away from the docking pose. This cost
function has the effect of having the planner chose an efficient heading when far away
from the dock, and then gradually rotate the vessel towards the desired heading when
closing in on the dock. It is worth noting that the cost works similarly to a terminal
cost, but is phased in more gradually than a genuine terminal cost. This has the
benefit of making the OCP less sensitive to the length of the prediction horizon.
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The first constraint (10b) ensures that the planned trajectory satisfies the kinematic
and dynamic models of the vessel described by (1) and (2). The inequality constraint
(10c) consists of the spatial constraints described in (8), as well as constraints on the
maximum and minimum velocity, angular velocity, and thruster forces. The constraint
in (10d) ensures that the slack variables are positive, and (10e) sets the initial state
to that of the vessel.

In order to implement the continuous time problem given in (10) we need to transcribe
the problem into the standard form.

min
w

φ(w)

s.t. g(w) = 0

h(w) ≤ 0

This can be done in multiple ways, however the two main classes of methods are
sequential methods, such as direct single shooting [42], and simultaneous methods
such as direct multiple shooting [43], and direct collocation [44]. For this approach we
chose to use direct collocation, in where implicit numerical integration of the ordinary
differential equation (ODE) constraints (10b), as well as the objective function (10a),
is performed as part of the nonlinear optimization. For the implementation of the
docking planner, we defined a planning horizon of T = 120s, with N = 60 shooting
intervals, and degree d = 3 Legendre polynomials. This was chosen as it gave a
good trade-off in terms of horizon length, integration accuracy and computational
complexity.

4 Automatic Constraint Generation

Given the OCP formulation in the previous section, we are faced with the problem of
finding a convex set:

Ss = {p ∈ R2 |Asp ≤ bs},

within which the vessel must be contained. The set Ss must be created in a way
such that it does not intersect with any constraints stemming from the environmental
obstacles. Ideally we would also like the set to be as large as possible, in order to not
unnecessarily restrict the vessel movement. While a number of methods for perform-
ing constraint generation already exists [45–48], they can often be computationally
expensive. In this section, we propose a method similar to [45, 46], where a constraint
set is generated as a vessel-centered convex inner approximation of the environmental
constraints. We will also show how we can easily and efficiently compute this set from
known map data, as well as from range sensor such as LIDAR and ultrasonic distance
sensors.
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4.1 Computing a convex inner approximation

In this section, we show how to compute the safe set as a vessel-centered convex
inner approximation of the environmental constraints, when the obstacles are repre-
sented by line segments making up obstacle polygons. Intuitively the method can be
summarized as follows:

1. Given a center point pc, grow an ellipse centered at pc, until it touches an
environmental constraint (Section 4.1.1).

2. Create a linear constraint tangent to the expansion ellipse at the contact point
between the ellipse and the environmental constraint (Section 4.1.2).

3. Continue growing and creating linear constraints until no further growth is possi-
ble, and combine the linear constraints into the final convex inner approximation
of the environment (Section 4.1.3)

In the next subsections we will show how to quickly and efficiently perform the steps
above in order to end up with a simple closed form solution to generating the convex
inner approximation.

4.1.1 Computing the contact point between ellipse and environmental
constraint

Given a line segment (pa,pb) making up the environmental constraints, we want to
find the contact point pab between the line segment and the expansion ellipse centered
at pc, this is illustrated in Figure 4. We can formulate this as an optimization problem
which minimizes the distance between pc and the parametric line segment:

pab(ω) = pa(1− ω) + pbω, (14)

where ω ∈ [0, 1]. For the optimization problem we wish to find the parameter ω that
minimizes a non-Euclidean distance from pab(ω) to pc, giving the following:

min
ω

f(ω) = (pab(ω)− pc)>Σ (pab(ω)− pc) (15)

s.t. 0 ≤ ω ≤ 1, (16)

where Σ is a positive definite symmetric projection matrix, defining the expansion
ellipse. Choosing Σ = I gives the Euclidean distance, while choosing Σ as a different
positive definite symmetric matrix, allows prioritizing a direction, when minimizing
the distance. For the unconstrained optimization problem, the necessary conditions
give:

df(ω)

dω
= (pa(1− ω) + pbω − pc)>Σ(pb − pa) = 0

⇒ ω = − (pa − pc)>Σ(pb − pa)
(pb − pa)>Σ(pb − pa)

.

(17)
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This gives the parameterized variable ω for the unconstrained problem. The con-
strained ω ∈ [0, 1], due to the simplicity of the constraints and convexity of the
optimization problem, can be found by simply clipping ω between 0 and 1:

ω = clip
(
− (pa − pc)>Σ(pb − pa)
(pb − pa)>Σ(pb − pa)

, 0, 1

)
(18)

The closest point pab, constrained to being on the line segment (pa, pb) is then given
by inserting the parameter w from (18) into (14). We should note that this gives
a closed form solution for the contact point pab, which means it can be efficiently
computed.

x

y

pa

pb

pc

pab

Figure 4: The contact point pab is given by the shortest non-Euclidean distance from
point pc to line segment (pa,pb)

4.1.2 Finding the tangent line to the expansion ellipse

Given the closest point pab on a line segment, the next step is to find the line Ax = b
which is tangent to the expansion ellipse, and hence normal to the ellipse gradient
Σ(pab − pc), as illustrated in Figure 5. Given the expansion ellipse gradient for a
point pab as:

Σ(pab − pc) (19)

we can note that any nonzero vector [x, y]> is orthogonal to the expansion ellipse, if
the inner product is zero.

(pab − pc)>Σ

[
x
y

]
= 0 ⇒ Orthogonal. (20)

Using (20), the tangent line of the expansion ellipse, passing through the point
[x0, y0]

> is given as the following.

(pab − pc)>Σ

([
x
y

]
−
[
x0
y0

])
= 0 (21)
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Since we want the tangent line of the expansion ellipse to pass through the point pab,
the tangent line is given by all points [x, y]> which fulfill the following equality.

(pab − pc)>Σ︸ ︷︷ ︸
A

[
x
y

]

︸︷︷︸
x

= (pab − pc)>Σpab︸ ︷︷ ︸
b

(22)

x

y

Ax = b

pc

pab

Figure 5: Finding the line Ax = b tangent to the expansion ellipse at pab, i.e. normal
line to the vector Σ(pab − pc) passing through pab

4.1.3 Linear inequality constraint generation

In order to generate the convex constraints around a point pc, our proposed method
is based on finding the tangent line to the expansion ellipse (see Section 4.1.2) from
the point pc to the closest point pab,i (see Section 4.1.1) on each line segment i ∈
1, 2, . . . N , making up environmental constraints. By stacking the tangent lines we get
a half-space representation of the convex inner approximation as the following linear
inequality constraints.




(pab,1 − pc)>Σ
(pab,2 − pc)>Σ

...
(pab,N − pc)>Σ




︸ ︷︷ ︸
A

p ≤




(pab,1 − pc)>Σpab,1
(pab,2 − pc)>Σpab,2

...
(pab,N − pc)>Σpab,N




︸ ︷︷ ︸
b

(23)

We can note that since (18) is piecewise linear and smooth, the constraints given
above are continuous with respect to the center point pc. This is a useful property, as
this means that the shape of the convex inner approximation will change continuously
with the center point pc.

While (23) gives a set of linear inequalities that may be used directly in an OCP,
it is worth noting that the rows of the constraint may contain a large variance in
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magnitude. Since the inequalities are linear however, we can multiply each row of the
inequalities by a normalizing factor. One such convenient normalizing factor is:

1

||(pab,i − pc)Σ||2
(24)

The reason this normalizing factor is convenient, is the fact that the resulting matrixA
becomes dimensionless with every row having unit length, and hence the the constraint
will have the same units as p. This has several benefits, including that Ap − b will
have a physical meaning in terms of distance until the constraint is reached. This
allows for adding a back-off or margin in order to shrink the constraints, and make
them more conservative. An other benefit is when using a slack variabels in order
to relax the constraints in the OCP, the slack variable will have a physical meaning.
Using this normalization factor we get the linear inequality constraints given below.




(pab,1−pc)>Σ
||(pab,1−pc)Σ||2
(pab,2−pc)>Σ
||(pab,2−pc)Σ||2

...
(pab,N−pc)>Σ
||(pab,N−pc)Σ||2




︸ ︷︷ ︸
A

p ≤




(pab,1−pc)>Σpab,1
||(pab,1−pc)Σ||2

(pab,2−pc)>Σpab,2
||(pab,2−pc)Σ||2

...
(pab,N−pc)>Σpab,N
||(pab,N−pc)Σ||2




︸ ︷︷ ︸
b

(25)

4.1.4 Removing redundant constraints

The inequality constraints in (25) can be further reduced to M ≤ N constraints, by
removing redundant constraints (Figure 6) . Given a system of linear inequalities,

Ap ≤ b (26)

a given row Ak, bk can be identified as being a redundant constraint by solving the
following Linear Programming (LP) problem:

min
p

yk = bk −Akx

s.t. Aip ≤ bi ∀i 6= k,
(27)

and checking if the above problem has a solution p for which yk ≥ 0 [49]. For
large numbers of constraints, solving an LP to check if each constraint is redundant
is however very inefficient. Fortunately, a number of other approaches exists, [50].
For our approach, we used the qhull library [51], which efficiently perform constraint
reduction for large numbers of constraints. It does this by first computing the dual
points of the constraints as:

di =
Ai

bi −Aip
, (28)
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x

y

Ap ≤ b

Figure 6: Redundant constraints are constraints that don’t make up the support of
the intersecting half-plane {p ∈ R2 |Ap ≤ b}.

where p is an interior point of the constraints. Then computes the convex hull of the
dual points as:

D = Conv({d1,d2, . . .dN}). (29)

The support of the constraints are then given by the rows i for which the dual points
di are extreme points of the convex hull D, and redundant for dual points which are
not extreme points of D.
Given a set of line segments making up the boundary of obstacles, we can use the
method above to first compute the closest points to all obstacles, then find the tan-
gent line to the expansion ellipse, and generate the final constraint as a set of linear
inequality constraints. This procedure is illustrated in Figure 7.

4.2 Computing spatial constraints from map and sensor data

In order to compute the spatial constraints for the docking problem, it is possible
to use a known map of the environment. Given a map where landmasses are repre-
sented as polygons, we can use the proposed constraint generation method with the
line segments making up the edges of the polygons. This will give a convex inner
approximation which can be used in the docking planner. This is shown in Figure 8a,
where we compute the safe region of water, not intersecting polygonal land masses
around a certain point.

In many real world applications however, relying only on map data may not be suf-
ficient, as the maps may be inaccurate, out of date, or missing information. In order
to compensate for this we propose using additional sensory information, in order
to account for inaccurate map information. For our proposed constraint generation
method, point cloud data–such as that generated by LIDAR, radar, or other types of
proximity sensors–can be easily incorporated. This can be done by directly using the
points in the point cloud as the close points pab. An example of a map augmented
with LIDAR data can be seen in Figure 8b. For sensor data such as short range
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(a) Line segments of obstacles (b) Compute closest points pab to center
point pc

(c) Find tangent lines to the expansion el-
lipse at each point pab

(d) Final convex inner approximation

Figure 7: Illustration of how to compute the convex spatial constraints
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ultrasonic distance measurements, where the sensors are configured as in Figure 9, we
can approximate the constraints seen by the sensors as the line segment between the
measurement of each sensor. This line segment can then be added to the constraint
set similarly to the map data. Using redundant and various exteroceptive sensors
is beneficial, as additional sensor may be used to improve coverage and avoid blind
spots, which will improve the accuracy of spatial constraints.

When computing the constraint set, it is also possible to use the projection matrix
Σ in order to create an axis for which we prioritize the set generation. In the case
of a vessel, it it can be useful to prioritize constraint generation in the longitudinal
direction of the vessel’s body frame. This can be done by using the following projection
matrix:

Σ = R(ψ)

[
σx 0
0 σy

]
R(ψ)>, (30)

where choosing σx < σy will prioritize set expansion in the direction of the vessel
heading. For docking or set point tracking, it is alternatively possible to expand the
spatial constraints in the direction of the dock or set point, as this is the direction
that we ideally want the vessel to travel.

400 300 200 100 0 100 200 300 400
300

200

100

0

100

200

300

(a) Set generation from map data, where
blue dots are the Closest points pab on the
line segments of the land masses.
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(b) Set generation from map and LIDAR
data, where blue dots represent the point
cloud from the LIDAR sensor.

Figure 8: Set generation is performed by growing a region (red polygon) of water
around pc (red dot), that does not intersect with land.

4.3 Considerations when using the convex set generation for
planning

The set generation method we have detailed above, is a computationally efficient way
of computing a good inner approximation of a set of non-convex constraints. The goal
of the method is not to maximize the area of the convex inner approximation, as this
is in general a computationally expensive, and is not guaranteed to create a set which
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pb
(x, y)
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N

Figure 9: Ultrasonic distance sensors attached to the front and rear of the vessel,
where the line segments (pa,pb) can be added to the spatial constraints.

expands in a desired direction. The goal of the method is rather to create an inner
approximation with a preferred expansion direction, in our case this is controlled by
the expansion ellipse, which is efficient to compute even when handling large numbers
of constraints.

When using the constraints from the constraint generation method in the docking
planner, it is useful to be able to guarantee recursive feasibility of the planner when
it is run in an MPC like fashion. By updating the constraints frequently, and only
choosing a new constraint set if it remains feasible for the previous iteration, recursive
feasibility of the planner can be guaranteed. We can note that the set generation will
always remain feasible for the point pc, however since we are considering all the vessel
vertices when planning a safe trajectory, we can not guarantee that the constraint
generation method will results in a feasible constraints for all the vessel vertices.

In order to use the linear constraints in an optimization problem, it is practical to
have a fixed number of constraints, such that the optimization problem does not need
to be transcribed, and built each time a new number of constraints change. In order
to do this we use the full constraints generated by the constraint generation method
described above, and create a reduced constraint as the K closest constraints in terms
of the distance pab−pc. This reduced constraint, will then be an outer approximation
of the full constraints.

5 Experiments

5.1 Experimental platform

For the sea trials, we used the experimental autonomous urban passenger ferry mil-
liAmpere, as shown in Figure 1 with the specifications listed in Table 1, and the
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Table 1: milliAmpere specifications.

Dimensions 5m by 2.8m symmetric footprint

Position and
heading
reference system

Vector VS330 dual GNSS with Real-time kinematic (RTK)
capabilities

Thrusters Two azimuth thrusters on the center line, 1.8m aft and fore of
center

Existing control
modules

Trajectory tracking DP controller and thrust allocation
system

Obstacle
detection

Velodyne Puck VLP-16 LIDAR Sensor, and two front
mounted ultrasonic range sensors (rear mounted ultrasonic
sensor were not available).

planning parameters gien in Appendix A. The milliAmpere platform has been in con-
stant development at the Norwegian University of Science and Technology (NTNU)
since 2017, and has served as a platform for testing and developing autonomous tech-
nology, including software, sensor arrays, as well as hardware solutions. A larger
version is currently being designed and built by the research group Autoferry1, and
is planned to operate as an on-demand ferry in the Trondheim harbor.

For the experiments, the docking planner (10) was run with a sampling rate of 0.1Hz,
with the output of the docking planner being used as the reference trajectory for
a Dynamic Positioning (DP) tracking controller, which was already implemented on
milliAmpere. The DP tracking controller was a proportional-integral-derivative (PID)
controller, with velocity and acceleration feed-forward. Based on the forces and torque
computed by the DP controller, the force and angles of the azimuth thrusters were
calculated by an optimization-based control allocation scheme [52]. The block diagram
in Figure 10 illustrates how the planner, DP controller, and actuators were connected.

Instead of using the DP controller with control allocation, it would have been possi-
ble to implement the docking planner (10) as a Nonlinear Model Predictive Control
(NMPC) scheme, where the thruster forces computed by the planner are directly used
as setpoints for the vessel thrusters. There are however several practical reasons why
we chose not to do this:

• The planner does not account for drift, disturbances or modeling errors, while
the tracking controller does so through feedback.

• While the planner is iteration-based with no formal performance guarantees,
the tracking controller provides a robust bottom layer that acts also as a safety
measure.

1Autoferry website: https://www.ntnu.edu/autoferry.

Publications

190



Docking planner
DP controller

milliAmpere
Thrust allocation

Planned
trajectory
xp(t), ẋp(t)

Thruster
commands

Measured states x(t)

Docking
pose

Thruster
commands

Figure 10: Block diagram of the docking system setup. The DP controller and thrust
allocation are existing functions on milliAmpere.

• Due to the computational demand of solving the planning problem, it is difficult
to achieve a sampling rate that is fast enough to stabilize the vessel through
feedback from the planner.

• Using this multi-layer architecture separates the planner from the vessel control
systems, allowing the planner to easily be retrofitted onto the existing imple-
mentation.

Choosing such a multi-layered structure, where planning and motion control are sep-
arated, provides flexibility in the trajectory planner, disturbance rejection through
feedback, robustness to failures in the planning level, and ease of implementation on
platforms with existing motion control systems.

5.2 Results

Experiments2 were performed with the milliAmpere platform in confined waters in
Trondheim, Norway on September 7th (E1) and 11th (E2), 2020. The weather condi-
tions were calm with winds between 1m/s and 3m/s. The results from E1 are shown
in Figure 11 and 12, and the results from the E2 are shown in Figure 13 and 14, with
photos from the experiments in Figure 15. It should be noted that the ultrasonic dis-
tance measurements were not used due to technical problems with the sensors at the
time, meaning that only lidar and mapping data was used for computing the spatial
constraints during the tests.

The experiments E1 were performed at the end of a floating dock, while E2 at the
center of the floating dock, due to to space availability on each day of the experi-
ments. The difference in final docking pose had an influence on the complexity of the
constraint sets, which can be seen in Figure 11 and 13. The full constraints pertain to
the full set of constraints generated by the constraint generation method (25), while
the reduced constraints were chosen as the 8 closest constraints eventually used in the
optimization problem. This was done since the optimization problem needs a fixed

2Video of experiments is available at: https://youtu.be/AyaWlJvI6K8
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Figure 11: Visualisation of the docking motion during the experiments on September
7th 2020 (E1).

number of constraints, and 8 gives a good balance between accuracy and computa-
tional cost when solving the OCP. For E1, shown in Figure 11, we see that the reduced
constraints are much closer to the full constraints, compared to E2 Figure 13. This
indicates that more potential obstacles were present in E2. The results show that
the proposed constraint generation method is able to construct a good convex inner
approximation of the free region, within which the vessel is allowed to operate, and
that by choosing the number of constraints to reduce the full constraints to, we can
achieve a good balance in terms of computation and constraint accuracy. We should
however note the unexpected set of constraints at 25.8 seconds, in Figure 11, which
was caused by rain during the experiment, leading to the LIDAR misclassifying a
raindrop as a potential obstacle. This can be avoided by better filtering the incoming
LIDAR data before feeding them to the set generation algorithm. It is also worth
noting the LIDAR point clouds in Figure 11 and 13, are not capturing the dock itself
when the vessel is close to the final docking pose. This is due to limitations in the
vertical transmitting angle of the LIDAR causing the dock to end up in the LIDAR
blind spot. This problem can be solved by using the ultrasonic distance sensors at
close range, adding redundant LIDAR sensors to improve coverage, or in this case
relying on the map data, as the ultrasonic distance sensors were unavailable.

Figures 11 and 13 also show how the LIDAR helps in detecting unmapped static
obstacles, in this case mostly docked vessels, especially as the milliAmpere gets closer
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Figure 12: Planned and executed trajectory during the experiments on September
7th 2020 (E1).

to them. Accounting for these surrounding obstacles is of critical importance when
planning and tracking a safe docking trajectory, and would not have been possible if
only map data were used.

The results indicate that the planned trajectory does not violate any of the spatial
constraints, and ensures that the vessel does not collide with surrounding obstacles.
Also, the generated trajectory is intuitive for a docking operation, as the vessel initially
moves in the surge direction towards the dock with a reasonably high velocity, then
it slows down as it gets closer to the final docking pose, and finally rotates in order
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Figure 13: Visualisation of the docking motion during the experiments on September
11th 2020 (E2).

to reach the desired docking heading. Figures 12 and 14, indicate that the final
trajectory mostly converges to the desired docking pose, with one exception being
the North direction in Figure 12. This discrepancy was due to the docking pose
overlapping with the dock, as can be seen in Figure 11, and hence the desired docking
pose is not possible to be reached without violating the spatial constraints.

In Figure 12 and 14, we see the executed trajectory given in green, and the planned
trajectory given in orange, where every 10 seconds the start of a replanned trajectory
is marked with a dot. The observed discontinuity in the planned trajectory is due
to the replanned trajectory being initialized to the state of the vessel at the time of
the replanning. For both experiments we see that the tracking performance is very
good. The tracking performance is highly reliant on not only the performance of the
underlying DP controller and thrust allocation algorithm, but also the accuracy of
the model used in the optimization-based planner. The most notable discrepancies in
the tracking performance are found in the heading. We believe these are due to the
the inherent heading instability of the vessel, as well as unmodeled thruster dynamics,
which may cause a slight delay between desired and produced thrust.
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Figure 14: Planned and executed trajectory during the experiments on September
11th 2020 (E2).

6 Conclusion

We have presented a method for planning and performing docking maneuvers in a
confined harbor. The method utilizes map data, which is known in advance, as
well as sensor data gathered in real time, to iteratively and safely plan a trajectory
that brings the vessel to a desired docking pose. To perform the docking maneuvers
given by the planner, we used an existing trajectory tracking DP controller, which
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Figure 15: ThemilliAmpere while performing the docking maneuver, including closing
in on the dock, and the final docking pose.

added robustness to disturbances, and helped demonstrate that the planner is easy
to retrofit on an existing platform. In order to validate the proposed control scheme,
we conducted full-scale experiments in a confined harbor area with the milliAmpere
ferry developed at NTNU, and demonstrated how the proposed method is able to
plan and well as execute safe and collision-free docking maneuvers. To the best of
our knowledge, there’s no existing published work that involves field trials of docking
operations for autonomous surface vehicles using only exteroceptive sensors.

For future work, we would like to look at the possibility of integrating additional
sensors, such as radar and cameras, in order to generate an even better view of the
environment. Additionally, we would like to look at ways of filtering the sensor data in
order to get more reliable sensor readings. We would also like to integrate the docking
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system in a control structure that handles transportation phases autonomously. Since
our proposed approach is able to handle the docking and undocking phase, what
remains to achieve a fully autonomous operation with mission objective "Navigate
from Dock A to Dock B", is the development of control and planning strategies for
handling the transit phase of the journey. This development will include additional
work on collision avoidance, situational awareness, and planning methods that comply
with the maritime navigation rules.

A List of parameter values

A list of parameter values is given in Table 2, while details on the vessel model can
be found in [33].

Table 2: List of parameters.

Symbol Value Description

qx,y 1 Huber penalty weight

qψ 20 Heading penalty weight

Q




0 0 0

0 200 0

0 0 100


 Velocity weight matrix

R




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




Thruster force weight matrix

δ 10 Huber penalty slope

Σ


1 0

0 1


 Expansion ellipse weights

T 120s OCP prediction horizon

N 60 OCP shooting intervals

d 3 OCP Legendre polynomial degree

K 8 Reduced constraint size
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Optimal Model-Based Trajectory Planning With
Static Polygonal Constraints
Andreas B. Martinsen1, Anastasios M. Lekkas1,2, and Sébastien Gros1

1Department of Engineering Cybernetics, Norwegian University of Science and Tech-
nology, Trondheim, Norway
2Centre for Autonomous Marine Operations and Systems, Norwegian University of
Science and Technology, Trondheim, Norway

Abstract: The main contribution of this paper is a novel method for planning
globally optimal trajectories for dynamical systems subject to polygonal constraints.
The proposed method is a hybrid trajectory planning approach, which combines graph
search, i.e. a discrete roadmap method, with convex optimization, i.e. a complete path
method. Contrary to past approaches, which have focused on using simple obstacle
approximations, or sub-optimal spatial discretizations, our approach is able to use
the exact geometry of polygonal constraints in order to plan optimal trajectories.
The performance and flexibility of the proposed method is evaluated via simulations
by planning distance-optimal trajectories for a Dubins car model, as well as time-,
distance- and energy-optimal trajectories for a marine vehicle.

Keywords: Autonomous vehicles, Marine vehicles, Mobile robots, Motion planning,
Optimal control, Path planning, Trajectory optimization

1 Introduction

In robotics, motion planning is the process of finding a sequence of valid configura-
tions, which move the robot safely from some initial configuration to a goal configura-
tion. To be successful in the real world, the motion planner must be able to consider a
variety of constraints such as environment constraints, including static and dynamic
obstacles, and differential constraints, which arise from the system kinematics and
dynamics and are modeled with differential equations. Due to a potentially large
number of obstacles, actuators, as well as complex kinematics and dynamics, motion
planning is in general a difficult problem that has led to a wide range of methods and
a vast literature.

Trajectory planning pertains to finding a time-parametric continuous sequence of
configurations, called a trajectory, which is obstacle-free and satisfies the differential
constraints (i.e. a feasible trajectory). Optimal trajectory planning has the addi-
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tional task of finding the ”best” feasible trajectory with respect to some performance
measure, such as minimum energy, distance or time. The requirement of optimality
is in general very demanding computationally since it requires an exhaustive search
over the state space. One of many ways to categorize motion planning methods is to
distinguish between roadmap methods and complete path methods [1–3].

The main goal of roadmap methods is to find a sequence of waypoints, which, when
connected, result in an obstacle-free piecewise-linear path. The path can then be
smoothed and turned into a feasible trajectory that complies with the vehicle dy-
namics. Roadmap methods can be further split into two distinct categories, namely,
combinatorial methods and sampling-based methods. Combinatorial methods, divide
the continuous space into structures that capture all spatial information needed to
solve the motion planning using simple graph search algorithms. For many complex
problems however, combinatorial methods may not be computationally feasible. For
these problems, sampling based methods are often used instead. Sampling based
methods, rely on using randomly sampled subset of states or actions. This creates
a randomly sampled discretization of the continuous search space, and hence limits
the computational complexity at the cost of accuracy and completeness of the dis-
cretization. Some notable combinatorial methods include coarse planning with path
smoothing, in where a mesh, grid or potential field is used to plan a course path [4–7],
and then a method using curve segments, splines or motion primitives is used to refine
the trajectory [8–14]. Notable sampling based methods include probabilistic roadmap
(PRM) [15], rapidly-exploring random tree (RRT) [16–18], and Random-walk plan-
ners [19, 20]

Complete path methods on the other hand, produce a continuous parameterized tra-
jectory by explicitly taking into account the motion equations of the robot and the
full continuous search space. As a result, these methods generate a trajectory that is
both obstable-free and feasible, without further need of refinement/smoothing. Most
complete path methods rely on some form of mathematical optimization. For some
simple problems an analytical solution exists, as is the case for Dubins paths [21]
and Reeds-Shepp [22]. In general, however, researchers must resort to numerical opti-
mization, where handling complex constraints is challenging and getting stuck in local
optima is not uncommon. Notable numerical methods include dynamic programming
[23], particle swarm optimization (PSO) [24, 25], shooting methods [26], which are
based on simulation, collocation methods [27], which are based on function approx-
imation of low-level polynomials, and pseudospectral methods [28], which are based
on function approximation of high-level polynomials.

In this paper we consider the problem of optimal motion planning for a particle-like
vehicle, moving on a 2D surface with polygonal obstacles. To this end, we introduce
a hybrid method, which combines graph search on a pre-computed mesh, with convex
optimization for path refinement. The proposed method allows for planning a globally
optimal trajectory for a dynamical system subject to static polygonal constraints. The
main contributions is this paper is how we combine hybrid planning with polygonal
constraints and triangulation based spatial discretization. With hybrid planning,
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we combine both roadmap and complete path methods. Contrary to other hybrid
methods such as [29–31], where initial trajectories are planned using motion primitives
and state space discretizations, and refined using numerical optimization, our method
employs an iterative approach of planning and refinement. Polygonal constraints allow
for complex constraints to be used in the planning algorithm. Very few optimization-
based planning methods exist that are able to handle these types of constraints.
Existing methods often lead to computationally expensive mixed integer optimization
problems [32], rely on using inner approximations of the free space [33, 34], or non-
convex elliptical approximations [2]. Our method relies on using a triangulation of
the environment, similar to [4, 35] but instead of straight-line paths, it plans the path
as a polynomial spline, similar to [36]. Combining the above concepts, our proposed
method is able to efficiently plan globally optimal trajectories for a dynamical system
subject to static polygonal constraints.

The rest of the paper is organized as follows: Section 2 outlines the method. Section 3
shows examples of distance-optimal paths for a simple kinematic car, as well as time-,
distance- and energy-optimal paths for an unmanned surface vehicle. Finally Section
4 concludes the paper.

2 Method

The problem that we aim to solve in this paper, is that of planning optimal trajec-
tories for dynamical systems in environments with static polygonal constraints. The
proposed method is able to compute optimal time parameterized state trajectories:

x(t), t ∈ [t0, tf ],

which connect some initial state x0 and final goal state xf such that:

x(t0) = x0, x(tf ) = xf .

The trajectory is generated such that it satisfies the continuous time dynamics and
kinematics of a given dynamical system on the form:

ẋ = f(x,u),

which in general may be nonlinear and have additional constraints on the states and
actions. The optimized trajectory, is found such that it avoids polygonal spatial
constraints that are present in the environment. This is ensured by having the path
travel through a sequence of neighbouring triangles Ti, with the sequence denoted
[T0, T1, . . . TN ], where the interior of each triangle is collision free. The proposed
method for solving this problem can be divided into three distinct stages.

1. Triangulation and adjacency graph is the first stage, where a triangulation
of the environment is generated based on the polygonal constraints (Figure 1b),
and an adjacency graph is calculated based on neighbouring triangles (Figure
1c).
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(c) Adjacency graph

(d) Triangle selection (e) Optimized trajec-
tory (f) Final trajectory

Figure 1: Given polygonal obstacles (a), the proposed algorithm finds the trajectory
by creating a triangulation (b) and adjacency graph (c). Iteratively exploring different
triangle sequences (d) where the refined trajectory is optimized as a spline (e). The
exploration is performed until the goal is reached (f).

2. Graph search is the second phase, where a graph search algorithm is used to
explore possible sequences of triangles in the triangulation (Figure 1c).

3. Trajectory refinement is the third phase, where a continuous trajectory is
generated and optimized within the confinement of a sequence of triangles (Fig-
ure 1d and 1e).

2.1 Triangulation and adjacency graph

In this step, the objective is to generate a triangulation of the environment, given
polygonal spatial constraints. The resulting triangulation must include the edges
of the polygons, which is referred to as constrained triangulation. The reason for
segmenting the environment into triangles in this way, is that any triangle in this
type of triangulation, is either fully inside of the polygonal constraint, or fully outside
of the polygonal constraint. This results in an exact, and efficient decomposition of
the environment. We can then use the triangles that are fully outside of the polygonal
constraints in order to plan a sequence of triangles for the trajectory to pass through,
which is guaranteed to be collision free.
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In this work, the triangulation that we use, is a Constrained Delaunay Triangulation
(CDT) [37]. A regular Delaunay triangulation (DT) [38] will maximize the minimum
angle of all the angles of the triangles in the triangulation, and hence tend to avoid
sliver triangles. With CDT, certain segments are forced into the triangulation. This
is necessary in order to ensure that the triangles of the triangulation are either fully
inside the polygonal spatial constraints, or fully outside the spatial constraints. For
the spatial constraints in Figure 1a, a constraint triangulation is given in Figure 1b.

After the triangulation is created, an adjacency graph is computed by connecting
neighbouring triangles of the triangulation, where two triangles are considered neigh-
bours if they share an edge. An illustration is shown in Figure 1c. The triangulation
and adjacency graph are then used in the next phase for exploring and planning
sequences of neighbouring triangles.

2.2 Graph search

Graph search can in general only be used for planning in discrete environments. In
order to extend it to the continuous domain, we propose using a trajectory refinement
strategy, where the graph search is performed by planning a sequence of neighbour-
ing triangles [T0, T1, . . . TN ], and a continuous time parameterized trajectory x(t), is
planned within the constraints of the sequence of triangles.

Given a CTD, we can construct a graph, where each node represents a triangle, and
edges are given by neighbouring triangles, this is illustrated in Figure 1c. The goal
of the graph search is to plan a sequence of triangles [T0, . . . TN ], which optimizes a
desired performance measure. In our case the goal is to optimize a time parameterized
path integral on the form: ∫ tf

t0

J(·)dτ, (1)

where J(·) is a non-negative instantaneous cost. Given an initial starting point x0,
the proposed graph search method, works by staring with the initial triangle se-
quence [T0], such that x0 ∈ T0. It then iteratively extending the sequence of triangles
[T0, . . . TN−1], by adding new neighbouring triangels TN . This is performed until a
feasible sequence of triangles [T0, . . . TN ], connecting the initial state x0 and final goal
state xf , is found, and a termination condition is met. The order in which potential
sequences are extended, is determined by a heuristics based lower bound on the path
integral. This ensures that the potentially best paths are explored first, and hence
reducing the number of triangle sequences that need to be explored.

2.3 Trajectory refinement

In order to plan a continuous trajectory in an area divided into triangles, we can
observe that the trajectory is constrained by the edge through which it enters, and the
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edge through which it leaves any given triangle. The point at which it leaves and enters
a triangle is also the point at which the trajectory enters and leaves its neighbours
respectively. It is therefore possible to plan a refined trajectory through each triangle,
with a given entrance and exit point along the triangle boundary (see Figure 2).
This means that the final optimal trajectory, which may travel through a non-convex
polygon, consists of trajectory segments constrained to lie within individual convex
triangles.

Given a dynamical system on the form:

ẋ = f(x,u), (2)

where x is the state vector, and u is the control vector. The optimal trajectory
through a sequence of neighbouring triangles, denoted [T0, T1, . . . TN ], can be written
as the following optimization problem.

V (x0, [T0, T1, . . . TN ]) = min
x,u,t

N∑

i=0

∫ ti+1

ti

J(x,u, τ)dτ (3a)

s.t. ẋ = f(x,u), (3b)
x(t) ∈ Ti ∀t ∈ [ti, ti+1] (3c)
x(t0) = x0. (3d)

In the above optimization problem, (3b) ensures the trajectory is feasible with re-
spect to the model, (3c) ensures each trajectory segment lies within its respective
triangle, and (3d) gives the initial conditions for the optimization problem. Using the
above formulation, we note that in the graph-search phase, the optimization problem
is built by iteratively adding triangles to the triangle sequence [T0, T1, . . . TN ], and
hence extending the horizon N . It should be noted that (3) can be extended to in-
clude additional state and input constraints. However, adding additional constraints
may make the problem more difficult and time consuming to solve, and may lead to
feasibility issues if the constraints are not chosen with care.

2.4 Complete method

Given a trajectory x(t), starting at x0, and ending at xf , and going through a
sequence of triangles [T0, T1, . . . TN ], we can define the value function of the sequence
as the value that minimizes the cost along the optimal trajectory through the sequence
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A

B

C

Figure 2: The trajectory (A → C) through two triangles can be planned as the
trajectory through each individual triangle (A → B and B → C), constrained to
meeting somewhere along the neighbouring edge.

of triangles, with fixed start and endpoint:

Q(x0, [T0, T1, . . . TN ],xf ) = min
x,u,t

N∑

i=0

∫ ti+1

ti

J(x,u, τ)dτ (4a)

s.t. ẋ = f(x,u), (4b)
x(t) ∈ Ti ∀t ∈ [ti, ti+1] (4c)
x(t0) = x0 (4d)
x(tN+1) = xf . (4e)

Note, that this is the same optimization problem as in (3), but with the addition of
the terminal constraint in (4e). Using this, we can get the result in Lemma 1.

Lemma 1. The fixed endpoint value function Q(·) will always be lower bounded by
the free endpoint value function V (·):

Q(x0, [T0, . . . TN ],xf ) ≥ V (x0, [T0, . . . TN ]) (5)

Proof. The free endpoint value function V (·) where xf is free can be expressed in
terms of minimizing the fixed endpoint value function Q(·) as follows:

V (x0, [T0, . . . TN ]) = min
xf∈TN

Q(x0, [T0, . . . TN ],xf )

≤ Q(x0, [T0, . . . TN ],xf ) ∀xf ∈ TN
(6)

In order to determine the optimality of a sequence of triangles, we need to show that
extending the sequence will not lower the cost of the trajectory. Using the value
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function definitions in (3) and (4), and the following assumption, we get the result in
Lemma 2.

Assumption 1. The cost function J(·) ≥ 0 is a non-negative function. Meaning the
integral of the cost can not decrease along the path.

Lemma 2. Given Assumption 1, the value function V (x0, [T0, . . . TN ]) is monotoni-
cally increasing with respect to the length of the sequence of triangles.

Proof.
V (x0, [T0, . . . TN ]) = Q(x0, [T0, . . . TN−1],xN ) + V (xN , [TN ])

≥ V (x0, [T0, . . . TN−1]) + V (xN , [TN ])

≥ V (x0, [T0, . . . TN−1])

Definition 1 (Triangle sequence completeness). We say that a sequence of triangles
[T0, . . . TN ] is complete if the initial state is within the initial triangle x0 ∈ T0, and the
final goal state is in the final triangle xf ∈ TN . Similarly, a sequence is incomplete if
the initial state is within initial triangle x0 ∈ T0, and the final goal state is not within
the last triangle xf /∈ TN .

When searching sequences of triangles, it is useful to be able to approximate bounds
on the cost to go, if the sequence is incomplete. In order to do this, we are using an
admissible heuristic function h(x,xf ) together with the optimization problem in (3)
to estimate the cost to go from some state x to the terminal goal state xf . Using the
heuristic, we can define the following function:

Q(x0, [T0, . . . TM−1],xf ) = V (x0, [T0, . . . TM−1])
+ h(xM ,xf ), xM = x(tM )

(7)

which is a lower bound on possible complete sequences of triangles, that extend from
an incomplete sequence. This result is summed up in Lemma 3.

Assumption 2. The heuristic function h(xM ,xf ) is admissible. Hence the the
heuristic will always underestimate the true cost or value function for any feasible
sequence of triangles [TM , . . . TN ].

h(xM ,xf ) ≤ Q(xM , [TM , . . . TN ],xf ),

Lemma 3. Given Assumption 2 and a triangle sequence [T0, . . . TM , . . . TN ], we have
the following lower bound on the trajectory cost:

Q(x0, [T0, . . . TN ],xf ) ≥ V (x0, [T0, . . . TM−1]) + h(xM ,xf )︸ ︷︷ ︸
:=Q(x0,[T0,...TM−1],xf )

(8)

where xM = x(tM ) is the end of the optimal free endpoint trajectory given by
V (x0, [T0, . . . TM−1].
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Proof.
Q(x0, [T0, . . . TN ],xf ) = Q(x0, [T0, . . . TM−1],xM )

+Q(xM , [TM , . . . TN ],xf )

≥ V (x0, [T0, . . . TM−1])
+Q(xM , [TM , . . . TN ],xf )

≥ V (x0, [T0, . . . TM−1])
+ h(xM ,xf )

= Q(x0, [T0, . . . TM−1],xf )

Given the result from Lemma 3, where we have a lower bound Q(·) for completing
an incomplete sequence of triangles, we can use this to determine if completing an
incomplete path will result in a complete sequence with a lower value Q(·), then some
other completes sequence. This is summed up in Theorem 1.

Theorem 1. Given a complete sequence of triangles S∗ = [T0, . . . TN ], and an in-
complete sequence S ′ satisfying:

Q(x0,S∗,xf ) ≤ Q(x0,S ′,xf ), (9)

Then completing the incomplete sequence S ′ can not result in a trajectory with a lower
value Q(·) then the sequence S∗.

Proof. From Lemma 3, we have that extending any incomplete sequence S ′ to a
complete sequence S will result in a higher cost, i.e:

Q(x0,S ′,xf ) ≤ Q(x0,S,xf ).

Given the condition in (9), we get the following result:

Q(x0,S∗,xf ) ≤ Q(x0,S ′,xf ) ⇒
Q(x0,S∗,xf ) ≤ Q(x0,S,xf ).

This means that all sequences S that can result from the incomplete sequences S ′ will
have higher cost then the optimal sequence S∗ if (9) holds.

Using the refined trajectory cost V (·), heuristic admissible cost h(·) and the search ter-
mination conditions given Theorem 1, we can derive the complete trajectory planning
Algorithm 1. Where at each iteration, the trajectory is expanded into the triangle
that minimizes the cost lower bound Q(·). Until a complete sequence of triangles S∗
is found, for which the termination condition in (9) is true for all sequences S ′, in the
list of sequences to be searched (open_list). By ordering the (open_list) by the cost
lower bound Q(·), this reduces the termination to checking the termination condition
(9) on only the first element in the (open_list). From Theorem 2 we can show that the
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proposed algorithm will find the optimal sequence of triangles, and hence the globally
optimal trajectory, under the assumption that the resulting optimization problem is
convex. This is the case if the dynamical system results in convex constraints, as the
spatial constraints will be convex due to the triangulation.

Lemma 4. In Algorithm 1, the list of sequences to be searched (open_list) will always
contain a sub-sequence S ′ of any possible complete path S

Proof. Algorithm 1, changes the open_list by iterative removing incomplete se-
quences, and adding all feasible sequences that can be extended by one triangle from
the sequence that is removed. Since any possible complete path must be extended
from the sequence only containing the initial triangle T0. Then the list of sequences to
be searched (open_list) will always contain a sub-sequence of any possible complete
path.

Theorem 2. Algorithm 1 will find the optimal sequence of triangles S∗, and hence
the globally optimal trajectory.

Proof. Given that Algorithm 1 terminates with the optimal sequence S∗. If we assume
there exists a better sequence S̃∗. such that:

Q(x0, S̃∗,xf ) < Q(x0,S∗,xf )

Then from Lemma 4, a sub-sequence S̃ ′ of S̃∗ must exist in the list of possible se-
quences to be extended (open_list). Given the result in Lemma 3 we get that:

Q(x0, S̃ ′,xf ) ≤ Q(x0, S̃∗,xf ) < Q(x0,S∗,xf ).

This contradicts the termination condition in (9), and hence no sequence S̃∗ that is
better then S∗ can exist.

2.5 Implementation considerations

In order to implement the optimization problem given in (3) and (4), we need to
formulate the constraint in (3c) and (4c) as a linear inequality constraint. The most
straightforward way of doing this is to use the half-space representation of the triangle.
Given a 2D triangle Ti with vertices vi,1,vi,2,vi,3, as illustrated in Figure 3, the half-
space representation of a triangle gives a set of linear inequality constraints on the
form:

Aip ≤ bi.
Where Ai ∈ R3×2 and bi ∈ R3×1 is the matrix and vector making up the halfspace,
and p = [x, y]> is a position. Using this, we can check if a position p lies within the
triangle Ti, as follows:

Aip ≤ bi ⇔ p ∈ Ti. (10)
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Algorithm 1 Optimal trajectory planning. Note that evaluating Q(·) and Q(·)
involves solving the optimization problem in (3) and (4) using numerical optimization.

Require: Adjacency graph of triangulation, initial state x0, and goal state xf .
S∗ = [ ]
S = [T0] where x0 ∈ T0
open_list = {S}
while open_list is not empty do
S = pop sequence from open_list with smallest Q(x0,S,xf )
if S∗ is not empty, and Q(x0,S,xf ) ≥ Q(x0,S∗,xf ) then
return Optimal triangle sequence S∗

end if
for Triangle Tn in neighbours(S) do
Sn = extend(S, Tn)
if xf ∈ Tn then
if Q(x0,Sn,xf ) < Q(x0,S∗,xf ) then
S∗ = Sn

end if
else

append Sn to open_list
end if

end for
end while

x

y

vi,1 vi,2

vi,3

Figure 3: Triangle Ti, with vertices vi,1, vi,2, vi,3
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The matrixAi, and vector bi can be computed using the triangle vertices vi,1,vi,2,vi,3
as follows:

Ai =



(vi,2 − vi,1)>R>
(vi,3 − vi,2)>R>
(vi,1 − vi,3)>R>




bi =



(vi,2 − vi,1)>R>vi,1
(vi,3 − vi,2)>R>vi,2
(vi,1 − vi,3)>R>vi,3




(11)

Where the matrix R is given as the ±90◦ rotation matrix, when the triangle vertices
are given in a in a clockwise/counter clockwise direction. In the example in Figure 3,
the vertices are given in a counter clockwise direction, giving the following rotation
matrix:

R =

[
0 1
−1 0

]
.

While the above linear inequality can be used to ensure the different path segments
stay within the desired triangle, we propose a slight modification to this approach.
The modification involves using a local triangle-centered coordinate system instead of
a global coordinate system for optimizing the position within the triangle. Defining
the following objects:

Ci = [vi,2 − vi,1,vi,3 − vi,2]
di = vi,1,

(12)

we define the transformation between the position p = [x, y]> in the global coordinate
system, and the position p′ = [p′1, p

′
2]
> in the local triangle coordinate system as

follows:
p = Cip

′ + di. (13)

Using the triangle transformation in (13), the position p is constrained within the
triangle when the following inequality constraints are satisfied:

0 ≤ p′ ≤ 1

p′1 − p′2 ≤ 0,
(14)

which can be implemented directly into the optimization problem as the triangle con-
straints in equation (3c) and (4c). The reason for using this coordinate transformation
is to help normalize the variables in the optimization problem as well as simplify the
triangle constraints. This helps improve the conditioning of the optimization problem,
and gives better performance when solving the problem.

Another consideration when solving (3) and (4), is how to perform the integration
of the cost function (3a) and (4a), and system dynamics (3b) and (4b). In order to
do this we propose using a multiple shooting collocation based scheme [39], for which
the trajectory in each triangle is approximated by a polynomial of degree d. This
results in an optimization problem, where the objective is to find a spline where each
triangle contains a polynomial representing the trajectory through the triangle (Figure
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1d), the trajectories are then constrained to being connected between neighbouring
triangles (Figure 1e), while at the same time satisfy the system dynamics. It is worth
noting that the trajectory within each triangle will differ in length due to the size
and shape of the triangle. This means the a free time variable must be used for each
triangle in order to ensure the trajectory is constrained within the triangle.

In the graph search phase, some additional assumptions were made, in order to prune
and reduce the search space.

Assumption 3. The optimal path will only pass through any given triangle T once.

Assumption 3, allows us to not extend a sequence of triangles into a given triangle
if it already appears in the sequence. This results in a significantly smaller search
space, when searching for the optimal triangle sequence. It should be noted that
Assumption 3 is not strictly necessary, as the proposed method will in theory work
without it. It does however significantly reduce the search space, and helps make
the method computationally feasible. The downside of this assumption, is that the
proposed planner will not allow for maneuvers which reenter triangles, which may be
optimal for certain classes of problems.

Assumption 4. If two initial starting points x1,x2 ∈ T are sufficiently close:

||x1 − x2||2 ≤ ε.

Then the optimal sequences of triangles S∗ to the goal will be the same for both
trajectories, and the difference between values of the trajectories is bounded.

||Q(x1,S∗,xf )−Q(x2,S∗,xf )|| ≤ δ

Given two different triangle sequences S1 and S2, that both end in the same triangle
T , and the same endpoints x1 = x2, x1,x2 ∈ T , where:

V (x0,S1) ≤ V (x0,S2),

we only need to continue the search from the sequence S1, and hence can prune the
sequence S2. Using Assumption 4, we can extend the above argument to say that we
can prune sequences if the states are sufficiently close. Unfortunately, computing the
exact bounds would require completing the trajectory, which defeats the purpose of
pruning. In stead we use the following heuristic for evaluating if two endpoints x1

and x2 are sufficiently close:

(x1 − x2)
>W (x1 − x2) ≤ ε, x1,x2 ∈ T

whereW is a positive definite weighting matrix, and ε is a sufficiently small threshold.
This is a relaxation of the exact condition for pruning, where x1 = x2, x1,x2 ∈ T ,
and where the conditions are exactly the same in the limit as ε → 0. It should be
noted that pruning potential sequences is not strictly necessary. It is however added
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in order to further reduce the search space, and hence improve the computational
complexity.

When running Algorithm 1, there may be certain triangle sequences for which no fea-
sible trajectory can be found due to the constraints imposed by the vehicle dynamics,
as well as additional state and input constraints. When an infeasible triangle se-
quence is found, no feasible path through the given sequence exists, and the sequence
is discarded. In practise, numerical optimization tools are used to find the optimal
trajectories and detect infeasible solutions. In certain situations, the numerical op-
timization tools may not return a feasible solution even though a feasible solution
theoretically does exist. This can typically be mitigated using good initial guesses for
the trajectory. For the proposed planner, the optimal trajectory from the previous
triangle sequence can be used as one such initial guess. In addition to improving fea-
sibility, using such an initial guess will typically also improve the computation time,
as a good initial guess will result in fewer iterations when solving the optimization
problem in (3) and (4).

Given algorithm 1, we can note that it is possible to paralellize the exploration of new
triangle sequences. This is possible, as the exploration of possible sequences is not
dependant on other sequences, however it requires some extra considerations in the
termination criteria. For our implementation, this property was exploited in order to
explore multiple sequences in parallel. It should be noted that if an exact heuristic
function is known, the paralellization will not give a speedup, as the optimal sequence
of triangles will always be the first to be explored. If however a poor heuristic function
is used, parallelization will typically give a speedup, as it allows for multiple triangle
sequences to be explored simultaneously.

3 Examples

In order to validate the method, we test it on a simple kinematic car model in in
a confined environment, and compare to a Rapidly-exploring Random Tree based
approach. To further prove the versatility of the method we also show it on a test
scenario in trajectory planning for marine vessels in the Trondheim fjord, for which
we use it to plan trajectories that minimize time, distance as well as energy.

3.1 Trajectory planning for a simple kinematic car model

3.1.1 Simple kinematic car model

In order to verify the proposed method we will in this section show how it can be
applied to planning distance optimal paths for a simple kinematic car model on the
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(b) Constraints, with triangulation.

Figure 4: Polygonal spatial constraints, and the resulting CDT

form:



ẋ
ẏ

ψ̇




︸︷︷︸
ẋ

=



cos(ψ)v
sin(ψ)v

r




︸ ︷︷ ︸
f(x,u)

(15)

where x, y is the position, ψ is the heading, v is the velocity, and r is the turning rate.
Using the constant speed v = 1, we are left with an under actuated system where the
turning rate is the control variable u = r. This type of model is often used robotics
and control theory when planning paths for wheeled robots, airplanes and underwater
vehicles. As the model offers a simple geometric approximation of the maneuvering
capabilities of these types vehicles.

3.1.2 Spatial constraints

In order to validate the proposed method, the simple set of spatial constraints, seen in
Figure 4a, were devised. Given the polygonal representation, the CDT was computed,
giving the triangulation in Figure 4b
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3.1.3 Optimization objective

The objective for the optimization problem, is to find the shortest path between two
points. The instantaneous is then given by the path integral as follows:

J(x,u, t) =

√(
dx

dt

)2

+

(
dy

dt

)2

=

√
(cos(ψ)v)

2
+ (sin(ψ)v)

2

= |v|
= 1.

(16)

It should be noted, that given a maximum turning rate, and the vehicle traveling at
constant speed, the distance optimal path from one point to an other can be shown
to be a Dubins path [21], which consists of straight lines and circles segments of
maximum curvature.

3.1.4 Results

As the optimal path is known to be a Dubins path, a Dubins based RRT method [40] is
used for comparison, as RRT based methods are the most commonly used approaches
for motion planning for robotic applications when faced with spatial constraint. Given
the spatial constraint in Figure 4, we get the resulting planned path in Figure 5. From
the results we see that one of the major flaws of the Dubins based RRT method is that
it performance is highly dependant on the randomly sampled nodes, which are used
to select way points. For RRT, finding a feasible path is fairly quick, and it is possible
to continue to optimize the path by generating new nodes. Further optimizing the
path can often be very time consuming, as the RRT path can only guarantee converge
to the optimal path as the number of sampled nodes approaches infinity [41]. For our
proposed approach however, if a feasible path is found it is guaranteed to be optimal.
This is verified in the results, where we can observe that our approach generates a
path which is very similar to a Dubins path, and finds the shortest path that gets
close to, but does not intersect the spatial constraints. In real time planning, where
finding a feasible path in a short period of time is important, sampling based methods
such as RRT will still be the better choice. However, if the goal is to find the optimal
path in a finite amount of time, our proposed approach will be the better option,
with our implementation of the optimization based planner using an average of 3.24
seconds for planning the optimal trajectory in Figure 5a.

3.2 Trajectory planning for an autonomous surface vessel

In the field of marine robotics, motion planning is an important problem, which
has seen a lot of interest. Given the complex vessel dynamics, as well as complex
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line shows the final optimized path,
while the arrows show the direction
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(b) Dubins based RRT. The red
dashed line is the final path, yel-
low dots show sampled nodes, while
the blue lines show explored dubins
paths between the sampled nodes.

Figure 5: Results for path generated by our proposed approach and Dubins based
RRT.

non-convex spatial constraints, the motion planning problem becomes very difficult.
Because of this, most existing solutions heavily rely on simplifying the problem, this
however results in loss of accuracy and optimality of the final solution. In this example
we will show how our proposed planning algorithm can be used for optimal trajectory
planning for an Autonomous Surface Vessel (ASV) in the Trondheim harbour.

3.2.1 Vessel model

As a model for the trajectory optimization, we will use a vessel model, where we
assume the vessel moves on the ocean surface in a relatively large range of possible
velocities. In addition to this, we assume that the effects of the roll and pitch motions
of the vessel are negligible, and hence have little impact on the surge, sway, and
yaw of the vessel. The mathematical model used to describe the system can then
be kept reasonably simple by limiting it to the planar position and orientation of
the vessel. The motion of a surface vessel can be represented by the pose vector
η = [x, y, zr, zi]

> ∈ R4, and the velocity vector ν = [u, v, r]> ∈ R3. Here, (x, y)
describe the Cartesian position in the earth-fixed reference frame, (zr, zi) is a complex
number of unit length |z| = |zr + i · zi| = 1 describing the vessel orientation, where
ψ = atan2(zi, zr) is yaw angle, (u, v) is the body fixed linear velocities, and r is
the yaw rate, an illustration is given in Figure 6. Using the notation in [42] we can
describe a 3-DOF vessel model as follows

η̇ = J(η)ν, (17)
Mν̇ +C(ν)ν +D(ν)ν = τ , (18)
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Figure 6: 3-DOF vessel centered at (x, y), with surge velocity u, sway velocity v,
heading ψ in a North-East-Down (NED) reference frame.

where M ,C(ν),D(ν) ∈ R3×3, τ ∈ R3 and J(η) are the inertia matrix, coriolis ma-
trix, dampening matrix, control input vector, and transformation matrix respectively.
The transformation matrix J(η) is given by

J(η) =




zr −zi 0
zi zr 0
0 0 −zi
0 0 zr


 , (19)

and is the transformation from the body frame to the earth-fixed reference frame.
Using the unit complex numbers in stead of a heading angle allows the the dynamics
to avoid the angle wraparound problem, which avoids local optima when performing
trajectory optimization. For the model dynamics M ,C(ν),D(ν), parameters for a
simplified model of the milliAmpere experimental platform was used, where:

M =



2138 0 0
0 2528 0
0 0 3942


 (20)

C(ν)ν +D(ν)ν =



10.3u+ 114.6|u|u− 2528vr
13.0v + 200.8|v|v + 2138ur
201.0r + 424.1|r|r + 390uv


 . (21)

For the thrust configuration, one rotatable azimuth thruster is assumed, giving the
following thrust vector:

τ =



u1 cos(u2)
u1 sin(u2)
−2u1 sin(u2)


 , (22)

Where 0 ≤ u1 ≤ 400 is the thruster force, and −45◦ ≤ u2 ≤ 45◦ the thruster angle.
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(a) Map, without triangulation. (b) Map, with triangulation.

Figure 7: Map of the Trondheim fjord, based on polygons representing land masses.

3.2.2 Spatial constraints

Using a map where landmasses are represented by polygons, a CDT is created, where
all edges of the polygons are treated as constraints. Doing this ensures that the result-
ing triangulation has triangles that do not intersect land. The resulting triangulation
mesh is shown in Figure 7. While the whole map of the Trondheim fjord is used,
for the example, only a small portion of the map was relevant as the start and goal
positions were selected within the Trondheim harbour.

3.2.3 Optimization objective

Depending on the use-case, any optimization objective satisfying Assumption 1 can
be selected. In this paper we will show three commonly used objectives, namely time
minimization, distance minimization, and energy minimization.

Minimum time

In terms of instantaneous cost, the time minimization is the simplest optimization
objective. where:

J(x,u, t) = 1. (23)

This gives the path integral optimization problem as follows:
∫ tN

t0

1 dt. (24)

Minimizing the above expression then equates to minimizing the total time, tN − t0,
of the the trajectory, with boundary conditions given by the initial and final state.

For the heuristic function of the minimum time, we chose the time taken traveling
in a straight line from the given state xN to the desired terminal state xf , at the
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maximum vessel speed Umax. Giving the following heuristic function:

h(xN ,xf ) =

√
(xN − xf )2 + (yN − yf )2

Umax
. (25)

Intuitively, we can see that this is an admissible heuristic, as it represents the time of
traveling the shortest possible path, at the highest speed possible, hence it will always
underestimate the time of a feasible trajectory.

Minimum distance

In terms of minimizing distance, we can observe that the instantaneous cost of a
trajectory given by the north, and east coordinates x(t) and y(t) respectively, is given
as the instantaneous arc length:

√(
dx

dt

)2

+

(
dy

dt

)2

. (26)

From the kinematics we note that the square of the instantaneous cost can be rewritten
as:

ẋ2 + ẏ2 =cos(ψ)2u2 + sin(ψ)2v2 − cos(ψ) sin(ψ)uv

+sin(ψ)2u2 + cos(ψ)2v2 + cos(ψ) sin(ψ)uv

=(cos(ψ)2 + sin(ψ)2)(u2 + v2)

=u2 + v2,

(27)

giving the following instantaneous cost.

J(x,u, t) =
√
u2 + v2 (28)

This gives the path integral optimization problem as follows:
∫ tN

t0

√
u2 + v2 dt. (29)

Theoretically optimizing the above problem should give the shortest path, however
for most optimization algorithms, the objective must be smooth and continuously
differentiable, which is not the case when the square root is used. In order to ensure
the function is continuously differentiable, a small positive number ε > 0 is added,
giving the following smooth approximation of the path integral:

∫ tN

t0

√
u2 + v2 + ε dt. (30)

For the heuristic function of the minimum distance, we simply chose the euclidean
distance from the given state xN to the desired terminal state xf .

h(xN ,xf ) =
√

(xN − xf )2 + (yN − yf )2 (31)
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Intuitively, we can see that this is an admissible heuristic, as represents the straight
line path, which is the shortest possible path between two points. This means that it
will always underestimate the length of a feasible trajectory.

Minimum energy

In many problems, it is often useful to minimize the energy usage. In the case of
marine vessels, minimizing energy usage, equates to better fuel efficiency, and less
pollution. For moving objects, the quantity of work over time (power) is integrated
along the trajectory of the point of application of the force. This gives the instanta-
neous power as the scalar product of the force/torque and the linear/angular velocity.

τ>ν (32)

In general, power regeneration and recapture is not possible for marine vessels, In
order to account for this we in stead use the absolute instantaneous power, giving the
following instantaneous cost:

J(x,u, t) = |X · u|+ |Y · v|+ |N · r|, (33)

where the thrust vector is given as τ = [X,Y,N ]>, and velocity vector is given as
ν = [u, v, r]. This gives the path integral optimization problem as follows:

∫ tN

t0

|X · u|+ |Y · v|+ |N · r| dt. (34)

Similarly to the minimum distance formulation, the absolute value is none smooth
and the derivative not defined at 0, in order to avoid this problem, we again use an
approximation of the absolute value giving the following path integral to be optimized.

∫ tN

t0

√
(X · u)2 + ε+

√
(Y · v)2 + ε+

√
(N · r)2 + ε dt. (35)

For the heuristic function of the minimum energy, it is difficult to find a good estimate
for the cost to go from a given state xN to the desired terminal state xf . Hence the
heuristic:

h(xN ,xf ) = 0 (36)

is chosen. This is in general a poor estimate of the cost to go, and will result in a
larger number of triangles being explored, but it is an admissible heuristic and hence
satisfies Assumption 2.

3.2.4 Results

To visualize the proposed algorithm during the search phase, the value functions
are shown in Figure 8. For the three different optimization objectives, the resulting
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Figure 8: Search space and triangulation for minimum time trajectory.
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Figure 9: Minimum time path
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Figure 10: Minimum distance path
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Figure 11: Minimum energy path
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Figure 12: Trajectory curvature resulting from the different optimization objectives.
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trajectories from the trajectory planner are given in Figures 9, 10 and 11 for the time,
distance and energy minimization problems respectively. For the energy minimization
problem, it is important to note that the any actuation of the control surfaces will
result in energy being used, hence the optimal action would be to not move. In
order to fix this, a terminal constraint was added on the time, in order to ensure the
trajectory would be complete within 1200 seconds.

From the performance measure comparison in Table 1, we can see that the different
optimization objectives perform as expected, as they each minimize their respective
objectives. For the minimum time objective, we can see that the speed in the surge
direction is close to the maximum for most of the duration of the trajectory, this
is what results in the minimum time trajectory, but comes at the cost of a slightly
longer trajectory in terms of distance, and a significantly larger energy consumption.
For the minimum distance trajectory we see a more erratic behaviour, especially in
the surge direction. This pattern of speeding up and slowing down, is what allows
the vessel to take tight corners, and hence minimize the distance, however due to the
trajectory dynamics, the resulting distance is only slightly shorter than that of the
other two optimization objectives. For the minimum energy trajectory, the behaviour
is similar to that of the minimum time objective, with the main difference being a
lower surge speed. This behaviour is due to the nonlinear drag, which makes lower
speeds more energy efficient.

A useful tool for evaluating a the feasibility of a trajectory, is the trajectory curvature
κ.

κ =
ẋ · ÿ − ẏ · ẍ
(ẋ2 + ẏ2)

3
2

(37)

One of the reasons for the curvature being used as a way of evaluating trajectory
feasibility, is that most vessels have a limit on the maximum possible path curvature.
This has lead to the widespread use of Dubins paths [21] which consist of straight
line segments and circle arcs with maximum curvature, giving path with piecewise
constant curvature. These paths have been shown to be the shortest path for a vehicle
that only travels forward, and has a constraint on max curvature. The Dubins path
however does not consider the underlying system dynamics, hence a dubins path is
no longer optimal once the dynamics are considered. This is illustrated in Figure 12
where the curavature is continuous, similar to [8]. From the curvature results it is
worth noting the difference in curvature between the different optimization objectives.
For the minimum time objective a higher speed is desired, hence the curvature is small
allowing for taking turns at higher speeds. For the minimum distance trajectory, we
can observe spikes of very high curvature, which is what we expect as the shortest
path will consist only of straight line segments. For the minimum energy trajectory,
we see similar results to that of the minimum time path, however the peak curvature
is slightly higher, as a result of the velocities being lower.

For the implementation of Algorithm 1 used to solve the trajectory planning problem,
we achieved the algorithm running time given in Table 2. The timing shows the results
for running the algorithm sequentially, as well as the performance when running
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Trajectory Time [s] Distance [m] Energy [kJ ]
Minimum Time 811.81 1460.97 584.82
Minimum Distance 1025.82 1450.58 484.70
Minimum Energy 1200.00 1456.20 269.96

Table 1: Performance measure

Sequential 4 workers 8 workers
Minimum Time 4min 28s 6min 1s 7min 19s
Minimum Distance 6min 40s 6min 49s 8min 36s
Minimum Energy 18min 36s 15min 4s 13min 5s

Table 2: Time required for solving the different problems using the sequential ap-
proach, as well as 4 and 8 parallel workers.

the algorithm with 4 and 8 parallel workers. In theory, increasing the number of
workers, should not lead to slower running times. In practise however, there is a
overhead associated with each additional worker. This is reflected in the results for
the minimum time and minimum distance objectives, where the sequential approach
outperforms multiple workers. For the minimum energy approach however, we see
that increasing the number of workers improves the solution time. This is due to
the poor choice of heuristic function, resulting in having to search a larger part of
the search space, and hence the ability to evaluate multiple sequences simultaneously,
outweighs the overhead of having multiple workers. It should be noted that the timing
result in Table 2, will vary greatly with implementation and hardware, and a more
optimized implementation is likely to significantly improve the running time.

4 Conclusion

In this paper, we have proposed a method for planning and optimizing trajectories in
an environment with static polygonal obstacles, and where the trajectories must be
feasible with respect to model dynamics. Under some mild assumptions, we show that
the method is able to plan globally optimal trajectories, even when faced with highly
non-convex obstacles. The proposed method does however have some drawbacks. The
main drawback being computational requirements, which is due to each iteration of
the search phase requiring the solution of a numerical optimization problem. As well
as the number of decision variables for the optimization problems increasing linearly
with the number of triangles the trajectory passes through. Another important limi-
tation of the proposed method is that the dynamics of the system is approximated by
a single polynomial within each triangle, this can cause problems for large triangles
and complex dynamical models, where the polynomial is not sufficiently rich to accu-
rately capture the dynamics. Despite these limitations, the proposed method shows
great promise based on simulation results. Offering great flexibility both in terms of
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environment complexity, model complexity, as well as optimization objective.

For future work, one of the main concerns would be to improve the computational
efficiency. Some potential methods for doing so, include fixing the trajectory after
a certain number of triangles in order to reduce the number of decision variables
at later stages, or developing better heuristics to reduce or limit the search space.
Work can also be done on how to best select a numerical integration scheme to
better balance accuracy, flexibility, and computational efficiency. Similarly, methods
for further decomposing the triangulation may also be used to improve accuracy,
especially in large triangles, or when performing complex maneuvers. It may also be
interesting to add additional environmental disturbances to the problems. This would
be especially useful in the case of vessel motion planning, where wind and current may
greatly impact the performance.
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Abstract: When operating autonomous surface vessels in uncertain environments
with dynamic obstacles, planning safe trajectories and evaluating collision risk is
key to navigating safely. In order to perform these tasks, it is important to have
a computationally efficient and adaptable obstacle representation to allow for quick
and robust predictions of the obstacle trajectory. This paper presents a novel space-
time obstacle representation, which is able to predict the reachable set for a dynamic
obstacle under uncertainty. This is done by projecting the area occupied by the
obstacle forward in time, using a set of velocities representing the possible maneuvers
that the obstacle may take. Under some mild assumptions, we show how the space-
time obstacle can be implemented in a computationally efficient way, using both
convex polytopes and ellipsoids. Additionally, we show how the space-time obstacle
representation can be used for risk assessment, collision avoidance and trajectory
planning for autonomous surface vessels.

Keywords: Autonomous surface vehicles, Collision avoidance, Marine vehicles, Mo-
tion planning, Optimal control, Trajectory optimization, Risk assessment

1 Introduction

With increasing interest in autonomy solutions in the maritime industry, it becomes
increasingly important to develop robust and efficient methods for risk assessment and
collision avoidance (COLAV). This is especially true for dynamic obstacles, for which
accurate trajectory predictions is complicated by numerous uncertainties. A major
component of developing robust and efficient methods, is the underlying obstacle
representation. While the literature is for the most part concerned with COLAV
and risk assessment methods, where the obstacle representation is chosen to fit the
algorithm. The goal of this article is to create awareness around the representation,
and showing some of the befits of building a COLAV and risk assessment method
around an obstacle representation, instead of the obstacle representation being built
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around the method. In order for the obstacle representation to be practical, it needs
to be able to capture the shape and movement of the obstacle in a way that is
computationally efficient, allowing for real-time risk assessment, planning and decision
making. Additionally the obstacle representation must be robust, allowing for both
measurement uncertainties, as well as uncertainties in the obstacle behavior.

One of the first obstacle representations to be used for assessing collision risk is the
closest point of approach (CPA) [1], which computes the distance and point in time
when two vessels are at their closest, given that the vessels have a known constant
velocity. CPA was initially developed to give human readable feedback to navigators
on the risk associated with the speed and course of the vessel, but has more recently
been incorporated into automated COLAV systems [2, 3]. Based on the same idea as
CPA, the velocity obstacle (VO) representation [4, 5], computes the set of velocities
which lead to a collision, i.e. giving a distance at the closest point of approach (dCPA)
of zero, and a time of closest point of approach (tCPA) greater then zero. The VO
approach has seen widespread use, as it allows for easily assessing if a given veloc-
ity vector is collision free. Additional extension to the VO representation allow for
kinematic constraints, obstacle behaviour and uncertainty [6–8], with similar methods
such as dynamic window (DW) methods, allowing for dynamic constraints [9]. While
these obstacle representations are fairly computationally efficient, they come with
some major drawbacks, mainly that they considering only a single maneuver, such as
a constant velocity or turning rate. This makes the methods suitable for short term
collision avoidance, but is only of limited use for long term planning and risk assess-
ment of multiple complex maneuvers. In order to allow for longer term planning, a
common approach is to use set based obstacle representation, where the set of points
making up the obstacles is computed and projected forward in time. For surface ves-
sels this is typically done using either circles and ellipsoids [10–14], or polytopes [15,
16]. While these methods allow for longer term planning, they usually assume that
the obstacle velocity is exactly known over some prediction horizon, meaning that
these methods are limited in terms of the robustness under both measurement and
behaviour uncertainty of the obstacle. In order to account for obstacle uncertainty,
the most accurate methods incorporate the obstacle uncertainty, this can be done by
computing the reachable sets for the obstacle [17, 18], or using probabilistic methods
[6, 19–22] for predicting the behaviour of the obstacles. These methods allow for
accurate obstacle predictions, but are often less flexible and more computationally
expensive than what is ideal for a general purpose obstacle representation.

In order to address some of the drawbacks of existing methods, we propose a novel
space-time obstacle representation, which is able to predict the set of states which
a dynamic obstacle may occupy, given uncertainty in both measurements, as well
as the future behaviour of the obstacle. The proposed space-time representation is
a set based representation, as the area occupied by the vessel is projected forward
in time. Contrary to other set based approaches however, the proposed space-time
representation uses a set of velocities representing the possible maneuvers that the
obstacle may take. This ensures robustness to both measurement and behavioural
uncertainty similarly to probabilistic methods. In addition to developing a theoretical
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framework for the proposed space-time representation, we also show how a space-time
obstacle can be efficiently implemented both as convex polytopes and ellipsoids, in
addition to showing how the space-time obstacle may be used for both risk assessment
and trajectory planning. The main contributions of this paper are as follows:

• The development of a novel space-time obstacle representation for predicting
the possible future trajectories of an obstacle under uncertainty.

• Implementation of the space-time obstacle using both a convex polytope repre-
sentation, and an ellipsoid representation.

• We provide examples of how the space-time representation can be used both for
risk assessment and trajectory planning for surface vessels.

The rest of the paper is structured as follows: Section 2 introduces the space-time
obstacle, and shows how it can be implemented using both polytopes and ellipsoids.
Section 3 shows how the space-time obstacle can be used for both trajectory planning
and risk assessment, and Section 4 concludes the paper.

2 Space-time obstacle representation

When performing obstacle avoidance, we need a way of representing the obstacle. This
can be done by representing the obstacle as the set O of all space-time coordinates
(x, t) that the obstacle can occupy. For static obstacles, the obstacle representation
remains the same at for all time, however this is no longer the case when faced
with dynamic obstacles. When planning safe trajectories, it is important to be able
to account for the movement of the obstacle in order to safely avoid it. Given an
obstacle O0 at time t = 0, with a velocity vector v we can predict what the obstacle
will look like in the future as:

Ot = O0 + (v · t) (1)

This will work in the case where the obstacle is deterministic, and we know its initial
area O0 and future velocity v. However in most real world applications, this is not the
case, as we may only have noisy estimates of position and velocity, and the obstacle
may speed up or slow down. In order to account for this, we propose using a set of
feasible velocities V, which represents the uncertainty about the measurement and
behaviour of the obstacle. This gives the following obstacle prediction:

Ot = O0 ⊕ (V · t) (2)

where ⊕ denotes the Minkowski sum, i.e. the point-wise sum between two sets. This
can be further generalized into space-time coordinates (x, t), as a robust space-time
obstacle representation:

O = {(x, t) | x ∈ Ot} (3)
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Figure 1: Given the obstacle and velocity sets in (a), we can compute the resulting
space-time obstacle representation in (b). Where the blue lines represent the initial
obstacle, green lines represent the obstacle at different times, and the red dashed line
represents the spatial projection of the space-time obstacle.

Using this robust space-time obstacle representation, where the true obstacle lies
within the initial obstacle set O0, and the obstacle velocity lies within the velocity
set V, then space-time coordinates that do not fall within the set O are guaranteed
to be collision free.

2.1 Polytope space-time obstacle representation

One way of efficiently computing the robust space-time obstacle representation, is to
use convex polytopes. Given a set of points S = {s1, s2, · · · sn} we can compute a
convex polygon containing all the points as the convex hull of the points.

Conv(S) (4)

Using this we can define the obstacle and velocity set in terms of the convex hull of
a finite set of points.

O0 = Conv({o1, · · ·on}), V = Conv({v1, · · ·vn}) (5)

A useful property of the convex hull is that the convex hull and Minkowski sum are
commutative operations. This means that for the two sets Oo and V, the following
equality holds:

Ot = O0 ⊕ (V · t)
= Conv({o1, · · ·on})⊕ Conv({v1 · t, · · ·vn · t})
= Conv({o1, · · ·on} ⊕ {v1 · t, · · ·vn · t}),

(6)
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hence the resulting obstacle prediction remains convex [23]. In the case of a three di-
mensional space time, we can formulate the robust space-time obstacle representation
in terms of the corresponding half-space representation:

O =

{
(x, t)

∣∣∣∣Ao

[
x
t

]
≤ bo

}
. (7)

Given the extreme points (vertexes) of Ot, in a counter clockwise order at arbitrarily
chosen times t1 and t2 where 0 ≤ t1 < t2, as:

Vertex(Ot1) = {ot1,1,ot1,2 . . .ot1,n}
Vertex(Ot2) = {ot2,1,ot2,2 . . .ot2,n},

(8)

the half space representation is given by the following:

Ao,i =

[
ot2,i+1 − ot2,i

0

]
×
[
ot1,i − ot2,i
t1 − t2

]

bo,i = Ao,i

[
ot2,1
t2

]
,

(9)

where Ao,i and bo,i are the i-th rows of Ao and bo respectively. We should also note
that the × operator denotes the cross product of two vectors, and ot1,n+1 = ot1,1.
Using the above space-time obstacle representation, it is straightforward to check if a
given space-time coordinate (x, t) will result in a collision with the obstacle. This is
done simply by algebraically evaluating the matrix inequality given in (7), which has
a computational complexity which grows linearly with the number of vertices in the
initial obstacle set O0 and the velocity set V.
Using the proposed polytope space-time obstacle representation, with the obstacle
and velocity set given as follows:

O0 = Conv
([
−10
−5

]
,

[
−10
5

]
,

[
10
5

]
,

[
10
−5

])
(10)

V = Conv
([

0.8
0.00

]
,

[
1.0
−0.25

]
,

[
1.2
0.00

]
,

[
1.0
0.25

])
, (11)

we get the space-time obstacle representation given in Figure 1. From the figure we
see that the obstacle representation continues to grow with time. This is caused by
the uncertainty in the velocity being compounded over time.

2.2 Ellipsoid space-time obstacle representation

The robust space-time obstacle representation may also be efficiently computed using
an ellipsoidal set representation. We use the basic definition of an ellipsoid:

E(p,Q) = {x ∈ Rn|(x− p)>Q−1(x− p) ≤ 1}, (12)
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Figure 2: Given the obstacle and velocity sets in (a), we can compute the resulting
space-time obstacle representation in (b). Where the blue lines represent the initial
obstacle, green lines represent the obstacle at different times, and the red dashed line
represents the spatial projection of the space-time obstacle.

where p ∈ Rn is the ellipse center, and Q ∈ Rn×n is a positive definite shape matrix.
In order to compute the robust space-time obstacle representation we must be able to
compute the Minkowski sum E(p1, Q1)⊕E(p2, Q2) between two arbitrary ellipsoids.
Unfortunately, the Minkowski sum of two ellipsoid is in general not an ellipsoid.
However it is possible to formulate an ellipsoidal outer approximation:

E(p1,Q1)⊕ E(p2,Q2) ⊂
E(p1 + p2, (1 + c−1)Q1 + (1 + c)Q2) ∀c > 0 (13)

Moreover, the minimizer of the trace and hence the sum of the eigenvalues of the
resulting symmetric shape matrix is analytically given as:

c =

√
Tr(Q1)

Tr(Q2)
(14)

Given an initial obstacle and velocity estimate as the ellipsoidal sets:

O0 = E(po,Qo), V = E(pv,Qv), (15)

where the scaled velocity ellipsoid V · t is given as:

V · t = E
(
pv · t,Qv · t2

)
, (16)

we can use (13) to formulate an outer approximation of the robust obstacle represen-
tation (2) as follows:

Ot ⊂ E(pt,Qt) (17)

Publications

242



where
pt = po + pv · t

Qt =

(
1 +

t

d

)
Qo +

(
t2 + d · t

)
Qv

d =

√
Tr(Qo)

Tr(Qv)

(18)

Using this ellipsoidal outer approximation, we define the ellipsoidal robust space-time
obstacle representation as follows:

O = {(x, t) | (x− pt)>Q−1t (x− pt) ≤ 1}. (19)

We can note that using the above space-time obstacle representation, it is straightfor-
ward to check if a given space-time coordinate (x, t) will result in a collision with the
obstacle, as it simply involves algebraically evaluating the inequality in (19), which
has a constant computation time.

Using the proposed ellipsoid space-time obstacle representation, with the obstacle and
velocity set given as follows:

O0 = E

([
0
0

]
,

[
102 0
0 52

])
(20)

V = E

([
1
0

]
,

[
0.22 0
0 0.252

])
, (21)

we get the space-time obstacle representation given in Figure 2. Similarly to the
polytope representation, we see that the obstacle representation continues to grow
with time in order to account for the increasing uncertainty.

2.3 Space-time obstacle risk assessment

The robust space-time obstacle representations presented in the previous sections,
show how we can compute a space-time volume which the obstacle may occupy, given
an initial obstacle area and a set of obstacle velocities. For some applications, this
may be overly restrictive, as the true obstacle will take only one velocity within the
set of possible velocities. In this case it may be more useful to reason about the risk
associated with the space-time obstacle. One way of reasoning about the risk is to
consider the size of the velocity set V. Writing the velocity uncertainty as:

V = v + α · V0 (22)

where v is the geometric center of the velocity set V, V0 is the velocity uncertainty
with geometric center at the origin, and α ∈ [0, 1] is the velocity uncertainty scaling.
Using this we can define the scaled obstacle prediction as:

Ot,α = O0 ⊕ (v + α · V0) · t, (23)
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Figure 3: Risk for the polytope and ellipsoid space-time obstacle at 0, 40 and 100
seconds.

and the scaled space-time obstacle as:

Oα = {(x, t) | x ∈ Ot,α}. (24)

Using the above formulation, we can represent the risk as 1− α where α is chosen as
the minimum scaling for which a space-time coordinate (x, t) is within the space-time
obstacle Oα. This can be formulated as the following optimization problem:

min
α

α

s.t. (x, t) ∈ Oα
α ∈ [0, 1]

(25)

Solving the above optimization problem is in general quite computationally expen-
sive, however utilizing the properties of the polytope and ellipsoid representation, the
constrained optimization problem above, has a closed form solution in the case of the
polytope, and can be transformed to a unconstrained optimization problem for the
ellipsoid. For the examples given in Figure 1 and 2, we get the risk seen in Figure
3. It should be noted that this measure of risk is not a measure of probability, but
rather represents the degree of uncertainty in the set of velocities that the obstacle
can take.

3 Application

In this section we will show how the proposed space-time obstacle representation can
be used for risk assessment, collision avoidance (COLAV) and trajectory planning for
autonomous surface vessels (ASVs).

Publications

244



2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
vx [m/s]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
v y

 [m
/s

]

0

10

20

30

40

50

60

(a) Polytope

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
vx [m/s]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

v y
 [m

/s
]

0

10

20

30

40

50

60

(b) Ellipsoid

Figure 4: Distance to obstacle at closest point of approach (dCPA) shaded, and
velocity obstacle (VO) in white.

3.1 VO and CPA conversion

Some of the most common COLAV methods used today rely on evaluating multiple
candidate velocities using either closest point of approach (CPA), or velocity obstacles
(VO). Given a candidate velocity v and an initial position x0, making up the straight
line trajectory xv(t) = x0+v ·t, we can evaluate the CPA and VO by finding the time
that minimizes the distance between the xv(t) and a point (x, t) in the space-time
obstacle. This can be formulated as the following optimization problem:

min
x,t
||xv(t)− x||2

s.t. (x, t) ∈ O,
t ≥ 0.

(26)

Given the solution (x, t) of the optimization problem, t is the tCPA, xv(t) is the
closest point of approach, and ||xv(t)− x|| is the dCPA. If the distance ||xv(t)− x||
at the CPA is zero, then the candidate velocity lies within the VO, and is considered
unsafe. We can note that the optimization problem in (26) is a quadratic programming
problem for the polytope representation, and a nonlinear programming problem for
the elliptical obstacle representation.

For the space-time obstacles in Figure 1 and 2, and an initial position x0 = [50, 50]>,
we get the CPA and VO seen in Figure 4. Using this, automatic COLAV can be
performed by choosing a velocity outside of the VO. Additionally, collisions can be
avoided with a specified margin, by choosing a velocity with a large enough dCPA.
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3.2 Simple path-time planner

In some circumstances, a preplanned path may be given, and the goal during transit,
is to follow the path as closely as possible. When dynamic obstacles are introduced,
the trajectory planning problem is reduced to safely regulating the velocity along
the preplanned path in order to perform COLAV. This problem is particularly in-
teresting in confined waters, where we often find predetermined shipping lanes for
larger vessels, and set routes for regularly scheduled traffic such as ferries. One such
path-time decomposition approach to COLAV, called path-velocity decomposition,
was first introduced in [24], where a path-time obstacle representation was used to-
gether with graph search methods in order to plan collision free trajectories following
predetermined paths. Since then the method has been used in a number of applica-
tions, including COLAV for small urban passenger ferries in confined waters [25]. In
this section we will show how our proposed space-time obstacle representation, is a
generalisation of path-time coordinates used in [24], and how the space-time obstacle
representation can be used to easily introduce uncertainty and risk into the path-time
decomposition approach.

3.2.1 Space-time to path-time projection

Given a space-time obstacle, the corresponding path-time obstacle is given as the
projection of the space-time obstacle along the desired path. In the case of a polytopic
space time obstacle on the form:

O =

{
(x, t)

∣∣∣∣Ao

[
x
t

]
≤ bo

}
, (27)

and a straight line path on the form:

x(s) = x0 + n · s, (28)

where x0 is the initial position, n, where ||n|| = 1, is the path direction, and s is the
distance along the path. We can compute the path-time obstacle Op as the projection
of the space-time obstacle O as follows:

Op =
{
(s, t)

∣∣∣∣Ao

[
n 0
0 1

] [
s
t

]
≤ bo −Ao

[
x0

t0

]}
. (29)

Given the space-time obstacle and path in Figure 5a, the path projection gives th
path-time diagram in Figure 5b.

3.2.2 Example

Given a desired path, which is collision free with respect to static obstacles such as
a land, we can combine the proposed space-time obstacle representation, and the
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Figure 5: Example of how a polytopic space-time obstacle can be projected along a
desired path (a), and the resulting path-time diagram (b). Note that straight lines in
the path-time diagram correspond to constant velocities along the path.

path-time planning approach from [24], in order to plan an optimal velocity profile
along the predetermined desired path, which ensures COLAV with respect to dynamic
space-time obstacles. The resulting planning algorithm can be described as follows:

1. From obstacle tracks, compute the space-time representation of the vessel, pre-
dicting the obstacle movement and uncertainty into the future (Figure 6a).

2. Project the space-time obstacles onto the predetermined desired path, giving a
path-time obstacle diagram as seen in Figure 6b.

3. Using a graph search algorithm such as Dijkstra [26] or A? [27] with a given cost
function, plan a sequence of constant velocities (straight lines on the path-time
diagram in Figure 6b), between vertices of the path-time obstacles, which do
not intersect with the path-time obstacles. The planned sequence of velocities
then give an optimal collision free trajectory.

In Figure 6, we show a simple scenario from the Trondheim harbour, where three
dynamic obstacles moving with different velocity uncertainties. Using time as the op-
timization objective with three different maximum velocities, we get the time optimal
trajectories seen in Figure 6b. This planning method can be further generalized to
allow for switching between multiple paths, similar to [25], and can be modified to
allow for trajectories with none-zero risk, in order to allow for planning more optimal
trajectories at the cost of higher risk.
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Figure 6: Example of how the path-time obstacles can be used for planning safe tra-
jectories under obstacle uncertainty. Given the desired path and obstacles predicted
motion in (a), we get the path-time diagram and planned velocity profiles in (b).

3.3 Simple space-time planner

For the path-time planning approach in the previous section, the trajectory is re-
stricted to lie on a predetermined path. In many situations, this may be overly
restrictive, and allowing for free movement is the better option. This includes fol-
lowing the International Regulations for Preventing Collisions at Sea (COLREGs),
were clear maneuvers conveying the vessel intentions is required, and situations where
evasive action is needed to avoid collision.

3.3.1 Dubins trajectory planner

Based on the path-time planner in the previous section, it is possible to generalize
the approach into a space-time planner, where the goal is to plan a collision free
trajectory that avoid intersecting the space-time obstacle. This can be easily done
by using sampling based methods such as probabilistic roadmaps (PRM) [28] and
rapidly-exploring random tree (RRT) [29]. For our implementation however, we uti-
lize the geometry of the space-time obstacle itself, and plan a collision free trajectory
by connecting trajectory segments along the edges of the space-time obstacle repre-
sentation. In order to ensure that the path is feasible with respect to the maximum
turning rate of the vessel, we use Dubins paths [30], which consist of straight line
segments and circular arcs of a maximum curvature. Using a graph search algorithm
such as Dijkstra or A? with a given cost function, an optimal path can be found by
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connecting the edges of the space-time obstacles with Dubins paths.

3.3.2 Example

Given a desired trajectory in an environment with dynamic obstacles, we can use
the space-time obstacle representation in order to plan an optimal trajectory, which
is collision free, and dynamically feasible. The resulting planning algorithm can be
described as follows:

1. From obstacle tracks, compute the space-time representation of the vessel, pre-
dicting the obstacle movement and uncertainty into the future.

2. Using a graph search algorithm such as Dijkstra or A? with a given cost function,
plan a sequence of connected Dubins paths (constant curvature circle segments
and straight lines, see Figure 7), between edges of the space-time obstacles,
which do not intersect with the space-time obstacles. The planned connected
Dubins path then gives an optimal collision free trajectory.

In order to implement the planner, we chose to use the objective of finding the path
that minimizes the squared space-time error between a desired trajectory and the
planned trajectory, defined as:

∫ 1

0

(x− xd)2 + (y − yd)2 + q · (t− td)2ds, (30)

where the trajectory and desired trajectory are functions of the path variable s ∈ [0, 1],
and q is a weight factor for weighting the time versus position error. Using this
cost function is useful, as it encourages the planned trajectory to follow the desired
trajectory, making evasive maneuvers that keep the vessel as close to the desired
trajectory as possible. In order to discretize the search space and make the planner
computationally feasible, a finite number of vessel velocities were considered, and the
space-time obstacle intersections, were computed based on the finite velocities. For
the implementation, we designed the initial obstacle with a large forbidden region in
front and to the right of the obstacle vessel, making COLREGs compliant trajectories
optimal in terms of the planning objective given by the space-time error (30). Running
the planner for overtaking, head on, stand on and give way scenarios, we got the results
seen in Figure 8. From the results, we see that the planned trajectory initially follows
the desired trajectory, before taking an evasive maneuver, ensuring COLAV, while
adhering to the COLREGs. We can note that in the stand on scenario, the planned
trajectory keeps the desired course and speed initially, as is expected in a stand on
situation, however due to the uncertainty in the future obstacle position, maintaining
the course and speed can in the worst case scenario lead to a collision, and the the
vessel must deviate from the desired path in order to ensure collision avoidance. For
a physical implementation, the planner can be run iteratively, in order to replan
the trajectory, as new information about the space-time obstacle becomes available,
decreasing the obstacle uncertainty and hence improving the planned trajectories.
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Figure 7: Possible collision free trajectories found during planning step.

3.4 Optimization based planner

A common approach for planning optimal trajectories, is to formulate the problem as
an model based optimization problem, and solving it using numerical optimization.
For these methods, ellipsoids are commonly used for representing obstacles [11–13], as
they the ellipsoid representation is computationally cheap, and simple to implement
into a numerical optimization problem. In this section we will show how the ellipsoid
space-time obstacle can be used together with numerical optimization in order to plan
optimal collision free trajectories.

3.4.1 Optimal control problem

Given a cost function J(x,u) and a continuous time model of the vessel on the form:

ẋ = f(x,u), (31)

where x are the vessel states, including position heading and velocity, and u are the
control surface. We can formulate an optimal control problem, which is to find the
trajectory x(t) and controls u(t) which minimize the cost J(·) and are dynamically
feasible with respect to the continuous time model over a time interval [0, T ]. In order
to account for the ellipsoidal obstacle, we can directly use the obstacle constraint from
(19), giving the following optimal control problem:

min
x(t),u(t)

∫ T

0

J(x(t),u(t))dt

s.t. ẋ(t) = f(x(t),u(t)),

(x(t)− pt)>Q−1t (x(t)− pt) ≥ 1

x(0) = x0.

(32)
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Figure 8: Planned trajectories for different scenarios when using the Dublins trajec-
tory planner. Note the obstacle asymmetry which ensures COLREGs compliance.
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3.4.2 Example

In order to test the optimization based planner, we used the Cybership II model (see
Appendix A) together with a quadratic cost function, and three dynamic obstacles.
Using a collocation based transcription method to convert the optimization problem
into an nonlinear programming problem, we got the optimal trajectory seen in Figure
9. From the results, we see that using the space-time obstacles, the planned trajectory
is able to keep clear of the different obstacles in a way that accounts for the uncertainty
obstacle uncertainty over time. This is a conservative strategy, but guarantees COLAV
under obstacle uncertainty.

For more complex scenarios, it is possible to use other optimization objectives, such
as time, energy, and distance [31]. It is also possible to include risk in the objective
or constraints, allowing for a certain amount of risk to be taken when planning the
optimal trajectory. This type of planner is also possible to implement as nonlinear
model predictive control scheme by re-planning the trajectory at each time step,
allowing for the planner to incorporate less conservative obstacle estimates as they
become available over time.

4 Conclusion

We have presented a novel space-time obstacle representation, which can be used to
predict the reachable set of dynamic obstacles under uncertainty. Additionally, we
have shown how the proposed space-time representation can be efficiently computed
using a convex polygon half-space representation, as well as an ellipsoid represen-
tation. Finally, we demonstrated how the space-time obstacle representation can be
used for risk assessment, collision avoidance and planning for surface vessels in various
environments with uncertain dynamic obstacles.

Based on the example applications we have demonstrated how the proposed space-
time obstacle representation offers a flexible framework for representing and predicting
obstacle trajectories in way that is computationally efficient. For future work it
would be interesting to look at the possibility of extending the method to allow for
time varying velocity uncertainties. Using the space-time obstacle representation
together with other trajectory planning and collision avoidance methods would also
be interesting, as well as further studying how to best represent the initial obstacle
shapes in order to promote COLREGs compliance.
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A Cybership II model

Cybership II is a 1 : 70 scale model supply ship. The length of the ship is 1.3 m and
the weight about 24 kg. The maximum actuated surge force is 2N, the maximum sway
force is 1.5N and the maximum yaw moment is 1.5Nm. Given the pose η = [x, y, ψ]>

in terms of the position (x, y) and heading ψ, velocity ν = [u, v, r]> in surge, sway
and yaw, the Cybership II can be modeled as follows:

[
η̇
ν̇

]

︸︷︷︸
ẋ

=

[
J(η)ν

−M−1 (D(ν)ν +C(ν)ν − τ )

]

︸ ︷︷ ︸
f(x,u)

,

where the inertia matrix, Coriolis matrix, damping matrix, and transformation matrix
are given as:

M =



25.8 0 0
0 33.8 1.0115
0 1.0115 2.76




C(ν) =




0 0 −33.8v − 1.0115r
0 0 25.8u

33.8v + 1.0115r −25.8u 0




D(ν) =



0.72 + 1.33|u| 0 0

0 0.86 + 36.28|v| −0.11
0 −0.11− 5.04|v| 0.5




J(η) =



cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 .
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Reinforcement Learning-based NMPC for Tracking

Control of ASVs: Theory and Experiments

Andreas B. Martinsen1, Anastasios M. Lekkas1,2, and Sébastien Gros1

1Department of Engineering Cybernetics, Norwegian University of Science and Tech-
nology, Trondheim, Norway
2Centre for Autonomous Marine Operations and Systems, Norwegian University of
Science and Technology, Trondheim, Norway

Abstract: We present a reinforcement learning-based (RL) model predictive control
(MPC) method for trajectory tracking of surface vessels. The proposed method uses
an MPC controller in order to perform both trajectory tracking and control allocation
in real-time, while simultaneously learning to optimize the closed loop performance
by using RL and system identification (SYSID) in order to tune the controller pa-
rameters. The efficiency of the method is evaluated by performing simulations on
the unmanned surface vehicle (USV) ReVolt, as well as simulations and sea trials on
the autonomous urban passengers ferry milliAmpere. Our results demonstrate that
the proposed method is able to outperform other state of the art methods both in
tracking performance, as well as energy efficiency.

Keywords: Dynamic positioning, Model predictive control, Optimal control, Rein-
forcement learning, Surface vessels, System identification, Trajectory tracking

1 Introduction

In recent years we have seen a growing interest in developing methods for automatic
and autonomous marine operations, with applications such as surveying and mapping,
surveillance, and transportation, being of interest both for commercial and govern-
ment use. This has lead to the need for robust high precision motion control systems,
for performing operations such as docking and berthing [1], trajectory tracking [2],
and collision avoidance [3].

Efficient control system design for marine vessels poses a number of challenges in-
cluding the development of accurate mathematical models to describe complex vessel
dynamics, the estimation of hydrodynamic coefficients that can vary significantly dur-
ing operation, and the unpredictable nature of the marine environment. Consequently,
extensive research has taken place in the past using ideas from almost all branches
of control engineering. Linear, nonlinear, stochastic, optimal, intelligent, fuzzy, and
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adaptive control, to name a few, approaches have been developed and tested via sim-
ulations and field trials [4–12]. In order to simplify the control design process, a
common approach is to choose control strategies based on operating conditions. This
has led to station keeping and dynamic positioning (DP) controllers for low speed
maneuvers, and path following or trajectory tracking controllers for higher speeds
and transit. However, using this approach has the drawback of requiring multiple
controllers and/or models with different properties. In order to achieve performance
diversity with conventional methods, the two most common approaches are to design
multiple controllers and switch between them, or to use adaptive control methods.
To this end, research effort has been dedicated to developing methods for learning
the vessel model and model parameters by, for instance, using parameter estimation,
system identification or adaptive control [13–19]. In most of these works, model-
based approaches exploiting knowledge on hydrodynamics and the laws of motion
were considered.

Reinforcement learning (RL) is a subfield of machine learning (ML) which tackles the
problem of optimal sequential decision making under uncertainty. The roots of RL
can be traced back to the Artificial Intelligence (AI) community in the 60’s [20, 21].
Since then the field has come a long way, evolving in several directions to become
one of the most active research areas at the intersection of machine learning, artificial
intelligence, neural network and control theory. Contrary to other machine learning
methods, RL does not rely on prerecorded datasets, but rather learns by following
a trial and error process, from which is receives evaluative feedback. Similarly to
optimal control, this feedback comes in the form of a hand-engineered reward or cost
function, which assigns a reward, or penalty, to the actions that result in desired, or
undesired, outcomes, respectively. Given the reward or cost function, the job of the
RL algorithm is to find a state-action mapping, known as the policy (the analog of
a controller, in control engineering terminology), that optimizes the reward or cost
given the problem constraints and uncertainties. To sum up, RL algorithms learn
through feedback from the reward function, using trial and error in order to learn a
policy that optimizes the given reward. In recent years, RL has also been shown to
be a useful as an adaptive control approach for marine vehicles [22–26].

Nonlinear model predictive control (MPC) is a popular approach for optimizing the
closed loop performance of complex systems subject to constraints, which includes
trajectory tracking and control of surface vessels [27–30]. MPC works by solving an
optimal control problem (OCP) at each control interval in order to find an optimal
policy. The optimal control problem seeks to minimize a the sum of stage costs over
a horizon, provided a model of the system and the current observed state. While
MPC is a well-studied approach, and an extensive literature exists on analysing its
properties [31, 32], the closed loop performance heavily relies on the accuracy of
the underlying system model, which naturally presents challenges when significant
unmodeled uncertainties are present.

In this work, we propose a model based RL approach for trajectory tracking of surface
vessels. The approach builds on the work in [19], and extends it use a nonlinear MPC
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(NMPC) in order to perform the trajectory tracking in combination with control
allocation. In order to optimize performance, the NMPC and model parameters
are updated using RL [33] and system identification (SYSID) [34]. This allows the
proposed method to compensate for model mismatch and environmental forces, with a
focus on optimizing the closed loop performance of the trajectory tracking controller,
rather than simply fitting the MPC model to the real system dynamics. In order to
run the proposed control scheme in real-time, we implemented it using advanced-step
NMPC (asNMPC). Additionally, simulations as well as sea trials were performed on
the unmanned surface vehicle (USV) ReVolt, and the autonomous urban passengers
ferry milliAmpere. The main contributions of this work are:

• A NMPC-based controller which combines trajectory tracking and control allo-
cation for surface vessels (Section 2.2).

• The addition of RL and SYSID to the NMPC, in order to update the controller
on-line. Making the controller able to compensate for model mismatch and
environmental forces, and optimize the closed loop performance (Section 2.3).

• An implementation of the method using asNMPC, allowing for the controller to
run in real-time (Section 3.1).

• Simulation study on two different vessel models, demonstrating how the ap-
proach outperforms our previous method from [19], and a traditional PID based
controller (Section 4).

• Experimental results on an autonomous urban passenger ferry, demonstrating
that NMPC based tracking control for surface vessels is real-time feasible, and
is able to outperform a traditional PID based controller (Section 4).

The rest of the article is structured as follows. In Section 2 we show how reinforcement
learning-based NMPC can be used for trajectory tracking for surface vessels. In
Section 3 we outline the implementation of the proposed control scheme. Section 4
discuss the simulation and experimental results, while Section 5 concludes the paper.

2 Reinforcement learning-based trajectory tracking
NMPC

In this section, we will outline the proposed control scheme, as well as providing
background on modeling of surface vessels, reinforcement learning-based NMPC and
system identification.
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Figure 1: 3-DOF vessel centered at (x, y) in the North-East-Down (NED) reference
frame, with surge velocity u, sway velocity v and heading ψ.

2.1 Modeling of surface vessels

In order to accurately perform trajectory tracking, it is important to have a good
model of the system we want to control. In this section we will provide background
on how to model a surface vessel, including kinematics, dynamics, and thrusters.
We will also show how the model can be made parametric, in a way that keeps the
parameters linear in the model. This is useful, as it gives some nice properties when
learning the model parameters.

2.1.1 Kinematics and dynamics

For control purposes, it is beneficial to keep the vessel model reasonably simple, this
can be done by limiting the degrees of freedom, to the planar position and orientation
of the vessel. Given R as the set of real numbers, S = [0, 2π] as the set of angles, and
SO(n) = {R|R ∈ Rn×n, R>R = RR> = I, det(R) = 1} as the special orthogonal
group in n dimensions, the motion of a surface vessel can be represented by the
pose vector η = [x, y, ψ]> ∈ R2 × S, and velocity vector ν = [u, v, r]> ∈ R3. Here,
p = [x, y]> describe the Cartesian position in the Earth-fixed reference frame, ψ is yaw
angle, (u, v) is the body fixed linear velocities, and r is the yaw rate, an illustration
is given in Figure 1. Using the notation from [35], a 3-DOF vessel can be modeled as
follows

η̇ = J(η)ν,

Mν̇ +D(ν)ν +C(ν)ν = τThrust + τEnv,
(1)

where M ∈ R3×3, D(ν) ∈ R3×3, C(ν) ∈ R3×3, τThrust ∈ R3, τEnv ∈ R3 and
J(η) ∈ SO(3) are the inertia matrix, damping matrix, Coriolis matrix, thruster forces,
environmental forces and transformation matrix respectively. The transformation
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matrix J(η) ∈ SO(3) is given by

J(η) =




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (2)

and is the rotation from the body frame to the earth-fixed North East Down (NED)
reference frame. For notational brevity, we can express the vessel dynamics in (1), in
terms of the implicit continuous time dynamics:

[
η̇ − J(η)ν

Mν̇ +D(ν)ν +C(ν)ν − τThrust − τEnv

]
= 0. (3)

2.1.2 Thrust configuration

In order to find the thrust vector τThrust we must consider the mapping between the
actuators present on the vessel, and how they translate into the surge, sway and yaw
forces and moments acting on the vessel. This mapping can be represented by the
thrust configuration matrix T (α) ∈ R3×nthrusters which maps the thrust f from each
thruster into the surge, sway and yaw forces and moments in the body frame of the
vessel given the thruster azimuth angles α.

τThrust = T (α)f (4)

Each column T i(αi) in T (α) gives the configuration of the forces and moments of a
thruster i as follows:

Ti(α)fi =




Fx
Fy

Fylx − Fxly


 =




fi cos(αi)
fi sin(αi)

fi(lx sin(αi)− ly cos(αi))


 (5)

where αi is the orientation of the thruster in the body frame, and fi is the force it
produces. Selecting the orientation α and force f of the thrusters in order to generate
the desired force τ is called the thrust allocation problem. While there are numerous
ways of solving the thrust allocation problem [36], for our purpose we want to include
the thrust allocation as part of the optimization for performing path tracking. This
allows us to take into account physical thruster constraints such as force saturation
and feasible azimuth sectors:

αi ≤ αi ≤ αi
f
i
≤ fi ≤ f i,

without limiting the trajectory tracking control scheme to fully-actuated vessels. We
may additionally take into account thruster dynamics, this is especially useful for
azimuth thrusters, where the rotation of the truster from one orientation to an other
can be quite slow. Given a setpoint for the azimuth angle αs and thrust force fs, we
can express the thruster dynamics as follows:

α̇ = fα(α,αs)

ḟ = ff (f ,fs)
(6)

I. Reinforcement Learning-based MPC for Tracking Control . . .

265



Adding the thruster dynamics we get the following continuous time implicit model
dynamics. 



η̇ − J(η)ν
Mν̇ +D(ν)ν +C(ν)ν − T (α)f − τEnv

α̇ = fα(α,αs)

ḟ = ff (f ,fs)




︸ ︷︷ ︸
f(ẋ,x,u)

= 0, (7)

where the state x consists of the pose η, velocity ν, thruster force f and azimuth
angles α. And the control inputs u are given in terms of the thrust forces setpoint
fs and azimuth angle setpoint αs.

2.1.3 Parametric model

While the model structure for a surface vessel is well known, estimate the model
parameters can be quite difficult. For our approach we try to make as few assumptions
on the parameters of the vessel model as possible, and use online learning in order
to model the vessel based on gathered data. For this we assume that we know the
model structure as given in (7), but that the model parameters in the inertia matrix
M , coriolis matrix C and damping matrix D are unknown. Assuming the vessel has
port starboard symmetry, from [35] we get the following structure:

M =



m1,1 0 0

0 m2,2 m2,3

0 m2,3 m3,3


 , (8)

C(ν) =




0 0 −m2,2 · v −m2,3 · r
0 0 m1,1 · u

m2,2 · v +m2,3 · r m1,1 · u 0


, (9)

D(ν) =



−Xu −X|u|u · |u| 0 0

0 −Yv − Y|v|v · |v| − Y|r|v · |r| −Yr − Y|v|r · |v| − Y|r|r · |r|
0 −Nv −N|v|v · |v| −N|r|v · |r| −Nr −N|v|r · |v| −N|r|r · |r|


, (10)

where m1,1, m2,2, m2,3, m2,3, m3,3 are the mass and added mass in the inertia matrix
and Xu, X|u|u, Yv, Y|v|v, Y|r|v, Yr, Y|v|r, Y|r|r, Nv, N|v|v, N|r|v, Nr, N|v|r, N|r|r are the
linear and nonlinear dampening terms. For the damping matrix D(ν), both linear
and nonlinear terms are included. The linear terms are important for low speed
maneuvering and station keeping, while ensuring the velocity converges exponentially
to zero. The nonlinear terms are required as they dominate at higher velocities. This
ensures that the model is able to handle a wide range of velocities. To more accurately
capture the dynamics, it is possible to include higher order terms, however this also
increases the complexity of the model, and may in some cases lead to overfitting of
the model.

In addition to learning the vessel dynamics, it is also useful to compensate for en-
vironmental forces, such as wind and current. This can be done by modeling the
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environmental forces as bias vector w ∈ R3, which can be learned online together
with the model parameters. Assuming that w is given in the the NED frame, the
resulting force in the body frame can then be modeled as follows:

τEnv = WJ>(η)w, (11)

where W is a weighting matrix representing how environmental forces act on the
different dimensions of the vessel. In this approach, we choose a weighting based on
the cross sectional area of the vessel:

W = diag([w, l, 1]>)

where l and w are the length and width of the vessel respectively, note that for better
accuracy, a possibly state dependant W based on the hull geometry may be used
instead of the length and width.

Choosing the parameters θmodel as the vector of model parameters from the mass
matrix (m1,1, m1,2, m2,2, m2,3, m3,3), dampening matrix (Xu, Yv, Yr, Nv, Nr, X|u|u,
Y|v|v, Y|v|r, Y|r|v, Y|r|r, N|v|v, N|v|r, N|r|v, N|r|r) and environmental forces (w1, w2,
w3), we get a parametric continuous time model, which is linear in the parameters,
on the following form:

fc,θ(ẋ,x,u) = 0. (12)

2.1.4 Parametric discrete time model

In order to use the vessel model for control, we discretize the continuous time dynamics
in (7). While many options for discretizing the continuous time model exist, we chose
to use the forward Euler integration for two main reasons.

• Forward Euler results in a discretization that is computationally cheap to evalu-
ate. This is important when used in a real time NMPC setting, where increased
model complexity results in increased evaluation time.

• Forward Euler preserves the linear in the parameters model structure from the
the continuous time model. This is a highly desired property when performing
parameter updates.

Given a sampling time Ts, the discretization resulting from the forward Euler method

is given by replacing the derivative of the state ẋ with the approximation x+−x
Ts

,

where x+ is the state at the next timestep. Using this we can formulate an implicit
discrete time model on the form:

fd,θ(x
+,x,u) = fc,θ(ẋ,x,u)

∣∣
ẋ=x+−x

Ts

= 0. (13)
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2.2 Trajectory tracking NMPC

For trajectory tracking control, the objective is to find a control policy which is able
to make the vessel converge to a desired trajectory xd(t). For a vessel with the
dynamics given in (13), the control policy is the mapping from the vessel position
x(t) and desired trajectory xd(t), to the individual thruster force fd and azimuth αd
setpoints. Formulating this as an OCP, we get the following:

min
x,α,f

λθ(x0,xd,0) +

N−1∑

i=0

γiL(xi,xd,i,ui)

+ γNV fθ (xN ,xd,N ) (14a)

s.t. fd,θ(xi+1,xi,ui) = 0, (14b)

f ≤ fs,i ≤ f , (14c)

α ≤ αs,i ≤ α, (14d)

x0 = s. (14e)

Due to the nonlinear nature of the kinematics and dynamics of the vessel model, as
well as the nonlinear cost function, we should note that the above OCP is a nonlinear
optimization problem, and can be solved using a NMPC. The goal is to minimize the
objective function (14a), consisting of an initial cost λθ(·), a discounted stage cost L(·)
over a horizon N and a terminal cost V fθ (·), subject to vessel dynamics (14b), force
(14c) and azimuth (14d) bounds and vessel initial condition (14e). In this formulation
we can note that the initial cost λθ(x0,xd,0) does not effect the solution of the OCP,
but is used when performing the reinforcement learning. We should also note that
discounting the stage cost with a discount factor γ < 1, ensures that the cumulative
cost converges to a finite value over the infinite horizon, allowing us to approximate
it with the terminal cost.

2.2.1 Cost function

In order to perform trajectory tracking, we need to formulate a cost function (14a)
which ensures that the NMPC performs the desired trajectory tracking behaviour.
For the stage cost the following cost function was chosen:

L(x,xd,u) = qx,y · cx,y(η,ηd)

+ qψ · cψ(η,ηd)

+ (ν − νd)>Q (ν − νd)
+α>Rαα+ f>Rff

(15)

The stage cost in (15) uses a quadratic penalty on velocity and control actions with
weight matrices Q, Rα and Rf . The position cost cx,y(η,ηd), weighted by qx,y, is
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chosen as a pseudo-Huber function, penalizing the difference between the vessel pose
η and the desired pose ηd, and is given as follows:

cx,y(η,ηd) = δ2

(√
1 +

(x− xd)2 + (y − yd)2
δ2

− 1

)
. (16)

Using a pseudo-Huber cost, provides a quadratic penalty when the quadrature position
error is small and linear when the position error is large. This helps with numerical
stability, as well as performance when large position errors are observed [37, 38]. For
the heading cost function cψ(η,ηd), weighted by qψ, the following was chosen:

cψ(η,ηd) =
1− cos(ψ − ψd)

2
, (17)

as it avoids the problem of heading wraparound.

For the parametric initial cost λθ(x0,xd,0), a simple bias term was chosen, giving the
following:

λθ(x0,xd,0) = θλ.

Similarly, the parametric terminal cost approximation V fθ (·) was chosen as a quadratic
cost as follows:

V fθ (xN ,xd,N ) = (xN − xd,N )>diag(θV )(xN − xd,N ),

with the parameters θλ and θV being learned through reinforcement learning.

2.3 Reinforcement Learning-based NMPC

Given the model parameters θmodel and cost function parameters θλ and θV the goal
is to learn the the parameters θ:

θ = (θmodel, θλ,θV ),

based on data gathered on line, in a way that optimizes the closed loop performance
of the NMPC given by (14). In recent works, such as [33, 34, 39], this has been
done by allowing RL to use a NMPC as a function approximator. This combines the
benefits of data-driven optimization from RL with the tools available for analysing
and certifying the closed loop performance of NMPC. For our implementation, we
will use the approach in [34], where the RL-based NMPC is combined with system
identification (SYSID) in a way that minimizes plant model mismatch while optimiz-
ing the closed loop performance of the NMPC. In the next subsections we will show
how this approach can be applied to the trajectory tracking problem in (14).
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2.3.1 Value functions and policy

Given the parametric optimization problem (14), we define the parametric action-
value function as:

Qθ(s,a) = min
x,u

(14a) (18a)

s.t. (14b) - (14d), (18b)

x0 = s, (18c)

u0 = a. (18d)

This action-value function Qθ(s,a) approximates the expected cumulative discounted
cost when taking an action a in a state s. Using the action-value function Qθ(s,a),
we can express the state-value function Vθ(s) and policy πθ(s) as follows:

Vθ(s) = min
a
Qθ(s,a), (19a)

πθ(s) = arg min
a
Qθ(s,a), (19b)

where the the policy πθ(s) approximates the optimal action for a state s, and the
state-value function Vθ(s) approximates the expected cumulative discounted cost un-
der the policy.

2.3.2 Q-Learning

The goal of RL is to find the parameters θ that maximize the closed loop performance
under the policy πθ(s). While a number of different approaches exist, we will focus
on the classical Q-Learning method [40]. In Q-Learning the goal is to find the pa-
rameterization which best fits the action-value function to the observed data. Given
an observed transition (xt,ut,xt+1) Q-Learning can be performed by minimizing the
temporal-difference error:

δt = yt −Qθ(st,at), (20)

where yt = L(xt,xd,t,ut) + γVθ(xt+1) is the fixed target value. Defining the squared
temporal-difference error as the minimization objective, and assuming that the target
value is independent of the parameterization θ, we get the semi-gradient update [20]:

θ ← θ + βQδ∇θQθ(xt,ut), (21)

where βQ > 0 is the step-size or learning rate. For the classical semi-gradient Q-
learning scheme given in (21), a second order method can be implemented by using
quasi-Newton steps instead of gradient steps. This results in the following update
law:

θ ← θ + βQ δH
−1
Q ∇θQθ(xt,ut)︸ ︷︷ ︸

:=∆θQ

, (22)
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where HQ = ∇2
θ(yt−Qθ(xt,ut))

2 is the Hessian of the error between the targets and
the action-value function. It is also possible to further generalize this method for a
batch of transitions, resulting in a nonlinear least squares problem [34].

2.3.3 System Identification

In addition to learning the parameters θ from Q-Learning, it is also possible to learn
the parameters associated to the MPC model using SYSID. One such approach is the
Prediction Error Method (PEM) where the objective is to minimize the difference
between the observed state and the predicted state given the observed transition
(xt,ut,xt+1). For a parametric model approximation of the form:

fθ(x̂t+1,xt,ut) = 0

the prediction error et between the parametric model and the observed state can then
be expressed as follows:

et = fθ(xt+1,xt,ut).

In the simplest case, where the state vector x is fully observable, PEM can be per-
formed by minimizing the squared error ‖et‖2 between the observed state, and the
predicted state. This optimization problem can be tackled via gradient descent, giving
the following update law:

θ ← θ − βf∇θe>t et,
where βf is the learning rate. Similarly to the RL objective, we can use Quasi newton
steps:

θ ← θ − βf H−1f ∇θe>t et︸ ︷︷ ︸
:=∆θf

, (23)

where Hf is the hessian of the squared prediction error. This can be further gener-
alized for a batch of transitions [34]. We can also note that if the model is linear in
the parameters, which is the case for the vessel model in (13), this becomes a linear
least squares problem, for which the global minimum can be found by taking the a
full newton step i.e. choosing βf = 1.

2.3.4 Parameter update law

When updating the parameters θ it is possible to combine both Q-Learnig and SYSID.
The simplest approach is to directly combine the steps from both the Q-Learning and
SYSID. Using the second order update laws in (22) and (23), with the parameter
updates ∆θQ and ∆θf respectively, we get the following:

θ ← θ + βQ∆θQ + βf∆θf . (24)

Here the step-lengths βQ and βf can be thought of as the weighting between the Q-
Learning and SYSID respectively. However, the end goal is arguably to maximize the
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closed-loop performance of the MPC scheme rather than minimizing the prediction
error of the model, hence if the two objectives are competing, the RL objective should
be prioritized. In order to prioritize the RL objective we use instead the following
update law:

θ ← θ + βQ∆θQ + βfP∆θf , (25)

where P is a projection matrix. As proposed in [34], we can choose the projection
matrix as the direction in the parameter space for which the RL objective is the least
sensitive, i.e. direction of the smallest eigenvalues of HQ. This allows for minimizing
the prediction error of the model with SYSID, while prioritizing the RL objective of
optimizing the closed loop performance of the MPC.

3 Implementation

In order to test the proposed RL base trajectory tracking NMPC, we performed
tests on two different vessels. In this section we will introduce the two platforms,
and discuss how we implemented the proposed RL based trajectory tracking control
method in a way that allowed for it to be used in real time.

3.1 Advanced-step Nonlinear Model Predictive Control

While a number of NMPC schemes exist, that guarantee closed loop stability [31], the
necessary on-line computation time is typically not taken into account. Even though
recent hardware and software developments have lead to faster and more efficient
numerical solution methods for open-loop optimal control, the solution time is often
significant in the context of closed-loop control. The resulting delay caused by solving
the NMPC problem online can often lead to degraded performance, or in some cases
even instability of the closed loop system. In order to account for the computational
delay, a number of methods have been proposed [41–44]. One such approach is the
advanced-step NMPC (asNMPC) [44], where the idea is to first use the current state
measurement and control action to predict the state one step into the future and then
solve the corresponding NMPC problem in advance. Transcribing the OCP in (14)
into standard form nonlinear programming problem (NLP):

min
w

φ(w,p)

s.t. g(w,p) = 0

h(w,p) ≤ 0,

(26)

where w are the decision variables, and p are the parameters, chosen to be the initial
state s. This gives the First-Order Necessary Conditions of a primal dual interior
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point method as follows:

r(z,p) =



∇wφ+∇wgλ+∇whµ

g
diag(µ)h+ τ


 = 0 (27)

where z = [w,λ,µ] are the primal-dual variables, and τ is a constraint relaxation
parameter. If the Linear Independence Constraint Qualification (LICQ) and Second
Order Sufficient Conditions (SOSC) hold [45] for the NLP in (26), then the Implicit
Function Theorem (IFT) guarantees that:

∂r

∂z

∂z

∂p
+
∂r

∂p
= 0. (28)

Solving the NLP in (26) for a parameterization p0, with the solution of the primal-dual
variables z0, we can construct the following linear predictor.

z = z0 +
∂z

∂p
(p− p0) (29)

Using the first order predictor on the NLP resulting from an NMPC problem, with
the initial state x0 chosen as the parameter vector p = x0, the asNMPC can be
summarized as follows:

• In the background between time step t and t+ 1:

– Predict the state x̂t+1 using forward simulation.

– Solve the NMPC problem with p0 = x̂t+1, to get the primal dual variables
z0.

– Compute the parameter sensitivity ∂z
∂p using the IFT (28).

• On-line at time step t+ 1:

– Obtain the true state of the system xt+1 from sensor measurements.

– Use the linear predictor (29) to find the approximate solution z of the NLP.

– Extract the first control input ut+1 from the approximate solution z.

– Apply the control input ut+1 to the plant, and return to the background
step.

The above asNMPC algorithm will then yield an approximate control law with a min-
imal delay between the measurement of the state and the application of the control
input. This allows us to approximately solve the NMPC problem in (14) in real time,
making the the proposed control scheme feasible for use on physical platforms. It
should however be noted that this is still a computationally demanding control archi-
tecture, and requires that the OCP can be solved within one time step. In general,
this requirement will limit the length of the prediction horizon of the asNMPC, and
the complexity of the parameterized model.
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Figure 2: The Revolt test platform is a 1 : 20 scale model of a autonomous concept
vessel with two fully rotatable azimuth thrusters in the stern and one fully rotatable
azimuth thruster in the bow.

3.2 Experimental Platforms

In order to test the proposed method, simulations studies were performed on two
different platforms, with additional full scale experiments carried out on one of them.
In the next sections we will introduce the two platforms, namely ReVolt and mil-
liAmpere, and discuss how the proposed RL based trajectory tracking NMPC was
implemented.

3.2.1 ReVolt platform

The ReVolt, shown in Figure 2, is a 1 : 20 scale model of a autonomous concept
vessel developed and buildt by DNV GL in collaboration with NTNU. The 3 meter
long and 0.72 meter wide model, weighs approximately 257 kg, and has three fully
rotatable azimuth thrusters for propulsion. The thrust configuration seen in Figure 2,
consists of two identical stern thrusters, and one slightly less powerful bow thruster,
giving the vessel a total combined engine power of 360 W and a top speed of 2 knots
(approximatly 1 m/s).

For simulating the ReVolt an accurate Digital Twin, developed by DNV GL, was used.
The Digital Twin is based on a full 6DOF model, with parameters identified through
tow-tank experiments, as well as frequency domain analysis of a 3D model of the
vessel hull. The Digital Twin allowed for rapidly testing how the proposed control
scheme performed under ideal conditions, as well as under different environmental
conditions, including disturbances from wind, waves and ocean currents.

The trajectory tracking controller for the ReVolt was implemented as an asNMPC,
solving the OCP in (14) in each sampling interval. Due to the vessel having three
fullty rotatable azimuth thrusters with relatively fast dynamics, the thruster dynamics
were not modeled, and an additional singularity avoidance penalty (30) was added to
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Figure 3: The MilliAmpere test platform has two fully rotatable azimuth thrusters
along the cenerline of the vessel.

the cost function, in order to encourage nonsingular thrust configurations [46].

ρ

ε+ det
(
T (α)T>(α)

) (30)

Using the solution of the advanced step prediction, the thrust and azimuth angle
commands were directly applied to the vessel thrusters. The sampling time of the
controller was chosen as Ts = 0.2s (5Hz) giving enough time to solve the NMPC,
while still being fast enough to stabilize the system. In order to learn the parameters
θ on-line, the update law in (25) was used on a batch of M = 1 samples which were
recorded on-line. A list of parameter values used for the NMPC implementation is
given in Table 3.

3.2.2 milliAmpere platform

The milliAmpere, shown in Figure 3, is an experimental autonomous urban passenger
ferry which has been in development at the Norwegian University of Science and
Technology (NTNU) since 2017. milliAmpere has served as a platform for testing
and developing autonomous technology, including software, sensor arrays, as well
as hardware solutions. The platform is 5 meters long and 2.8 meters wide, with a
symetric footprint. It has two fully rotatable azimuth thrusters mounted along the
center line of the vessel, giving it a top speed of 5 knots (approximatly 2.5 m/s).

For simulating the milliAmpere, a nonlinear 3DOF model of the vessel was used to-
gether with models of the thruster and azimuth dynamics, with the model parameters
being identified through experiments.

The trajectory tracking controller for the milliAmpere was implemented as an asN-
MPC, solving the OCP in (14). Due to slow azimuth thruster rotation, the azimuth
dynmaics were also included in the vessel model, allowing for the NMPC to account

I. Reinforcement Learning-based MPC for Tracking Control . . .

275



E

N

Surge

Sway

Surge & Sway

Coupled motion
of all DOF

1

2 3, 4

5

Figure 4: Illustration of the four corner DP test, used for testing trajectory tracking
performance in individual as well as coupled degrees of freedom.

for the the dynamics when planning the control actions. Similar to the ReVolt imple-
mentation, the sampling time for the milliAmpere controller was chosen as Ts = 0.2s
(5Hz) giving enough time to solve the NMPC, while still being fast enough to stabi-
lize the system. The parameter update law (25) was also used on the milliAmpere,
on a batch of M = 10 samples recorded on-line. This allowed the controller to con-
tinuously adapt to the changing conditions. A list of parameter values used for the
NMPC implementation is given in Table 4.

4 Results

In this section we present the results from simulations on the ReVolt test platform
(Figure 2), as well as simulations and sea trials on the milliAmpere test platform
(Figure 3).

4.1 Four corner DP test

In order to evaluate the trajectory tracking capabilities of the proposed control
method, the four corner test seen in Figure 4 is used. This test is used in order to
evaluate the trajectory tracking capabilities of the vessel for individual degrees of
freedom, as well as the coupled motion of all degrees of freedom. The four corner test
starts with the vessel pointing north 0◦, then performs the following commands:
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Table 1: List test scenarios for ReVolt (only simulations).

Scenario Description
R1 Simulation of baseline Adaptive dynamic programming (ADP) method

from [19]
R2 Simulation of RL-based NMPC without online learning
R3 Simulation of RL-based NMPC with online learning
R4 Simulation of RL-based NMPC with online learning and 3m/s wind

from the north
R5 Simulation of RL-based NMPC with online learning and 0.1m/s current

from the west

1. Move l meters due north, this tests the the surge motion of the vessel.

2. Move l meters due east, this tests the the sway motion of the vessel.

3. Rotate to a heading of 45◦ while keeping the same position, this tests the the
yaw motion of the vessel.

4. Move l meters due south while keeping the same heading, this tests the the
coupled surge and sway motion of the vessel.

5. Move l meters due west while rotating to a heading of 0◦, this tests coupled
motion of all degrees of freedom.

For the four corner test we chose the side length l to be 5 meters, for the ReVolt,
and l to be 10 meters for the milliAmpere. Each maneuver is given 60 seconds to
complete, and reference filter is used to generate a continuous trajectory between the
commanded maneuvers.

In order to evaluate the performance of the dynamic positioning, we use the Integral
Absolute Error (IAE) given in (31).

IAE(t) =

∫ t

0

√
(η − ηd)>W−1

IAE(η − ηd)dt (31)

Where W IAE is a weighting factor, which is chosen to normalize the pose between
±5 meters in north and east direction, and ±50◦ in heading, giving the following.

W IAE =




52 0 0
0 52 0
0 0 502




4.2 Results ReVolt (Simulations Only)

For the ReVolt platform, validation of the proposed trajectory tracking controller was
performed in simulations for the five different scenarios given in Table 1. Performing
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Figure 5: Simulation results for ReVolt with online learning (R3), and baseline (R1)

the four corner test, we got the results seen in Figure 5, with the IAE performance
seen in Figure 6.

From the trajectory and tracking error for our method (R3) seen in Figure 5, we
can observe that the positioning error is less the 10cm in both the North and east
direction, while the heading is within 5◦ of the desired heading. Compared to the
baseline Adaptive Dynamic Programming (ADP) method (R1), our method does not
have the same spikes when transitioning between maneuvers. This is likely due to the
NMPC planning ahead for the maneuver changes, while the the baseline approach is
having to react to them as they happen. The added prediction horizon of the NMPC
is a definite advantage of the proposed approach, however it does come at the cost
of computational complexity. While the proposed control scheme is limited to a 5Hz
update rate due to the time it takes to solve the OCP, the ADP based solution is
easily able to run at 10Hz.

From the IEA performance in Figure 6, we see the how the proposed controller per-
forms in different conditions, with and without parameter updates, as well as the
performance compared to a baseline ADP approach. Looking at the performance
of our method without online learning (R2), compared to our method with online
learing (R3), we see a significant difference in performance. This is due to model mis-
match between the initial model used in the OCP and the Simulator. Using online
parameter updates, allows the model and performance of the NMPC to be improved
based on gathered data, and results in a significant performance boost. It is also
worth noting the performance difference between the baseline approach (R1), and
our method with online learning (R3). For the baseline approach (R1), we see large
increases in IAE when transitioning between the different maneuvers, while for our
approach (R3), these increases are less prevalent. This is due to the RL-based NMPC
being able to take into account the trajectory over future time horizon, as well as
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Figure 7: Simulation results for milliAmpere with online learning (M4), and baseline
(M1).

Table 2: List test scenarios for milliAmpere (simulations and sea trials).

Scenario Description
M1 Simulation of baseline PID based DP method from [47]
M2 Sea trials of baseline PID based DP method from [47]
M3 Simulation of RL-based NMPC without online learning
M4 Simulation of RL-based NMPC with online learning
M5 Sea trials of RL-based NMPC with online learning

including the thrust allocation in the OCP, allowing for more accurately planning
and performing the maneuvers. Looking at our method when subject to external
disturbances in terms of wind (R4) and current (R5), we see an initial increase in the
IAE before the performance starts to stabilize, with a slope similar to that of trained
RL-based NMPC. This behaviour is expected, as the initial increase happens since
the controller is not aware of the disturbance, and flattens out as the controller learns
how to compensate for the disturbance as a constant force and torque in the NED
frame (11).

4.3 Results milliAmpere (Simulations and Sea Trials)

For the milliAmpere platform, validation of the proposed trajectory tracking controller
was performed for five different scenarios, Table 2, including both simulations as well
as sea trials. Performing the four corner test, we got the simulation results seen in
Figure 7, the experimental results seen in Figure 8 and 11. The performance in terms
of the IAE is given in Figure 9, and the performance in terms of power consumption
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Figure 8: Sea trial results for milliAmpere with online learning (M5), and baseline
(M2).

is shown in Figure 10.

Based on the results from our method in Figure 7 and 8, we see good tracking per-
formance, with similar results for both the simulations (M4) and the sea trials (M5).
From the tracking error we see that the trajectory is well within one meter, with most
of the major tracking errors happening after command changes. This is mostly due to
the vessel not being able to accelerate fast enough to follow the reference trajectory
when switching between the different poses. For the heading error, we see a maximum
error of about 20◦. This is a relatively large error, and is the largest contributor to the
IAE as can be seen in Figure 9. By choosing the weighting between the position error
qx,y and the heading error qψ it is possible to change the priority between heading
and position error, with our main focus being on the position error when choosing
the parameters.

In order to evaluate our proposed control scheme, we performed the same simulations
(M1) and sea trials (M2) using a standard Proportional Integral Derivative (PID)
based DP controller with an optimization based control allocation scheme [47]. It
should be noted that the PID controller was not tuned to optimize any performance
measure, however it still provides a good benchmark. Compared to our approach,
the PID based method has slightly less heading error, while our approach has signif-
icantly lower position error as can be seen in Figure 7 and 8, as well as in the IAE in
Figure 9. Our approach also has about half the power consumption when perform-
ing the maneuver compared with the PID based DP controller, as seen in Figure 10.
This is likely due to the PID based DP controller relying on an aggressive control
allocation method, while our approach integrates the control allocation into the opti-
mization problem, allowing it to consume less power while still being able to perform
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the desired maneuvers. The integration of control allocation and thruster dynamics
into OCP is a definite advantage of the proposed control scheme, as it significantly
reduces the mismatch between desired and actual thrust, allowing for more accurate
maneuvering. It should however be noted that the addition of control allocation and
thruster dynamics does increase the model complexity, and hence the computational
complexity when solving the OCP.

During the experiments, an unexpected azimuth failure occurred on one of the
thrusters, but the proposed method was able to compensate and still perform the
desired maneuver by learning a new model of the vessel which compensated for the
azimuth failure. These additional results are shown in Appendix B.

5 Conclusion

We have presented a method for trajectory tracking control of surface vessels using a
RL-based NMPC. The proposed method performs optimal tracking control, as well as
control allocation by considering both the dynamics and kinematics of the vessel and
the actuators. In order to account for model mismatch, and external disturbances,
the proposed method uses RL and SYSID in order to update the model and NMPC
on line and improve the closed loop performance. In order to run the method in
real time, asNMPC was used. This reduced the computational delay of solving the
optimization problem in each sampling interval, making the method real time feasi-
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ble. It should however be noted that the proposed control architecture is still more
computationally demanding then more traditional methods, which can be considered
a drawback of the proposed method. This added complexity does however come with
a trade off in terms of optimality and the ability to include complex truster dynamics
and physical constraints into the OCP, resulting in better tracking performance then
other traditional methods. This is further improved by using RL and SYSID to learn
and identify disturbances and modelling errors in order to optimize the closed loop
performance.

Based on both simulations and sea trials on both the ReVolt and milliAmpere plat-
forms we have shown the flexibility of the proposed method. The experimental results
also show how using a NMPC for handling both tracking and control allocation, allows
the controller to account for the performance of the vessel over a prediction horizon.
This makes the controller preemptive, leading to better tracking performance and
less power consumption compared with other methods. The addition of an RL and
SYSID update law allows for the control scheme to adapt to the environmental distur-
bances, and model mismatch in a way that optimizes the closed loop performance of
the proposed control scheme. These benefits do however come with some drawbacks,
including the computational complexity of the solving OCP, and robustness of the
RL and SYSID update laws with respect to disturbances and measurement noise.

For future work, we would like to look more into how to perform more robust and safe
RL and SYSID parameter updates, as care must be taken in order to avoid problematic
parameter updates caused by for example noisy and inaccurate measurements. This
is mostly a problem when running on a physical platform, and for us it was solved
using batches of transitions, and sufficiently small learning rate. For future research it
would also be interesting to look at different vessel models, including under-actuated
vessels. It would also be interesting to look at other problems than tracking, such as
for example planning and docking, where the problems have economic cost functions
and additional constraints that need to be taken into account. An additional area o
potential research is to optimize the implementation of the control scheme in order
to improve the computation time. With dedicated hardware, and a dedicated real
time NMPC implementations it should be possible to make to significantly improve
computation time, allowing for the proposed method to be used on systems requiring
faster update rates, more complex models and with a longer prediction horizon.
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Table 3: List of parameter values for ReVolt.

Symbol Value Description
qx,y 30 Huber penalty weight
qψ 50 Heading penalty weight

Q




1 0 0
0 10 0
0 0 10


 Velocity weight matrix

Rα




10−2 0 0
0 10−2 0
0 0 10−2


 Azimuth angle weight matrix

Rf




10−1 0 0
0 10−1 0
0 0 10−1


 Thruster force weight matrix

ρ 10−5 Singular value penalty weight
ε 10−3 Singular value penalty offset
δ 10 Huber penalty slope
Ts 0.2s Time step
N 50 OCP shooting intervals
M 1 Batch size

A Controller parameters

The parameter values for the ReVolt and milliAmpere the MPC implementation are
given in Table 3 and 4 respectively.

B Thruster failure results

During the milliAmpere sea trials, an unexpected azimuth failure occurred during one
of the tests, see Figure 11. The proposed controller was however still able to perform
the desired maneuver, and learn how to compensate for the failure.
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