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AN ESTIMATE OF STABILITY OF
RECONSTRUCTION OF THE NORMAL
DISTRIBUTION TYPE

A.P. Ushakova1 and N.G. Ushakov2

One of the characterization problems of statistics is reconstruction of types when observations can
have different location and/or scale parameters. In these cases, invariant statistics are used, and one
of the main problems is uniqueness and stability of the reconstruction. There are a number of works
devoted to this problem. In this article, we obtain a new estimate of stability of the normal type. It
improves previously obtained estimates.

1. Introduction

The following problem often arises in applications. Suppose that there are a number of small inde-
pendent samples such that in each small sample observations are independent and identically distributed
while from sample to sample they have different values of location and scale parameters. The problem
is to identify the distribution of the entire sample. First works in this direction include [4, 7], where, in
particular, Zinger [7] solved a problem of characterization of the normal family (called also normal type)
posed by A.N. Kolmogorov.

For such problems, it is necessary to use statistics which do not depend on the location and scale
parameters. Reconstruction of the type of initial distribution from distribution of such a statistic is an
actual problem, in particular, for goodness of fit testing. Prokhorov [5] solved the problem of uniqueness
of the reconstruction and its qualitative stability in quite a general case. The quantitative stability of
the reconstruction has been studied by a number of authors; see, for example, [1, 2]. In [6], it was proved
that the upper bound of stability has the order ε1/3L(ε), where ε is the distance between distributions of
invariant statistics, and L(ε) is a slowly varying function. In the present work, this estimate is improved.

In what follows we suppose (without loss of generality) that the small subsamples have size 3, i.e.,
the minimal necessary size. An essential feature of this work is that instead of the usually used two-
dimensional statistic (X1−X3,X2−X3) we will use a family of one-dimensional statistics that are linear
combinations of Xs.

2. Estimate of stability

In what follows we denote by Φ(z) the standard normal distribution function. Let X1,X2,X3 be in-
dependent identically distributed random variables with distribution function F (x−θ) and unit variance,
and let Z1, Z2, Z3 be independent random variables having the standard normal distribution. Denote
characteristic functions of Xi and Zi by f(t) and g(t). Consider the set of three-dimensional vectors
(α1, α2, α3) satisfying the following conditions:

α1 + α2 + α3 = 0, α2
1 + α2

2 + α2
3 = 2. (1)

Consider statistics Xα = α1X1+α2X2+α3X3 and Zα = α1Z1+α2Z2+α3Z3. Denote their distribution
functions by FX,α(x) and ΦZ,α(x) and characteristic functions by ψα(t) and φα(t).
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Theorem 1. Suppose that the following inequalities hold:

sup
α

∞∫

−∞
d|(FX,α − ΦZ,α)| � ε <

1

2
, (2)

sup
α

∞∫

0

xd|(FX,α(x)− (1− FX,α(−x)))| � ε
√
ε. (3)

Then there exists θ̄ such that

|F (x− θ̄)− Φ(x)| � √
εL(ε), (4)

where L(ε) is a slowly varying function.

Proof. Let (2) and (3) be satisfied. Since α3 = −(α1 + α2), we obtain that

α2
1 + α2

2 + α1α2 = 1. (5)

Characteristic functions of Xα and Zα can be written as follows:

ψα(t) = f(α1t)f(α2t)f((α1 + α2)t),

φα(t) = e−t2 = g(α1t)g(α2t)g((α1 + α2)t).

Using (2), we obtain

sup
α,t

|ψα(t)− φα(t)| � sup
α

∞∫

−∞
d|(FX,α − ΦZ,α)| � ε;

therefore

|f(α1t)f(α2t)f((α1 + α2)t)− g(α1t)g(α2t)g((α1 + α2)t)| � sup
α,t

|ψα(t)− φα(t)| � ε. (6)

Let α2 = 0. Then (6) implies that

||f(α1t)|2 − |g(α1t)|2| � ε

for any t, i.e.,
||f(t)|2 − |g(t)|2| � ε

or

||f(t)| − |g(t)|| � √
ε (7)

for all t.
Set T0 =

√− ln(2ε). If |t| � T0, then, due to (7),

|f(t)− g(t)| � |f(t)|+ |g(t)| � 2|g(t)| +√
ε � (2

√
2 + 1)

√
ε. (8)

If |t| � T0, then
||ψα(t)| − |φα(t)|| � |ψα(t)− φα(t)| � ε,

hence

|ψα(t)| � φα(T0)− ε � ε > 0

and
|f(t)| � |g(t)| − √

ε � g(T0)−
√
ε =

√
2ε−√

ε > 0.
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Thus, for |t| � T0, the functions ψα(t) and f(t) have no zeros, and, therefore, there exist principal values
of arguments of these functions, and they are continuous. Let us estimate these principal values (for
|t| � T0). For the imaginary part of ψα(t), using simple algebra, we obtain

|�ψα(t)| �
∞∫

0

|tx|d|(FX,α(x)− (1− FX,α(−x)))| � |t|ε√ε

(the last inequality follows from (3)). Thus for |t| � T0,

|�ψα(t)| � ε
√
ε|t|, |ψα(t)| � ε. (9)

Show that �ψα(t) > 0 for |t| � T0. Assume the contrary. Then there exists u such that |u| � T0, and
�ψα(u) = 0. Then |ψα(u)| = |�ψα(u)|. Using (9), we get

ε � |ψα(u)| = |�ψα(u)| � ε
√
ε|u| � ε

√
εT0 = ε

√
ε
√− ln 2ε,

which cannot be when ε < 1/2.

Denote the principal value of the argument of the function f(t) by Argf(t). Using (9) and (15), we
obtain that

|Argψα(t)| � π

2

√
εt

for 0 � t � T0. But then for these ts

|Argf(α1t) + Argf(α2t)−Argf(α1t+ α2t)| = |Argψα(t)| � π

2

√
εt. (10)

Denote a(t) = Argf(t). We have

|a(α1t) + a(α2t)− a(α1t+ α2t)| � π

2

√
εt, (11)

where a(x) is a continuous function such that a(0) = 0, a(−x) = −a(x), 0 � t � T0, and (5) holds. In
order to use Lemma 1, we prove that (11) implies

|a(t1) + a(t2)− a(t1 + t2)| � π

2

√
ε(t1 + t2)

for any

0 � t1 � T0, 0 � t2 � T0, 0 � t1 + t2 � T0. (12)

Consider arbitrary t1, t2 satisfying (12) and set t =
√

t21 + t22 + t1t2, α1 = t1/t, α2 = t2/t. Then

α2
1 + α2

2 + α1α2 =
1

t2
(t21 + t22 + t1t2) = 1.

Evidently these αs satisfy the conditions 0 � α1 � 1, 0 � α2 � 1. Substitute α1t = t1 and α2t = t2
in (11). Then

|a(t1) + a(t2)− a(t1 + t2)| � π

2

√
ε(t1 + t2)

for all t1, t2 satisfying (12). Choose now the location parameter θ0 for the function F (x − θ) so that
Argf(T0) = 0 and use Lemma 1. Then we get the inequality

|Argf(t)| � π

2

√
ε(T0 + 5) (13)
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for |t| � T0 (for negative values of t, the inequality holds because the argument is an odd function).
Using inequality (16), we obtain from (7) and (13)

|f(t)− g(t)| �
(π
2
(T0 + 5) + 1

)√
ε =

√
ε
(π
2
(
√− ln 2ε+ 5) + 1

)
(14)

for |t| � T0. For |t| > T0 inequality (14) holds due to (8).

Use of Lemma 2 completes the proof. It is sufficient to set in Lemma 2

ε =
√
ε
(π
2
(
√
− ln 2ε+ 5) + 1

)
, T =

√
ε, L = 2T.

3. Auxiliary results

This section contains auxiliary results that are used in the proof of Theorem 1.

Lemma 1. Let a(t) be a continuous function satisfying the following conditions: a(0) = 0, a(T0) = 0,

|a(t1) + a(t2)− a(t1 + t2)| � ε(t1 + t2)

for any t1 � 0, t2 � 0, t1 + t2 � T0, where ε > 0, T0 � 1. Then

|a(t)| � ε(T0 + 5).

The lemma follows from Lemma 1 of [6].

Lemma 2. Let F (x) be a nondecreasing function, G(x) be a function of bounded variation, and
F (−∞) = G(−∞). Denote the corresponding Fourier–Stieltjes transforms by f(t) and g(t). Let G(x) be
differentiable, and

sup
x

|G′(x)| � c.

If |f(t)− g(t)| < ε for |t| < T, then for any L > 2/T, the following inequality holds:

sup
x

|F (x)−G(x)| < A
(
ε log(LT ) +

c

T
+ γ(L)

)
,

where

γ(L) = Var−∞<x<∞G(x)− sup
x

Var
x�y<x+L

G(y)

(Var is the total variation).

This lemma was obtained in [3].

We point out also the following elementary inequalities. Let |z| be a complex number z = x+ iy. If
x > 0 and |y|/|x| � η < 1, then

| arg z| � π

2
η. (15)

Let z and t be two complex numbers such that |z| � 1, |t| � 1. Then

|z − t| � ||z| − |t||+ | arg z − arg t|. (16)
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