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Binary Mg-Zn and Al-Zn alloys have been investigated theoretically under static isotropic pressure. The stable
phases of these binaries on both initially hexagonal-close-packed (hcp) and face-centered-cubic (fcc) lattices
have been determined by utilizing an iterative approach that uses a configurational cluster expansion method,
Monte Carlo search algorithm, and density functional theory (DFT) calculations. Based on 64-atom models, it
is shown that the most stable phases of the Mg-Zn binary alloy under ambient condition are MgZn3, Mg19Zn45,
MgZn, and Mg34Zn30 for the hcp lattice, and MgZn3 and MgZn for the fcc lattice, whereas the Al-Zn binary is
energetically unfavorable throughout the entire composition range for both the hcp and fcc lattice symmetries
under all pressure conditions. By applying an isotropic pressure in the hcp lattice, Mg19Zn45 turns into an unstable
phase at P ≈ 10 GPa, a new stable phase Mg3Zn appears at P � 20 GPa, and Mg34Zn30 becomes unstable for
P � 30 GPa. For the fcc lattice, the Mg3Zn phase weakly touches the convex hull at P � 20 GPa while the
other stable phases remain intact up to ≈120 GPa. Furthermore, making use of the obtained DFT results, the
bulk modulus has been computed for several compositions up to pressure values on the order of ≈120 GPa.
The findings suggest that one can switch between Mg-rich and Zn-rich early-stage clusters simply by applying
external pressure. Zn-rich alloys and precipitates are more favorable in terms of stiffness and stability against
external deformation.
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I. INTRODUCTION

The controlled creation of alloys is an attractive research
field from both theoretical and experimental standpoints
[1–3]. An alloy system comprises numerous charged particles
that interact with each other and make a highly complicated
interacting many-body platform. As is evident, this level of
complexity makes accurate theoretical studies of such sys-
tems quite challenging, and therefore multiple approximations
with today’s computers have to be incorporated [4–14]. The
interplay of the quantum mechanical interactions and the
specific spatial ordering of different atoms, forming an alloy,
determines the macroscopic properties of alloys, and this
has served as a unique platform for testing and developing
various theoretical approaches [4,5,7,15–17]. On the other
hand, the detailed atomistic level insight from theoretical
studies may provide useful information for synthesizing alloys
in experiments with boosted specific properties [14,18–21].
Prominent examples can be found in aluminum alloys that
play increasingly crucial roles in various industrial products
[5,8–12,22–25].

One of the main goals of alloying matrices is to obtain
the most lightweight and high-strength alloys that can be
extensively used in aircraft industries, modern trains and
vehicles, and so forth. The central mechanisms for enhancing
the strength of aluminum is to produce uniform distributions
of nucleated precipitates and solid microstructures in the
aluminum matrix with different solute elements such as Zn,
Mg, Si, Cu, Mn, and Cr [26–35]. Among them, however, Zn
and Mg have demonstrated to be the most effective additives

to help the growth of precipitates from solute clusters, thus
enhancing the strength and hardness of the Al matrix through
generating high resistance against dislocation motion and
damage. For example, a recent experiment has demonstrated
that a cyclic deformation of an Al alloy at room temperature
facilitates a diffusion of solid solute clusters and eventually
generates a matrix with uniformly close packed precipitates
that increase the material strength and elongation properties.
The advantages of this method compared to conventional
temperature-aging approaches are (i) a shorter processing
time and (ii) a more uniformly distributed microstructure
with no precipitate-free zones [36]. Also, it has been ex-
perimentally observed that several phases of precipitates can
develop in Mg-Zn and Al-Zn-Mg alloys, including MgZn,
monoclinic Mg4Zn7, η-MgZn2, β-MgZn2 with hexagonal
symmetry, Mg2Zn3, and Mg2Zn11 [37–43]. Recent systematic
investigations have demonstrated that the morphology and
structural evolution of precipitates in Mg alloys are closely
linked to their internal sub-unit-cell arrangements, the aspect
ratio of precipitates, misfit strains, and their interaction with
matrix interfaces [37,44–46].

Despite the extensive attention that aluminum alloys have
received so far, only limited studies have been performed
for investigating their fundamental properties when subject
to tension from atomistic-level first principles [47,48]. The
findings of such high-end rigorous studies not only can be
used as guidelines for future experiments but they also can
be employed as benchmark tests for computationally less
expensive approaches (such as effective potential methods
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[4,5,7,15,16] which are crucial for molecular dynamics sim-
ulations or phase field approximations). Hence, these results
can serve in developing reliable multiscale models for pro-
viding better insights into closer-to-realistic sample sizes.
Also, there are several magnesium and zinc rich alloys that,
respectively, contain Al/Zn and Al/Mg elements as the most
effective additions to improve their hardness. Therefore, it
is of fundamental interest to study these alloys within the
entire composition range. In order to provide insights for the
Al-Mg-Zn alloys, one first needs to study the properties of
the Al-Mg, Mg-Zn, and Al-Zn binaries, which comprise the
boundaries of the Al-Mg-Zn trinary composition diagram.
The properties of the Al-Mg binary have already been studied
in previous works [8,9], and thus, we focus here on the Mg-Zn
and Al-Zn binaries only.

In this work, we employ an iterative combination of a
cluster expansion (CE) method, Monte Carlo (MC) simula-
tions, and density functional theory (DFT) calculations to
exhaustively search and find the stable phases of the Mg-Zn
and Al-Zn binary alloys, starting from both hexagonal-close-
packed (hcp) and face-centered-cubic (fcc) lattice symmetries.
Our theoretical results show that the stable phases of the
Mg-Zn binary are mixture and layered configurations of the
two elements in the hcp lattice, and they are in line with
experimental observations where MgZn2, Mg4Zn7, and MgZn
compositions with hexagonal symmetry have been found as
the most stable phases. For the fcc lattice, we find layered
geometrical motives emerging for MgZn and higher Mg con-
centrations. The Al-Zn binary turns out to be energetically
unfavorable on both the hcp and fcc lattice symmetries under
all pressure conditions studied, which indicates a segregation
behavior. Although the free energies of Mg-rich compositions
are lower than those of Zn-rich ones for the Mg-Zn binary,
the presence of an external pressure can revert the situation
such that Mg-rich alloys become unstable. The analysis of
bulk modulus for several compositions illustrates that Zn-rich
compositions have the largest bulk modulus and they are more
resistant to external deformation. These findings suggest that
by applying an appropriate pressure to early-stage clusters of
the Mg-Zn binary, one can control the type of the precipitate
clusters (being either Zn-rich or Mg-rich solid solutions), and
thus tune the absolute hardness of the entire matrix.

The article is organized as follows. In Sec. II, we briefly
discuss and present the theoretical framework used in order
to find the energetically favorable phases of binary alloys.
In Sec. III, we present our main findings and a detailed
description of the results. Finally, in Sec. IV, we present
concluding remarks.

II. METHODS

In this section, we describe the theoretical framework and
computational details.

A. Density functional theory calculations

The first-principles calculations based on the density func-
tional theory of electronic structure were performed using the
GPAW code [49,50]. The interaction between ions (nuclei +
core electrons) and valence electrons was described by using

the projector augmented wave method. The gradient-corrected
functional by Perdew-Burke-Ernzerhof (PBE) was employed
for the exchange correlation energy, the plane-wave cutoff
for kinetic energy was set to 600 eV, and the number of
electronic bands was chosen as 120% (corresponding to 20%
unoccupied). Furthermore, we have used 3.5 k points per
Å−1 in order to grid k space on the basis of the Monkhorst-
Pack scheme. In order to produce consistent data, we have
kept fixed all the above-mentioned parameters throughout all
DFT calculations. The parameter values were chosen based
on extensive convergence and consistency tests, and they
provide a balance between convergence and good accuracy
in all calculations. We have exploited the “fast inertial re-
laxation engine” and ExpCellFilter modules available in the
atomistic simulation environment package [51] to relax the
atomic positions in a given structure under isotropic pressure
through self-consistent loops until the residual forces on each
atom become less than 0.07 eV/Å. We have cross-checked
our DFT calculations for selected compositions with tighter
convergence criteria and found no changes in the resulting
convex hull. In total, 861 individual configurations of 64
atoms were DFT-optimized based on these specifications at
zero pressure, and the most stable configurations at the convex
hull were subjected to additional pressure calculations.

B. Cluster expansion model

The cluster expansion (CE) model is a generic approach
that can describe multicomponent systems through trainable
parameters. The main objective is thus to develop CE models
with the ability to predict configurational properties with high
accuracy and much less computational cost than for DFT
[17,52–58]. In this work, CE provides an effective Hamil-
tonian, describing the configurational energy of Mg-Zn and
Al-Zn alloys. Each element atom type is represented by a
pseudospin τα with an effective cluster interaction Eα at a
configurational ordering α (specific order of atoms in a given
composition). Thus, with this approach, we can expand and
express the energy of a given configuration by

E = E0 +
∑

i

Eiτi +
∑
i, j

Ei jτiτ j +
∑
i, j,k

Ei jkτiτ jτk + · · · .

(1)
The effective cluster interactions Eα are unknown coefficients.
The main task is to train the above expansion to DFT data
(training set) and to find the best values for Eα in a trun-
cated series to describe the configurational energy accurately.
The accuracy of CE predictions depends crucially on several
ingredients: The number of structures in the data set, how
the structures are chosen, the number of effective correlation
functions (how many terms the expansion possesses), and
the correlation functions used for fitting to the data set. The
method we chose to find the best truncated series is the
minimization of the leave-one-out cross validation (CV) score
through the least absolute shrinkage and selection operator
(LASSO), i.e.,

min
α

{
N∑

n=1

(
En

DFT − En
CE

)2 + α
∑

α

∣∣Eα

∣∣}, (2)
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in which N is equal to the number of configurations evaluated
by DFT calculations, En

DFT represents the energy of the
nth structure predicted by DFT, and En

CE is the prediction
made by CE. The second term in Eq. (2) is a cost function,
where the term α regularizes the coefficients such that it
imposes a penalty on coefficients with large values and helps
in reducing overfitting. To construct CE models, we have
employed the open source PYTHON modules in the CLEASE
software [54].

C. Monte Carlo simulations

The configuration space of 64-atom model structures for
Mg-Zn and Al-Zn alloys contains a large number of unique
configurations, made of various combinations of the consid-
ered elements within the entire composition range. Therefore,
it is not feasible to evaluate all possible configurations in
the configuration space using DFT calculations. In order to
effectively search the configuration space and to find the
energetically most favorable configurations, we have used the
Metropolis algorithm and Monte Carlo simulations [59]. In
short, one shuffles the list of atoms in a given configuration
and calculates the energy difference between the new j and
old i configuration: �E = Ej − Ei. Next, one picks up a
random number r and defines a probability for accepting
the new configuration j together with a simulated annealing
algorithm at a temperature T as follows:

r < exp

{
− γ

�E

kBT

}
. (3)

Here, kB is the Boltzmann constant and γ is a parameter that
controls the acceptance rate of new structures. Depending on
the number of possibilities available within the configuration
space, one produces a sufficient number of random structures
by swapping atoms in each Metropolis step and then increases
γ slowly from highly small values (equivalent to a high
acceptance rate) to large values of γ where the acceptance
rate of new structures become highly suppressed [59]. Note
that at a low enough temperature regime where kBT → 0, one
can remove γ and use kBT as the controlling parameter for
the acceptance rate by varying the temperature exponentially
from high (equivalent to small values for γ ) to low enough
values (equivalent to large values for γ ).

III. RESULTS AND DISCUSSION

A. Atomic structure, energetics, and the effect of pressure

A CE model is inevitably tied to the elements in question
and lattice symmetry, making it almost impractical to train
only one model for a set of alloys with different lattice
symmetries. Therefore, we have trained several CE models
for each alloy system with a specific lattice structure. To find
the energetically most favorable structures for Mg-Zn and Al-
Zn binaries, we have chosen the following strategy which is
tedious but reliable: (i) We produce a database of 40 randomly
generated unique structures. (ii) Considering the parameters
described in Sec. II A, we perform DFT calculations (always
requiring geometry and unit cell optimization) for structures
generated in the previous stage. (iii) We construct more than
50 CE models as explained in Sec. II B by varying the
maximum diameter of clusters. (iv) By selecting CE models

possessing CV scores (prediction error with respect to DFT
results) less than 10 meV, we generate new unique low-energy
structures and add them to the database if not already existing.
(v) Extracting these new unique structures, we perform DFT
calculations and repeat stages (iii) to (v) until new CE models
are not able to add new unique structures into the database,
and the procedure reaches convergence.

We have carried out the above steps for the Mg-Zn and
Al-Zn binaries on both the hcp and fcc lattice symmetries and
used identical fitting procedures for the surrogate CE models.
In the following, we have neglected vibrational effects at finite
temperature. For the 2 × 2 × 2, 3 × 3 × 3, and 4 × 4 × 4 unit
cell structures the concentration of elements changes by steps
of 12.50%, 3.7037%, and 1.5625%, respectively. Therefore,
the last case (64 atoms) with the smallest step allows for
exploring the full range of concentrations more precisely. We
remark here that the structures have initially an ideal hcp/fcc
lattice symmetry but the DFT optimization (geometry, cell)
results in small deviations both in terms of symmetry and
individual atomic positions. This means that the DFT total
energies present in our CE training database correspond to
fully optimized configurations.

In order to compare different compositions based on the
(free) energies calculated by DFT, we define the formation
energy of a binary AB, regardless of its lattice symmetry, as
follows:

H[AxB1−x] = E [AxB1−x] − (1 − x)E [B] − xE [A], (4)

where x is the concentration of theA element and E [AxB1−x]
is the free energy of composition AxB1−x. Also E [B] and
E [A] are the free energies of pure elements A and B, re-
spectively. Note that we assume here zero temperature where
potential energy, configurational energy, and free energy are
the same. At finite-temperature values, however, one should
differentiate when using these terminologies.

Figure 1 summarizes the results of the above strategy for
the Mg-Zn binary in the hcp lattice. To reach convergence as
described above, this process has demanded gradually adding
and calculating the configurational energies of 402 unique
structures from first principles. The plot exhibits the formation
energy of these 402 structures, calculated by Eq. (4), as a
function of Mg concentration. The energetically most
favorable structures (compositions) are those with energies
touching the convex hull (black curve). To make these more
visible, we have marked them by solid red circles while other
structures close to the convex hull are marked by green circles.

We find that Zn, MgZn3, Mg19Zn45, MgZn, Mg34Zn30,
and Mg construct the convex hull and are the most favorable
compounds for the hcp lattice. We also show four other com-
pounds, i.e., Mg15Zn49, Mg17Zn47, Mg21Zn43, and Mg3Zn,
that are close to the convex hull. The free energies of these
configurations are summarized in Table I. The correspond-
ing real-space 4 × 4 × 4 configurations are displayed on the
right-hand side of Fig. 1, and they show gradual changes in
site occupations. The prominent feature of these structures
is that they show a strong mixing of Mg and Zn in the
hcp lattice symmetry over the entire composition range. The
corresponding 5 × 5 × 5 extended supercells are presented in
Fig. 9 in the Appendix.

045002-3



ALIDOUST, KLEIVEN, AND AKOLA PHYSICAL REVIEW MATERIALS 4, 045002 (2020)

0 0.2 0.4 0.6 0.8 1
Mg Concentration (%)

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

FIG. 1. Left: The convex hull of the Mg-Zn binary in the hcp lattice. To obtain the convex hull, we have performed DFT calculations for
402 individual configurations predicted by an iterative use of DFT, CE method, and Monte Carlo simulations. The convex hull illustrates that
MgZn3, Mg19Zn45, MgZn, and Mg34Zn30 (marked by the solid red circles) are stable phases. We have also marked other compositions that
are close to the convex hull by the solid green circles. Right: 64-atom hcp configurations (4 × 4 × 4 structures) corresponding to the phases
marked by the solid circles in the left panel. The green and blue spheres stand for Mg and Zn atoms, respectively.

Note that since we are restricted by 4 × 4 × 4 structures
due to computational limitations in DFT calculations, we are
able to span the concentration range only by steps of 1.5625%.
Therefore, there may exist other energetically favorable com-
pounds close to the convex hull (namely, they fall into regions
that are only explorable through larger atomic models). Nev-
ertheless, the step of 1.5625% is small enough to allow us
to provide an overview of the convex hull for binary alloys.
The stable phases with hexagonal symmetries in experiment
are Mg2Zn3, Mg2Zn11, MgZn2, Mg4Zn7, and MgZn [37–43].
The last case was also explored and confirmed in our results
above. The ratios of the other two compositions, 1:2 and 4:7,
do not match exactly with the 4 × 4 × 4 structures considered
in this study, but the predicted phase Mg21Zn43 lends support
also for these experimental observations [37–43].

Another limitation considers the (possible) structural tran-
sition upon alloying or applying pressure. In this case, the
searchable configuration space would considerably increase
and include numerous new possibilities. We postpone ad-
dressing these interesting topics to our future works, and
thus assume here that no structural transitions beyond the
hcp/fcc will take place under alloying and/or the application
of pressure. Note that as close-packed structures the hcp and
fcc lattices have the largest coordination number, i.e., 12
(sphere packing efficiency of 0.74), and it does not seem
plausible that other lattice structures (such as body-centered
cubic) would emerge as a result of applying pressure.

Next, we study the Mg-Zn binary with the fcc lattice
symmetry. As bulk materials, Mg and Zn have the hcp lattice
symmetry whereas Al exists as the fcc lattice symmetry. How-
ever, as fully confirmed by experiments, the solid solutes and
clusters in Al-dominated matrices tend to mimic the lattice
symmetry of bulk Al and develop fcc-like sublattices. There-
fore, in order to understand the properties of the Mg-Zn solid
clusters in the Al-dominated matrices one needs to study this
binary with the fcc symmetry as well. Figure 2(a) shows the

normalized free energy of 232 unique structures as a function
of concentration. The fcc structures have been systemically
collected in the DFT database as described above for the
hcp case. Figure 2(a) shows the normalized free energy and
Fig. 2(b) exhibits the associated formation energy obtained by
Eq. (4). Note that the hcp structures display exactly the same
trend (not shown) as Fig. 2(a) since the energy differences
between the fcc and hcp configurations are very small. For the
fcc lattice symmetry, the convex hull is made by Zn, MgZn3,
MgZn, and Mg marked by solid red circles. We have also
marked Mg6Zn58 and Mg3Zn (by green solid circles) that have
energies closer to the convex hull than other compounds. The
normalized free energies of these compounds (shown by blue
circles) are summarized in Table II. The corresponding real-
space 4 × 4 × 4 configurations are shown on the right-hand
side of Fig. 2. Interestingly, unlike for the hcp compounds,
Mg6Zn58 and MgZn3 suggest a full mixture of Mg and Zn
atoms from 0% to 30% magnesium, while the stable MgZn
phase and Mg3Zn display that compositions containing more
than 50% of Mg tend to create layered structures. In order to
ease the visibility of the mixture and layered compositions,
we present visualizations of the 5 × 5 × 5 extended cells in
Fig. 9 in the Appendix.

We have carried out the same computational procedure as
above for the Al-Zn binary. Figure 3(a) shows the formation
energy as a function of Al concentration for 164 unique struc-
tures, gradually collected through iterating the loop between
the stages (i) and (v). The corresponding free energies are
presented in Fig. 10 in the Appendix. Here we have considered
both 3 × 3 × 3 and 4 × 4 × 4 structures with the fcc lattice
symmetry. The formation energy is either positive or takes
very small negative values throughout the full composition
range. The overall positive formation energy indicates that
the Al-Zn binary tends to segregate always. This is confirmed
by the atomic configurations of the lowest-energy structures
(not shown) which show a strong segregation of Al and
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FIG. 2. The Mg-Zn binary with the fcc lattice symmetry. (a) Normalized free energy of 232 configurations as a function of Mg
concentration (in percent). (b) The convex hull of these 232 unique configurations with 4 × 4 × 4 unit cell structures containing 64 atoms. The
stable phases are MgZn3 and MgZn (marked by the solid red circles), whereas Mg6Zn58 and Mg3Zn (marked by the solid green circles) are
close to the convex hull. The corresponding atomic structures are shown on the right side. The green and blue spheres stand for Mg and Zn
atoms, respectively.

Zn. To provide further insight for this binary, we show in
Fig. 3(b) the formation energy of the Al-Zn binary for the
hcp lattice. Clearly, Al and Zn prefer to separate as for the
fcc lattice symmetry. We also present results for the isotropic
pressures of 40 GPa and 80 GPa in the hcp case. Introducing
a nonzero pressure results in a stronger positive formation
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0.025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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FIG. 3. Formation energy of unique configurations of the Al-Zn
binary as a function of Al concentration. (a) The fcc lattice with
163 unique configurations (3 × 3 × 3 and 4 × 4 × 4 structures). The
external pressure is set to zero. (b) The hcp lattice and 64 unique
configurations under external pressure: P = 0, 40, 80 GPa.

energy, and thus, it is unable to assist in mixing of the Al and
Zn elements. Note that as pure Al and Zn belong to the fcc and
hcp lattice symmetries [60], respectively, the final segregated
compositions might be mixtures of these two symmetries.
Nevertheless, in Al-rich and Zn-rich alloys, one can expect
that the leading lattice symmetry is dictated by the fcc and
hcp symmetries, respectively.

Having determined the stable phases of the Mg-Zn binary
on the hcp and fcc lattices, we now subject these compounds
(together with those nearby the convex hull) to an external
pressure. Figure 4(a) shows the normalized free energy of 11
compounds against externally applied isotropic pressure from
0 to 120 GPa. Under ambient conditions, bulk Mg and Zn
have the lowest and highest free energy, respectively, and the
other compounds are located between these two limits. By ap-
plying the external pressure, the free energy of all compounds
increases and in high-pressure regions, larger than 80 GPa, the
free energy becomes positive, limiting the formation of solid
state compounds. Figure 4(a) illustrates that although Mg-rich
compounds are more stable in the low-pressure regime, they
turn unstable faster than those with a higher concentration
of Zn and there is a crossover at 30 GPa. Correspondingly,
the Zn-rich compounds show more stability under pressure,
which can be used as a control knob for switching between
the two types of alloys. Also, this finding can be expanded
to large enough precipitates of these elements: By applying
pressure to an Al matrix where Mg and Zn solute atoms form
solid clusters, one may be able to externally control the type
of the clusters to be either Mg-rich or Zn-rich. Figure 4(b)
shows the normalized volume of each compound against the
applied isotropic pressure. Obviously, bulk Mg and Zn exhibit
the highest and lowest volume reduction, respectively, and
the rest are located between these two limits. The percentage
of volume reduction confirms the higher stability of Zn-rich
compounds.

One important quantity that we can calculate now is the
bulk modulus B0 which measures the stiffness of a mate-
rial against elastic deformation when subject to an external
pressure. To this end, we make use of the Birch-Murnaghan
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FIG. 4. The Mg-Zn binary with the hcp lattice symmetry. (a) The free energy of marked phases in the convex hull, normalized by the
number of atoms in supercell, as a function of applied isotropic pressure from 0 GPa to 120 GPa. (b) Change in the normalized volume
of different compounds when applying the isotropic pressure. The inset panel shows the percentage of volume reduction due to the exerted
pressure. (c) Bulk modulus, B0, of different compounds under pressure. The inset panel is a zoomed-in shot of the bulk modulus restricted to
low pressures (from 0 GPa to 5 GPa). (d) Normalized free energy of different compositions as a function of Mg concentration (in percent) at
various values of the isotropic external pressure: P = 0, 10, 20, 30, 40, 70, 100, 120 GPa. (e) Variation of convex hull and the evolution of the
stable phases by increasing the external pressure. The stable phases are marked by red color, while the remaining compounds are shown by
green.

empirical equation of state for pressure as a function of
volume:

P(V )

= 3B0

2

{
1+ 3(B′

0−4)

4

[(
V0

V

) 2
3

−1

]}{(
V0

V

) 7
3

−
(

V0

V

) 5
3

}
,

(5)

in which B0 is the bulk modulus, B′
0 is the derivative of the

bulk modulus with respect to pressure, V0 is the volume at zero
pressure, V is the volume, and P is the pressure. Also, the bulk
modulus is closely linked to the speed of sound (mechanical

waves) and the energy stored in a solid system, which is given
by

B0 = −V

(
∂P

∂V

)
. (6)

To evaluate Eq. (6), we first find the set of parameter values
that fits Eq. (5) into our DFT data such that we obtain P(V ) nu-
merically, and thus B0 can be evaluated. Figure 4(c) shows the
bulk modulus of the Mg-Zn compounds. The calculated bulk
moduli of the elemental Mg and Zn are in good agreement
with those reported values in experiments. The calculated and
measured B0 are summarized in Table III. The bulk moduli
of the Mg-Zn compounds are located between those of bulk
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FIG. 5. The Mg-Zn binary with the fcc lattice symmetry. (a) Normalized free energy of the Mg-Zn compositions as a function of the
externally applied isotropic pressure from 0 GPa to 120 GPa with the step of 10 GPa. (b) Normalized volume of the compounds as a function
of pressure. The inset panel exhibits the volume reduction of each compound as a function of pressure. (c) Bulk modulus as a function of
pressure. The inset shows a zoomed-in shot of the bulk modulus at low pressures. (d) Normalized free energy as a function Mg concentration.
(e) Formation energy of the Mg-Zn binary phases.

Zn and Mg from top to bottom, respectively. Clearly, we can
conclude that Zn-rich compounds are stiffer than those with a
high concentration of Mg.

In order to evaluate the stability of these compounds
subject to isotropic pressure, we show their normalized free
energy values as a function of Mg concentration in Fig. 4(d)
at several pressures. The associated convex hulls are presented
in Fig. 4(e). As evidenced above based on the bulk moduli, the
free energy of bulk Mg [Fig. 4(d)] has the largest variation.
To make this clearer, we have marked stable phases, touching
the convex hull, by solid red symbols, while those compounds
away from the convex hull are displayed in green. We find
that MgZn3 and MgZn show stability in the entire interval
of the applied pressure. Interestingly, we see that Mg19Zn45,
which is a stable phase at zero pressure, becomes unstable at
larger pressure values than 10 GPa. Similarly, Mg34Zn30 be-
comes unstable at pressures higher than 40 GPa. Remarkably,
Mg3Zn becomes more stable at pressures higher than 20 GPa

as it not only touches the convex hull but also comprises a new
minimum above 70 GPa.

Figure 5 is the fcc counterpart of Fig. 4 showing the effect
of pressure on the stable phases Mg6Zn58, MgZn3, MgZn,
and Mg3Zn. The normalized free energies reside between
those of bulk Zn and Mg from zero pressure up to 30 GPa.
Similarly to the hcp case, the free energy changes its sign
above 80 GPa, starting from bulk Mg. At 30 GPa, MgZn
crosses with bulk Mg and becomes the lowest-energy com-
pound. At 80 GPa, MgZn3 has the lowest free energy, and
bulk Mg and bulk Zn change their places as the upper/lower
boundary above 100 GPa. Note that for both the hcp and fcc
lattices, pressure-controlled alloying becomes possible around
30 GPa, in particular at pressure values larger than 40 GPa.
Figure 5(b) illustrates the normalized volume and the results
are very similar to those for the hcp compounds in Fig. 4(b).
We conclude from this that Zn-rich alloys are less sensitive
to changes in pressure. For the bulk modulus [Fig. 5(c)], as
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FIG. 6. Structural energy difference of the Mg-Zn alloys under
the isotropic external pressure. The vertical axis is in units of energy
(eV).

before, bulk Zn and bulk Mg exhibit the highest and lowest
B0 values, respectively. The bulk moduli of Mg on the hcp
compounds and fcc lattices are almost the same [Figs. 4(c)
and 5(c), insets]. However, the bulk modulus of Zn enhances
by almost 15% by the lattice change. Hence, our analysis
demonstrates that Zn-rich alloys with the fcc lattice symmetry
are more favorable in terms of hardness and stability against
external deformation.

In Fig. 5(d), we plot the normalized free energy as a func-
tion of Mg concentration and pressure, and Fig. 5(e) displays
the associated convex hull. Here, MgZn3 and MgZn are stable
throughout the pressure interval 0–120 GPa, while Mg6Zn58

stays close to the convex hull. Mg3Zn touches the convex hull
above 20 GPa but does not introduce a new minimum. This
differs from the hcp case where Mg3Zn becomes stable as
pressure increases. Therefore, we can conclude that Mg3Zn
with the fcc lattice symmetry has a limited stability when
subject to pressure.

Finally, let us consider a situation where the Mg-Zn binary
can be a mixture of the hcp and fcc lattices. We calculate the
mixing enthalpy and obtain the structural energy differences
as follows:

�Hhcp[MxZy] = Ehcp[MxZy] − yE fcc
Z − xEhcp

M , (7a)

�H fcc[MxZy] = E fcc[MxZy] − yEhcp
Z − xE fcc

M , (7b)

where y ≡ 1 − x and Ehcp,fcc
M,Z are the energies of Mg and

Zn on the hcp and fcc lattices. If we now add and subtract
yEhcp

Z and yE fcc
Z on the right-hand sides of the two equations,

respectively, we find

�Hhcp[MxZy] = Hhcp[MxZy] + y
{
Ehcp

Z − E fcc
Z

}
, (8a)

�H fcc[MxZy] = H fcc[MxZy] + y
{
E fcc

Z − Ehcp
Z

}
, (8b)

where Hhcp,fcc[MxZy] is the isostructural mixing enthalpy on
the hcp and fcc lattices, given by Eq. (4). Thus, the last
terms in the above equations provide the contribution of the
structural energy difference in the Mg-Zn alloys. We have
plotted this quantity for Zn, MgZn3, MgZn, Mg3Zn, and Mg
as a function of pressure in Fig. 6. The structural energy
difference is very small, indicating that Mg and Zn can acquire
the fcc phase with a small energy cost. When we increase
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FIG. 7. Electronic band structure of the MgZn with the hcp
symmetry (2 × 2 × 2 unit cell) along the high-symmetry lines. The
vertical lines exhibit the location of high-symmetry points. The
Fermi level is shifted to zero energy. (a) Ambient condition (P =
0 GPa); the normalized volume per atom is 18.3981 Å. (b) P =
120 GPa; the normalized volume per atom is 9.8069 Å.

the pressure the structural energy difference first increases
at 10 GPa and then decreases while remaining negative the
whole time, demonstrating that the hcp lattice remains always
energetically preferable. These findings can be confirmed by
comparing the free energy values in Tables I and II. We
note here that according to the experimental observations,
large enough precipitates develop hexagonal lattice symmetry
under ambient conditions [37,38,41–43].

B. Electronic band structure and density of states

DFT calculations include explicit information on the elec-
tronic structure for all configurations sampled in this study.
Here, we present the density of states and band structure for
the MgZn compound and hcp lattice symmetry, which is one
of the lowest-energy configurations located at the convex hull
(see Fig. 1). In order to find out how the applied pressure
can influence the electronic properties, we have systematically
scaled down the unit cell volume and plotted the associated
band structure, total density of states (TDOS), and projected
density of states (PDOS). Figure 7 illustrates the band struc-
ture along the high-symmetry lines. We have considered two
different normalized volumes 18.3981 Å and 9.8069 Å in
Figs. 7(a) and 7(b) corresponding to P = 0 and P = 120 GPa,
respectively. The band energies are shifted such that the zero
energy corresponds to the Fermi level. The effect of pressure
is evident around the Fermi level where there are fewer bands
at high pressure. Further, by selecting the symmetry points
	 and A as examples, one can see that there are bands
which have been pushed at lower energies in the valence
band.
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FIG. 8. Total and projected density of electronic states (TDOS/PDOS) of MgZn with the hcp symmetry as a function of energy. The Fermi
level is shifted to zero energy. TDOS is plotted for six values of volume per atom: 18.3981 Å3 (0 GPa), 15.5730 Å3 (10 GPa), 14.2759 Å3

(20 GPa), 13.0530 Å3 (30 GPa), 10.8206 Å3, and 9.8069 Å3 (120 GPa). (a) TDOS in a broad range of energies: from −15 eV to +10 eV.
(b), (c) Zoomed-in TDOS at the Fermi level and the main peak in the valence band. (d)–(g) PDOS corresponding to the two extreme volumes
18.3981 Å3 (0 GPa) and 9.8069 Å3 (120 GPa).

The corresponding TDOS and PDOS for the MgZn com-
pound are plotted in Fig. 8. TDOS [Fig. 8(a)] is shown
as a function of the normalized volume per atom (VPA),
corresponding to applied pressures between P = 0–120 GPa.
As seen, there is a prominent peak in the valence band
above −10 eV which responds to pressure by broadening and
shifting at lower energies [Fig. 8(c)]. Analysis of the projec-
tions onto atomic s, p, d orbitals [PDOS; Figs. 8(d)–8(g)]
reveals that this pressure-sensitive peak is associated with the
d electrons. Furthermore, TDOS at the Fermi level shows
clear suppression with decreasing VPA, in accordance with
the band structure in Fig. 7. Inspection of the corresponding
region in PDOS indicates that this reduction is mainly due to
reduction in the corresponding the s and p weights of Mg. In
general, PDOS shows broadening toward lower energies upon
applying pressure.

IV. CONCLUSIONS

We have employed a configurational cluster expansion
method, Markov chain Monte Carlo search algorithm, and
first-principles computations in the framework of DFT to
determine the stable phases of Mg-Zn and Al-Zn bi-
naries on both hexagonal-close-packed (hcp) and face-
centered-cubic (fcc) lattice symmetries. In order to find
the ground states, we have constructed several CE mod-

els, performed extensive searches in configuration space
to systematically predict configurations close to ground
state in the entire composition range, and carried out DFT
calculations (optimizing cell and geometry) for predicted
configurations. By tuning concentrations with the step of
1.5625% (64-atom system), we have found that MgZn3,
Mg19Zn45, MgZn, and Mg34Zn30, with the hcp symmetry,
and MgZn3 and MgZn, with the fcc symmetry, are the sta-
ble phases of the relaxed Mg-Zn binary, while Al-Zn has a
positive formation energy throughout the entire composition
range for both the hcp and fcc subject to zero/finite pressure.
Our findings are in a good agreement with experimental
observations where MgZn2, Mg4Zn7, and MgZn compounds
with the hexagonal symmetry are found to be the most stable
phases of large enough precipitates [37,38,41–43].

For the hcp case, the increase of external pressure to P ≈
10 GPa results in Mg19Zn45 becoming unstable and Mg34Zn30

being less favorable. At pressure values on the order of
20 GPa, a new compound, Mg3Zn, shows stability and be-
comes more stable at higher pressure values, while Mg34Zn30

turns unstable at pressure values larger than ≈30 GPa. For
the fcc convex hull, the Mg3Zn compound weakly touches the
convex hull at P � 20 GPa, whereas the other compounds re-
main stable throughout the entire pressure range 0–120 GPa.
By visualizing the atomic structures of the stable compounds,
we have found that the stable phases of the hcp alloys are
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TABLE I. Free energy per atom (eV) and volume per atom (Å3) for the Mg-Zn compositions in the hcp lattice.

Free energy: hcp

Pressure (GPa) Zn Mg15Zn49 MgZn3 Mg17Zn47 Mg19Zn45 Mg21Zn43 MgZn Mg34Zn30 Mg3Zn Mg61Zn3 Mg

0 −1.1913 −1.3473 −1.3586 −1.3667 −1.3838 −1.3984 −1.4853 −1.4997 −1.5507 −1.6028 −1.6155
10 −1.1461 −1.2931 −1.3066 −1.3111 −1.3239 −1.3369 −1.4189 −1.4285 −1.4666 −1.5002 −1.5167
20 −1.0632 −1.1933 −1.2051 −1.2078 −1.2151 −1.2247 −1.2941 −1.2983 −1.3137 −1.3192 −1.3297
30 −0.9632 −1.0738 −1.0845 −1.0850 −1.0901 −1.0964 −1.1500 −1.1439 −1.1387 −1.1154 −1.1184
40 −0.8539 −0.9444 −0.9541 −0.9532 −0.9550 −0.9581 −0.9962 −0.9800 −0.9553 −0.9024 −0.8991
70 −0.4976 −0.5333 −0.5403 −0.5346 −0.5271 −0.5214 −0.5130 −0.4935 −0.3902 −0.2562 −0.2338

100 −0.1254 −0.1112 −0.1143 −0.1057 −0.0906 −0.0768 −0.0273 0.0024 0.1702 0.3790 0.4164
120 0.1274 0.1695 0.1689 0.1793 0.1992 0.2179 0.2928 0.3296 0.5362 0.7901 0.8388

Volume: hcp

Pressure (GPa) Zn Mg15Zn49 MgZn3 Mg17Zn47 Mg19Zn45 Mg21Zn43 MgZn Mg34Zn30 Mg3Zn Mg61Zn3 Mg

0 15.1025 16.4484 16.2846 16.6239 16.9157 17.1406 17.9532 18.6384 20.1345 22.4132 22.9254
10 13.4443 14.4160 14.3613 14.5454 14.7575 14.9387 15.5188 16.0125 17.0235 18.5934 18.9490
20 12.5345 13.2108 13.2517 13.3135 13.4257 13.5469 14.1554 14.5631 15.3522 16.6138 16.9017
30 11.8872 12.4360 12.4712 12.5180 12.6144 12.7148 13.2239 13.5661 14.2218 15.2960 15.5360
40 11.3845 11.8403 11.8717 11.9114 11.9934 12.0783 12.5161 12.8124 13.3791 14.3178 14.5297
70 10.3258 10.6168 10.6393 10.6651 10.7195 10.7778 11.0751 11.1598 11.6948 12.3911 12.5478
100 9.6188 9.8141 9.8288 9.8492 9.8897 9.9324 10.1504 10.2173 10.6290 11.1834 11.3116
120 9.2505 9.4047 9.4157 9.4335 9.4671 9.5027 9.6834 9.7407 10.0954 10.5841 10.6959

TABLE II. Free energy per atom (eV) and volume per atom (Å3) for the Mg-Zn compositions in the fcc lattice.

Free energy: fcc

Pressure (GPa) Zn Mg6Zn58 MgZn3 MgZn Mg3Zn Mg

0 −1.1689 −1.2336 −1.3417 −1.4805 −1.5427 −1.6085
10 −1.1262 −1.1859 −1.2884 −1.4144 −1.4558 −1.5000
20 −1.0410 −1.0925 −1.1848 −1.2817 −1.2980 −1.3095
30 −0.9379 −0.9810 −1.0620 −1.1358 −1.1174 −1.0966
40 −0.8251 −0.8610 −0.9298 −0.9840 −0.9222 −0.8738
50 −0.7066 −0.7352 −0.7920 −0.8234 −0.7293 −0.6500
60 −0.5851 −0.6067 −0.6520 −0.6732 −0.5381 −0.4266
70 −0.4604 −0.4754 −0.5090 −0.5021 −0.3566 −0.2021
80 −0.3346 −0.3434 −0.3664 −0.3333 −0.1499 0.0187
90 −0.2073 −0.2107 −0.2228 −0.1718 0.0430 0.2375

100 −0.0819 −0.0778 −0.0790 −0.0073 0.2247 0.4537
120 0.1745 0.1880 0.2059 0.3153 0.5882 0.8770

Volume: fcc

Pressure (GPa) Zn Mg6Zn58 MgZn3 MgZn Mg3Zn Mg

0 15.0892 15.6145 16.4053 18.0280 20.5353 23.0647
10 13.5633 13.9217 14.4742 15.5968 17.3198 19.0178
20 12.6312 12.9019 13.3414 14.1572 15.5902 16.9342
30 11.9649 12.1799 12.5467 13.2325 14.4226 15.5586
40 11.4460 11.6277 11.9385 12.5335 13.4950 14.5354
50 11.0239 11.1780 11.4474 11.9608 12.7777 13.7380
60 10.6699 10.8030 11.0391 11.5233 12.2199 13.0870
70 10.3625 10.4792 10.6865 11.1031 11.7821 12.5341
80 10.0940 10.1971 10.3821 10.7341 11.3736 12.0630
90 9.8541 9.9471 10.1114 10.4269 10.9933 11.6510
100 9.6427 9.7231 9.8691 10.1523 10.6538 11.2869
120 9.2688 9.3355 9.4537 9.6819 10.1333 10.6698
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TABLE III. Calculated bulk moduli of the Mg-Zn alloys.

B0: hcp

Pressure (GPa) Zn Mg15Zn49 MgZn3 Mg17Zn47 Mg19Zn45 Mg21Zn43 MgZn Mg34Zn30 Mg3Zn Mg61Zn3 Mg

0 66.6732 54.6725 60.6312 53.8911 51.0433 50.0149 50.8842 48.6929 42.8050 37.4733 36.5245

B0: fcc

Pressure (GPa) Zn Mg6Zn58 MgZn3 MgZn Mg3Zn Mg

0 72.9948 66.3637 60.5714 50.9126 41.4331 35.8843

B0: Experiment

Pressure (GPa) Zn MgZn3 MgZn Mg3Zn Mg

0 70.0 45.0

mixtures of Mg and Zn. Similarly, the fcc alloys with a
high concentration of Zn are perfect mixtures of Mg and Zn,
whereas in the MgZn and Mg-rich compounds the atomic
configurations exhibit layered elemental ordering. Analysis
of the bulk modulus, volume reduction, and free energy of
these compounds under finite pressure shows that Zn-rich
compositions are more stable and have greater hardness than
those with a high concentration of Mg.

Our results suggest that by applying an appropriate ex-
ternal pressure into Al matrices containing Mg and Zn so-
lutes, one may be able to control the type of the early-stage
precipitates—being either Zn-rich or Mg-rich. As the Zn-rich
solid clusters have larger bulk modulus than those of the Mg-
rich ones, the external pressure at early stage clustering can
control the overall hardness of the entire matrix and improve
its resistance against external deformation.

FIG. 9. The high-symmetry hcp and fcc compositions of the Mg-Zn binary shown in the convex hull plots in the main text. The unit cells
are replicated 5 × 5 × 5 times.
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APPENDIX: FIRST-PRINCIPLES DATA AND EXTENDED
UNIT CELLS

Here, we present the numerical results from DFT calcula-
tions for the Mg-Zn compounds discussed in the main text.
Table I contains the normalized free energy of the Mg-Zn
compounds with the hcp lattice symmetry. Table II presents
the normalized free energy of the Mg-Zn compunds with
the fcc lattice symmetry, and Table III summarizes the bulk
moduli of several compositions on both the hcp and fcc
lattices. We have also included the experimentally measured
values for the bulk moduli.

To illustrate how the Mg and Zn elements are arranged in
the high-symmetry compositions found in Figs. 1 and 2, we
have expanded the unit cells of MgZn3, MgZn, and Mg3Zn up
to 5 × 5 × 5 cells. We have rotated the cells for visualization
purposes as the coordinate-axis arrows indicate in Fig. 9.

Also, Fig. 10 exhibits the DFT-calculated free energies
of predicted unique structures for the Al-Zn alloys on both
fcc and hcp lattices. The formation energy counterparts are
presented in Fig. 3. In Fig. 10(a), the free energy of the Al-Zn
alloys with the fcc lattice symmetry is plotted as a function
of Mg concentration. The external pressure is set to zero.
Figure 10(b) presents a similar study except now the lattice
is changed to the hcp and the results of 40 GPa and 80 GPa
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FIG. 10. Free energy of unique configurations of the Al-Zn
binary as a function of Al concentration. (a) The fcc lattice with
163 unique configurations (3 × 3 × 3 and 4 × 4 × 4 structures). The
external pressure is set to zero. (b) The hcp lattice and 64 unique
configurations under external pressure: P = 0 GPa (circles), 40 GPa
(triangles), 80 GPa (asterisks).

pressure values in addition to 0 GPa are shown. The results
show that the application of an isotropic static pressure to the
Al-Zn alloys decreases the free energy.
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