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Abstract
The advent of artificial intelligence and deep learning has provided sophisticated functionality for sensor fusion and
object detection and classification which have accelerated the development of highly automated and autonomous
ships as well as decision support systems for maritime navigation. It is, however, challenging to assess how the
implementation of these systems affects the safety of ship operation. We propose to utilize marine training simulators
to conduct controlled, repeated experiments allowing us to compare and asses how functionality for autonomous
navigation and decision support affects navigation performance and safety. However, although marine training
simulators are realistic to human navigators, it cannot be assumed that the simulators are sufficiently realistic for
testing the object detection and classification functionality, and hence this functionality cannot be directly implemented
in the simulators. We propose to overcome this challenge by utilizing Cycle-Consistent Adversarial Networks (Cycle-
GANs) to transform the simulator data before object detection and classification is performed. Once object detection
and classification are completed, the result is transferred back to the simulator environment. Based on this result,
decision support functionality with realistic accuracy and robustness can be presented and autonomous ships can
make decisions and navigate in the simulator environment.
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Introduction

The rapid development of new sensors and software,
utilizing artificial intelligence and deep learning, facilitates
the optimization and automation of a range of tasks in the
maritime industry, including navigation. Several research
and development projects are proposed and developed
targeting concepts at different degrees of automation
including ships with automated processes and decision
support, remotely controlled ships with or without seafarers
on board, and fully autonomous ships where the operating
system of the ship is able to make decisions and determine
actions by itself.1

The development of highly automated and autonomous
ships and sophisticated decision support systems is
motivated by the promise of benefits such as optimized
operation, reduced crew costs and increased safety. It is,
however, challenging to assess how the implementation of
these systems affects the safety of ship operations. Although
a large number of accidents are caused by human errors,
removing humans will not automatically increase the safety
of ship operations. This depends on the quality of the
functionality and how it is used. Misunderstandings, wrong
use of the functionality, malfunctioning user-interface, as
well as bad or wrong decision proposals can have severe
consequences, even if the functionality is used purely as
decision support to a human navigator.2 This is partly due
to confirmation bias which can easily arise in complex
navigation situations.3 Over-trust in the technology is also
identified as a challenge, causing humans not to monitor the

situation carefully enough to be able to safely take control
when needed.4

Obviously, the safety also depends on the accuracy
and robustness of the system, and it is therefore utmost
important that the functionality is thoroughly tested and
that its capabilities and limitations are well documented.
Unfortunately, verifying and testing this functionality,
which is based on algorithms and methods from artificial
intelligence and inductive learning, is inherently difficult.5

To demonstrate and prove the autonomous system’s
applicability and performance, controlled experiments
should be executed in a simulator,6,7 where experiments
with identical initial conditions can be conducted repeatedly,
allowing us to compare and analyze the performance of
conventional ships and ships with different degrees of
automation; such as human navigator supported by enhanced
situational awareness or suggested decisions as well as
fully autonomous unmanned navigation (Fig. 1). Note,
however, that even when the initial conditions are identical,
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Figure 1. A navigation scenario can be repeated in the
simulator to assess and compare how the introduction of
autonomous functionality affects safety.

quantifying and assessing the performance and safety is
indeed challenging.8

The use of marine simulators are well-established
in seafarer training,7 recognized by the International
Convention on Standards of Training, Certification and
Watchkeeping of Seafarers (STCW) of the International
Maritime Organization (IMO) to demonstrate competence
(assessment) and continued proficiency.9 Maritime
simulators are offered for various parts of seafarer training
including full mission and multi-task bridge navigation
simulators which are the focus of this paper. Such simulators
are capable of simulating total shipboard bridge operations,9

and includes instrumentation that ”looks, feels and has
functions like the real equipment used on board vessels [...]
including necessary controls and functions for training ship
handling, navigation, and communication”,10 and screens or
3D-views to visualize the surrounding world.11

A simulator used for mandatory training shall be approved
by the relevant maritime administration, ensuring that
the simulator includes an appropriate level of physical
and behavioral realism.9 But although maritime bridge
simulators are realistic to human navigators, it cannot be
assumed that the simulators are sufficiently realistic for
testing the object detection and classification functionality
of an autonomous system. Hence, we propose a novel
approach utilizing Cycle-Consistent Adversarial Networks
(Cycle-GANs) to transfer the simulator data to a real-world-
like environment before autonomous functionality such as
object detection and classification is performed. The inverse
mapping is utilized to transfer the result of the autonomous
functionality, such as for example bounding boxes, back
to the simulator environment. The information which is
transferred back to the simulator environment can now be
utilized by human navigators with access to decision support
functionality or by fully autonomous vehicles.

In the literature, the use of Cycle-Consistent Adversarial
Networks related to autonomous ship navigation is limited to
the development and improvement of detection methods.12

We believe this paper is the first to propose and explain
how this powerful image translation technique can be utilized
to facilitate fair comparison and assessment of autonomous
functionality in maritime bridge simulators.

In the following, we first discuss challenges to
assurance with emphasis on machine learning based
functionality. We also briefly describe a selection of
currently available recommended practices, standards
and assurance frameworks. Following this, we discuss
challenges related to assessing a system’s situational
awareness, and based on this, we argue that the assessment
should be focused directly on the navigation tasks. A short
introduction to Cycle-Consistent Adversarial Networks is

provided next, followed by a detailed description of our
proposed framework for testing autonomous navigation
functionality in bridge simulators. Finally, future work is
outlined and concluding remarks are offered.

Challenges to Assurance of Machine
Learning based Functionality
Assuring the safety of functionality for autonomous
navigation and decision support is by many identified as one
of the key barriers to large scale implementation. Koopman
et al.13 identifies a set of topics that must be specifically
addressed for highly automated vehicles, including defining
operational domain such as various weather conditions,
machine learning faults, external operational faults such as
other vehicles violating rules, high residual unknowns such
as requirements gaps, and lack of human oversight and
malfunctioning human machine interface.

Autonomous navigation systems, as currently envisioned,
rely on machine learning, including deep learning, for
fundamental functionality. Salay and Czarnecki14 argue
that the extensive use of machine learning approaches is
motivated by the fact that functionality like perception
is difficult to specify. Instead of being programmed
from a specification, software components are therefore
implemented by training from examples. The training (and
test) dataset enumerates a set of input values and correct
system outputs, and this functions as a proxy for ”something
akin to requirements”.15,16 Advances in machine learning
have proven extremely successful in many tasks where a
clear specification is lacking, however for assurance and
validation, the lack of specification is still a fundamental
challenge.

Currently Available Guidelines, Standards and
Recommendations
Wood et al.17 argue that the safety standards available
within the automotive industry and any other industry have
been defined without explicitly considering the specifics
of machine learning algorithms and data-driven models.
These models represent technology that are ”inherently
incompatible with legacy safety standards approaches”.13,16

The functional reasoning of such black-box models are
challenging or even impossible to understand and predict,18

and an inductive learning approach is often followed, making
the verification inherently difficult.5

In recent years, the maritime industry has invested much
research effort in developing methodologies and standards
for testing, verification and validation of autonomous
functionality and its use.19 Class guidelines are published,
offering process and technology guidance to the design
and arrangements of systems supporting autonomous and
remote operation of vessels, with the objective to ensure
safe implementation of novel technologies.20,21 The IMO’s
Interim guideline for MASS trials22 provides a set of
general principles and main objectives aiming to assist
relevant authorities and stakeholders to ensure that trails are
conducted safely, securely and with due regard for protection
of the environment.

A range of standards, guidelines and methodologies for
measuring or demonstrating safety of autonomous vehicles
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are proposed also in other industries, including automotive
which is in a more advanced state than maritime.19 These
standards, guidelines and methodologies should be adopted
and utilized by the maritime industry when applicable,
and, when necessary, be modified to fit the maritime
domain. The automotive industry might be ahead of the
maritime industry, but further research and development
are needed also in this domain. Waymo, formerly known
as Google Self-Driving Car Project, argue that currently
there exists no ”definitive, widely accepted, empirical
methodology for answering the question often asked with
regard to AVs: How safe is safe enough?”4 Waymo applies
industry standards where appropriate, but relies on its own
approach aiming to incorporating ”safety at every system
level and every development stage, from design to testing
and validation.”4,23 Extensive testing is conducted through
driving in simulation, on closed courses, and on public
roads. Additionally, national crash-data and driving studies
are utilized to provide insights into potential hazards.

ISO Standard 26262:201824 Road vehicles – Functional
safety describes a framework for functional safety to
assist the development of safety-related electrical or
electronic systems, addressing possible hazards caused by
malfunctioning behavior of safety-related systems. However,
traditional requirements-based verification, such as the V-
model referred to in the Standard, typically assumes that
the requirements of a component are completely specified
and that ”each refinement can be verified with respect to its
specification”.14 But due to the lack of specification of tasks
such as perception, the V-model is not applicable.15

ISO/PAS 21448:2019(E)25 Road vehicles — Safety of
the intended functionality is designed to complement ISO
26262,24 and provides a list of recommended measures in

• the design phase (such as requirement on sensor
performance),

• the verification phase (such as technical reviews,
test cases with high coverage of relevant scenarios,
injection of potential triggering events, in the loop
testing), and

• the validation phase (such as long term vehicle test,
simulations).

Furthermore, Appendix D of the standard proposes
practices for the verification and validation of automotive
perception systems, listing considerations regarding data
collection, variation in drivers and driving habits and testing,
including dedicated testing in extreme conditions, production
tolerance testing and testing of the interaction between
systems and on multiple versions.

ANSI/UL 4600 Standard for Safety for the Evaluation of
Autonomous Products26 is a goal-based, technology-agnostic
safety standard approach based on an overarching safety
case.13 A safety case can be defined as: “A documented body
of evidence that provides a convincing and valid argument
that a system is adequately safe for a given application in a
given environment.”27 An implementation of a safety case
includes claims, evidence and a set of safety arguments
linking the claims to the evidence. The lack of specification
is a challenge as each claim needs a stringent specification.
A claim regarding detection of kayaks should, for example,
include detection distance capabilities, detection rates, the

Figure 2. Illustration of the safe and unsafe regions for a ship
navigating with and without functionality for autonomous
navigation and decision support.

kayaks size, color and shape, external conditions such as
weather, waves and lighting, etc.2 Similarly, the International
Regulations for Preventing Collisions at Sea (COLREG)
do not provide sufficient details to qualitatively assess
autonomous collision avoidance maneuvers.

Assessment
Another important challenge is determining the level of
safety required for autonomous navigation functionality,
answering the question “How safe is safe enough for
AVs?”4 It is often claimed that the approval of autonomous
navigation functionality used in the maritime industry,
including decision support systems and functionality to
enhance situational awareness, can be based on the
equivalence principle: the use of the novel functionality must
make the operation safer or at least as safe as conventional
operation.2 However Ringbom28 argue that this principle, as
described in SOLAS req. I/5, ”has mainly been limited to
technical arrangements”, and ”neither the COLREGs nor the
watchkeeping parts of the STCW [International Convention
on Standards of Training, Certification and Watchkeeping
for Seafarers] include this option”. Furthermore, Ringbom
claims that the ”existing regulatory framework offers no
guidance at all” regarding the automated processing of the
observations made or data transmitted. We do not dispute
this interpretation. It should, however, be noted that the
IMO’s Interime Guidelines on MASS trials22 also refer
to equivalent safety in their argumentation: ”Trials should
be conducted in a manner that provides at least the same
degree of safety, security and protection of the environment
as provided by the relevant instruments”. Furthermore, we
do believe, regardless of how current rules and regulations
are interpreted, that the safety level of future autonomous
navigation functions will have to be equivalent to or surpass
the safety level of current solutions. Measuring and testing
equivalence is challenging, but deciding concrete acceptance
criteria without current solutions as a reference is perhaps
even more difficult.

When different functionality and solutions are compared,
it is important to note that some scenarios, both in real-
world and in simulators, are likely to favor the use
of autonomous navigation functionality, while in other
scenarios the performance will decrease. It is important
that the test design takes this into consideration, ensuring
a fair and balanced exploration of the safe and unsafe
regions. We believe relevant risk trade-offs should be
permitted, following the tolerability principle ”globally at
least as good”.25 This means that the implementation of
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Figure 3. Illustration of a decision support system with object
detection and classification. Photo: Orca AI, all right reserved.

functionality for autonomy can be approved even though
the implementation contributes to decreased performance
and safety in some scenarios, if this is compensated by an
increase in performance and safety in other scenarios (See
Figure 2).

Assessing Situational Awareness
Although various tools and techniques are developed to
assess the situational awareness of humans,29–31 lack of
an objective ground truth and determining the relevance
of different objects are key challenges when assessing
situational awareness. As an illustration, we consider a
complex scenario with several ships and boats, some at
berth and some sailing, small moving objects and aids to
navigation. A snapshot of a decision support system with
object detection and classification is shown in Figure 3.
Investigation of this snapshot indicates that the system has
an impressive capability in detecting and classifying both
large ships and smaller objects, although some ships and
boats are undetected. More importantly, however, the bridge
pillars are also undetected. How should this be incorporated
in the total assessment? Some would argue that the bridge
pillars are easily detected by a human navigator, and hence
for a decision support system it is not important that this
is detected by the system. Others would argue that the
bridge pillars are highly relevant information, and claim
that systems which fails to communicate such information
contribute to increase the risk of collisions, and should not
be implemented. This example illustrates that an assessment
of functionality for autonomous navigation and decision
support systems has to consider the relevance and importance
of the different objects. But as the relevance of an object
depends on the navigation task, it is difficult to assess the
system’s situational awareness in isolation.

Assessing Navigation Performance
To avoid some the challenges associated with assessing
situational awareness, we rather concentrate on assessing
the navigation tasks directly. Note that adequate situational
awareness is a prerequisite for safe navigation. Assessment
of the navigation can be performed by subjective domain
experts or by automated assessment systems, such as the
prototype presented by Øvergård et al.32 whose evaluations
strongly correlates with evaluations performed by subject
matter experts. Note however, that safe navigation is also
a task which lacks a clear specification, and the STCW

Code neither provides sufficient detail for all the necessary
competencies for safe navigation nor the methods for
assessing them.33

Simulator-based Testing
To demonstrate the capabilities and performance of
autonomous functionality, we can execute controlled
experiments where scenarios are replicated and the
navigation performance and safety of a ship which
is controlled by or assisted by autonomous navigation
functionality is assessed and compared with the safety of
a conventionally operated ship. To be able to control the
experiment and make sure that the scenarios can be repeated,
the experiment should be performed in a simulator.6 It is fair
to assume that these simulators replicate the real-world with
adequate detail for a human navigator, but this assumption
is not necessarily valid for the machine learning methods.
As mentioned before, the machine learning methods used for
image detection and classification, usually neural networks,
can be considered ”black box” models. We can observe the
behavior of these models, but we don’t know exactly how
they work or what kind of features they find in an image.
Is it the shape, the color, the derivative in some direction
or some other statistical analysis mixed together? Various
methods are developed to explain and interpret the results of
machine learning methods.34,35 Nevertheless, for advanced
methods such as neural networks, which comprise myriads of
interconnected functions, it is challenging or even impossible
to predict its behavior even in simple and trivial cases.
Since simulators typically simplify the real-world scenarios
with straight lines, sharp angles, simple shapes and uniform
colors, without the noise typically present in real-world
sensor data, we cannot know how this affects the result of
the machine learning methods. The results also depend on
whether the initial training was done on real or synthetic
images.

Implementing Camera-Based Object
Detection and Classification in the Simulator

Our goal is to understand how well an autonomous
system will function in the real-world, but we aim to
test this in a simulator. Due to the above-mentioned
difference between the real-world data and the data from the
simulator, applying functionality for autonomous navigation
and decision support in the simulator is not straight forward.
We propose to overcome this challenge by utilizing a Cycle-
Consistent Adversarial Network to transform the simulator
data from a synthetic dataset into something that is real-
world like before the autonomous functionality is applied.

In the following, we briefly define image-to-image
translation problems and provide a brief introduction to
Cycle-Consistent Adversarial Networks and explain how this
approach can be used for translations between real-world and
simulator environments. Our focus in this paper is on image-
to-image translations. The presented approach is, however,
not necessarily limited to image and video data. For future
studies we suggest investigating if, and to what extent, the
proposed approach can apply to other sensor data, including
radar.
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Figure 4. Paired training data (left) consists of training
examples where the correspondence between xi and yi exists.
Cycle-Consistent Adversarial Network instead consider
unpaired training data (right). Figure and description from Zhu
et al. 36

Image-to-Image Translation
An image-to-image translation method aims to find a
mapping G : X → Y between an input space of images
X and an output space Y such that the set of images
G(X) is indistinguishable from the set of images Y . Many
such translation methods require a training set of aligned
image pairs (xi, yi), that is every output image yi ∈ Y
in the training data set corresponds to an input image
xi ∈ X (see Figure 4 (left)). Successful methods for this
application includes for example Conditional Adversarial
Networks as proposed by Isola et al.37 However, in many
applications (including translation between real-world and
simulator environment) paired datasets are often unavailable.
This motivates the development of methods which allows
translation of images in the absence of paired examples
(see Figure 4 (right)). Approaches which utilize unpaired
images do not typically require less images than approaches
which require paired images, but the effort of collecting
samples is reduced, since the samples do not need to
correspond. In our case, collecting images from a simulator
environment and from a real-world environment is cheap and
easy, and requires almost no work. Collecting corresponding
images can be very challenging, at best expensive and time
consuming. The total number of images required to achieve
desired performance will always depend on the set of images
available. Images which are very similar, almost duplicates,
will for example not contribute much.

Cycle-Consistent Adversarial Network
Cycle-Consistent Adversarial Networks are successfully
applied for various image-to-image translation problems.
This includes mappings between photos and paintings,
aerial photos and maps, and between different objects
such as horses and zebras or apple and pears.36 Cycle-
Consistent Adversarial Networks are for example
also used for de-noising of networks for multi-phase
coronary CT angiography,38 augmenting data and improve
generalizability in CT segmentation tasks,39 creating
realistic snow-covered scenes of multispectral Sentinel-2
imagery,40 and unsupervised adaptation from synthetic
(computer game) to real-world driving domains.41 De

(a) Image from a simulator

(b) Image generated based on (a)

(c) Real-world image of the ship model

Figure 5. Shows how Cycle-Consistent Adversarial Networks
can be applied on an image from a simulator (a) to generate a
new image (b), and compares this with a real-world image of
the physical ship model (c). Figures from Bekkeheien. 12

Curtó and Duvall42 successfully utilize Cycle-Consistent
Adversarial Networks in the context of space science
and planetary exploration, presenting a framework
for neural style transfer based on rendered simulator
images of the Moon. Simulator data are used to train
and test localization algorithms, and to test software
design. Similarily, Bekkeheien12 utilize Cycle-Consistent
Adversarial Networks to improve the quality of data
acquired by a marine simulator, and use this data to train
a detection algorithm (see Figure 5). It is claimed that this
approach improves the detection algorithms in the marine
environment.

A Cycle-Consistent Adversarial Networks (Cycle-GAN),
as proposed by Zhu et al.,36 aims to learn an image-to-image
translation mapping G : X → Y between the input space of
images X and the output space Y in the absence of paired
examples. The aim for the translation mapping G is that
images G(X) are indistinguishable from the set of images
Y . To accomplish this, we utilize Generative Adversarial
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Networks (GANs) as proposed by Goodfellow,43 which
have shown strong performance in image generation.43–49 A
discriminator DY is defined, which is trained to distinguish
between real images y ∈ Y and translated images G(x) for
x ∈ X . Simultaneously, the generative model, G, is trained
to create realistic images such that the discriminator fails to
distinguish between real and translated images. This gives
the following objective

LGAN (G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+ Ex∼pdata(x)[log(1−DY (G(x)))].

(1)

The discriminative model, DY , is trained to maximize the
probability of assigning the correct label to real samples y
and translated samples G(x), simultaneously as G is trained
to create images which minimize the probability of DY

assigning the correct label. We think of G and DY as players
in a two-player minimax game, that is

min
G

max
DY

LGAN (G,DY , X, Y ). (2)

Because the mapping G is highly under-constrained, G
is coupled with an inverse mapping F : Y → X which is
also trained simultaneously as a discriminative model, DX ,
which is trained to maximize the probability of assigning
the correct label to real samples x and translated samples
F (y). Simultaneously, F is trained to create images which
minimize the probability of DX assigning the correct label,
that is

min
F

max
DX

LGAN (F,DX , Y,X). (3)

Additionaly, a cycle consistency loss function , defined as

Lcyc(G,F ) = Ex∼pdata(x)[‖F (G(x))− x‖1]
+ Ey∼pdata(y)[‖G(F (y))− y‖1],

(4)

is included in the optimization routine to ensure consistency
when an image is translated from one domain to the other
and back again. This means that when an image x ∈ X is
translated from X to Y , (G(x)), and then translated back to
X again (F (G(x))), the result is approximately equal to the
original image, that is

F (G(x)) ≈ x for x ∈ X, (5)

and vice versa (G(F (y)) ≈ y). For details we refer to Zhu et
al.36

Mappings Between Real-World and Simulator
Environment
We aim to assess the navigation performance in a simulator
environment, but since we cannot apply the autonomous
functionality directly in the simulator environment, we
utilize Cycle-Consistent Adversarial Networks to transform
the simulator data to a real-world environment before the
autonomous functionality is applied. We let R be real-world
sensor data environment, and let S be sensor data in a
simulator environment, and let the mappings A and B be
translations between real-world sensor data and the simulator
environment such that

Figure 6. The model contains two mapping functions
G : X → Y and F : Y → X, and associated adversarial
discriminative models DY and DX . DY encourages G to
translate X into outputs indistinguishable from domain Y , and
vice versa for DX and F . Figure and explanation derived from
Zhu et al. 36

A : R→ S

B : S → R
(6)

We let these translations be based on Cycle-Consistent
Adversarial Networks which learn the mapping between the
real-world and the simulator environment from a training
dataset of unpaired images. We define a discriminator,
DR, which is trained to distinguish whether a sample is a
real-world image or if it is translated from the simulator
environment. Simultaneously, B is trained to create images
which are real-world like, and by this, minimizing the
probability of DR making the correct assignment. Similarly,
a discriminator DS is defined and trained to distinguish
simulator images and images translated from real-world
images. This gives the adversarial losses

min
B

max
DR

LGAN (B,DR, S,R) (7)

and
min
A

max
DS

LGAN (A,DS , R, S). (8)

Additionally, a cycle consistency loss, Lcyc(G,F ) is
introduced to push B(A(r)) ≈ r for real-world scenarios
r ∈ R.

A set of scenarios should be collected and used to test
that the performance of the autonomous functionality, when
applied to the translated simulator data, is similar to the
performance of the autonomous functionality if applied
to real-world data. We define a function z which takes
an image as input, and outputs autonomous functionality
(for example information regarding the ship’s situational
awareness such as bounding boxes, segmentation, speed and
distance estimates, and suggested maneuvers, etc.). It should
be demonstrated that when a scenario r ∈ R is translated
to the simulator environment (A(r)), and then back again
(B(A(r))), applying autonomous functionality to this output
gives approximately the same result as if it was applied on
the original real-world scenario. As we are only interested
in the performance of this autonomous functionality, in our
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application, it is sufficient that

z(B(A(r))) ≈ z(r) for scenarios r ∈ R (9)

and

z(A(B(s))) ≈ z(s) for scenarios s ∈ S, (10)

and it is not necessary to require B(A(r)) ≈ r and
A(B(s)) ≈ s. We include this explicitly in the training by
modifying the penalty term of the cycle consistency loss
function, such that the cycle consistency loss becomes

Lcyc(A,B) = Er∼pdata(r)[‖z(B(A(r)))− z(r)‖1]
+ Es∼pdata(s)[‖z(A(B(s)))− z(s)‖1].

(11)

Furthermore, information from the real-world scenarios
r ∈ R, including the ship’s location, location of other
vessels, shoreline, weather, waves, etc. should be used
to reconstruct simulator scenarios s ∈ S, such that it can
be demonstrated that if this scenario is translated from
the simulator environment to real-world, the autonomous
functionality returns similar output as if it was applied on
the original real-world scenario, that is

z(B(s)) ≈ z(r). (12)

Quantifying the success of a style transfer is always
challenging. If an image of a horse is transferred to an image
of a zebra,36 it is difficult to assess if and to what degree the
transfer was successful. In our case, we are only interested in
the autonomous functionality z and do not require B(s) ≈ r.
Still, demonstrating that Eq. (12) holds is non-trivial, and a
set of corresponding scenarios from the simulator and the
real-world environment is needed. Fortunately, if we are
able to produce such corresponding scenarios, we do not
need to evaluate the full image B(s), but can focus our
evaluation on the autonomous functionality z (such as for
example bounding boxes) which often makes the evaluation
less complex.

Future Work
Previous successful applications of Cycle-Consistent
Adversarial Networks, in the maritime domain as well
as other domains, motivate the approach proposed in this
paper. Nevertheless, extensive testing is needed to validate
the applicability of our proposed test approach, which is
obviously dependent on the quality of the simulator in
addition to the translation mappings.

In this paper our focus is on Cycle-Consistent Adversarial
Networks, but other related methods should also be explored.
For example, Liu et al.50 propose an unsupervised image-to-
image translation framework based on Coupled Generative
Adversarial Networks to translate street scene images for
example between winter and summer, night and day and
wet and dry. It is also shown how this can be utilized for
translations between simulators and real-world images.
Other examples include the Multimodal Unsupervised
Image-to-image Translation (MUNIT) framework as
proposed by Huang et al.51, and the Diverse Image-to-Image
Translation via Disentangled Representations (DRIT) as

proposed by Lee et al.52 The above-mentioned methods are
two-sided, meaning that when a mapping G which translates
samples from a domain X to a domain Y is learned, the
inverse mapping F from Y to X is learned simultaneously.
Notable one-sided methods, where the translation is learned
without learning its inverse, include SelfDistance and
DistanceGAN53, and GcGAN54.

Whenever paired data are available, it can be worthwhile
to explore models which are capable of utilizing both
paired and unpaired training data simultaneously, such as
for example the general-purpose image-to-image translation
model proposed by Tripathy.55 The study demonstrates how
the proposed method obtains qualitatively and quantitatively
improved results compared to two baselines, outperforming
the baselines also in the case of purely paired and unpaired
training data.

Conclusion
The development of functionality for autonomous navigation
and decision support systems in the maritime domain is
motivated by the promise of increased safety. However,
assessing and quantifying the safety level is challenging.

In this paper we propose a simulator-based test framework
designed to assess and compare how functionality for
autonomous navigation and decision support contributes
to increase navigation performance and safety. Since we
cannot directly apply the autonomous functionality to the
images/video generated by the simulator, we propose to
first translate the data using Cycle-Consistent Adversarial
Networks. Such networks are designed to translate an image
from a source domain to a target domain in the absence
of paired examples, such that the translated image appears
more realistic. A critical assumption in the proposed test
framework is that the performance of the autonomous
functionality, when applied to the translated simulator
data, is similar to the performance of the autonomous
functionality if applied to real-world data. This assumption
is dependent both on the quality of the simulator and
the mappings between the real-world and the simulator
environment. Hence, demonstrating that this assumption
holds should always be a natural and necessary first step
towards implementing the proposed test approach.

With the procedure proposed in this paper, automatic
object detection and classification can be performed
realistically in the simulator, making it possible to conduct
controlled, repeated experiments with identical initial
conditions. This allows us to compare the navigation of
autonomous ships at various degrees of automation with the
navigation of conventional navigation. Furthermore, various
assessment methods, both manual and automated, can be
utilized to quantify and assess the navigation performance of
the different ships, and ultimately, quantify and measure how
the use of autonomous functionality affects maritime safety.
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44. Curtó JD, Zarza IC, De La Torre F et al. High-
resolution deep convolutional generative adversarial networks.
arXiv:171106491 2017; .

45. Antoniou A, Storkey A and Edwards H. Data augmentation
generative adversarial networks. arXiv:171104340 2017; .
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