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Abstract

The advent of artificial intelligence and deep learning has provided sophisticated functionality for sensor fusion and
object detection and classification which have accelerated the development of highly automated and autonomous
ships as well as decision support systems for maritime navigation. It is, however, challenging to assess how the
implementation of these systems affects the safety of ship operation. We propose to utilize marine training simulators
to conduct controlled, repeated experiments allowing us to compare and asses how functionality for autonomous
navigation and decision support affects navigation performance and safety. However, although marine training
simulators are realistic to human navigators, it cannot be assumed that the simulators are sufficiently realistic for
testing the object detection and classification functionality, and hence this functionality cannot be directly implemented
in the simulators. We propose to overcome this challenge by utilizing Cycle-Consistent Adversarial Networks (Cycle-
GANSs) to transform the simulator data before object detection and classification is performed. Once object detection
and classification are completed, the result is transferred back to the simulator environment. Based on this result,
decision support functionality with realistic accuracy and robustness can be presented and autonomous ships can
make decisions and navigate in the simulator environment.

Keywords
Simulator-Based Assessment, Autonomous Ships, MASS, Cycle-GAN, Validation and Verification, Safety Assessment,
Marine Bridge Training Simulators

Introduction situation carefully enough to be able to safely take control
when needed.

Obviously, the safety also depends on the accuracy
and robustness of the system, and it is therefore utmost
important that the functionality is thoroughly tested and
that its capabilities and limitations are well documented.
Unfortunately, verifying and testing this functionality,
which is based on algorithms and methods from artificial
intelligence and inductive learning, is inherently difficult.’

To demonstrate and prove the autonomous system’s
applicability and performance, controlled experiments
should be executed in a simulator,®’ where experiments
with identical initial conditions can be conducted repeatedly,
allowing us to compare and analyze the performance of
conventional ships and ships with different degrees of
automation; such as human navigator supported by enhanced
situational awareness or suggested decisions as well as
fully autonomous unmanned navigation (Fig. 1). Note,
however, that even when the initial conditions are identical,

The rapid development of new sensors and software,
utilizing artificial intelligence and deep learning, facilitates
the optimization and automation of a range of tasks in the
maritime industry, including navigation. Several research
and development projects are proposed and developed
targeting concepts at different degrees of automation
including ships with automated processes and decision
support, remotely controlled ships with or without seafarers
on board, and fully autonomous ships where the operating
system of the ship is able to make decisions and determine
actions by itself. !

The development of highly automated and autonomous
ships and sophisticated decision support systems is
motivated by the promise of benefits such as optimized
operation, reduced crew costs and increased safety. It is,
however, challenging to assess how the implementation of
these systems affects the safety of ship operations. Although
a large number of accidents are caused by human errors,
removing humans will not automatically increase the safety
of ship operations. This depends on the quality of the
functionality and how it is used. Misunderstandings, wrong Department of Science and Mathematics, Volda University College
use of the functionality, malfunctioning user-interface, as 2 Group Research & Development, DNV
well as bad or wrong decision proposals can have severe 2 Department of ICT and Natural Sciences, NTNU — Norwegian
consequences, even if the functionality is used purely as University of Science and Technology
decision support t(? a hurpan navigato.r.2 This is' partly due Corresponding author:
to confirmation bias which can easily arise in complex  angreas Brandszeter,
navigation situations.® Over-trust in the technology is also  Volda University College, PO. Box 500, 6101 Volda, Norway
identified as a challenge, causing humans not to monitor the  Email: andreas.brandsaeter@hivolda.no
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Figure 1. A navigation scenario can be repeated in the
simulator to assess and compare how the introduction of
autonomous functionality affects safety.

quantifying and assessing the performance and safety is
indeed challenging.®

The use of marine simulators are well-established
in seafarer training,” recognized by the International
Convention on Standards of Training, Certification and
Watchkeeping of Seafarers (STCW) of the International
Maritime Organization (IMO) to demonstrate competence
(assessment) and continued proficiency.” Maritime
simulators are offered for various parts of seafarer training
including full mission and multi-task bridge navigation
simulators which are the focus of this paper. Such simulators
are capable of simulating total shipboard bridge operations,’
and includes instrumentation that “looks, feels and has
functions like the real equipment used on board vessels [...]
including necessary controls and functions for training ship
handling, navigation, and communication”, '’ and screens or
3D-views to visualize the surrounding world. !

A simulator used for mandatory training shall be approved
by the relevant maritime administration, ensuring that
the simulator includes an appropriate level of physical
and behavioral realism.” But although maritime bridge
simulators are realistic to human navigators, it cannot be
assumed that the simulators are sufficiently realistic for
testing the object detection and classification functionality
of an autonomous system. Hence, we propose a novel
approach utilizing Cycle-Consistent Adversarial Networks
(Cycle-GANS) to transfer the simulator data to a real-world-
like environment before autonomous functionality such as
object detection and classification is performed. The inverse
mapping is utilized to transfer the result of the autonomous
functionality, such as for example bounding boxes, back
to the simulator environment. The information which is
transferred back to the simulator environment can now be
utilized by human navigators with access to decision support
functionality or by fully autonomous vehicles.

In the literature, the use of Cycle-Consistent Adversarial
Networks related to autonomous ship navigation is limited to
the development and improvement of detection methods. '
We believe this paper is the first to propose and explain
how this powerful image translation technique can be utilized
to facilitate fair comparison and assessment of autonomous
functionality in maritime bridge simulators.

In the following, we first discuss challenges to
assurance with emphasis on machine learning based
functionality. We also briefly describe a selection of
currently available recommended practices, standards
and assurance frameworks. Following this, we discuss
challenges related to assessing a system’s situational
awareness, and based on this, we argue that the assessment
should be focused directly on the navigation tasks. A short
introduction to Cycle-Consistent Adversarial Networks is

Prepared using sagej.cls

provided next, followed by a detailed description of our
proposed framework for testing autonomous navigation
functionality in bridge simulators. Finally, future work is
outlined and concluding remarks are offered.

Challenges to Assurance of Machine
Learning based Functionality

Assuring the safety of functionality for autonomous
navigation and decision support is by many identified as one
of the key barriers to large scale implementation. Koopman
et al.'? identifies a set of topics that must be specifically
addressed for highly automated vehicles, including defining
operational domain such as various weather conditions,
machine learning faults, external operational faults such as
other vehicles violating rules, high residual unknowns such
as requirements gaps, and lack of human oversight and
malfunctioning human machine interface.

Autonomous navigation systems, as currently envisioned,
rely on machine learning, including deep learning, for
fundamental functionality. Salay and Czarnecki'* argue
that the extensive use of machine learning approaches is
motivated by the fact that functionality like perception
is difficult to specify. Instead of being programmed
from a specification, software components are therefore
implemented by training from examples. The training (and
test) dataset enumerates a set of input values and correct
system outputs, and this functions as a proxy for ”something
akin to requirements”.'>! Advances in machine learning
have proven extremely successful in many tasks where a
clear specification is lacking, however for assurance and
validation, the lack of specification is still a fundamental
challenge.

Currently Available Guidelines, Standards and
Recommendations

Wood et al.!” argue that the safety standards available
within the automotive industry and any other industry have
been defined without explicitly considering the specifics
of machine learning algorithms and data-driven models.
These models represent technology that are “inherently
incompatible with legacy safety standards approaches”. '*'¢
The functional reasoning of such black-box models are
challenging or even impossible to understand and predict, '®
and an inductive learning approach is often followed, making
the verification inherently difficult.’

In recent years, the maritime industry has invested much
research effort in developing methodologies and standards
for testing, verification and validation of autonomous
functionality and its use.'® Class guidelines are published,
offering process and technology guidance to the design
and arrangements of systems supporting autonomous and
remote operation of vessels, with the objective to ensure
safe implementation of novel technologies.”’?! The IMO’s
Interim guideline for MASS trials>® provides a set of
general principles and main objectives aiming to assist
relevant authorities and stakeholders to ensure that trails are
conducted safely, securely and with due regard for protection
of the environment.

A range of standards, guidelines and methodologies for
measuring or demonstrating safety of autonomous vehicles
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are proposed also in other industries, including automotive
which is in a more advanced state than maritime.'® These
standards, guidelines and methodologies should be adopted
and utilized by the maritime industry when applicable,
and, when necessary, be modified to fit the maritime
domain. The automotive industry might be ahead of the
maritime industry, but further research and development
are needed also in this domain. Waymo, formerly known
as Google Self-Driving Car Project, argue that currently
there exists no “definitive, widely accepted, empirical
methodology for answering the question often asked with
regard to AVs: How safe is safe enough?”* Waymo applies
industry standards where appropriate, but relies on its own
approach aiming to incorporating “safety at every system
level and every development stage, from design to testing
and validation.”*?* Extensive testing is conducted through
driving in simulation, on closed courses, and on public
roads. Additionally, national crash-data and driving studies
are utilized to provide insights into potential hazards.

ISO Standard 26262:2018%* Road vehicles — Functional
safety describes a framework for functional safety to
assist the development of safety-related electrical or
electronic systems, addressing possible hazards caused by
malfunctioning behavior of safety-related systems. However,
traditional requirements-based verification, such as the V-
model referred to in the Standard, typically assumes that
the requirements of a component are completely specified
and that “each refinement can be verified with respect to its
specification”. '* But due to the lack of specification of tasks
such as perception, the V-model is not applicable. '’

ISO/PAS 21448:2019(E)* Road vehicles — Safety of
the intended functionality is designed to complement ISO
26262,% and provides a list of recommended measures in

* the design phase (such as requirement on sensor
performance),

 the verification phase (such as technical reviews,
test cases with high coverage of relevant scenarios,
injection of potential triggering events, in the loop
testing), and

* the validation phase (such as long term vehicle test,
simulations).

Furthermore, Appendix D of the standard proposes
practices for the verification and validation of automotive
perception systems, listing considerations regarding data
collection, variation in drivers and driving habits and testing,
including dedicated testing in extreme conditions, production
tolerance testing and testing of the interaction between
systems and on multiple versions.

ANSI/UL 4600 Standard for Safety for the Evaluation of
Autonomous Products®® is a goal-based, technology-agnostic
safety standard approach based on an overarching safety
case. ' A safety case can be defined as: “A documented body
of evidence that provides a convincing and valid argument
that a system is adequately safe for a given application in a
given environment.””’ An implementation of a safety case
includes claims, evidence and a set of safety arguments
linking the claims to the evidence. The lack of specification
is a challenge as each claim needs a stringent specification.
A claim regarding detection of kayaks should, for example,
include detection distance capabilities, detection rates, the
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Figure 2. lllustration of the safe and unsafe regions for a ship
navigating with and without functionality for autonomous
navigation and decision support.

kayaks size, color and shape, external conditions such as
weather, waves and lighting, etc. 2 Similarly, the International
Regulations for Preventing Collisions at Sea (COLREG)
do not provide sufficient details to qualitatively assess
autonomous collision avoidance maneuvers.

Assessment

Another important challenge is determining the level of
safety required for autonomous navigation functionality,
answering the question “How safe is safe enough for
AVs?’# It is often claimed that the approval of autonomous
navigation functionality used in the maritime industry,
including decision support systems and functionality to
enhance situational awareness, can be based on the
equivalence principle: the use of the novel functionality must
make the operation safer or at least as safe as conventional
operation.” However Ringbom”® argue that this principle, as
described in SOLAS req. 1/5, ”has mainly been limited to
technical arrangements”, and “neither the COLREGS nor the
watchkeeping parts of the STCW [International Convention
on Standards of Training, Certification and Watchkeeping
for Seafarers] include this option”. Furthermore, Ringbom
claims that the “existing regulatory framework offers no
guidance at all” regarding the automated processing of the
observations made or data transmitted. We do not dispute
this interpretation. It should, however, be noted that the
IMO’s Interime Guidelines on MASS trials** also refer
to equivalent safety in their argumentation: “Trials should
be conducted in a manner that provides at least the same
degree of safety, security and protection of the environment
as provided by the relevant instruments”. Furthermore, we
do believe, regardless of how current rules and regulations
are interpreted, that the safety level of future autonomous
navigation functions will have to be equivalent to or surpass
the safety level of current solutions. Measuring and testing
equivalence is challenging, but deciding concrete acceptance
criteria without current solutions as a reference is perhaps
even more difficult.

When different functionality and solutions are compared,
it is important to note that some scenarios, both in real-
world and in simulators, are likely to favor the use
of autonomous navigation functionality, while in other
scenarios the performance will decrease. It is important
that the test design takes this into consideration, ensuring
a fair and balanced exploration of the safe and unsafe
regions. We believe relevant risk trade-offs should be
permitted, following the tolerability principle “globally at
least as good”.? This means that the implementation of
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Code neither provides suf cient detail for all the necessary
competencies for safe navigation nor the methods for
assessing therft.

Simulator-based Testing

To demonstrate the capabilities and performance of

autonomous functionality, we can execute controlled

experiments where scenarios are replicated and the

navigation performance and safety of a ship which

is controlled by or assisted by autonomous navigation
Figure 3. lllustration of a decision support system with object functionality is assessed and compared with the safety of
detection and classi cation. Photo: Orca Al, all right reserved. a conventionally operated ship. To be able to control the

experiment and make sure that the scenarios can be repeated,

¢ ionality f b q h the experiment should be performed in a simul&ttiris fair
unctionality for autonomy can be approved even thougly ,sq me that these simulators replicate the real-world with

thed |m$Iem_entat|on contnb.utes. ftc;].dgcreased perfoé”éa%ﬁequate detail for a human navigator, but this assumption
and safety in s?me scenarios, 'ft IS 1S Cﬁmpensate. Y @hot necessarily valid for the machine learning methods.
increase in performance and safety in other scenarios (S&€mentioned before, the machine learning methods used for

Figure 2). image detection and classi cation, usually neural networks,
i i i can be considered "black box” models. We can observe the
Assessing Situational Awareness behavior of these models, but we don't know exactly how
Although various tools and techniques are developed tleey work or what kind of features they nd in an image.
assess the situational awareness of hum&mns,lack of Is it the shape, the color, the derivative in some direction
an objective ground truth and determining the relevaneg some other statistical analysis mixed together? Various
of different objects are key challenges when assessimgthods are developed to explain and interpret the results of
situational awareness. As an illustration, we consider maachine learning method$:3®> Nevertheless, for advanced
complex scenario with several ships and boats, some ma¢thods such as neural networks, which comprise myriads of
berth and some sailing, small moving objects and aids ifaterconnected functions, itis challenging or even impossible
navigation. A snapshot of a decision support system with predict its behavior even in simple and trivial cases.
object detection and classi cation is shown in Figure 3Since simulators typically simplify the real-world scenarios
Investigation of this snapshot indicates that the system haigh straight lines, sharp angles, simple shapes and uniform
an impressive capability in detecting and classifying botitplors, without the noise typically present in real-world
large ships and smaller objects, although some ships a®hsor data, we cannot know how this affects the result of
boats are undetected. More importantly, however, the bridtjfee machine learning methods. The results also depend on
pillars are also undetected. How should this be incorporatethether the initial training was done on real or synthetic
in the total assessment? Some would argue that the bridg@ges.
pillars are easily detected by a human navigator, and hence
for a decision support system it is not important that this . .
is detected by the system. Others would argue that tH@pIementlng Camera-Based Object
bridge pillars are highly relevant information, and clairPetection and Classi cation in the Simulator

that systems which fails to communicate such im‘ormatiql_c]ur goal is to understand how well an autonomous
contribute to increase the risk of collisions, and should ngg/stem will function in the real-world. but we aim to

be implemented. This example illustrates that an assessmgat ihis in a simulator. Due to the above-mentioned

of functionality for autonomous navigation and decisioRiterence between the real-world data and the data from the

, applying functionality for autonomous navigation

of the different objects. But as the relevance of an objegh,q gecision support in the simulator is not straight forward.

depends on th.e havigation task, !t IS d,'f cult to assess thge propose to overcome this challenge by utilizing a Cycle-
system’'s situational awareness in isolation.

Consistent Adversarial Network to transform the simulator

) o data from a synthetic dataset into something that is real-
Assessing Navigation Performance world like before the autonomous functionality is applied.

To avoid some the challenges associated with assessingn the following, we briey de ne image-to-image
situational awareness, we rather concentrate on assessiagslation problems and provide a brief introduction to
the navigation tasks directly. Note that adequate situatior@cle-Consistent Adversarial Networks and explain how this
awareness is a prerequisite for safe navigation. Assessnmegoproach can be used for translations between real-world and
of the navigation can be performed by subjective domagsimulator environments. Our focus in this paper is on image-
experts or by automated assessment systems, such astafimage translations. The presented approach is, however,
prototype presented by @vengl et al>’> whose evaluations not necessarily limited to image and video data. For future
strongly correlates with evaluations performed by subjestudies we suggest investigating if, and to what extent, the
matter experts. Note however, that safe navigation is alpooposed approach can apply to other sensor data, including
a task which lacks a clear speci cation, and the STC\Wadar.
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(a) Image from a simulator

Figure 4. Paired training data (left) consists of training
examples where the correspondence between X; and y; exists.
Cycle-Consistent Adversarial Network instead consider
unpaigréad training data (right). Figure and description from Zhu
etal.

Image-to-Image Translation

An image-to-image translation method aims to nd a

mappingG : X | Y between an input space of images

X and an output spac¥ such that the set of images (b) Image generated based on (a)
G(X) is indistinguishable from the set of imag¥s Many

such translation methods require a training set of aligned

image pairs(x;;yi), that is every output image; 2 Y

in the training data set corresponds to an input image

X; 2 X (see Figure 4 (left)). Successful methods for this

application includes for example Conditional Adversarial

Networks as proposed by Isola et®lHowever, in many

applications (including translation between real-world and

simulator environment) paired datasets are often unavailable.

This motivates the development of methods which allows

translation of images in the absence of paired examples

(see Figure 4 (right)). Approaches which utilize unpaired (c) Real-world image of the ship mode|

images do not typically require less images than approaches _ .
which require paired images, but the effort of collectin Figure 5. Shows how Cycle-Consistent Adversarial Networks
! %an be applied on an image from a simulator (a) to generate a

samples is reduced, since th? sgmples do not 'needn,gg, image (b), and compares this with a real-world image of
correspond. In our case, collecting images from a simulat@g physical ship model (c). Figures from Bekkeheien. 2
environment and from a real-world environment is cheap and
easy, and requires almost no work. Collecting corresponding
images can be very challenging, at best expensive and time . - .

ges | y 9ing, be 108 and Duvalf? successfully utilize Cycle-Consistent
consuming. The total number of images required to ach|exe . : :

; . . dversarial Networks in the context of space science
desired performance will always depend on the set of images

. . D . _“and planetary exploration, presenting a framework
available. Images which are very similar, almost duplicate, :
. ) or neural style transfer based on rendered simulator
will for example not contribute much.

images of the Moon. Simulator data are used to train
_ ) and test localization algorithms, and to test software
Cycle-Consistent Adversarial Network design. Similarily, Bekkehei€r utilize Cycle-Consistent

Cycle-Consistent Adversarial Networks are successfuffydversarial Networks to improve the quality of data
applied for various image-to-image translation problem@cquired by a marine simulator, and use this data to train
This includes mappings between photos and paintin&,dete‘:t'or) algorithm (see F|ggre 5). It is cIan_*ned that th|s
aerial photos and maps, and between different Obje&gp_roach improves the detection algorithms in the marine
such as horses and zebras or apple and péa@ycle- €nvironment.

Consistent Adversarial Networks are for example A Cycle-Consistent Adversarial Networks (Cycle-GAN),
also used for de-noising of networks for multi-phasas proposed by Zhu et al,aims to learn an image-to-image
coronary CT angiograph§$ augmenting data and improvetranslation mapping : X ! Y between the input space of
generalizability in CT segmentation tasks, creating imagesX and the output spacé in the absence of paired
realistic snow-covered scenes of multispectral SentineleXamples. The aim for the translation mappiBgis that
imagery® and unsupervised adaptation from synthetitnagesG(X) are indistinguishable from the set of images
(computer game) to real-world driving domaifis.De Y. To accomplish this, we utilize Generative Adversarial
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Networks (GANs) as proposed by GoodfellGiv,which
have shown strong performance in image generétiof!. A
discriminatorDv is de ned, which is trained to distinguish
between real images2 Y and translated images(x) for

x 2 X . Simultaneously, the generative mod@l, is trained

to create realistic images such that the discriminator fails to
distinguish between real and translated images. This gives
the following objective

Lean (G;Dv;X;Y )= Ey puuy)[logDy (Y)]
+ Bx paa[109(1 Dy (G(X)))]:
1)

The discriminative modeDyv , is trained to maximize the _. , . )
- L Figure 6. The model contains two mapping functions
probability of assigning the correct label to real samples g™ x | v andE : Y | X . and associated adversarial
and trans'QtEd samplax), s_ir.nuiltaneously as i?_trained discriminative models Dy and Dx . Dy encourages G to
to create images which minimize the probability Dfy  translate X into outputs indistinguishable from domain Y , and
assigning the correct label. We think@fandDy as players vice versa for Dx and F. Figure and explanation derived from

in a two-player minimax game, that is Zhuetal.®
min maxLgan (G;Dy;X;Y): (2)
G DY
Because the mappin@ is highly under-constrained; A:R! S
is coupled with an inverse mappirfg:Y ! X which is B:S! R (6)

also trained simultaneously as a discriminative mobsg,,
which is trained to maximize the probability of assigningVe let these translations be based on Cycle-Consistent
the correct label to real samplasand translated samplesAdversarial Networks which learn the mapping between the
F (y). SimultaneouslyF is trained to create images whichreal-world and the simulator environment from a training
minimize the probability oDy assigning the correct label,dataset of unpaired images. We de ne a discriminator,
that is Dr, which is trained to distinguish whether a sample is a
mFin anaxLGAN (F;Dx;Y;X): (3) real-world image or if it is translated from the simulator
X environment. Simultaneousl is trained to create images
Additionaly, a cycle consistency loss function , de ned aghich are real-world like, and by this, minimizing the
probability of Dg making the correct assignment. Similarly,
Leye(GiF) = Bx puaut) [KF (G(X)) - Xka] a discriminatorDs is de ned and trained to distinguish
+ Ey puy) [KG(F(Y))  Ykal; simulator images and images translated from real-world

. . L ) . images. This gives the adversarial losses
is included in the optimization routine to ensure consistency

when an image is translated from one domgin to thg other min maxLean (B:Dr;S:R) @)
and back again. This means that when an imageX is B Dr
translated fronX to Y, (G(x)), and then translated back togng
X again £(G(x))), the result is approximately equal to the minmaxLgan (A;Ds;R;S): (8)
original image, that is A Ds

Additionally, a cycle consistency 10sd.cyc(G;F) is

F(G(x)) x forx2X; (5) introduced to pustB(A(r)) r for real-world scenarios

r2R.

A set of scenarios should be collected and used to test
that the performance of the autonomous functionality, when
Mappings Between Real-World and Simulator applied to the translated simulator data}, is _sim.ilar to _the

. performance of the autonomous functionality if applied
Environment to real-world data. We de ne a functiom which takes
We aim to assess the navigation performance in a simulator image as input, and outputs autonomous functionality
environment, but since we cannot apply the autonomo(fsr example information regarding the ship's situational
functionality directly in the simulator environment, weawareness such as bounding boxes, segmentation, speed and
utilize Cycle-Consistent Adversarial Networks to transforrdistance estimates, and suggested maneuvers, etc.). It should
the simulator data to a real-world environment before thee demonstrated that when a scenari® R is translated
autonomous functionality is applied. We Rtbe real-world to the simulator environmen®(r)), and then back again
sensor data environment, and I8tbe sensor data in a(B(A(r))), applying autonomous functionality to this output
simulator environment, and let the mappingsand B be gives approximately the same result as if it was applied on
translations between real-world sensor data and the simulatoe original real-world scenario. As we are only interested
environment such that in the performance of this autonomous functionality, in our

and vice versaG(F (y)) ). For details we refer to Zhu et
al.36
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application, it is suf cient that proposed by Lee et &f The above-mentioned methods are

two-sided, meaning that when a mappfagvhich translates
z(B(A(r))) z(r) forscenarios 2 R (9) samples from a domaiX to a domainY is learned, the

inverse mappind- from Y to X is learned simultaneously.

Notable one-sided methods, where the translation is learned

without learning its inverse, include SelfDistance and

DistanceGAN?, and GCGAN*.

and it is not necessary to requirB(A(r)) r and Whenever paired date are available, it can be. vyorthwhile
to explore models which are capable of utilizing both

A(B(s)) s. We include this explicitly in the training by ** , - i
modifying the penalty term of the cycle consistency loddaired and unpaired training data simultaneously, such as

function, such that the cycle consistency loss becomes for example the general-purpose image-to-image translation
model proposed by Tripathy. The study demonstrates how

the proposed method obtains qualitatively and quantitatively
Leye(A;B) = Er poun)[kZ(B(A(r)))  z(r)ka] improved results compared to two baselines, outperforming
+ Es puds) [KZ(A(B(9)))  z(S)kal: (11) the paselines also in the case of purely paired and unpaired
training data.
Furthermore, information from the real-world scenarios
r 2R, mcludmg the ship's location, location of OtherC%ncIusion
vessels, shoreline, weather, waves, etc. should be use
to reconstruct simulator scenarie® S, such that it can The development of functionality for autonomous navigation
be demonstrated that if this scenario is translated frodmd decision support systems in the maritime domain is
the simulator environment to real-world, the autonomousotivated by the promise of increased safety. However,
functionality returns similar output as if it was applied orissessing and quantifying the safety level is challenging.

and

z(A(B(s))) z(s) forscenarios?2 S; (10)

the original real-world scenario, that is In this paper we propose a simulator-based test framework
designed to assess and compare how functionality for
z(B(s)) z(r): (12) autonomous navigation and decision support contributes

titving th ¢ e t fer is al to increase navigation performance and safety. Since we
Quantifying the success of a style transfer is aWays nnot directly apply the autonomous functionality to the

challenging. If an image of a horse is transferred to an imaﬂ'ﬁages/video generated by the simulator, we propose to
of a zebrat® itis dif cult to assess if and to what degree the st translate the data using Cycle-Consis:[ent Adversarial

transfer was successful. In our case, we are only intereste Dioworks. Such networks are designed to translate an image
the autonomous functionaliyand do not requir@(s) . from a source domain to a target domain in the absence
Still, demonstrating that Eq. (12) holds is non-trivial, and f paired examples, such that the translated image appears

set of corresponding scenarios from the simulator and t re realistic. A critical assumption in the proposed test
real-world environment is needed. Fortunately, if we are_ mework is that the performance of the autonomous
able to produce such corr.espondlng scenarios, we do ctionality, when applied to the translated simulator
need to evaluate the full imag@(s), but can focus our dat

luati h : functionalit h ¢ a, is similar to the performance of the autonomous
evaluation on the autonomous functionalitysuch as for functionality if applied to real-world data. This assumption

example bounding boxes) which often makes the evaluaU%n dependent both on the quality of the simulator and
less complex. the mappings between the real-world and the simulator

environment. Hence, demonstrating that this assumption
Future Work holds should always be a natural and necessary rst step

Previous successful applications of Cycle-Consisteffivards implementing the proposed test approach. _
Adversarial Networks, in the maritime domain as well With the procedure proposed in this paper, automatic
as other domains, motivate the approach proposed in tRIJ€Ct detection and classication can be performed
paper. Nevertheless, extensive testing is needed to validg@listically in the simulator, making it possible to conduct
the applicability of our proposed test approach, which f‘sontr_o_lled, repeated experiments with |dent|c_al _|n|t|al
obviously dependent on the quality of the simulator igonditions. This allows us to compare the navigation of
addition to the translation mappings. autonomous ships at various degrees of automation with the
In this paper our focus is on Cycle-Consistent Adversarigavigation of conventional navigation. Furthermore, various
Networks, but other related methods should also be explordiSessment methods, both manual and automated, can be
For example, Liu et af° propose an unsupervised image-toUt'l'Zed to quantify and assess the navigation performance of
image translation framework based on Coupled Generatfi/f? different ships, and ultlma_ltely,_quantlfy and measure how
Adversarial Networks to translate street scene images {he use of autonomous functionality affects maritime safety.
example between winter and summer, night and day and
wet and dry. It is also shown how this can be utilized fof:cknowledgements
translations between simulators and real-world imageSriticisms and discussions regarding the topics of this paper
Other examples include the Multimodal Unsupervisedith Knut Erik Knutsen (DNV), Dor Raviv (Orca Al), Tobias
Image-to-image Translation (MUNIT) framework asRye Torben (Norwegian University of Science and Technology),
proposed by Huang et at, and the Diverse Image-to-ImageTom Arne Pedersen (DNV), Kristian Karolius (DNV), Christian
Translation via Disentangled Representations (DRIT) #&vden (University of South-Eastern Norway) and Anete Vagale
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