
Metrics and Ambits and Sprawls, Oh My
Another Tutorial on Metric Indexing

Magnus Lie Hetland

Norwegian University of Science and Technology, mlh@ntnu.no

Abstract. A follow-up to my previous tutorial on metric indexing, this
paper walks through the classic structures, placing them all in the context
of the recently proposed sprawl of ambits framework. The indexes are
presented as configurations of a single, more general structure, all queried
using the same search procedure.

Keywords: Metric indexing · Tutorial · Sprawls · Ambits

1 Introduction

About ten years ago, I wrote a tutorial on metric indexing [12], and last year, I
finally finished a unifying framework for metric indexing and other comparison-
based indexing [13]. That paper, however, is perhaps not the most inviting, con-
taining quite a bit of detail and formalism, so in this paper, I’ll revisit my earlier
tutorial, in light of this new framework. This approach has two main benefits.
First, the result should ideally be a streamlined, unified tutorial, rather than a
smorgasbord of disjoint techniques; and, second, it provides an example-based
introduction to the framework of sprawls and ambits, which might be useful to
researchers who are already familiar with metric indexing. I focus primarily on
“the classics”; for an overview of many variants, see, e.g., the recent paper by
Chen et al. [6].

In contrast to the full paper introducing sprawls and ambits [13], I will try
to keep this tutorial brief and to the point—more so, even, than my previous
tutorial. In keeping with that, let’s get going!

2 Framework

This section presents a thumbnail sketch of the framework used throughout. It
may be easier to understand after you’ve read some of the example applications,
so feel free to skim it, then skip ahead to section 3, returning here later.

We have a data set V drawn from some universe U with an associated metric,
i.e., a symmetric function δ : U×U ! R>0, where δ(u, v) = 0 iff u = v, and

δ(u, v) 6 δ(u,w) + δ(w, v) , (2.1)

for all u, v, w ∈ U. The problem we are trying to solve is storing V in some data
structure, which we may later traverse to efficiently extract those points relevant

to some query. Intuitively, we view this data structure as a bipartite digraph of
points and regions, i.e., sets of points. This is referred to as a sprawl of regions.1

A region R with parents p1, . . . , pm is then defined in terms of these. That
is, whether u ∈ R depends on the distances x = [δ(u, p1), . . . , δ(u, pm)], a vector
in the so-called pivot space of p1, . . . , pm. Specifically, we use a linear function
f(x) and a threshold, or radius r, so u ∈ R iff f(x) 6 r. Such a region is called
a linear ambit.

The regions partition the space, representing a coarsening of the data. For a
query in the form of a ball Q = {u : δ(q, u) 6 s} of relevant points, we are only
interested in the contents of a region R if it intersects Q. The idea, then, is to
have the children of R point the way to smaller subsets of the data set. Search
becomes a traversal of our graph, where each region is checked for overlap with
the query before possibly traversing its children.

What is more, because a region is defined by its parents, we require all the
parents to be traversed before traversing the region, and possibly its children.
When we traverse a point u, we compute δ(q, u), so that when we traverse a
region, we have all of δ(q, p1), . . . , δ(q, pm) available, giving us a distance vector
z representing the query. If we assume, for now, that f is nondecreasing, Q and
R intersect only if:2

f(z) 6 r + f(s) (2.2)

For more advanced queries (kNN), and when we permit elimination, the order
of traversal is significant. In these cases, we’d use a priority queue of nodes to
traverse, updating their priorities each time we encounter them. In the basic
scenario sketched out here, though, we might as well use a depth-first approach,
as in the following mutually recursive procedures:

Simplified sprawl search algorithm
Visit-Point(u, q, s)
1 if δ(q, u) 6 s
2 print u
3 for R ∈ u.children
4 R.count = R.count + 1
5 if R.count == |R.parents |
6 Visit-Region(R, s)
7 u.color = black

Visit-Region(R, q, s)
1 get z from R.parents
2 get f and r from R
3 if f(z) > r + f(s)
4 return
5 for v ∈ R.children
6 if v.color == white
7 Visit-Point(v, q, s)

In general, the idea is that δ is memoized in some way, so once δ(q, u) is computed
on line 1 of Visit-Point, it is subsequently available when we gather up z in
Visit-Region. Normally, one would have one or more designated root nodes,
and call Visit-Point on them in turn to initiate the search.

The way this is set up, one would need to run a reinitialization in-between
queries, resetting the memo, coloring nodes white and setting counts to zero.
1 Equivalently, a hyperdigraph on V, with one region per hyperedge [13, Rem. 2.3.12].
2 Here f(s) is shorthand for f(s, . . . , s).

There are many ways of handling this, of course. One could have actual attributes
in the nodes, and maint a list of those that need resetting, requiring constant
amortized time. An even simpler approach might be to simply use hash tables
that are reset between searches. With some additional memory, one could even
do the reset in actual constant time, using the standard trick for constant-time
array initialization. In this case, one could keep a stack of nodes whose attributes
are valid, and let each node keep its index in the stack. Then the reset would
simply require setting the stack length to zero.

3 Ball Trees

A metric ball tree is a form of search tree where subtrees and their points are
enclosed in balls. A subtree is then only explored if its ball intersects the query.
For example, the simple BS-tree is a tree where each node is associated with a
single point and a radius that covers the points below it in the tree [14]. The
idea of a sprawl is for the graph (in this case, a tree) to express dependencies,
where we have edges from points to the regions they tell us about, and from
regions to the points they tell us to explore (if we intersect them). In the case
of the BS-tree, then, each BS-tree node would be split into two sprawl nodes:
one for the point, and one for the radius (i.e., region). For example:

p r becomes
p

1 r

Handling a BS-node then means first computing δ(q, p) and considering p for
inclusion in the result, and then determining whether δ(q, p) is greater than
r + s. If so, no further action is taken, as the query ball Q does not overlap the
region (i.e., ball) R. Otherwise, the two child pointers are followed recursively.

In the sprawl version, we’ve split out the point p as a parent node of the
region. Initially, we visit this node, compute z = δ(q, p), and increment a counter
associated with the child node. In general, we’ll need to hang on to the z value
as well as the counter; we could keep those in some separate memo, or perhaps
store them in the nodes themselves. The counter is only useful if a region has
multiple parents, so we know when we’ve visited them all; in this case, as soon
as the counter goes from 0 to 1, we’re done. Also, storing z is mostly useful if
we’re not going to use it immediately, and so it may be a bit wasted in this case.

Be that as it may, once the counter hits the threshold m (the number of
parents of the region), we visit the region node. Here we store the radius r, but
also one or more coefficients in a vector a. Note that m here is the number of
entries in a, stored as part of the vector (or implicit, if the length is fixed). In

this case, m = 1, a = [1] and f(x) = ax = x. That means the overlap check
reduces to that of the BS-tree:

f(z) 6 r + f(s) ⇐⇒ az 6 r + as ⇐⇒ z 6 r + s

There is no magic in the use of two children here; we may very well increase
this number, as in the M-tree, for example [7]. (The M-tree adds another twist,
which we’ll return to in section 4.)

There’s also the VP-tree [22,24] and its relatives such as LC [5], where there’s
a single ball that separates the inside from the outside. In that case, we get a
different transformation:

p r becomes

p

1 r 1 r

The idea here is that the center point p is shared between the ball (left subtree)
and its complement, the outside (right subtree). The only difference between the
two region nodes is that the outside one has its coefficient and radius negated.3
At this point, a slight revision is in order. We have previously assumed that f
is nondecreasing, i.e., that a > 0. That is no longer the case! The more general
version of the overlap check then uses |a|s, rather than as. What happens, then,
is that the overlap criterion for the left subtree is still z 6 r+ s, but for the right
one, we get:

az 6 −r + |a|s ⇐⇒ −z 6 −r + s ⇐⇒ z > r − s

This is exactly as in the VP-tree, except that the surface of the ball is included
both for the inside and the outside; we’d really like z > r − s. This is a detail
not handled by the framework (though it easily could be amended to); however,
it could only (presumably in rare cases) lead to false positives, i.e., exploring
subtrees unnecessarily, which won’t produce any wrong results. However, except
for the goal of emulating the VP-tree, there is no need to use the same radius in
both regions. One could use r1 and −r2, for example, and adapt each to cover
only the points in each subtree.

4 Intersections

In section 3, our regions were individual balls and their complements.4 We can
combine these two kinds of regions to create shell regions, by turning a and r
into column vectors:

a =
[
−1

1

]
r =

[
−r′

r′′

]
3 Here x is a space-saving shorthand for −x.
4 Strictly speaking, the closure of their complements, as we don’t use strict inequalities.

This gives a shell region around the single parent point p, as follows:

r′′r′

p

The membership check for a point u with distance x = δ(p, u) is still ax 6 r,
but in this case, that means:

−x 6 −r′

x 6 r′′

This is, of course, equivalent to r′ 6 x 6 r′′. For the overlap check, we take the
absolute value for each row separately, so we still have az 6 r+ s, which becomes
(with some simplification):

z + s > r′

z − s 6 r′′

That is, q must be so far away (z) that the s-ball around it reaches the inside
radius (r′) but not so far away that it ends up beyond the outside radius (r′′).

A classic metric index—the Burkhard–Keller tree—branches out using mul-
tiple shells around a single center [3]. In this case, we’d simply use multiple shell
regions, all with the same parent point.

There’s not much point in using more than two rows when we have a single
focus, i.e., a center, as we’ll only end up with a single ball, inverted ball or shell,
anyway. However, if we have more than one focus, we can add multiple columns
to represent the intersection of multiple shells with different centers, yielding a
coefficient matrix A. For simplicity, let’s say we wish to represent the intersection
of two balls, with respective centers p1 and p2. We use those points as the region’s
parents, and region membership becomes Ax 6 r, with coefficients and radii as
follows:

A =
[
1 0
0 1

]
r =

[
r1
r2

]
The intersection of multiple shells has been used in, e.g., Brin’s GNAT [2] and its
descendants, as well as the PM-tree family of structures [20] (see also section 5),
and was later dubbed a cut region by Lokoč et al. [15].

The M-tree combines balls and shells in an interesting way. Before even com-
puting δ(q, u) to perform the overlap check δ(q, u) 6 r+ s, it executes a prelim-
inary filtering step, with the check

|δ(q, p)− δ(p, u)| 6 r + s ,

or, with our established notation, |z − x| 6 r + s. The intuition here is that
|z − x| is a lower bound for d(q, u), a fact used in the standard pivot filtering
check |z− x| 6 s (see section 5). Here, however, it’s plugged in as a lower bound
in our ball overlap check (with u as our ball center), creating a weakened, pre-
liminary version. This might seem like it requires introducing some new concept
or indirection, but that is not so. The check is still linear and is equivalent to a
standard shell region. This is easily seen by rewriting the check as follows:

−z + x 6 r + s

z − x 6 r + s

We can rewrite this to match our previous shell overlap check:

z + s > x− r
z − s 6 x+ r

In other words, we here simply have a shell region with inner radius x− r and
outer radius x+ r, corresponding to our knowledge of the r-ball around u before
computing δ(q, u):

p u

It would seem like we now have to store additional distances. Rather than just
keeping x and r, we need to store r, x − r and x + r. But is that really so?
Given our M-tree to sprawl translation, each point node is now the center of
multiple (quite possibly overlapping) shell regions, as well as a single ball region
enclosing them all. The only reason to keep this ball region is if its radius is lower
than the greatest radius of the shells. If we stuck rigidly to our translation, this
could happen—but if we simply kept our shells as tight as possible around the
subtrees, it could not. We then end up storing just two distances per subtree,
once more, and have a structure with a behavior quite similar to, and no worse
than, the M-tree.

5 Elimination

The most common purpose of a pointer in an index structure is to lead you
toward further data to explore. There is a certain genre of structures, however,

that do the exact opposite—where instead of discovering data, you eliminate
it. Take, for example, the LAESA structure [17]: a table of distances between
so-called pivots and the other points in the data set. The query is compared to
each of these pivots, and the computed query–pivot distances, along with the
stored pivot–data-point distances, are used to determine whether any given data
point may possibly be relevant. In sprawl terms, each pivot–data-point distance
represents a region:

p

x u becomes

p

u

a r

In this case, the region is a sphere, a shell of width zero (i.e., with identical inner
and outer radii):

a =
[

1
−1

]
r =

[
x
−x

]
As before, our overlap check is az 6 r + s, or:

z 6 x+ s

−z 6 −x+ s

Combined, this is the standard pivoting bound, s > |x − z|. Now, however, we
get to the more interesting point. The dotted pointer indicates that we’ve got
a potential elimination on our hands. That is, rather than saying “if there’s
overlap, let’s look at u, otherwise, let’s ignore it” we turn it around, and say “if
there’s overlap, let’s ignore it, otherwise, let’s eliminate it.” In the terminology
of our earlier pseudocode, that essentially means setting u.color to black. The
exact implementation here could be done in several ways. One could have dif-
ferent region node types, for positive and negative regions (leading to discovery
and elimination, respectively), or have separate lists of positive and negative
child-edges, so the same region could both discover and eliminate points. These
are possible optimizations, but they don’t substantially change the behavior of
the search.

It’s possible to combine discovery and elimination, such as in the PM-tree.
A simplified version would consist of a ball tree, such as in section 3, along with
a set of pivots with eliminating regions around the subtrees. Specifically, the

PM-tree uses shells around each subtree, with global pivots, yielding something
like the following:

p

u

1 r′

a r

An important thing to note about elimination is that it may be performed
lazily. That is, we need not check for overlap with the various shell regions
associated with the shared, global points in the PM-tree until we’ve established
that we intersect the ball region in the tree itself. This kind of laziness could
be implemented by having pointers in the reverse direction, without a need for
counter updating. When considering a point, we would simply look at the region
parents and see if they had been examined yet (i.e., if they were colored black).

It’s possible to implement such things in different ways, of course; one could,
for example, have some parents of a region be lazy, explored on demand, or the
like. Having such a mechanism, one could simply use the global pivots of a PM-
tree as lazy parents of every region in the tree, turning them from balls into cut
regions, removing the need for elimination altogether.

The elimination perspective in LAESA could similarly be turned on its head,
if instead of multiple regions, we use a single region for each point, with all pivots
as its parents. This region would then be the intersection of all the spheres, and
a point would simply not be discovered if there were no intersection.

This does not mean that we can do entirely without elimination, however. In
any scenario where we at one time are able to traverse a point, and at a later
time are not, this is the result of elimination. To my knowledge, the only current
structure where it is truly needed, even if one were to introduce various forms
of laziness optimization, is the AESA family of indices [23], where all points
are available initially, and the set of candidates is gradually whittled down. The
order of traversal then becomes crucial, as discussed in the next section.

6 Priority

The AESA family of indexing methods are all based on the same simple data
structure: a complete distance matrix between the data points.5 The points are
5 Because of symmetry, one need only store half of it, of course.

explored one by one, and at every step we eliminate any of the remaining points
we’re able to. The elimination works just as in LAESA; the difference is that the
pivots aren’t kept separate from the objects. Rather than simply examining all
the pivots in an arbitrary order, we now need to be quite careful about which
object to examine next, to minimize the number of objects explored overall. A
ubiquitous simplification here is to only focus on the elimination power of the
next object and select the one that will give us the most bang for our buck.

We don’t know which one that is, though. Rather, we must perform this
choice heuristically, based on the information gathered so far, i.e., the distances
from each examined point to the query and to the candidates for examination.
If we represent these distances by vectors z and x, the original AESA used
‖z−x‖1 while a revised version used ‖z−x‖∞, simply choosing the object whose
filtering lower bound is the smallest, i.e., the one that’s furthest away from being
eliminated. Later, there was iAESA [11], which instead used Spearman’s footrule
between permutations of the previously examined objects, sorted by distance
to the query and the candidate. Even more recently, Socorro et al. introduced
the two-phase PiAESA method [21], which initially uses a set of preselected
pivots (like LAESA), chosen for their general filtering power; once enough objects
have been explored, it switches to the classic AESA behavior. Many variations
are possible here, of course; for example, one might use regression or machine
learning to estimate distances or filtering power or the like [10,18].

From a sprawl-of-ambits point of view, these methods are essentially the
same: A complete directed graph of elimination edges, where each edge has a
single sphere region. The priority or heuristic used to select the next available
point is left unspecified. What is relevant, however, is when and how to compute
or update the heuristic. In the simplest, most naive implementation, on might
merely iterate over all available objects in each step, computing an arbitrary
black-box priority for each, based on the knowledge gathered so far. It’s possible,
however, to let priority updates piggyback on other traversal operations.

For example, if the heuristic is based on how hard a point is to get rid of, one
might update the priority every time the point is rediscovered and every time
one fails to eliminate it. In each of these cases, a lower bound on the distance is
computed, and one may then simply keep the sum or maximum, as in AESA.

For structures without elimination, such as the majority of search trees, pri-
ority is not relevant to the number of distance computations needed to resolve a
range query; the behavior will be the same, regardless of the ordering. For kNN
queries, however, priority can be crucial, as the covering radius of the result set
tends to shrink as good candidates are found, and this will improve the chances
of eliminating subtrees.

7 Non-trees

Index structures tend to be tree-shaped, more or less, especially if we ignore
the eliminating parts. One early exception is the excluded middle vantage point
forest introduced by Yianilos [25]. This structure is still mostly tree-shaped—or,

as the name implies, forest-shaped. That is, it primarily consists of a collection
of trees. However, these trees are connected to each other, making the whole
thing a directed, acyclic graph.

The trees are essentially VP-trees with three regions rather than two: an inner
ball, a middle shell, and an outer inverted ball. For queries whose radius is less
than half the width of the middle shell, the search will never traverse more than
one of the inner and outer subtrees—a major selling-point of the structure. There
may still be points located in the separating shell, though, and these must also
be indexed!

The idea is to gather up all the points that end up in any separating shell
throughout the tree, and build a new tree from those, in the same manner
(possibly leading to a third tree, and so on). We then simply make the root of
this new tree the single child of every shell region in the first tree, as in the
following, where a = [−1 1]t and r = [−r′ r′′]t:

p

1 r′ 1 r′′

a r

An essentially equivalent structure, at least from a bird’s-eye view, is the D-
index [9]. There, too, we have a multitude of shell regions separating inner and
outer subsets, with the shells leading to a secondary structure, and so on. The
main difference is that where the excluded middle vantage point forest uses
tree traversal to determine which intersection of inner and outer regions a given
point falls into, with the centers found along the path from the root, the D-index
provides a fixed set of shared centers from the beginning, in a manner similar to
the so-called fixed-queries tree [1]. Several levels are, in essence, collapsed, and
the correct subtrees or leaves, representing the intersection of multiple shell or
ball regions, are found directly, using hashing. This is an optimization that does
not affect the high-level behavior (i.e., which points are examined).

8 Hyperplanes

In section 5, we created sphere and shell regions by having two radii, and thus
two rows in our coefficient matrix, ending up with a column vector [1 −1]t. But
we could also just use a row vector a = [1 −1], along with a single radius. This

means we need two parents, or foci, p1 and p2, and we finally get a pivot vector
z = [z1 z2]t. The overlap check becomes:

az 6 r + ‖a‖1s

Here ‖a‖1 is the sum of absolute values. If we use r = 0, this corresponds to a
metric half-space, separated by a midset or hyperplane. The overlap check then
simplifies to the standard one [22]:

z1 − z2 6 2s

We are here defining the region of points closer to p1 than p2. If we wish to
have multiple contrasting objects, modeling general Voronoi cells or Dirichlet
domains [19], we can just add parent points, as well as some rows and columns.
Let’s say, for example, we wish to describe the region of points that are closer
to p1 than both p2 and p3. We’d then use all three as parents of our region, and
use the following coefficients and radii:

A =
[
1 −1 0
1 0 −1

]
r =

[
0
0

]
This corresponds to the following overlap check, where both inequalities must
hold for there to be overlap:

z1 − z2 6 2s
z1 − z3 6 2s

One may extend this to an arbitrary number of foci in the obvious manner.

9 Other Conics

The hyperplane case is easy enough to extend to (generalized) ellipses [22,8],
by using coefficients a = [1 1] and the appropriate radius, yielding the following
overlap check:

az 6 r + ‖a‖1s ⇐⇒ z1 + z2 6 r + 2s

Or we can get shifted half-spaces, what amounts to metric hyperbolas [8,16], by
adjusting the radius away from 0. That is, we still have a = [1 −1] but we have
r 6= 0, yielding the following slightly more general check:

z1 − z2 6 r + 2s

This, then, represents not the points that are closer to z1 than to z2, but where
the distances differ by a given value (i.e., the radius). That is, membership for
a point with distance vector x is ax 6 r, i.e., x1 − x2 6 r.

10 Other Queries

Nearest neighbor queries (kNN) have been mentioned briefly already. A general
approach is to maintain the (up to) k points closest to q found so far, letting the
search radius s be an upper bound on the distance to the kth nearest neighbor.
Beyond updating s during the search, the procedure is the same.

A generalization that does not seem to have been explored is using other
regions than balls as queries. After all, if a ball query works well in a tree built
from hyperplanes, there’s nothing stopping us from using a hyperplane query in
a tree built from balls. That is, we might have a prototypical example object q,
and a prototypical counter-example q′, and we then search our index for objects
closer to q than q′. (Such queries were briefly mentioned by Uhlmann [22].) Or
maybe we have two prototypes, and wish to find the k objects with the lowest
average distance to q and q′, resulting in an ellipsoid query.

More generally, our query might consist of a weighted combination of query
objects, looking for points with a low weighted sum of query distances. In other
words, we may use an arbitrary linear ambit as our query [13, § 3.2.1]. As long
as the ambit coefficients of the query, or those in the tree, are all non-negative,
determining query–region overlap is straightforward, as we shall see.

11 . . . and Beyond

It ought to be quite clear that the sprawls and ambits used so far have been
quite limited. The sprawls have mostly been tree-like, and the coefficients of
the ambits have been 1 or −1, with at most two nonzero coefficients to a row.
Countless variations are possible, both in how the sprawls are put together and
in how the ambits are parameterized.

Determining whether an arbitrarily constructed sprawl is correct is a hard
problem [13, Thm.2.3.2]. However, extrapolating from existing index structures,
we may quite easily ensure that the sprawls we construct are responsible, in
which case they are guaranteed to be correct. Roughly, responsibility means
that for every point p, there is a set of edges we can traverse that will lead us
to it, and that the regions of those edges contain p, as do the regions of any
negative edges that might disrupt that traversal. For the case where the positive
edges of our structure are acyclic, this can be dealt with locally, where the
responsibilities of a node’s incoming edges depend only on those of the outgoing
ones [13, Obs. 2.3.10]. Thus it ought to be possible to mix and match quite freely,
perhaps even using heuristic search to look for efficient structures automatically.

As for regions, any coefficient matrix and radius vector yields a valid linear
ambit, usable as a region or a query. For a query ambit Q with coefficient vector
c and radius s, and a region ambit R with coefficient vector a and radius r, with
a or c non-negative and ‖a‖1, ‖c‖1 = 1, if R and Q intersect, then

r + s > aZct , (11.1)

where zij is the distance between focus pi of R and focus qj of Q [13, Thm3.1.2].
With this overlap check, one can use ambit queries with existing index structures,

and one could extend existing indexes with additional regions, without adding
any distance computations. In an tree structure where several points are explored
when deciding which subtrees to visit, arbitrary subsets of these could be used
to construct additional filtering predicates for any subtrees, merely by adding
radii and possibly coefficients.6

Finally, one may go beyond the limits of linearity. For example, using any
(multi-parameter) non-decreasing metric-preserving function f to calculate re-
moteness, we may still use the original overlap check (2.2) [13, § 3.5]. This opens
the door to a wide range of learning and optimization methods for adapting
regions to points in ways that improve search performance.

References

1. Baeza-Yates, R., Cunto, W., Manber, U., Wu, S.: Proximity matching using fixed-
queries trees. In: Annual Symposium on Combinatorial Pattern Matching. pp. 198–
212. Springer (1994). doi:10.1007/3-540-58094-8_18

2. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21th
International Conference on Very Large Data Bases. pp. 574–584 (1995)

3. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
munications of the ACM 16(4), 230–236 (1973). doi:10.1145/362003.362025

4. Carlsen, S.M.Ø., Moe, H.H.: Similarity Search in Metric Spaces with Weighted
Multi-Focal Regions: Using the Ambit Region Type to Improve the Performance
of the SSS-Tree. Master’s thesis, Norwegian University of Science and Technology
(2020)

5. Chávez, E., Navarro, G.: A compact space decomposition for effective metric in-
dexing. Pattern Recognition Letters 26(9), 1363–1376 (2005). doi:10.1016/j.patrec.
2004.11.014

6. Chen, L., Gao, Y., Song, X., Li, Z., Miao, X., Jensen, C.S.: Indexing metric spaces
for exact similarity search. arXiv preprint arXiv:2005.03468 (2020)

7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An effcient access method for similarity
search in metric spaces. In: Proceedings of the 23rd VLDB conference, Athens,
Greece. pp. 426–435 (1997)

8. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: Separable splits of metric data
sets. In: Proceedings of the Nono Convegno Nazionale Sistemi Evoluti per Basi di
Dati (2001)

9. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: Distance searching index
for metric data sets. Multimedia Tools and Applications 21(1), 9–33 (2003). doi:
10.1023/A:1025026030880

10. Edsberg, O., Hetland, M.L.: Indexing inexact proximity search with distance re-
gression in pivot space. In: Proceedings of the Third International Conference
on SImilarity Search and APplications. pp. 51–58 (2010). doi:10.1145/1862344.
1862353

11. Figueroa, K., Chávez, E., Navarro, G., Paredes, R.: Speeding up spatial approxi-
mation search in metric spaces. Journal of Experimental Algorithmics (JEA) 14,
3–6 (2010). doi:10.1145/1498698.1564506

6 This approach has been tentatively explored by my students Carlsen and Moe [4].

http://doi.org/10.1007/3-540-58094-8_18
http://doi.org/10.1145/362003.362025
http://doi.org/10.1016/j.patrec.2004.11.014
http://doi.org/10.1016/j.patrec.2004.11.014
http://doi.org/10.1023/A:1025026030880
http://doi.org/10.1023/A:1025026030880
http://doi.org/10.1145/1862344.1862353
http://doi.org/10.1145/1862344.1862353
http://doi.org/10.1145/1498698.1564506

12. Hetland, M.L.: The basic principles of metric indexing. In: Swarm intelligence
for multi-objective problems in data mining, pp. 199–232. Springer (2009). doi:
10.1007/978-3-642-03625-5_9

13. Hetland, M.L.: Comparison-based indexing from first principles. arXiv preprint
arXiv:1908.06318 (2019)

14. Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest
point problem. IEEE Transactions on Software Engineering (5), 631–634 (1983).
doi:10.1109/TSE.1983.235263

15. Lokoč, J., Moško, J., Čech, P., Skopal, T.: On indexing metric spaces using cut-
regions. Information Systems 43, 1–19 (2014). doi:10.1016/j.is.2014.01.007

16. Lokoč, J., Skopal, T.: On applications of parameterized hyperplane partitioning.
In: Proceedings of the Third International Conference on Similarity Search and
Applications. pp. 131–132. ACM (2010). doi:10.1145/1862344.1862370

17. Micó, M.L., Oncina, J.: A new version of the nearest-neighbour approximating and
eliminating search algorithm (AESA) with linear preprocessing time and memory
requirements. Pattern Recognition Letters 15(1), 9–17 (1994). doi:10.1016/0167-
8655(94)90095-7

18. Murakami, T., Takahashi, K., Serita, S., Fujii, Y.: Probabilistic enhancement of ap-
proximate indexing in metric spaces. Information Systems 38(7), 1007–1018 (2013).
doi:10.1016/j.is.2012.05.012

19. Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB
Journal 11(1), 28–46 (2002). doi:10.1007/s007780200060

20. Skopal, T., Pokornỳ, J., Snasel, V.: PM-tree: Pivoting metric tree for similarity
search in multimedia databases. In: ADBIS (Local Proceedings) (2004)

21. Socorro, R., Micó, L., Oncina, J.: A fast pivot-based indexing algorithm for met-
ric spaces. Pattern Recognition Letters 32(11), 1511–1516 (2011). doi:10.1016/j.
patrec.2011.04.016

22. Uhlmann, J.K.: Metric trees. Applied Mathematics Letters 4(5), 61–62 (1991).
doi:10.1016/0893-9659(91)90146-M

23. Vidal Ruiz, E.: An algorithm for finding nearest neighbours in (approximately)
constant average time. Pattern Recognition Letters 4(3), 145–157 (1986). doi:10.
1016/0167-8655(86)90013-9

24. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proceedings of the fourth annual ACM-SIAM Symposium on
Discrete algorithms. pp. 311–321. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (1993)

25. Yianilos, P.N.: Excluded middle vantage point forests for nearest neighbor search.
In: In DIMACS Implementation Challenge, ALENEX’99 (1999)

http://doi.org/10.1007/978-3-642-03625-5_9
http://doi.org/10.1007/978-3-642-03625-5_9
http://doi.org/10.1109/TSE.1983.235263
http://doi.org/10.1016/j.is.2014.01.007
http://doi.org/10.1145/1862344.1862370
http://doi.org/10.1016/0167-8655(94)90095-7
http://doi.org/10.1016/0167-8655(94)90095-7
http://doi.org/10.1016/j.is.2012.05.012
http://doi.org/10.1007/s007780200060
http://doi.org/10.1016/j.patrec.2011.04.016
http://doi.org/10.1016/j.patrec.2011.04.016
http://doi.org/10.1016/0893-9659(91)90146-M
http://doi.org/10.1016/0167-8655(86)90013-9
http://doi.org/10.1016/0167-8655(86)90013-9

	Metrics and Ambits and Sprawls, Oh My

