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Abstract. We study the bifurcation of periodic travelling waves of
the capillary-gravity Whitham equation. This is a nonlinear pseudo-
differential equation that combines the canonical shallow water nonlin-
earity with the exact (unidirectional) dispersion for finite-depth capillary-
gravity waves. Starting from the line of zero solutions, we give a com-
plete description of all small periodic solutions, unimodal as well bi-
modal, using simple and double bifurcation via Lyapunov–Schmidt re-
ductions. Included in this study is the resonant case when one wavenum-
ber divides another. Some bifurcation formulas are studied, enabling
us, in almost all cases, to continue the unimodal bifurcation curves into
global curves. By characterizing the range of the surface tension param-
eter for which the integral kernel corresponding to the linear dispersion
operator is completely monotone (and therefore positive and convex;
the threshold value for this to happen turns out to be T = 4

π2 , not

the critical Bond number 1
3
), we are able to say something about the

nodal properties of solutions, even in the presence of surface tension.
Finally, we present a few general results for the equation and discuss,
in detail, the complete bifurcation diagram as far as it is known from
analytical and numerical evidence. Interestingly, we find, analytically,
secondary bifurcation curves connecting different branches of solutions;
and, numerically, that all supercritical waves preserve their basic nodal
structure, converging asymptotically in L2(S) (but not in L∞) towards
one of the two constant solution curves.

1. Introduction

We consider periodic travelling wave solutions of the capillary-gravity
Whitham equation

ut +MTux + 2uux = 0 (1.1)
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where MT is a Fourier multiplier operator defined via its symbol mT as

M̂T f(ξ) = mT (ξ)f̂(ξ) =

(
(1 + Tξ2) tanh(ξ)

ξ

) 1
2

f̂(ξ), (1.2)

and the coefficient T > 0 denotes the strength of the surface tension. The
symbol mT arises as the linear dispersion relation for capillary-gravity water
waves over a finite depth described by the Euler equations [24]. In the purely
gravitational case, that is, when T = 0, the use of this symbol was proposed
by Whitham as a way to generalise the KdV equation and remedy its strong
dispersion [33]. Bifurcation in the gravitational setting has been investigated
in [12, 13, 15]. We are here interested in completely characterising the local
theory for travelling wave solutions of (1.1), and understanding their global
extensions.

The overarching technique follows an approach similar to that used for
the gravity Whitham equation in [13] and the Euler equations in [9], where a
Lyapunov–Schmidt reduction is used to prove the existence of wave solutions
through the application of the implicit function theorem. Here, however, the
symbol of the linear dispersion has a different large-frequency behaviour:
whereas it is ∼ |ξ|−1/2 in the gravity case, it changes to ∼ |ξ|1/2 in the
presence of surface tension. Inspired by recent work on large waves for
very weakly dispersive equations, we tackle the equation by inverting the
linear operator, see (2.3), presenting us with a smoothing operator with good
properties but that now acts nonlocally on a nonlinear term. Apart from the
results presented in this paper, we see this as a first step toward handling
large-amplitude theory for equations with mixed nonlocal and nonlinear
terms. A study in that direction, but with a different order and global
structure of the solutions, has been carried out in [2].

The organisation of the paper correspond to the development of our the-
ory:

We start, in Section 2, with a study of the inverse of the Fourier multi-
plier operator M in (1.2). This is a smoothing operator of order −1

2 on any
Fourier-based scale of functions spaces (such as the Sobolev and Zygmund
spaces), that is realised as a convolution operator with a surface tension-
dependent integral kernel KT . We characterise the kernel KT in Theo-
rem 2.7, expressing it as a sum of three terms that are, optimally, in the

regularity classes C− 1
2 , C− 3

2 and Cω, respectively, where Cs is the scale of
Zygmund spaces, and Cω is the class of real-analytic functions. This is dif-
ferent from the regular Whitham symbol which, although of the same order,
has only two canonical when decomposed in the same manner [15]. As in [15]
we apply complex analysis techniques and the theory of Stieltjes functions
to determine further properties of the convolution kernel, in particular the
signs of its derivatives to infinite order. When the surface tension is big
enough, T > 4

π2 , we are able in Theorem 2.6 to show that the kernel is
completely monotone, a delicate structural property shared by the kernel for
the linear dispersion in the pure gravity case (not its inverse). Moreover, we
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can show that neither complete monotonicity or monotonicity on a half-line
is preserved if 0 < T < 4

π2 , showing in effect that the critical Bond number
1
3 separating weak from strong surface tension is not the break-off value for
the positivity of the kernel (or its stronger properties). Finally, we give in
Section 2 the decay rate of KT and its compactness properties in suitable
spaces.

In Section 3 we perform the one-dimensional bifurcation of periodic waves
from simple eigenvalues along the line of zero solutions. After an initial dis-
cussion of the eigenvalues of the linearised operator, and a scaling to reduce
the problem to a fixed period, we use Lyapunov–Schmidt reduction to prove
the existence of small-amplitude solutions in a vicinity of the simple eigen-
values (expressed using the wavespeed) in Theorem 3.1. The constructed
waves are all unimodal and bell-shaped in a minimal period. They arise
for both strong and weak surface tension; for strong surface tension they
are the only type of waves in a Cs(S)-vicinity of the line of zero solutions,
s > 0. Although one could have carried out the simple bifurcation using the
Crandall–Rabinwitz theorem [21], we choose to prove Theorem 3.1 using a
Lyapunov–Schmidt reduction as a preparation for the two-dimensional case
(which would otherwise be harder to understand). Under a simple condition
that relates the wavenumber to the surface tension and period, we prove the
continuation of the local solution curves to global ones in Theorem 3.6. This
condition may be related to sub- and supercritical bifurcation, and we see
in Remark 3.7 that both cases can appear. The modulational stability of
these waves in the small-amplitude case has been studied in [18]

A challenge and interesting feature of the capillary-gravity case is that
weak surface tension allows for a non-monotone dispersion relation (see Fig-
ure 1) and double eigenvalues of the corresponding linearised operator (in
spaces of even functions). We handle this case in Section 4. To analytically
capture the larger dimension of the space of solutions nearby the trivial ones,
one requires an additional free parameter in addition to the wavespeed, used
in the one-dimensional bifurcation. In line with [14] we choose to use the
period as this extra parameter, while holding the surface tension fixed. The
result, presented in Theorem 4.1, depends on the resonances between the
two frequencies appearing in the nullspace: if one of the wavenumbers is
a multiple of the other, one obtains a slit disk of solutions, excluding bi-
furcation straight in the direction of the higher wavenumber; if not, one
obtains a full open disk of solutions, see Figure 2. These results are in
line with similar ones in [9, 26, 30], and include — when projecting the full
disk onto a fixed period — a curve of bimodal rippled waves connecting
waves of different wavenumbers (secondary bifurcation). The existence of
these interconnecting branches of waves have been corroborated numerically,
showing persistence with respect to perturbations in the surface tension pa-
rameter [27]. The nonexistence of the pure higher mode in the resonant
case of Theorem 4.1 (ii) has also been confirmed numerically in the same
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paper. More generally, Wilton ripples, as these kinds of waves are some-
times called, have earlier been found to exist for the Euler equations with
surface tension [26, 30], and their spectral stability has been numerically
investigated in [31]. They also exist in the presence of vorticity [25], even
without capillarity [9, 14]. In that case, one may even construct arbitrary
large kernels [1,10], and corresponding multi-dimensional solution sets [23].

Our motivation for this investigation has arisen from two different di-
rections: one is the study of the (very) weakly dispersive equations with
nonlocal nonlinearities, and especially their large-amplitude theories; the
other is the mathematically qualitative analogues between the full water-
wave problem and the family of fully dispersive Whitham-type equations.
While numerical bifurcation of steady water waves with surface tension have
been earlier carried out [4], and display striking resemblances to our case,
it is not known how to control the waves along the bifurcation curves when
surface tension is present, and our results show that, at least for weak surface
tension, the looping alternative in Theorem 3.6 is possible. Our initial hope
was that, using methods as in [11,15], one would be able to say something for
larger waves. In Section 5 we turn to this question, as well as discussing the
general picture of bifurcation in the capillary-gravity Whitham equation.
While we are indeed able to say something, preserving the nodal proper-
ties to O(1)-height of the solutions in Proposition 5.4, the final evolution of
solution curves is very challenging to handle analytically. While both our
preliminary calculations and numerical simulations for this paper indicates
that one can follow curves of supercritical bell-shaped solutions all the way
to c → ∞, and that they converge, asymptotically in L2(S), towards the
curve of constant solutions u = c − 1, they do not converge in L∞, and
the analysis is complicated by that the equation lies exactly at the Sobolev-
critical balance s = 1

2 , p = 2 and n = 1. We discuss both our findings and
conjectures in detail in Section 5. For a quick overview, we refer to Figures 3
and 4.

Finally, we give in Appendix A some bifurcation formulas.

2. Properties of the convolution kernel KT

Traveling-wave solutions of the form u(x−ct) satisfy the (profile) equation

− cu+MTu+ u2 = 0, (2.1)

where we have integrated once and used Galilean invariance to set the con-
stant of integration to zero. Since mT is strictly positive on R, the operator
MT is invertible (for example in any Fourier-based space) with inverse LT
defined via

L̂T f(ξ) = lT (ξ)f̂(ξ), lT (ξ) = (mT (ξ))−1. (2.2)

In particular, the capillary-gravity Whitham equation (2.1) can be rewritten
in the “smoothing” form

u− cLT (u) + LT (u2) = 0, (2.3)
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where LT = KT ∗ and KT is the convolution kernel corresponding to the
symbol lT . Note that the form (2.3) is resemblant of the Whitham equation
itself, but with a nonlocal nonlinearity. By a solution of (2.1) (respectively
(2.3)), we shall mean a real-valued, continuous and bounded function u that
satisfies (2.1) (respectively (2.3)) everywhere.

In the rest of this work we shall make heavy use of the properties of the
convolution kernel KT and its symbol. Our choice of Fourier transform is

f̂(ξ) =

∫
R
f(x)e−ixξ dx.

To start, note that KT = F−1lT is smooth away from the origin with∫
R
KT (x) dx = lim

ξ→0
lT (ξ) = 1 (2.4)

and

lim
x→0

KT (x) =
1

2π

∫
R
lT (ξ) dξ = +∞.

Moreover, since lT is analytic, KT has rapid decay at ±∞, whence KT ∈
L1(R) provided that the blow-up at x = 0 is not too fast. In what follows,

we will show that the singularity at the origin is of order |x|− 1
2 (there is a

lower-order singularity appearing as well), and that the convolution kernel
is completely monotone for strong enough surface tension.

2.1. Montonicity and complete monotonicity. A function g : (0,∞)→
[0,∞) is called completely monotone if g is infinitely differentiable with

(−1)ng(n)(λ) > 0

for n = 0, 1, 2, . . . and all λ > 0. If it can furthermore be written in the form

g(λ) =
a

λ
+ b+

∫
(0,∞)

1

λ+ t
dσ(t)

for some constants a, b > 0, with σ a Borel measure satisfying
∫

(0,∞)
1

1+t dσ(t) <

∞, then it is called Stieltjes. Our interest in such functions is motivated by
the following two results, taken from [15] and [28].

Lemma 2.1. [15] Let f : R → R and g : (0,∞) → R be two functions
satisfying f(ξ) = g(ξ2) for ξ 6= 0. Then f is the Fourier transform of
an even, integrable, and completely monotone function if and only if g is
Stieltjes with limλ↘0 g(λ) <∞ and limλ→∞ g(λ) = 0.

Lemma 2.2. [28] Let g be a positive function on (0,∞). Then g is Stieltjes
if and only if limλ↘0 g(λ) exists in [0,∞] and g extends analytically to C \
(−∞, 0] such that Im(z) · Im(g(z)) 6 0.

With f(ξ) = lT (ξ) and g(ξ) = lT (
√
ξ) we want to employ the two above

results to conclude that KT = F−1(lT (ξ)) is completely monotone for T
sufficiently large. Since lT has a unit limit at the origin and a vanshing limit



6 EHRNSTRÖM, JOHNSON, MÆHLEN, AND REMONATO

at infinity, it only remains to prove that lT ◦
√· is Stieltjes. To this end,

define

%T (ζ) =
ζ

(1 + Tζ2) tanh(ζ)
, (2.5)

with ζ a complex number. We are interested in lT =
√
%T ,
√· denoting

the principal branch of the square root, and thus want to determine the
pre-image of (−∞, 0) together with the singularities of %T . Let furthermore

Zc =
{
π(k − 1

2) : k ∈ Z
}
,

Zs = {πk : k ∈ Z \ {0}} ,

ZT =
{
− 1√

T
, 1√

T

}
,

denote the set of zeros of cos(ζ), sin(ζ)
ζ , and 1 − Tζ2, respectively. Finally,

recall that the symmetric difference between two sets A and B is the set
A4B of elements either in A and not B, or contrariwise∗

Lemma 2.3. Let ζ = ξ + iη. Then %T (ζ) takes a zero or infinite value
exactly if ξ = 0 and η ∈ Zs ∪ (Zc 4 ZT ). Further, %T (ζ) is negative exactly
when the following three conditions hold: ξ = 0, η /∈ Zs∪(Zc 4 ZT ), and the
intersection (0, |η|)∩

(
(Zc ∪ Zs)4ZT

)
contains an odd number of elements.

Proof. By the infinite product formulas for sinh ζ and cosh ζ we obtain

%T (ζ) =
1

1 + Tζ2

∞∏
n=1

1 + ζ2

π2(n− 1
2

)2

1 + ζ2

π2n2

. (2.6)

The first part of the lemma now follows immediately, where the symmetric
difference accounts for removable singularities should the term (1 + Tζ2)

coincide with a term of the form 1 + ζ2

π2(n− 1
2

)2
. For the second part we start

by showing that %T is never negative away from the imaginary axis. As %T
is symmetric about zero, we restrict our attention to ξ > 0. We have

Re
[

cosh(ζ)sinh(ζ)
]

=
1

2
sinh(2ξ) > 0,

Re
[
ζ (1 + Tζ2)

]
= ξ + ξT (ξ2 + η2) > 0,

and consequently | arg( ζ
1+Tζ2

)|, | arg( 1
tanh(ζ))| < π

2 . This in turn implies that

| arg(%T (ζ))| < π, and so %T (ζ) cannot be negative. Restricting our attention
to the imaginary axis (ζ = iη) and away from zeroes and singularities, it is
clear from (2.6) that %T (iη) is real valued and satisfies

sgn(%T (iη)) = sgn(1− Tη2)
∞∏
n=1

sgn
(

1− η2

π2(n− 1
2)2

)
sgn
(

1− η2

π2n2

)
.

∗That is, (A4B) = (A ∩Bc) ∪ (B ∩Ac).
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As %T (iη) is positive for η = 0, it is negative exactly when an odd number
of factors in the expression above has swapped sign. This is equivalent to
the last part of the lemma. �

According to Lemma 2.3 the real-valued function lT can be extended
analytically as lT =

√
%T outside of the zeroes and singularities of %T along

the imaginary axis. By noting that the function cosh(ζ)
1+Tζ2

has a removable

singularity at ζ = iπ/2 when T = 4/π2, as well as the fact that, with

ζ = ξ + iη,
√

C \ (−∞, 0] = Cξ>0, we can record the following result.

Corollary 2.4. The symbol lT extends analytically onto the strip R×i(−δ∗, δ∗),
where

δ∗ =

{
min{ 1√

T
, π2 }, T 6= 4/π2,

π T = 4/π2.

Hence, the function ζ 7→
√
%T (
√
ζ) is the unique analytic extension of lT ◦

√·
to C \ (−∞, 0].

We are now ready to prove Theorem 2.6, where we determine a critical
value T∗ = 4

π2 of the surface tension T , for which KT is completely monotone
whenever T > T∗. Note that T∗ does not correspond to the, likewise critical,
Bond number T = 1

3 that separates strong from weak surface tension; in

fact, T∗ >
1
3 . Further, this result is sharp since, as we will see, KT is not

monotone for T ∈ (0, T∗). To establish this, we make use of the class of so-
called positive definite functions. A function f : R→ C is said to be positive
definite if for every n ∈ N and ξ ∈ Rn the n × n matrix [f(ξi − ξj)]ni,j=1 is

positive semi-definite. We point out the following standard results [5].

Lemma 2.5. The following statements are true.

(i) [Bochner’s Theorem] Any positive definite function is the Fourier
transform of a non-negative, finite Borel measure.

(ii) [Shur’s Theorem] A countable product of positive definite functions
is positive definite.

(iii) If f : R → C is positive definite, then the global maximum of f
occurs at x = 0.

(iv) The function f(x) = 1+ax2

1+bx2
is positive definite if and only if b > a >

0.

With the above preliminaries, we now state the main result for this sec-
tion.

Theorem 2.6. For T > 4
π2 , the kernel KT is completely monotone on

(0,∞). Further, for 0 < T < 4
π2 the kernel KT is not monotone on (0,∞).

Proof. We first prove that KT is completely monotone for T > 4
π2 . By

Lemma 2.1 and Lemma 2.2 and the discussion thereafter, we conclude that

KT is completely monotone exactly if Im(ζ) · Im
√
%T (
√
ζ) 6 0 for ζ ∈

C \ (−∞, 0]. Moreover, this last property is satisfied exactly when it is
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satisfied for %T ◦
√·. Moving the first factor of cosh ζ out of the infinite

product in (2.6), we obtain

%T (ξ) =
1 + 4

π2 ξ
2

1 + Tξ2

∞∏
n=1

1 + ξ2

π2(n+ 1
2

)2

1 + ξ2

π2n2

. (2.7)

Substituting ξ 7→ √ζ in (2.7), and taking the complex argument of both
sides, we obtain

arg
(
%T
(√

ζ
))

=
[

arg
(

1 +
4

π2
ζ
)
− arg(1 + Tζ)

]
+
∞∑
n=1

[
arg
(

1 +
ζ

π2(n+ 1
2)2

)
− arg

(
1 +

ζ

π2n2

)]
.

(2.8)

This equation is valid whenever the right hand side takes values in (−π, π),
which in turn is always true in ζ ∈ C\(−∞, 0] as it is continuous in ζ, zero for
ζ > 0 and prevented from taking the values ±π as %T (

√
ζ) is never negative

(Lemma 2.3). When Im(ζ) > 0, it is easy to see that α 7→ arg(1 + αζ) is
strictly increasing for α > 0, and so each square bracket in (2.8) is negative

(the first non-positive), further implying Im(ζ) · Im
√
%T (
√
ζ) < 0. After a

similar argument for Im(ζ) < 0, we obtain the desired conclusion.
We now prove that KT is not a monotone function on (0,∞) for 0 <

T < 4
π2 . Since Theorem 2.7 guarantees that KT is positive near zero and

decays to zero at infinity, the existence of a point KT (x0) < 0 would rule out
monotonicity of KT . To this end, we note by Bochner’s theorem in Lemma
2.5(i) that KT is non-negative if and only if its Fourier transform lT is a
positive definite function; we now prove this is false when 0 < T < 4

π2 . Note

first that for 0 < T < 1
3 , this follows immediately from Lemma 2.5(iii) as lT

does not have a global maximum at ξ = 0 (see Figure 1). Suppose instead
that 1

3 6 T < 4
π2 . If lT is positive definite, then Lemma 2.5(ii) implies the

same would be true for its square ξ 7→ %T (ξ). To this end, we write (2.7) as

%T (ξ) =
1 + 4

π2 ξ
2

1 + Tξ2
ϕ(ξ),

which, after introducing the positive constants α = 4/(Tπ2) and β = α− 1,
can be further rewritten as

%T (ξ) =
(
α− β

1 + Tξ2

)
ϕ(ξ) =: αϕ(ξ)− βψ(ξ).

By Lemma 2.5, both ϕ and ψ are positive definite as they are (countable)

products of positive definite functions, and thus ϕ̂, ψ̂ > 0 by Bochner’s
Theorem. Note that ϕ has a complex analytic extension to the strip R ×
i(−π, π), while ψ can not be extended to a larger strip than R× i( −1√

T
, 1√

T
),

and so by the Paley-Wiener theorem, we have

0 <

∫
R
ϕ̂(x)eγx dx <∞ and

∫
R
ψ̂(x)eγx dx = +∞,
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which further implies that∫
R
%̂T (x)eγx dx = −∞.

By Bochner’s Theorem, ξ 7→ %T (ξ) is not positive definite, and so neither is
lT , which concludes the proof. �

Before we end this section, we note that there is a range of values of
strong surface tension T ∈ (1

3 ,
4
π2 ) where the kernel KT is not monotone.

As we will see, this has implications when trying to establish monotonicity
of solutions along the supercritical global solution branches described in
Section 3.3 below; see Proposition 5.4 and the discussion in Section 5 in
general.

2.2. Regularity properties and decay. In this subsection we split KT

according to its singularities, and determine the precise regularity of these
(there are two of them, both at the origin). We also record the rapid decay
and smoothing properties of KT . Write

lT = l− 1
2

+ l 3
2

+ lω,

with l− 1
2
(ξ) = 1√

T |ξ|
, l 3

2
(ξ) =

√
|ξ|

1+Tξ2
− 1√

T |ξ|
and lω(ξ) = lT (ξ)−

√
|ξ|

1+Tξ2
.

The subscripts represent the regularity of each corresponding term of KT ,

as will be seen. The decay of l− 1
2
(ξ) h |ξ|− 1

2 for |ξ| � 1 is clear, and for any

fixed T > 0, it is readily seen that

l 3
2
(ξ) h |ξ|− 5

2 ,

and

lω(ξ) =

√
ξ

1 + Tξ2

(√
coth(ξ)− 1

)
h ξ−

1
2 e−2ξ,

both for |ξ| � 1.
To establish the regularity of the corresponding parts of KT we shall use

Zygmund spaces. Let {ψ2
j }∞j=0 be a partition of unity with ψ0(ξ) supported

in |ξ| 6 1, ψ1(ξ) supported in 1
2 6 |ξ| 6 2, and ψj(ξ) = ψ1(21−jξ) for j > 2.

Then the support of each ψj is concentrated around ξ h 2j . With D = −i∂x,

the Fourier multiplier operators ψj(D) : f 7→ F−1(ψj f̂) characterises the
Zygmund spaces: we say u ∈ Cs(R) if

‖u‖Cs(R) = sup
j

2js ‖ψ2
j (D)u‖L∞ (2.9)

is finite. For non-integer values of s > 0 the Zygmund spaces coincide with
the standard (inhomogeneous) Hölder spaces†,

Cs(R) ∼= Cs(R), s ∈ R+ \ N0,

†Throughout, we use the notation that N0 := N ∪ {0}.
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and one furthermore has the embedding Ck(R) ↪→ Ck(R) for integer values
of k. We refer the reader to [29, Section 13.8] and [16, Section 1.4] for further
details.

Now, the symbols l− 1
2
, l 3

2
and lω all have well-defined Fourier transforms,

and we let

K− 1
2
(x) = F−1(1/

√
T |·|)(x),

K 3
2
(x) = F−1(l 3

2
)(x),

Kω(x) = F−1(lω)(x),

so that
KT (x) = F−1(lT )(x) = K− 1

2
(x) +K 3

2
(x) +Kω(x).

From Fourier analysis we know that F−1(1/
√
|·|)(x) = 1/

√
2π|x| and, ad-

ditionally, that the exponential decay of lω(ξ) for |ξ| � 1 implies that Kω is
real-analytic by the Paley–Wiener theorem. The optimal regularity of K 3

2

follows from the following theorem about the integral kernel KT .

Theorem 2.7. The integral kernel KT may be written as

KT (x) =
1√

2πT |x|
+K 3

2
(x) +Kω(x),

where the second term belongs to the optimal Hölder class C
3
2 and the third

is real-analytic. The singularity of KT thus has the characterization

lim
x→0

√
|x|KT (x) =

1√
2πT

.

Moreover,

|KT (x)| . e−δ|x| for |x| > 1,

with δ < δ∗ as given in Corollary 2.4. As a consequence, KT ∈ L1(R).

Proof. Most of the first claim was established in the preceding discussion:

only the regularity of K 3
2

remains. We have ψ2
j (D)K 3

2
= F−1

(
ψ2
j l 3

2

)
and,

using the L1-norm to estimate the infinity norm, we have that

‖ψ2
j (D)K 3

2
‖L∞ .

∫ 2j

2j−2

|l 3
2
(ξ)| dξ .

∫ 2j

2j−2

ξ−
5
2 dξ h 2−

3
2
j .

Thus
sup
j

2
3
2
j ‖ψ2

j (D)K 3
2
‖L∞ . 1,

which proves that K 3
2
(x) ∈ C 3

2 (R). As for the decay rate of KT , it is a direct

consequence of Corollary 2.4 and the Paley–Wiener theorem. �

We conclude this section by recording some mapping properties of the
convolution operator LT = KT ∗. Let S be the one-dimensional unit sphere
of circumference 2π, and note that the Hölder and Zygmund spaces are
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straightforward to define on the compact manifold S (these are the 2π-
periodic functions in the larger spaces Cs(R) and Cs(R)).

Lemma 2.8. For each T > 0 and each s > 0, LT is a continuous linear
mapping Cs(R)→ Cs+1/2(R) and is hence compact on Cs(S).

Proof. Let u ∈ Cs(S). Using that ψ2
j (D)u = F−1(ψ2

j (ξ)û(ξ)), a straight-
forward calculation using the boundedness and decay rate of lT h l− 1

2
for

|ξ| � 1 shows that ‖ψ2
j (D)LTu‖L∞ 6 2−

j
2

+2‖ψ2
j (D)u‖L∞ . We then have

sup
j

2j(s+
1
2

) ‖ψ2
j (D)LTu‖L∞ . sup

j
2js ‖ψ2

j (D)u‖L∞ ,

which proves the first assertion. Since S is compact it follows that the

embedding Cs+ 1
2 (S) ↪→ Cs(S) is compact as well, and thus L is a compact

operator on any Zygmund (or Hölder, or Ck) space defined over S. �

3. One-dimensional bifurcation

Since K ∈ L1(R), it may be periodised to an arbitrary period. In partic-
ular, given a 2π-periodic f ∈ L∞(R) we can define the action of LT = KT ∗
on f through a convolution of f with a 2π-periodic kernel Kp over a single
period:

LT f(x) =

∫
R
KT (x− y)f(y) dy =

∫ π

−π

(∑
k∈Z

KT (x− y + 2kπ)

)
f(y) dy

=:

∫ π

−π
Kp(x− y)f(y) dy.

Clearly Kp is even, strictly positive on R and satisfies ‖Kp‖L1(−π,π) = 1.
Further, by Theorem 2.7 we know that Kp is smooth on R \ 2πZ, and that
for T > 4

π2 it follows by Theorem 2.6 and [15, Proposition 3.2] that Kp

completely monotone function on the half period (0, π). To find nontrivial
solutions of the equation (2.1), or, equivalently, of (2.3), we fix s > 1/2 and
define a map F : Cseven(S)× R→ Cseven(S) via

F (u, c) = u− cLT (u) + LT (u2), (3.1)

where Cseven(S) is the subspace of even functions in Cs(S). Note this map
is well-defined since Cseven(S) is a Banach algebra for any s > 0. Then the
roots of F correspond to the even and 2π-periodic solutions of (2.1) with
wavespeed c. The choice s > 1

2 is by convenience, as functions of that
regularity have absolutely convergent Fourier series [20].

Now, we begin with the observation that F (0, c) = 0 for all c ∈ R and
that the linearised operator

DuF [0, c] = Id− cLT
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(a) ξ0

�T(ξ)

0 < T < 1 /3

1

(b)

�T(ξ)

ξ0

T > 1 /3

1

Figure 1. Schematic drawings of the behavior of the symbol lT (ξ) for (a)
weak surface tension 0 < T < 1/3 and for (b) strong surface tension T > 1/3.

In both cases, the symbol is strictly positive and decays as |ξ|−1/2 as |ξ| → ∞.

has a nontrivial kernel in Cseven(S) if and only if c lT (k) = 1 for some k ∈ N0

(we intentionally include the case k = 0 as it will play a role in the two-
dimensional bifurcation to come). Consequently, for a fixed c ∈ R we have

kerDuF [0, c] = span {cos(kx) : k ∈ N0 such that clT (k) = 1} , (3.2)

and hence the multiplicity of the kernel depends sensitively on the graph
of the function lT (ξ). In particular, if T > 1/3 then lT (ξ) is monotone
decreasing on R+ and hence the above kernel is simple: see Figure 1. If
0 < T < 1/3, however, the function lT has exactly one local extremum
(a maximum) in the interior of R+, whence opening the possibility of two
different positive integers for which lT (m) = lT (k): again, see Figure 1. A
simple calculation shows that for a fixed k ∈ N0, the kernel will be simple if
and only if T /∈ {T∗(n; k)}n∈N0 , where‡

T∗(n; k) :=
n tanh(k)− k tanh(n)

kn (n tanh(n)− k tanh(k))
,

while it will have multiplicity exactly two when T = T∗(n; k) for some
n ∈ N0. Note for each fixed k that the function T∗(·; k) is strictly de-
creasing on N0 with T∗(n; k) → 0 as n → ∞. Furthermore, the quantity
maxn∈N0 T∗(n; k) = T∗(0; k) is a strictly decreasing function of k on N0

tending to zero as k →∞.
Throughout the remainder of this section, we turn our attention to the

branches of solutions {(u, c)} bifurcating from the trivial line u = 0 at some
wavespeed c∗ for a fixed value of the surface tension T > 0 and where
kerDuF [0, c∗] is one-dimensional; two-dimensional bifurcation in the case
0 < T < 1

3 is dealt with in Section 4. Note that while one-dimensional
kernels appear both for sub- and supercritical wave speeds, separated by
c = 1, two-dimensional kernels only appear for c ∈ (0, 1]: see Section 4
below.

‡Note that the function T∗(·; ·) can be extended to the cases n = 0 and k = 0 through
continuity.
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3.1. The parameters. To investigate the bifurcations we will make use in
the following sections of three positive quantities — the wavespeed c, the
surface tension T , and a scaling in the period of the waves, κ. While the
first two appear directly in the steady problem (2.1), the scaling ξ 7→ κξ
is realised by introducing the corresponding dependence in the convolution
operator L, so that

L̂κ,T (ξ) = lκ,T (ξ) := lT (κξ). (3.3)

This operator agrees with the original one for κ = 1. In particular, find-
ing 2π-periodic solutions of (2.1) with symbol Lκ,T is equivalent to finding
2π/κ-periodic solutions of (2.1) with symbol LT = L1,T . This allows us to
treat different wavelengths in the same equation by moving the wavelength
parameter to Lκ,T . In what follows, we will thus modify (3.1) and seek
non-trivial solutions of the map

Fκ(u, c) = u− cLκ,T (u) + Lκ,T
(
u2
)

(3.4)

in Cseven(S)× R for a fixed κ > 0.
Since surface tension is a property of the medium, while the speed and

wavenumber are properties of particular waves, it is physically more relevant
to use the two latter as bifurcation parameters, while holding the surface
tension fixed. This is what we will do in the following.

3.2. Local bifurcation via Lyapunov–Schmidt. The following theorem
establishes, for fixed wavelength and surface tension, the local bifurcation
of small amplitude steady solutions the capillary-gravity Whitham equation
(1.1). Although this is by now a standard Crandall–Rabinowitz type result
[21], we prove the result using a direct Lyapunov–Schmidt reduction as to
prepare for the two-dimensional bifurcation in Section 4. This is similar to
the strategy in [9]. As κ and T will be fixed — assuming that we already
have a one-dimensional kernel as described in the beginning of this section
— we shall here suppress the dependence upon these parameters.

Theorem 3.1. Let k ∈ N and set c0 = lκ,T (k)−1. For any T, κ > 0 such
that dim kerDuFκ(0, c0) = 1 there exists a smooth curve

{(u(t), c(t)) : 0 < |t| � 1}
of small-amplitude, 2π-periodic even solutions of the steady capillary-gravity
Whitham equation (2.1) with symbol given by (3.3). These solutions satisfy

u(t) = t cos(kx) +O(t2)

c(t) = c0 +O(t).

in Cseven(S)×R, and constitute all nontrivial solutions in a neighbourhood of
(0, c0) in that space.

Remark 3.2. There is an additional but qualitatively different bifurcation
taking place at c = 1, where the straight curve of constant solutions (u, c) =
(c − 1, c) crosses the trivial solution curve (0, c). These solutions must be
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taken into consideration when constructing non-constant waves at c = 1
when the kernel is two-dimensional, see Theorem 4.1.

Remark 3.3. By considering the role of κ in the proof of Theorem 3.1 one
can see that by varying κ one obtains a one-dimensional family of solution
curves, the starting points of which depend smoothly on κ. This may be
seen also by applying the implicit function theorem directly to 3.1. For each
k ∈ N we thus obtain a two-dimensional sheet of solutions,

Sk = {(u(t, κ), c(t, κ), κ) : 0 < |t| � 1, |κ− κ0| � 1} (3.5)

parameterised by (t, κ) in a neighbourhood of a bifurcation point (0, κ0).

Proof. As stated above, we suppress the dependence on the fixed parameters
T and κ throughout. According to the assumptions and the discussion after
(3.2), on Cseven(S) we have

kerDuF (0, c0) = ker(Id− c0L) = span{cos(k·)}.
We first write

u(t) = t cos(kx) + v(t),

c(t) = c0 + r(t),

with v(t) ∈ Cseven(S) such that
∫ π
−π cos(kx)v dx = 0 and r(t) ∈ R, and

proceed to show the existence of v and r such that for |t| � 1 we have

F (t cos(kx) + v(t), c0 + r(t)) = 0. (3.6)

As a subspace of L2(S), we equip Cseven(S) with the L2 inner product 〈f, g〉 =
1
π

∫ π
−π fg dx and let Π: Cseven(S) → kerDuF (0, c0) be the projection onto

span{cos(k·)} parallel to ran(DuF (0, c0)). Since DuF (0, c0) is a symmet-
ric Fredholm operator with index 0 by Corollary 3.5 below, it follows that
Cseven(S) may be decomposed as a direct sum between its kernel and range.
In particular, (3.6) is equivalent to the system of equations

ΠF (t cos(kx) + v, c0 + r) = 0,

(I −Π)F (t cos(kx) + v, c0 + r) = 0,
(3.7)

where we have suppressed the t-dependence in v and r. Noting that

F (t cos(kx) + v, c0 + r)

= t cos(kx) + v − (c0 + r)L(t cos(kx) + v) + L(t cos(kx) + v)2

= DuF (0, c0)(v + t cos(kx))

− rL(t cos(kx) + v) + L(t cos(kx) + v)2,

and that cos(k·) is in the kernel of DuF (0, c0), the equation (3.6) may be
rewritten as

DuF (0, c0)v = rL(t cos(kx) + v)− L(t cos(kx) + v)2 =: g(t, r, v) (3.8)
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and hence, recalling that v ∈ (1 − Π)Cseven(S), (3.7) is equivalent to the
system

0 = Πg(t, r, v)

DuF (0, c0)v = (Id−Π)g(t, r, v).
(3.9)

Finally, observe that since DuF (0, c0) is invertible on (I − Π)Cseven(S), the
second equation in (3.9) can be rewritten as

v = [DuF (0, c0)]−1(Id−Π)g(t, r, v).

Concerning this latter equation, note that at (t, r) = (0, 0) we have both
that v = 0 is a solution and that the Frechèt derivative with respect to v
is invertible on (Id−Π) Cseven(S) (because DuF (0, c0) is). Therefore, by the
implicit function theorem on Banach spaces, the second line of (3.9) has
a unique solution v(t, r) ∈ (Id − Π) Cseven(S) defined in a neighbourhood of
(t, r) = (0, 0), and depending analytically on its arguments. By uniqueness,
v(0, r) = 0 for all |r| � 1. Moreover, differentiation with respect to t at
(t, r) = (0, 0) in (3.8) shows that ∂

∂tv(0, r) = 0, which implies that v has no
constant or linear terms in t. As it is smooth in t, it may be expanded in
an (at least) quadratic series around t = 0.

We now need to solve the equation

Πg(t, r, v(t, r)) = Q(r, t) cos(kx) = 0

for r, with

Q(t, r) := 〈g(t, r, v(t, r)), cos(k·)〉.
Notice that that Q(0, r) = 0 since v(0, r) = 0 for all r, which together with
the symmetry of L implies that we can write

Q(t, r) = t [r l(k) +R(t, r)] ,

where R is analytic with R(0, 0) = ∂rR(0, 0) = 0, again due to the properties
of v (here, l = lT,κ). An application of the implicit function theorem to the
equation r l(k)π+R(t, r) = 0 at (t, r) = (0, 0) then yields the existence of a
locally unique smooth function r : t 7→ r(t) with r(0) = 0 such that

Q(t, r(t))) = t(r(t) l(k) + R̃(t, r(t))) = 0

for all |t| � 1. This concludes the proof. �

3.3. Global bifurcation (analytic). We now extend the local bifurcation
curves from Section 3.2 to global ones by the means of the analytic bifurca-
tion theory pioneered by Dancer [7,8] and then developed further by Buffoni

and Toland [6]. For fixed s > 1/2, we define N : Cseven(S) × R → Cs+1/2
even (S)

by

N(u, c) = L(cu− u2).

Fixed points of N are solutions of the steady capillary-gravity Whitham
equation (2.1), and conversely. Let

S = {(u, c) ∈ Cseven(S)× R : F (u, c) = 0}
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be the set of solutions (fixed points of N). Note that Lemma 2.8 implies
that S ⊂ C∞even ×R, so that all solutions are smooth: for details, see Propo-
sition 5.1 below. By combining this with a diagonal argument one obtains
the following compactness result.

Lemma 3.4. Bounded and closed sets in S are compact in Cseven(S)× R.

Proof. Let K ⊂ S ⊂ Cseven(S)×R be closed and bounded, and pick a sequence
(uj , cj)j ⊂ K. Since {c ∈ R : (u, c) ∈ K} is a closed and bounded subset of
R, it is compact. This means that (cj)j has a convergent subsequence, name
it (ck)k. As the map

Cseven(S)× R 3 (u, c) 7→ cu− u2 ∈ Cseven(S)

is continuous for s > 1/2, and since the map L is compact on Cseven(S)
thanks to Lemma 2.8, it follows that after passing to a further subsequence
(ul, cl)l ⊂ K that (N(ul, cl))l converges in Cseven(S) to some function u. Since
ul = N(ul, cl) by definition, passing to limits implies the sequence (ul, cl)l
converges in Cseven(S)×R with limit (u, c) ∈ S. As K is closed it follows that
(u, c) ∈ K, establishing that K is compact. �

Corollary 3.5. The Frechèt derivative DuF (u, c) is a Fredholm operator of
index 0 at any point (u, c) ∈ Cseven(S)× R.

Proof. This follows immediately from Lemma 3.4 as then

DuF (u, c) = Id− L(c− 2u)

is a compact perturbation of the identity. �

Theorem 3.6. Whenever

3c0l(2k)− l(2k)− 2

(c0 − 1)(c0l(2k)− 1)
(3.10)

is finite and non-vanishing the local bifurcation curve t 7→ (u(t), c(t)), |t| �
1, from Lemma 3.1 extends to a continuous and locally analytically re-
parameterisable curve in Cseven(S) × R defined for all t ∈ [0,∞). One of
the following alternatives holds:

(i) ‖(u(t), c(t))‖Cs(S)×R →∞ as t→∞.
(ii) t 7→ (u(t), c(t)) is P -periodic for some finite P , so that the curve

forms a loop.

Remark 3.7. We note that

c̈(0; k) =


10

(3T − 1)k2
+O(1) for |k| � 1

− (
√

2− 1)(Tk)−1/2 +O
(
k−1

)
for k � 1.

For T > 1/3 it follows that (0, c0) undergoes a supercritical pitchform bifur-
cation for small k, and a subcritical pitchfork bifurcation for large k. Note
numerically, we observe there exists a unique k∗ = k∗(T ) > 0 such that
c̈(0) > 0 for 0 < k < k∗ and c̈(0) < 0 for k > k∗. For 0 < T < 1/3, both
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the numerator and denomenator of (3.10) change signs. Note that one may

be able to do global bifurcation when c̈(0) = 0 but inspecting c(4)(0): see, for
example, [15, Theorem 6.1]. We do not pursue this here.

Proof. This theorem is a version of the global analytic bifurcation theorem
in [6], and — apart from the bifurcation formulas — the proof goes as in
the purely gravitation case in [13, 15]. The assumptions are fulfilled from
Lemma 3.4 and Corollary 3.5 if one can just show that some derivative
c(k)(0) is non-vanishing. We give the calculations for ċ(0) and c̈(0) in the
Appendix; the first is 0, and the second is given by (3.10). Note that a third
alternative in the theorem in [6] does not happen here, as the set Cseven(S)×R
lacks a boundary. �

There are a few more things one can say about the global bifurcation
curves, both numerically and analytically, and we discuss the global bifur-
cation diagram in detail in Section 5. In particular, the cases of strong and
weak surface tension are summarised in Figures 3 and 4, respectively.

4. Two-dimensional local bifurcation

We now focus our attention on the case of a two-dimensional bifurcation
kernel in Cseven(S). To enable the necessary two degrees of freedom we shall
make use of the wavelength κ in addition to the wavespeed c, while the
surface tension T is assumed to be fixed. We shall therefore study for κ > 0
the operator

Fκ(u, c) = u+ Lκ(u2 − cu)

on Cseven(S)× R, along with its linearisation

L = DuFκ0(0, c0) = Id− c0Lκ0 ,

assuming that T, κ0, c0 > 0 are constants such that

ker(L) = span{cos(k1·), cos(k2·)}, (4.1)

which happens when κ0, c0 > 0 and k1, k2 ∈ N0, k1 6= k2, are such that

c0 = lκ0(k1)−1 = lκ0(k2)−1,

as described at the start of Section 3 (we suppress the dependence on T , as
it will not be used apart from in this assumption). A two-dimensional kernel
can arise only for c0 ∈ (0, 1]. Let now 1 6 k1 6 k2. With Sk being the sheet
of 2π/k-periodic solutions defined in (3.5) we shall show that in addition to
the solutions in Sk1 and Sk2 , we may obtain solutions in a set called Smixed
consisting of perturbations of functions in the span of cos(k1·) and cos(k2·).
Assuming that k1 6 k2, the resonant case when k2 is an integer multiple
of k1 (sometimes referred to as Wilton ripples) is more difficult than the
generic case, but we follow here the procedure in [9, 14] to construct a slit
disk of solutions also in that case. Numerical calculations indicate that this
set is optimal [27].
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When one of the wavenumbers is zero (meaning c0 = 1), we instead
call that one k2, and we will automatically have the resonant case, as then
k1 | k2. That case is included in the below theorem. Hence, at c = 1 there
is a nontrivial bifurcation, but the arising waves always have a non-zero
component in the constant direction.

Theorem 4.1. Let T > 0 be fixed and assume that (4.1) holds for some
distinct k1, k2 ∈ N0.

(i) When k1 does not divide k2 there is a full, smooth, sheet

Smixed = {(u(t1, t2), c(t1, t2), κ(t1, t2)) : 0 < |(t1, t2)| � 1}

of solutions in Cseven(S)× R× R+ of the form

u(t1, t2) = t1 cos(k1x) + t2 cos(k2x) +O(|(t1, t2)|2),

c(t1, t2) = c0 +O((t1, t2)),

κ(t1, t2) = κ0 +O((t1, t2)),

to the steady capillary-gravity Whitham equation (2.1). The set
Sk1∪Sk2∪Smixed contains all nontrivial solutions in Cseven(S)×R×R+

of this equation in a neighbourhood of (0, c0, κ0).

(ii) When k1 divides k2 there exists for any δ > 0 a small but positive εδ
and a slit, smooth, sheet

Smixedδ = {(u(%, ϑ), c(%, ϑ), κ(%, ϑ)) : 0 < % < εδ, δ < |ϑ| < π − δ}

of solutions in Cseven(S)× R× R+ of the form

u(%, ϑ) = % cos(ϑ) cos(k1x) + % sin(ϑ) cos(k2x) +O(%2),

c(%, ϑ) = c0 +O(%),

κ(%, ϑ) = κ0 +O(%).

to the steady capillary-gravity Whitham equation (2.1). In a neigh-
bourhood of (0, c0, κ0), the set S = Sk2∪Smixedδ contains all nontrivial
solutions in Cseven(S)× R× R+ of (2.1) such that δ < |ϑ| < π − δ.

Remark 4.2. The order of vanishing of the functions c− c0 and κ− κ0 in
Theorem 4.1 is analyzed in Section A.2 of Appendix A.

Remark 4.3. The bifurcation theorem Theorem 4.1 shows that near a two-
dimensional bifurcation point in the case where k2/k1 /∈ N0 there exists a full
disk of solutions (for fixed κ), while if k2/k1 ∈ N0 the disk is slit with one
axis removed. This situation is summarised in Figure 2. In particular this
means that it is possible to find curves connecting solutions with different
wavenumbers, consistent with the recent numerical findings in [27].
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Figure 2. The local solution disks for the steady capillary-gravity Whitham

equation (2.1) around a point where the bifurcation kernel is two-dimensional.

The left-hand drawing depicts the situation in Theorem 4.1 (i), whereas the
right-hand drawing refers to case (ii) of the same theorem. The blue and red

colours represent the proximity of the solutions to the pure k1- and k2-modes,

respectively. In particular, when k1 divides k2 we have not found any waves
bifurcating in the direction of cos(k1·).

Proof. We start by writing

u(t1, t2) = t1 cos(k1x) + t2 cos(k2x) + v,

c(t1, t2) = c0 + r,

κ(t1, t2) = κ0 + p,

where, generically, we want to find v, r and p parameterised by (t1, t2) such
that

Fκ0+p(t1 cos(k1x) + t2 cos(k2x) + v, c0 + r) = 0, (4.2)

for sufficiently small values of (t1, t2). As in the proof of Theorem 3.1, we let
Π: Cseven(S) → ker(DuFκ0(0, c0)) be the projection onto ker(DuFκ0(0, c0))
parallel to ran(DuFκ0(0, c0)), where we have equipped Cseven(S) with the L2

inner product 〈f, g〉 = 1
π

∫ π
−π fg dx. According to Corollary 3.5 equation

(4.2) is then equivalent to{
ΠFκ(t1,t2) (u(t1, t2), c(t1, t2)) = 0

(Id−Π)Fκ(t1,t2) (u(t1, t2), c(t1, t2)) = 0.
(4.3)

Note that under the above ansatz, where it is assumed that Πv = 0,

Fκ (u, c) = t1 cos(k1x) + t2 cos(k2x) + v

+ Lκ0+p

[
(t1 cos(k1x) + t2 cos(k2x) + v)2

−(c0 + r) (t1 cos(k1x) + t2 cos(k2x) + v)]

= (v − c0Lκ0+pv) + t1 (cos(k1x)− c0Lκ0+p cos(k1x))

+ t2 (cos(k2x)− c0Lκ0+p cos(k2x))

− rLκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)

+ Lκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)2 ,
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and writing Lκ0+p = Lκ0 + (Lκ0+p − Lκ0) we have

Fκ (u, c) = DuFκ0(0, c0)v − c0(Lκ0+p − Lκ0)v

− t1c0(Lκ0+p − Lκ0) cos(k1x)− t2c0(Lκ0+p − Lκ0) cos(k2x)

− rLκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)

+ Lκ0+p (t1 cos(k1x) + t2 cos(k2x) + v)2

=: DuFκ0(0, c0)v − g(t1, t2, r, p, v).

Therefore (4.2) is equivalent to

DuFκ0(0, c0)v = g(t1, t2, r, p, v), (4.4)

and we can rewrite (4.3) as{
0 = Πg(t1, t2, r, p, v)

DuFκ0(0, c0)v = (Id−Π)g(t1, t2, r, p, v).
(4.5)

Note that since v is orthogonal to ker(DuFκ0(0, c0)) the second equation in
(4.5) reads v = DuFκ0(0, c0)−1(Id−Π)g(t1, t2, r, p, v). It is clear that

DuFκ0(0, c0)v − (Id−Π)g(t1, t2, r, p, v) = 0

has the solution (t1, t2, r, p, v) = (0, 0, 0, 0, 0) and at that point the Frechèt
derivative respect to v isDuFκ0(0, c0), which is invertible on (Id−Π)Cseven(S).
The implicit function theorem then ensures the existence of a solution v =
v(t1, t2, r, p) ∈ (Id−Π)Cseven(S). By uniqueness we have that v(0, 0, r, p) = 0
for all small enough values of r and p. Moreover, note that ∂

∂t1
v(0, 0, 0, 0) = 0

and ∂
∂t2
v(0, 0, 0, 0) = 0. This follows by differentiating (4.4) respect to t1 or

t2, and evaluating at (t1, t2, r, p) = (0, 0, 0, 0) recalling that DuFκ0(0, c0) is
invertible on its range. As a consequence, v depends at least quadratically
on t1 and t2.

We are now left with solving the finite-dimensional problem given by
the first equation in (4.5). To this end, we decompose the projection Π
as Π = Π1 + Π2, where Π1 is the projection onto cos(k1·), and Π2 is the
projection onto cos(k2·). Then

Πg = Π1g + Π2g = Q1 cos(k1x) +Q2 cos(k2x),

with Qj = 〈g, cos(kj ·)〉, and the first line of (4.5) is equivalent to showing
that

Q1 = Q2 = 0. (4.6)

To solve (4.6) we consider two cases.

The non-resonant case. Assume that k2/k1 /∈ N0. Using the properties of v
and Π1, a direct calculation shows that
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Q1 = t1
[
c0

(
l((κ0 + p)k1)− l(κ0k1)

)
+ r l((κ0 + p)k1)

]
− l((κ0 + p)k1)

〈
cos(k1·), (t1 cos(k1·) + t2 cos(k2·) + v(t1, t2, r, p))

2
〉
.

(4.7)
As v(0, t2, r, p) is 2π/k2-periodic and k2 6= k1, the above inner term prod-

uct vanishes for t1 = 0. Therefore we may write

Q1(t1, t2, r, p) = t1 Ψ1(t1, t2, r, p) (4.8)

with

Ψ1(t1, t2, r, p) =

∫ 1

0

∂Q1

∂t1
(zt1, t2, r, p) dz, (4.9)

and note (4.7) implies

Ψ1(0, 0, r, p) = c0 [l((κ0 + p)k1)− l(κ0k1)] + r l((κ0 + p)k1). (4.10)

Similarly, we have

Q2 = t2
[
c0

(
l((κ0 + p)k2)− l(κ0k2)

)
+ r l((κ0 + p)k2)

]
− l((κ0 + p)k2)

〈
cos(k2·), (t1 cos(k1·) + t2 cos(k2·) + v(t1, t2, r, p))

2
〉

(4.11)
with the inner product term vanishing at t2 = 0 since we assumed k2/k1 /∈
N0. We can thus write

Q2(t1, t2, r, p) = t2 Ψ2(t1, t2, r, p) (4.12)

with

Ψ2(t1, t2, r, p) =

∫ 1

0

∂Q2

∂t2
(t1, zt2, r, p) dz (4.13)

so that

Ψ2(0, 0, r, p) = c0 [l((κ0 + p)k2)− l(κ0k2)] + r l((κ0 + p)k2). (4.14)

Hence, condition (4.6) is equivalent solving the system{
t1Ψ1(t1, t2, r, p) = 0

t2Ψ2(t1, t2, r, p) = 0

for p and r in a neighborhood of (t1, t2, r, p) = (0, 0, 0, 0). There are clearly
four cases: t1 = t2 = 0 represents the trivial solutions. When Ψ1 = 0 and
t2 = 0 we can apply Theorem 3.1 concerning one-dimensional bifurcations
along with the remark following it to obtain the solutions in Sk1 . Similarly,
when t1 = 0 and Ψ2 = 0 we instead retrieve the solutions in Sk2 . To
obtain the mixed-period solutions we apply the implicit function theorem
to solve Ψ1 = Ψ2 = 0 near the origin. Indeed, note that Ψ1(0, 0, 0, 0) =
Ψ2(0, 0, 0, 0) = 0 and that the Jacobian of the map

(r, p) 7→ (Ψ1(0, 0, r, p),Ψ2(0, 0, r, p))
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at (r, p) = (0, 0) is given by

det

[
DrΨ1(0, 0, r, p) DpΨ1(0, 0, r, p)
DrΨ2(0, 0, r, p) DpΨ2(0, 0, r, p)

]∣∣∣∣
(r,p)=(0,0)

= c0 lκ0(k1)
[
l′κ0(k2) k2 − l′κ0(k1) k1

]
, (4.15)

which is always different from 0 since lT has only one positive stationary
point, lκ0(k1) 6= 0, and that the terms l′κ0(k1) and l′κ0(k2) necessarily have
opposite signs. Applying the Implicit Function Theorem gives the solutions
in Smixed. Note in each of the above four cases, we find r = r(t1, t2) and
p = p(t1, t2) with p and r both vanishing to at least second order at (t1, t2) =
(0, 0), as claimed.

The resonant case. Assume now that k2/k1 ∈ N0. In this case, we are
not guaranteed that Q2(t1, 0, r, p) = 0 for all |t1| � 1 due to a possible
resonance in the inner product term in (4.11). Nevertheless, we do know
that Q2(0, 0, r, p) = 0. Using polar coordinates to introduce the function

Q̃2(%, ϑ, r, p) = Q2(% cos(ϑ), % sin(ϑ), r, p),

defined for 0 6 %� 1 and |(ϑ, r, p)| � 1, we find from (4.11) that

Q̃2(%, ϑ, r, p) = % sin(ϑ)c0

(
l((κ0 + p)k2)− l(κ0k2)

)
(4.16)

+ % sin(ϑ)r l((κ0 + p)k2)

− l((κ0 + p)k2)
1

π

∫ π

−π
cos(k2x)

[
% cos(ϑ) cos(k1x)

+ % sin(ϑ) cos(k2x) + v(% cos(ϑ), % sin(ϑ), r, p)
]2

dx.

Since Q̃2(0, ϑ, r, p) = 0, we may as before write

Q̃2(%, ϑ, r, p) = % Ψ̃2(%, ϑ, r, p) (4.17)

with

Ψ̃2(%, ϑ, r, p) =

∫ 1

0

∂Q̃2

∂%
(z%, ϑ, r, p) dz (4.18)

so that
Ψ̃2(0, ϑ, r, p) = sin(ϑ) c0 [l((κ0 + p)k2)− l(κ0k2)]

+ r sin(ϑ) l((κ0 + p)k2).
(4.19)

For Q1, instead, all the previous calculations remain true and hence, simi-
larly defining the function

Ψ̃1(%, ϑ, r, p) := Ψ1(% cos(ϑ), % sin(ϑ)), (4.20)

it follows in this resonant case that (4.6) is equivalent to solving the system{
% cos(ϑ)Ψ̃1(%, ϑ, r, p) = 0

% Ψ̃2(%, ϑ, r, p) = 0.
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for r and p in a neighborhood of (%, ϑ, r, p) = (0, 0, 0, 0). The case % = 0

clearly corresponds to trivial solutions, while the case cos(ϑ) = 0, Ψ̃2 = 0
corresponds to solutions in Sk2 via the application of Theorem 3.1. For the

case that Ψ̃1 = 0, Ψ̃2 = 0 we again apply the implicit function theorem near

the origin. Indeed, note that both Ψ̃1 and Ψ̃2 both vanish at the origin and
that the Jacobian of the map

(r, p) 7→ (Ψ̃1(0, 0, r, p), Ψ̃2(0, 0, r, p))

at (r, p) = (0, 0) is given by

det

[
DrΨ̃1(0, ϑ, r, p) DpΨ̃1(0, ϑ, r, p)

DrΨ̃2(0, ϑ, r, p) DpΨ̃2(0, ϑ, r, p)

]∣∣∣∣
(r,p)=(0,0)

= sin(ϑ) c0 l(κ0k1)
[
l′(κ0k2) k2 − l′(κ0k1) k1

]
, (4.21)

which, by the same considerations we applied to (4.15), is non-zero so long
as sin(ϑ) 6= 0 Therefore, for any fixed δ > 0, restricting to δ < |ϑ| < π − δ
gives the solutions in Smixedδ , as desired �

5. Global bifurcation diagram

In this section we give some additional properties of solutions of (2.1), that
is, of continuous and finitely periodic solutions. Our goal is to communicate
the global bifurcation picture, as gathered from both analytic and numerical
evidence, as well as to relate this to some comparable studies. We first
present and prove the additional analytic results, after which we discuss the
bifurcation diagram of the periodic capillary-gravity Whitham with the help
of Figures 3 and 4.

Proposition 5.1. Any L∞(R)-solution of the steady capillary-gravity Whitham
equation (2.1) is smooth.

Proof. This is immediate from writing the equation in the form (2.3). For
any T > 0, the operator LT is a smoothing Fourier multiplier operator of
order −1

2 . This applies in particular to the scale of Zygmund spaces Cs(R),

s > 0, see Lemma 2.8. As L∞(R) is an algebra embedded in C0(R) [29,
Section 13.8], and the spaces Cs(R) are Banach algebras for s > 0, the result
follows by bootstrapping. �

Proposition 5.2.

(i) There are no periodic solutions of (2.1) in the region

maxu < min{0, c− 1}.
(ii) Except for the bifurcation points when c = 1

lT (k) > 0 there are no

small periodic solutions in a vicinity of any point along the curve of
trivial solutions (u, c) = (0, c), c ∈ R. Similarly, there are no peri-
odic solutions that are small perturbations of the constant solutions
(u, c) = (c−1, c), c ∈ R, except for the bifurcation points that appear
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along this line for c < 2.

(iii) The solution u = 0 is the only periodic solution for c = 1.

(iv) For T > 4
π2 , all periodic solutions satisfy

maxu 6 c2

4 ,

with equality if and only if u is a constant solution and either c = 0
or c = 2.

Remark 5.3. The qualifier ’periodic’ is here used only to guarantee that
solutions, which we have defined to be continuous, are integrable over their
period.

Proof. As all steady solutions are smooth, and the symbol of LT satisfies
lT (0) = 1, one may as in [15] integrate over any finite period to obtain

(c− 1)

∫ π

−π
u dx =

∫ π

−π
u2 dx. (5.1)

(The same argument works for other periods as well.) This is a contradiction
for u < c−1 < 0. The analogous result for c > 1 then follows by the Galilean
invariance c 7→ 2− c, u 7→ u+ 1− c.

For the second statement, consider first c < 1. As the symbol lT is

positive, and the operator LT is a linear isomorphism Cs(S) → Cs+ 1
2 (S)

unless clT (k) = 1 (cf. (3.2)), the implicit function theorem implies that
there are no small solutions in a vicinity except for the bifurcation points
found in Theorems 3.1 and 4.1 when c < 1. In particular, there are no such
solutions for c < 1 in the case of strong surface tension T > 1

3 , and none for

c < 0 in the case of weak surface tension 0 < T < 1
3 . By Galilean invariance,

the corresponding result applies to the line u = c− 1 for c > 1.
The proposition (iii) is immediate from (5.1).
For (iv), note that

u(x) = L(cu− u2) =
c2

4
− L

( c
2
− u
)2
6
c2

4
,

when T > 4
π2 , as the integral kernel of L is then everywhere positive. This

proves that maxu 6 c2

4 , with equality if and only if (u, c) = (1, 2) or (u, c) =
(0, 0), as these are the only constant solutions along the line maxu = c

2 . �

Proposition 5.4. If the surface tension satisfies T > 4
π2 , then the bifurca-

tion curve found in Theorem 3.6 for k = 1 can be constructed such that it
contains a subsequence of solutions that are all single-crested (bell-shaped)
in each minimal period and that either:

(i) is bounded in wavespeed but with minu unbounded; or

(ii) eventually leaves every set {maxu 6 λc} for λ < 1
2 .
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Proof. For even and periodic solutions u one may as in [11, 15] use (2.1) to
write

u′(x) = 2

∫ π

0
(Kp(x− y)−Kp(x+ y))

( c
2
− u(y)

)
u′(y) dy. (5.2)

When Kp is completely monotone, and u is decreasing on (0, π) with u 6 c
2 ,

this implies that u is strictly decreasing on the same interval (unless u is a
constant), and a standard argument [11, Lemma 5.5] yields that looping as
in alternative (ii) is ruled out.

Let us therefore, for a contradiction, assume that the bifurcation curve
remains within the set {maxu < c

2}. Recalling that Theorem 2.6 and [15,
Proposition 3.2] together imply that Kp is completely monotone on (0, π)
when T > 4

π2 , it follows that alternative (i) in Theorem 3.6 has to hold. As
solutions are smooth, this is equivalent to a sequence of solutions (un, cn) =
(u(tn), c(tn)) satisfying |un|∞ + |cn| → ∞ as n→∞.

Assume first that {cn}n is bounded. Then {un}n is unbounded in L∞(R),
and therefore minun → −∞ as n → ∞ is the only possibility, by Proposi-
tion 5.2 (iv).

If, on the other hand, {cn}n is unbounded, pick a subsequence with
limn→∞ |cn| = ∞. Note that cn cannot pass c = 1, as Proposition 5.2 (iii)
shows that it would have to pass via (u, c) = (0, 1), but near that point there
are only small constant solutions (see Remark 3.2 and Theorem 4.1). Hence,
the solution curve would first have to connect to either the curve u = c− 1
or u = 0. But, as described in Proposition 5.2 (ii), the first of these has no
bifurcation points for strong surface tension and c > 1, and connection back
to the bifurcation points of the second is excluded by the argument used
in [11, Lemma 5.5] (no looping). Hence, limn→∞ cn =∞.

We now show that this is impossible when maxun 6 cn/2. Recall that we
are following a branch of the curve for which u is even, and strictly increasing
on the half-period (−π, 0), in view of the positivity of the integrand in (5.2).
If there exists δ > 0 such that cn

2 −maxun > δcn, pick xn ∈ (0, π) such that

−u′n(xn) = min
y∈[δ,π−δ]

(−u′n(y)).

−u′n(xn) = 2

∫ π

0
(Kp(xn − y)−Kp(xn + y))

(cn
2
− un(y)

)
(−u′(y)) dy

> 2δcn

∫ π−δ

δ
(Kp(xn − y)−Kp(xn + y)) (−u′n(y)) dy

> −2δcnu
′
n(xn)

∫ π−δ

δ
(Kp(xn − y)−Kp(xn + y)) dy.

On the interval of consideration, Kp(xn − y)−Kp(xn + y) is bounded from
below by a positive constant (it is zero only for y = kπ, k ∈ Z). Although
it has a singularity at xn = y, it tends to ∞ there, so we may estimate it



26 EHRNSTRÖM, JOHNSON, MÆHLEN, AND REMONATO

from below, uniformly in xn, by

min {(Kp(xn − y)−Kp(xn + y)) : (x, y) ∈ [δ, π − δ]× [δ, π − δ]} & 1.

Consequently,
−u′n(xn) & −cnu′n(xn),

which is not possible, as cn →∞ and −u′n(xn) > 0 for all n. �

5.1. Discussion and summary of results. Analytically, we have deter-
mined almost completely§ the solution set in near the lines of constant solu-
tions u = 0 and u = c− 1. The result depends crucially on the strength of
surface tension T , and, apart from the easily seen change in the dispersion
relation at T = 1

3 , we have seen in Section 2 that there is a more subtle

change at T = 4
π2 , at which the integral kernel of the dispersive operator

L loses its positivity and monotonicity; that has made it possible to prove
some additional, but not complete, results for the case of (very) strong sur-
face tension T > 4

π2 . To complete the picture where our analytical methods
have so far proved insufficient, we have additionally run spectral bifurcation
code similar to the one used in [27] to get a more complete picture. We will
present the main result of these calculations as well, but only in overview
form.

To start our discussion, focus first on one of the Figures 3 or 4. Just as the
regular Whitham equation, the capillary-gravity Whitham equation (2.1)
admits two lines of constant solutions, namely u = 0 and u = c− 1. These
cross at c = 1, the point of a transcritical bifurcation (see Remark 3.2), and
also a bifurcation point for solitary [3] and generalised solitary [19] waves ;
additionally, c = 1 is the symmetry line for the Galilean invariance

c 7→ 2− c, u 7→ u+ 1− c,
that leaves (2.1) invariant, and is shared by the regular Whitham equation
[15]. The two constants 0 and c − 1 correspond to the two natural depths
that appear for steady flows in the water wave problem, see for example
[22]. In addition to these two lines, there is a third, mathematical, constant
arising from the structure of (2.1) when completing the square, namely c

2 .
While this constant is of physical and absolute importance in the regular
Whitham equation — being the height above surface of a highest wave —
and while it appears as a technical difficulty when trying to expand the
result of Proposition 5.4, numerical evidence indicate that this construct is
probably only artificial in the presence of capillarity. Still, we have indicated
it in Figure 3 using the line maxu = c

2 (but not in Figure 4, as it did
not prove any help in communicating our results). Additionally, in both
Figures 3 and 4 the greyed-out area illustrates Proposition 5.2, that there
are no solutions in the region where

maxu < min{0, c− 1}.
§We lack a proof of non-existence of the k2-modal waves in the resonant case of Theo-

rem 4.1, but these waves do not seem to exist numerically.
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c !→ 2− c

u !→ u+ 1− c

u = 0

c− 1

Figure 3. A schematic drawing of the global bifurcation diagram in the case

of strong surface tension T > 1
3

(partly T = 4
π2 ). The diagram is discussed in

detail in Section 5.2.

A final common feature of the strong and weak surface tension case is that
solutions cannot pass c = 1, except via the transcritical bifurcation point
(u, c) = (0, 1), where, locally, the only solutions are given by the constant
functions u = 0 and u = c − 1. This fact may be induced from Proposi-
tion 5.2 (iii) and Remark 3.2, and is indicated in the figures with a solid
red line (no solutions pass). Note that both figures are for a fixed and finite
period.

5.2. The case of strong surface tension. Now, let us focus on the strong
surface tension case and especially the case T > 4

π2 , which is depicted in Fig-
ure 3. As described in Theorem 3.1, we have small waves of the approximate
linear form cos(k·) bifurcating at

ck =
1

lT (k)
> 1.

The bifurcation curves of these waves are indicated by solid blue lines, with
a zoom-in on a small wave along the main bifurcation branch k = 1. The red
line {u = 0, 1 < c 6= ck} shows the result of Proposition 5.2 (ii), that there
are no other supercritical solutions in a Cs-vicinity of the line of vanishing
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solutions. By Galilean invariance, each of these curves (and non-existence
results) has an exact counterpart for c < 1 along the line u = c− 1, and we
do not comment more on that in the case of strong surface tension.

The initial direction of the curves is calculated in Remark 3.7: analyt-
ically, sub-critical bifurcation is established for small enough values of k,
and super-critical bifurcation as k → ∞; numerically, this shift happens at
exactly one value, and we have illustrated this with the last visible (third)
curve bending leftwards from the bifurcation point, while the two first bend
right-wards (the direction after the Galilean shift is opposite).

The result of the global bifurcation theory as carried out in Theorem 3.6
is that each curve, when considered in a space of 2π/k-periodic functions,
either is unbounded in Cs × R, or returns (loops) back to (u, c) = (0, ck) in
a finite period of the bifurcation parameter. The standard tool for ruling
out looping is by preserving the unimodal nodal pattern along the main
bifurcation branch, an argument for which one relies on maximum princi-
ples/positivity of the underlying operators. As we prove in Theorem 2.6
that this property is present when the surface tension coefficient satisfies
T > 4

π2 (and only then)¶, the complete monotonicity of the kernel K es-
tablished in Theorem 2.6 for that case provides hope for stronger results.
Note that, regardless of the exact value of T > 0, it follows from Lemma 2.8
that all solutions of (2.1) are smooth, so that alternative (i) in Theorem 3.6
is equivalent to a sequence of solutions satisying |u|∞ + |c| → ∞ along the
bifurcation curve.

While we cannot rule out alternative (ii) in Theorem 3.1 completely, see
Proposition 5.4, we can at least show that looping would require leaving
every set of the form maxu < λc for λ < 1

2 (that is the consequence of
Proposition 5.4, as an unbounded continuous bifurcation curve cannot be
finitely periodic). Although alternative (i) in Proposition 5.4 is very unlikely,
and never appears in our numerical calculations, we have been unable to rule
it out (the reason for this might be that the balance between Mu and u2 is
exactly at the critical threshold for Gagliardo–Nirenberg, so that control of
a higher Sobolev norm of u in terms of a lower seems to require using precise
properties of the integral kernel.) We have illustrated this with long-dashed
lines in Figure 3, showing the curves (probably) leaving the cone maxu 6 c

2 .
After that point, our calculations are purely numerical, showing the so-

lution curves asymptotically approaching the second curve of constant solu-
tions u = c− 1. Indeed, if the quotient

max(u)

c− 1

is bounded and converges pointwise, it is immediate from (5.1) that the limit
is either 0 or 1.The numerics indicate that this quotient increases along the
bifurcation curve to cover all of the interval (0, 1), with wave profiles that

¶It is fully possible that the periodised kernel is positive even when the original kernel
is not, depending on the period, but we have not investigated that here.
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are monotone on a minimal half-period even though, by far, we have passed
u = c

2 . Such a result, we believe, would be new in the setting of capillary-
gravity water waves, but it is so far out of reach for us when u crosses c

2 .
Interestingly enough, the same pattern seems to persist even when the kernel
is not everywhere positive and monotone, that is, for T < 4

π2 .

Finally, for surface tension T > 4
π2 , Proposition 5.2 shows that no solu-

tions pass the line c = 0 with maxu > 0, indicated by red in Figure 3.

5.3. The case of weak surface tension. When the surface tension is
weak, T < 1

3 , several things are very different. First of all, the first single
bifurcation points ck might, depending on the period, appear in the interval
0 < c < 1, although for large enough values of the wavenumber k the waves
will all be supercritical. Just as as in the case of strong surface tension,
Proposition 5.2 guarantees that solutions do not cross the lines marked with
red in Figure 4 (although these now do not include the positive vertical axis
maxu > 0), and there are no solutions in the grey area. Similarly, there
are no small, non-constant, solutions in a neighbourhood of any point along
the constant solution axes u = 0 and u = c − 1, except at the countable
bifurcation points.

A peculiarity in the case of weak surface tension is the appearance of
multimodal waves connecting different curves of k-modal waves. Analyt-
ically, we find a full disk of solutions by two-dimensional bifurcation in
Theorem 4.1 (i), by varying the wavelength. Fixing the fundamental pe-
riod, however, this yields a one-dimensional subset of this disk, where we
continuously transform via only a curve between two main modes of waves.
Numerically, this effect persists even for values slightly off the exact points
of two-dimensional bifurcation: as the numerical investigation [27] shows,
the looping alternative (i) in the global one-dimensional Theorem 3.6 hap-
pens in the form of one bifurcation curve of k-modal waves transforming
into one of n-modal waves and thereby connecting back to the line of zero
states. The same kind of connections have been found for the Euler equa-
tions, analytically for small waves [30], and numerically for small and large
waves [4, Figures 4 and 5] (see also [17, 32] for perturbation theory and
numerical calculations showing the rippling and non-uniqueness of small
waves). These branch-to-branch connections are illustrated in Figure 4 by
a curve of small bimodal waves connecting two curves of unimodal waves
bifurcating off the 0-axis for c ∈ (0, 1). (In numerical calculations for this
manuscript, there have even been instances of curves of waves bridging,
consecutively, three different unimodal bifurcation curves, that is, a non-
trivial path that connects three separate bifurcation points, but that is not
indicated in the graphics.)

The curves of subcritical waves can be followed, again numerically, past
zero wave speed, going left-ward without any indication to stop. In L2(S),
they seem to flatten out to 0, but not in L∞. This feature reappears again
and again in both numerics and our calculations: while L∞-bounds easily
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Figure 4. A schematic drawing of the global bifurcation diagram in the case of

weak surface tension T < 1
3

. The diagram is discussed in detail in Section 5.3.

yield bounds on higher norms, and one has control of solutions in L2 with
respect to the wave speed, it is extremely difficult to relate the L∞-norm
of solutions to their L2(S)-norm, even when the wave speed is bounded.
Generally, all curves of solutions appear to asymptotically approach one of
the curve of constant solutions (u = 0 or u = c − 1) in L2(S), while an
actual connection in a space of higher regularity is impossible for almost
all wavespeeds because of the invertibility of the linear operator DuF (note
that it is not obvious how to make sense of the nonlinear mapping F in
L2(S)).

Finally, in the case of supercritical bifurcation, we find only single-crested
(bell-shaped) waves even though the surface tension is weak. When these
waves are small it is a result of Theorem 3.1. These curves may be continued
globally (Theorem 3.6), but the information about them is purely numerical.
Just as in the case of strong surface tension, these supercritical waves show
no ripples, and they asymptotically approach u = c − 1 in L2(S), but not
in L∞. Any proof of preservation of the nodal properties in the case of
supercritical bifurcation when the surface tension is weak is for the moment
entirely out of our reach, even though it would be very interesting to obtain.
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Appendix A. Bifurcation formulas

This appendix contains higher order expansions of the quantities in Theroem
3.1 and Theorem 4.1. We start with the first and second order terms in the
expansion for the speed c(t) in the one-dimensional bifurcation case, which
is required by the proof of the global extension in Theorem 3.10. We then
proceed to study the first order terms for the expansions of the functions r
and p in the two-dimensional bifurcation case.

A.1. One-dimensional bifurcation case. We begin by determining the
derivatives ċ(0) and c̈(0) associated to the bifurcation curve constructed
in Theorem 3.1. This can be done either directly using the Lyapunov–
Schmidt reduction carried out in the proof of Theorem 3.1 or by the means
of bifurcation formulas given for example in [21]. The latter requires an
identification between the bifurcation function φ(u, c) = ΠF (u + ψ(u, c), c)
used in [21] and the functions v and r used in the proof of Theorem 3.1.
This relation is given by v(t) = ψ(t cos(kx), c(t)).

Here, start from the Lyapunov–Schmidt representation

0 = F (t cos(kx) + v(t), c0 + r(t))

= t cos(kx) + v(t)

+ L
[
(t cos(kx) + v(t))2 − (c0 + r(t))(t cos(kx) + v(t))

]
,

(A.1)

where here it is understood that for each t small the function v(t) is a
2π/k-periodic function of x. Differentiating (A.1) once with respect to t,
evaluating at t = 0 and using that v(0) = v̇(0) = r(0) = 0 yields the
equation

(1− c0L) cos(kx) = 0,

which holds by our choice of c0. Similarly, differentiating (A.1) twice with
respect to t and evaluating at t = 0 yields

(1− c0L)v̈(0) = 2ṙ(0)L cos(kx)− 2L cos2(kx)

= 2ṙ(0)l(k) cos(kx)− (1 + l(2k) cos(2kx)) .
(A.2)

Since
∫ π
−π v(t) cos(kx)dx = 0 for all |t| � 1, the above implies that ṙ(0) = 0.

Returning to (A.2), it now follows that

v̈(0) =
1

c0 − 1
+
l(2k) cos(2kx)

c0l(2k)− 1
. (A.3)

Continuing, we observe that taking the third derivative of (A.1) with
respect to t and evaluating at t = 0 yields

(1− c0L)
...
v (0) = 3r̈(0)L cos(kx)− 6L (v̈(0) cos(kx)) .

Using (A.3), we compute that

L (v̈(0) cos(kx)) =
l(k) cos(kx)

c0 − 1
+
l(2k) (l(k) cos(kx) + l(3k) cos(3kx))

2(c0l(2k)− 1)
.
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Using again that
∫ π
−π v(t) cos(kx) dx = 0 for all |t| � 1, it follows that

r̈(0) =
3

c0 − 1
+

l(2k)

c0l(2k)− 1
=

3c0l(2k)− l(2k)− 2

(c0 − 1)(c0l(2k)− 1)
,

which is the expression (3.10) for c̈(0) given in Theorem 3.6. Note that the
above procedure could be continued to obtain asymptotic expansions of r(t)
and v(t) to arbitrarily high order in t. We also note that the above result is
consistent with the asymptotic formulas in [18].

A.2. Two-dimensional bifurcation case. We now consider the case of a
two-dimensional bifurcation as considered in Section 4 above. Recall that
the solutions constructed in Theorem 4.1 can be written as

u(t1, t2) = t1 cos(k1x) + t2 cos(k2x) + v(t1, t2),

c(t1, t2) = c0 + r(t1, t2),

κ(t1, t2) = κ0 + p(t1, t2),

with v of order O(|(t1, t2)|2) and r, p of order O(|(t1, t2)|). We now charac-
terize the order of vanishing of the functions r and p at the origin.

Proposition A.1. Let the functions r and p be as in Theorem 4.1. If
k2/k1 /∈ N0, then

∇r(0, 0) = 0, ∇p(0, 0) = 0

so that, in particular, r and p are of order O(|(t1, t2)|2) near the origin.
If instead k2/k1 ∈ N0, then for any δ > 0 small we have that, in polar
coordinates,

r% (0, ϑ) = 0, p% (0, ϑ) = 0

if and only if either k2 /∈ {0, 2k1} or (k2, ϑ) =
(
2k1,

π
2

)
.

Proof. We begin the non-resonant case, k2/k1 /∈ N0. From the proof of
Theorem 4.1, we know for all 0 < |(t1, t2)| � 1 the functions r and p satisfy

Ψi(t1, t2, r(t1, t2), p(t1, t2)) = 0 for i = 1, 2,

where the Ψi are defined in (4.9) and (4.13). Fixing j ∈ {1, 2} we find that
differentiating the above with respect to tj and evaluating at (t1, t2) = (0, 0)
gives the system of equations(

Ψ1,r(0) Ψ1,p(0)
Ψ2,r(0) Ψ2,p(0)

)(
rtj (0, 0)
ptj (0, 0)

)
= −

(
Ψ1,tj (0)
Ψ2,tj (0)

)
, (A.4)

where here 0 denotes the origin in R4. Since the above system matrix
is invertible by (4.15), it remains to determine the values of Ψi,tj (0) for
i = 1, 2. This can be accomplished by recalling (4.9) and (4.13) and noting
that (4.7) implies that

∂2Qi
∂t2j

(0) = − 2

π
l(κ0ki)

∫ π

−π
cos3(kix) dx
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and

∂2Qi
∂t1∂t2

(0) =


− 2

π
l(κ0k2)

∫ π

−π
cos2(k1x) cos(k2x) dx, i = 1,

− 2

π
l(κ0k1)

∫ π

−π
cos2(k2x) cos(k1x) dx, i = 2

Consequently, since k2/k1 /∈ N0 it follows that Ψi,tj (~0) = 0 for i = 1, 2 and
hence (A.4) implies that rtj (0, 0) = ptj (0, 0) = 0 as claimed. Since j ∈ {1, 2}
was arbitrary, this proves the proposition in the non-resonant case.

Now, consider the resonant case when k2/k1 ∈ N0 and fix δ > 0 small. In
this case, for each δ < |ϑ| < π − δ and 0 < % � 1 the functions r(%, ϑ) and
p(%, ϑ) satisfy the system

Ψ̃i (%, ϑ, r(%, ϑ), p(%, ϑ)) = 0 for i = 1, 2,

where here the Ψ̃i are as in (4.20) and (4.18). Differentiating this system
with respect to % at % = 0 gives the system of equations(

Ψ̃1,r(0, ϑ, 0, 0) Ψ̃1,p(0, ϑ, 0, 0)

Ψ̃2,r(0, ϑ, 0, 0) Ψ̃2,p(0, ϑ, 0, 0)

)(
r%(0, ϑ)
p%(0, ϑ)

)
= −

(
Ψ̃1,%(0, ϑ, 0, 0)

Ψ̃2,%(0, ϑ, 0, 0)

)
.

(A.5)
As in the non-resonant case, the above system matrix is invertible, this
time thanks to (4.21), and hence it remains to determine the values of

Ψ̃i,%(0, ϑ, 0, 0) for i = 1, 2. Let us begin by determining the value in the
case i = 1. From (4.20) and the preceding discussion, we know we can write

Ψ̃1(%, ϑ, 0, 0) =

∫ 1

0

∂Q̃1

∂%
(z%, ϑ, 0, 0) dz

where, using (4.7), we have explicitly

Q̃1(%, ϑ, 0, 0) = Q1(% cos(ϑ), % sin(ϑ), 0, 0)

= −2%2l(k0k1) cos(ϑ) sin(ϑ)

π

∫ π

−π
cos2(k1x) cos(k2x) dx.

Clearly then, Q̃2,%%(0, ϑ, 0, 0) is equal to zero if and only if either ϑ = π
2 or

k2 /∈ {0, 2k1}. Since

Ψ̃1,%(0, ϑ, 0, 0) =
1

2

∂2Q̃1

∂%2
(0, ϑ, 0, 0)

by above, we have shown that Ψ̃1,%(0, ϑ, 0, 0) = 0 if and only if either of the
conditions ϑ = π

2 or k2 /∈ {0, 2k1} hold.
Similarly, we have

Ψ̃2,%(0, ϑ, 0, 0) =
1

2

∂2Q̃2

∂%2
(0, ϑ, 0, 0)
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where, using (4.16), we have

Q̃2(%, ϑ, 0, 0) = −%
2l(k0k2)

π
×∫ π

−π
cos(k2z)

[
cos2(ϑ) cos2(k1x) + sin2(ϑ) cos2(k2x)

]
dx.

Clearly, Q̃2,%%(0, ϑ, 0, 0) vanishes whenever k2 /∈ {0, 2k1}. When k2 = 0,

Q̃2,%%(0, ϑ, 0, 0) does not vanish for any ϑ, and when k2 = 2k1 it only vanishes

when ϑ = π
2 . Consequently, Ψ̃2,%(0, ϑ, 0, 0) vanishes only when either k2 /∈

{0, 2k1} or (k2, ϑ) = (2k1,
π
2 ). Together with the results concerning Ψ̃1,%,

this completes the proof. �

Remark A.2. The special case k2 = 2k1 has been found also in the Euler
equations (with gravity and vorticity) by the authors of [1]. The special case
k2 = 0 is instead due to the transcritical double bifurcation allowed by the
capillary-gravity Whitham equation.

Remark A.3. An explicit example where r%(0, ϑ) 6= 0 can be seen in [27,
Figure 6], where the branch of nontrivial solutions has a non-vertical tangent
at the bifurcation point in the speed-height plane.
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