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Abstract

The increasing availability of interconnected multi-modal information
sources motivates the development of novel probabilistic models for recom-
mender system that can leverage context present in relational data. Thus, we
seek to integrate contextual information that can be relevant for determining
the users’ information needs. In this thesis we focus on a set of techniques for
modeling contextual information to factorization models, in particular models
that uses implicit feedback such as event counts. Furthermore we propose
analytical tools for those models, improving our capabilities with regards
to find suitable hyparparameters. In order to model counts (for example,
number of clicks in a page) as implicit user feedback, we chose to utilize
the Poisson factorization as a building block. Then, we develop two Poisson
factorization models that include social networks, item textual content and
periodic time events as contextual information, incorporated into a joint
matrix and tensor factorization model (in Chapters 3 and 4). Additionally,
we develop a joint hierarchical recurrent neural networks and a temporal
point process model for the problem of multi-session recommendations, where
we observe sequences of items grouped into sequences of sessions, and create
a model capable of providing itens recommendation and next-session time
prediction (Chapter 5). Finally, we utilize and develop an approach based
on the prior predictive distribution that allows us to set hyperparameters
for Poisson factorization models without the need to fit the model to the
data, obtaining both closed-form equations and an optimization algorithm
for this task (Chapter 6). One relevant result here is a closed-form equation
for the dimensionality of the latent space in Poisson factorization models. In
general, we position this work as a contribution to probabilistic modeling in
the context of recommender system utilizing multi-relational and count data
as a signal for contextual information, with contributions ranging from model
design, analysis and hyperparameter selection.
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Introduction 1

“As we have said, nature’s statistical tendency to disorder, the tendency
for entropy to increase in isolated systems, is expressed by the second
law of thermodynamics. We, as human beings, are not isolated systems.
We take in food, which generates energy, from the outside, and are, as
a result, parts of that larger world which contains those sources of our
vitality. But even more important is the fact that we take in information
through our sense organs, and we act on information received.”

— Norbert Wiener, The Human Use of Human Beings

In our current technological landscape, we are in a state of abundance of intercon-
nected users, systems and networks, generating and making available large amounts
of data. This plethora of interactions can be observed and analyzed to infer the
different agents’ properties and behaviors, advancing our collective capabilities
of data-backed decision making and planning. A big emerging challenge is the
advancement of technologies and techniques that would unlock and utilize the great
amount of “hidden” value in this ever-growing collection of data. The scale and
complexity of data collections pushes the limit of what human intuition and analysis
is capable of, thus creating the challenge of distilling the information content of
large data collections in a way that is useful for the users of information systems.

This challenge can be decomposed in several problems for users, decision makers
and designers of information system: for the end-users, it is the difficulty of finding
items in the data collections that better suit their information needs, for decision-
makers, the difficulty of obtaining insight about both aggregate and individualized
user behavior and their effect on the systems, and for designer, it is the challenge
of modeling the interfaces with the number of potential items to be interacted
with is too large for any given user. In that context, an emerging solution has
been personalization techniques, that are used in the development of adaptive
systems with interfaces geared towards their users’ implicit preferences, with the
aim of predicting information needs, improving user experience, engagement and

1



1. Introduction

satisfaction. This collection of techniques shape different aspects of a system,
presenting content and shaping interactions according to users personal needs, and
creating an incentive structure of increasing engagement for both designers and users
of the system. From the designer point-of-view, improvements in user engagement,
loops back creating finer-grained data about users-needs and interests; from the
user point-of-view, the system becomes more intuitive to interact with, leading to
more motivation and less cognitive burden, as the load of explicitly informed needs
is diminished. This incentive structure has the potential of improving productivity
and overall capabilities for understanding large collections of interaction data, in
the underlying dynamics of the agents generating the data. Nevertheless, it is not
a risk-free endeavour, both in public discourse and academic investigation there
is an increasing awareness of the risks involved, to name some: the so-called echo
chambers, abuse of privacy and increased surveillance capabilities (by public and
private institutions)1. With any new technology, risks and opportunities are to be
evaluated with clarity, leading to a quest for deeper understanding of the techniques
and how they can be changed and shaped. Having that in mind, our aim in this
thesis is to progress in this understanding for some models and techniques in this
ecosystem, with the assumption that with an expanded knowledge we ought to
be able to make better choices regarding design, adoption and usage. We adopt
the Bayesian modeling framework, given its natural fit in modeling uncertainty
both in the observed data and the model itself, creating a reasoning framework in
probabilistic terms for both the conclusions reached by the models, as well as the
underlying parameters assumed by the models.

A central task is the development and analysis of algorithms that learn, infer
and adapt based on the underlying preferences of users and agents interacting with
the information systems – the so called recommender systems algorithms. Examples
of those techniques are deployed on commercial platforms such as YouTube, Netflix,
Google Search, Spotify, and many others, which use features such as search history,
location, social network, demographics, item content and other contextual variables
to train their models. Furthermore, this family of techniques has been found
useful in diverse contexts such as healthcare (for example by deploying personalized
treatments according to the patient history of diseases, genetics and other medica-
ments in use), drug discovery (modeling patterns of interactions between chemicals
compounds and pathogens to predict best possible matches), public policy and
governance (in various contexts where modeling interaction between individual
or groups of citizens, decision-makers and services are beneficial for improving
the matching of the policies and services provided) and even in automating ma-

1An interesting reflective piece on those issues by the ML researcher Jaan Altosaar can be
found in https://jaan.io/my-friend-radicalized-this-made-me-rethink-how-i-build-AI/
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chine learning pipelines (for example by modeling performance metrics for different
combinations of algorithms and datasets).

A shared model design element across this work is the assumption that differ-
ent sets of interactions can be represented using factorization models. In these
models, complex interactions between entities of interest are represented using
latent variables for each of those agents. The widespread adopted technique of
Collaborative Filtering based in the matrix factorization model, where users and
items interactions (for example: counts, ratings, number of page visits) are ag-
gregated in a matrix with rows and columns indexed by users and items, and
the matrix is factorized by assuming that each row and column of the matrix is
represented by a latent vector. Furthermore, one could define an optimization
problem by minimizing a loss-function related to the quality of the approximation
of the original data-matrix by the latent-factors matrix, sometimes incorporating
regularization terms in the latent factors in order to introduce inductive bias (for
example for sparsity, non-negative, etc). This technique has been extended into a
probabilistic model, with the main advantage being that models assumptions could
be expressed in a unified probabilistic modeling language – both the distributional
and structural aspects of the latent factors and observations can be reasoned in
terms of choices for the prior distributions, independence structure and likelihood.
One overarching advantage resulting from this approach is the ability to model
generic relationships of multiple entities in the latent space, by sharing variables we
can link distinct multimodal data and make inferences based on them by doing data
fusion in the latent space. In recommender systems this creates an opportunity
for contextualized recommendation, taking into account not only the user–item
interactions, but other sources of data that are relevant for determining the user
information need in different contexts, for example, location, social network, item
content or time, using distinct relationships as indicators of context.

We are concerned with a family of probabilistic factorization models, called
Poisson Factorization (PF), that are usually employed for count-data, can naturally
incorporate (from the computational point-of-view) non-negativity and sparsity of
the latent-factors level – induced by the choice of priors (Gamma distribution) – and
the variational inference depends only on the non-zero entries of the data matrix (a
property of the choice of Poisson-Gamma structure), allowing for scalable inference.
A repeated motif and insight employed in these models is that we can use shared
latent variables to couple different parts of a model in a modular fashion. Armed
with this insight, first we introduce a model with coupled factorization of user–item,
item–content and user social network, in order to obtain a version of PF-based
recommendation capable of utilizing extra contextual information (in this case item
contents, expressed in textual form, and user social network). Furthermore, we
explore extensions of the Poisson model to include temporal dynamics. The first
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1. Introduction

considers periodic-time chains of latent-factors with additive effects on the rate of
counts, while keeping the same overall structure of the Poisson factorization model.
The second utilizes temporal point processes with a parameterized function for
the rate of events over time, and can be leveraged jointly with a recurrent neural
networks to induce a model capable of predicting both interaction events and the
timing of those events, based on past events data, with applications to the multi-
session recommendation problem. Finally, we abstract away from many specific
modeling choices of latent-variables to focus on a fundamental aspect of hierarchical
modeling, which is the sensible specification of prior information. Inspired by
the methodology of prior predictive checks from traditional Bayesian analysis, we
explore how to use the prior predictive distribution of the model to obtain functional
connections between hyperparameters of the model and prior expectations (or other
summaries) about the data generated by the model. This approach applied to a
generalized form of Poisson and compound Poisson factorization leads to closed-
form equations, and for more general (differentiable) models it can be cast into an
optimization problem that is solved via stochastic gradient-based methods. The
overarching importance of this step is adding a more informative and intuitive
view of the effect of the prior on the generative distribution assumed by the model,
which is typically overshadowed by the complexity of the model.

Organization of the thesis. Chapter 2 introduces the concepts of Bayesian
modeling for Machine Learning, including specific distributions and model family
that we are focusing on this thesis. The basic notation used throughtout the thesis
will be established, as well with the associated concepts. The generic formulation of
the recommendation problem will be presented, with later specification for different
settings will be presented in other chapters. In Chapter 3 we present the content-
based social Poisson matrix factorization model, as well as the recommendation
problem associated with the model, which takes into account social network of
the user and the content information (in textual form) of the items as contextual
information. We present the generative model, the inference equations using
mean-field variational inference with coordinate ascent, empirical evaluation of
the model, and discussions about the model design and results. Chapter 4 is
dedicated to the periodic yime-aware Poisson factorization model, targeted to a
recommendation problem in the context of periodic-time information, leading to a
tensor factorization model of the user–item–time tensor, as well as a design of latent
variables with periodic time dependencies. Two variations of the model is presented,
one taking into account only the time context and another with an auxiliary item-
context matrix. The inference is also based on mean-field variational inference with
coordinate ascent. Motivated by the models presented in Chapter 3 and Chapter 4,
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and a characterization of generic relations between entities present in a dataset, in
Section 4.5 we present generic modeling principles that can be used to guide the
design choices for a family of contextualized matrix and tensor factorization models.
In Chapter 5 we introduce an integrated temporal point process (TPP) model
with a hierarchical Recurrent Networks (RNN) for a multi-session recommendation
problem, where each session consist on a sequence of items, modelled by the RNN,
and a latent layer couples different sections and the PP intensity function, allowing
for next-items and inter-session time prediction. In Chapter 6 we focus on the
problem of specifying priors and hyperparameters for hierarchical models, and
develop tools leveraging the prior predictive distribution (PPD) in order to connect
summaries or prior knowledge from the data with virtual summaries2 generated
from the model. This technique applied from Poisson and Compound Poisson
Factorization results in closed-form expression for the dimensionality of the latent
space, as well as hyperparameters associated with the Gamma priors of the model.
Finally, Chapter 7 presents a summary of the main findings of this thesis, discussing
the revelance of the models, methods and empirical results, as well as pointing to
future lines of investigation.

Research questions

• RQ1 Is there an overarching strategy for incorporating contextual information
into factorization models for recommender system? What improvement are
observed by adding contextual information such social networks and item
textual content in a joint model for recommendation?

• RQ2 How to incorporate implicit feedback using count data models in fac-
torization models for recommender system and what are the advantages of
doing so?

• RQ3 How can we include periodic time information into matrix and tensor
factorization models for recommender system and what are the observed gains
from doing so?

• RQ4 What is the effect of adding a temporal point process model in a
sequential multi-session recommendation model?

• RQ5 How to analyze the properties of Bayesian factorization models for
recommender system in order to specify the hyperparameters of the model?

2We use the term virtual summaries in a sense of quantities generated from sampling from
the PPD before seeing any data.
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Main contributions

• Probabilistic models for contextualized recommendations, based on different
sources of contextual information and carefully designed for settings with
count data, sequential events and time.

• Proposing a generic modeling framework for multiple relations and multiple
entities that can be represented as probabilistic matrix and tensor coupled
factorization.

• Introducing a method that utilizes the prior predictive distribution for prior
specification and hyperparameter setting, leading to closed-form expressions
for hyperparameters of the Poisson and Compound Poisson Factorization
models and an stochastic gradient-based optimization algorithm for generic
differentiable models.

Publications

• Journals:

– In submission (pre-print): Eliezer de Souza da Silva, Tomasz Kuśmier-
czyk, Marcelo Hartmann, and Arto Klami. Prior specification via prior
predictive matching: Poisson matrix factorization and beyond. CoRR,
2019. URL http://arxiv.org/abs/1910.12263

• Conferences:

– Eliezer de Souza da Silva, Helge Langseth, and Heri Ramampiaro.
Content-based social recommendation with poisson matrix factoriza-
tion. In ECML/PKDD (1), volume 10534 of Lecture Notes in Computer
Science, pages 530–546. Springer, 2017

– Bjørnar Vassøy, Massimiliano Ruocco, Eliezer de Souza da Silva, and
Erlend Aune. Time is of the essence: A joint hierarchical RNN and point
process model for time and item predictions. In WSDM, pages 591–599.
ACM, 2019

• Workshops3:

3These workshop papers contain initial ideas further developed in other publications, therefore
they will not be discussed in depth in this thesis and are included here for the sake of completeness.
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– Eliezer de Souza da Silva. New probabilistic models for recommender
systems with rich contextual and content information. In WSDM, page
839. ACM, 20174

– Eliezer de Souza da Silva and Dirk Ahlers. Poisson factorization models
for spatiotemporal retrieval. In GIR, pages 3:1–3:2. ACM, 20175

4Doctoral consortium paper included in the proceedings of the main conference.
5Position paper.
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Preliminary material 2

“I can illustrate the ... approach with the ... image of a nut to be opened.
The first analogy that came to my mind is of immersing the nut in some
softening liquid, and why not simply water? From time to time you rub
so the liquid penetrates better, and otherwise you let time pass. The
shell becomes more flexible through weeks and months — when the time
is ripe, hand pressure is enough, the shell opens like a perfectly ripened
avocado!”

— Alexander Grothendieck, Récoltes et Semailles

In this chapter we introduce the concepts, notation and general problem setting that
we will focus on this thesis. The models developed in this dissertation are inspired by
the existing literature, therefore we start by focusing on their theoretical foundations.
Our first step is to establish the notation used for both the equations and diagrams
to represent probabilistic models. Then, we introduce the framework of Bayesian
modeling in Section 2.1, including latent-variable models, prior and posterior
predictive distributions, interfaces between probabilistic modeling, neural networks
and inference methods. The overall framework will be useful for understanding
the different models employed, as well as the methodological contributions for
prior specification. In Section 2.2 we introduce probabilistic models for count data,
discuss their assumptions, potential benefits and limitations, and in Section 2.3, the
recommendation problem, addressing interconnections with relational modeling,
representations in matricial and tensorial forms, as well the general formulation
of the corresponding probabilistic models. Finally, in Section 2.4, we discuss
the challenges and approaches for finding hyperparameters and specifying prior
distributions in hierarchical models, introducing the framework of prior-predictive
checks and related techniques.
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2. Preliminary material

Notation

Throughout this thesis we will use the following notation:

• Scalar values are represented by lower-case letters x. Generic random variables
and sets are represented by upper-case letters X. When reasoning about a
particular value that this random can assume a lower-case version is used,
for example in p(X = x), nevertheless, for convenience and when it is clear
from the context, we will simply use p(x). Often, when talking about latent-
variables we will use greek letters, for example p(X|θ)p(θ). The size of a set
A is denoted by |A|.

• Vectors are represented with bold lowercase, for example x = [x1, x2, . . . , xD]> ∈
RD, and are column-vectors. Given vectors x and y, the inner product can
be calculated and denoted with transpose of x multiplied by y, expanding
with the vector elements we have x>y =

∑D
i=1 xiyi. Matrices and tensors

are represented with bold uppercase, the distinction between them should be
apparent from the context, and when specifying their elements and index set,
for example A = (Ai1i2) ∈ RN1×N2 and B = (Bi1i2i3) ∈ RN1×N2×N3 . This
notation is valid for any variable, random or non-random.

– In order to simplify notation for indices sets, we use the shorthand
[n] := {1, 2, . . . , n}, for the finite set of positive integers i ≤ n. A
contigous subset of the index can be represented using the notation
Ai:j = [Ai, Ai+1, . . . , Aj ], with i < j.

– Variables representing indices appear as subscript, in some cases we
use a comma between two different indices when using multiple in-
dices to improve readability or give emphasis, for example, Ai1,i2i3 =
Ai1i2,i3 = Ai1i2i3 . The summation symbol + can be added as a sub-
script substituting an index, and it denotes summing over the respective
index, for example, given the multi-index i1i2i3 ∈ I1 × I2 × I3, we
use Ai1i2+ =

∑
i3∈I3

Ai1i2i3 or Ai1++ =
∑
i2∈I2

∑
i3∈I3

Ai1i2i3 . Sets
representing collections of indices will be represented using calligraphy
formating and upper-case, for example I, and the same format will be
used sometimes for sets or collections of other sets or random variables
of importance.

– The Hadamard (or element-wise) product of two vectors, matrices or
tensors A and B with same dimensionality is denoted with A◦B, and it
is defined such that (A ◦B)i1...iN = Ai1...iNBi1...iN , where i1 . . . iN is a
generic index. The symbol ◦ will be used as well for function composition
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f ◦ g, defined as (f ◦ g)(x) = f(g(x)), with the difference defined by the
context.

• We use the notation 1{e} to convert the logical condition e to 1 (one) when
the expression is true and 0 (zero) otherwise. When operating with multiple
indices we use the Kronecker delta δij defined as 1 when i = j and 0 otherwise,
or with the logical notation δij = 1{i = j}.

• Given a graph G = (V,E), with V = {vi}i∈[|V |] representing the set of
vertices, the set of edges is E = {e|endpoints(e) = {vi, vj}}. Each edge is
defined by the two distinct vertices in the endpoints in case of an undirected
graph, and additionally with a direction, in case of a directed graph. We
define the neighborhood of a vertex vi as the set of vertices that have an
edge connected to it, using the notation N(vi) = {vj ∈ V |∃e ∈ E : vi, vj ∈
endpoints(e)∧ (vj 6= vi)}. If we lift the restriction that edges should have only
two endpoints, allowing for any finite number n ≥ 2, we obtain an hypergraph,
which can be a relevant representation of more complex relationships between
entities. A directed graph with no directed cycles (no directed path with
repeated nodes) is called a Direct Acyclic Graph (DAG), and it is of relevance
for Bayesian Networks.

• A probabilistic model can be expressed either by writing down the joint
probability densities function (PDF, for continuous variables) or probability
mass function (for discrete variables)1 in terms of how they are factorized,
for example, p(X,Y ) = F (X|Y )G(Y ) (where p(.) is a generic notation for
a density function and p(.|.) the conditional density)2, or the formal data
generating process, for example Y ∼ G and X ∼ F (Y ), using the notation
“∼” to tell that variable (on the left hand side) is sampled from a distribution
(on the right hand side). When expressing the probability density and
distribution that a variable is sampled from, we can overload the notation in
the following way: p(X|Y ) = F (X|Y ) will be associated with X ∼ F (Y ), for
example for a Normal distributed variable we have p(X|µ, σ) = N (X|µ, σ2)
and X ∼ N (µ, σ2) .
In both cases we obtain the same structure: the variable Y is generated
from a prior probability distribution and the variable X is generated from
another distribution conditioned on Y , typically characterized via its like-
lihood function. Usually, simply stating the distributions or PDFs in the

1We make this distinction here for the sake of completeness, but this distinction will be
avoided whenever it is clear from context or definition of the variables

2The notation f(.) is a shorthand for defining a function f that has one argument. In general
we use this notation by substituting the arguments of the function with a dot.
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2. Preliminary material

model is insufficient to fully specify the model, given that it might depend
on fixed non-random variables, the hyperparameters of the model. To
distinguish from conditioning on a random variable, we denote explicitly
the hyperparameter with the symbol “;”, in the above example it could be
p(X,Y ) = p(X|Y ;λ1)p(Y ;λ2), with {λ1, λ2} as the set of hyperparameters.
Nevertheless, when it is implicit from the context, we will refrain from us-
ing that notation. For expected values E[.], variance V[.] and covariance
Cov[.] we adopt the same notational convenience used for conditional proba-
bility and hyperparameters when denoting the expected value, for example
E[X] := E[X;λ] and E[X|Y ] := E[X|Y ;λ]], variance V[X] := V[X;λ] and
covariance Cov[X,Y ] := Cov[X,Y ;λ]. The aforementioned concepts will have
a detailed presentation in the next sections, here they are presented with the
main purpose of clarifying the notations.

Plate notation and Probabilistic Graphical Networks (PGM). When
presenting our models, we will both describe the model in hierarchical symbolic
equations, as well as present their graphical representations, using Bayesian Net-
works (BN) and plate notations. This graphical notation is useful to represent
concisely the independence structure of a probabilistic model, and although there
are multiple variations on the notation and their representational power, we will
focus on the notation that uses direct edges and does not allow directed cycles – the
graphical model is a DAG (Pearl, 1988). Typically each variable of our model will
be assigned a node in the graph, and direct edges are used to model the dependency
structure of the variables. Given two nodes X and Y , a parent node has an edge
pointing towards another node (the children node), for example if Y → X, we say
that Y ∈ pa(X) and X ∈ ch(Y ), and define pa(X) as the set of all parents of X and
ch(Y ) as the set of all children of Y . This means that if X is in the neighborhood
of Y , it is either a parent or a children of Y , formally N(Y ) = ch(Y ) ∪ pa(Y ) .
Given this notation, and with the additional constraints that the resulting direct
graph does not contain cycles, the joint probability of the model is derived from the
BN graph as a product of conditional probabilities of each nodes conditioned on
their parents3. In case we have an indexed family of variables {Xi}i∈I that share a
structure in our model, we can use the plate notation to simplify the graphical repre-
sentation by enclosing the representation of the variables with a plate and indicating
the index-set. The Markov Blanket mb(.) of a node X in a BN is the union-set of
parent nodes, children nodes, and other parents of the children nodes (co-parents),
formally defining it as mb(X) := pa(X)

⋃
ch(X)

⋃
Z∈ch(X)(pa(Z) \ {X}). We

3If pa(X) = ∅, we say that p(X| pa(X)) = p(X)
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2.1. Bayesian modeling in Machine Learning

present the algebraic representation, text description and their equivalent graphical
representation in Table 2.1.

Table 2.1: Examples with description of Bayesian networks and plate notation

Probability density Description Diagram

p(X|Y )p(Y ) Latent variable Y and observ-
able variable X XY

p(X|Y )p(Y ;λ) Observable variable X and la-
tent variable Y with a fixed
hyperparameter λ

XYλ

p(X|µ, τ)p(µ)p(τ) Observable variable X, and la-
tent variables µ and τ

X

µ

τ∏
i∈I p(Xi) Random variables

X1, X2, . . . , X|I| with in-
dexset I, represented with
plate notation

Xi

i ∈ I

∏
j∈J p(Yj)

∏
i∈I p(Xij |Yj) For each observable variable

Xij there is latent variable Yj XijYj

i ∈ I

j ∈ J

2.1 Bayesian modeling in Machine Learning

A central topic in Machine Learning (ML) is the development of generic methods to
solve different tasks by creating computational models with the ability to learn from
data (relevant to the task), and consequently make data-based decisions, predictions
or inferences. There are multiple approaches and frameworks relevant to achieve
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this goal, but we are going to focus on the approaches that use ideas from Bayesian
statistics and probabilistic modeling. The most important advantage of using this
approach is the ability to use a principled and logical methodology to reason and
quantify uncertainty (Jaynes, 2003; Halpern, 2017; Pearl, 1988). Beyond those
conceptual considerations, there has been recent progress in the computational
tools facilitating both modeling and scalable inference of Bayesian models, which
have been a bottleneck for larger scale adoption of this framework in the past.
This section gives a general overview of Bayesian modeling applied in Machine
Learning, introducing concepts, definition and results relevant for this thesis, the
interested reader is refered to Bernardo and Smith (1994), Bishop (2006), Koller
and Friedman (2009) and Gelman et al. (2013) for a detailed exposition.

A Bayesian model can be understood as description using probabilistic terms,
distributions and expressions of a data generation process, in general with a structure
containing conditional probabilities of the observations given certain parameters,
and prior probability distributions for the parameters. This structure, aided by
appropriate computational methods allows querying and characterization in proba-
bilistic terms different variables and sets of variables of the model (observed and
unobserved), that can be furthermore employed in tasks of inference, prediction
or explanation. Mathematically one can express the different dependent compo-
nents of this generative process using the laws of probability and Bayes equation.
Given random variables X and θ, assuming X is the observed variable, and θ the
parameters of the observation-model, we can express the joint probability in a
factorized form using the conditional probability of X given θ, the likelihood of the
observation, and the prior probability of choosing θ, described in Equation 2.1. The
joint probability contains full information about different parts of our model, gives
us probabilities of different values for the observations and parameters, and can
be used to calculate marginal distributions. One resulting distribution of interest
is the marginal probability of observations, the evidence, that can be obtained
via integration (for continuous variables) or summation (for discrete variables)
over the domain of those variables, represented in Equation 2.2. Bayes’ theorem,
represented in Equation 2.3, combines those results enabling the computation of the
posterior distribution of parameters given the observed data, allowing us to answer
the question: “given that we know the data, how can we update our estimates
about the parameters?” – defining a process of updating our beliefs about our
model given the observations. Once we have the posterior distribution, we can
use it to compute distribution of future observations X ′ conditioned on the past
observations X, given by the Equation 2.4, the posterior predictive distribution.
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p(Parameter θ) p(Data X|Parameter θ) Data X

Figure 2.1: Diagram of the generative view of Bayesian model. The observed data
X is generated from a probabilistic process that specifies a model of the data p(X|θ)
that depends on some parameter θ. Specifying these distributions will allow us to
sample data from the model, and given a collection of observations, Bayes’ Theorem
allows us to characterize the settings that would generate those observations.

joint

p(X, θ) =
conditional

p(X|θ) p(θ) (2.1)

p(X) =
∫
θ

p(X, θ)dθ =
∫
θ

p(X|θ)p(θ)dθ (2.2)

posterior

p(θ|X) = p(X, θ)
p(X) =

likelihood

p(X|θ)
prior

p(θ)
p(X)

marginal or evidence

= p(X|θ)p(θ)∫
θ
p(X|θ)p(θ)dθ (2.3)

p(X ′|X) =
∫
p(X ′|θ)p(θ|X)dθ (2.4)

As a simplified example, consider a binary classification task with a given dataset
D = {(xi, yi)}i∈[n], feature vectors xi ∈ RD and target values yi ∈ {0, 1}. One
(traditional) approach would consist in proposing a parameterized mappings between
the feature and target values fθ : RD → {0, 1} (for example, a neural network, or a
decision tree), a measure of discrepancy (denoted the loss function) between the
target values and the values given by the mapping fθ, seek an optimization or search
strategy that would allow adjustments of the parameter θ in order to minimize the
discrepancy, and finally apply this process of adjustments (the training process)
using examples from the training dataset D. The ultimate goal is generalization,
meaning that the proposed model will display similar or superior performance on
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unseen examples from the same dataset and on the same task4. One limitation here
is the inability to automatically express the uncertainty associated with the model,
predictions of the model or the parameters inferred. Also, the choice of the space
of possible functions can be ad hoc and present difficulties with supplying experts
with mechanisms for integrating a priori knowledge into the model. Bayesian
modeling offers an alternative with a principled methodology (based on Probability
Theory and Statistics) to address those shortcoming: measuring different sources
of uncertainty is reduced to characterizing the distributions associated, and by
explicitly modeling different priors assumptions about the model in terms of random
variables and their interdependencies, there is a natural language for reasoning about
those assumptions, integrating with experts knowledge, and making inferences. One
might distinguish between small and big data regimes, and the ability to reason
about our uncertainty using Bayesian modeling becomes even more relevant in the
small data regime, where experts or task specific knowledge can help guide the
modelling when sufficient data is not available; in recommender systems literature
this is related to the cold start problem. These considerations are nevertheless not
absolute, and there are different tasks and contexts where they would be invalid.

In the previous example, a Bayesian modeling approach would start by proposing
a representative structure to the probability of observing the target variables
yi ∈ {0, 1}, which can be modelled as Bernoulli distributed variable controlled
by some parameter pi ∈ [0, 1], thus yi ∼ Ber(pi). The next step is to specify a
possible distribution to the parameter, as well as how the features xi will play
a role in there, for example one could assume an unobserved vector parameter
w ∼ N (0, σID) normally distributed with zero mean and covariance given by
the diagonal matrix σID, and pi = φ(x>i w), where φ : R → [0, 1] is the sigmoid
function (or some other function mapping x>i w to [0, 1], for example the probit
link function is another alternative). Our final model then is w ∼ N (0, σID), and
yi|xi ∼ Ber(φ(x>i w)), represented in Figure 2.2, and conditioned on the dataset D
and applying the appropriate inference method, either via analytical approximations
or computational methods, using Bayes’ theorem we are able to obtain the posterior
distribution of the model parameters p(w|D). Furthermore, using the posterior and
given a new feature vector x′, we can compute the predictive distribution of the
target y′ given by p(y′|D,x′) =

∫
Ber(y′|φ(x′>w))p(w|D)dw, which can be used

to produce predictions as well as their associated uncertainty. Simplifying that
expression, and targeting minimizing the misclassification errors, the classification
rule reduces to y′ = 1 if 0.5 ≤ p(y′ = 1|D,x′) =

∫
φ(x′>w)p(w|D)dw, and y′ = 0,

4It is a common practice in ML to split the dataset into training and testing datasets, such
that in a first phase the model is adjusted to the training examples, and consecutively evaluated
on unseen examples from the testing dataset. In general, we would hope that this behavior would
generalize to any new examples on the same task.

16



2.1. Bayesian modeling in Machine Learning

yi

wσ

xi

i ∈ [n]

Figure 2.2: Example of a Bayesian model for a classification task

otherwise. With this final equation we have both a classification rule, as well the
possibility of measure the uncertainty of associated with a given prediction. In order
to turn this result into an algorithm, the steps necessary are the ones related to
making the posterior computation and the predictive distribution feasible, this can
be done either by manual calculation leading to close-form equations, approximations
or general purpose computational methods available probabilistic programming
languages and libraries such as Stan (Carpenter et al., 2017), PyMC3 (Salvatier
et al., 2016) or Pyro (Bingham et al., 2019). In the following sections we will discuss
in more details the different inference techniques and the context that they are
desirable.

Independence. In probabilistic models with multiple interacting parts, one
fundamental task is related to identifying and expressing when certain variables
are influencing others and how this translates into structural assumptions in the
model. Formally, we talk about marginal independence of variables X and Y ,
denoted as X ⊥⊥ Y , when the it holds that p(X,Y ) = p(X)p(Y ), which means
that the marginal distribution has all information to characterize the joint, in
other words, each marginal density is acting as an independent dimension of the
joint5. Conditional independence, denoted as X ⊥⊥ Y |Z, is defined by that property
p(X,Y |Z) = p(X|Z)p(Y |Z), asserting the independence only when conditioned to
a certain variable, while implying a level coupling between the variables X and Y ,
mediated by variable Z that they are conditioned on6. Conditional independence
can be defined as well when conditioning on a set of variables, and it can be applied
to define the Markov Blanket as the set that contains all relevant probabilistic
information for given variable of interest (Pearl, 1988; Bishop, 2006), meaning that
conditioned on the Markov Blanket all other variables are independent, or in formal

5A related concept from information theory is mutual information between two variables, that
according to its definition goes to zero when they are marginally independent.

6In fact it can be shown that p(Y |X) =
∫
Z
p(Y |Z)p(Z|X)dZ.
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Xi mb(Xi)

X \ ({Xi} ∪mb(Xi))

Figure 2.3: Ilustration of the conditional independence between the variable
Xi ∈ X and all other variables in the collection X that are not in its Markov
Blanket, conditioned on the Markov Blanket.

terms, ∀X 6∈ mb(Y ) : Y ⊥⊥ X|mb(Y ) – Figure 2.3. This characterization simplifies
the task of computing the full conditionals of a variable X, denoted as p(X|∗),
which is the distribution of X conditioned on all other variables in the model. Full
conditionals are relevant as building blocks for Gibbs samplings and variational
inference with the mean field assumption. More formally, suppose that the model
consists of a set of random variables X = {X1, . . . , Xn}, and given the conditional
independence on the Markov Blanket, we can express the joint as

p(X ) = p(Xi|mb(Xi))p(X \ ({Xi} ∪mb(Xi))|mb(Xi))p(mb(Xi))
p(X\{Xi})

for some i ∈ [n] such that if we conditioned Xi on all the other variables X \ {Xi},
it reduces to conditioning on mb(Xi). Reorganizing the above equation we obtain

p(Xi|∗) = p(X )
p(X \ {Xi})

= p(Xi|mb(Xi)) (2.5)

2.1.1 Latent variable models
A common approach for adding expressity while balancing parsimony in a proba-
bilistic model is to utilize latent variables models (LVM). The approach is based on
modeling individual and group-level variability of the observations by postulating
unobserved or latent variables acting on the model at individual and group level.
For example, if we add a latent variable for each observation this would lead to a
joint probability that factorizes in the following way

∏
i∈I p(Xi|ηi)p(ηi), for a set of

observations {Xi}i∈I and latent variables {ηi}i∈I . More broadly, the conditional
structure of these models allows the use of local (per observation, or groups of
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µ

η1 η2 η3

X1 X2 X3

Figure 2.4: Diagram of a model with local interdependent latent variables and a
global latent variable.

observations) and global (affecting the overall model) latent variables with various
possibilities of structural independence between them (Hoffman et al., 2013). In gen-
eral, we can have latent variables depending on each other and on a global variable,
while the observations, on groups of latent variables (local and global). Put in formal
terms, given a set observations {Xi}i∈I , local latent variables {ηj}j∈J and global
latent (multidimensional) variable µ, using the language of BN, one could describe
the factorized join as p(µ)

∏
j∈J p(ηj |pa(ηj))

∏
i∈I p(Xi|µ, {ηj |ηj ∈ pa(Xi)}). For

example, it could be of interest to model sequential dependency on the level of latent
variables, but not on the observations, which would be a stronger assumption. Fig-
ure 2.4 is an example of such type of model, with a joint probability that factorizes
to p(µ)

∏3
i=1 p(Xi|ηi, µ)p(ηi|pa(ηi)), where pa(η1) = {µ}, and pa(ηi) = {µ, ηi−1}

(for i ∈ {2, 3}), and it is related to a family of models known as Hidden Markov
Models (Bishop, 2006).

The use of latent variables models is widespread in different scientific fields,
emerging from assuming the existence of simple underlying mechanisms that explain
individual and group variability in the data. Another (related) reason is the
need for dimensionality reduction of the data, which relies on assuming that the
large variability in the observed data can be approximated by a small set of
variables (Bartholomew et al., 2011). This is relevant to many scientific tasks,
not only because of our limited cognitive capacity to grasp the structure of large
quantities of variables without mapping them to small dimensions, but also because
many theories rely on entities and abstractions having quantities which are not
directly observed (for example, concepts such as personality traits, a topic in a
collection of texts, user utility, preference or satisfaction are not directly measured)7.
Statistical methods employed in those contexts utilize latent variables, model the

7A top-down approach could be proposing data generating models from those latent concepts
to the observations, or to proxy measurable quantities. A buttom-up approach, could be one that
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observations as dependent on those hypothetical quantities and find the settings
for the latent variable that best fit the multivariate data.

Historical and bibliographical remarks. The modeling principles of LVM
can be found already in the early works of Peirce (1884), Spearman (1904), Pearson
(1901), Hotelling (1933) and Lazarsfeld (1950), that led to the development and
widespread adoption of Latent Class Analysis (LCA), Principal Component Analysis
(PCA) and Factor Analysis (FA) in the fields of applied statistics, social sciences,
psychology and biometrics. Similarly, motivated by various scientific and engineering
problems, mathematicians from the 19th and 20th centuries developed techniques
related to finding solutions to linear system, low-rank approximations, bilinear
and quadratic forms, culminating in a rich theory of matrix factorization methods
such as Singular Value Decomposition (Stewart, 1993) and many others (see
e.g. Hubert et al. (2000)). In fact, it is noted by Hubert et al. (2000) that
historically those methods were developed and used in mathematics and applied
statistics/psychometrics communities with distinct purposes: first as a way to
decompose a difficult tasks into easier sub-problems (for example when solving
large systems of equations), and secondly to reveal the fundamental structure
present in large collection of observations (for example, when analysing large survey
data). Nevertheless there is deep interconnection between the two tasks, and
particularly in Machine Learning, factorization methods have been used both for
their computational properties of simplifying larger tasks, as well as for the structural
properties of finding hidden statistical patterns in the data. In our case, those are the
main reasons for adopting the Poisson-Gamma factorization model as building block.
For a broader review of latent variable models in psychology and social sciences
the reader is refered to Bollen (2002) and Goodman (2002). Although different
communities developed some latent variable models independently, mainstream
statistics have been developing a convergence of those techniques, concepts and
nomenclature, as well as extending and further developing them into a more general
formulation; for a wider coverage and discussion of LVM models in statistics, we
refer the reader to Skrondal and Rabe-Hesketh (2007) and Bartholomew et al.
(2011).

Probabilistic Latent Variable Models in Machine Learning. Machine
Learning, being a more recent field, received the scholarship previously devel-
oped, and extended it by developing efficient algorithms for learning and inference,
as well as techniques for the utilization of large scale datasets. Furthermore, the

assumes latent variables, and only a posteriori conceptually interprest them to latent abstractions
in certain theories.
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use of Bayesian Networks both in modelling and inference, represents a step further
in increasing expressivity of the models (Pearl, 1988), while maintaining and using
general principles for design of inference algorithms (Ahmed et al., 2012; Hoffman
et al., 2013; Wainwright and Jordan, 2008). Thus, continued progress on the
field has been made on the development of Bayesian/probabilistic formulations of
various LVM, together with efficient inference algorithms usually customized for
each proposed model. This led to the proposal of various practical models and
algorithms including Probabilistic PCA (Tipping and Bishop, 1999), Probabilistic
Canonical Correlation Analysis (Bach and Jordan, 2005; Klami et al., 2013), Group
Factor Analysis (Virtanen et al., 2012) and Latent Classification Models (Langseth
and Nielsen, 2005; Vermunt and Magidson, 2003).

Lorem 
ipsum dolor sit 
amet,

consectetur 
adipiscing elit

sed do eiusmod 
tempor

Embedding words 
and documents

Latent SpaceCollections of text and documents

Figure 2.5: Embedding a collection of documents and words into a latent space

Vector Space Model and Latent Semantic Analysis. Particularly in text
analysis and modeling, LVM have been introduced with the insight that the
semantics of words and documents can be inferred from the relationships that
emerge from their respective latent variables. This approach is present in the early
work of Landauer and Dumais (1997) introducing the latent semantic analysis
theory, with the idea that words can be represented in a (continuous) latent
space, inducing a representation that is learned from the co-ocurrences patterns
in large bodies of text (Figure 2.1.1). The main advantage of representing strings
of text as numerical vectors is that it allows us to perform operations on the
this latent representation using numerical algebra and algorithms in a consistent
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and unified way, so long as the structural relationships between those vectors (for
example, distances, angles or inner products) captures structural relationships
between the words they represent (for example, linguistics features, co-occurence
patterns in sentences, semantics) – the survey work of Turney and Pantel (2010)
discusses in depth the hypothesis, literature and models developed around the
idea of representing textual data in a vector space. This insight has motivated
further development of systems and algorithms for text analysis tasks, initially in
Information Retrieval and text indexing with the proposal of Vector Space Model
(VSM) and the development of the Latent Semantic Indexing (Berry et al., 1995;
Deerwester et al., 1990) and Probabilistic Latent Semantic Indexing (Hofmann,
1999), widely adopted and deployed in modern computing technologies such as
text-based internet search. A related family of models are the topic models, with the
seminal work of Blei et al. (2003) introducing the Latent Dirichlet Allocation (LDA)
model, sharing many features with LSI, but with an additional latent structure of
topics, where each document is generated from a mixture of topics, and each word
sampled from a given topic. Those models can be seen as early versions of methods
for word embedding (Mikolov et al., 2013) and representation learning (Bengio et al.,
2013), which are important sub-fields of Machine Learning research, that have
been fueled in recents years by successful application of (deep) neural networks to
Computer Vision (CV) and Natural Language Processing (NLP) tasks.

Neural networks and other applications. Probabilistic LVM have been
sucessfully combined with neural networks, effectively creating mechanisms for
parameterized non-linear transformations between the random variables in latent
space and the observations. The seminal works of Kingma and Welling (2014)
and Rezende et al. (2014) introduced the Variational Auto Encoder (VAE) model,
and developed techniques for the computation of gradients through stochastic and
deterministic computation graphs (Mohamed et al., 2020; Masegosa et al., 2021),
leveraging the tools of automatic differentiation and optimization for probabilistic
LVM. Other recent works by Mooij et al. (2010) and Kaltenpoth and Vreeken (2019)
have shown the potential of latent-variable modeling for distinguishing between
cause and effect from observational data. Kunin et al. (2019) develops a theoretical
analysis of Linear Auto-Encoder, demonstrating equivalances between the critical
points of linear auto-encoder model training via construction of regularized loss
function, and the MAP of Probabilistic PCA, as well theoretical analysis of the
geometry of those models.

Information theory and geometry. Another insightful perspective, inspired
by Information Theory, is the idea that LVM can be seen as encoding the obser-
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vations and compressing their representation. This binds together the statistical
intuition that a latent variable is capturing sources of individual variability for
the observation with formal concepts of information and coding theory, such as
code length and entropy as measure of information. Examples of the link be-
tween Bayesian inference, either via Maximum-A-Posteriori, Variational Inference
or model selection, information-theoretical measures of complexity and the Mini-
mum Description Length principle are expressed in the works of Rissanen (1996),
Honkela and Valpola (2004) and Graves (2011). The outline of this connection
is that the expected value of the negative logarithm of the joint of a probability
model or the posterior is proportional to measures of information (entropy), which
is a lower bound for the code-length of a probabilistic source, binding together
the maximization of probabilities with minimization of description lenghts. For an
in-depth theoretical and empirical analysis of these conceptual interconnections we
refer to Ullrich (2020), Grünwald (2007) and MacKay (2003).

2.1.2 Inference techniques

Given the generative description of a probabilistic model, which defines how the
data is generated, we can use Bayes’ Theorem to make inferences about the
unobserved random variables of the model. A common task is then to characterize
the distribution of the latent variables, conditioned on a set of observations –
the posterior inference. These computations can be done analytically by direct
application of Bayes’ Theorem only for a limited set of models, and this difficulty
in the general case is intrinsic to Bayes’ Theorem itself, given that it depends
on calculating the marginal probabilities of the observation, in fact in the work
of Cooper (1990) and Roth (1996) it is shown that it is NP-hard for a large class of
models and strategies. In order to overcome this challenge, many methods have
been proposed in the literature and practice. One initial approach consists in
relaxing the criteria of characterizing the full posterior distribution, relying only
on point estimates of the relevant properties of that distribution, for example the
mode of the posterior or the likelihood function – the Maximum-a-Posteriori (MAP)
and Maximum-Likelihood Estimate (MLE) methods. This approach reduces the
posterior inference problem to an optimization problem of a single point of interest
of the posterior distribution. Another approach is to use an approximation for the
posterior, generated via a sampling procedure, leading to a numerical approximation
of the posterior that will converge to the true posterior in probability as the number
of samples increase (and under certain assumptions) – the Markov Chain Monte
Carlo (MCMC) family of methods (Casella and Berger, 2001; Gelman et al., 2013).
Finally, the variational inference approach seeks an approximation for the posterior
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distribution by assuming that there is parameterized family of distributions that
can be optimized to match the posterior (Bishop, 2006; Blei et al., 2017).

Let us consider a probabilistic model with local and global latent variables, repre-
sented in Figure 2.6, we can express the joint probability as p({Xi}, {Yi}, Z;σZ , σY ) =
p(Z;σZ)

∏
i∈[n] p(Xi|Yi, Z)p(Yi|Z, ;σY ). Given a dataset of observations D =

{X1, . . . , Xn}, and denoting the set of latent variables as Θ = {Z} ∩ {Y1, . . . , Yn}
and hyperparameters σ = {σZ , σY }, the posterior inference problem consist in
computing p(Θ|D;σ). Applying Bayes’ Theorem we optain

p(Θ|D;σ) = p(Θ,D;σ)∫
p(Θ,D;σ)dΘ = p(D|Θ)p(Θ;σ)

p(D;λ)

where p(D;λ) =
∫
p(Z;σZ)

∏
i∈[n] p(Xi|Yi, Z)p(Yi|Z;σY )dZdYi. In this case

computing the MLE and MAP by maximizing the log-likelihood results in:

ΘMLE = argmax
Θ

log p(D|Θ) = argmax
{Z}∪{Yi}

∑
i∈[n]

log p(Xi|Yi, Z)

ΘMAP = argmax
Θ
{log p(D|Θ) + log p(Θ;σ)}

= argmax
{Z}∪{Yi}

{log p(Z;σ) +
∑
i∈[n]

log p(Yi|Z;σ) + log p(Xi|Yi, Z)}

In this way we can perform the MAP optimization as using the log of prior
probabilisties to add regularizer terms to the MLE optimization.

Variational Inference. Given a measure of the discrepancy between probability
distributions, usually the Kullback-Leibler divergence (KLD), and a parameterized
family of distributions Q(Θ) := {q(Θ;λ)}λ∈X that is assumed to approximate the
posterior p(Θ|D;σ), the variational inference approach consists in setting up an
optimization problem to find parameters that minimizes the discrepancy in relation
to the posterior:

q(Θ;λ∗) = argmin
q(Θ;λ)∈Q(Θ)

KL{q(Θ;λ), p(Θ|D;σ)} (2.6)

This approach consists in transforming the original problem of posterior inference
into an optimization problem on the space of probability distributions. To make
it feasible, it is necessary to define a discrepancy measure between distributions,
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Xi

ZσZ

YiσY

i ∈ [n]

Figure 2.6: Diagram for a generic probabilistic model with local and global
latent-variables and hyperparameters.

design a family of distributions to approximate the posterior and optimize the
discrepancy measure over this family of distributions. The typical choice for the
discrepancy measure is the Kullback-Leibler divergence (KLD), defined formally
below.

Definition 2.1. Given two probability distributions over the same space X , with
densities p and q, we define the Kullback-Leibler divergence as

KL{q(X), p(X)} =
∫
x∈X

q(x) log q(x)
p(x)dx = Eq(X)[log q(X)

p(X) ]

Substituting the variational family in the KLD we obtain the divergence between
the variational approximation and the posterior.

KL{q(Θ;λ), p(Θ|D;σ)} = Eq(Θ;λ)

[
log q(Θ;λ)

p(Θ|D;σ)

]
= Eq[log q(Θ;λ)− log p(Θ|D;σ)]

= Eq
[
log q(Θ;λ)− log p(Θ,D;σ)

p(D;σ)

]
= −Eq

[
log p(Θ,D;σ)

q(Θ;λ)

]
ELBO(λ)

+ log p(D;σ)
evidence

(2.7)

Evidence Lower BOund (ELBO). In Equation 2.7 we observe that the KLD
can be decomposed into a sum of two terms, the evidence log p(D;σ) and a term
that depends on the variational approximation ELBO(λ). Observe that it is always
true that KL{q(Θ;λ), p(Θ|D;σ)} ≥ 0, implying that ELBO(λ) ≤ log p(D;σ), which
motivates the naming. Now this manipulation of the formula has simplified that
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task of optimizing the KLD, given that the ELBO depends only on the joint
probability, while the KLD depends on the posterior. Additionally, the evidence is
independent of the variational parameters, implying that the optimization of the
KLD with respect to the variational parameters λ can be performed using the ELBO.
Finally, the negative sign in front of the ELBO implies a inverse proportionality
relationship with the KLD, meaning that minimization of the KLD is equivalent
to maximization of the ELBO. Combining those observations we can rewrite the
optimization problem described in Equation 2.6 in terms of the ELBO.

q(Θ;λ∗) = argmin
q(Θ;λ)∈Q(Θ)

KL{q(Θ;λ), p(Θ|D;σ)}

= argmin
q(Θ;λ)∈Q(Θ)

Eq(Θ;λ)

[
log q(Θ;λ)

p(Θ|D;σ)

]
= argmax
q(Θ;λ)∈Q(Θ)

Eq(Θ;λ)

[
log p(Θ,D;σ)

q(Θ;λ)

]
= argmax
q(Θ;λ)∈Q(Θ)

ELBO(λ) (2.8)

Coordinate Ascent Variational Inference (CAVI). The next component of
the variational inference is the definition of the variational family of distributions
Q(Θ). The simplest approach consist in using the mean-field approximation, which
assigns a single approximation family for each latent variable, and defines the
variational family as the product of all the individual approximations. Using
the previous defined model, this would mean to define the variational family as
q(Θ;λ) = q(Z;λ0)q(Y ;λ1:n) = q(Z;λ0)

∏
i∈[n] q(Yi;λi), with λ := {λ0, λ1, . . . , λn}.

Given the mean-field assumption for the variational family, we proceed by looking
for an optimal choice of variational family for each latent variable, which is possible
because of the independence in the mean-field assumption. Substituting the
variational family we can rewrite the optimization in terms of each individual factor
of the mean-field approximation and iterated expectations, for example in the case
of the global latent variable Z we would obtain

ELBO(λ) = Eq

[
log p(Z,Y ,D)

q(Z;λ0)
∏
i∈[n] q(Yi;λi)

]
= Eq [log p(Z,Y ,D)]− Eq[log q(Z;λ0)]−

∑
i∈[n]

Eq[log q(Yi;λi)]
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Now focusing on optimizing the ELBO for the variational approximation of
the global variable Z we can ignore the terms that are fixed when changing the
variational distribution of Z, which in this case are the terms

∑
i∈[n] Eq[log q(Yi;λi)].

We can also write the expectation in terms of iterated expectations, leading to the
following optimization problem:

argmax
λ0

ELBO(λ) = argmax
λ0

Eq(Z)
[
Eq(Y )[log p(Z,Y ,D)]− log q(Z;λ0)

]
(2.9)

Notice that we can rewrite f(Z)−log q(Z) as− log q(Z)
exp f(Z) , leading to Eq(Z)[f(Z)−

log q(Z)] = −KL{q(Z), exp f(Z)}. Applying this to Equation 2.9, using f(Z) =
Eq(Y )[log p(Z,Y ,D)] we obtain

argmax
λ0

ELBO(λ) = argmax
λ0

−Eq(Z)

[
log q(Z;λ0)

expEq(Y )[log p(Z,Y ,D)]

]
= argmin

λ0

KL{q(Z;λ0), q∗(Z)} (2.10)

with q∗(Z) ∝ expEq(Y )[log p(Z,Y ,D)]

Notice that the expectation on the exponential of q∗(Z) is over all the other latent
variables using the variational approximation, and we would need a normalizing
constant to assure that

∫
z
q∗(z)dz = 1. Also, it can be shown that this expectation

can be written in terms of the full conditional of the variable Z, in formal terms
Eq(Y )[log p(Z,Y ,D)] = Eq(Y )[log p(Z|∗)] + const, such that when optimizing for Z
we can ignore the constant terms. Now, on Equation 2.10 choosing λ0 such that
q(Z;λ0) would match q∗(Z) is the optimal choice, and it can be done analytically
when both distributions are from the same family of distributions.

A similar derivation can be done for each latent variable, and latent variables
models in general with the mean-field assumption. Bishop (2006) and Blei et al.
(2017) show the general result that given the mean field assumption the optimal
solution is always proportional to the exponential of the expected log of the full
conditional8. If we combine this generic result with Equation 2.5, showing that the
full conditional can be expressed in terms of the Markov blanket, we will obtain a
characterization valid for any BN for any given latent variable Z of a collection Z
and expectations over all other variables q(∗) := q(Z \ {Z}) .

q∗(Z) ∝ expEq(∗)[log p(Z|∗)]
⇒ q∗(Z) ∝ expEq(mb(Z))[log p(Z|mb(Z))] (2.11)

8Also, this result can be rewritten using the geometric expected value, defined as Gq[X] =
exp(Eq [log(X)]).

27



2. Preliminary material

The CAVI algorithm consist in iterating for each latent variable the update
for its variational distribution using Equation 2.11, while keeping the variational
distribution for the remaining variables fixed, until a convergence criteria for the
ELBO is reached. The update equation for the free parameter of the variational
distribution of each latent variable can be computed in close-form when the variables
of the model are conditionally conjugate (Wang and Blei, 2013; Blei et al., 2017).
This presentation of the CAVI variational updates that relies on the Markov Blanket
of the variable of interest, highlights the idea that when creating complex coupled
matrix factorization models, one need to focus only on the immediate or local
topology of the network, simplifying greatly the analysis and derivations necessary.

Probabilistic models and neural network models. A neural network (NN)
can be seen as parametric mapping fθ : X → Y , typically constructed by composing
simpler functions fθ = f1

θ1
◦f2

θ2
◦· · ·◦fHθH . Those simpler functions are called neurons

or cells, and are usually implemented as a combination of affine transformations
(hidden units) of the input and a non-linear operation on the output (known as the
activaction function). Furthermore, architectural choices regarding how to compose
those simpler functions into bigger modules are also relevant and impactful in
the final performance for a given task. The fitting process the parameters of the
NN to the observation data is performed using the backpropagation technique to
compute gradients with respect to the parameters of the NN, and the (stochastic)
gradient descent algorithm to minimize a loss function. Aspects to be considered
in the design of NN are the choices of network architecture, activation functions,
dimensionality of the parameter and how many parameters in total, and those
choices affect numerical stability and computational complexity of computing
gradients and optimizing the loss function on the training phase. Specific design
choices here have proven to be useful accross multiple tasks, generating modules
such as the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
which are a form of Recurrent Neural Network (Hochreiter and Schmidhuber, 1997;
Chung et al., 2014), Convolutional Networks (LeCun et al., 1989), Attention and
Transformers (Bahdanau et al., 2015; Vaswani et al., 2017; Luong et al., 2015),
among others. Therefore, the field has grown by exploring various design choices
for architecture, neurons, activation function and training algorithms for a number
of different tasks. A more complete overview of the all those models and the recent
advances in the field can be found in LeCun et al. (2015), Goodfellow et al. (2016)
and Schmidhuber (2015).

Together with the neural network archictetural innovations, availability of large
amounts of data, and effective training algorithm, another aspect that contributed
to the recent growth of NN models and research is the emergence of computational
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tools and resources for large scale training of those models. One of the most
successfully adopted tools has been Automatic Differentiation (AD) methods and
frameworks. With Automatic Differentiation, a computer program can be written
in general purpose language and consisting of multiple mathematical operations
over sets of numerical variables, and the gradient with respect to any of those
variables can be computed efficiently and automatically by the computer program.
This can then be utilized in the gradient descent algorithm. For an overview of
the topic, we refer to Baydin et al. (2017). Recent techniques for Variational
Inference have targeted the development of gradient estimators for parameters of
probabilistic models, this had led to the develpment of techniques such as Automatic
Differentiation Variational Inference (Kucukelbir et al., 2017), Black Box Variational
Inference (Ranganath et al., 2014) and other variations (Mohamed et al., 2020).
The combination of AD for neural networks and variational inference of generic
probabilistic models, together with the availability of software libraries with those
capabilities, has led to the development of the Deep Probabilistic Programming
framework (Bingham et al., 2019; Tran et al., 2017), synergetic combinations of
modeling techniques, facilitated implementation and training of hybrid neural
probabilistic models, a task that previously would involve laborious manual steps.
The combination of neural networks and probabilistic models will be used in this
thesis on Chapter 5 when designing a hybrid RNN and temporal point process
model, and the techniques of gradient estimation for probabilistic models will be
applied in Chapter 6 in the generic gradient-based optimization algorithm for prior
specicification.

2.2 Models for count data

In many applications of interest the available data is in the forms of counts or
discrete data. Examples of such type of information are the number of times a
user heard a song, counts of visits to a given page, or interactions with other users
or items. Also, some forms of explicit feedback such as rating come in binary
forms (likes) or finite discrete scales. Nevertheless, many traditional methods for
recommender systems assume a Gaussian distribution of those observations, this
assumption is also implicit when utilizing the quadratic loss.

The choice of a distribution with a range on the set of natural numbers, or a
finite subset of it, is therefore necessary in order to better fit count data. A common
starting choice is the Poisson distribution, given its simplicity and properties, which
can be extended by combining with other distributions in a hierarchical fashion.
Furthermore, when observing count data over time, we need to model the variability
of the rate of events over time, leading to a related set of models, known as Temporal
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Point process (TPP) models. In the next subsections we will introduce those two
model families, their relationships with other distributions and main properties
with relevance for this thesis.

2.2.1 Poisson and compound Poisson models
A Poisson distributed variable is a random variable with a range on the natural num-
bers characterized by a positive continuous rate. It is the prototypical distribution
for modeling counts, utilized usually in situations where the probability of a count
event happening is constant over time or space. It can be seen as an approximation
for the Binomial distribution as the number n of trials increases – also known as the
law of rare events (Shiryaev and Boas, 1995). If we imagine an interval divided into
n equally spaced sub-intervals, where events can ocurr at each sub-interval with
the same probability λ

n , and at each interval there is an independent success/fail
Bernoulli trial Ber(λn ) adding a count of at most 1, the total counts of events will
have a Binomial distribution Bin(n, λn ). The law of rare events estabilish that as
the number of sub-intervals n increases, therefore decreasing the probability of a
single event at each sub-interval, the Binomial distributed total count of events
will converge to the Poisson distribution with rate λ, that we can express with the
equation limn→∞ Bin(n, λn ) = Poisson(λ). Furthermore, the Poisson distribution
achieves good approximation rates for sum of n independent Bernoulli variables,
expressed in terms of the KL divergence with an order of O(n−2) (Bobkov et al.,
2019).

Thus, in many real world scenarios with count data the Poisson distribution
is a good initial fit, given that it can capture or approximate the total counts in
situations with large number of events, with count increments happening with
small (equal or similar) probabilities, under the condition that the sum of those
probabilities converges to the rate of the associated Poisson distribution. In
Definition 2.2 the probability mass function, the expected value and variance of
the Poisson distribution is formally presented.

Definition 2.2 (Poisson distribution). A Poisson distributed random variable
X ∼ Poisson(λ) has its support on the set N0 = {0} ∪ N and as parameter the
positive continuous rate λ > 0. The probability mass function is given by

P (X = x) = Poisson(x;λ) = λx
e−λ

x! (2.12)

The expected value and variance are given by

E[X;λ] = V[X;λ] = λ (2.13)
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It is possible to increase the flexibility of a Poisson model by adding a prior to
the rate parameter. The support of the prior distribution should be the positive
real line R+, and if we impose the restriction of a conjugate prior, we conclude that
it should be a Gamma distribution. We formally define the Gamma distribution in
Definition 2.3.

Definition 2.3 (Gamma distribution). A Gamma distributed random variable
λ ∼ Gamma(a, b) has its support on the positive real line R+ and parameters shape
a > 0 and rate b > 0. The probability density function is given by9

Gamma(λ; a, b) = ba

Γ(a)λ
a−1e−bλ (2.14)

The expected value and variance are given by

E[λ; a, b] = a

b
(2.15)

V[λ; a, b] = a

b2
(2.16)

A conjugacy analysis of the Poisson-Gamma model can be performed by assum-
ing a model for a set of n Poisson distributed observations and a Gamma latent rate,
p(x, λ) = Gamma(λ; a, b)

∏n
i=1 Poisson(xi|λ), and computing the posterior distri-

bution of the rate given the observations p(λ|X). Applying the Bayes’ Theorem
and focusing on the terms that are related to λ we obtain

p(λ|X) = 1
p(X)

ba

Γ(a)λ
a−1e−bλ

n∏
i=1

λxi
e−λ

xi!

⇒ p(λ|X) ∝ λa+
∑n

i=1
xi−1e−(b+n)λ

⇒ p(λ|X) = Gamma(λ; a+
n∑
i=1

xi, b+ n)

We can also compute the marginal expected value and variance of the observa-
tions using the law of total expectation and variance obtaining E[Xi] = E[E[Xi|λ]] =
a
b and V[Xi] = E[V[Xi|λ]] + V[E[Xi|λ]]] = a

b + a
b2 . By inspection of those formula

we can observe that the resulting marginal distribution of the observations of our
model is overdispersed – defined in terms of variance to mean ratio bigger than
one (Hilbe, 2014). A similar analysis can be carried by marginalization of the rate
λ in joint of the model, which results in a marginal Negative-Binomial distribution

9The function Γ is defined as Γ(t) =
∫∞

0 xt−1e−xdx and have the property Γ(t+ 1) = tΓ(t)
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NB(a, b
b+1 ) with the same mean and variance calculated previously (Hilbe, 2014).

This result can be generalized to any hierarchical Poisson model with a prior rate
distribution parameterized by mean µ and variance σ2, resulting in marginal mean
E[Xi] = µ and variance V[Xi] = µ + σ2, in other words an additive relationship
between mean and variance V[Xi] = E[Xi] +σ2. This approach of adding flexibility
to the distribution via latent variables of the Poisson will be useful in our models,
given that it allows for more complex models while also being used for coupling
different observations, in the case of shared latent variables.

There are many properties of interest of Poisson models for the development of
more complex count models. The additivity property is the fact that we can combine
a set of Poisson models via summation into a single Poisson model with the rate
given by the sum of rates of each individual model. The decomposition property,
also known as Raikov’s theorem (Raikov, 1938), states the converse, that if a Poisson
random variable admits a decomposition as a sum of independent random variables,
then each summand is Poisson distributed. In hierarchical models we can use these
properties to justify the use of latent counts for a given Poisson model, which can be
useful to simplify certain models as well as provide explanatory power, since we can
interpret individually summand terms of complex models as generating counts. For
example if Y ∼ Poisson(

∑K
k=1 λk), we can create an equivalent model Y =

∑K
k=1 Zk

with latent counts Zk ∼ Poisson(λk), for k ∈ [K]. The use of latent counts leads to
another interpretation of Poisson-Gamma models as an allocative model (Schein,
2019; Yildirim et al., 2021), meaning that the latent rates define probabilities of
allocation of counts or events in different buckets, given a total number of counts
summing all buckets. This can be formalized when calculating the conditional
distribution of latent counts Z1, . . . , ZK given the observed total counts Y , which
follows a Multinomial distribution p(Z1, . . . , ZK |Y ) = Mult(Z1, . . . , ZK ;Y,p) with
the probabilities proportional to the rates of each individual count. Thus, the
total count Y represent a budget of counts that can be allocated to each individual
latent count Zk with a probability proportional to the rate of that individual count
pk = λk

λ . The allocative intuition of the latent counts can be used as well when
thinking about latent variable models, in particular it helps one intuit about the
role that different terms might be playing in your model. For example, if we assume
a model with a rate λ = θ>η =

∑K
k=1 θkηk, where θ and η are high-dimensional

non-negative vectors, latent counts will be allocated to each latent dimension with
a probability pk = θkηk

θ>η
, allowing us to interpret the value of each component of

the latent vector as the strength of this allocation. To formalize these, we present
the Multinomial distribution in Definition 2.4 and the aforementioned properties in
the Proposition 2.1 and Proposition 2.2.

Definition 2.4 (Multinomial distribution). The random vector z ∼ Mult(n,p) is a
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2.2. Models for count data

K dimensional count vector z := [z1, . . . , zK ] ∈ NK0 sampled from the Multinomial
distribution defined by the parameters totals count n ∈ N and event probabilities
vector p := [p1 . . . , pK ] ∈ [0, 1]K , with

∑K
k=1 pk = 1 and

∑K
k=1 zk = n. The

probability mass function is given by

Mult(z;n,p) = n!
K∏
k=1

pzkk
zk! 1{

K∑
k=1

zk = n}

The expected value and variance for each individual count variable is

E[zk;n,p] = npk (2.17)
V[zk;n,p] = npk(1− pk) (2.18)

Proposition 2.1 (additivity and decomposition). Given a set of K Poisson
distributed random variables and rates Zk ∼ Poisson(λk), the random variable
Y :=

∑K
k=1 Zk is Poisson distributed as Y ∼ Poisson(λ :=

∑K
k=1 λk). The con-

verse is also true, meaning that if we can decompose Y =
∑K
k=1 Zk ∼ Poisson(λ)

into individual separate counts, each summand Zk will be Poisson distributed with
rates λk that should sum to λ.

Proof. Raikov (1938)

Proposition 2.2. Given a set of K Poisson distributed random variables and
rates Zk ∼ Poisson(λk) and the random variable Y :=

∑K
k=1 Zk ∼ Poisson(λ), with

λ =
∑K
k=1 λk, the conditional distribution of the random vector z := [Z1, . . . , ZK ]

given the their sum Y is

z|Y ∼ Mult(Y,p)

with pk = λk∑K
k=1 λk

= λk
λ

Proof. The joint probability can be written as
K∏
k=1

λzkk
e−λk

zk! 1{
K∑
k=1

zk = n}

and conditioning on the sum with the probability given by λn e−λn! and reorga-
nizing the terms we obtain

n!
K∏
k=1

(
λk
λ

)zk 1
zk!1{

K∑
k=1

zk = n}
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Furthermore, we can define complex models using Poisson counts as latent
variables, while choosing other distributions for the observations. The family of
compound Poisson models consists of a Poisson distributed latent count N ∼
Poisson(λ) and a sum Y =

∑N
i=1Xi over N independent random variables from a

fixed distribution G, with Xi ∼ G. If we assume a mean E[Xi] = µG and variance
V[Xi] = σ2

G, we can apply iterated formulas for mean and variance to obtain the
marginal mean E[Y ] = E[Nµg] = λµG and variance V[Y ] = E[Nσ2

G] + V[Nµg] =
λ(µ2

G+σ2
G), which indicates over-dispersion, but with an additive and multiplicative

terms relating the mean and variance, namely V[Y ] = E[Y ]µG + λσ2
G. In the

context of Poisson matrix factorization models (Basbug and Engelhardt, 2016;
Simsekli et al., 2013; Gouvert et al., 2019), one family of models that has been
incorporated in the compound Poisson model is the exponential dispersion model
(EDM) (Jorgensen, 1987) family. This model family includes Normal, Poisson,
Gamma, Inverse-Gamma, and many other discrete and continous distributions (see
Table 1 in Basbug and Engelhardt (2016) and Table 1 in Gouvert et al. (2019)).
The EDM family also has the additivity property, which is convenient when building
compound Poisson models, allowing the latent Poisson counts to be incorporated in
the parameters of the EDM model, formally if N ∼ Poisson(λ) and Y =

∑N
n=1 Zn,

with Zn ∼ ED(w, κ), then Y ∼ ED(w,Nκ).

Definition 2.5 (exponential dispersion model). The random variable Y ∼ ED(w, κ)
is sampled from an exponential dispersion model distribution, with natural parameter
w, dispersion parameter κ > 0, log-partition ψ(w) and base measure h(Y, κ). The
probability density function is given by10

p(Y ) = ED(Y ;w, κ) = exp(Y w − κψ(w))h(Y, κ)

The expected value and variance is given by11

E[Yij ;w, κ] = κψ′(w) (2.19)
V[Yij ;w, κ] = κψ′′(w) (2.20)

Proposition 2.3 (additivity). Given a set of EDM distributed random variables
Zn ∼ ED(w, κ), with n ∈ N and n ≤ N , the random variable Y :=

∑N
n=1 Zn is

EDM distributed as Y ∼ ED(w,Nκ).

Proof. Jorgensen (1987)
10The dependency on the log-partition function ψ and base measure function h is left implicit,

since it is defined for each specific distribution that is part of the EDM family.
11We denote ψ′(w) = dψ

dw
, ψ′′(w) = d2ψ

dw2
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In this section we presented the main properties of Poisson and compound
Poisson models that are of interest in the development of the models used in this
thesis. We establish definitions and properties that will be used in development of
new models, in the case of Poisson models, and the analysis of those models, in the
case of compound Poisson models. For a broader treatment of the topic of models
for count data, covering different distributions, over-dispersion, zero-inflation and
many other topics, the reader can consult the reference works of Hilbe (2014) and
Zelterman (2004).

2.2.2 Temporal point processes
Temporal point processes (TPP) are stochastic processes consisting of events realized
over time. It can be seen as a generalization of count models with a temporal
dimension, sometimes denoted counting processes. A realization of the TPP consists
in a set of positive continuous numbers tn ∈ R+, representing the times that a
set of events occured (Aalen et al., 2008; Farajtabar, 2018). We can define the
history of events until time t, given by the set of events up but not including the
time t, formally given by H(t) := {t1, t2, . . . , tN}, with tn < t and ti ≤ tj if i ≤ j.
Given the history of events H(t) we can define the count process N(t) given by the
number of events that happened before time t defined as N(t) :=

∑
ti∈H(t) 1{ti < t}.

Furthermore, considering the instantaneous increment of the count process at a
time t in terms of events in an infinitesimal interval [t, t+ dt), which is given by
dN(t) = N(t+ dt)−N(t) and dN(t) ∈ {0, 1}. The conditional intensity12 λ∗(t) is
the conditional probability that a count event happens in the interval [t, t + dt)
divided by the length of the interval, expressing a measure of the rate of events
per unit of time, in formal terms λ∗(t)dt = P (dN(t) = 1|H(t)) = E[dN(t)|H(t)].
The likelihood of a temporal point process is fully determined by the conditional
intensity and the history of events H(t) (Proposition 2.4).

Proposition 2.4. Given a temporal point process with a history of events H(t) =
{t1, t2, . . . , tN}, an observation interval [0, t) with t > tN and with a defined con-
ditional intensity function λ∗(t). The likelihood function of the process is given
by:

L =
∏

ti∈H(t)

λ∗(ti) exp(−
∫ t

0
λ∗(s)ds) (2.21)

Proof. Rasmussen (2018)
12We use the convention λ∗(t) := λ(t|H(t)), to indicate the dependency on the history of

events.
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The idea of the conditional intensity function as the average rate of events over
time, and the fact that lilelihood is fully specified by it, motivates a modeling
approach that focus on specifying the conditional intensity function. In this sense,
the Poisson process is a TPP where the number of events that happens over a given
time period is Poisson distributed with a rate that depends only on the said time
interval with a conditional intensity function λ∗(t) = λ(t) without any dependence
with the history of events. The conditional intensity function of the homogenous
Poisson process is a constant λ∗(t) = λ ≥ 0, while the one for the inhomogenous
Poisson process is a non-negative arbitrary function of the time λ∗(t) = g(t) ≥ 0
(but not of the history) (Aalen et al., 2008).

The Hawkes process (Hawkes, 1971; Liniger, 2009) is defined as a process
where each individual event in the event history H(t) contributes to increase the
probability of future events with a probability that decreases with time, leading
to a model with the property of clustered random events in time. Formally it is
defined by the conditional intensity function λ∗(t) = µ+ α

∑
ti∈H(t) kw(t, ti), with

µ ≥ 0 being a base-rate unaffected by time, a weighting factor α ≥ 0, and the
kernel kw(t, ti) ≥ 0 for each past event. A common choice for the kernel is the
exponential kernel defined as kw(t, ti) := exp(−w(t− ti)).

Furthermore, recent works such as Mei and Eisner (2017), Du et al. (2016a), Jing
and Smola (2017) have explored the conditional intensity modeling together with
neural networks. A common approach in this case is to allow for generic conditional
intensity functions, having them parameterized by a neural network, or in the case
of Hawkes process, having the kernel function as neural network. Formally we
define a model with λ∗(t) = NNW (t,H(t)), where NNW is a neural network with
a parameters matrix W , and with time t and history H(t) as inputs. In Chapter 5
we will develop this ideas in the context of a joint temporal point process model
and a hierarchical recurrent neural network session-based recommender system.

For further details about temporal point process and their applications, the
reader is referred to Aalen et al. (2008), Gomez-Rodriguez et al. (2013) and Fara-
jtabar (2018).

2.3 Recommender Systems and Personalization: models
and definitions

The basic setup of the recommender system problem consists in a scenario where a
large group of users are interested and interacting (viewing, clicking, purchasing,
consuming, reading) with a large set of items. We assume that there are certain
items of interest for the users, but there is uncertainty about which items are those,
introduced by the large amount of items, as well as latent preferences of the users.
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User 1 User 2 User 3

Item 1 Item 2 Item 3 Item 4

Figure 2.7: User and items interactions diagram

We assume that the individual user preferences are not known a priori, but they
may be inferred by the patterns and contexts of the interactions. The decision
problem from the system point of view is which items should be presented to the
users, or how the items should be ranked in their presentation to the user, taking
into account that the ranking of the presentation will influence user engagement and
impact the user satisfaction with the system. One way to represent this problem
computationally is by using a bipartite graph of user–items interactions, as it is
represented Figure 2.7, which can be also represented as a user–item interaction
matrix.

Problem definition. Given a user-set U of finite size |U|, an item-set I of finite
size |I|, a user–item interaction matrix R = {Rui} ∈ N|U|×|I| and a training
dataset consisting of observations of user–item interactions Dtrain := {(u, d,Rui)},
with |Dtrain| = Nobs � |U| × |I| we aim to learn a function f that estimates the
value of each user–item interactions for all pairs of user and items Rcomplete :=
{(u, d, f(u, d))}. In general to solve this problem we assume that users have a set
of preferences, and (using matrix factorization) we model these preferences using
latent vectors, using it to rank unseen items to the users. Furthermore, we might
assume a collection of contextual information matrices RC = {Rc}c∈[|C|], with
shared rows or columns with the user–item interaction matrix and extra contextual
information (for example, user–location or item–term matrices).

Probabilistic Matrix Factorization. The prototytical choice for a probabilistic
model for recommender system is the Probabilistic Matrix Factorization (Salakhutdi-
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Rui

ηu βiση σβ

σR

u ∈ U
i ∈ I

Figure 2.8: Diagram of Probabilistic Matrix Factorization model, with the user–
item data matrix R, latent vectors ηu and βi for each user u ∈ U and item
i ∈ I

nov and Mnih, 2007) model that factorizes a sparse matrix of user–item interactions
and uses the learned factors to predict unseen relationships, for example, using the
factors to rank unseen items for each user. The hierarchical structure of the model
is represented in Figure 2.8, and the complete specification of the model uses Gaus-
sian distributions for the latent variables and likelihood. The following equations
represent the generative model for PMF expressed in terms of observation variables
for each observed entry of the user–item interaction matrix R, corresponding latent
K-dimensional vectors for each user u ∈ U and item i ∈ I, using IK to represent
the identity matrix of size K ×K, 0 for the zero-vector and function g : R→ X ,
adjusting the values resulting from the inner product of the latent variables into
the range of values of the observations13.

ηu ∼ N (0, σ2
ηIK)

βi ∼ N (0, σ2
βIK)

Rui ∼ N (g(η>u βi);σ2
R)

We can express the joint likelihood of the observed entries adding an auxiliary
indicator variable14 Iui = 1 for the observed user–item pairs, and Iui = 0 otherwise,

13The function g was introduced because the inner product of the latent variables can have any
value in the real line, while the observations typically would be value in a small range of numbers,
such as counts, rating or a normalized metric.

14This indicator variable is used in a way that the non-observed variables will all have the
same impact on the joint, namely p(Rui|g(η>u βi)) = 1 if Rui is not observed.
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resulting in

p(R,η,β;ση, σβ , σR) =
∏
u,i

N (Rui|g(η>u βi);σ2
R)IuiN (ηu; 0, σ2

ηIK)N (ηu; 0, σ2
βIK)

We can apply Bayes’ theorem and calculate the posterior, which results in

p(η,β|R) =
∏
N (Rui|g(η>u βi);σ2

R)IuiN (ηu; 0, σ2
ηIK)N (ηu; 0, σ2

βIK)∫ ∏
N (Rui|g(η>u βi);σ2

R)IuiN (ηu; 0, σ2
ηIK)N (ηu; 0, σ2

βIK)dηudβi

Given the intractability of this computation, we can resort to the strategy of
computing only point estimates of the posterior, in particular seeking the maximize
the posterior we can obtain the MAP point estimates. Maximizing the posterior is
equivalent to maximizing the log of the posterior, and ignoring terms that are do
not affect the optimization results in:

log p(η,β|R) ∝ −σ−2
R

∑
u,i

Iui(Rui − g(η>u βi))2 − σ−2
η

∑
u

η>u ηu − σ−2
β

∑
i

β>i βi

Exchanging the minus terms, we can then create a loss function proportional to
−log p(η,β|R), which results in the following unconstrained minimization problem
with the solution ηMAP,βMAP corresponding to the MAP:

L(η,β) = σ−2
R

∑
u,i

Iui(Rui − g(η>u βi))2 + σ−2
η

∑
u

η>u ηu + σ−2
β

∑
i

β>i βi

ηMAP,βMAP = argmin
η,β

L(η,β)

This optimization problem can be solved by gradient descent, either by explicitly
calculating the partial derivatives with respect to each latent vector, or using
Automatic Differentiation. We observe the correspondence between the MAP
inference problem and the optimization approach applied in traditional matrix
factorization (Koren et al., 2009) by comparing the resulting loss function, in both
cases using a quadratic loss and L2 regularization terms for the latent-factors.
This correspondence also highlights how the different modeling techniques can
be used for imposing restrictions on the latent vectors. In probabilistic modeling
any restrictions imposed on the latent vectors are to be expressed in terms of
choice of prior distributions, for example, in this case the quadratic terms in the
regularization are a direct result from the choice of Normal priors. If we had chosen
for example, independent Laplace prior for each value of the prior, we would have
obtained an L1 regularization. Similarly if a covariance structure Σ−1

η were to be
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imposed on the latent vectors, this would appear in the regularization terms of the
optimization problem in a quadratic form such as η>u Σ−1

η ηu.
The standard technique assumes that the factors that explain the patterns of

user–items interactions from the past are predictive for the future, which is valid in
a static and non-contextual setting, but limited once we want to account for richers
contextual information and dynamic changes. On top of that, typically it has been
common to use Gaussian distributed variables for the observations, which fits poorly
with the many real-life datasets consisting of count-data. Furthermore, since the
user–item matrix is sparsily populated, with certain users without interactions with
any items, this generates a problem for models such PMF, given that the respective
latent factors will lack examples in the the dataset, known as the cold start problem.
These challenges can be addressed by adding contextual information to the models,
choices of likelihood that fits better the data and models customized for temporal
dynamic data. In the following section we will discuss modeling techniques that
address these challenges.

2.3.1 Poisson Factorization and Non-Negative Matrix
Factorization

Poisson factorization. The basic Poisson factorization is a probabilistic model
for non-negative matrix factorization based on the assumption that each user–item
interaction Rui can be modelled as a inner product of a user K dimensional latent
vector ηu and item latent vector βi representing the unobserved user preferences
and item attributes (Gopalan et al., 2015), so that Rui ∼ Poisson(η>u βi). Poisson
factorization models for recommender systems have the advantage of principled
modeling of implicit feedback, generating sparse latent representations, fast approx-
imate inference with a sparse matrix and improved empirical results compared with
the Gaussian-based models on count data interpreted as implicit feedback (Gopalan
et al., 2014b, 2015). Nonparametric Poisson factorization model (BNPPF) (Gopalan
et al., 2014b) extends basic Poisson factorization by drawing user weights from a
Gamma process. The latent dimensionality in this model is estimated from the data,
effectively avoiding the ad hoc process of choosing the latent space dimensionality
K. Social Poisson factorization (SPF) (Chaney et al., 2015) extends basic Pois-
son factorization to accommodate preference and social based recommendations,
adding a degree of trust variable and making all user–item interaction conditionally
dependent on the user friends. With collaborative topic Poisson factorization
(CTPF) (Gopalan et al., 2014a), shared latent factors are utilized to fuse recom-
mendations with topic models using Poisson likelihood and Gamma variables for
both.
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Poisson matrix factorization. Poisson matrix factorization (PMF) (Cemgil,
2009; Gopalan et al., 2014a) with latent dimensionality K specifies a generative
model for a count matrix R = {Rui} ∈ NN×M , with each entry Rui following a
Poisson distribution with rate η>uβi, a sum-product of latent factors ηuk indexed
by the rows and βik indexed by the columns. Each latent variable follows a prior
Gamma(a, b).

ηuk ∼ Gamma(aη, bη), βik ∼ Gamma(aβ , bβ),

Rui ∼ Poisson
(

K∑
k=1

ηukβik

)
. (2.22)

The majority of the PMF literature assumes the priors to be gamma distributions
using shape-rate parameterization, meaning that E[ηuk] = aη

bη
, V[ηuk] = aη

b2η
. The

choice of gamma priors leads to efficient variational inference equations given the
conjugancy of gamma and poisson distributions. More generally we could choose
different distributions as long as the resulting factor product η>uβi is non-negative.
Figure 2.9 presents the plate diagram for the PMF model.

Compound Poisson matrix factorization. Compound Poisson matrix factor-
ization (CPMF) (Basbug and Engelhardt, 2016) extends PMF by incorporating an
additive exponential dispersion model (EDM) (Jorgensen, 1987) in the observation
model, while keeping the Poisson-Gamma factorization structure:

ηuk ∼ Gamma(aη, bη), βik ∼ Gamma(aβ , bβ)

Rui ∼ ED(w, κNui), Nui ∼ Poisson(
K∑
k=1

ηukβik), (2.23)

This results in an expected value E[Rij |Nui;w, κ] = κNuiψ
′(w) and variance

V[Rui;w, κNui] = κNuiψ
′′(w). The observation model of Rui is a EDM distribution

compounded using Nui latent counts from a Poisson distribution. The EDM
distribution is parameterized by the natural parameter w, dispersion κNui, and
with a specific compounded distribution that is determined by the base log-partition
function ψ(w) and base-measure h(Rui, κNui). This model family includes Normal,
Poisson, Gamma, Inverse-Gamma, and many other distributions (see Table 1 in
Basbug and Engelhardt (2016) and Table 1 in Gouvert et al. (2019)), determined
by different formulae for the log-partition and base-measure. Figure 2.10 presents
the plate diagram for the compound PMF model.

41



2. Preliminary material

Rui

ηu βi
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bβ

u ∈ U
i ∈ I

Figure 2.9: Diagram for Poisson Factorization

Nui
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u ∈ U i ∈ I

Figure 2.10: Diagram of Compound Poisson Factorization

Some early developments of Poisson factorization for recommender systems,
text analysis and clustering include the following works:

• Ma et al. (2011a) proposes a Poisson-Gamma MF and Collective MF model for
the problem of website recommendation. They develop only MAP inference,
obtaining point-estimates for the latent-factors of the models and compare
with baselines such as SVD, GaP (Canny, 2004), NMF, PMF, and others.

• Canny (2004) proposes GaP model for text mining applications, the model
consider a document as a mixture of a loading factor matrix and a gamma-
distributed latent vector, and a Poisson likelihood. It is in a fact a Poisson-
Gamma fatorization model, but using a fixed mixture load matrix.
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• Buntine and Jakulin (2005) Discrete Component Analysis, generalizes multiple
latent-factor models that are applied to textual analysis into a unified modeling
perspective and language, this includes GaP, LDA, and LSA.

2.3.2 Relations, matrices and tensors

As a general setting for the modeling tasks in this thesis, we start by assuming that
there is a set with size |E| of entity groups E = {ξi}i∈[|E|], with each entity having
a discrete (and usually finite) set of elements, and a set of labeled relations R =
{A,B,C, . . .} between elements of different entity groups, representing interaction
data between those entities, for example in matrix or tensor form. The elements of
each entity group are indexed such that we can distinghish objects within a group
and consistently connect different groups of interest (via the relations matrix or
tensors) for a given task.

In Figure 2.11 we present an example with dyadic relations15, the set of entity
types has size 4 and we could name them as: users ξ1, documents ξ2, words ξ3 and
locations ξ4; with a set of of labeled interactions with the same size, consisting
in user–item clicks A , and item–words counts B (representing content of text
documents associated with the item), item–location C and user–location D binary
associations. This abstract relational model has a corresponding dataset consisting
of matrices with count or binary data. Furthermore, we can also represent this
abstract schematics as a bipartite directed graph G = ({E ,R}, E), with every
directed edge being an arrow from an entity to a relation ξ → R, with ξ ∈ E and
R ∈ R, and the additional constraint that every relation has at least two entities
connected to it. This representation brings us closer to a Bayesian network, but to
obtain a full probabilistic model of the data we need to add more assumptions, for
example latent-factors for each entity, and probability distributions for the latent-
factors and observations. Combining this relational perspective of multi-modal data
with latent variable modeling is of central importance when designing the models
on this thesis, and it serves the purpose of formalizing a procedure to generate
novel models for contextualized recommender system, as well as other complex
tasks involving multiple interrelated sources of data.

At this point we have only modeled the interconnection between different entities
of interest, and described a diagramatic approach that can be seen as generating
a skeleton or incomplete description of a probabilistic model for relational data.
Nevertheless, it is a starting point, and can be used already to identify limitation

15Relations between two entity groups. In general, we can have relations with n-adicity (or
arity), meaning between n entity groups that could be represented by a tensor
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ξ1 • ξ2 • ξ3 •ξ1 •A

• • •ξ2 •B

ξ4 •ξ3 •C

•ξ4 •D

A D

C
B

Figure 2.11: Example diagram of entities interconnected and the respective
labeled relation (that can be represented as matrices) as connections

or mistakes in the design of the model. The next steps, consisting on adding
latent-factors and distribution assumptions, will be discussed in the next section.

2.3.3 Collective Matrix and Tensor Factorization

In general the strategy for adding contextual information is to utilize shared latent
variable between different matrix or tensors representing contextual information on
the model. For example, it could mean adding a shared latent variable between a
context–specific observation matrix and the user–preference model. Other context–
specific constraints can be included in the model via prior distributions, for example
defining the support of the latent variables (reals, integers or non-negative), or
inducing grouping or correlation on the latent space.

For example, one approach to integrate location and textual side information
(url texts and queries) is to create a spatial grid over the location space and
model the user–location–text (user u at location l using text w) interaction counts
as a combination of latent Gamma variables and Poisson likelihood Cu,l,w ∼
Poisson(

∑
k UukLlkWwk), where Uuk, Llk,Wwk ∼ Gamma(a, b). To enforce the

thematic coherence between the locations by constraining the values of the latent
factors, we can include information about the location type c (e.g., retail, food court,
navigational) of location l, i.e., we create a variable Tl,c = 1 if location l is of type
c, and model this relationship Tl,c = 1{Xl,c ≥ 1}, with Xl,c ∼ Poisson(

∑
k CckLlk),

and Llk, Cwk ∼ Gamma(a, b). The location-type relationship will induce the
latent location factors of the same type to have similar values. Finally, we can
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Figure 2.12: Example of joint factorization of a document-word matrix and a
document-location matrix, allowing for joint learning of aligned distributions of
topics for document, words and locations

model the relationship user–location–time–url using a similar approach: Ru,l,t,h ∼
Poisson(

∑
k UukLlkTtkHhk), also with Gamma latent factors (and shared latent

factors with the other contextual relationships). Notice that the latent gamma
factors Llk and Uuk are shared between other contextual relationships, which means
that we are creating a particular instance of collective matrix-tensor factorization
model, such as the example represented by Figure 3.1.

This design pattern of sharing latent variables between contexts is generic and
we will use it in different models developed in this thesis. Similarly, it can be
seen as emerging from the relational structure of the data or problem that we
modeling, with the general rule that if an entity is connected to different relations,
then a shared latent variable will influence both relations. With this insight we can
move from a relational schema such as Figure 2.11 to a fully specified generative
probabilistic model of the data.

2.4 Hyperparameters and prior specification

In any probabilistic modeling there are two types of unknown variables, random
variables and hyperparameters. We can directly apply inference methods for the
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2. Preliminary material

random variables, calculating for example the posterior distribution given the
observations. In the case of the hyperparameters, being non-random quantities
affecting overall properties of the model, it is not possible to use the same techniques,
given that there is no distributional assumptions for them. The hyperparameters
can be part of the prior probability of the model, the likelihood, or the specification
of how the latent variables interact which each other. For example, in factorization
models with latent vectors θ and β, interacting via inner product

∑K
k=1 θkβk, we

have the dimensionality K of the latent space which is set a priori and affects the
overall behavior of the model, as well as hyperparameters λθ and λβ affecting the
shape and location of the priors for the latent variables (assuming we have a prior
distribution parameterized by shape and location). Estimating the impact of the
hyperparameters of the model in the behavior of the model is non-trivial, specially
in hierarchical models with multiple interacting latent-variables. Many methods
attempting to solve this problems would rely on search strategies and evaluation of
the posterior predictive distribution in partitions or samples of the dataset. The
search can be automated with Bayesian optimization (Snoek et al., 2012), although
it can turn into a costly method to apply. It is typically based on some proxy
of the marginal likelihood, such as variational lower bound or leave-one-out cross
validation (Vehtari et al., 2017), or directly on the performance in a downstream
task, such as recommendation (Galuzzi et al., 2019).

Nevertheless, other strategies exist in the literature of traditional Bayesian
analyis, and some of them, despite not giving the optimal setting according the
the posterior predictive distribution, are able to help the practioner in choosing
reasonable values for the hyperparameters. In particular we focus on the technique
of Prior Predictive Checks (PPC), which consists of a collection of checks that
are employed in the model before fitting it to any data. The rationale for this
approach is that the specification of a probabilistic model allows for simulation
of data, using samples generated from the model while marginalizing the latent
variables. Thus, one can (manually) evaluate summaries of this simulated dataset
before fitting any data, and validate certain prior assumptions. The advantage of
following this approach is that forward simulation of a generative model is typically
a cheap computational task, and we can span this simulations for multiple possible
settings of the hyperparameters, and be able to aprioristically determine regions of
the hyperaparamters configuration space that leads to observations that are not
matching the experts opinions about the data, or some general idea for the expected
summaries of the data. For example, imagine that we have a model for the volume
of rain in a certain number of days, and if by the PPC we obtain observations that
imply large volumes of rains in a period known for not having any rain (dry season),
this would imply that the specified hyperparameters could be adjusted. The use of
PPC in validating model assumptions is discussed in more details in the context of
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2.4. Hyperparameters and prior specification

ideas of Bayesian workflow (Gabry et al., 2019; Schad et al., 2019; Gelman et al.,
2020). Motivated by these ideas, in Chapter 6 we will introduce a new method that
seeks to automatizes certain parts of PPC, obtaining both closed-form equations for
Poisson-gamma factorization models and a generic algorithm for prior specifiction
based on the prior predictive distribution.
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Content-based social Poisson matrix factorization 3

“I’ve been working on three different ideas simultaneously, and strangely
enough it seems a more productive method than sticking to one problem.”

— Claude Shannon

Traditional recommender systems try to estimate a score function mapping each
pair of user and item to a scalar value using the information of previous items
already rated or interacted by the user (Adomavicius and Tuzhilin, 2005). Recent
methods have been successful in integrating side information as content of the
item, user context, social network, item topics, etc. For this purpose a variety of
features should be taken into consideration, such as the routine, the geolocation,
spatial correlation of certain preferences, mood and sentiment analysis, as well
as social relationships such as “friendship” to others users or “belonging” to a
community in a social network (Tang et al., 2013). In particular, a rich area of
research has explored the integration of topic models and collaborative filtering
approaches using principled probabilistic models (Wang and Blei, 2011; Gopalan
et al., 2014a; Purushotham and Liu, 2012). Another group of models has been
developed to integrate social network information into recommender systems using
user–item ratings with extra dependencies (Chaney et al., 2015) or constraining and
regularizing directly the user latent factors with social features (Ma et al., 2011b;
Yuan et al., 2011). Finally, some models have focused on the collective learning
of both social features and content features, constructing hybrid recommender
systems (Purushotham and Liu, 2012; Kang and Lerman, 2013; Wang et al., 2013).

Our contribution is situated within all these three groups of efforts: we propose
a probabilistic model that generalizes both previous models by jointly modeling
content and social factors in the preference model applying Poisson-Gamma latent
variable models to model the non-negativeness of the user–item ratings and induce
sparse non-negative latent representation. Using this joint model we can generate
recommendations based on the estimated score of non-observed items. We formulate
the problem in the next paragraphs, in Section 3.1 we describe the proposed model,
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3. Content-based social Poisson matrix factorization

and in Section 3.2 present the variational inference algorithm, with the discussion
the empirical results in Section 3.3. Our results indicate improved performance
when compared to state-of-the-art methods including collaborative topic regression
with social matrix factorization (CTR-SMF) (Purushotham and Liu, 2012).

Problem formulation Consider that given a set of observations of user–item
interactions Rtrain = {(u, d,Rud)}, with |Rtrain| = Nobs � U ×D (U is the number
of users and D the number of documents), using additional item content information
and user social network, we aim to learn a function f that estimates the value of each
user–item interactions for all pairs of user and items Rcomplete = {(u, d, f(u, d))}.
In general to solve this problem we assume that users have a set of preferences, and
(using matrix factorization) we model these preferences using latent vectors.

Therefore, we have the documents (or items) set D of size |D| = D, vocabulary
set V of size |V| = V , users set U of size |U| = U , the social network given by the set
of neighbors for each user {N(u)}u∈U . So, given the partially observed user–item
matrix with integer ratings or implicit counts R = (Rud) ∈ NU×D, the observed
document–word count matrix W = (Wdv) ∈ ND×V , and the user social network
{N(u)}u∈U , we need to estimate a matrix R̃ ∈ NU×D to complete the user–item
matrix R. Finally, with the estimated matrix we can rank the unseen items for
each user and make recommendations.

Related work

Collaborative Topic Regression (CTR): CTR (Wang and Blei, 2011) is a proba-
bilistic model combining topic modeling (using Latent Dirichlet Allocation) and
probabilistic matrix factorization (using Gaussian likelihood). Collaborative Topic
Regression with Social Matrix Factorization (CTR-SMF) (Purushotham and Liu,
2012) builds upon CTR adding social matrix factorization, creating a joint model
Gaussian factorization model with content and social side information. Limited
Attention Collaborative Topic Regression (LA-CTR) (Kang and Lerman, 2013),
is another approach with which the authors propose a joint model based on CTR
integrating behavioral mechanism of attention. In this case, the amount of attention
the user has invested in the social network is limited, and there is a measure of
influence implying that the user may favor some friends more than others. In Wang
et al. (2013), the authors propose a CTR model seamlessly integrated item–tags,
item content and social network information. All the models mentioned above
combine in some degree LDA with Gaussian based matrix factorization for recom-
mendations. Thus the time complexity for training those models is dominated by
LDA complexity, making them difficult to scale. Also, the combination of LDA and
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(PoissonMF-CS)

Gaussian matrix factorization in CTR is a non-conjugate model that is hard to fit
and difficult to work with sparse data.

Non-negative matrix and tensor factorization using Poisson models: Poisson
models are also successfully utilized in more general models such as tensor fac-
torization and relational learning, particularly where it can use count data and
non-negative factors. In Hu et al. (2015), the authors propose a generic Bayesian
non-negative tensor factorization model for count data and binary data. Further-
more, in Hu et al. (2016), the authors explore the idea of adding constraints between
the model variables using side information with hierarchical information, while the
approach in Acharya et al. (2015) uses graph side information jointly modeled with
topic modeling with Gamma process – a joint non-parametric model of network
and documents.

3.1 Poisson Matrix Factorization with Content and Social
trust information (PoissonMF-CS)

The proposed model PoissonMF-CS (see Figure 3.2) is an extension and general-
ization of previous Poisson models, combining social factorization model (social
Poisson factorization – SPF) (Chaney et al., 2015), and topic based factorization
(collaborative topic Poisson factorization – CTPF) (Gopalan et al., 2014a).

The main idea is to employ shared latent Gamma factors for topical preference
and trust weight variables in the user social network, combining all factors in the
rate of a Poisson likelihood of the user–item interaction. We model both sources
of information having an additive effect on the observed user–item interactions
and add two global multiplicative weights for each group of latent factors. The
intuition behind the additive effect of social trust is that users tend to interact
with items presented by their peers, so we can imagine a mechanism of “peer
pressure” operating, where items offered through the social network have a positive
(or neutral) influence on the user. In other words, we believe there is a positive
social bias more than an anti-social bias, and we factor this in PoissonMF-CS
model.

In the case of Poisson models, this non-negative constraint results in sparseness
in the latent factors and can help avoid over-fitting (in comparison the Gaussian-
based models(Gopalan et al., 2015, 2014b)). Gamma priors on the latent factors,
and the fact that the latent factors can only have a positive or a zero effect on the
final prediction, induce sparse latent representations in the model. Hence, in the
inference process we adjust a factor that decreases the model likelihood by making
its value closer to zero.
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[Topics, Words]

[Topics, Users]

[Items, 
Topics]

[Items, 
Words]

[Items, 
Users]

Observed

Latent

Figure 3.1: Diagram showing the view of PoissonMF-CS model as a joint factor-
ization a user–item matrix and item–content matrix constrained by the user social
network

3.1.1 Generative model

In this model, Wdv is a counting variable for the number of times word v appears in
document d, βv is a latent vector capturing topic distribution of word v and θd is the
document–topic intensity vector, both with dimensionality K. Count variable Wdv

is parametrized by the linear combination of these two latent factors θ>d βv. The
document–topic latent factor θd influences also the user–document rating variable
Rud. Each user has a latent vector ηu representing the user–topic propensity, which
interacts with the document topic intensity factor θd and document topic offset
factor εd, resulting in the term η>u θd + η>u εd. Here, η>u εd captures the baseline
matrix factorization, while η>u θd connects the rating variable with the content-based
part of the model (word–document variable Wdv). The trust factor τui between
user u to user i is equal to zero for all users that are not connected in the social
network ( τui > 0⇔ i ∈ N(u)). This trust factor adds dependency between social
connected users: the user–document rating Rud is influenced by the average rating
to item d given by friends of user u in the social network, weighted by the trust
user u assigns to his friends (

∑
i∈N(u) τuiRid). We model this social dependency

using a conditional specified model, as in Chaney et al. (2015). The latent variables
λC and λS are weight variables added in the model to capture and control the
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(PoissonMF-CS)

Rud λS

ηuk

Rid τui

εdkθdk

λC

Wdv

βvk
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d ∈ D

k ∈ K

v ∈ V

Figure 3.2: Plate diagram for PoissonMF-CS model

general weight of the content and social factors. These variables allow us to infer
the importance of content and social factors according to the dataset or domain of
usage. Also, instead of estimating these weights from the observed data, we may
set λC and λS to constant values, thus controlling the importance of content and
social parts of the model. Specifically if we set λC = 0 and λS = 1 we obtain the
SPF model, while setting λC = 1 and λS = 0 result in CTPF, and λC = 0 and
λS = 0 is equivalent to the simple Poisson matrix factorization without any side
information (Gopalan et al., 2015).

Now we present the complete generative model assuming documents (or items)
set D of size |D| = D, vocabulary set V of size |V| = V , users set U of size |U| = U ,
the user social network given by the set of neighbors for each user {N(u)}u∈U D
documents, and K latent factors (topics) (with an index set K).

1. Latent parameter distributions:

a) for all topics k ∈ K:
• for all words v ∈ V: βvk ∼ Gamma(a0

β , b
0
β)

• for all documents d ∈ D: θdk ∼ Gamma(a0
θ, b

0
θ) and εdk ∼ Gamma(a0

ε , b
0
ε )

• for all users u ∈ U : ηuk ∼ Gamma(a0
η, b

0
η)
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3. Content-based social Poisson matrix factorization

– for all user i ∈ N(u): τui ∼ Gamma(a0
τ , b

0
τ )

b) Content weight: λC ∼ Gamma(a0
C , b

0
C)

c) Social weight: λS ∼ Gamma(a0
S , b

0
S)

2. Observations probability distribution:

a) for all observed document–word pairs dv :

Wdv|βv,θd ∼ Poisson(β>v θd)

b) for all observed user–document pairs ud :

Rud|RN(u),d, ηu, εd, θd ∼ Poisson(λCη>u θd + η>u εd + λS
∑

i∈N(u)

τuiRid)

3.2 Inference

First, we add a set of auxiliary latent Poisson variables to facilitate the posterior
inference of the model. By doing so, the extended model will be complete conjugate,
and consequently have analytical equations for the complete conditionals and
variational updates (Bishop, 2006). In Section 3.2.2 we show that those auxiliary
variables can be seen as by-product of a lower bound on the expected value of the
log sum of the latent random variables. Variable Ydv,k represent a topic specific
latent count for a word–document pair, so that the observed word–document counts
is a sum of the latent counts (a property of the Poisson distribution) 1. We can
perform a similar modification for the user–item counts, splitting the latent terms
of Rud rate into two groups of topic specific latent count allocation variables: ZMud,k
for the item content part, ZNud,k for the collaborative filtering part and ZSud,i for the
social trust part (for this part, the intuitive explanation for the latent dimension is
the idea of friend specific allocation of trust). The sum of all those latent counts is

1The change consist in assigning a new Poisson variable to each sum-term in the latent rate
of the Poisson likelihood, so if S ∼ Poisson(

∑
i
Xi), we add variables Si ∼ Poisson(Xi), and by

the sum property of Poisson random variable S =
∑

i
Si ∼ Poisson(

∑
i
Xi)
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3.2. Inference

the observed user–item interaction count variable Rud.

Ydv,k|βvk, θdk ∼ Poisson(βvkθdk)

ZMud,k|λC , ηuk, θdk ∼ Poisson(λCηukθdk)

ZNud,k|ηuk, εdk ∼ Poisson(ηukεdk)

ZSud,i|λS , τui, Rid ∼ Poisson(λSτuiRid)

(3.1)

with
∑
k

Ydv,k = Wdv, and
∑
k

ZMud,k + ZNud,k +
∑

i∈N(U)

ZSud,i = Rud.

The inference problem consists on the estimation of the posterior distribution
of the latent variables given the observed rating R, the observed document–word
counts W , and the user social network {N(u)}u∈U , in other words, computing

p(Θ|R,W , {N(u)}u∈U ),

where Θ = {β, θ, η, ε, τ, y, z, λC , λS} is the set of all latent variables. The exact
computation of this posterior probability is intractable for any practical scenario, so
we need approximation techniques for efficient parameter learning. In our case, we
apply variational techniques to derive the learning algorithm. As an intermediate
step towards the variational inference algorithm, we also derive the full conditional
distribution for each latent variable. The full conditional distribution of each latent
variable is also useful as update equations for Gibbs sampling, meaning that we
could use the resulting equations to implement a sampling-based approximation.
However, sampling methods are hard to scale and usually requires more memory,
so as a design choice for the implementation of the learning algorithm, we refrained
from applying the Gibbs sampling method and focus on the variational inference.

In the next paragraphs we present the full conditional distribution of each of
the latent variables, and show the resulting update equation for the variational
parameters in Section 4.2.0.1.

Full conditional distribution : the full conditional distribution of each of the
latent variables is the distribution of a variable given all the other variables in the
model, except the variable that we are considering. Given a set of indexed random
variables Xk, we use the notation p(Xk|∗) (where ∗ means all the variables Xi

such that i 6= k) to represent the full conditional distribution. Given the factorized
structure of the model we can simplify the conditional set to the Markov blanket of
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3. Content-based social Poisson matrix factorization

the node we are considering (children nodes and co-parents nodes)2 (Bishop, 2006).
For conciseness, we show the derivations only for one Gamma latent variables and
one Poisson latent count variable.

• Gamma distributed variables: We demonstrate how to obtain the full
conditional distribution for Gamma distributed variable θdk, for the remaining
Gamma distributed variables we only present the end result without the
intermediate steps.

p(θdk|∗) = p(θdk|mb(θdk))

∝ p(θdk)
∏V
v=1 p(Ydv,k|βvk, θdk)

∏U
u=1 p(ZMud,k|λC , ηuk, θdk)

∝ θa
0
θ−1
dk e−b

0
θθdk

∏
v θ

Ydv,k
dk e−βvkθdk

∏
u θ

ZMud,k
dk e−λCηukθdk

∝ θ
a0
θ+
∑

v
Ydv,k+

∑
u
ZMud,k−1

dk e−θdk(b0θ+
∑

v
βvk+λC

∑
u
ηuk)

(3.2)
Normalizing equation Eq. 3.2 over θdk we obtain the pdf of a Gamma variable
with shape a0

θ +
∑
v Ydv,k +

∑
u Z

M
ud,k and rate b0θ +

∑
v βvk +λC

∑
u ηuk. The

final solution is written in Eq. 3.3. Also, notice that because of the way the
model is structured all other Gamma latent variable have similar equations,
the difference being the set of variables in the Markov blanket.

θdk|∗ ∼ Gamma(a0
θ +

∑
v Ydv,k +

∑
u Z

M
ud,k, b

0
θ +

∑
v βvk + λC

∑
u ηuk)

βvk|∗ ∼ Gamma(a0
β +

∑
d Ydv,k, b

0
β +

∑
d θdk)

ηuk|∗ ∼ Gamma(a0
η +

∑
d Z

M
ud,k + ZNud,k, b

0
η + λC

∑
d θdk +

∑
d εdk)

εdk|∗ ∼ Gamma(a0
ε +

∑
u−ZNud,k, b0ε +

∑
u ηuk)

τui|∗ ∼ Gamma(a0
τ +

∑
d Z

S
ud,i, b

0
τ + λS

∑
dRid)

λC |∗ ∼ Gamma(aC +
∑
u,d,k Z

M
ud,k, bC +

∑
u,d,k ηukθdk)

λS |∗ ∼ Gamma(aS +
∑
u,d,i Z

S
ud,i, bS +

∑
u,d,i τuiRid)

(3.3)
2We use the notation mb(X) to denote the Markov blanket of a variable X – the set of

children, parents and co-parents nodes of variable X in the BN
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• Multinomial distributed (auxiliary) variables: looking at the Markov
blanket of Ydv we obtain:

p(Ydv|∗) ∝
∏K
k=1 p(Ydv,k|βvk, θdk) =

∏K
k=1 Poisson(Ydv,k|βvkθdk)

∝
∏K
k=1

(βvkθdk)Ydv,k
Ydv,k!

(3.4)

Given that we know that
∑
k Ydv,k = Wdv, this functional form is equivalent to

the pdf of a Multinomial distribution with parameter probabilities proportional
to βvkθdk.

Ydv|∗ ∼ Mult(Wdv;φdv) with φdv,k = βvkθdk∑
k βvkθdk

(3.5)

Similarly, Zud is a Multinomial with parameters proportional to the parent
nodes of Zud. For convenience in the previous section, we split Zud in
three blocks of variables and parameters Zud = [ZMud,ZNud,ZSud] representing
the different high-level parts of our model. The dimensionality of the first
two blocks is the K, while for the last block is U , resulting that Zud has
dimensionality 2K + U . Similarly the parameters of the Zud full conditional
Multinomial have a block structure ξud = [ξMud, ξNud, ξSud].

Zud|∗ ∼ Mult(Rud; ξud)

with ξud,k =



ξMud,k = λCηukθdk∑
k
ηuk(λCθdk+εdk)+λS

∑
i∈N(u)

τuiRid

ξNud,k = ηukεdk∑
k
ηuk(λCθdk+εdk)+λS

∑
i∈N(u)

τuiRid

ξSud,i = λSτuiRid∑
k
ηuk(λCθdk+εdk)+λS

∑
i∈N(u)

τuiRid

We present in next section how to use these equations to derive a deterministic
optimization algorithm for approximate inference using the variational method.

3.2.1 Variational inference

Given a family of surrogate distributions q(Θ|Ψ) for the unobserved variables (latent
terms) parametrized by variational parameters Ψ, we want to find an assignment of
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3. Content-based social Poisson matrix factorization

the variational parameters that minimize the KL-divergence between q(Θ|Ψ) and
p(Θ|R,W ) 3,

argmin
Ψ

KL{q(Θ|Ψ), p(Θ|R,W )}.

Then, the optimal surrogate distribution can be used as an approximation the true
posterior. However, the optimization problem using directly the KL divergence is
not tractable, since it depends on the computation of the evidence log p(R,W ).
This can be accomplished using a surrogate objective that is lower bounds the
evidence – the Evidence Lower BOund (ELBO):

argmax
Ψ

L(Ψ) = Eq[log p(R,W ,Θ)− log q(Θ|Ψ)]

Another ingredient in this approximation is the mean field assumption. It consists
in assuming that all variables in the variational distribution q(Θ|Ψ) are mutually
independent. As a result the variational surrogate distribution can be expressed
as a factorized distribution of each latent factor (Eq. 4.2). Another implication is
that we can compute the updates for each variational Xi factor using the complete
conditional of the latent factor (Bishop, 2006). Finally, the inference algorithm
consists in iterative updating of variational parameters of each factorized distribution
until convergence is reached, resulting in the coordinate ascent variational inference
algorithm based on the following equation:

q(Xi) ∝ exp{Eq[log p(Xi|*)]} (3.6)

Using Eq. 3.6, we can take each complete conditional variable that we described in
the previous section and create a respective proposal distribution for the variational
inference. This proposal distribution is in the same family as the full conditional
distribution of the latent variables, meaning that we have a group of Gamma and
Multinomial variables. As long as we update the parameters of the variational
distribution using Eq. 3.6, it is guaranteed to minimize the KL divergence between
the surrogate variational distribution (Eq. 4.2) over the latent variables and the

3To simplify the notation, we use the short-handed p(Θ|R,W ) to denote the posterior distri-
bution p(Θ|R,W , {N(u)}u∈U ). Also, we drop the explicitly notation indicating the dependency
on the social network
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posterior distribution of the model.

q(Θ|Ψ) = q(λC |aλC , bλC )q(λS |aλS , bλS )
∏
u,k,i q(τui|aτui , bτui)q(ηuk|aηuk , bηuk)

×
∏
d,v,k q(εdk|aεdk , bεdk)q(θdk|aθdk , bθdk)q(βvk|aβvk , bβvk)

×
∏
d,v,u q(Zdv|φ∗dv)q(Yud|ξM∗ud , ξ

N∗
ud , ξ

S∗
ud )

(3.7)
After applying Eq. 3.6 together with the expected value properties for each latent

variable4, we obtain the following update equations for the variational parameters.

• Content and social weights:

aλC = aC +
∑
u,d,k Rudξ

M∗
ud,k, bλC = bC +

∑
u,d,k

aηuk
bηuk

aθdk
bθdk

aλS = aS +
∑
uRudξ

M∗
ud,k +

∑
vWdvφ

∗
dv,k, bλS = bS +

∑
u,d,iRid

aτui
bτui

• Content v (topic/tags/etc) parameters:

aβvk = a0
β +

∑
dWdvφ

∗
dv,k, bβvk = b0β +

∑
d

aθdk
bθdk

• Item d parameters:

aεdk = a0
ε +

∑
uRudξ

N∗
ud,k, bεdk = b0ε +

∑
u

aηuk
bηuk

aθdk = a0
θ +

∑
uRudξ

M∗
ud,k +

∑
vWdvφ

∗
dv,k, bθdk = b0θ + Eq[λC ]

∑
u

aηuk
bηuk

+
∑
v

aβvk
bβvk

• User u parameters:

aηuk = a0
η +

∑
dRud(ξM∗ud,k + ξN∗ud,k), bηuk = b0η +

∑
d Eq[λC ]aθdkbθdk

+ aεdk
bεdk

aτui = a0
τ +

∑
dRudξ

S∗
ud,i, bτui = b0τ + Eq[λS ]

∑
dRid

4Notice that, if q(X) = Gamma(X|aX , bX) (parameterized by shape and rate) , then Eq [X] =
aX
bX

and Eq [logX] = Ψ(aX)− log(bX), where Ψ(.) is the Digamma function. If q(X) = Mult(R|p),
then Eq [Xi] = Rpi.
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3. Content-based social Poisson matrix factorization

• item–content dv parameters:

φ∗dv,k ∝ e
Ψ(aβvk)
bβvk

e
Ψ(aθdk)
bθdk

with
∑
k φdv,k = 1

• user–item ud parameters:

ξM∗ud,k ∝ eEq [logλC ] eΨ(aηuk)
bηuk

e
Ψ(aθdk)
bθdk

ξN∗ud,k ∝ e
Ψ(aηuk)
bηuk

e
Ψ(aεdk)
bεdk

ξS∗ud,i ∝ eEq [logλS ] eΨ(aτui )
bτui

Rid with
∑
k ξ

M∗
ud,k + ξN∗ud,k +

∑
i ξ
S∗
ud,i = 1

ELBO: The variational updates calculated in the previous sections are guaranteed
to non-decrease the ELBO. However, we still need to calculate this lower bound
after each iteration to evaluate a stopping condition for the optimization algorithm.
We briefly describe a particular lower-bounding for the ELBO involving the log-sum
present in the Poisson rate.

Note also that the surrogate distribution is factorized using the mean field
assumptions (Eq. 4.2), so we have a sum of terms corresponding to the expected
log probability over the surrogate distribution. The terms comprising the log-
probabilities of the Poisson likelihood display a expected value over a sum of
logarithms of latent variables (for example Eq[log(

∑
k βvkθdk)]), this is a challenging

computation, but we can apply another lower-bound5 and simplify it to Eq. 3.8.

Eq[log(
∑
k βvkθdk)] ≥

∑
k φ
∗
dv,k (Eq[log βvk] + Eq[log θdk]])

−
∑
k φ
∗
dv,k log φ∗dv,k

(3.8)

This same simplification can be done to all Poisson terms independently because
of the mean field assumptions. It is equivalent to using the auxiliary latent counts.
So, for example, using the latent variable Zdv,k, βvk and θdk, the Poisson term in
the ELBO results in Eq. 3.9.

Eq
[
log p(Zdv)

q(Zdv)

]
=
∑
kWdvφ

∗
dv,k Eq[log(βvkθdk)]

−Eq[βvkθdk]−Wdvφ
∗
dv,k log(φ∗dv,k)− log(Wdv!)

(3.9)

5this lower bound is valid for any φ∗dv,k, with
∑

k
φ∗dv,k = 1, check Eq. 3.12 in Section 3.2.2

for details
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3.2. Inference

For the Gamma terms, the calculations are a direct application of ELBO formula
for the appropriate variable. For example, Eq. 3.10 describes the resulting terms
for βvk.

Eq
[
log p(βvk)

q(βvk)

]
= log Γ(aβvk )

Γ(a) + a log b+ aβvk(1− log bβvk)

+(a− aβvk)Eq[log βvk]− bEq[βvk]
(3.10)

Recommendations: Once we learn the latent factors of the model from the
observations we can infer the user preference over the set of items using the
expected value of the user–item rating E[Rud] . The recommendation algorithm
ranks the unobserved items for each user according to E[Rud] and recommend to
top-M items. We utilize the variational distribution to efficiently compute E[Rud]
as defined in Eq. 3.11. This value can be broken down into three non-negative
scores: Eq[ηu]> Eq[εd], representing the “classic” collaborative filtering matching of
users preferences and items features, Eq[λC ]Eq[ηu]> Eq[θd] representing the content
factors contribution and Eq[λS ]

∑
i∈N(u) Eq[τui]Rid the social influence contribution.

E[Rud] ≈ Eq[ηu]>(Eq[λC ]Eq[θd] + Eq[εd]) + Eq[λS ]
∑

i∈N(u)

Eq[τui]Rid (3.11)

Complexity and convergence: the complexity of each iteration of the varia-
tional inference algorithm is linear on the number of latent factors K, non-zero
ratings nR, non-zero word-document counts nW , users U , items D, vocabulary set
W and neighbors for each user nS, in other words O(K(nW+nR+nS+U+D+W )).
We have shown that we can obtain closed-form updates for the inference algorithm,
which stems from the fact that the model is fully conjugate and in the exponential
family of distributions. In this setting variational inference is guaranteed to con-
verge, and we observed in the experiments the algorithm converging after 20 to 40
iterations.

3.2.2 A lower bound for Eq[log∑kXk]
The function log(·) is a concave, meaning that:

log(px1 + (1− p)x2) ≥ p log x1 + (1− p) log x2

∀p : p ≥ 0
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3. Content-based social Poisson matrix factorization

By induction this property can be generalized to any convex combination of xk
(
∑
k pkxk with

∑
k pk = 1 and pk ≥ 0): log

∑
k pkxk ≥

∑
k pk log xk Now using

random variables we can create a similar convex combination by multiplying and
dividing each random variable Xk by pk > 0 and apply the sum of of expectation
property:

Eq[log
∑
kXk] = Eq[

∑
k log pk Xkpk ]

log
∑
k pk

Xk
pk

≥
∑
k pk log Xk

pk

⇒ Eq[log
∑
k pk

Xk
pk

] ≥
∑
k pk Eq[log Xk

pk
]

⇒ Eq[log
∑
kXk] ≥

∑
k pk Eq[logXk]− pk log pk

(3.12)

The lower bound of Eq. 3.12 is applied in Eq. 3.8 and it is a general lower bound
useful for the log–sum terms in the ELBO computation. If we want a tight lower
bound, we should use Lagrange multipliers to choose the set of pk that maximize
the lower-bound given that they sum to 1.

L(p1, . . . , pK) = (
∑
k pk Eq[logXk]− pk log pk) + λ (1−

∑
k pk)

∂L
∂pk

= Eq[logXk]− log pk − 1− λ = 0

∂L
∂λ = 1−

∑
k pk = 0

⇒ Eq[logXk] = log pk + 1 + λ

⇒ expEq[logXk] = pk exp(1 + λ)

⇒
∑
k expEq[logXk] =

∑
k

pk︸ ︷︷ ︸
=1

exp(1 + λ)

⇒ pk = exp{Eq [logXk]}∑
k

exp{Eq [logXk]}

(3.13)
The final formula for pk in Eq. 3.13 is exactly the same that we can find for the
parameters of the Multinomial distribution of the auxiliary variables in the Poisson
model with sum of Gamma distributed latent variables, which demonstrates that
the choice of distribution for the auxiliary variables is optimal for this lower-bound.
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3.3. Evaluation

3.3 Evaluation

In this section, we analyze the predictive power of the proposed model with a real
world dataset and compare it with state of the art methods.6

Datasets. to be able to compare with the state-of-art method Correlated Topic
Regression with Social Matrix Factorization (Purushotham and Liu, 2012), we
conducted experiments using the hetrec2011-lastfm-2k (Last.fm) dataset (Cantador
et al., 2011). This dataset consists of a set of user–artists weighted interactions
(“artists” is item set), a set of user–artists-tags and a set of user–user relations7.
We process the dataset to create an artist–tags matrix by summing up all the tags
given by all users to a given artist, this matrix is the item–content matrix in our
model. Also, we discard the user–artists weight, considering a “1” for all observed
cases. After the preprocessing, we sample 85% of the user–artists observation for
training, and kept 15% held-out for predictive evaluation, selecting only users with
more than 5 item ratings for the training part of the split.

Metric: Given the random splits of training and test, we train our model and
use the estimated latent factors to predict the entries in the testing datasets. In
this setting zero ratings can not be necessarily interpreted as negative, making
it problematic to use the precision metric. Instead, we focus on recall metric to
be comparable with previous work (Purushotham and Liu, 2012) and because the
relevant items are available. Specifically, we calculate the recall at the top M items
(recall@M) for a user, defined as:

recall@M = number of items the user likes in Top M
total number of items the user likes (3.14)

Recall@M from Eq. 3.14 is calculated for each user, to obtain a single measure for
the whole dataset we average it over all the users obtaining the Avg. Recall@M .

3.3.0.1 Experiments

Initially we set all the Gamma hyperparameters to the same values aall8 and ball9
equal to 0.1, while varying the latent dimensionality K. For each value of K we

6Our C++ implementation of PoissonMF-CS with some of the experiments will be available
this repository https://github.com/zehsilva/poissonmf_cs

7The statistics for the dataset are: 1892 users, 17632 artists, 11946 tags, 25434 user–user
connections, 92834 user–items interactions, and 186479 user–tag–items entries

8aall = a0
β = a0

η = a0
θ = a0

ε = a0
τ = aC = aS = 0.1

9ball = b0β = b0η = b0θ = b0ε = b0τ = bC = bS = 0.1
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3. Content-based social Poisson matrix factorization
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(a) PoissonMF-CS (K=10) and Gaussian
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Figure 3.3: Comparison of PoissonMF-CS with alternative models. Each subplot
is the result of running the PoissonMF-CS recommendation algorithm over 30
random splits of the Hetrec2011-lastfm dataset for a fixed number of latent features
K (in this case, K = 10). The values for CTR-SMF, CTR, and PMF was taken
from (Purushotham and Liu, 2012), and according to the reported results, they are
the best values found after a grid search.
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Figure 3.4: Impact of the number of latent variables (K) parameter on the Av.
Recall@M metric for different number of returned items (M). Each subplot is the
result of running the PoissonMF-CS recommendation algorithm over 30 random
splits of the dataset with K varying in (5,10,15,20,50,100)

ran the experiments on 30 multiple random splits of the dataset in order to be able
to generate boxplots of the final recommendation recall. We compare our results
with the reported results in Purushotham and Liu (2012) for the same dataset and
with optimal parameters. In this first experiment we let the algorithm estimate the
optimal content weight λC and social weight λS . It is possible to see in Fig 3.3 that
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Figure 3.5: Evaluation of the impact of content and social weight parameters (in
all experiments in this figure K = 10)
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Figure 3.6: Evaluation of the impact of latent Gamma hyperpriors on the recall
(in all experiments in this figure K = 10)

PoissonMF-CS is consistently outperforming by large margin CTR-SMF and CTR
(Fig. 3.3a), while outperforming other Poisson factorization methods (Fig. 3.3b) by
a significant margin (p ≤ 1 · 10−6 in Wilcoxon paired test for each M). . This may
be indicative that both the choice of Poisson likelihood with non-negative latent
factors and the modelling of content and social weights have positive impact in the
predictive power of the model.

Model selection. Fig. 3.4 shows the resulting predictive performance of PoissonMF-
CS with different values of number of latent factors K in Hetrec2011-lastfm dataset.
We concluded that the optimal choice for K is 15. This result is important, indi-
cating that the model is generating compact latent representations, given that the
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3. Content-based social Poisson matrix factorization

optimal choice of K reported for CTR-SMF in the same dataset is 200. In Fig. 3.6
we show the results for the latent variable hyperparameters. We ran one experi-
ment varying the hyperparameters aall and ball to understand the impact of these
hyperparameters in the final recommendation. We noticed that the optimal values
for different values of M for both hyperparameters are between 0.1 and 1, a result
consistent with the recommendations in the literature (Gopalan et al., 2014b,a;
Chaney et al., 2015) and with the statistical intuition that Poisson likelihood with
Gamma prior with shape parameter a < 1 favour sparse latent representation.

The next experiment was to set the content weight and social weight to fixed
values and evaluate the impact of these weights on the result. In Fig 3.5 we can
see that the resulting pattern for different values of M is not evident, but indicates
that the resulting recall is less sensitive to change in the content and social weights
parameters than on the hyperparameters aall and ball. This is also indicative that
the importance of social and content factors is not the same at different points of
the ranked list of recommendations.

Finally, we add the observation that in the recent work of (Xiao et al., 2019)
our proposed method was compared with a variational deep matrix factorization
approach using social information, comparing with eight alternative methods (in-
cluding their approach), and PoissonMF-CS appear as second or third over different
metrics and datasets, despite not including non-linear / deep transformations in
the latent space.

3.4 Final remarks

We have described PoissonMF-CS, a joint Bayesian model for recommendations
integrating three sources of information: item textual content, user social network,
and user–item interactions. It generalizes existent Poisson factorization models
for recommendations by adding both content and social features. Our experiment
shows that the proposed model consistently outperforms previous Poisson models
(SPF and CTPF) and alternative joint models based on Gaussian probabilistic
factorization and LDA (CTR-SMF and CTR) on a dataset containing both content
and social side information. These results demonstrate that joint modeling of social
and content features using Poisson models improves the recommendations, can
have scalable inference and generates more compact latent features. Although the
batch variational inference algorithm is already efficient 10, one future improvement
will be the design of Stochastic Variational Inference algorithm for very large scale
inference.

10For example, it takes 12 minutes to train the best performing model in a desktop machine
with the Hetrec2011-lastfm dataset in a single core without any parallelism
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Tensor factorization with cyclic latent factors 4

“You show me continents, I see the islands, You count the centuries, I
blink my eyes.”

— Björk, Oceania (Song)

The proliferation of data intensive devices and systems has generated a growth
of availability of users’ behavioral data that includes spatiotemporal patterns of
cyber–physical interactions (Ren et al., 2017). In the context of indoor public spaces,
one example of this type of data is WiFi user logs, where individual users devices,
location estimation, time and query and URL logs are available, among other
sources of user information. Understanding and properly modeling users’ behavior
by taking into account specific features of cyber-physical data (e.g. periodicity
that emerges from human habits) and designing systems capable of leveraging the
interactions between the physical and cyber space, while improving personalization
methods are of growing importance (Ren et al., 2018).

Within this context we focus on modeling multiple spatial-temporal sources
of information to infer the user intent and information need. There are many
specificities of this task, for example in many situations the location information is
not explicit, but implicit and correlated with other features (such as the WiFi access
point and the indoor region where the access point is located). More importantly, it
is vital to account for periodic or cyclical patterns, specially in public spaces such as
shopping malls, universities, public buildings, where recurrent events happens. In
this context, we approach the problem by employing Poisson-Gamma factorization
as a basic construction block, adding specific constraint for periodic time modeling
and contextual side information.

Problem definition Given the set of user–item–time interactions; Strain =
{(u, i, t, rui,t)} with u, i, t, rui,t ∈ N, each tuple meaning that the user u interacted
with the item i at periodic time t for rui,t times. The time variable t is an index for
a set of periodic timestamps, for example weekdays or hours within a day. We aim
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4. Tensor factorization with cyclic latent factors

Figure 4.1: An example of indoor (retail) environment. It shows the floor map of
a shopping mall: the red dots are WiFi APs; the blue lines are the rectified Voronoi
cells for each AP; the green arrows show the actual walking directions of a user,
and the dashed black line is the corresponding trajectories captured in WiFi logs
in terms of AP associations.

to learn a function that estimates a score for new items for a user at a given time
– the score will be used for ranking the items. More formally, given our training
set Strain, we will train a probabilistic model, and use this model to derive a rate
function for the interaction of user u with item j at time t, p(rui,t|Strain). Moreover,
as an extra objective we want to equip the probabilistic model with side-information
in a form of item–feature matrix, given that extra information about the item set
can be available and correlated with spatial patterns. With the model at hand we
want to be perform predictive task such as recommendation of items for a given
user at a given time. The side information matrix is particularly useful for the users
with limited number of interactions with items in the dataset (cold start problem).

For example, in the context of indoor recommendation using WiFi logs, we have
a set of tuples with unique users identifiers, WiFi access points (AP), time-stamps
and other side informations such as queries issued or categories related to the
physical space that the access point is located (for example, the category of the
store close to an AP in a shopping center). Figure 4.1 illustrates an example of
indoor retail environment, including a user’s walking trajectory through the mall. In
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4.1. Periodic Time-Aware Poisson Factorization

this setting the items are the WiFi APs that each user is associated with at a given
time, which can be used as proxy for the physical location in indoor environments (a
store within a shopping mall for example). As side information, we have a matrix
of the categories of the stores in the vicinity of each access point. This is defined
via Voronoi cells, each centered on a single AP, which encompasses all the points
that are closest to that AP. To better correspond with the frontages of physical
stores, the cells can be manually rectified.

Related work

Some methods have been proposed for the indoor recommendation problem, however,
given the novelty, in general most are tackling some different variations of the settings
of the problem. For example, Orciuoli and Parente (2017) apply computational
ontologies and cellular automata for designing a context-aware indoor recommender
system, where the ontologies can be used to model context specific rules and logics.
Fang et al. (2012) propose a mobile system, combining server-side location services
and recommendation services into a single mobile application that is location-
aware using Receiver Signal Strength (RSS) to infer indoor locations. Ren et al.
(2018) develops a graph-based non-personalized recommender system leveraging
query, location and web-domain contextual information for indoor recommendations.
Our approach is distinguished from all the previous ones because we incorporate
personalized contextual recommendation with periodic time modeling using Poisson
factorization models – this allows implicit user count data to be harnessed into a
spatio-temporal model.

4.1 Periodic Time-Aware Poisson Factorization

We extend Poisson factorization by allowing users and items latent preference
factors to be indexed by time slices and imposing a constraint over consecutive
time factors. In other words, instead of having a static latent factors for each user
and item, we have latent factors that are indexed by time. Another contribution
is a specific construction that binds consecutive time indexed factors (Figure 4.2).
We connect the last factor to the first one in the time-ordered sequence and each
consecutive factor, effectively creating cyclic influence on the posterior probability
distribution of the latent factors.

Suppose there is a set of scalar Gamma latent variables for an user u indexed by
time {ηuk,1, · · · , ηuk,T }, with ηuk,t ∼ Gamma(aη, bη) (t ∈ {1, · · · , T} is the index
of time-intervals in the data), it is possible to create a chain of cyclic dependency
by adding an auxiliary dummy observation variable between each consecutive time
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4. Tensor factorization with cyclic latent factors

Latent

Auxiliary

ηuk,1 ηuk,2 ηuk,3 ηuk,T

suk,1 suk,2 suk,3 suk,T

. . .. . .

Figure 4.2: Diagram for the cyclic time-periodic latent variables probabilistic
construction

factors, suk,t ∼ Poisson(ηuk,tηuk,t+1) and impose that ηuk,T+1 = ηuk,1, ηuk,0 =
ηuk,T , suk,T+1 = suk,1, and suk,0 = suk,T . This means that the last time factor in
the chain is connected to the first time factor in the chain and each consecutive
factor is connected to each other through the auxiliary variable.

The complete posterior for each latent factor given by this construction is
p(ηuk,t|∗) = Gamma(aη + suk,t−1 + suk,t, bη + ηuk,t−1 + ηuk,t+1). This means that
it is possible to propagate information across a period of time creating a cyclic
dependence between the latent factor for a given period and granularity of time.
Notice that su+,t ∼ Poisson(

∑
k ηuk,tηuk,t+1),: the rate of auxiliary variable su+,t

(sum of the auxiliary variables over the latent dimensions k for a fixed user and
time) is given by the inner product between consecutive time latent vectors1.

This construction also entails that the complete posterior for the set of auxiliary
variables for all the latent dimensions (and fixed user u and time t) is a Multinomial
p((su1,t, . . . , suK,t)|∗) = Mult(su+,t|πu,t), with πuk,t = ηuk,tηuk,t+1∑

k
ηuk,tηuk,t+1

(Gopalan
et al., 2014b; Zhou et al., 2012). If we assign a fixed value su+,t = λs to the
auxiliary variables su+,t and use standard variational inference with mean-field
approximation in each latent variable it is possible to obtain closed-form update
equations for ηuk,t, using an approximate density q(ηuk,t) = Gamma(aηuk,t , bηuk,t),
and writing Eq[.] and Gq[.] for the arithmetic and geometric mean of the random

1Given a set of indexed variable {Xij} we use the subscript + to denote a sum over the
respective index. For example, if Xij ∼iid Poisson(λj), then Xi+ =

∑
j
Xij ∼ Poisson(

∑
j
λj)

because a sum of Poisson distributed variables is a Poisson with a rate resulting of the sum of
individual rates.
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4.1. Periodic Time-Aware Poisson Factorization

variable2:

aηuk,t =aη + λs(
Gq[ηuk,t] Gq[ηuk,t+1]∑
k′ Gq[ηuk′,t] Gq[ηuk′,t+1]

+ Gq[ηuk,t] Gq[ηuk,t−1]∑
k′ Gq[ηuk′,t] Gq[ηuk′,t−1] )

bηuk,t =bη + Eq[ηuk,t−1] + Eq[ηuk,t+1]

We can rewrite this update equation in terms of expected values, given that the
expected value of a Gamma distributed variable is Eq[ηuk,t] = aηuk,t

bηuk,t
:

Eq[ηu,t] =
aη + λs

(
Gq [ηu,t]◦Gq [ηu,t+1]
Gq [ηu,t]> Gq [ηu,t+1] + Gq [ηu,t]◦Gq [ηu,t−1]

Gq [ηu,t]> Gq [ηu,t−1]

)
bη + Eq[ηu,t−1] + Eq[ηu,t+1] (4.1)

An intuitive way to look at Equation 4.1 is to notice that the numerator and
denominator are estimates for the expected value of the latent variable at time t
constructed by averaging the geometric and arithmetic expected value of the latent
variable at time t+ 1 and t− 1, working as a form of smoothing between adjacent
time variables.

Adding side-information Given that all latent factors are non-negative Gamma
factors, we can use shared factors to induce relative dependency between obser-
vations. Keeping all factors as Gamma latent variable will allow the model to be
conjugate and facilitate closed-form updates latent inference. We will combine
the idea of shared variables with the idea of time-dependent variables in a single
model by having a set of global and local variables for each user and item, the
local variables will be time specific, while the global variables will be shared across
the user or item time-line. In Figure 4.3a, we display the proposed model without
side-information, which is called Temporal Poisson Tensor Factorization (TPTF); in
Figure 4.3b, the global items variables θ̃i are shared between the user–item matrix
and item–side-information matrix, which is called Collective Temporal Poisson
Tensor Factorization (TPTF-C). More details will be discussed in the following
section.

2Eq [X] is the expected value of the random variable X under the variational family q. While
Gq[X] is the geometrical expected value, defined as Gq[X] = exp(Eq[log(X)]). Notice that
Gq[XY ] = exp(Eq[log(X)]) exp(Eq[log(Y )]) = Gq[X] Gq[Y ]. Also, if X is a gamma distributed
variable X ∼ Gamma(aX , bX) (parameterized by shape and rate), then Eq[X] = aX

bX
and

Gq [X] = exp(Ψ(aX ))
bX

, where Ψ(.) is the Digamma function.
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Figure 4.3: Plate diagram for Temporal Poisson Tensor Factorization

4.1.1 Generative model

In general, TPTF and TPTF-C have a set of similar users and items variables, the
main difference being that in TPTF-C there is a set of extra variables for the side-
information matrix. A complete description of the generative model is presented
in Table 4.1 assuming an item set I of size |I| = I, users set U of size |U| = U ,
periodic time slices set T of size |T | = T , and set of side-information features J
of size |J | = J and K latent factors (topics) (with an index set K). For brevity,
some details for the time-chain construction is omitted in Table 4.1 (particularly
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4.1. Periodic Time-Aware Poisson Factorization

Table 4.1: Specification of the generative model for TPTF

Temporal Poisson Tensor Factorization (TPTF)

1. Latent parameter prior distributions:

a) for all topics k ∈ K and for all time t ∈ T :
• for all items i ∈ I:

– base factor: θ̃ik ∼ Gamma(a0
θ, b

0
θ)

– time-dependent factor: θik,t ∼ Gamma(a1
θ, b

1
θ)

– periodic time auxiliary variables:
∗ s′ik,t ∼ Poisson(θik,tθik,t+1)
∗ s′i+,t =

∑
k s
′
ik,t

• for all users u ∈ U :
– base factor: η̃uk ∼ Gamma(a0

η, b
0
η)

– time-dependent factor: ηuk,t ∼ Gamma(a1
η, b

1
η)

– periodic time auxiliary variables:
∗ suk,t ∼ Poisson(ηuk,tηuk,t+1)
∗ su+,t =

∑
k suk,t

2. Observations probability distribution:

a) for all observed user–item–time tuples (u, i, t) :

Rui,t ∼ Poisson((η̃u + ηu,t)>(θ̃i + θi,t))

the connection between the end of the time-chain and the beginning), however this
construction follows exactly the description detailed in previous section.

Augmented model : Furthermore, in order to facilitate posterior inference, we
employ the technique developed in Gopalan et al. (2014b) and Zhou et al. (2012).
The technique consists in adding a latent count variable for each term contributing to
the rate of the Poisson counts observations, based on the fact that the sum of Poisson
variables is also a Poisson variable. For Rui,t, the augmented model has a set of 4K
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4. Tensor factorization with cyclic latent factors

Table 4.2: Specification of the generative model for TPTF-C

Collective Temporal Poisson Tensor Factorization (TPTF-C)

1. Latent parameter prior distributions:

a) for all topics k ∈ K and for all time t ∈ T :
• for all items i ∈ I:

– base factor: θ̃ik ∼ Gamma(a0
θ, b

0
θ)

– time-dependent factor: θik,t ∼ Gamma(a1
θ, b

1
θ)

– periodic time auxiliary variables:
∗ s′ik,t ∼ Poisson(θik,tθik,t+1)
∗ s′i+,t =

∑
k s
′
ik,t

• for all users u ∈ U :
– base factor: η̃uk ∼ Gamma(a0

η, b
0
η)

– time-dependent factor: ηuk,t ∼ Gamma(a1
η, b

1
η)

– periodic time auxiliary variables:
∗ suk,t ∼ Poisson(ηuk,tηuk,t+1)
∗ su+,t =

∑
k suk,t

• for all features j ∈ J :
– global factor: βjk ∼ Gamma(aβ , bβ)

2. Observations probability distribution:

a) for all observed user–item– tuples (u, i, t) :

Rui,t ∼ Poisson((η̃u + ηu,t)>(θ̃i + θi,t))

b) for all observed item–feature tuples (i, j) :

Xij ∼ Poisson(θ̃>i βj)

latent counts variables sinceRui,t ∼ Poisson(
∑
k

(
η̃ukθ̃ik + ηuk,tθ̃ik + η̃ukθik,t + ηuk,tθik,t

)
),

while for Xij it will need a set of K auxiliary counts.
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4.2. Inference

ZAuik,t ∼ Poisson(η̃ukθ̃ik)
ZBuik,t ∼ Poisson(ηuk,tθ̃ik)
ZCuik,t ∼ Poisson(η̃ukθik,t)
ZDuik,t ∼ Poisson(ηuk,tθik,t)
Yijk ∼ Poisson(θ̃ikβjk)

with Rui,t =
∑
k

ZAuik,t + ZBuik,t + ZCuik,t + ZDuik,t

and Xij =
∑
k

Yijk

The augmentation described above transform our model in a full conjugate
model, with complete conditionals for the latent variables given by Multinomial
and Gamma distributed variables. As detailed in the following section, we use this
construction to develop an efficient variational inference coordinate ascent learning
parameter algorithm.

4.2 Inference

Given the generative model of the data and a set of observations, our objective
is to infer the parameters of the model. However, an exact computation of the
posterior of these models given the data is intractable, which lead us to pursue
approximation methods. We work with approximate batch variational inference. It
is possible to augment Poisson-gamma factorization models by adding auxiliary
Poisson count variables, obtaining an equivalent complete conjugate model (Gopalan
et al., 2015), thus facilitating closed-form equation for coordinate ascent on the
variational parameters.

4.2.0.1 Variational inference

The general approach of variational inference is to transform the original problem
of posterior inference into an optimization problem. Suppose the joint density of
the observations O and latent variables Θ is given by p(O,Θ), assuming a family
of surrogate approximate distributions for the latent terms q(Θ|χ), parametrized
by variational parameters χ, we look to minimize the KL-divergence between them.
However, directly using the KL divergence is infeasible, instead we maximize of the

75



4. Tensor factorization with cyclic latent factors

Evidence Lower BOund (ELBO) (Bishop, 2006):

argmax
χ

ELBO(χ) = Eq[log p(O,Θ)− log q(Θ|χ)]

Mean field approximation: Assuming one independent distribution for each
latent factor in the model we obtain the coordinate ascent variational inference
(CAVI) update algorithm for each factor as a function of the natural parameter.
The resulting factorized variational distribution for TPTF is defined in Equation 4.2
(the resulting equation for TPTF-C is similar, the only difference would be due to
the extra variables).

q(Θ|χ) =
∏
k,i q(θ̃ik)

∏
k,i,t q(θik,t)q({s′ik,t}k)

×
∏
k,u q(η̃uk)

∏
k,u,t q(ηuk,t)q({suk,t}k)

×
∏
uik,t q({ZAuik,t, ZBuik,t, ZCuik,t, ZDuik,t}k)

(4.2)

Using the mean-field approximation, each variational distribution should be defined
in the same distribution family as the complete conditional of the latent variable
that it represents. Each variational natural parameter should be matched with
the expected value of the natural parameter of the respective complete conditional
on the original model (Bishop, 2006). Thus, the resulting update equations are
compiled in Table 4.3 for TPTF and Table 4.4 for TPTF-C. The CAVI algorithm
consist in iterative alternate updates of 1) user factors; 2) item factors and 3) latent
count factors, for TPTF. In the case of TPTF-C the algorithm iterate between 1)
user factors; 2) item factors; 3) side-information factors; and 4) latent count factors
(for both the user–item–time tensor and item–feature side information matrix).

Complexity: Since the inference algorithm proceeds iteratively over all the
parameters and the number of non-zeros in the sparse interactions count tensor
and side-information matrix for all time periods and latent dimensions linearly,
the complexity of each iteration is O(KT (U + I + J)(nR+ nX)) (nR and nX is
respectively the number of non-zero entries in R and X).

Recommendation: Having specified the model for each user–item–time number
of interactions p(Rui,t|η̃u,ηu,t, θ̃i,θi,t), and equipped with variational approxima-
tions, we can use the knowledge of each latent user and item latent factors to
estimate the expected value of all possible user–item–time numbers of interactions,
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4.2. Inference

Table 4.3: Update equations of the variational parameters for TPTF

Temporal Poisson Tensor Factorization (TPTF)

Variable Variational Distribution Parameter update

η̃uk Gamma(a
η̃uk

, b
η̃uk

)
a
η̃uk

= a0
η +

∑
i,tRui,t

(
ψAuik,t + ψCuik,t

)
b
η̃uk

= b0η +
∑
i,t

(
Eq[θ̃ik] + Eq[θik,t]

)
θ̃ik Gamma(a

θ̃ik
, b
θ̃ik

) a
θ̃ik

= a0
θ +

∑
u,tRui,t

(
ψAuik,t + ψBuik,t

)
b
θ̃ik

= b0θ +
∑
u,t (Eq[η̃uk] + Eq[ηuk,t])

ηuk,t Gamma(aηuk,t , bηuk,t)

aηuk,t = a1
η + λs (fuk,t−1 + fuk,t)

+
∑
iRui,t

(
ψBuik,t + ψDuik,t

)
bηuk,t = b1η + Eq[ηuk,t−1] + Eq[ηuk,t+1]

+
∑
i

(
Eq[θ̃ik] + Eq[θik,t]

)
θik,t Gamma(aθik,t , bθik,t)

aθik,t = a1
θ + λs (gik,t−1 + gik,t)

+
∑
uRui,t(ψCuik,t + ψDuik,t)

bθik,t = b1θ + Eq[θik,t−1] + Eq[θik,t+1]
+
∑
u (Eq[η̃uk] + Eq[ηuk,t])

(su1,t, . . . , suK,t) Mult(λS |(fu1,t, . . . , fuK,t)) fuk,t = Gq [ηuk,t] Gq [ηuk,t+1]∑
k′∈K

Gq [ηuk′,t] Gq [ηuk′,t+1]

(s′i1,t, . . . , s′iK,t) Mult(λS |(gi1,t, . . . , giK,t)) gik,t = Gq [θik,t] Gq [θik,t+1]∑
k′∈K

Gq [θik′,t] Gq [θik′,t+1]

(ZAui1,t, . . . , ZAuiK,t
ZBui1,t, . . . , Z

B
uiK,t

ZCui1,t, . . . , Z
C
uiK,t

ZDui1,t, . . . , Z
D
uiK,t)

Mult(Rui,t|ψui,t)
ψui,t = (ψAui,t,ψ

B
ui,t,

ψCui,t,ψ
D
ui,t)

ψAuik,t ∝ Gq[θ̃ik] Gq[η̃uk]
ψAuik,t ∝ Gq[θ̃ik] Gq[ηuk,t]
ψAuik,t ∝ Gq[θik,t] Gq[η̃uk]
ψAuik,t ∝ Gq[θik,t] Gq[ηuk,t]∑

k ψ
A
uik,t + ψBuik,t + ψCuik,t + ψDuik,t = 1
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4. Tensor factorization with cyclic latent factors

Table 4.4: Update equations of the variational parameters for TPTF-C (including
only the extra parameters for the context latent variables and the changes in β̃ik)

Collective Temporal Poisson Tensor Factorization (TPTF-C)

Variable Variational Distribution Parameter update

βjk Gamma(aβjk , bβjk) aβjk = aβ +
∑
iXijφijk

bβjk = bβ +
∑
i Eq[θ̃ik]

θ̃ik Gamma(a
θ̃ik
, b
θ̃ik

)

a
θ̃ik

= a0
θ +

∑
j Xijφijk

+
∑
u,tRui,t

(
ψAuik,t + ψBuik,t

)
b
θ̃ik

= b0θ +
∑
j Eq[βjk]

+
∑
u,t (Eq[η̃uk] + Eq[ηuk,t])

(Yij1, . . . , YijK) Mult(Xij |φij)
∀k ∈ {1, . . . ,K},

φijk = Gq [θ̃ik] Gq [βjk]∑
k′

Gq [θ̃ik′ ] Gq [βjk′ ]

thus allowing us to create a ranking of items for each users at a given time using
the expected value of the latent variables.

Eq[Rui,t] =
∑
k

(Eq[η̃uk] + Eq[ηuk,t])(Eq[θ̃ik] + Eq[θik,t]) (4.3)

The recommendation algorithm for the M most likely items to be consumed
would consist in, at each time period t and user u, applying Equation 4.3 for all
the unseen items at that given time and returning the ones with highest ranking in
a shortlist of size given by a parameter M .

4.3 Evaluation

Experiment Configuration: The data we used for experiments were collected
via a free opt-in WiFi network in an inner city shopping mall in Sydney, Australia.
The mall area is around 90,000 square meters, covered by 67 Wi-Fi access points;
and it contains over 200 stores that belong to 34 shop categories as defined by the
mall operator (as shown in Table 4.5).

The WiFi trajectory logs were collected over 120,000 anonymized users between
between September 2012 and October 2013. It contains 907,084 rows of WiFi
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4.3. Evaluation

Table 4.5: Shop categories

Cafe Unisex Fashion Women’s Fashion

Men’s Fashion Fashion Accessories Unisex Fashion

Fine Jewelery Women’s Footwear General Footwear

Cosmetics Restaurant General Footwear

Groceries Groceries Bakeries / Patisseries

Men’s Fashion Watches Gifts / Souvenirs

Costume Jewelery Takeaway Newsagents / Stationery

Hair & Beauty Small / Major Appliances Repairs & Maintenance

Travel Mobile Phones & Accessories Sport

Home Decor Discount Cosmetics Restaurant

Delicatessen Gymnasiums Pad Sites

Music / Videos / DVDs

AP associations over 261,369 user visits to the mall. Specifically, it captures
information about user physical behavior characterized by the following parameters:
user device’s MAC address uniquely identifying the associated device; the ID of the
WiFi AP associated with the user’s mobile device at a given point in time, used as
a proxy for the user’s location; the time-stamp of users’ association/disassociation
with the AP. To obtain the side information (the types of stores covered by an
AP), floor plans of the mall were overlaid with AP positions and the service areas
of the APs were approximated by Voronoi regions (as shown in Figure 4.1). We
run each experiment by splitting the dataset in 90% training and 10% testing
randomly, repeating that process for 10 times, collecting the metrics at each time,
and calculating the average and error value over the 10 random splits.

Metrics: Given the random splits of training and test datasets, we train our
model and use the estimated latent factors to predict the entries in the testing
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Figure 4.4: Comparison of predictive performance of TPTF, TPTF-C and baseline
models for varying number of latent factor (K) using different metrics measured at
top-10 and top-20 recommendations

datasets for each user–time pair present in the testing dataset. After creating a
ranking of the top-M recommendation for the pair user–time, we compare the
recommendations with the respective item set in the testing set evaluation using
precision, recall and normalized discounted cumulative gain (NDCG) (Lim et al.,
2015). We then average each of the metrics for all users and different number of
returned items, generating a table of averaged results for Recall@M , NDCG@M
and Precision@M . We report average metrics with an error bar, calculated over all
users in the test set and repeated for 10 random splits of the dataset.

Baselines: In order to evaluate the proposed model we will focus on the time-
aware recommendation task. This task consists in recommending items for each
user at a given time moment, in other words, given user u and time t, the algorithm
returns a ranked list of items {i1, . . . , iM}. We compare our approach with the
baseline methods SVD and SVD++ (Hu et al., 2008) on this task.
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4.4. Final remarks

Discussion and results: We report our results on the time-aware recommenda-
tion task in Figure 4.4. In the first row we display the averaged results when the
top-10 items are returned for each user at a given time. It is possible to observe,
that when the dimensionality is low, all methods tend to converge to the same
performance (although, TPTF-C seems to be more robust). Also, we observe
that after a certain dimensionality, there is a stabilization of the metrics, meaning
that there is little gain on the predictive power from increasing the dimensionality.
Examining the results from top-20 returned items, we observe that the advantage
of TPTF and TPTF-C over the baseline increases, confirming the insight that
Poisson-Gamma models tend to capture better the long tail behavior from sparse
data. As observed before, by looking both at the behavior of the methods as we
change the dimensionality and the error bars across the reported results, there is an
indication that the extra contextual matrix is making the results more robust, across
the variations of the settings (dimensionality K) and the random initialization
performed in order to create the error bars.

4.4 Final remarks

We proposed a new Poisson matrix-tensor factorization model tailored to factorize
a count data tensor of user–item–time interactions with the assumption of periodic
user–item interactions and an optional auxiliary count-feature matrix for the items.
Also, we present close-form updates for the coordinate ascent variational inference
of the latent parameters of the model, which is efficient because it depends only
on the non-zero observations (can operate as well with sparse data). We evaluate
the predictive performance of the proposed models on a dataset of WiFi logs
in an indoor environment, showing improved performance over the baselines for
time-aware recommendations.
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ξ1 ξ2 ξ3 ξ4

R1 R2 R3

Figure 4.5: Diagram of a generic model with multiple entities and relations that
can be represented with coupled matrix and tensor factorization

R1
i13

R2
i12

ξ1i1
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R3
i234

ξ4i4

i1 ∈ I(ξ1)

i3 ∈ I(ξ3)

i2 ∈ I(ξ2)

i4 ∈ I(ξ4)

Figure 4.6: Equivalent probabilistic model diagram for the example of a generic
coupled matrix and tensor factorization model

4.5 Towards generalized collective matrix and tensor
factorization

The modeling design presented in Chapter 3 and Chapter 4 can be generalized for
multiple relationships and entities, going beyond the particular use cases presented
in those chapters. We have not implemented this generic model, but will present
the basic specification of that model. A generic relational model can be represented
by a bipartite directed graph G = ({E ,R}, E), with every directed edge being an
arrow from an entity to a relation ξ → R, with ξ ∈ E and R ∈ R, and the additional
constraint that every relation R has at least two entities connected to it. These
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4.5. Towards generalized collective matrix and tensor factorization

properties can be formalized using parents and children sets, namely for R ∈ R,
we have pa(R) ⊆ E , ch(E) = ∅ and |pa(R)| ≥ 2, for ξ ∈ E , we have pa(ξ) = ∅,
ch(ξ) ⊆ R and | ch(ξ)| ≥ 1.

Furthermore, each relationship R can be represented by a matrix or tensor
with an (multi)index set i, with the number of indices being the same as the
number of parent entities to the relationship. Alternatively the index set of each
relation matrix or tensor is constructed by the concatenation of the index set of
each of the parent entities. Now to convert our construction to full probabilistic
model we can perform the following steps, basically assigning observations for each
relationship, and latent-variables for each entities, taking care to instantiate shared
latent variables for the entities connected to more than one relation.

• For each group of entities ξe ∈ E create a set of latent-variables ξeie according
the the indices ie ∈ I(ξe).

– Sample ξeie ∼ Gamma(ae, be)

• For each relation Rn ∈ R create a set of observable variables Rn
in
, with the

indices constructed by concatenated (cartesian product of) the parent entities
indices in ∈×ξ∈pa(Rn) I(ξ)

– Combine the parent latent variables λin =
∏
ξe∈pa(Rn) ξ

e
ie
, with in being

the concatenation of the parent indices ie.
– Sample Rn

in
∼ Poisson(λin)

We could extend this model by including different types of observations utilizing
the compound Poisson distributions and different choices of distributions to be
compounded. Furthermore we can allow the entities to have local (generated for
for each relationship) and global (shared across all connected relationship) latent
variables. Both modifications would not change drastically the inference algorithm,
only increasing the number of parameters, as well the model flexibility. On Figure 4.5
and Figure 4.6 we represent the relational model and its equivalent plate notation
for the generic factorization model. Further research and development is necessary
to evaluate to potential is this model design.
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Time modelling using point process 5

“‘I seek through comprehensive anticipatory design science and its
reductions to physical practices to reform the environment instead of
trying to reform humans, being intent thereby to accomplish prototyped
capabilities of doing more with less...”

— R. Buckminster Fuller, Earth, Inc

A guiding principle in recommender systems is to apply predictive modeling to
infer users’ preferences using their history of interactions with the system. In many
cases, however, it is not possible to track a long history of interactions, instead,
there is only information about recent sessions of interactions. Due to increased
focus on data privacy over the last years, this situation is likely to become more
prevalent. Session-based recommender systems address this issue by focusing on
using information available in the sessions themselves. In particular, the predictive
problem is cast as a sequence prediction problem, where a history with a sequence
of actions and interactions taken by the users in a set of sessions are applied to
predict the next k actions in a given session or a new session (Hidasi et al., 2016a).

Next session 
(prediction)

Session 1 Session 2 Session 3

1 2 3 6 8 5 9 ?

t1 t2 t?

Figure 5.1: Representation of multiple sequential sessions with sequential item
clicks and time between sessions

Return time prediction is another important challenge that has been explored
using different strategies. The main challenge here is developing a time prediction
model that uses previous sessions information to infer when the user is going to
return or start a new session in a given application or service. This task is important
for two reasons: 1.) Modeling user retention rate in web-services through their
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return time dynamics can offer deep insight into the service at hand, allowing the
service decision-makers to better optimize their service to maximize time spent
on the service. This is a valuable metric within web economy, which is fueled by
advertisement (Kapoor et al., 2014). 2.) In the context of recommender systems,
there is an interplay between temporal information and recommendations that
can be exploited to harness predictive models and better understanding of users
engagement with the recommender system (Wu et al., 2017).

The model developed tackle both tasks jointly, based on the assumption that
the interplay between users interactions with items and their temporal information
is synergetic in delivering predictors for both tasks. We propose a new neural
model capable of delivering next–item predictions using Recurrent Neural Networks
(RNNs) and return–time predictions using Temporal Point Processes (TPP). For
example, consider the context represented in Figure 5.1, where there are a sequence
of sessions for a given user and within each session a series on user–item interactions
(clicks, purchases, etc) with a series of items (represented by the colored circles).
Here, there is also information about the time before the user returns to the service
and start a new session. Given the motivation given above, it is valuable to build a
model with capabilities for capturing inter- and intra sessions user–item dynamics
and using the past user–item dynamics and the temporal information to predict
when a new session would start, as well as deliver recommendations.

To summarize, the main contributions of this chapter are:

• Defining and introducing a Temporal Hierarchical Recurrent Neural Network
(THRNN): a joint model for inter-session and intra-session recommendations
and return-time prediction. It consists in three major components, a module
for sequence of sessions of representations, a module for sequences of user-item
interactions within each session, a module for the time interval between the
sessions. The first two modules consists on a Hierarchical Recurrent Neural
Network (HRNN) architecture and the third module is given by a TPP which
shares representations with the HRNN.

• A tuning mechanism in the training process that allows the time model to
modulate the focus on short, medium or long time prediction. The mechanism
consists of adding a control parameter in the loss function that allows us to
control the importance of temporal information at training time.

Problem formulation

Given the set of user–item interactions; Strain = {(u, i, j, tj)|u, i, j ∈ N, t ∈ R+},
each tuple meaning that the user u interacted with the item i in a session j at time tj .
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We aim to learn a function that estimates a score for new items within a session, a
score for an initial recommendation in the next session, and the time gap prediction
between the current and next session. More formally, given our training set Strain,
and an index j for a position within the session, we want a function f(Strain, j)
that will output a tuple (sj+1, fj+1, gtj+1), with the intra-session recommendation
score sj+1, the next session initial item score fj+1 and the time-gap gtj+1 .

Thus the objective is to build a model that can predict new items within a
session and for the next session, as well as predict the time-gap for the next session
(return–time prediction).

Related Work

In recent years, numerous deep learning techniques have been successfully employed
for recommendations. In particular the use of RNNs has been shown to be promising
for session-based recommendation.

Session-based recommendation have been historically handled by item-to-item/
neighborhood-based methods (Sarwar et al., 2001) without considering the sequen-
tial nature of session data. A natural choice for modeling this sequential nature are
RNN-based models such as those given in Hidasi et al. (2016a), Ruocco et al. (2017),
Quadrana et al. (2017), Tan et al. (2016) and Jannach and Ludewig (2017). The
GRU2REC architecture presented in Hidasi et al. (2016a) is widely credited to be
the first to apply a RNN-based recommendation model and achieving state of the art
results. The authors assume that the users with attached sessions are anonymous
without any user-history, and assume that the sessions are independent of each
other. Each session is modeled as a single layer of GRU units followed by a single
feed-forward-layer. The GRU units, having recurrent connections, provide the state
and captures the temporal dynamics of the sessions, while the feed-forward layer
outputs the scores for each item. The model proposed was tested on two different
datasets and achieved a 20-30% gain in the evaluated measures over the results of
Rendle et al. (2009b), which is a nearest-neighbor-based model and was presented
as the best performing baseline. A systematic comparison of multiple methods
for session-based recommendation and the GRU2REC in Hidasi et al. (2016a) is
presented in Ludewig and Jannach (2018). An extension of the GRU2REC model is
presented in Ruocco et al. (2017), with a second level of RNNs that tries to capture
inter-session dynamics. The proposed model is a hierarchical RNN where one level
considers inter-session dynamics and the other considers intra-session dynamics. As
opposed to assuming fully anonymous users and totally independent sessions, this
extension allows some simple and low-cost user history to be considered in order to
provide better recommendations for live sessions. The user history is in the form of
abstract representations of previous sessions. The inter-session RNN is fed a finite
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number of the most recent session-representations in chronological order, and the
output is used as the initial hidden state of the intra-session RNN. The motivation
behind this is to handle the cold-start problem. In contrast to Hidasi et al. (2016a),
Ruocco et al. (2017) achieved the best results when adding an embedding layer for
the items. Additionally Ruocco et al. (2017) did not use the interleaved session
mini-batching scheme, instead opting for padded sessions. Nor did they sample the
output or use any pairwise losses. The work in Quadrana et al. (2017) proposes
an architecture that is very similar to the model in Ruocco et al. (2017). They
also propose an inter-session RNN layer in order to handle the cold-start problem
when one has access to a limited user history in the form of previous sessions. The
main difference between this hierarchical model and the one presented in Ruocco
et al. (2017) is that Quadrana et al. (2017) only considered a session representation
scheme based on the last hidden state of the intra-session RNN. Additionally, these
session representations were created by passing the last hidden state to a final single
layer feed-forward layer with a hyperbolic tangent activation function. They also
experiment with propagating output of the inter-session network to all time-steps in
the intra-session RNN, which complicates the model somewhat, but achieve slightly
better results for one of the datasets evaluated. The hierarchical model proved to be
the best performing overall by significant margin. In Tan et al. (2016), the approach
proposed in Hidasi et al. (2016a) is improved by proposing a data-augmentation
pre-processing step for improving the robustness of the model as well as proposing
to output an item embedding, instead of the individual scores for each item, to make
the recommendations faster. The work in Jannach and Ludewig (2017) presents an
approach to adapt a nearest neighbor method for session-based recommendation
task by finding sessions that are similar to the live session at the first step using an
item cosine similarity measure. For predictions they use a weighted sum of nearest
neighbour recommendations and RNN recommendations.

Other notable works on using RNNs have focused on how to best handle context-
and feature rich input (Liu et al., 2016; Smirnova and Vasile, 2017; Hidasi et al.,
2016b). In Liu et al. (2016) a simple intra-session RNN model is extended by
training and evaluate using different sets of weights based on the context of the
input. This context can for instance be time and date of different granularities,
location, or weather at the time of an event. In Hidasi et al. (2016b) the focus
is to feed feature-rich input in the RNN input, while inn Smirnova and Vasile
(2017), the authors propose a new class of Contextual Recurrent Neural Networks
for Recommendation (CRNNs) taking into account contextual information in
two different ways. One consists in combining the context embedding and input
embedding, similar to Twardowski (2016), and the other consists in incorporating
it in the model dynamics. Attention mechanisms have also been used within the
RNN setting to provide recommendations (Li et al., 2017). The idea here is to use
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an attention mechanism over hidden states to provide to capture the dynamics and
dependence between the states.

Even though RNNs are inherently able to capture some temporal dependencies,
this is largely based on the order of the events in a sequence. Aspects like time
gap between events or sessions, the season, the year, the weekday, and the time of
the day, are all temporal aspects that may influence the ideal recommendation in
many domains, but which cannot easily be captured by the order of events alone.
There have been attempts in both making time-aware recommendation by directly
feeding such information in the RNN for the simple recommendation task (Liu
et al., 2016), as well as modeling time for the task of predicting the return time of
the next session (Du et al., 2016b; Jing and Smola, 2017; Zhu et al., 2017).

The model proposed in Du et al. (2016b) – based on a single layer RNN –
attempts to predict the return-time of a user in addition to recommend the next item.
The time prediction is modeled as a marked point process with intensity function
conditioned on the history and the time to the next event. Similarly in combining
recommendation and time-modeling, the model proposed in Jing and Smola (2017)
use survival analysis to model the time instead of a marked point process. Another
difference is that this model is used for next-basket recommendation task, and not
just a single sequence of items. Furthermore, the time modeling is on the inter-
basket/session time-gaps, and not the time between each selection. It means using
a single level RNN for inter-session modeling directly, in contrast to Ruocco et al.
(2017) and Quadrana et al. (2017), both implementing some form of inter-session
modeling in one of the two levels of their hierarchical RNN models. The final
model’s recommendation capabilities was compared with two factorization based
baselines and one based on neural networks. It was shown to outperform all of these
on two different datasets. The time prediction was compared with expressive point
processes, one of which was a Hawkes point process, and achieved smaller time
errors than all of these. Finally, in Zhu et al. (2017), starting from the observation
RNN units are good at modeling orders of entities, but does not offer any inherent
support of time intervals between the entities, they proposed to incorporate the
temporal aspect in the LSTM through explicit time gate.

Also, there has been efforts in using point process intensity modeling as an
inspiration for hybrid Recurrent Neural Networks capable of time modeling. The
approach in Du et al. (2016a) consist in creating a new type of recurrent neural unit
with two outputs, one for the time model and another one for the general prediction
model. The main contribution here is the proposal of a modeling approach for the
intensity function using a combination of the hidden layers for long time dependency
and recent time prediction, and combination the usual prediction loss with the
negative log-likelihood of the point process based on the intensity function. This
results in a model capable of predicting markers and time of the markers, with

89



5. Time modelling using point process

an intensity function for the time model that is learned via a neural architecture.
In Xiao et al. (2017) a similar approach is taking, modeling the intensity function of
a point process via neural architecture, however in this case two RNN’s are employed:
one for time-series data, capturing background intensity rate, and another one for
event data, capturing long range relationship between events. Finally, Mei and
Eisner (2017) is proposing a continuous time LSTM using Hawkes process as a
starting point and making changes in the internal dynamics of the LSTM to achieve
that goal. The resulting model is a LSTM with similar properties as the Hawkes
process.

5.1 Hierarchical multi-session RNN

We propose a system that aims to predict the return time for the next session and
to recommend the next item. It is based on a hierarchical RNN (HRNN) model
enhanced with a time model part. The inputs of the HRNN are the representations
of previous sessions together with contextual information, followed by the item
representations in the session. Figure 5.2 shows an overview of the system.

Figure 5.2: Schematics of the proposed model consisting of a hierarchical multi-
session RNN with a time model with point processes

The HRNN is inspired by Ruocco et al. (2017), and consists of an inter-session
RNN and an intra-session RNN. GRU units are used in both the intra-session
and the inter-session RNNs. GRU was chosen due to its ability to remedy the
vanishing gradient problem and since it was found to work better than LSTM for
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this problem and model structure. Like in Ruocco et al. (2017), the inter-session
RNN is fed with a fixed number of preceding session-representations. Moreover, in
the proposed model, relevant session-related contextual information is concatenated
to this input.

The final hidden state of the inter-session RNN is propagated to the intra-session
RNN mainly representing the inter-session information, as well as employed for the
return-time prediction task. The intra-session RNN uses the last hidden state of
the inter-session RNN as initial state, and item representations in input. For each
item embedding in the input, the corresponding output of the RNN is passed to a
linear layer which outputs scores for each target items. The recommendation is
given by selecting the items with highest scores.

5.1.1 Context Representation

Additional session-related contextual information, is concatenated with the last
hidden state of the intra-session RNN, representing the input of the inter-session
RNN. We consider three types of embeddings used in the main setup of the model:
1) Item embeddings, 2) inter-session gap-time embeddings and 3) user embeddings.
The purpose of such embeddings is to learn finer dynamics and representations
of the embedded entities. For instance, if two different artist often are listened
to by users with similar tastes, an embedding layer would most likely learn artist
representations that in some sense are similar to each other. By using RNNs,
such representations can learn temporal dynamics in addition to a more general
“similarity measure”. A simplified example of such representational knowledge could
be: “Artist A is almost always listened to before Artist B”. Embeddings can also
learn dissimilarity and non-linearity. For instance when thinking about gap times
between sessions, there might be a higher correlation between gap sizes of 24 and
48 hours (periodic daily behavior) than between 12 and 24 hours.

5.1.1.1 Item embeddings

. These embeddings represent each unique item in the dataset. The learned
embeddings are directly handled by the intra-session RNN and consequently only
trained by the resulting loss of this part of the model. This means that the
item embeddings will affect earlier parts of the network, but then as input, not
computational graphs. Hence, their gradient are unable to flow back to the
embedding layer, and cannot be used to train the embeddings further. Due to the
large number of items present in the considered datasets, the dimensionality of this
embedding is the largest by far.
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5.1.1.2 Inter-session gap-time embedding

These embeddings represent the time gaps between sessions. The time-gap is first
normalized and then divided into discrete buckets. The resulting bucket IDs can
then be used to index embedding tables/layers to propagate the corresponding
embedding. Two different normalization schemes were examined. Both are first
given an upper bound, which sets a threshold of the gap time after which we don’t
consider the user active enough to be provided accurate time predictions. The
gap-times that are greater than this bound is set to the upper-bound. The first
normalization scheme, divides the gap-time range in uniformly large buckets. The
benefit of this is that all the values in the gap-time range will belong to a bucket
of equal size, causing no gap-time to be in the same bucket as a much higher or
lower gap-time. A disadvantage of using this is that the earlier “popular” buckets
can be overcrowded and the later ones can end up being almost empty, which can
make such embeddings hard to train. One also needs a high resolution to cover the
finer differences in the smaller time-gap ranges, which further increases the problem
of sparse buckets. In the second normalization scheme, the gap times are first
transformed with a log function, before the transformed range is divided uniformly
into buckets. This results in a more evenly distributed number of gap times in the
different buckets, but at the cost of cruder resolution for larger gap-times where the
corresponding buckets cover much more time than the earlier ones. We observed
that the second scheme is performing better with small resolutions, but was overall
out-performed by the uniform scheme with higher resolution. Since having high
resolution is a non-issue, both with regards to model performance and run-times,
the uniform was deemed the better option.

5.1.1.3 User embedding

These embeddings are mainly inspired by Jing and Smola (2017), and learning the
user behaviour beyond the history of session representations is especially useful
with long user histories. For instance, if a user behaves a bit unusual and sporadic
in the last few sessions, a model with user embeddings can have information about
long term user behavior, which can help making sense of/override the recent noisy
behavior.

5.1.2 Time Model
The main goal of this model is to predict the time until the next session start,
given a fixed length history in the form of abstract session representations and
corresponding contextual temporal information. The time modeling is heavily
inspired by the work in Du et al. (2016a), where time modeling is used to both
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predict the the time of the next item recommendation given a single sequence
of previous items, as well as to improve the recommendation. In their model,
the gap-times between selected items are considered to be drawn from a marked
point process. The parameterization of the marked point process is defined by the
authors and is dependent on the previous selection history modeled as a RNN,
with corresponding inter-selection gap-times, and on the time of the last selection.
In our system the history is based on session representations and not individual
items. Consequently, the corresponding time-gaps are the times between the
session representations in the history. This inter-session modeling, as well as the
concatenated embeddings, is more similar to what was done in Jing and Smola
(2017). In the point process, we define the intensity function as:

λ∗(t) = exp(vt> · hj + wt · gj + bt) (5.1)

where hj is the j-th hidden state, gj = t− tj - the time since the last session (in
which tj is the last timestamp in the last session and t is the time variable), v is a
vector of weights with the same dimensionality as hj , wt is a single weight and bt
is a bias term. vt> · hj comprises the historical influence on the intensity function,
while wt · gj is the current influence. The full conditional density function is then
defined as follows:

f∗(t) = λ∗(t)exp
(
−
∫ t

tj

λ∗(τ)dτ
)

(5.2)

finally, where the intensity Equation 5.1 has been substituted into the conditional
density function Equation 5.2, the full expression of the marked point process is:

f∗(t) = exp
{
vt> · hj + wt · gj + bt + 1

wt
exp(vt> · hj + bt)

− 1
wt

exp(vt> · hj + wt · gj + bt)
}

(5.3)

The expected return time t̂j+1 is computed as the expected value in form of
weighted area over the probability distribution as follows:

t̂j+1 =
∫ ∞

0
t · f∗(t)dt (5.4)

The integration of the density distribution of the point process (Equation 5.3) does
not have an analytic solution. Thus, prediction has to be approximated by numerical
integration. To handle the infinite upper integration bound, a simple upper cut-off
time is defined. While this is another approximation, the approximation becomes
negligible when setting the cut-off time a bit higher than the vast majority of
gap-times found in the data.
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5.1.3 Loss
Creating a loss function is a matter of combining a recommendation loss and a
return time loss. The latter is simply the log-likelihood of the time-gap point
process distribution. On top of that, in order to control and tune the importance of
the short, medium and long term data points in the training process, we changed
the loss by adding the exponent α ∈ (0, 1) to the time-step variable gj .

Calculating the negative log-likelihood from Equation 5.3 and taking the deriva-
tive with respect to the weight wt we obtain

∇wt [− log f∗(t)] = −gj + ev
t>·hj+bt

(wt)2 (1 + ew
t·gj (wt · gj − 1)) (5.5)

The addition of the exponent on the time-step variable comes from looking at
the gradient of the negative log-likelihood in relation to wt. The gradient has two
basic components related to the time-gap information, a linear component coming
from the current session and a exponential component that is related to the past
interactions in the TPP model (see discussion of Equation 5.1). This led to the
conclusion that a simple mechanism to modulate the emphasis between shorter time
prediction or longer time prediction is to exponentiate the time-interval variable
gj , since this operation would affect the linear and exponential part differently.
Another way to see the same intuition is to observe that the negative log-likelihood
is approximately linear on small time-gaps and exponential on large time-gaps,
meaning that exponentiating the time-gaps to a number closer to zero would make
the shorter time-gaps dominate the loss more than the larger time-gaps. This
addition proved to be valuable for tuning trade-offs between short-medium-long
time predictions as we will see in Section 5.2.5. The final time loss is:

Ltime(gj , hj , w) = −
(
vt> · hj + wt · gαj + bt+

1
wt

exp(vt> · hj + bt)

− 1
wt

exp(vt> · hj + wt · gαj + bt)
)

(5.6)

The recommendation loss, Lrec(sj+1, i), is simply the softmax for item i given
session representation at time j + 1, i.e. sj+1. We combine these losses using a
weighted mean:

Ltotal = β1Ltime(gj , hj , w) + β2Lrec(sj+1, i) (5.7)
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Here, i is the target item of the intra-session recommendation. sj+1 is the score of
the intra-session recommendations and gj is the target time-gap.

5.2 Experimental Setting

In order to ensure the reproducibility of the experiments, and for further imple-
mentation details, we make our code available on a github repository 1.

5.2.1 Datasets

The evaluation is performed on two different datasets as in Ruocco et al. (2017):
the LastFM dataset (Bertin-Mahieux et al., 2011) containing listening habits of
users on the music website Last.fm and the Reddit dataset 2, on user activity on
the social news aggregation and discussion website Reddit. Last.fm is a music
website where users can keep track of the songs they listen to as well as sharing
this with their peers. The data is in the form of tuples containing user-id, artist,
song and timestamp, each representing a single listening event. Reddit is a popular
forum/discussion website, where people can share and comment on different news,
creations, pictures and other topics. Its structure is divided into different sub-
forums, named subreddits, which define the topics/interests/allegiance of the posts
to be posted there. This data is in the form of tuples containing a user, a subreddit
and a timestamp, and each of these represents a single event where the user has
commented on a post within the specific subforum at the given timestamp.

5.2.2 Data Preprocessing

The data were first preprocessed by removing noisy and irrelevant data and defining
markers in the data following the steps in Ruocco et al. (2017). The Reddit
dataset contains a log of user interaction on different subreddits (sub-forums), with
timestamps. Here, an interaction is when a user adds a comment to a thread. Since
the dataset does not split the events into sessions, we did this manually by specifying
an inactivity time limit. Using the timestamps, we let consecutive actions that
happened within the time limit belong to the same session. That is, for a specified
time limit ∆t, and a list of a user’s interactions {at0 , at1 , . . . , atn}, ordered by their
timestamps ti, two consecutive interactions ati and ati+1 belong to the same session
if ti+1 ≤ ti+∆t. We set the time limit to 1 hour (3600 seconds) for the LastFM and
30 minutes (1800 seconds) for the Reddit dataset as in Ruocco et al. (2017). For

1https://github.com/BjornarVass/Recsys
2Subreddit interactions dataset: https://www.kaggle.com/colemaclean/subreddit-interactions
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Reddit Last.fm

Number of users 18.271 977

Number of sessions 1.135.488 630.774

Sessions per user 62,1 645,6

Average session length 3,0 8,1

Number of items 27.452 94.284

Table 5.1: Statistics for the datasets after preprocessing

both dataset we then removed all L consecutively repeating items, reducing them
to only one occurrence. Following (Ruocco et al., 2017) we set the maximum length,
L, of a session to L = 20, split sessions that had a length l > L into two sessions
and removed sequences of length more than 2L. As (Ruocco et al., 2017), we also
simplified the LastFM dataset by ignoring the specific song of each user interaction
and only use the artists. When modeling the inter-session time-gaps, the sessions
that are split because their length are not considered separate sessions, since this
would introduce noise. We solved this problem by setting the last timestamp in
the first half and the first timestamp in the second half, to be the start time of
the full session, resulting in a gap-time equal to 0. The contribution will then be
masked away from the time loss, making sure the model does not to train on these
gap-times. Finally, the datasets were split into a training set and a test set on a per
user basis. Each user’s sessions were sorted by the timestamp of the earliest event
in the session, and the earliest 80% of his sessions were placed in the training set,
while the remaining 20% of the sequences, that contain the most recent sessions
of each user, were allocated to the test set. Table 5.1 shows statistics for the two
datasets after preprocessing (before splitting into training and test sets).

5.2.3 Baselines

In order to validate the performance of our model for both the tasks of return session
time prediction and next item recommendation the THRNN model is compared
to the following baselines, in addition to the intra-session Hierarchical RNN itself
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(HRNN). These baselines have been shown to be the strongest ones for such tasks
as demonstrated in Ruocco et al. (2017) and Quadrana et al. (2017) for the session
based recommendation and Du et al. (2016b) for time prediction.

GRU4REC 3: implementation based on the seminal work of Hidasi et al. (2016a)
that uses session-parallel mini-batch training process and ranking-based loss func-
tions for learning a model using solely the items sequence information within a
session.

HRNN The Hierarchical RNN (also Inter- and Intra-Session RNN), is a simpler
version of the architecture used in this article. Namely, take the architecture
presented in Figure 5.2, remove the time model and the user embeddings. The
resulting model is the one given in Ruocco et al. (2017). The HRNN baseline
parametrization is the same as in this article where it has been shown to otuperform
the GRU4REC and other strongest baselines, such as Item K-NN (Linden et al.,
2003) and BPR-MF (Rendle et al., 2009a)

Hawkes process The Hawkes process is a self-exciting point process with inten-
sity given by

λ(t|Ht) = γ0 + αH
∑
tj∈Ht

γ(t, tj) (5.8)

for some constants γ0, αH , a kernel γ and the history of events Ht (Hawkes, 1971).
γ0 defines a baseline intensity, while γ defines the propensity with which the intensity
is excited by events in the process itself. The kernel typically has the property that
if a number of events happen with short time gaps, the intensity λ becomes larger
than if the same number of events happen with larger gaps. The history of event
Ht has the list of event times up to time t, {t1, ..., tn|∀j ≤ n : tj < t}. For the
baseline, we fit one Hawkes process for each user (using the last 15 sessions), and
set the kernel to an exponential function. Return-time predictions are expected
values of the Hawkes process primed by the time gaps of the 15 most recent sessions
for each user. We also used a Hawkes long-term fitting procedure, for which the
entire per-user training dataset is used for estimating the parameters in the Hawkes
process.

5.2.4 Evaluation Metrics and Hyper-Parameters tuning
We used Recall@k and MRR@k with k = 5, 10, 20 to evaluate all models for
the recommendation task and Mean Absolute Error (MAE), for the return-time

3https://github.com/hidasib/GRU4Rec
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Reddit Last.fm

Item Embedding size 50 100

User Embedding Size 10 10

Time-Gap Embedding Size 5 5

Learning rate 0.001 0.001

Learning rate-time 0.0001 0.0001

Dropout rate 0 0.2

Max. recent session representations 15 15

Mini-batch size 100 100

Number of GRU layers, intra-session level 1 1

Number of GRU layers, inter-session level 1 1

Table 5.2: Best configurations for the RNN models.

prediction. In addition to the baselines already discussed, we also compared the
THRNN with other models on the two presented datasets. We experimented with
mini-batch sizes, embedding sizes, learning rate, dropout rate, using multiple GRU
layers, and number of session representations to find the best configurations for each
dataset. The best configurations we found are summarized in Table 5.2. Learning-
rate time refers to the learning rate of w and vt respectively, in the Equation 5.6.
This value had to be reduced in order to stop this loss from diverging, mainly due
to the exponential function as well as the scaling with the time-gap in the formula.
We then find the best scaling factors for the loss function in Equation 5.7 to be
β1 = 0.45 and β2 = 0.45.
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Figure 5.3: Time prediction MAE with different values of parameterα evaluated
on LastFM dataset (left) and Reddit dataset (right). Runs with α = 0.1 are not
included since time-specific gradients diverged for this initialization

5.2.5 Effect of parameter α

In order to show the effect of the parameter α in Equation 5.6, we evaluate the
model by varying α ∈ [0.3, 0.5, 0.7, 0.9, 1.0] for the task of return time prediction.
In Figure 5.3 we see performance, in term of MAE, of the proposed architecture for
both LastFM and Reddit dataset. In both cases we observe that with α close to 1.0
the MAE decrease for longer time gap, showing an increase of accuracy in the time
prediction for such gaps. In particular, for the LastFM dataset the performance
of all the initializations seems to meet at 1.5 days time-gaps which is the middle
point between the [0.5− 1.5] days interval and [1.5− 2.5] days interval. We can
also observe that the plot looks more linear the smaller α is set. For example, for
α = 0.3 the plot is similar to the one produced by predicting an averaged time-gap
for every single prediction. For the LastFM dataset, we see that by decreasing
the value of α, the focus of the model is to have better performance on smaller
time-gaps but unlike the Reddit dataset, on the long-term gap, the performance
of the model tends to deteriorate faster. This is probably due to differences in
distribution of the time gaps for the two datasets.

For both datasets, Figure 5.3 clearly illustrates the trade-off between error
for the most frequent time-gaps and the effective prediction range of the model.
Choosing α should be based on the service for which we are modeling return times.
For some services, modeling shorter time gaps are more important that modeling
longer ones.
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5.2.6 Return time prediction: Long Term vs Short Term

Figure 5.4: Time prediction MAE compared with Hawkes baselines with different
values of parameter α. LastFM dataset (top row): α values of 0.3 (left), 0.5 (center),
0.9 (right) Reddit dataset (bottom row): α values of 0.3 (left), 0.5 (center), 0.9
(right).

In Figure 5.4, we illustrate the performance of the proposed model for return
time predictions versus two baseline Hawkes models, with tuning parameter α ∈
[0.3, 0.5, 0.9] in Equation 5.6. For short time-gaps, the joint model of session
embeddings and point process intensity gives better predictions than the baselines.
The results are plotted alongside the number of observations for each time-gap,
which gives insightful information about how the user–item interaction within a
session is relevant for the model. We observe that the joint model outperforms the
baseline consistently at time-gaps where there are more user–item observations.
This is intuitive because of the shared learned parameters between the time model
and the intersession model, in the sense that those parameters are not only fitting
the time-gaps, but also the user–item interactions dynamics.

We see that tuning α allows us to control which time-gaps are most important
to the model. Tuning for the most important time-gaps, however, comes at the
cost of having worse return-time predictions for the time-gaps that are deemed less
important.
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R@5 R@10 R@20 MRR@5 MRR@10 MRR@20

GRU4REC 0.1349± 0.0004 0.184± 0.0002 0.2474± 0.0002 0.086± 0.0003 0.0925± 0.0002 0.0969± 0.0002

HRNN
0.1415± 0.0005 0.1993± 0.0007 0.2751± 0.0006 0.0876± 0.0004 0.0952± 0.0004 0.1004± 0.0004

(+4.9%) (+8.3%) (+11.2%) (+1.8%) (+2.9%) (+3.7%)

THRNN
0.1437 ± 0.0004 0.2026 ± 0.0006 0.2795 ± 0.0006 0.0889 ± 0.0002 0.0967 ± 0.0003 0.102 ± 0.0003

(+6.6%) (+10.1%) (+13.0%) (+3.4%) (+4.5%) (+5.3%)

Table 5.3: Table with the recall and MRR on the LastFM dataset.

R@5 R@10 R@20 MRR@5 MRR@10 MRR@20

GRU4REC 0.3208± 0.0004 0.3959± 0.0005 0.475± 0.0003 0.2346± 0.0006 0.2445± 0.0006 0.25± 0.0006

HRNN
0.4432± 0.0013 0.5316± 0.0009 0.616± 0.0012 0.317± 0.0016 0.3288± 0.0016 0.3347± 0.0015

(+38.1%) (+34.3%) (+29.7%) (+35.1%) (+34.5%) (+33.9%)

THRNN
0.4468 ± 0.0013 0.5366 ± 0.001 0.6228 ± 0.0009 0.3191 ± 0.0015 0.3311 ± 0.0014 0.3371 ± 0.0014

(+39.3%) (+35.6%) (+31.1%) (+36.0%) (+35.4%) (+34.8%)

Table 5.4: Table with the recall and MRR on the Reddit dataset.

5.2.7 Impact on actual recommendation
The experimental results for the recommendation task are summarized on Table 5.3
(for the LastFm dataset) and Table 5.4 (for the Reddit dataset). We observe an
improvement in both metrics (Recall and MRR) at distinct levels (5, 10 and 20).
This indicates that there is a win-win situation by incorporating intensity-based
time modeling in the HRNN model, improving both recommendations and return
time prediction when compared to respective baselines. However, it is worth noting
that the difference between THRNN and HRNN is not just the time modeling, but
also some added use of contexts in the THRNN model. It is also noticeable that
the improvements of THRNN over HRNN, although significant, are less salient in
absolute value than the improvements over GRU4REC. The simplest hypothesis is
that the inter-session layer of HRNN is already capturing some of temporal dynamics
between the sessions, for example it is possible that the latent representation are
encoding time information correlated with the changes of user–item interactions
from the end of one session to the beginning of the next session (for example if
there are different profiles for distinct time-gaps of items that are typically accessed
when finishing a session and items that typically are accessed in the beginning of
the next session).
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“Pure reason therefore is that which contains the principles of knowing
something entirely a priori. (...) For since such a science must contain
completely both analytic and synthetic a priori knowledge, it is, as far as
our present purpose is concerned, much too comprehensive. We will be
satisfied to carry the analysis only so far as is indispensably necessary
in order to understand in their whole range the principles of a priori
synthesis, with which alone we are concerned.”

— Immanuel Kant, Critique of Pure Reason

The choice of the particular priors, as well as other hyperparameters like the
number of factors or components, has notable impact on the overall performance
of hierarchical models. It is not an easy task to determine the effect of the prior
in the overall model using classical principles: the priors may not have intuitive
interpretation and for complex hierarchical models the relationship between the
priors and data is poorly understood, ruling out subjective prior knowledge. For
example, the behavior of the hierarchical Poisson matrix factorization model of
Gopalan et al. (2015) depends on seven hyperparameters (six for defining the priors
and one for the number of latent factors) in a non-trivial manner.

The hyperparameters are typically chosen heuristically or by an iterative pro-
cess that explicitly evaluates the quality of multiple choices. The search can be
automated with Bayesian optimization (Snoek et al., 2012), typically based on
some proxy of the marginal likelihood, such as variational lower bound or leave-
one-out cross validation (Vehtari et al., 2017), or directly on the performance in
a downstream task, such as recommendation (Galuzzi et al., 2019). Both require
carrying out posterior inference for every considered set of hyperparameters, adding
significant computational burden and increasing overall training time by orders of
magnitude. Furthermore, the result is only optimal for the chosen measure and
inference method, unnecessarily tying model specification with inference.
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hyper-parameter λ

Prior Predictive Distribution

latent variable Z

observation X

p(X|Z)

∫
Z
p(X|Z)p(Z;λ)dZ

p(Z;λ)

Figure 6.1: Diagram of a generic hierarchical Bayesian model

To overcome this, we turn attention to the statistical literature on the prior
predictive distribution (PPD) – the marginal distribution of observables before
seeing any data. The PPD is routinely used during the statistical modeling pipeline
in form of prior predictive checks, to qualitatively access whether the model and the
priors are reasonable (Schad et al., 2019; Gabry et al., 2019). PPD has also been
used for prior elicitation, to convert knowledge an expert has on the properties of
data into prior distributions (Kadane et al., 1980; Akbarov, 2009; Hartmann et al.,
2020). We turn those ideas into a tool for automatic learning of hyperparameters,
by directly optimizing for a good match between virtual statistics of the PPD and
statistics of the data1. The tool can be used in two ways: (1) the target statistics
are provided by the expert (user) as prior knowledge on data, or (2) the target
statistics are estimated from (subset of) the actual data. The former is related to
use of PPD for prior elicitation (Kadane et al., 1980), extended here for practical
use with Bayesian ML models with large number of latent variables, whereas the
latter is similar to empirical Bayes (Casella, 1985).

The proposed prior predictive matching approach, described in Section 6.1,
finds good hyperparameters without needing posterior inference. When the true

1In order to distinguish from statistics of the observed data, we use the term virtual statistics
to refer to summary quantities calculated for hypothetical data sampled from PPD, inspired by
the phrase virtual counts used sometimes for the hyperparameters in count-data models.
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data generating process is within the assumed model family, the approach provides
hyperparameters that are optimal with respect to the selected statistics, and we show
empirically that the method is robust for small model misspecification. If the data
fits poorly with the assumed model family the approach may return unreasonable
choices (e.g. recommending use of only a few factors for a recommender engine,
when the common tradition is to operate with tens or hundreds of factors), which
can be interpreted as sign of model mismatch and need for model refinement.

6.1 Prior specification via prior predictive matching

Priors for Bayesian MF Bayesian matrix factorization (BMF) is an important
class of Bayesian ML models used, e.g., in recommender engines (Salakhutdinov
and Mnih, 2007), for dimensionality reduction (Bai et al., 2013; Xu et al., 2003),
community detection (Psorakis et al., 2011), and modeling relationships between
data modalities (Klami et al., 2013). Importantly, it is a family for which the prior
distributions are difficult to specify, as will be clarified in Section 6.1.1. We start
by characterizing two concrete models building on Poisson distribution, for which
the effect is emphasized (Cemgil, 2009).

Poisson Matrix Factorization. Poisson matrix factorization (PMF) (Cemgil,
2009; Gopalan et al., 2014a) with latent dimensionality K specifies a generative
model for a count matrix Y = {Yij} ∈ RN×M , with each entry Yij following a
Poisson distribution with rate θikβjk, a product of latent factors θik indexed by
the rows and βjk indexed by the columns.

Each latent variable follows a prior f(µ, σ2), parameterized here using mean µ
and standard deviation σ

θik
iid∼ f(µθ, σ2

θ), βjk
iid∼ f(µβ , σ2

β),

Yij
iid∼ Poisson

(
K∑
k=1

θikβjk

)
. (6.1)

The majority of the PMF literature assumes the priors to be gamma distributions
(using shape-rate parameterization, f(µθ, σ2

θ) = Gamma(a, b) and f(µβ , σ2
β) =

Gamma(c, d), with µθ = a
b , σ2

θ = a
b2 , µβ = c

d and σ2
β = c

d2 ) for efficient posterior
inference, but we use the more general notation to extend the analysis to all
scale-location priors.

The priors and the number of factors K control the sparsity and magnitude
of the latent representation (Cemgil, 2009), via the expected mean and variance
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of the rates. However, these effects are hard to separate from each other and in
practice the match can only be checked against the observed data a posteriori.

Compound Poisson Matrix Factorization. Compound Poisson matrix factor-
ization (CPMF) (Basbug and Engelhardt, 2016) extends PMF by incorporating an
additive exponential dispersion model (EDM) (Jorgensen, 1987) in the observation
model, while keeping the Poisson-Gamma factorization structure:

θik ∼ f(µθ, σ2
θ), βjk ∼ f(µβ , σ2

β)

Yij ∼ ED(w, κnij), nij ∼ Poisson(
K∑
k=1

θikβjk), (6.2)

where we have p(Yij |nij ;w, κ) = exp(Yijw−κnijψ(w))h(Yij , κnij), E[Yij |nij ;w, κ] =
κnijψ

′(w) and V[Yij ;w, κnij ] = κnijψ
′′(w), and nui is a Poisson distributed latent

count2. ED(w, κnij) represents an EDM distribution, with natural parameter given
by w and dispersion given by κnij , and the particular distribution determined by the
base log-partition function ψ(w) and base-measure h(Yij , κnij). This model family
includes Normal, Poisson, Gamma, Inverse-Gamma, and many other distributions
(see Table 1 in Basbug and Engelhardt (2016)).

The data generating distribution is influenced by both the chosen EDM distri-
bution and the hyperparameters, now including also κ and w, and a precise a priori
reasoning about their joint effect is beyond feasible even for well-versed practitioners.
An intuitive view of this model is that it allows us to decouple the sparsity or
dispersion from the response model (controlled by the choice of distribution to be
compounded). In this sense κ would give an indication about variability of the
responses, while w would be related to the natural parameterization of the response
distribution (see Table 1 in Basbug and Engelhardt (2016)). Determining specific
values for these parameters to achieve desired or expected characteristics for the
data is, however, extremely difficult.

6.1.1 On Priors for BMF
Despite the vast literature on BMF models and their inference algorithms, sur-
prisingly little effort has been dedicated to the choice of the priors. Instead, most
authors work with heuristic choices, possibly motivated by the general rule of
selecting priors before observing any data, even though this may be ill-suited for
general-purpose models. For example, Brouwer and Lio (2017) present a com-
pendium of BMF models with wide range of likelihoods and priors, but despite

2We denote ψ′(w) = dψ
dw

, ψ′′(w) = d2ψ
dw2
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focusing on small data applications still set the hyperparameters by either try-
ing values from a regular grid or setting them to fixed values based on claims
of insensitivity. Similarly, Gopalan et al. (2015) solved the problem of choosing
hyperparameters for hierarhical PMF by setting all of them to 1 or 0.3 to encourage
sparsity, and Basbug and Engelhardt (2016) used a combination of empirically
tested and heuristically chosen hyperparameter values for CPMF. Finally, Tan and
Fevotte (2013) optimized for the latent dimensionality K, but used ah-hoc values
for other hyperparameters. Importantly, we stress that these examples should not
be seen as weakness in these particular works, but rather as examples of a common
practice motivating our research – we have also published articles where we followed
the same convention.

We argue that the common practice of heuristic choices is not because BMF
models are particularly insensitive to the priors, but because selecting them is not
easy. Even simple models have multiple hyperparameters that typically do not have
clear meaning, ruling out subjective prior knowledge. For example, the only prior
information for setting the variance parameters σ2 of (6.1) would be based on what
kind of values have worked before when applying the model for other data sets,
rather than an expert being able to somehow quantify a real subjective knowledge
based on domain knowledge. Furthermore, the hyperparameters are typically not
even identifiable due to the latent variables relating to data only via the product
θTi βj . In general, this is a characteristic of hierarchical, high-dimensional and
complex Bayesian models, where the interplay between prior specification and the
final model properties is difficult to intuit aprioristically and can only be understood
in connection to the likelihood and the predictions that come from it, as is argued
by Gelman et al. (2017).

Global optimization for BMF, in turn, is hard because (1) training/validation
split is non-trivial for structured data, (2) posterior inference is slow for large
data, and (3) the optimization surface is difficult. Figure 6.4 illustrates the last
point for the PMF model by evaluating the predictive quality of the mean-field
variational approximation as measured by PSIS-LOO (Vehtari et al., 2017) for a
range of hyperparameter choices (see Section 6.5.1 for details). There is large areas
of inappropriate choices and the sharp border between those and the feasible region
makes global optimization hard. Furthermore, as illustrated on the right-most
bottom plot in Figure 6.4 (an example of a 1D slice plotted using three different
scalings for the y-axis), the optimization surface characteristics depend on the
inspection scale; the small neighborhood with optimal scores is lost at coarses scales
and is difficult to find with most optimization strategies.

In Section 6.3 we will describe analytic solution for learning the hyperparameters
for this model by matching the virtual statistics of PPD with target values. The
example already illustrates how that method, which here does not require any
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computation besides simple equation, finds a solution surface within the feasible
region, selecting also the latent dimensionality automatically. It does not give the
hyperparameters optimal for this specific evaluation metric and inference algorithm,
nor should it. Instead, the result captures essential properties of the data with the
PPD, resulting in an appropriate starting point for posterior inference.

6.2 Prior Predictive Matching

Having illustrated the challenges with BMF, we now proceed to provide a new
method for determining hyperparameters of any Bayesian machine learning model,
building on the idea of matching virtual statistics of prior predictive distribution
as explained in detail below.

6.2.1 General Idea

Our goal is to select good hyperparameters λ for a probabilistic model p(Y, Z, λ),
where Z denotes actual model parameters and latent variables collectively, without
directly computing the posterior quality of any particular model fit. That is, we
want to avoid costly and potentially difficult global optimization requiring the
selection of specific evaluation criterion for the quality of the final solution as well
as training/validation split for the data – which can be challenging especially for
MF models. Instead, we prefer to optimize an overall match between the model
and the data characteristics.

To achieve this, we consider the prior predictive distribution

p(Y |λ) =
∫
p(Y |Z, λ)p(Z|λ)dZ,

which integrates out the parameters, and search for hyperparameters for which it
matches the data distribution well. PPD is typically used for validating prior and
modeling choices as part of the statistical modeling pipeline (Schad et al., 2019;
Gelman et al., 2020), often by visual comparison of prior predictive samples and the
data,. e.g., so that large deviation between the two is interpreted as an indication
that the model should be modified (Gabry et al., 2019). We extend the idea to
automate the prior choice, by optimizing for λ for which virtual statistics of PPD
match sufficiently well with either prior knowledge of the user or empirical statistics
for the available data. Even though we do not have analytic expression for PPD
for most models of interest (for example, Bouveyron et al. (2019) demonstrates
how tedious the derivations are even for MF with Gaussian likelihood), we can
draw samples from it and use those for evaluating (and hence optimizing) the fit.
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Sometimes we can also derive analytic expressions for certain moments of PPD,
which can be utilized for more efficient algorithms. The central contribution here is
an automatic process similar to prior predictive checks, providing a method that
directly links prior knowledge (or estimates) about the data generating process and
specification of hyperparameters of the model.

6.2.2 Method
The gist of our proposed method is to search for λ such that the PPD p(Y |λ)
and the data distribution p(Y ) or user’s prior beliefs about p(Y ) (when following
strictly the principles of Bayesian modeling framework) match as well as possible.
We quantify the match using a collection of statistics T that capture the essential
properties of the data, for example in form of central moments. The goal is to find
λ such that the virtual statistics T̂λ of the PPD match some target statistics T∗.
In ideal case, we find the optimal match where T̂λ = T∗. We use the phrase virtual
statistic for T̂λ to emphasize that it does not correspond to any particular observed
data, but can instead be thought of as the corresponding statistic computed for a
hypothetical – or virtual – data set sampled from PPD.

This general formulation depends on two elements: (1) the choice of the statistics
T (and associated discrepancy measure) used for evaluating the match, and (2) the
choice of the specific target statistic values T∗. Together they define the optimality.
Importantly, these two objects are fundamentally linked with each other: a richer
set of statistics T leads to hyperparameter choice likely to be good in broader set
of applications, but at the same time implies the need to be more careful when
providing the target values T∗, while often making computation more difficult as
well. Finally, let us note that computational algorithms solving for λ are agnostic
to how T∗ were obtained, but to clarify the broad scope of the developed machinery
we explain three common use-cases with different way of defining T∗:

1. Principled statistician: Following the strict Bayesian principle, the target
statistics may be provided by a domain expert, in form of the expected values
for the statistics. When used in this form, the proposed method essentially
becomes a prior elicitation method; the expert provides subjective information
on what is to be expected regarding the data, and this is used for indirectly
defining the prior over the model parameters, similar to e.g. Kadane et al.
(1980) and Hartmann et al. (2020). Importantly, the expert only needs to
provide statistics of the data and not of the model parameters, not necessarily
needing to understand the model in detail.

2. Held-out validation: A somewhat more pragmatic approach is to use actual
observed statistics T of a separate validation data as the target values T∗.
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For example, in the case of a recommender engine we might use a subset of
the users and items to estimate the target statistics T∗ and find λ for which
the virtual statistics of the PPD best match the observed ones. After this,
this data subset is discarded and the remaining data is used for posterior
inference and possible further computation steps with the hyperparameters
fixed to the selected ones.

3. Automatic inference: Finally, the method can also be used in a fashion
where we use the observed statistics T of all available data Y as the targets T∗,
loosely following the concept of empirical Bayes (Casella, 1985). This breaks
the fundamental idea of specifying the priors before observing the data, but
in typical cases the statistics are of low dimensionality and only characterize
the data roughly. We argue most practitioners should consider this a valid
procedure, and we believe this will be the most common way of using the
method. For example, if only using the mean and variance as statistics we
are merely making sure the range of the data is approximately correct, and
the method can be considered simply as an automatic replacement for the
manual model refinement that would be carried out by inspecting whether
the PPD roughly matches the observed data or not (Schad et al., 2019; Gabry
et al., 2019; Gelman et al., 2020). Note that this reasoning would no longer
hold if using very rich statistics, in the extreme case directly using individual
data entries so that T∗ = Y , but in this work we only consider problems
where T consists of a few low-order moments.

Throughout this work we use moments such as mean and variance as the
statistics T, since they lead to computationally efficient algorithms applicable for
reasonably broad model families, but the method would work for other choices as
well. In particular, we go through details of two practical algorithms for different
scenarios, demonstrated in the context of Bayesian MF models. In Section 6.3, we
first look at cases for which we can compute certain low-order moments of the PPD
analytically and hence can find a closed-form expression for λ corresponding to
the optimal match T̂λ = T∗. This is ideal in terms of computation, but restricted
in scope to specific models and statistics. Hence, in Section 6.4, we proceed to
provide a general-purpose algorithm applicable to considerably broader family of
models and statistics, formulated as explicit optimization of a discrepancy measure
between the PPD and target statistics, using sampling-based estimates for the
virtual statistics and stochastic gradient-descent (SGD) optimization. The method
is applicable for all continuous hyperparameters and requires only ability to sampled
from PPD, but alternative forms of optimization could be considered to extend
support also for discrete hyperparameters.
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6.3 Matching Moments for PMF and CPMF

PMF as specified in (6.1) allows us to derive analytic expression for certain moments
of the PPD, to be used as virtual statistics. If we denote by Y a virtual data
matrix following the PPD, we can compute the mean E[Yij |λ], the variance V[Yij |λ],
and the correlations ρ[Yij , Ytl|λ] in closed form. Here the hyperparameters are
λ = {K,µθ, σ2

θ , µβ , σ
2
β}, and we drop explicit conditioning on λ, writing E[Yij ] :=

E[Yij |λ]. The detailed derivations, provided in the Section 6.6, build primarily on
the laws of total expectation, variance and covariace for marginalizing out θ and β.

Proposition 6.1. For any entry of the count matrix Y = {Yij} ∈ RN×M , the
mean and variance is given by:

E[Yij ] = Kµθµβ (6.3)
V[Yij ] = K[µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2] (6.4)

Proposition 6.2. For any pair of entries Yij and Ytl of matrix Y , their correlation
is given by:

ρ[Yij , Ytl] =


0, if i 6= t & j 6= l

1, if i = t & j = l

ρ1, if i = t & j 6= l

ρ2, if i 6= t & j = l

(6.5)

ρ1 = (µβσθ)2

µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2

ρ2 = (µθσβ)2

µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2

Given Propositions 6.1 and 6.2 and some target values for the moments, we can
directly solve e.g. for the number of latent factors K. Denoting τ = 1− (ρ1 + ρ2),
we obtain:

K = τ V[Yij ]− E[Yij ]
ρ1ρ2

(
E[Yij ]
V[Yij ]

)2
. (6.6)

We also obtain formulas for relationships between means and standard deviations
of the priors that can be used to set e.g. the Gamma hyperparameters a, b, c and
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d.

a = ρ2 V[Yij ]
τ V[Yij ]− E[Yij ]

(6.7)

c = ρ1 V[Yij ]
τ V[Yij ]− E[Yij ]

(6.8)

bd = E[Yij ]
V[Yij ]

√
ac

ρ1ρ2
. (6.9)

Compound Poisson matrix factorization For CPMF we have

K =
τ V[Yij ]−

(
κψ′(w) + ψ′′(w)

ψ′(w)

)
E[Yij ]

ρ1ρ2

(
E[Yij ]
V[Yij ]

)2
(6.10)

for the latent factors and the following relationships for other terms:

σθσβ = V[Yij ]
E[Yij ]κψ′(w)

√
ρ1ρ2

E[Yij ] = κψ′(w)Kµθµβ
V[Yij ] = κψ′′(w)Kµθµβ + [κψ′(w)]2K[µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2].

The derivations are provided in Section 6.6 in Propositions 6.6, 6.7, 6.9, 6.10 and
6.13.

Observations The above equations provide closed-form expressions that de-
termine priors optimal in terms of virtual statistics of PPD matching the target
statistics. They can be computed instantaneously, bypassing the need for optimizing
λ, and provide the first computationally efficient way of automatically determining
the number of factors for PMF and CPMF. The result is not necessarily optimal
for any particular task, especially when the data does not follow the model well,
but as illustrated experimentally in Section 6.5 tends to be a good choice.

6.3.1 Empirical Estimates for the Moments
As explained in Section 6.2, one way of using the method is based on matching the
virtual statistics with the true statistics of the observed data. For MF models, we
only have a single matrix representing one (often partial) observation, and hence
need to estimate the statistics by averaging over the rows and columns of this one
observation instead of averaging over multiple matrices. The mean and variance can
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Algorithm 1: Empirical correlations ρ1 and ρ2 for a observed matrix
Y = {Yij} ∈ RN×M

input : observed matrix Y = {Yi,j} ∈ RN×M , number of samples for the
estimator S

output : ρ1 and ρ2
Initialize arrays A = {Ai,j} ∈ RS×2 and B = {Bi,j} ∈ RS×2;
for s ∈ {1, · · · , S} do

Sample i ∼ Unif({1, · · · , N});
Sample j1 ∼ Unif({1, · · · ,M});
Sample j2 ∼ Unif({1, · · · ,M} \ {j1});
As,1 ← Yi,j1 ;
As,2 ← Yi,j2 ;
Sample j ∼ Unif({1, · · · ,M});
Sample i1 ∼ Unif({1, · · · , N});
Sample i2 ∼ Unif({1, · · · , N} \ {i1});
Bs,1 ← Yi1,j ;
Bs,2 ← Yi2,j ;

end
Calculate and return the Pearson correlation of columns of A and B;

be easily estimated over the independent matrix entries, but it is not immediate nor
intuitive how to compute the correlations. One remark is that there are two values
of correlations, one for row and another one for columns, hence we can levarage
this property of the model to make an estimator. To estimate the correlation we
derived an estimator that samples two elements from the same row or column and
uses them to calculate the correlation of elements sharing a row or column index,
independent of the specific index. The estimator is described in Algorithm 1.

6.4 Gradient-based Approach

Deriving analytic expressions for even simple models and moments is tedious,
error-prone, and often impossible. For users willing to give up the convenience
and robustness of analytic expressions, we next provide an optimization-based
alternative that does not require model-specific derivations.
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6.4.1 Formulation as an Optimization Problem

Instead of directly equating the target and virtual statistics, we solve for λ that
minimizes a discrepancy measuring the difference between the requested quantities
T∗ (either expert’s prior expectation or empirical estimate) and the virtual statistics
T̂λ of the PPD

min
λ

d
(
T∗, T̂λ

)
, (6.11)

where for brevity we write T̂λ instead of the complete T̂ (E[g(Y )|λ]). As before, T
is a collection of statistics (e.g. central moments) defining which aspects are used
for learning the hyperparameters. Intuitively, a richer set allows more accurate
prior specification, but requires more careful choice of discrepancy as well. For
example, to match at the same time an expected value E∗ and variance V∗ we
can use d := (E∗ − E[Y ])2 + (V∗ − (E[Y 2]− E[Y ]2))2, where g(Y ) = (Y, Y 2) and
T̂(E1, E2) = (E1, E2 − E2

1).
The process builds on repeatedly drawing samples from PPD to estimate the

virtual statistics T̂λ, and solving for λ using some iterative algorithm. Importantly,
this only requires the model code providing the samples and the target statistics
T∗, and hence allows solving for the priors as part of the modeling pipeline without
needing to consider any particular data.

6.4.2 Differentiable Moments’ Estimators

We optimize (6.11) with stochastic gradient descent, using Monte Carlo approxi-
mation (Mohamed et al., 2020) for the prior predictive moments and automatic
differentiation with reparameterization gradients (Figurnov et al., 2018) wherever
available and using REINFORCE (log derivative trick) (Williams, 1992) elsewhere.
For gradient-based optimization we require that d(·) and T̂ are differentiable w.r.t
their arguments, and that we can propagate gradient ∇λ through E[g(Y )]. We next
show that this is possible for a rather general structure of hierarchical Bayesian
models with outputs Y and latent variables Z (see Figure 6.2 for a conceptual
illustration of the procedure).

The procedure is based on recursively applying the law of total expectation.
The unconditional expectation of g(Y ) can be obtained by integrating out latent
variables Z, but since an analytical form of it is not available, we proceed by per-
forming a numerical approximation, where each of the integrals over latent variables
Z1, . . . Zl . . . ZL is replaced by a sum over samples from respective (conditional)
distributions. An estimate of the required gradient ∇λ E[g(Y )] is then obtained
by propagating estimates of the gradients ∇λ E[g(Y )|Zl] and ∇λ log p(Zl| . . . ;λ)
backward through the computation graph.
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Bayesian Network Gradient computation

∇λE[g(Y )]

Z1 • • • ∇λE[g(Y )|Z1]∇λlog(p(Z1))

...
...

... · · ·

Zl−1 • • • ∇λE[g(Y )|Zl−1]∇λlog(p(Zl−1))

Zl • • • ∇λE[g(Y )|Zl]∇λlog(p(Zl))

...
...

... · · ·

ZL • • • ∇λE[g(Y )|ZL]∇λlog(p(ZL))

Y ∇λg(Y )

Figure 6.2: Conceptual illustration of how moments’ gradients can be estimated
for Bayesian networks.

6.4.3 Example: Derivation for PMF and HPF

To demonstrate the rather generic presentation above and to link it to the BMF
use-case, we show as an example the MC estimate for the expectation E[Yij ] of the
PMF model

E[Y ] ≈ 1
Sθ · Sβ

∑
εθ∼p0

∑
εβ∼p0

E[Y |θ(εθ, λ)Tβ(εβ , λ)], (6.12)
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where we reparametrize both β and θ. For clarity, we also dropped indices i and j
in Yij , θi and βj . The internal conditional expectation in (6.12) we expand as

E[Y |θTβ] ≈ 1
C

∑
y∼Poisson(θT β)

y · Poisson(y|θTβ), (6.13)

where Poisson denotes Poisson probability mass distribution. Similarly, variance of
Y we estimate with V[Y ] = E[Y 2]−E[Y ]2, where the estimator of E[Y 2] we obtain
by substituting y with y2 in (6.13).

To demonstrate the flexibility of the model-independent algorihm we also apply
it on hierarchical Poisson factorization (HPF) model of Gopalan et al. (2015), for
which we do not have closed-form expressions for the moments. This model adds
one level of hierarchy to PMF, and hence matches our general formulation:

θ ∼ Gamma(a, ξ), ξ ∼ Gamma(a′, a′/b′)
β ∼ Gamma(c, η), η ∼ Gamma(c′, c′/d′),

where the new continuous variables ξ, η we reparametrize (and sample) as follows:

θ := θ(εθ, a, ξ), ξ := ξ(εξ, a′, a′/b′)
β := β(εβ , c, ξ), η := η(εη, c′, c′/d′),

Then, for HPF (6.12) takes the form of

E[Y ] ≈ 1
Sξ · Sη

∑
εξ∼p0

∑
εη∼p0

1
Sθ · Sβ

∑
εθ∼p0

∑
εβ∼p0

E[Y |θ(εθ, λ, η(εη, λ))Tβ(εβ , λ, η(εη, λ))]

︸ ︷︷ ︸
E[Y |ξ,η]

,

6.5 Experiments

In this section we present and discuss some of experimental validation for the
proposed methods. We perform those validation using both synthetic data, in this
case assuming the true model with different values for the hyperparameters, as well
as predictive performance on a real-world dataset.

Setup of the experiments Table 6.1 contains initial configurations of hyperpa-
rameters used in the experiments. The legends in Figures 6.5 and 6.3 refer to these
letters.

For PMF and CPMF, equations (6.50) and (6.10) provide analytic expressions
for hyperparameters given target moments. We demonstrate them in an empirical
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Table 6.1: Considered sets of hyperparameters.

a b c d µθ σθ µβ σβ E[Y ] V[Y ]

A 10 1 10 1 10.0 3.16 10.0 3.16 2500.00 55000.00

D 0.1 1 0.1 1 0.1 0.32 0.1 0.32 0.25 0.55

F 1 1 0.1 0.1 1.0 1.0 1.0 3.16 25.00 550.00

200 400
K

200

400

600

K̂
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D
F
All

200 400
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Figure 6.3: Prior predictive matching provides accurate estimates K̂ for all true
latent factor dimensionalities K and prior configurations (colored lines), as analytic
expression of empirical moments for both Poisson MF (left) and Compound Poisson
MF (right).

Bayes scenario, where estimates of the observed data are used as targets, to show
the results are robust to estimation error. We sample a data matrix (of size
103 × 103) from the model for 30 scenarios where the true hyperparameters λ∗ are
set at different values. We repeat this for a range of values for the true K, and
for each data compute the empirical estimates required for estimating the number
of factors using (6.50) and (6.10). Figure 6.3 shows the estimates (mean and 95%
confidence interval over the 30 replications) accurately match the ground truth
when the data follows the model, for both PMF and CPMF with observation model
Yij ∼

∑nij
i=1N (1, 1).

6.5.1 Posterior Quality

The main use for the approach is as part of a modeling process where we eventually
carry out posterior inference using the selected hyperparameters. The quality of the
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Figure 6.4: Illustration of difficulty of selecting good priors for Poisson matrix
factorization, evaluated by predictive quality of a variational approximation on the
hetrec-lastfm dataset. We show 2D (left) and 1D (right) slices of the loss surface
in the five-dimensional hyperparameter space, with all other values fixed to prior
optimal ones. The proposed prior predictive matching approach provides closed-
form solution (indicated by “prior optimal”), including the latent dimensionality K
(top right), within the area of reasonable values.

solution can hence only be evaluated by inspecting how the final model performs.
We do this by fitting a PMF model to the user-artists data of the hetrec-lastm
dataset (Cantador et al., 2011)3, using an efficient implementation of coordinate
ascent variational inference4 fitted to randomly selected 90% subset of the data.
We evaluate the quality of the model using the PSIS-LOO criterion (Vehtari et al.,
2017) on the remaining unseen 10% data. PSIS-LOO is here considered as an

3http://files.grouplens.org/datasets/hetrec2011
4We extended http://github.com/dawenl/stochastic_PMF to support sparse data.
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6.5. Experiments

example of a typical task-agnostic metric a practitioner would be likely to use, but
the experiment is not sensitive to the specific choice.

Figure 6.4 already illustrated the quality surface via explicit enumeration of the
hyperparameter choices in a regular grid, shown as slices of the five-dimensional
surface where all remaining parameters were fixed to the optimal ones provided by
our method. Some prior choices have better PSIS-LOO scores – for example, slightly
smaller K would be better – but the crucial observation is that prior predictive
matching provides sufficiently good solution in an instant. It is also important
to understand that these results depend on the specific inference algorithm and
evaluation metric used, and the optimal solution would change – possibly by a lot –
if the variational approximation was replaced, e.g., with MCMC and PSIS-LOO by
a another metric. Hence, exactly matching whatever choice happens to be optimal
here would not even be correct.

6.5.2 Sensitivity to Model Mismatch
In most applications, the data does not follow any model in the assumed model
family. Since we compute the statistics conditional on the model, it is unclear how
well the approach works when the model mismatch is severe. We conducted two
experiments to evaluate this, by controlling the amount of mismatch on artificial
data while assuming the PMF model and using the analytic expression (6.50) for
setting the number of factors K. For both experiments we generated data with
K ∈ {25, 50, 75, 100, 125, 150} for two hypermateter configurations and generated
20 realizations for each configuration, and we summarize the results using relative
error K̂−K

K to average over the data sets with different true K.
A typical mismatch with count MF models relates to sparsity; the data has

more zeroes than expected under the model. To investigate the effect of this,
we independently sample for each entry Yij (sampled from PMF) a Bernoulli
variable Xij ∼ Ber(pobs) controlling whether the entry is observed, so that our final
observation is given by Ỹij = Xij × Yij . Decreasing pobs increases model mismatch,
and Figure 6.5 (left) shows this also increases relative error in the estimate K̂, but
the decline is graceful. For some configurations (blue) the relative error stays below
25% even after dropping 10% of observations. Note that for this kind of model
mismatch the retrieved hyperparameter is consistently larger than the true one;
additional components are required to explain the increased variance caused by the
excess zeroes.

The second experiment considers another prototypical model mismatch, a
scenario where a too simple model class is used. We use PMF as the model, but
generate the data so that the Poisson likelihood is replaced with negative binomial
(NB) with varying rate of overdispersion that PMF cannot account for. More
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Figure 6.5: Sensitivity to model mismatch on zero-inflated (left) and overdispersed
(right) data. For both cases increasing model mismatch (smaller pobs or r) increases
the error monotonically, implying the approach is robust for small model mismatch
but may give misleading results if the assumed model family fits the data very poorly.
The y-axis represent the relative error K̂−K

K and its associate empirical error-bar
(0.025-97.5 percentile), and D and F refer to two different true hyperparameter
configurations.

specifically, we sample data from NB distribution so that the conditional mean
is given by the MF, but the variance is controlled with overdispersion parameter
r, using the parameterization NB(r, p) where r is the number of failures until the
experiment is stopped and 1−p is probability of failure. Using the notation of Eq. 6.1,
our data is hence generated by λij =

(∑K
k=1 θikβjk

)
and Yij ∼ NB(r, λij

λij+r ). This

implies that E[Yij ;λij ; r] = λij and V[Yij ;λij ; r] = λij+
λ2
ij

r , so the smaller the r, the
more overdispersed the distribution is. We vary r ∈ {10, 50, 100, 500, 1000, 5000},
and Figure 6.5 (right) shows that again the procedure is relatively robust for the
mismatch.

Both experiments indicate that the analytic expression for determining K is
robust for small model mismatch, and that the relative error grows as a function of
the mismatch. Here both examples correspond to overdispersed data compared to
the assumed model – which is often the case – which results in overestimating the
number of factors. In general, it is difficult to anticipate how specific kinds of model
mismatches influence the results, but as a general rule we suggest interpreting odd
hyperparameters as signs of potential mismatch worth investigating in more detail.
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6.6 Proofs and calculations

6.6.1 Preliminaries
We will make use of Total Expectation Law, Total Variance Law and Total Covari-
ance Law and the following propositions without proofs:

E[Y ] = E[E[Y |X]] (6.14)
V[Y ] = E[V[Y |X]] + V[E[Y |X]] (6.15)

Cov[X,Y ] = E[Cov[X,Y |Z]] + Cov[E[X|Z],E[Y |Z]] (6.16)
V[XY ] = E[X2]E[Y 2]− E[X]2 E[Y ]2 if X and Y are independent (6.17)
V[XY ] = E[X]2 V[Y ] + E[Y ]2 V[X] + V[X]V[Y ] if X and Y are independent

(6.18)
E[X2] = V[X] + E[X]2 (6.19)

V[
∑
k

Xk] =
∑
k

V[Xk] + 2
∑
k<k′

Cov[Xk, Xk′ ] (6.20)

These relations will be useful in the task of marginalizing out the latent param-
eters of the hierarchical model, as we shall see in the following section.

6.6.2 Intermediate results
We will start by computing some intermediate results that are useful in different
steps for the final results.

Proposition 6.3. For any combination of valid value for the indexes i,j,t and l,
if the latent indexes k 6= k′, then Cov[θikβjk, θtk′βlk′ ] = 0

Proof. By definition of the covariance

Cov[θikβjk, θtk′βlk′ ] = E[θikβjkθtk′βlk′ ]− E[θikβjk]E[θtk′βlk′ ]

Given that k 6= k′, this implies (for any combination of the other indices) E[θikβjkθtk′βlk′ ] =
E[θikβjk]E[θtk′βlk′ ]

Proposition 6.4. For any combination of valid value for the indexes i,j and k
the following equations hold:

1. E[
∑
k θikβjk] = Kµθµβ
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2. V[
∑
k θikβjk] = K[(µβσθ)2 + (µθσβ)2 + (σθσβ)2]

3. Cov[
∑
k θikβjk,

∑
k θtkβlk] = K[δit(µβσθ)2 + δjl(µθσβ)2 + δitδjl(σθσβ)2]

Proof. :

1. For the first equation we apply the summation property of the expected value
and the fact that θik and βjk are independent.

2. For V[
∑
k θikβjk], we start by using Eq. 6.20, thus resulting in V[

∑
k θikβjk] =∑

k V[θikβjk] + 2
∑
k<k′ Cov[θikβjk, θik′βjk′ ]. However, from Proposition 6.3

we know the covariance terms where the indexes k and k′ are not the same
should be zero, resulting in V[

∑
k θikβjk] =

∑
k V[θikβjk]. Now using Equa-

tion 6.18 for the variance of the product of random variables we obtain

V[θikβjk] = E[θik]2 V[βjk] + E[βjk]2 V[θik] + V[θik]V[βjk]
= µ2

θσ
2
β + µ2

βσ
2
θ + σ2

βσ
2
θ

⇒ V[
∑
k

θikβjk] = K[(µβσθ)2 + (µθσβ)2 + (σθσβ)2]

3. For the last equation we start with the definition of covariance:

Cov[
∑
k

θikβjk,
∑
k

θtkβlk] = E[
∑
k,k′

θikβjkθtk′βlk′ ]− E[
∑
k

θikβjk]E[
∑
k′

θtk′βlk′ ]

=
∑
k,k′

E[θikβjkθtk′βlk′ ]− E[θik]E[βjk]E[θtk′ ]E[βlk′ ]︸ ︷︷ ︸
Cov[θikβjk,θtk′βlk′ ]

Considering Proposition 6.3, we know that only the shared indices k are non
zero, thus simplyfiying to:

Cov[
∑
k

θikβjk,
∑
k

θtkβlk] =
∑
k

E[θikβjkθtkβlk]− E[θik]E[βjk]E[θtk]E[βlk]

=
∑
k

Cov[θikβjk, θtkβlk] (6.21)

Now we can calculate Cov[θikβjk, θtkβlk] for four different cases:

a) if i 6= t & j 6= l: because of independence of all variables, we obtain
Cov[θikβjk, θtkβlk] = 0
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b) if i = t & j 6= l:

Cov[θikβjk, θikβlk] = E[θ2
ikβjkβlk]− E[θik]2 E[βjk]E[βlk]

= E[θ2
ik]E[βjk]E[βlk]− E[θik]2 E[βjk]E[βlk]

= E[βjk]E[βlk](E[θ2
ik]− E[θik]2)

= µ2
βσ

2
θ

c) if i 6= t & j = l:

Cov[θikβjk, θtkβjk] = E[β2
jk]E[θik]E[θtk]− E[βjk]2 E[θik]E[θtk]

= µ2
θσ

2
β

d) if i = t & j = l:

Cov[θikβjk, θikβjk] = V[θikβjk]
= (µβσθ)2 + (µθσβ)2 + (σθσβ)2

Putting all together using Kronecker delta for the indices in the different
cases we obtain

Cov[θikβjk, θtkβlk] = δit(µβσθ)2 + δjl(µθσβ)2 + δitδjl(σθσβ)2) (6.22)

We obtain the final results combining Equation 6.21 and Equation 6.22:

⇒ Cov[
∑
k

θikβjk,
∑
k

θtkβlk] = K[δit(µβσθ)2 + δjl(µθσβ)2 + δitδjl(σθσβ)2)]

6.6.3 Expected values and variance
Let us now proceed to compute the prior predictive expected value and variance.

Proposition 6.5. For any combination of valid value for the indexes i,j and the
following equations hold:

1. E[Yij ] = Kµθµβ

2. V[Yij ] = K[µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2]
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Proof. By the law of total expectation, E[Yij ] = E[E[Yij |
∑
k θikβjk]] = E[

∑
k θikβjk],

already calculated in Proposition 6.4
For the second equation we use the law of total variance (Equation 6.15)

V[Yij ] = E[V[Yij |
∑
k θikβjk]] + V[E[Yij |

∑
k θikβjk]], because we have a Poisson

likelihood we know that V[Yij |
∑
k θikβjk] = E[Yij |

∑
k θikβjk] =

∑
k θikβjk. Now

putting both together and using Proposition 6.4 we obtain:

V[Yij ] = E[
∑
k

θikβjk] + V[
∑
k

θikβjk]

= K[µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2]

6.6.4 Covariance and correlation

Finally, combining the previous results we can obtain the covariance and correlation
given by the prior predictive distribution

Proposition 6.6. The prior predictive covariance is given by

Cov[Yij , Ytl] = K[δit(µβσθ)2 + δjl(µθσβ)2 + δitδjl(µθµβ + (σθσβ)2)]

Proof. Using the law of total covariance (Equation 6.16):

Cov[Yij , Ytl] = E[Cov[Yij , Ytl|θi., βj., θt., βl.]] + Cov[E[Yij |θi., βj.],E[Ytl|θt., βl.]]

= E[δitδjl V[Yij |θi., βj.]] + Cov[
∑
k

θikβjk,
∑
k

θtkβlk]

= E[δitδjl
∑
k

θikβjk] +K[δit(µβσθ)2 + δjl(µθσβ)2 + δitδjl(σθσβ)2)]

= K[δit(µβσθ)2 + δjl(µθσβ)2 + δitδjl(µθµβ + (σθσβ)2)]

Proposition 6.7. The prior predictive correlation is given by

ρ[Yij , Ytl] = δit(µβσθ)2 + δjl(µθσβ)2 + δitδjl(µθµβ + (σθσβ)2)
µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2

Or alternatevily
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ρ[Yij , Ytl] =


0, if i 6= t & j 6= l

1, if i = t & j = l

ρ1 = (µβσθ)2

µθµβ+(µβσθ)2+(µθσβ)2+(σθσβ)2 , if i = t & j 6= l

ρ2 = (µθσβ)2

µθµβ+(µβσθ)2+(µθσβ)2+(σθσβ)2 , if i 6= t & j = l

Proof. From the definition of correlation we have:

ρ[Yij , Ytl] = Cov[Yij , Ytl]√
V[Yij ]V[ytlj ]

= Cov[Yij , Ytl]√
V[Yij ]2

= δit(µβσθ)2 + δjl(µθσβ)2 + δitδjl(µθµβ + (σθσβ)2)
µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2

6.6.5 Finding the hyperparameters given the moments
Proposition 6.8. Given that we know K, E[Yij ], V[Yij ], ρ1 and ρ2 the following
equations are valid:

σθσβ = V[Yij ]
E[Yij ]

√
ρ1ρ2 (6.23)(

σβ
µβ

)2
= K

V[Yij ]
E[Yij ]2

ρ2 (6.24)(
σθ
µθ

)2
= K

V[Yij ]
E[Yij ]2

ρ1 (6.25)

ρ1

(
σβ
µβ

)2
= ρ2

(
σθ
µθ

)2
(6.26)

Proof. We can rewrite the columns correlation ρ1 and row correlation ρ2 equations
from Proposition 6.7 as:

ρ1
V[Yij ]
K

= (µβσθ)2 (6.27)

ρ2
V[Yij ]
K

= (µθσβ)2 (6.28)
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Multypling them together we obtain

ρ1ρ2

(
V[Yij ]
K

)2
= (µβµθ)︸ ︷︷ ︸

E[Yij ]
K

2(σβσθ)2

=⇒ ρ1ρ2

(
V[Yij ]
E[Yij ]

)2
= (σβσθ)2 (6.29)

Taking the root of Equation 6.29 completes the proof for Equation 6.23.
Now, using Equation 6.29, Equation 6.27 and Equation 6.28, we will obtain the

value of (σβσθ)2

(µβσθ)2 and (σβσθ)2

(µθσβ)2

(σβσθ)2

(µβσθ)2 =
σ2
β

µ2
β

= ρ1ρ2

(
V[Yij ]
E[Yij ]

)2
K

ρ1 V[Yij ]
= ρ2K

V[Yij ]
E[Yij ]2

(6.30)

(σβσθ)2

(µθσβ)2 = σ2
θ

µ2
θ

= ρ1ρ2

(
V[Yij ]
E[Yij ]

)2
K

ρ2 V[Yij ]
= ρ1K

V[Yij ]
E[Yij ]2

(6.31)

Finally dividing Equation 6.27 for Equation 6.27 we obtain the last result that
completes the proof.

Proposition 6.9. Given that we know E[Yij ], V[Yij ], ρ1 and ρ2, we can obtain
the number of latent factors K and coefficient of variation (σµ) of the priors of the
Poisson factorization model that would generate data to match those moments.

K = (1− (ρ1 + ρ2))V[Yij ]− E[Yij ]
ρ1ρ2

(
E[Yij ]
V[Yij ]

)2
(6.32)(

σθ
µθ

)2
= (1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

ρ2 V[Yij ]
(6.33)(

σβ
µβ

)2
= (1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

ρ1 V[Yij ]
(6.34)

Proof. From Proposition 6.5, we can rewrite the expression for the variance as:

V[Yij ] = E[Yij ] +K(µθσβ︸ ︷︷ ︸)2

ρ2
V[Yij ]
K

+K(µβσθ︸ ︷︷ ︸)2

ρ1
V[Yij ]
K

+K(σθσβ)2

Now, using Equation 6.27 and Equation 6.28 to substitute in the previous equation
we obtain:

V[Yij ] = E[Yij ] + (ρ1 + ρ2)V[Yij ] +K(σθσβ)2
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Using the squared version of Equation 6.23 from Proposition 6.8, we know that
K(σθσβ)2 = K

(
V[Yij ]
E[Yij ]

)2
ρ1ρ2. This results in

K

(
V[Yij ]
E[Yij ]

)2
ρ1ρ2 = (1− (ρ1 + ρ2))V[Yij ]− E[Yij ]

=⇒ K = (1− (ρ1 + ρ2))V[Yij ]− E[Yij ]
ρ1ρ2

(
E[Yij ]
V[Yij ]

)2
(6.35)

The remaining results are obtained by substituting Equation 6.35 in Equation 6.27
and Equations 6.28.

6.6.5.1 Gamma priors

For gamma priors parameterized with shape (a,c) and rate (b,d) we have:

µθ = a

b
;σ2
θ = a

b2
;µβ = c

d
;σ2
β = c

d2

and cofficient of variation given by:

σ2
θ

µ2
θ

= a

b2
b2

a2 = 1
a

(6.36)

σ2
β

µ2
β

= d2

c2
c

d2 = 1
c

(6.37)

Thus, Equation 6.36 and Equation 6.37 establishes a close form relationship between
shape hyperparameters of Gamma distributed latent variables in Poisson MF and
moments of the marginal distribution of the data. This means that any assumption
that the expert might have about those moments on the data, can be readily
translated into appropriate values in the prior specification.

In conclusion, given the chosen moments, the prior especification of Gamma-
Poisson MF model reduces to one degree of freedom, given that the latent dimension-
ality, and shape hyperparameters are determined. The only two hyperparameters
left are the rate/scale, although they would be restriced to be obey a relationship
with functional form

b ∝ 1
d

.

Proposition 6.10. Given that we know the moments E[Yij ], V[Yij ], ρ1 and ρ2,
we can obtain the scale parameters of the Gamma priors speficied as f(µθ, σ2

θ) =
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Gamma(a, b) and f(µβ , σ2
β) = Gamma(c, d) in the Gamma-Poisson factorization

model such that the prior predictive moments would match those given moments.

1
a

= (1− (ρ1 + ρ2))V[Yij ]− E[Yij ]
ρ2 V[Yij ]

(6.38)

1
c

= (1− (ρ1 + ρ2))V[Yij ]− E[Yij ]
ρ1 V[Yij ]

(6.39)

Proof. Immediate from Proposition 6.9 and the parameterization of Gamma distri-
bution discussed.

Also we can rewrite Eq. 6.23 with Gamma parameterization to obtain

a

b2
c

d2 = σ2
θσ

2
θ =

(
V[Yij ]
E[Yij ]

)2
ρ1ρ2

=⇒ (bd)2 =
(
E[Yij ]
V[Yij ]

)2
ac

ρ1ρ2

=⇒ bd = E[Yij ]
V[Yij ]

√
ac

ρ1ρ2
(6.40)

6.6.6 Derivation of Analytic Solution for Compound Poisson
Matrix Factorization

We will work with the Exponential Dispersion models (EDM) family of observation
that makes Compound Poisson matrix factorization models. Keeping the same
notation of the previous section, but adding variable Nui as a Poisson distributed
latent count factor of the ED model. With abuse of notation, for example this model
allow for observations of the type Yij =

∑Nij
i=1N (1, 1), whereNij is a Poisson random

variable, extending Poisson factorization to the domain of real valued observations.
Also, from the additive properties Jorgensen (1987); Basbug and Engelhardt
(2016) of EDM models, Yij =

∑Nij
i=1 Yijk with Yijk

iid∼ ED(w, κ) is equivalent to
Yij ∼ ED(w, κNij). Thus, the Compound Poisson Matrix Factorization (CPMF)
model we use is defined as
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Yij ∼ ED(w, κNij)

Nij ∼ Poisson(
∑
k

θikβjk)

θik ∼ f(µθ, σ2
θ)

βjk ∼ f(µβ , σ2
β)

where p(Yij ;w, κNij) = exp(Yijw − κNijψ(w))h(Yij , κNij), E[Yij ;w, κNij ] =
κNijψ

′(w) and V[Yij ;w, κNij ] = κNijψ
′′(w).

6.6.6.1 Mean, variance, covariance and correlation

Proposition 6.11. For any combination of valid value for the indexes i,j and the
following equations hold:

1. E[Yij ] = κψ′(w)Kµθµβ
2. V[Yij ] = κψ′′(w)Kµθµβ + (κψ′(w))2K[µθµβ + (µβσθ)2 + (µθσβ)2 + (σθσβ)2]

Proof. By the law of total expectation and the properties of the mean of ED
family, E[Yij ] = E[κψ′(w)Nij ], which simplifies to E[Yij ] = κψ′(w)E[Nij ] and
from Proposition 6.5 we know the expected value of the latent Poisson count Nij ,
concluding that E[Yij ] = κψ′(w)Kµθµβ .

Using the law of total variance V[Yij ] = E[V[Yij |Nij ]] + V[E[Yij |Nij ], that
simplifies to

V[Yij ] = κψ′′(w)E[Nij ] + [κψ′(w)]2 V[Nij ]
, again substituting Proposition 6.5 completes the proof.

Proposition 6.12. The prior predictive correlation is given by:

ρ[Yij , Ytl] =


0, if i 6= t & j 6= l

1, if i = t & j = l

ρ1, if i = t & j 6= l

ρ2, if i 6= t & j = l

, with

ρ1 = K[κψ′(w)]2
V[Yij ]

(µβσθ)2

ρ2 = K[κψ′(w)]2
V[Yij ]

(µθσβ)2
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6. Prior specification in hierarchical models

Proof. Starting with the covariance and apply the law of total covariance we obtain:

Cov[Yij , Ytl] = δitδjlκψ
′′(w)E[Nij ] + [κψ′(w)]2 Cov[Nij , Ntl] (6.41)

When all the indices coincide this will be equal to the variance, thus leading to a
correlation of 1, when all the indices are different this will lead to correlation of
zero. This means that the main difference between the prior predictive correlation
structure of Compound Poisson Matrix Factorization Model and Poisson Factor-
ization model will be in the rows and columns correlation, that we will be able to
calculate because we know the covariance Cov[Nij , Ntl] from Proposition 6.6.

ρ1 = [κψ′(w)]2 Cov[Nij , Nil]
V[Yi,j ]

= K[κψ′(w)]2(µβσ2
θ)

V[Yi,j ]

ρ2 = [κψ′(w)]2 Cov[Nij , Ntj ]
V[Yi,j ]

=
K[κψ′(w)]2(µθσ2

β)
V[Yi,j ]

6.6.6.2 Finding the hyperparameters given the moments

Proposition 6.13. For Compound Poisson MF, given that we know E[Yij ], V[Yij ],
ρ1 and ρ2, we can obtain the number of latent factors K of model that would
generate data to match those moments.

K =
(1− (ρ1 + ρ2))V[Yij ]−

(
κψ′(w) + ψ′′(w)

ψ′(w)

)
E[Yij ]

ρ1ρ2

(
E[Yij ]
V[Yij ]

)2
(6.42)

Proof. We will start by showing that:

σθσβ = V[Yij ]
E[Yij ]κψ′(w)

√
ρ1ρ2 (6.43)

Take ρ1 and ρ2 and multiply them to obtain:

ρ1ρ2 =
(
K[κψ′(w)]2

V[Yij ]

)2

(µθµβ)2(σθσβ)2
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6.6. Proofs and calculations

From Proposition 6.11, we know Kµθµβ = E[Yij ]
κψ′(w) , so we can substitute that on

the previous equation obtaining:

ρ1ρ2 =
(

[κψ′(w)]2
V[Yij ]

)2( E[Yij ]
κψ′(w)

)2
(σθσβ)2

ρ1ρ2 = [κψ′(w)]2
(
E[Yij ]
V[Yij ]

)2
(σθσβ)2

Now let us turn our attention to V[Yij ] and re-write it using the previous results
together with Proposition 6.12 for the correlations, and Proposition 6.11 for the
mean:

V[Yij ] = ψ′′(w)κKµθµβ︸ ︷︷ ︸
E[Yij ]
ψ′(w)

+K[κψ′(w)]2µθµβ︸ ︷︷ ︸
κψ′(w)E[Yij ]

+K[κψ′(w)]2[(µβσθ)2 + (µθσβ)2 + (σθσβ)2]

=
(
ψ′′(w)
ψ′(w) + κψ′(w)

)
E[Yij ] +K[κψ′(w)]2(µβσθ)2︸ ︷︷ ︸

ρ1 V[Yij ]

+K[κψ′(w)]2(µθσβ)2︸ ︷︷ ︸
ρ2 V[Yij ]

+K[κψ′(w)]2(σθσβ)2

=
(
ψ′′(w)
ψ′(w) + κψ′(w)

)
E[Yij ] + (ρ1 + ρ2)V[Yij ] +K[κψ′(w)]2(σθσβ)2︸ ︷︷ ︸

ρ1ρ2

(
V[Yij ]]
E[Yij

)2

=
(
ψ′′(w)
ψ′(w) + κψ′(w)

)
E[Yij ] + (ρ1 + ρ2)V[Yij ] +Kρ1ρ2

(
V[Yij ]]
E[Yij

)2

Reorganizing the terms and isolating K we obtain the final formula desired.

K =
(1− (ρ1 + ρ2))V[Yij ]−

(
κψ′(w) + ψ′′(w)

ψ′(w)

)
E[Yij ]

ρ1ρ2

(
E[Yij ]
V[Yij ]

)2
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6. Prior specification in hierarchical models

6.6.7 Generalizing the results to other likelihoods
We will make our derivations using a general form for PMF

θik ∼ fθ(µθ, σθ) (6.44)
βjk ∼ fβ(µβ , σβ) (6.45)

Yij ∼ fY (
K∑
k=1

θikβjk) (6.46)

with E[Yij |θ,β] =
K∑
k=1

θikβjk

Proposition 6.14. For any entry of the matrix Y = {Yij} ∈ RN×M , the mean
and variance is given by:

E[Yij ] = Kµθµβ (6.47)
V[Yij ] = E[V(Yij |θ,β)]

+K[(µβσθ)2 + (µθσβ)2 + (σθσβ)2] (6.48)

Proposition 6.15. For any pair of entries Yij and Ytl of the matrix Y , their
correlation is given by:

ρ[Yij , Ytl] =


0, if i 6= t & j 6= l

1, if i = t & j = l

ρ1, if i = t & j 6= l

ρ2, if i 6= t & j = l

(6.49)

ρ1 = K(µβσθ)2

V[Yij ]

ρ2 = K(µθσβ)2

V[Yij ]

The proof of propositions 6.14 and 6.15 are the same calculation developed before
for the Poisson and compound Poisson factorization models, with the difference
that E[V(Yij |θ,β)] will depend on the specific choice of distribution fY . Given
Propositions 6.14 and 6.15 and some target values for the moments, we can directly
solve e.g. for the number of latent factors K. Denoting τ = 1− (ρ1 +ρ2), we obtain
our main result in Theorem 6.1.
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6.6. Proofs and calculations

Theorem 6.1. Given that we know the observation mean E[Yij ], variance V[Yij ],
correlations ρ1 and ρ2, and the expected conditional variance (model dependent)
E[V(Yij |θ,β)], we can obtain the number of latent factors K to match those quan-
tities using the formula:

K = τ V[Yij ]− E[V(Yij |θ,β)]
ρ1ρ2

(
E[Yij ]
V[Yij ]

)2
. (6.50)

The term E[V(Yij |θ,β)] is model dependent, for example in the traditional
Probabilistic Matrix Factorization we use a Gaussian observation model given
by Yij ∼ N (

∑K
k=1 θikβjk, σ

−1
Y ), and obtain E[V(Yij |θ,β)] = σ2

Y , while on Poisson
Matrix Factorization Yij ∼ Poisson(

∑K
k=1 θikβjk), and E[V(Yij |θ,β)] = E[Yij ]
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Conclusion 7

“No one can deny that a network (a world network) of economic and
psychic affiliations is being woven at ever-increasing speed which envelops
and constantly penetrates more deeply within each of us. With every
day that passes it becomes a little more impossible for us to act or think
otherwise than collectively.”

— Pierre Teilhard de Chardin, The Future of Man

This thesis is focused on the design of probabilistic models for recommender systems
and collaborative filtering. We extend and create new models to include rich con-
textual and content information (item textual content, user social network, location,
time, etc.), and we develop scalable approximate inference algorithms for these
models. The working hypothesis is that multi-relational data can be integrated
in a joint probabilistic factorization model, allowing for the utilization of various
data sources combined via latent variables with the flexibility to predict users’
interaction with the items, and improve inferences about the user behaviour and
recommendations. The work has branched into the following challenges: (1) model-
ing contextual information into probabilistic factorization models for recommender
system; (2) modeling temporal dynamics using factorization techniques and tempo-
ral point processes; (3) analysis of existing models using prior predictive techniques
to determine the hyperparameters of the model. One overarching direction has
been the use of shared latent variables as anchoring points for combining different
aspects of the data in a modular fashion, yielding recommendation models utilizing
multi-source data. This has led to the proposal of a generic model design where
relations expressed in terms of matrices and tensors are combined and leveraged
into a single joint model. Furthermore, the use of shared latent variables has been
applied to assemble a temporal point process model with a RNN session-based
recommendation model. Finally, we developed an analytical tool to facilitate the
choice of hyperparameters in Bayesian recommender system models, demonstrating
in the case of Poisson factorization that the technique can be utilized to aprioristi-
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7. Conclusion

cally determine the dimensionality of the latent space, as well as specifying most of
the hyperparameters for the Gamma priors. In general, we position our work as a
contribution to model design and analysis in the context of recommender system
utilizing multi-relational data as a signal for contextual information.

Research questions
In the course of this work we explored several techniques seeking to answer the
following research questions:

• RQ1 Is there an overarching strategy for incorporating contextual information
into factorization models for recommender system? What improvements are
observed by adding contextual information such as social networks and item
textual content in a joint model for recommendation?

• RQ2 How to incorporate implicit feedback using count data models in fac-
torization models for recommender system and what are the advantages of
doing so?

• RQ3 How can we include periodic time information into matrix and tensor
factorization models for recommender system and what are the observable
gains from doing so?

• RQ4 What is the effect of adding a temporal point process model in a
sequential multi-session recommendation model?

• RQ5 How to analyze the properties of Bayesian factorization models for
recommender system in order to specify the hyperparameters of the model?

In order to investigate RQ1 we have engaged with the idea of latent space
modeling using shared latent variables to couple different aspects of a model. We
developed three models in this thesis exploiting this idea. In Chapter 3 we describe
PoissonMF-CS, a Poisson factorization model that includes item textual information
and users social networks in a joint model, where shared Gamma distributed latent
variables are used to couple the user–item matrix, with user–user social network and
item–term matrix. In Chapter 4 we describe Temporal Poisson Tensor Factorization
(TPTF) and Collective Temporal Poisson Tensor Factorization (TPTF-C) extending
Poisson factorization to the time domain, using also shared-latent variables to
connect consecutive time periods and including contextual data for the items. We
found in both cases that adding contextual information improved the quality of
the recommendations measured in terms of different metrics. Chapter 5 explored
the combination of Hierarchical RNN with temporal point processes (TPP) using a
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shared latent space to couple the two models and creating a model for multi-session
recommendation capable of performing both next-item recommendation and time
prediction of next session. This setting proved to achieve better results compared
to baseline in the joint task of recommendation and time prediction. These three
chapters in conjunction demonstrated the potential improvements of modeling
context via shared latent variables across different recommendation tasks.

Implicit feedback using count models (RQ2) was incorporated using Poisson
likelihood models in Chapter 3 and Chapter 4. The evaluation of the impact of this
model choice was done by comparing the proposed models with more traditional
models that either implicit (in tha case of matrix factorization) or explicitly (in
the case of probabilistic matrix factorization) use a Gaussian likelihood model,
demonstrating improvement with the use of Poisson likelihood across different tasks
and models. The advantage of this choice stems to the fact that typically implicit
feedback appear in a form of count data. The question of periodic time model posed
in RQ3 was investigated in Chapter 4 with a proposal of a Gamma distributed
latent variable cyclic chain, where each consecutive time period is interlinked in
a cyclical way to fit the periodic pattern in consideration. This construction was
crafted in a way that the variational inference would still be possible and efficient,
thus conserving the conditional conjugacy property of the model. The empirical
evaluation was performed in a task of item recommendation using spatio-temporal
data.

The combination of a temporal point process and a hierarchical RNN studied in
Chapter 5 also allowed us to study the issues raised by RQ4. In general we observed
that we could obtain time-prediction results while obtaining good recommendation
performance, which indicates that the RNN hidden states were encoding sufficient
information for the time model. We also observed that the time prediction model
could be modulated to target different time horizons because the time model
included terms that weighted short and long term predictions differently. This
motivated an adjustment to the time loss, based on modulating the way that a
given time interval affects the overal time model in terms of short-term or long-term
predictions. The empirical evaluation indicates that the proposed mechanism is
able to achieve this modulation between short-term and long-term predictions,
while maintaing an overall prediction accuracy.

Finally, in Chapter 6 we focus on the problem of hyperparameter selection
in Bayesian factorization models for recommender system, raised by RQ5. We
focus our analysis on the Poisson and compound Poisson matrix factorization
models. First, we notice that many methods for hyperparameter selection relies
on fitting the model parameters to the data multiple times, usually optimizing
some criteria for quality. This creates an extra computational cost, that sometimes
can be prohibitive depending on the available resources. With that in mind, we
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7. Conclusion

studied the technique of prior predictive checks, that utilizes the prior predictive
distribution (PPD) to analyze the effect of the hyperparameters on the model
predictive distribution before fitting any data. Furthermore, we develop this idea
into a tool for automatic hyperparameter selection based on matching virtual
statistics of the PPD and statistics of the data. The idea is that sample data
from the PPD generates the virtual statistics1, and by comparing those with data
statistics (obtained either using estimated values or prior expert knowledge), we
can optimize the hyperparameters to increase the match between the two. When
the true data generating process is within the assumed model family, the approach
can recover the true hyperparameters of the model, and we show empirically that
the method is robust for small model misspecification. If the data fits poorly and
generate poor predictions, which can be interpreted as a sign of model mismatch
and need for model refinement. This approach can be used as a first attempt for
hyperparameter selection, before trying more expensive methods. This approach
proved useful in finding analytical equations for prior specification when applied
to Poisson and compound Poisson factorization, particularly we demonstrated a
novel (and to our knowledge, unique) equation for the dimensionality of the latent
space of those models. An alternative gradient-based optimization approach was
developed and applied in the same model class, showing promising results as well.
The optimization based approach is sensible for model parameterization, which
indicates possible avenues of more research into how to solve a prior predictive
hyperparameter optimization problem with different parameterizations.

Future directions

The models presented in Chapter 3 and Chapter 4 reveal a model design that can be
further generalized in two main directions: generalized matrix-tensor factorization
and utilization of more generic likelihood models. First, we notice that there is not
limitation on the number of matrices or tensors that we can jointly factorize. The
only necessary step is to specify how the to connect the different matrices or tensors,
which has implication on which parts of the model will have shared latent variables.
Second, we can generalize the observation model to a compound Poisson model,
which would allow us to propose a generic joint factorization model for multiple data
types and data sources, both in tensor and matrix form. The idea of exponential
family embeddings (Rudolph et al., 2016) can be leveraged as well for generalization
of the observation model. We can apply this generic model in joint probabilistic
factorization models for recommendations with language models based on RNNs, in

1The term virtual statistics is to indicate that these are statistics calculated over simulated
data, not from the observations.
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a similar fashion as the models developed in Dieng et al. (2017), Ailem et al. (2017)
and Dieng et al. (2020), leading to a recommendations with a full language model as
context. Furthermore, this idea can be explored for joint factorization models with
network/graph embeddings, motivated by the observation that graph embeddings
can be posed as a matrix factorization (Qiu et al., 2018) and generalized models of
graph embeddings using exponential family conditional distributions (Çelikkanat
and Malliaros, 2020). All these considerations are pointing towards future research
of models with the capabilities for integrating even more complex data sources as
contextual information into a joint recommendation model.

Furthermore, recent works have explored the role of the attention mecha-
nism (Vaswani et al., 2017) in capturing long-range dependencies in sequential
models, in particular we highlight the works combining attention and self-attention
mechanisms with Hawkes processes (Zhang et al., 2020; Zuo et al., 2020). In
Chapter 5 we developed a custom mechanism for modulating short-range and
long-range time prediction, which leads to questions about more generic mechanism
for such tasks. One possibility would be extending the existing time model with the
attention mechanism for the inter-session recommendation task, either combining
with the aforementioned models, or designing new models. With that regards, it is
necessary as well to investigate at which level to integrate the attention mechanism,
since one could have it both at inter-session level, as well as intra-session.

Finally, the tool set developed in Chapter 6 for hyperparameter selection can
be further investigated in more families of models and integrated into a Bayesian
workflow for model development (Gelman et al., 2020). The problem of hyper-
parameter selection in Bayesian factorization models is complex and widespread,
and the solution developed in this thesis has been tested in the limited context of
Poisson and compound Poisson factorization models. For the generic gradient-based
solution there are open questions related to how the parameterization of the priors
affect the optimization landscape, which could be solved with techniques such as the
natural gradient using the Fisher information metric, similar to the work of Tang
and Ranganath (2019). Other improvements to the method include exploring
better empirical estimators for the gradients (Mohamed et al., 2020) to reduce
optimization noise, and support for discrete hyperparameter
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