
ISBN 978-82-326-6579-2 (printed ver.)
ISBN 978-82-326-5241-9 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:240

Ane Dalsnes Storsæter

Designing and Maintaining
Roads to Facilitate
Automated DrivingD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2021:240
Ane D

alsnes Storsæ
ter

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
iv

il 
an

d 
En

vi
ro

nm
en

ta
l

En
gi

ne
er

in
g





Thesis for the Degree of Philosophiae Doctor

Trondheim, August 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Civil and Environmental Engineering

Ane Dalsnes Storsæter

Designing and Maintaining
Roads to Facilitate
Automated Driving



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Engineering
Department of Civil and Environmental Engineering

© Ane Dalsnes Storsæter

ISBN 978-82-326-6579-2 (printed ver.)
ISBN 978-82-326-5241-9 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:240

Printed by NTNU Grafisk senter



iii

“We are stuck with technology when what we really want is just stuff that works. ”
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Abstract

Designing and Maintaining Roads to Facilitate Automated Driving

by Ane Dalsnes STORSÆTER

Advanced Driver Assistance Systems (ADAS) are common in modern cars. ADAS
features such as lane keeping and Adaptive Cruise Control (ACC) represent forms
of lateral and longitudinal vehicle control, i.e., the basis for automated driving. The
sensors and software on which such functionalities depend also determine some of
their driving characteristics and abilities. Current road infrastructure has been de-
signed for human drivers. With driving automation becoming commonplace and ex-
pected to take on a greater role in transportation, it is time that automated drivers are
included as road users and considered in road design and maintenance standards.
Automated drivers have, however, not been defined to the extent needed to make
this possible. This thesis establishes a unified framework for including automated
drivers as new road users and suggests starting points for adapting road design and
maintenance to facilitate automated driving. Practical research from laboratory, test
site, and real-life settings were performed using available data from ADAS applica-
tions for the latter. Based on these examples, suggestions for adaptions to design and
maintenance to support automated drivers are presented. Furthermore, how ADAS
functionality can be used to monitor the state of road assets is demonstrated.

1. The main findings of this thesis related to including the automated driver as a
new road user are:

• Development of a new unified framework for automated and human driv-
ing that for the first time includes all driving processes and identifies char-
acteristics of automated drivers based on existing technology.

• Characteristics of automated drivers found to be of special importance to
transport engineering are:

– Increased electromagnetic sensitivity range.
– Greater field of view.
– Fundamental differences in cognitive processes.

2. The findings related to geometric road design for automated drivers are:

• Three parameters need to be redefined in the short-term for automated
drivers: Eye height, Object height and Reaction time. New definitions of pa-
rameters could include replacing Eye height and Object height with new de-
sign parameters describing line of sight and object detection by automated
drivers.
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• A new manual for road design for transportation without human occu-
pants is advised. The following geometric road design parameters can be
revised with regards to automated freight transport: Vertical acceleration,
Relative vertical speed, Minimum vertical curve radius (sag), Clothoid parame-
ter, and Minimum horizontal curve radius (tunnels).

• The shapes and dynamic properties of vehicles should continue to be mon-
itored for changes including Vehicle height, Vehicle width, Wheel distance,
Overhang, Acceleration, Deceleration, and Reaction time.

3. The following findings relate to adaptions to road design for automated users:

• Colors, patterns, and textures can be used to make existing road infrastruc-
ture elements such as guardrails, dividers, and road markings gain higher
visibility to facilitate automated detection.

• Visibility of traffic control devices in parts of the electromagnetic spectrum
beyond the visible light can be used to add information for automated
users, e.g., barcode layer in the near-UV for positioning.

• Contrast between road marking and road pavement is more important for
camera-based lane detection than measures of retroreflectivity.

• Camera based Lane Departure Warning (LDW) systems appear to be in-
dependent of exterior lighting (other than headlights).

• Yellow road markings have higher visibility and contrast to the road sur-
face and snow in color spaces HSL (Hue, Saturation, and Lightness), HSV
(Hue, Saturation, and Value), and YUV (luminance, color component U
and color component V).

• Yellow road markings can facilitate automated driving in snow better than
white markings.

• The type and thickness of road marking may affect successful detection by
camera based lane departure warning.

4. The following results of the thesis are related to road maintenance for human
and automated users:

• Lane Departure Warning functionality demonstrates that Advanced Driver
Assistance Systems can be used to monitor the state of road markings.

• Lane Departure Warning functionality can be used to identify when con-
ditions such as snow prevent detection of road marking.

• Data from Advanced Driver Assistance Systems can be used to define Op-
erational Design Domains (ODDs) and Infrastructure Support Levels for
Automated Driving (ISAD).

This research has established automated drivers as new road users and suggested
starting points in processes to adapt road design and maintenance to facilitate auto-
mated driving.
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Chapter 1

Introduction

1.1 Motivation

Advanced driver support systems (ADAS) are common in modern vehicles, provid-
ing support functions such as lane keeping for lateral control and adaptive cruise
control (ACC) for longitudinal control. These are core functionalities used also in
higher levels of automation and, eventually, fully automated driving. On these foun-
dations, a new automated road user is emerging: the automated driver.

The automated driver represents a significant shift in transportation. For over a
century the design of vehicles and roadways has been based on characteristics of hu-
man physiology and psychology. Now, the vehicle industry is in a race to create fully
automated driving systems. The introduction of the automated driver raises ques-
tions on to what extent the road infrastructure needs to be modified to support auto-
mated driving. The automated driver is under development, with different choices
in sensors and software for different developers, and the knowledge the automak-
ers possess is not willingly shared. This makes it challenging for road authorities
and transportation researchers to suggest what changes to the roadway should be
addressed and how.

The time frame envisioned to achieve fully automated driving on public roads
is not known. Lutin, Kornhauser, and Lerner-Lam (2013) referenced the expecta-
tion of Audi, BMW, GM, and Nissan to introduce self-driving cars by 2020. This
prophecy was proven wrong and new estimates suggest that the 2040s, or even 2050s,
may be the decades in which most vehicles have become fully automated (Litman,
2018). Still, lower levels of automation such as ADAS in today’s vehicles have al-
ready been found to provide safety benefits (Kusano et al., 2014; Kusano and Gabler,
2015; Östling et al., 2019). For instance, lane departure warning (LDW) was shown to
be able to prevent 28.9 % of road departure crashes caused by drivers drifting out of
the lane in a simulation study (Kusano et al., 2014). Making sure that the road infras-
tructure is easily and correctly interpreted is therefore beneficial even in the current
vehicle fleet.

Beyond contributing to traffic safety, automated driving is suggested to have cost-
reducing effects for road infrastructure. The reasoning behind this claim is that au-
tomated drivers can provide opportunity for designing roads that have horizontal
and vertical curvature with smaller radii which can reduce the amount of earthwork
needed during road construction (Khoury, Amine, and Saad, 2019; Statens vegvesen,
2019c). Today’s road design furthermore requires consecutive curves to be similar in
radii to make the roadway more predictable for human drivers. This might not be
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needed for automated drivers allowing for more flexibility in road design (Paulsen,
2018) and, subsequently, reducing the area needed for road construction. Another
consequence of automated driving is the potential to remove safety features such as
speed safety buffers. Automated drivers can be programmed to adhere to the speed
limit, or even dynamically set speed limits dependent on, e.g., the weather. This
would remove the need for a buffer in the speed limit which is part of today’s road
design to mitigate human drivers’ tendency to speed.

The first step in adapting the road infrastructure to support automated drivers,
is to acknowledge the automated driver as a new road user. Road design is based
on human traits such as eye height and reaction time. To be able to assess whether
road design parameters should be revised to include the automated driver, there is a
need to identify the characteristics of automated drivers and determine how they dif-
fer to those of human drivers. Existing taxonomies, such as the SAE International’s
levels of automation (SAE International, 2018), or standards such as the automotive
functional safety standard ISO 26262 (International Organization for Standardization,
2011), do not provide details of hardware (i.e., sensors) and software needed to es-
tablish these characteristics for automated driving systems. Once a framework for
automated drivers as new road users is developed, the characteristics of automated
and human driver can be compared to evaluate current road design and maintenance.

Road markings are the most widely used traffic control devices today, and high
visibility lane markings are beneficial for the safe operation of human drivers (Fares
et al., 2010; Thamizharasan et al., 2003). Lane detection functionality is likewise con-
sidered to be important for any driving automation system (Aly, 2008; Chen et al.,
2015; Farah et al., 2018; Yi, Chen, and Chang, 2015). Road marking therefore repre-
sents a natural starting point for exploring how road design and maintenance can be
adapted to facilitate automated driving.

Road authorities have several incentives to develop knowledge on the automated
driver. First and foremost, is the aim to reduce death and injury in transportation.
Exploring how automated drivers differ from human drivers give insights into how
roads can be adapted to enhance the safety effects of driving automation, it also
makes it possible to assess the need for new standards for automated driving that can
allow greater flexibility in road design. Last but not least, automated driving func-
tionality is dependent on sensors that observe the road environment, these sensors
can be used for crowd-sourced monitoring of road assets. Automated driving func-
tionality has thus far been developed without input or interference by road owners
and operators (ROOs). Adapting road infrastructure to support driving automation
has furthermore been given little attention in research (Farah et al., 2018; Nitsche,
Mocanu, and Reinthaler, 2014). At the same time emerging frameworks such as the
Infrastructure Support levels for Automated Driving (ISAD) proposed by The Euro-
pean Road Transport Research Advisory Council (ERTRAC) (Ertrac, 2019) are creat-
ing expectations of road infrastructure that facilitates driving automation. Given that
roads are planned to serve the traffic needs in the subsequent 20 years (Statens veg-
vesen, 2018) the time to start adapting our road design and maintenance standards
and strategies is now.
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1.2 Research Objectives

The aim of this thesis is to initiate the process of including the automated driver as
a new road user. This thesis furthermore identifies starting points for adapting road
design and maintenance to facilitate automated driving including practical examples
of how the road design and infrastructure can be adapted to support both human
and automated user.

TABLE 1.1: The research objectives of the thesis.

Research Objectives

RO1 Establish automated drivers as new road users including identifying
their characteristics and how they compare to human drivers’.

RO2 Evaluate geometric road design parameters with regards to automated
drivers, in both the short and long term.

RO3 Examine how road infrastructure design and maintenance can facilitate
automated driving.

RO4 Examine how driving automation systems can act as sensors to monitor
the state of road infrastructure.

1.3 Thesis Structure

Part 1 forms the main part of the thesis and consists of five chapters and a bibliog-
raphy. Chapter 1 motivates and defines the research; Chapter 2 gives a theoretical
background for how to design and maintain roads for automated driving. Chapter
3 covers the methodology used in the four papers. The results from the individual
papers are discussed in Chapter 4 and linked to the research objectives. Chapter 5
offers conclusions from the thesis work and suggestions for further research efforts
in designing and maintaining roads for automated drivers. The second part of the
thesis contains the four full papers written within the PhD studies, and examples of
code used in these.

1.4 Scope of the Thesis

Automated driving is a complex set of functionalities encompassing a diverse set
of knowledge domains, e.g., hardware and sensors, software development, robotics
and cybernetics, physics, geometric road design, transport technology, law, regula-
tion, ethics, etc. To approach this vast domain from a research perspective, a scope
must be defined. Automated driving can be described in general terms as consisting
of hardware and sensors, software and processing, and, lastly, control or steering.
These are listed in the left-hand side column of Table 1.2 and discussed in Paper I.
These driving processes determine key characteristics of the automated driver such
as how it observes the environment, how it interprets the input, and how it acts based
on these inputs. The research in this thesis considers how these automated driver
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characteristics can be used to adapt the other main component required for driving:
the physical road infrastructure.

TABLE 1.2: Overview of Automated Driving.

Automated Driving
System /Vehicle

Regulatory Intersection of Automated
Driving and Regulation

Hardware/sensors Road Design Operational Design Domain
(ODD)

Software/processing Road Maintenance Infrastructure Support levels for
Automated Driving (ISAD)

Control/steering Driver’s License
Vehicle Inspection

The strategies for design and maintenance of road infrastructure lie within the
regulatory domain of road authorities in the middle column of Table 1.2. How to
adapt design and maintenance of roads to facilitate automated driving is the main
objective of this research. Road authorities are also responsible for driving licenses
and periodic check vehicle inspections. These will need to be evaluated for driving
automation systems but will not be covered in this thesis.

Road design and maintenance are the main focuses of Paper II, III and IV. From
the framework describing automated driving developed in Paper I, current road de-
sign parameters for road design were evaluated considering automated drivers in
Paper II. Papers III and IV used both laboratory and field tests to assess how road
design and maintenance can be adapted to support automated driving features and
how the sensors used in driving can be used to monitor the state of road infrastruc-
ture including challenging Nordic weather conditions. For these experiments, road
markings were the use case as they are the most widely used traffic control device.
This thesis uses lower levels of automation, i.e. Advanced Driver Assistance Systems
(ADAS), to show how the knowledge needed to start adapting road infrastructure
design and maintenance is available today and how this can be used to enable a
proactive approach to including the automated driver in design and maintenance of
roads.
Finally, the right column in Table 1.2 represents the intersection of driving automa-
tion and regulation of road infrastructure. First, are the Operational Design Domains
(ODDs) and, secondly, the newly defined Infrastructure Support Levels for Auto-
mated Driving (ISAD). ODDs are a sets of driving conditions that allow different lev-
els of driving automation. ODDs are related to road infrastructure in terms of both
the class of road, e.g., freeway versus county road, and the physical infrastructure
present, e.g., guardrails, barriers, and intersections. Another part of ODDs is weather,
which is also related to levels of winter maintenance. The ISAD framework is under
development and represents interaction between automated road users and the road
infrastructure. The support levels of the ISAD framework range from conventional
road infrastructure such as signage and road markings to roads that monitor all ac-
tivity and communicates relevant events to automated vehicle systems in real-time.
ODDs and ISAD will be discussed in this thesis as they represent suggested efforts
towards adapting the road design and maintenance to support automated driving.
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Chapter 2

Designing and Maintaining
Roads to Facilitate Automated
Driving

This chapter provides background to set the context for exploring how road infras-
tructure can support automated driving. Automated driving represents a complex
and interdisciplinary field (Koopman and Wagner, 2017). While the technology driv-
ing the automation of transportation has seen rapid development in recent years, the
same cannot be said for the design and maintenance of the physical road. It may
be argued that automated drivers will need to adhere to current, human-oriented
road design and maintenance, however, the idea of infrastructure adapting to au-
tomated road users is becoming more prevalent. For instance, the European Com-
mission states that it is a research priority to determine how road infrastructure can
and should support automated driving (European Commission, 2018). ERTRAC has
furthermore proposed a taxonomy for Infrastructure Support levels for Automated
Driving (ISAD). ISAD will be an addition to other regulations related to automated
driving, such as the homologation (i.e., the granting of approval by an official au-
thority) framework that governs motor vehicle type approval, the operational design
domain which governs where and under which conditions the automated system can
operate, and the traffic regulations framework which governs the manuals for road
design and traffic control devices (Ertrac, 2019; Erhart et al., 2020) shown in Figure
2.1.

The ISAD framework describes five levels of infrastructure support for automated
driving shown in Table 2.1. In Table 2.1 VMS refers to Variable Message Signs. To-
day’s road networks are at level E and D, i.e., Conventional infrastructure. Level E,
the lowest level, represents road infrastructure designed for human drivers such as
road markings and signs. Level D represents the addition of static map information
in digital form. Levels C-A are labelled as Digital infrastructure. At level C, the in-
frastructure is described as being able to share ”All dynamic and static infrastructure
information.” to automated vehicles (AVs). The ISAD taxonomy is vaguely described
and the question of what ”all” data means remains unanswered. The data road own-
ers possess will vary in type, quality, and sensitivity. How this data is stored, e.g., the
data format, will also be of importance for sharing. Regarding dynamic data, even
more questions arise. What types of dynamic events are expected to be known and
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FIGURE 2.1: Regulations related to automated driving adapted from (Ertrac,
2019).

what is the required level of service in terms of accuracy and latency of this informa-
tion?

At levels A and B, the road infrastructure is required to understand the move-
ment of road users and objects in real time and to convey this information to AVs.
This would require major investments in sensors, surveillance, and communication
services on public roads. Furthermore, it would shift the responsibility of perceiving
objects and events from the driver to the road infrastructure. The ISAD framework
is presented as a part of a Connected Automated Driving Roadmap developed by ER-
TRAC’s Working Group on Connectivity and Automated Driving (Ertrac, 2019). This
group, according to ERTRAC, gathers experts from the industry, research providers,
and public authorities. The road map states that it is necessary to establish what the
prerequisites towards the infrastructure are from the vehicle side and suggests that
the most basic step towards this is a classification of the road infrastructure (ISAD).

The ISAD framework is a signal for ROOs to be proactive in their approach to how
driving automation will impact on strategies for road design and maintenance. Level
D, which represents making conventional road infrastructure such as signs, signals,
and static maps available digitally, is on its own a task worth approaching with the
concept of accuracy and accountability. For example, what are the requirements on
ROOs on the quality of such services? What is the liability if the level of service is
not met? Establishing these levels of services for level D is an on-going process for
road owners and other relevant actors such as map and communication infrastruc-
ture providers (Kartverket, 2020).

The higher levels of the ISAD framework suggest a drastic change from the reign-
ing concept that the driving system must be able to handle the dynamic driving en-
vironment to shifting some of the responsibility for safe driving over on new and up-
graded road infrastructure. While it would be possible to create roads that monitor
and report all movement, weather, and incidents to road users, this would require
a substantial investment in both road and communication infrastructure as well as
added resources on technology and communication within the ROOs. Leaving the
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TABLE 2.1: Infrastructure Support levels for Automated Driving (ISAD) based
on (Ertrac, 2019).
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A Cooperative
driving

Based on real-time information on vehicle
movements, infrastructure can guide AVs to
optimize overall traffic flow.

X X X X

B Cooperative
perception

Infrastructure can perceive microscopic traffic
situations and share data to AVs in real-time.

X X X

C Dynamic
digital
information

All dynamic and static infrastructure information
is available digitally and can be provided to AVs.

X X

D Map
support

Static digital inc. signage available, possibly also
physical reference points. Signals, short-term
roadworks and VMS to be recognized by AVs.

X

E No AV
support

Conventional infrastructure, no digital
information. AVs need to recognize road geometry
and signage.

responsibility of perceiving and understanding the road environment to the moving
road users, i.e., vehicles, is likely to have a higher cost-efficiency than making all
roads capable of the same. Conventional road infrastructure is known to face sub-
stantial shortcomings in level of maintenance. If the future road infrastructure in ad-
dition features scores of sensors requiring low-latency and reliable communication,
it would open for liability issues for ROOs in the event of sensor or communication
failure. The ISAD framework is immature but highlights the need for road authori-
ties to be a part of decision-making processes on the requirements on physical road
infrastructure and digital representations of these, i.e., digital twins.

This thesis initiates the process of including the automated driver in road design
and maintenance, suggests ways to adapt road infrastructure to support driving au-
tomation, and shows examples of how the sensors used for ADAS can be used to
monitor the road infrastructure. The road infrastructure considered in this work in-
cludes the road geometry, the road surface and traffic control devices (e.g., signage,
signals, markings, dividers, and guardrails).
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2.1 The Automated Driver

This section addresses the ambiguity of terminology and definition of automated
driving, e.g., automated driving, autonomous driving, and self-driving.

The first driver assistance system (DAS) introduced in the market is considered
to be the Anti-lock Braking System (ABS) more than 50 years ago (Galvani, 2019).
While DAS relies solely on input from the vehicle’s internal sensors, e.g., inertial
measurement unit (IMU) and odometers, ADAS has the advantage of sensing the
surroundings to provide more information about the driving situation and offer more
advanced driver support features (Galvani, 2019). ADAS are commonplace in newer
vehicles, e.g., lane keeping assistance and adaptive cruise control.

ADAS introduces the idea of shared responsibility of driving tasks between hu-
man driver and driving automation system, e.g., ACC can brake and accelerate and
lane keeping functionality can control the lateral position. A taxonomy for how these
roles are shared for different levels of automation has been developed by The Society
of Automotive Engineers (SAE) International (Table 2.2). In Table 2.2, Fallback refers
to taking over the dynamic driving task (DDT) if the driving automation system fails.

TABLE 2.2: The levels of automation defined by SAE International, adapted
from (SAE International, 2018).

Dynamic Driving Task (DDT)

Level Name Sustained
lateral and
longitudinal
control

Object/Event
Detection
and Response

Fallback Operational
Design
Domain
(ODD)

0 No driving
automation

Driver Driver Driver N/A

1 Driver Assis-
tance

Driver/
System

Driver Driver Limited

2 Partial
Driving
Automation

System Driver Driver Limited

3 Conditional
Driving
Automation

System System Fallback-
ready
user

Limited

4 High Driving
Automation

System System System Limited

5 Full Driving
Automation

System System System Unlimited

In the SAE taxonomy, Level 0 represents only the use of DAS systems and no
driving automation. Levels 1 is driving where the human is in control and is as-
sisted by ADAS functionality. At level 2 the driving automation system is able to
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have sustained lateral and longitudinal control of the vehicle, examples of such sys-
tems include General Motor’s Super Cruise and Tesla’s Autopilot. At level 2, the driv-
ing automation systems are not capable of handling object and event detection and
response (OEDR), e.g., driving in the vicinity of road works, requiring the human
driver to monitor the driving system at all times. Level 3 is the first level where the
driving automation system can drive on its own with OEDR capability and the hu-
man acting as a fallback-ready user. At the two highest levels, 4 and 5, the automated
driving system is responsible for all the driving tasks without the need for a fallback
user. The difference between level 4 and 5 lie in the operational design domain, where
level 4 may have restrictions on where and when it can operate which are not present
at level 5.

The SAE International (SAE International, 2018) defines the automated driving
system (ADS) as:

”The hardware and software that are collectively capable of performing
the entire [Dynamic Driving Task] DDT on a sustained basis, regardless
of whether it is limited to a specific operational design domain (ODD)”

This definition only applies to levels 3-5, while they assign the generic term driving
automation system to any 1-5 level system.
As a note on terminology, this thesis does not use the term autonomous following the
recommendation from SAE:

”Additionally, in jurisprudence, autonomy refers to the capacity for self-
governance. In this sense, also, ’autonomous’ is a misnomer as applied
to automated driving technology, because even the most advanced ADSs
are not ’self-governing.’ Rather, ADSs operate based on algorithms and
otherwise obey the commands of users.”

Terminology on driving automation sometimes refers to automated driving systems
and other times to automated vehicles. In this thesis, the automation will be attributed
to the hardware and software that allows for driving, in line with the SAE definition
of an ADS. While the vehicle and its attributes will have impact on the characteristics
of an ADS and the uses of such automation, this work will focus on the sensors and
software that are currently used to provide automated driving features. The term
automated vehicle (AV), or the associated highly automated vehicles (HAV) referring to
levels 3-5 of the SAE taxonomy, or the term lower-level automated vehicle (LAV) refer-
ring to levels 0-2 (Li et al., 2019) will therefore not be used. Instead, this thesis will
refer to the terms automated driver and driving automation system. These describe driv-
ing support functionality performed by the use of sensors and software to aid the
human driver in control of the vehicle (e.g., LDW), as well as driving by the use of
sensors, software and actuators to actively control the vehicle such as controlling the
lateral and longitudinal position.

The automated driver is under development and much remains unknown with
regards to what array of sensors they will have, where the sensors will be positioned,
and how the software that interprets and acts on the sensor data will evolve. The
focus of this research is, therefore, on the present level of automation, i.e., ADAS, and
how it can be used to assess the impact of automation in driving on road design and
maintenance. Using existing technology, it is possible to gain insights into driving
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automation at an early stage to create strategies for including automated drivers in
the design and maintenance of roads.

Terminology regarding automated driving is often seen in conjunction with the
ability for the driving system to communicate. Although a driving system does not
strictly need to be connected to be automated, connectivity allows the automated
driver to obtain information beyond its own sensors and a priori data, such as up-
dates on the weather, friction, or incidents ahead. This linking of connectivity and
automation is seen in several widely used terms, e.g., Connected and Automated Vehicle
(CAV) and Cooperative, Connected, and Automated Mobility (CCAM). In the latter term,
the distinction between connected and cooperative can be defined as the difference in
being able to communicate externally, e.g., connectivity, and using this information
for steering and navigation, e.g., cooperativity (Shladover, 2018).

2.2 Road Design

The aim of this thesis is to investigate how automated driving can be facilitated
through the design and maintenance of roads. The manuals governing the design
of roads in Norway and the United States are presented in this section and the im-
pact of automated driving on adapting these manuals are discussed. This is followed
by an introduction to road maintenance strategies in section 2.3.

This thesis examines the standards of road design used in Norway and also in
comparison to those of the United States, as a commonly known standard worldwide.
The design of roadways in Norway is governed by the Handbook of Road and Street De-
sign N100 (Statens vegvesen, 2019a) and the Handbook of Geometric Road Design V120
(Statens vegvesen, 2019b). U.S. road design is primarily governed by the American
Association of State Highway and Transportation Officials’ (AASHTO) guidelines in
A Policy on Geometric Design of Highways and Streets (American Association of State
Highway and Transportation Officials, 2011). While these guidelines are specific to
these countries, they are based on theoretical concepts in physics and geometry that
are universally related to road design, and thus have international relevance.

2.2.1 Geometric Road Design

Geometric road design governs the alignment, profile, and cross section of road de-
sign. The design guidelines for geometric road design are based on a century of
accumulated knowledge on human driving, vehicles, and tire-road surface physics.
Parameters used in geometric road design are related to, among other things, human
anatomy such as eye height and human physiology in terms of comfort. These pa-
rameters need to be evaluated considering automated drivers to ensure the optimal
design of roads for both human and automated drivers.

Geometric design parameters are not regularly updated in either Norway or the
U.S. (Elvik, 2017; Khoury, Amine, and Saad, 2019; Wood and Donnell, 2017). Due
to this, some road design parameters have remained unchanged for decades. For in-
stance, the stopping sight distance (Ds) parameter used in the U.S. was developed
in the 1940s with minor revisions in the mid-eighties (Khoury, Amine, and Saad,
2019) and mid-nineties (Transport Research Board, 1997; Wood and Donnell, 2017),
while perception-reaction time for drivers dates back to 1954 (Khoury, Amine, and
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Saad, 2019). Some even question the theoretical foundation of the design parameters
claiming they are based partly on old experiments and partly on theories scarcely
supported by research (Elvik, 2017; Khoury, Amine, and Saad, 2019; Wood and Don-
nell, 2017).

With the advent of automated drivers, these new road users must be included in
geometric road design to obtain the safest and most cost-efficient roads for the future.
The automated driver, including lower levels of automation such as ADAS, relies on
sensors and software to drive. These sensors and software provide an objective way
to monitor how well current infrastructure works for automated drivers and iden-
tify areas that need to be improved. This means that data produced by automated
driving functionality can be used to identify where changes to the physical road in-
frastructure need to happen. In this way, geometric road design, and road design
and maintenance in general, can be adapted based on empirical data collected from
vehicles.

2.2.2 Road Markings

Road markings are the most widely used traffic control devices today (Thamizha-
rasan et al., 2003) and have been identified as being of particular importance to
driving automation (Hadi and Sinha, 2011; Hallmark, Veneziano, and Litteral, 2019;
Hoang et al., 2017; Kusano and Gabler, 2015). While road markings are most com-
monly used in lane keeping features, they are generally useful for positioning and
navigation for automated drivers at all levels of automation.

Road surface markings were introduced as early as 1911, when white markings
were used to divide traffic in Michigan U.S.A. (OECD Road Research Group, 1975).
Pavement markings provide visual information that is intended to provide better
traffic flow, higher driving comfort and safer traffic for human drivers (Gibbons, Han-
key, and Pashaj, 2004; Hallmark, Veneziano, and Litteral, 2019; OECD Road Research
Group, 1975). To serve these goals, the road marking has the following main func-
tions (Carlson, Park, and Andersen, 2009; Statens vegvesen, 2015):

1. Leading traffic; through enhancing the road geometry, road delineation and
lanes.

2. Notifying drivers; through information on specific stretches of road that require
more attention, or adaption of driving.

3. Regulating traffic; through road markings that assign rules to the use of the
road.

LDW, which relies on road markings, has been proven to have safety benefits.
Kusano et al. (2014) used a simulation to reconstruct 481 single-vehicle collisions ex-
tracted from the database of fatal and non-fatal injuries maintained by the National
Highway Traffic Safety Administration (NHTSA) for the year 2012. Each crash was
simulated under two conditions: 1) as it occurred, and 2) with a lane departure warn-
ing (LDW) system. They concluded that a LDW system could potentially prevent
28.9% of all road departure crashes caused by the driver drifting out of his or her
lane, resulting in a 24.3% reduction in the number of seriously injured drivers. Stern-
lund (2017) investigated lane departure crashes (head-on, single-vehicle, and over-
taking/lane changing crashes) in Sweden, and found that approximately half (51%)
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of all head-on and single-vehicle crashes were identified as being a consequence of
drifting, where LDW systems had the potential to prevent the majority (33–38%) of
these crashes. He states that the typical lane departure crash happens without prior
loss of control, and that they occurred on undivided roads in rural areas with posted
speed limits ≥ 70 km/h, where the center and side road markings were visible. To
achieve these traffic safety effects from driving automation, there is a need to under-
stand to what extent road markings are suitably designed for detection by automated
systems. This requires investigating how automated drivers sense the road marking
(e.g., LDW systems) and whether existing quality parameters designed for human
drivers also assure lane detection by automated systems.

The functionality, i.e., whether it is visible to human and automated driver, of
pavement markings is influenced both by its color and the marking material. Road
marking materials are commonly divided into four categories: thermoplastics, multi-
component/epoxy, preformed plastic, and paints. Retroreflectivity and contrast in
service are higher for white than for yellow markings, and are higher for more durable
pavement markings (Migletz et al., 1999). Epoxies and thermoplastics are more durable
than solvent or water based paints (Bagot, 1995; Cruz, Klein, and Steiner, 2016). The
durability and cost-benefit of a specific material is dependent on several factors such
as Average Annual Daily Traffic (AADT), climatic conditions, road geometry, share
of heavy vehicles, use of studded tires, and levels of maintenance.

The visibility of pavement markings depends on the visual size of the markings,
its contrast with the background against which it is seen, the amount, pattern and
angle of incoming light sources, retroreflectivity characteristics of the markings, the
visual function of the observer, and sources of glare (Hills, 1980; Migletz et al., 1999;
Satterfield, 2014).

The quality of road markings is usually measured by the retroreflection, RL, and
the coefficient of luminosity, QD. QD is a measure of visibility under daylight condi-
tions, during which natural light hits the marking and is dispersed in all directions.
RL is used under nighttime or otherwise dark conditions, during which an active
light source is directed toward the marking and reflection is measured. The coeffi-
cient of retroreflected luminance, RL, measured in millicandelas per lux per square
meter (mcd/m2/lux), is defined by the American Society for Testing and Materials
as the ratio of the luminance of a projected surface to the normal illuminance at the
surface on a plane normal to the incident light (American Society for Testing and Ma-
terials, 2005). Migletz, Fish, and Graham (1994) suggest that conspicuity of markings
is more related to contrast than to luminance, since contrast defines how easily an ob-
ject can be seen against its background. Contrast has been identified as important for
humans to be able to detect road markings (Hills, 1980; Zwahlen and Schnell, 2000)
as well as for automated drivers (Hadi and Sinha, 2011; Pike, Carlson, and Barrette,
2018; Pike, Barrette, and Carlson, 2019).

2.3 Road Maintenance

Road maintenance strategies are in place to ensure that the road infrastructure ele-
ments (e.g., pavement, markings, signage, and signals) maintain their intended func-
tion. For instance, optimal driving conditions for human drivers is dependent on
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adequate road surface quality, visible markings, signage, working signals, that the
road has enough available friction and is cleared of snow and obstacles.

The process of monitoring the road infrastructure and updating the asset inven-
tory is a manual and time-consuming process using specialized equipment and per-
sonnel (Gargoum et al., 2017; Kruse and Simmer, 2003; Osichenko and Spielhofer,
2018). The Conference of European Directors of Roads (CEDR) financed a project
called PREMiUM (Practical Road Equipment Measurement, Understanding and Man-
agement) with the aim of improving road equipment management. In interviews
with stakeholders they found that although keeping a robust and accurate inventory
of road assets was seen as essential to evaluate the performance of the assets, many
asset inventories were out of date and incomplete, and that the characteristics of the
assets were not routinely measured (Erdelean and Osichenko, 2014). Efforts have
been made to include new ways of monitoring the state of the road infrastructure,
for instance by using cameras and image analyses, however, there is still a need to
establish ways to more consistently monitor the roadway and traffic control elements
(Gargoum et al., 2017; Osichenko and Spielhofer, 2018).

There is a considerable body of research available on sign detection and quality
assessment based on images, radar and lidar (Ai and Tsai, 2016; Bahlmann et al.,
2005; Chauhan, Luthra, and Ahmad Ansari, 2020; Gargoum et al., 2017; Wang, Hou,
and Gong, 2010). Despite this, signage was found to be inadequately inventoried and
monitored by road owners and operators (ROOs) (Osichenko and Spielhofer, 2018).
The same problem was identified for road marking maintenance management, which
is also a quite mature field within both camera-, radar- and lidar-based automated
detection (Xing et al., 2018).

Modern cars are equipped with cameras and radars that can provide a way to
crowd-source the considerable effort needed to monitor road assets. Cars also have
sensors (e.g., Inertial Measurement Units (IMUs) and damping systems) that sense
irregularities in the road that can be used to identify damages to the road surface or
slippery conditions. With higher levels of automation, commercial vehicles may also
have lidars that are able to create 3D point clouds of the road infrastructure. 3D road
models based on laser scanning are also widely used by ROOs, for instance to check
for wear to the road such as rutting (Vegdirektoratet, 2017), or to analyze whether
large freight vehicles can safely navigate through winding roads and tunnels (Oregon
Department of Transportation, 2017). These point clouds should be shared with the
public in efforts to provide openly available map data for automated driving.

Crowd-sourced monitoring provides an efficient way to determine what parts of
the road infrastructure the automated driving features senses and which are missed.
This information is useful for evaluating current road design and maintenance strate-
gies. Furthermore, the detection of road infrastructure elements can be used for asset
management by comparing the automated detections to the digital inventories of
road infrastructure. Changes in how the road infrastructure elements are perceived
over time, i.e., effects of wear or weather, can be used as input for predictive mainte-
nance strategies.
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Chapter 3

Research Design

The overall aim of this thesis was to examine how road design and maintenance can
be adapted to facilitate automated driving. This was done through a series of four
papers. The research focused on existing levels of driving automation represented
by ADAS functionality. By utilizing existing technology, characteristics of automated
drivers could be established, and practical research experiments could be executed
to demonstrate how to include automated drivers in road design and maintenance.
Table 3.1 lists the four research objectives (ROs) and their relation to the papers.

TABLE 3.1: Relationship between research objectives and papers in the thesis.

Research Objectives Research Response

RO1 Establish automated drivers as new road users
including identifying their characteristics and how
they compare to human drivers’.

Paper I, II

RO2 Evaluate geometric road design parameters with
regards to automated drivers, in both the short and
long term.

Paper II

RO3 Examine how road infrastructure design and
maintenance can facilitate automated driving.

Paper I, II, III, IV

RO4 Examine how driving automation systems can
act as sensors to monitor the state of road
infrastructure.

Paper I, III, IV

There were no existing frameworks that described all driving processes, nor iden-
tified the characteristics that define an automated driver. Therefore, the first part of
the thesis was used to establish a framework for describing the automated driver. In
Paper I a unified framework was developed, making it possible to determine char-
acteristics of automated drivers and compare these to those of human drivers. This
enabled the next step; to use this newly established framework to evaluate current
geometric design parameters considering automated drivers (RO2) in Paper II. Paper
I and II thus form a theoretical foundation for the thesis where the automated driver
is established as a new road user (RO1), which then informs applied research in the
latter of the thesis.
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Paper III and IV utilized laboratory and field experiments as case studies to exam-
ine how road infrastructure design and maintenance can facilitate automated driving
(RO3) and how driving automation systems can act as sensors to monitor the state of
road infrastructure (RO4). The methods used in the thesis are summarized in Table
3.2.

TABLE 3.2: Overview of methodology used in the thesis.

Paper Method Analytical
approach

Objective Data

I Literature
review and
synthesis

Qualitative,
exploratory
review

Framework for
automated drivers

Journal and
conference
papers, reports

II Literature
review and
synthesis

Qualitative,
exploratory
review

Automated drivers’
impact on design
parameters

Manuals, journal
and conference
papers, reports

III Field
experiments

Quantitative by
Logistic binary
regression, area
under the curve

Compare LDW
detection by car and
retroreflectometer

LDW output,
Lane detection
by retro-
reflectometer

IV Laboratory
and field
experiments

Visual
quantitative
assessment,
pixel intensity
histograms
for qualitative
assessment

Examine the effect
of road marking
color on visibility in
snowy conditions

Images of road
model, images
from field
experiments

3.1 Theoretical Foundation

3.1.1 Paper I

Paper I is the response to the first research objective; to establish the automated driver
as a new road user including identifying its characteristics and how they compare to
human drivers’. Establishing the automated driver as a new road user started by in-
vestigating the current literature on human driver models, automated driving, and
mobile robotics, including standards and taxonomies related to the automation of
driving. The motivation was to see if an inductive approach could be used to define
the automated driver, i.e., was there existing literature that covered the automated
driver and that identified its characteristics? The databases searched were Google
Scholar and Oria (a database of literature available via Norwegian universities and
research institutions). No restrictions were used on publication date as theories on
human driving and mobile robotics were established 40-50 years ago. As discussed
in section 2.1 there are many terms used for driving automation systems where some
refer to the automation of vehicles and some to the systems that governs the driv-
ing. In addition, the interdisciplinarity of the topic, as well as the rapidly increasing
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number of publications on automated driving, mean that literature searches generate
a large number of returns. The immaturity of the taxonomy and definitions on auto-
mated driving are an obstacle in the research on how to include automated driving
in road design and maintenance, and underlines the need for accuracy and consis-
tency in the terms used in associated research (Chan, 2017). The literature search
also found a gap in the research on automated drivers and how they can be included
in road design and maintenance. The search terms used in the literature search for
Paper I were:

• (driver OR Driving OR drivers) AND (model OR models)

• Driving AND (automation OR autonomous)

• Vehicle AND (automated OR autonomous)

• Mobile AND robotics

From the literature returned by these searches, relevant research was selected. The
overall impression was that there were few hits concerning lower levels of automa-
tion. While there was substantial research on level 3 automation where the driving
tasks are shared between human and driver, as well as research on levels 4 and 5 of
driving automation (full automation). Two known frameworks that are relevant for
automated driving, the SAE J3016 and the ISO 26262, were investigated and found to
not cover all driving processes nor discuss the automated driver with a combination
of hardware and software that could identify key characteristics.

Based on the initial literature search, it was concluded that it was not possible
to use induction to establish a framework for automated drivers, thus, an abductive
approach was chosen. In an abductive approach, a provisional hypothesis is selected
or invented to explain an empirical case and pursued through further investigation
(Kennedy and Thornberg, 2018). The framework developed in Paper I combined the
theories of human driving and mobile robotics into a unified framework for both
human and automated driving. This would constitute the provisional hypothesis
which can be refined through further investigations.

The unified framework identified that sensing was integral to all parts of the
driving processes for both human and automated driver. From the first rounds of
searches, the most common sensors used in automated driving had been identified.
The human senses were then researched and compared to the sensors used by auto-
mated drivers. The review of the sensory processes of automated and human driver
followed an inductive approach where existing data, i.e., the state of the art on hard-
ware and software used in driving automation, was used to reveal characteristics
of the automated driver. The literature on sensors used by driving automation sys-
tems largely focused on identifying optimal sensors and software without consider-
ing how road design and maintenance factor into the success of the sensor system.
One exception, however, was regarding road markings where issues such as wear,
pavement cracks, and rutting are widely reported as having negative impact on au-
tomated lane detection.

Another distinction between human and automated driver uncovered in develop-
ing the framework, was the difference in cognition, i.e., how the different road users
process the sensory input. This led to a new inductive process. Literature searches
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within machine learning (ML), artificial intelligence (AI), and object detection by ma-
chines were performed to identify cognitive traits of the automated driver.

The inductive process of establishing traits of automated drivers has weaknesses
as new sensors or software can change the characteristics of the automated driver.
The traits attributed to the automated driver will therefore need to be reconsidered
over time as the technology matures. However, the characteristics found, e.g., how
passive sensors such as cameras see the road infrastructure versus how an active sen-
sor, e.g., a lidar or radar observes the same, is valuable in the short-term for including
driving automation in the design and maintenance of roads. Furthermore, although
the sensors and software itself will develop, their basic functionality may well stay
the same, i.e., there will be better cameras, but they all depend on available radiation
in their range of electromagnetic sensitivity.

3.1.2 Paper II

Paper II used the framework and characteristics from Paper I to evaluate geometric
road design parameters with regards to automated drivers, in both the short and
long term, (RO2). The review in Paper II provided a qualitative evaluation of current
geometric road design parameters, i.e., parameters that govern the alignment, profile,
and cross section of road design. This also relates to RO1; establishing automated
drivers as new road users.

Geometric road design is based on a century of accumulated knowledge on hu-
man driving, vehicles, and tire-road surface physics. As the laws of physics and phys-
iology of humans are the same internationally, road geometry considerations based
on Norwegian road design have international significance. For further relevance, the
design parameters used in Norway were compared to U.S. equivalents from the A
Policy on Geometric Design of Highways and Streets (AASHTO, 2011).

The paper reviewed the geometric design parameters from the manual on geo-
metric road design in Norway, Håndbok V120 Premisser for geometrisk utforming av veg
(Statens vegvesen, 2019b). The review was separated into basic parameters and de-
sign parameters following the structure of manual V120 as shown in Figure 3.1.

Literature searches were performed using Google Scholar and Oria to identify ex-
isting literature relating automated driving to adaptions in geometric road design.
No restriction on publishing year was applied due to the limited number of rele-
vant hits. The searches showed that there is little research considering how auto-
mated drivers impact road design and maintenance. The literature that does focus
on physical road infrastructure tends to cover level 5 automation. The search terms:
geometric road design AND (automated OR autonomous) AND (driving OR driver OR ve-
hicle) gave two relevant results in Google Scholar and one relevant result in Oria. Of
these, one reviewed the road design parameters: stopping sight distance, decision
sight distance, and length of sag and crest vertical curves (Khoury, Amine, and Saad,
2019). Another study used a vehicle dynamics model to investigate the performance
margin of a vehicle given certain conditions of effective friction and road geometry
(slope and cross-slope) (Kang and Ferris, 2018), and the final paper pointed out the
lack of research on the impact of driving automation on physical road infrastructure
(Farah et al., 2018). From the paper by Khoury, Amine, and Saad (2019) more ref-
erences where found relating automated driving to design parameters Stopping sight
distances, Vertical curve radii, and Horizontal curve radii.
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FIGURE 3.1: Norwegian design parameters from manual v120 (Statens veg-
vesen, 2019b). Basic parameters are shown in blue and design parameters in

white.

Due to limited available research on geometric road design the review followed
an abductive approach. The hypothesis of the abductive approach was that the char-
acteristics of automated driving identified in Paper I show fundamental differences
between human and automated drivers that are relevant when considering road de-
sign for automated drivers.

The design parameters of the Norwegian manual V120 were evaluated using the
unified framework developed in Paper I and compared to the equivalent U.S. param-
eters. Based on the differences between human and automated driver established
in Paper I, the impact on the different parameters was assessed. The findings were
supported by additional searches on specific road design parameters.

The review used a qualitative evaluation of the differences between human and
automated driver to assess which parameters would be affected by the new road
user. Geometric design parameters that need to be completely redefined for auto-
mated drivers, and which need to be re-evaluated as the development of automated
drivers continues, were suggested. The abductive approach created a provisional
hypothesis which can be further developed over time as the research on the impact
of driving automation on road infrastructure design and maintenance develops. A
weakness for the abductive approach, used in creating the unified framework of driv-
ing and the review of geometric road parameters considering automated drivers, is
that there might exist more than one legitimate way of describing automated drivers
(Kennedy and Thornberg, 2018). As driving automation is under development, it is
expected that the unified framework can be further developed and changed, and that
subsequent reviews of geometric design for automated users will be needed.
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3.2 Practical Research - Road Markings

3.2.1 Paper III

In Paper III field testing on public roads was performed to compare lane detection by
the ADAS function LDW to lane marking assessment by a mobile retroreflectometer.
The comparison was used to shed light on both 1) how road infrastructure design and
maintenance can facilitate automated driving (RO3), and 2) how driving automation
systems can act as sensors to monitor the state of road infrastructure (RO4). Both road
design and road maintenance are large domains and road markings were chosen as
a case both since it is a ubiquitous traffic control device and due to the availability
of data. The methods used for data capture and analyses are described in detail in
Paper III and supplemented in this section with further explanations and reasoning.

The investigation into RO3 followed an inductive approach where information
on how ADAS functionality works was used as the data on which to induce conse-
quences for road design and maintenance. For RO4, a deductive approach was taken.
The theory for the deduction was that a LDW system could be used to monitor the
state of road markings, the theory was then examined through an experiment.

In the experiment, the mobile retroreflectometer was attached to a car with an
LDW system to allow for simultaneous data capture. Through collaborations with
a car manufacturer, data from the LDW system was available directly from the car
allowing for more accurate and dense data capture than solutions that use video
capture of the dashboard, such as García, Camacho-Torregrosa, and Padovani Baez
(2020). Furthermore, by using a mobile retroreflectometer attached to the vehicle
with the LDW system, simultaneous data capture syncing the ADAS data with the
reference retroreflectometer data was possible (Figure 3.2). This provided a higher
accuracy than using different vehicles for LDW data and reference data, as seen in
research by Matowicki, Pribyl, and Pribyl (2016) and Nayak et al. (2020), where dif-
ferences in position in the lane, traffic and time of day provide a less consistent data
set.

From the retroreflectometer, retroreflectivity of markings was measured. As this
is based on actively transmitted lasers and their reflections, this value is not sensi-
tive to ambient light. The LDW system in the vehicle is based on a video camera
which, on the other hand, is dependent on available light. The vehicle with the LDW
functionality also reported the available ambient light, which was used to investigate
whether ambient light, i.e., daylight versus headlights, affected the detection of road
markings by the LDW feature.

Retroreflectivity is the most common measure of lane marking quality. However,
the contrast between marking and surrounding pavement has also been identified as
an important factor for road marking visibility for both humans (Hills, 1980; Zwahlen
and Schnell, 2000) and machines (Hadi and Sinha, 2011; Pike, Carlson, and Barrette,
2018; Satterfield, 2014). Contrast was therefore used as an additional quality param-
eter.

The lane detections, given as discrete values, were logged by the vehicle manu-
facturer, and shared after the experiment. The position of the vehicle, i.e., latitude
and longitude, was logged by both the vehicle and the retroreflectometer. This was
meant to provide verification of synchronization of the two data sources.
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FIGURE 3.2: Retroreflectometer mounted on the side of the test vehicle.

There are some important limitations to address with regards to the data capture.
The first is that the laser beams from the retroreflectometer need to hit the road mark-
ings to provide correct data. The car was manually driven by the author of this thesis.
The laser beams had an impact width of about three times the width of the freeway
markings and about five times the width of the county road markings (because of the
difference in road marking widths). Although the laser beams are thought to have
hit the road markings for most of the time driven, there are likely to be some discrep-
ancies. The data was averaged over 30 meters (recommended setting); therefore, is
not thought to have given false negatives, but could potentially lower the average
retroreflection value.

The retroreflectometer failed to log data on one of the nighttime data captures.
This was, according to the manufacturer, due to the temperatures being too low for
the retroreflectometer causing it to malfunction. This meant that there was no set of
daytime and nighttime recordings for one of the routes used in the analysis (county
roads). For this reason, the analyses for county road in daytime and nighttime, re-
spectively, were performed on different stretches of road. The roads used in the two
cases were checked and found to be similar in terms of conditions of road surface and
road marking.

Another issue is that the vehicle recorded data at regular time intervals while the
retroreflectometer logged averages over a given distance. Having one data source in
time intervals and the other in distance intervals meant that the sample rate for the
two data sources was different at different speeds. At lower speeds, the time-based
data recorded data more often than the distance-based measurement. The higher the
speed, the more data was recorded by the distance-based retroreflectometer per unit
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time, while the time-based vehicle logging will have fewer recordings per distance
unit at higher speeds than at lower speeds. This caused the data from the retroreflec-
tometer and the car to be unevenly distributed. This issue was remedied by using
interpolation techniques (Li and Heap, 2008).

The chosen procedure for combining the data set from the vehicle and from the
retroreflectometer, was to resample the data with interpolation to match the resolu-
tion of the discrete Lane detection by the vehicle. The Lane detection data had four
values as shown in Table 3.3: no detection, left-hand side marking detected, right-
hand side marking detected and marking on both sides of the vehicle detected.

TABLE 3.3: Lane detection values and their conversion from four discrete
values to a binary outcome.

Original value Binary value

0 = No detection 0

1 = Left hand marking detected 0

2 = Right hand marking detected 1

3 = Both sides detected 1

These values were converted to binary values where no detection and left-hand
detection were set to 0 and right-hand detection and detection on both sides were set
to 1. This was to match the readings of the retroreflectometer which only measured
the right-hand side lane marking.

The reason for choosing Lane detection as the reference sample rate, was that per-
forming interpolation on the binary lane detection values would change them from
discrete values to an artificial continuous set of values which would alter the meaning
of the data. The data preparation was performed using the programming language
Python and the data analysis library Pandas. The data were time-series data which
are classified as an ordered data type. They could therefore be merged on the time
variables using the Pandas function pd.merge_ordered with forward fill. Forward fill
propagates the last valid observation forward in the case of missing values. The code
used is shown in Appendix A, and is available at the following GitHub repository:
https://github.com/ResearchAne/DataAnalysesLDW.

3.2.1.1 Binary Logistic Regression

The outcome under investigation in Paper III was the success or failure of the LDW
related to the quality of the road marking. The quality of the road marking was a
continuous (averaged) measurement used traditionally for quality assessments. The
lane detection by the car were binary values and dependent on the car’s camera-
based perception of the visibility of the road markings. The analyses were aimed at
assessing the causality between the road marking quality (in terms of retroreflectivity
and contrast to the surrounding road) to the discrete outcome of the LDW. This is
commonly done by using binary logistical regression (Nathanson and Higgins, 2008).
The regression analyses returned the likelihood of predicting the correct outcome of
the car’s lane detection (lane detected or not detected) based on the input variables

https://github.com/ResearchAne/DataAnalysesLDW.
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to assess whether the LDW feature of a production car could be used as a quality
measure for road markings (RO4).

The lane detection from the car and the retroreflectometer were examined through
binary logistic regression in SPSS (Statistical Package for the Social Sciences). To in-
vestigate whether the data from the retroreflectometer could predict the outcome of
the car’s lane detection, the predictors used were Retroreflection, Contrast, Vehicle speed,
and Ambient light, and the dependent variable was Lane detection. In binary logistic
regression analyses, a cut point needs to be set. A cut value of 0.5 is the default setting
and most commonly used in regression analyses to predict classifications (Weiss and
Dardick, 2020). In this case, a probability of the lane marking being detected greater
than 50% is forecast as a positive detection (=1).

There are alternatives to using the standard value (0.5) as the cut point. (Weiss
and Dardick, 2020) reviewed the standard cut value along with three other strategies
in simulated logistic regression:

• Highest classification rate (MAXCC): the cut point that results in the highest
correct classification rate (i.e., the minimum percent of incorrect predictions).

• Nonevent rate (πnonevent): the cut-point is selected using a priori information to
select a cut-point. One type of a priori information is the proportion of persons
in the nonevent group in the population.

• Maximize sensitivity and specificity (MAXSS): the cut-point is determined by a
priori information on the cost of incorrect predictions.

Their results showed that the 0.5 and MAXCC methods performed similarly across all
conditions investigated. Weiss and Dardick (2020) advise against using the πnonevent
method as it does not result in fewer misclassifications in large groups and has the
highest misclassification of all methods for small groups. While the MAXSS approach
may be suitable for classifying small groups. The πnonevent and MAXSS are based on a
priori information and such information was not available in this case. The MAXCC
approach was, furthermore, not considered as the advantages of using this approach
compared to using the standard value are negligible (Weiss and Dardick, 2020). The
cutoff point was therefore kept at the standard value of 0.5.

3.2.1.2 Receiver Operating Characteristic Curves

Receiver Operating Characteristic (ROC) Curves summarize the trade-off between
the true positive rate and the false positive rate for a predictive model (Fawcett, 2006).
ROC curves can also be used to identify threshold values for successful detection
(Metz, 1978). This was used in Paper III to try to identify a threshold of retroreflection
or contrast that gave positive lane detection by the LDW system.

ROC curves are plotted as 1-specificity (x-axis) versus sensitivity (y-axis), where
specificity and sensitivity are defined by Equations 3.1 and Equation 3.2:

Speci f icity =
True negatives

True negatives + True positives
(3.1)

Sensitivity =
True positives

True positives + True negatives
(3.2)
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Figure 3.3 illustrates how ROC curves may appear, with the false positive rate (1-
specificity) on the x-axis and the true positive rate (sensitivity) on the y-axis.

FIGURE 3.3: Illustration of ROC curve plots.

A threshold can be chosen as a tradeoff between these two measures of accuracy,
i.e., how many false positives and negatives are acceptable for what rate of true posi-
tives and true negatives. The aim of these analyses was to try to locate indications of
threshold values for the predictor variables (Ambient light, Retroreflection, Contrast and
Vehicle speed) that would result in successful lane detection. This is a step towards es-
tablishing how road infrastructure design and maintenance can facilitate automated
driving (RO3).

3.2.2 Paper IV

Paper IV used road markings as a case for investigating how the design and mainte-
nance of roads could be adapted to support automated driving. Paper IV used both
laboratory and field research to examine how well camera-based road marking de-
tection works in snowy conditions and whether yellow markings were more easily
identified than white markings in such conditions. Laboratory research was chosen
due to the possibility of controlling variables, e.g., temperature, snow depth, snow
quality and ambient light, in the on-site winter laboratory at NTNU. Two different
field experiments, one at a closed airfield and one on public roads, were used in ad-
dition to the laboratory work to provide a wider range of cases. Images from the
laboratory and field were then subsequently utilized for image analysis. Details of
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the methods used to capture and analyze data are found in Paper IV while this sec-
tion offers additional information on the methods used and reasoning for the research
design choices.

Similar to the previous paper, Paper IV addressed 1) how road infrastructure de-
sign and maintenance can facilitate automated driving (RO3), and 2) how driving au-
tomation systems can act as sensors to monitor the state of road infrastructure (RO4).
For RO3 an inductive approach was taken where data on how snow affected lane
detection were collected. In addition, deduction was used with the hypothesis that
yellow markings could be more visible in snowy conditions when exploring images
in different color spaces. In relation to RO4, the empirical results were planned to
provide input on how ADAS can be used to monitor the state of the road related to
visibility of road markings in the event of snow. This follows an inductive strategy
where the empirical results were the basis for evaluating how in-vehicle cameras can
be used to monitor the road conditions.

3.2.2.1 Laboratory Experiment

A road model of a lane in 1:10 scale was created to be used in the winter laboratory
(for details on the road model refer to Paper IV). The material used to make the road
model was a custom asphalt concrete with gravel sizes of 2 mm and less, called Ab2
from the Norwegian term Asfaltbetong and the maximum gravel size. The gravel
and rock sizes conventionally used in asphalt concrete are 4, 8, 11, 16 and 22 mm
(Statens vegvesen, 2005). At 1:10 scale, this range is between 0.4 and 2.2 mm and
the Ab2 gravel, thus, was to scale. The asphalt was made at NTNU according to the
composition in Table 3.4 using bitumen as binder.

TABLE 3.4: Composition of stone sizes in asphalt (Ab2).

Stone size [mm] Percentage

0 - 0.25 5%

0.25 - 0.5 15%

0.5 - 1 30%

1 - 2 50%

The road marking used was white and yellow melt-in-place preformed thermo-
plastic tape (Geveko Premark) that was applied using a heat gun. This marking type
is used for smaller, manual application such as marking out parking spaces and sym-
bols, but the product is considered equivalent to thermoplastics used for road ap-
plications in terms of material type and function according to the contractor. The
preformed tape was cut into strips and melted to find the width of the markings af-
ter melting (Figure 3.4). The aim was to have one-centimeter-wide markings after
application, i.e., 1:10 the normal road marking width.

A custom sifter was crafted to help apply an even layer of snow (Figure 3.5).
Through trials of snow application, it was determined that the lowest depth where a
consistent snow depth could be achieved was 0.5 cm. A wood frame with a height
of 0.5 cm was made to achieve the correct snow depth and provide more consistent
snow application (Figure 3.5).
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FIGURE 3.4: Difference in width of thermoplastic marking before (left-hand
side) and after (right-hand side) melting.

FIGURE 3.5: Snow application with sifter and 0.5 cm wooden frame.

Tests with more snow, 1 cm, were also performed (using a wooden frame 1 cm in
height) but were found to leave the road markings undetectable by the camera.

In the laboratory experiment there were some parts of the set-up that could not be
scaled down, i.e., the height of the road markings and the snow crystals themselves.
However, the physical interaction of light, snow and road marking is the same as
in real-life testing and the set-up, therefore, assumed to be valid. The camera was
attached to a moving rig to simulate the movement of a car. The speed of the camera
was not to scale as speeds higher than 8.33 m/s caused the camera to move in the rig.
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8.33 m/s is equivalent to approximately 30 km/h while the road model was based on
a road with a 60 km/h speed limit.

It could also be noted that there are high-end cameras that have higher resolutions
and video capture frame rates than those used in the experiment. Unfortunately,
there was no time to procure such cameras before the available laboratory slot and
the laboratory was subsequently restricted for used due to the Covid-19 pandemic.

3.2.1.2 Airfield Experiment

The first field experiment was executed at a closed airfield with a 43.5 cm wide mark-
ing of type ViaTerm C35E applied in liquid form by a road marking application truck.
According to the contractor the product is equivalent to the melt-in place Geveko
Premark used in the lab experiment. The experiment coincided with a test of snow
removal equipment used primarily for sidewalks and bicycle lanes. Three different
cases were tested, determined by the weather and the available equipment on site.
These cases featured only yellow marking as this was the only marking on the air-
field. The first case was from natural snowfall which provided a starting case of 2.5
cm of snow. The next two cases were created by the snow removal equipment that
was available on site shown in Figure 3.6. The left-hand side image shows snow re-
moval using a plow with a perforated steel edge with two-centimeter-high ribs and
the right-hand side image shows snow removal by brush. The perforated steel edge
is an efficient way of scraping the road and works optimally in temperatures close
to 0◦ Celsius (Vegdirektoratet, 2012). Removal of snow by brush is most commonly
used for sidewalks and bicycle lanes in Norway but is being tested on national roads
in efforts to reduce the need for salting (Barbøl, 2017).

FIGURE 3.6: Snow removal equipment. Ribbed plow on the left-hand side and
brush on the right-hand side.

3.2.2.3 Public Road Data Capture

The last case used for image analyses in Paper IV was from afternoon driving on a
snowy public road. This provided a case from a public road with naturally occur-
ring snow and driving tracks in low ambient light. Where the bare road model from
the laboratory experiments provided a best-case scenario, new asphalt concrete, new
road marking, no dirt, no weather and good ambient light, the public road case pro-
vided a close to worst case comparison. This meant that results from the experiments
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could be analyzed across a selection of cases to increase the relevance of the findings.
The public road case featured both yellow and white road marking in a challenging,
but not uncommon, driving situation in Norway which was of importance in an-
swering the question of whether yellow center road markings should be the design
standard.

3.2.2.4 Image Analyses

The aim of the image analyses was to test the hypothesis that yellow road markings
had higher visibility than white markings in snowy conditions. The literature review
had found that in the most commonly used color spaces, Red, Green and Blue (RGB)
and grayscale, white markings had the highest visibility and contrast to the road sur-
face. However, in cases with snow, or other environmental factors such as dirt or ash,
white markings appear similar to the environmental pollutants making it challenging
to detect road markings. Research indicated that other color spaces could increase the
visibility of road markings. Three color spaces seemed particularly promising based
on results from field experiments of camera based lane detection (Lee and Moon,
2018; Podpora, Korbaś, and Kawala-Janik, 2014; Rezwanul Haque et al., 2019): Hue,
Saturation and Lightness (HSL), Hue, Saturation and Value (HSV) and luminance, color
component U and color component (YUV).

The analyses of the data (images) were done by visual inspection and by his-
togram plots. The visual inspection was chosen as it represented the way human
drivers perceive road markings. Although the visual inspection presented in Paper
IV is a subjective measurement performed by the author of this thesis, it provides an
example of a human assessment. The images analyzed were provided in the paper to
give readers the possibility to do their own visual assessment.

Histograms showing the pixel intensities of the road markings versus the sur-
roundings (road surface or snow) were chosen as an objective measure for the vis-
ibility of road markings. Histograms were chosen as a deliberately direct way of
showing the pixel intensities without using algorithms to enhance contrasts or oth-
erwise alter the results. This was done to show the effect of road marking color on
machine vision visibility in snowy conditions in a raw format rather than suggest
or assess different algorithms to detect edges or lanes. An example of a histogram
representation is shown in Figure 3.7.

The image of the bare road model is an ideal case for road marking visibility with
dark and new asphaltconcrete and newly laid white markings. As the histogram
sums the pixel values for each column of the picture, the road markings create very
distinct peaks in the histogram plot. These are easily identifiable mathematically
either by searching for changes, i.e., gradients in the pixel values, or simply by setting
thresholds for the sums of columns to identify road markings. These procedures
additionally positions the road markings in the image.

The effect of snow depth on road marking visibility was also investigated. The
original idea was to research several depths of snow in the snow lab, however, this
proved unfeasible as mentioned previously. The limited snow depths researched still
provided input on needed winter maintenance efforts for camera-based lane detec-
tion.

An example of code to perform the color conversions and create the histograms
is found in Appendix B. The code used is also available from the following GitHub



3.2. Practical Research - Road Markings 31

repository: https://github.com/ResearchAne/Can-Yellow-Road-Markings-Faci
litate-Automated-Driving.

FIGURE 3.7: Example of histogram of pixel intensities.

https://github.com/ResearchAne/Can-Yellow-Road-Markings-Facilitate-Automated-Driving.
https://github.com/ResearchAne/Can-Yellow-Road-Markings-Facilitate-Automated-Driving.
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Chapter 4

Discussion of Results

The overall aim of the thesis was to initiate the process of including automated drivers
in the design and maintenance of roads. The research conducted has used existing
and available driving automation functionality, i.e., ADAS, to identify traits of auto-
mated drivers and to prepare for automated road users.

The main results of the research are presented in part within this chapter to set a
context for the discussion of results, with a more complete description of the results
found within the individual papers. The findings are discussed in relation to the four
research objectives from section 1.2.

4.1 Research Objective 1

Currently, road infrastructure is made for human drivers. To leverage the safety po-
tential of automated drivers and start adapting road infrastructure to support auto-
mated driving features, there is a need to understand how automated drivers differ
from humans. The first research objective, RO1, was to define automated drivers
including identifying their characteristics and how they compare to human drivers’.

Current taxonomies and definitions, such as the SAE’s levels of automation and
the ISO 26262, do not cover the entire set of driving processes for automated drivers.
For instance, the SAE defines a framework for describing driving automation based
on models of human driving, such as Michon (1985), but it does not cover the plan-
ning stage, e.g., route determination, which is considered the initiation of the driving
processes. Nor does it cover the hardware and software that comprises the automated
driving abilities and gives the automated driver some of its driving characteristics.
The ISO 26262 framework considers the functional safety features of components and
software needed for automated driving but does not examine these in a way that can
define automated drivers as new road users. These two frameworks therefore rep-
resent two separate areas with little overlap. A unified framework was therefore
developed in Paper I (Figure 4.1).

This framework is the first to describe all driving processes for human and auto-
mated drivers and was founded on existing theories on human driver models and
mobile robotics. It was called a unified framework as it covers both the traditional
human driver and the new automated driver. Furthermore, it is aimed at unifying
the different domains involved in creating automated drivers and the infrastructure
these new road users need.
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FIGURE 4.1: Unified framework for human and automated driving (Storsæter,
Pitera, and McCormack, 2020).

The same lack of cooperation and unity is seen in the separation of traditional
traffic engineers from disciplines related to robotics such as electronics, IT, and cy-
bernetics. While it is obvious that driving is related to a transportation device such
as a vehicle and the road on which it drives, this simple fact is not transferring to
collaboration between experts representing development of vehicles and roads, re-
spectively. Communication is also an important domain to consider in the future of
transport as expectations on both vehicles and roads being able to communicate are
increasing, e.g., the ISAD taxonomy.

The unified framework for driving represents the first step towards establishing
the automated driver as a road user. The framework showed that on a macroscopic
level, driving for both human and automated drivers can be described by the same
processes. The unified framework allowed for these overall processes to be ana-
lyzed in more detail, revealing important differences between human and automated
drivers.

Due to their importance for both human and automated driving, sensing and
cognition were reviewed in Paper I. Based on the state of the art of sensor technol-
ogy and automation software available today, the sensing and cognitive processes of
automated drivers were analyzed and compared to equivalent human processes to
identify similarities and differences. Although sensors and software will develop and
mature over time, it was possible to identify traits that define automated drivers. A
major difference between human and automated driver was found to be field of view
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(FOV). A human driver’s binocular vision (for subjects with no visual impairment)
is approximately 200° in the horizontal median, and 150° in the vertical in the direc-
tion of view. An automated driver on the other hand, can have sensing abilities in all
directions simultaneously.

Another main difference between human and automated road users is in the elec-
tromagnetic (EM) sensitivities of the two drivers. Humans are sensitive to EM ra-
diation in the range of 380 to 750 nanometers. The automated driver, in compari-
son, can have an EM range, depending on equipment, from ultraviolet (UV) or near-
ultraviolet (cameras), through the visible spectrum (cameras), infrared (IR) (cameras),
microwaves (radar) and other radio waves (ground penetrating radar).

Beyond sensing, cognition is also identified as an important characteristic that is
distinctively different for human and automated driver. Cognition converts sensory
input to information. While it is possible to assess the performance of components
of automated driving, such as latency in signal response from a sensor, e.g., a radar,
or the processing time for the software to interpret and act on such a system, e.g., re-
sponse time of an ACC, it is challenging to do this when considering the automated
driver as a system with several such components. The latency of sensor and software
is related to reaction time, which is anticipated to be lower for automated drivers.
However, the more sensor input or other data the system needs to process the longer
the reaction time will be as long as the available resources of the automated driver,
e.g., memory and processing power, are limited. Further, the way in which an au-
tomated driver recognizes elements of the driving environment is different to how
humans interpret their surroundings. Take for instance object recognition. In road
design for humans, the detection of an object is related to how much of the object is
visible to the human eye at a given distance. This is not directly transferable to an
automated driver that uses an array of sensors and, thus, represents a fundamental
change between the two road users that need to be addressed in road design.

Machines are inherently different to humans, e.g., it is assumed that humans will
drive safely and there is, at least to some extent, a generic understanding of what safe
driving is. The same cannot be said for automated driving. The idea of safe behavior
that make certifying human drivers possible is not applicable to machines. This is im-
portant with regards to testing and certification of automated drivers. The technical
concerns that deal with sensor functionality and redundancy are under development
(Koopman and Wagner, 2017), but the successful operation of an automated driver
will depend also on the software. Software efforts have in recent research focused on
machine learning (ML) and artificial intelligence (AI) (Koopman and Wagner, 2017;
Wang, Hou, and Gong, 2010; Xing et al., 2018) as these can provide more efficient
procedures for interpreting sensor input and have the capability of learning. How-
ever, this complicates the process of certifying the driving automation system, as if
you certify a system at one point in time it might react differently in the future. Fur-
thermore, it will not suffice to observe the behavior of the automated driver, e.g., it
stopped for a pedestrian, and assume that its actions were intended to protect a vul-
nerable road user. It is necessary to know that it was the pedestrian it detected and
not other infrastructure elements and that the automated system would also do so
if the pedestrian was in a wheel chair or there was bad weather such as snow drift
(Koopman and Wagner, 2017). This can be assured by requiring information and ac-
countability to be part of the software, i.e., making the automated driver able to state
what it detects and what decisions it makes, often referred to as explainable AI.
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The main differences described, FOVs, EM sensitivities, and cognition are impor-
tant findings in relation to RO1; examine how the automated driver’s characteristics
differ to that of human drivers. Along with the unified framework, these differences
are essential towards defining the automated driver (R01) but also affect the geomet-
ric road design (R02) described in the next section. Furthermore, the characteristics
of the automated driver serve as useful information in the process of including auto-
mated drivers in the design and maintenance of roads (RO3) as well as investigating
how automated drivers senses and cognition can be used to monitor the road infras-
tructure (RO4) which are covered in sections 4.3 and 4.4., respectively.

4.2 Research Objective 2

The second research objective was to evaluate geometric road design parameters with
regards to automated drivers, in both the short and long term. This was made pos-
sible by the definition of automated drivers and their characteristics established in
Paper I.

Paper II reviewed Norwegian geometric road design parameters as well as their
U.S. equivalents, considering the transition from human to automated driver. The
geometric road design parameters that were found to be affected when considering
automated drivers are shown in Figure 4.2. The short-term effects are indicated by a
red edge color in the figure and discussed in subsection 4.2.1.

FIGURE 4.2: Parameters of geometric road design affected by the automated
driver derived from Manual V120 (Statens vegvesen, 2019b).

The long-term effects of automated driving on geometric design parameters are
presented in section 4.2.2. The parameters are in the following referred to by italic
lettering to make them easier to locate in the text.

4.2.1 Design Parameters in Need of Revision in the Short Term

The review and synthesis identified that three parameters need to be addressed in the
short term: Eye height, Object height and Reaction time, shown as red circles in Figure
4.2. They are constant values used in road design for humans.

Eye height is an average value describing the vertical distance between the road
surface and human eyes. Eye height influences the sight lines of human drivers and
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is used for determining minimum crest curve radii as shown in Figure 4.2. For an
automated driver, the Eye height would be represented by the position of the sensor
relative to the ground which can be lower than human eye height, e.g., parking sen-
sors, at approximately the same height as human eye height, such as cameras in the
rear-view mirror sensor cluster, and higher than human sight, e.g., roof-mounted li-
dars. Increased “eye” height above ground allows for smaller vertical crest curves in
current geometric road design, while lower sensor heights could provide vision un-
derneath vehicles not available to human drivers. The position of the vehicle’s sen-
sors, i.e., the eyes and ears of the car, is different not only with regards to height above
the ground, but also the lateral position on the vehicle. For instance, sensors mounted
to the extremes of the vehicle’s width would provide improved sight lines through
horizontal curves. The Eye height parameter is used in current human-oriented de-
sign to determine available sight distances for curvatures and stopping distances. As
the eye height cannot be applied to automated drivers in the same way as for human
drivers, the concept of eye height for automated drivers needs particular attention.

Object height, as defined for a human drivers, is the height of an object that a
driver can detect and stop for. More specifically, in the Norwegian standard, it is
quantified as a human being able to see a sector of the object covered by an angle
of one arcminute (Statens vegvesen, 2019b). Object height is used conjointly with Eye
height to determine the minimum Vertical curve radii for crest curves. Automated
drivers sense the road using a set of sensors that operate differently to human vision.
Sensors can have positions that are different both with respect to the height above
ground and laterally across the car’s width. Different sensors have different methods
of detection, e.g., cameras are dependent on external light while radars and lidars
actively emit radiation. In addition, sensors of the same type also have different
ranges and inaccuracies making it hard to generalize their performance. Software
will also be an important part of object detection as this is where the sensor input is
interpreted, such interpretation can rely on one sensor or a fusion of a set of sensors.

A new definition for object recognition is needed for automated drivers address-
ing both Eye height and Object height. How automated drivers detect objects depend
on their sensors and software. For instance, objects can be found by identifying the
right pixels in images, by interpreting reflections by radars or shapes by lidars, or
combinations of these sensor data. Furthermore, characteristics of the objects are of
importance. An object in the road can be harmless, e.g., a plastic bag or a shadow,
or dangerous, e.g., a boulder. Where humans can distinguish between objects that
are safe to hit and which are not, this must be taught to machines which are known
to struggle with generalization (Branson et al., 2014; Fleuret et al., 2011; Linsley et
al., 2017). One option when redefining eye height and object height is to combine
them into new parameters for sight lines and object detection for automated drivers.
In this way, the definition could be based on the functionality of the combination of
sensors and software that gives the automated driver its sight and object detection
characteristics.

Human and automated drivers sense and interpret sensory input differently. This
is also of importance to the geometric design parameter Reaction time. Reaction time
is the time taken to receive, process, and act on sensory input and is a basic design
parameter that features conjointly with speed in design parameters Stopping sight
distance (Ds) and Meeting sight distance (Dm). Indirectly, Reaction time also influences
Horizontal curve radius (Rh) and Vertical crest curve radius (Rv,crest) as these consider
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stopping and, in some instances, meeting sight distances. For horizontal curves, this
is not in the initial design, but instead in consideration of the clear distance adjacent to
the inside of the curve. The reaction time of automated drivers is by some researchers
expected to be lower than for human drivers (Collin et al., 2019; Farah et al., 2018;
Teoh and Kidd, 2017). If lower reaction times are obtained, this would reduce sight
distances and curve radii for a given speed. For a given curve radii, a lower reaction
time would allow for an increased design speed. This holds significant potential for
creating a more flexible road design and, with that, lowering construction costs.

The reaction time of an automated driver depends on the sensors it uses, how
many sensors there are, how much data is processed from each sensor, the efficiency,
accuracy and safety of the software, and the hardware used (e.g., processors and
memory). The reaction time can therefore also be adjusted, for instance filtering out
data at an early stage leaves less data to process and thus lower reaction times. Sim-
ilarly, having multiple sensors can provide better accuracy, as well as redundancy in
case of sensor failure, but is also likely to add to the reaction time of the driving au-
tomation system. For human drivers, the reaction time used in road design is based
on an 85th percentile value reaction time of human beings. The reaction time of an
automated driver needs a new definition that considers the functionality and safety
of the system. If not, there might be an incentive for driving automation systems to
sacrifice accuracy in detection or redundancy of sensor input (by using fewer sensors
or less data) to obtain lower reaction times.

The impact of lower reaction times on Stopping sight distance is defined by Equa-
tion 4.1, where Dr is the reaction distance in meters, Db is the braking distance in
meters, tr is the Reaction time in seconds, V is the Design speed in km/h, g is gravita-
tional acceleration (9.81 m/s2), fb is the Braking friction and s is the Slope:

Ds = Dr + Db = tr ×
V
3.6

+
( v

3.6 )
2

g× ( fb + s)
(4.1)

If automated drivers have lower reaction times than human drivers, the required
Stopping sight distances for given Design speeds would decrease. Alternatively, lower
reaction times can allow for higher Design speeds for a given stopping sight distance
requirement. Figure 4.3 shows how Stopping sight distance would be affected by lower
Reaction times at different design speeds. As an example, at 80 km/h a reaction time
of 2 seconds gives a Stopping sight distance of 99.5 meters, while a reaction time of 1
second reduces the distance to 77.3 meters. It can be noted that as the reaction time
decreases, the difference in stopping sight distances decreases between two given
speeds.

Meeting sight distance is linearly related to Stopping sight distance as defined by
Equation 4.2 and would therefore be affected accordingly if reaction times decrease.

Dm = 2× Ds + 10 (4.2)

Reaction time affects the Stopping and Meeting sight distances, as shown. Further-
more, Eye height, Object height and Stopping/Meeting sight distance are used when cal-
culating minimum Vertical curve radius for crest curves, and for determining the min-
imum Horizontal curve radius for tunnels. These relationships are examined in section
4.2.2.2 which covers automated driving characteristics.
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FIGURE 4.3: The effect of lower reaction times on Stopping sight distances.

4.2.2 Geometric Road Design Parameters in Need of Revision in the
Long-Term

The long-term effects are divided into two categories: 1) parameters primarily related
to vehicle characteristics, including dynamics, and 2) parameters primarily related to
human comfort, as shown in Figure 4.2. These categories are not mutually exclusive.
Parameters that depend on characteristics of automated driver and the shape of the
vehicle are discussed in the following section (4.2.2.1). Design parameters related to
human comfort are explored in the subsequent section (4.2.2.2) to see if more flexible
road design could be possible for automated freight applications.

4.2.2.1 Geometric Road Design Parameters Related to Vehicle Characteristics

Driving automation is under development and characteristics of the automated driver
will evolve. This subsection discusses the geometric design parameters that are re-
lated to the characteristics of the driving automation system and the physical shape
of vehicles. These parameters include the vehicle dynamics of vehicles controlled by
automated drivers.

The impact of automated driving on the Reaction time and Object height were dis-
cussed in detail in section 4.2.1. These parameters describe characteristics of auto-
mated drivers and the vehicles they control in terms of the performance and place-
ment of sensors, internal networks and communication and software. The sensing
capabilities and functionality of automated drivers need to be monitored as auto-
mated driving matures, including effects of connectivity which adds complexity to
the driving automation systems.
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Acceleration and Deceleration are dependent on vehicle characteristics including
the physical shape of the vehicle, its weight, and its powertrain. The shape of the ve-
hicle also factors in in terms of rolling resistance, area of the front of the vehicle, air re-
sistance characteristics, and the power to weight ratio. Acceleration/Deceleration could
increase due to higher road adhesion and improvements in powertrain and braking
technologies (Washburn and Washburn, 2018). This would decrease the Stopping sight
distance, Meeting sight distance and Passing sight distance. Furthermore, it can affect the
length required for ramps and passing/climbing lanes. However, road design must
consider the lower end of vehicle performance, therefore, such changes would only
be realistic if changes are seen in the general vehicle population. Changes to both the
vehicle performance and shape should therefore be monitored for changes but are
not assumed to be applicable for changes in road design at present time.

Vertical curve radius for crests will also be impacted by the characteristics of vehi-
cles operated by automated drivers. Crest curves are defined by the available Stop-
ping sight distance, Eye height and Object/Vehicle height as shown in Equation 4.3. Lower
reaction times will decrease the Stopping sight distance if the Design speed is unchanged
and thus decrease the minimum radii of crest curves. Furthermore, a higher Eye height
or Object/Vehicle height will also lower the minimum radii. As argued, for automated
users the basic parameters Eye height and Object height need to be redefined. It follows
that the vertical crest curve would need revision in the longer term when Eye height
and Object height have been defined for automated drivers.

Rv,min =
1
2
× (

Ds(m)√
a1 +

√a2(3)
)2 (4.3)

For Horizontal curve radii, tunnels are of particular interest when considering vehicle
and automated driver characteristics, as their minimum radii are greatly influenced
by the available sight distance on the inside of the curve. As shown in Equation
4.4, the Horizontal curve radius in tunnels is related to the Stopping sight distance, Ds
(m), and the distance from the center of the lane to the tunnel wall, B (m). A lower
Reaction time would decrease the Stopping sight distance, thus, allowing for decreased
Horizontal curve radii. Furthermore, sensor placement could further the lateral extents
of the automated driver’s sight lines represented by the variable B.

Rh,min =
(Ds)2

8B
(4.4)

The physical shape of vehicles also affects geometric design parameters. The width
and length of vehicles are related to the wheel distance, overhang, and offtracking
abilities, which is relevant when considering both widening around sharp horizontal
curves and lane widths. At present time, driving automation has not indicated any
clear trend in changes to vehicle sizes. Automated driving is envisioned in everything
from small pods (Duarte and Ratti, 2018) to platoons of trucks (Lutin, Kornhauser,
and Lerner-Lam, 2013). Larger cargo volumes for goods are desirable, thus, driving
a desire towards bigger freight vehicles. On the other hand, bigger vehicles will,
generally, have poorer vehicle dynamics due to issues including air resistance, power
to weight ratios, and smaller margins of error on existing roads.

The shape and dynamic properties of vehicles should be monitored for signifi-
cant and consistent changes. Currently there are no clear indications of changes in
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the shape of vehicles as a result of automation. Changes in the dynamic performance
of vehicles driven as a result of driving automation systems could improve perfor-
mance such as increased acceleration and deceleration. However, road design must
take into consideration the lower end of vehicle performance. It is possible to design
roads, based on changes in vehicle performance, for specific uses if vehicles using
the stretch of road can be required to have certain characteristics such as a minimum
Acceleration/Deceleration or maximum Vehicle width, Overhang, etc. The next section
explore how road design can change if human comfort is not a requirement, i.e., the
case for a separate road design standard for automated freight.

4.2.2.2 Geometric Road Design Parameters Related to Human Comfort

A lower reaction time in theory allows for smaller radii of horizontal and vertical
curvatures and/or higher design speeds. However, there are limitations on these de-
sign parameters relating to the forces, due to accelerations, acting on human drivers
or passengers to ensure comfortable and safe driving. It could therefore be useful to
develop two sets of road design standards, one for transportation involving humans
as drivers or passengers, and one for transportation without humans (automated
freight). The latter would allow for exploring the flexibility and cost-efficiency of
roads without concern for human comfort.

Transportation where humans are drivers and passengers involve accelerations
that induce forces on the human body. If these forces are too great, humans experi-
ence discomfort and, in the extremes, injury (Kumar and Norfleet, 1992). Accelera-
tions are caused by changes in velocities, i.e., changes in speed, direction, or both.

Linear accelerations are caused when the speed changes, but the direction remains
the same, e.g., accelerating or deceleration without changing the heading. Acceler-
ations upwards and downwards are vertical accelerations experienced with vertical
displacement. The Vertical acceleration parameter is used to limit the vertical acceler-
ation experienced by humans in vertical curves and is therefore used in the design
parameter Vertical curve radius. The effect of vertical acceleration is found in both
crest and sag curves, but it is more severe in sag curves as it in this case adds to the
gravitational acceleration acting downwards. The minimum vertical sag curve is re-
lated to Design speed (km/h) and Vertical acceleration (m/s2) as shown in Equation
4.5. Increases in the allowed vertical acceleration for a given speed will decrease the
minimum sag radii allowing for more flexibility in road design.

Rv,min =
( V

3.6 )
2

av
(4.5)

While crest vertical curves are currently designed for sight distance, if connectivity
could reduce the need for lines of sight significantly, vertical acceleration and the
associated comfort could then have more of an impact on the determination of mini-
mum vertical crest curve radii.

Higher deceleration rates, as proposed by Washburn and Washburn (2018), could
result in reductions in braking lengths which, like Reaction time, would have the ef-
fect of reducing Stopping sight and Meeting sight distances. A higher rate of accelera-
tion could also decrease the required Passing sight distances. Yet, for transport with
human passengers, accelerations are limited by human physical comfort (Washburn
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and Washburn, 2018). Research has showed that humans have a higher tolerance to-
wards longitudinal linear acceleration (Kumar and Norfleet, 1992) which might indi-
cate that higher limits for acceleration and deceleration are possible also with human
passengers on straight stretches of road. However, there is also the aspect of human
mental comfort and trusting the safe operation by an automated driving system. Hu-
man mental comfort is likely to become more important when the automated driver is
in control of the vehicle (Hartwich, Beggiato, and Krems, 2018; Manchon, Bueno, and
Navarro, 2020) and should receive more attention in designs for automated transport
of human passengers in the future.

For freight transport, making use of higher acceleration/deceleration rates could
result in shorter ramps and climbing/passing lanes. However, as previously stated,
these geometric elements are limited by the vehicles with the poorest power to weight
ratios when designing roads. It is therefore doubtful that significant changes could
be possible until an eventual increase in performance of all vehicles using the road.

Accelerations are also experienced laterally, for instance in horizontal curves. Fig-
ure 4.4 shows a car driving through a curve, seen from a plan perspective. The car and

FIGURE 4.4: Example of accelerations experienced in a horizontal curve.

its occupants experience a radial acceleration, ar, (also referred to as a centripetal ac-
celeration) when the car turns around the curve, while changes in the forward speed
are expressed as a linear tangential acceleration, at.

The radial/centripetal acceleration, ar, is expressed by Equation 4.6 where v is
the speed and r is the radius of the curve the car is traversing:

ar =
v2

r
(4.6)

This means that the design parameters Design speed and Horizontal curve radius affect
the accelerations felt by the car’s occupants. However, the design requirements for
minimum Horizontal curve radius are not based on human comfort, but instead based
on keeping the vehicle inside the curve, as shown in Equation 4.7, where V is the
Design speed in km/h, g is gravitation (9.81 m/s2), emax is the maximum Superelevation,
and fk is the side friction.

Rh,min =
( V

3.6 )
2

g× (emax + fk)
(4.7)

Although the Superelevation does affect the comfort of human occupants, the main
limiting factors are avoiding skidding and rollover of vehicles. While it could be pos-
sible to increase Superelevation to reduce the associated horizontal curve radius, due
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to issues related to available side friction in inclement weather and rollover issues,
this is unlikely (Easa and Dabbour, 2003).

Comfort is considered when determining the length and parameter value asso-
ciated with Clothoids, the spiral transition curves used in horizontal alignments to
transition between different radii curves. At a constant speed, a clothoid allows for
a gentle change in lateral forces between two different radii where the length of the
clothoid affects how fast this change occurs. Within the Norwegian standards, the
minimum Clothoid parameter is defined by Equation 4.8.

Amin =
√

Rh,min × Le,min (4.8)

Where
Le,min =

b×V × emax

3.6× vvs
(4.9)

Le,min represents the minimum distance required to generate the Superelevation,
e, and is also related to Wheel distance, b (m), the Design speed, V (km/h), and the
Relative vertical speed, vvs (m/s). The parameters related to comfort are emax and vvs.
Increasing the emax has already been ruled out leaving the possibility for higher Rel-
ative vertical speeds. Relative vertical speed describes the difference in vertical speed of
wheels on the same axle which occurs in cornering. The Norwegian definition of the
Clothoid parameter differs from the U.S. standards where a value for the rate of in-
crease of lateral acceleration is used, as shown in Equation 4.10 where V is the Design
speed (km/h), R is the Horizontal curve radius (m), and C is the rate of increase of lateral
acceleration (m/s3):

Amin =
( V

3.6 )
3

R× C
(4.10)

Values for C are in the range of 0.3–0.9 m/s3 and higher values could be consid-
ered for automated freight. Based on both the Norwegian and U.S. standards, the
minimum Clothoid parameter could be reassessed for automated freight.

4.2.2.3 Road Design for Automated Freight

In summary, the review of road design parameters in Paper II found that the fol-
lowing parameters related to 1) vehicle characteristics, including dynamics (section
4.2.2.1), and 2) human comfort (section 4.2.2.2) show the most immediate potential in
terms of creating more flexible road design for automated freight:

• Vertical acceleration

• Relative vertical speed

• Clothoid parameter

• Minimum vertical curve radius (crest)

• Minimum vertical curve radius (sag)

• Minimum horizontal curve (tunnel)



44 Chapter 4. Discussion of Results

These indicate increased flexibility in road design primarily for vertical alignments.
Horizontal curves are limited by requirements to avoid slipping and rollover, with
the exception of tunnels where the lateral placement of sensors can provide the pos-
sibility of smaller radii curves. Additionally, if higher Acceleration/Deceleration rates
could be ensured, Stopping, Meeting, and Passing sight distances can be decreased.

4.3 Research Objective 3

The third research objective was to examine how road infrastructure design and
maintenance can facilitate automated driving. In the following, suggestions on ar-
eas of research for adapting road infrastructure elements to automated drivers are
suggested as well as concrete results and findings that are relevant for current road
design and maintenance.

4.3.1 Paper I

Using currently available technology, Paper I shed light on how sensors used in driv-
ing automation perceive the driving environment as described in section 4.1. In un-
derstanding these sensing capabilities lie a potential for adaptions to road design and
maintenance. For example, the increased electromagnetic (EM) sensitivity allows for
higher dimensionality of information as information can be embedded with visibil-
ity at different wavelengths. One such application has been demonstrated by the
company 3M who produced traffic signs with both a layer visible to the human eye
(the visible spectrum) and a layer visible in the near-infrared range. This is shown
in Figure 4.5 where the image on the left-hand side is visible to the human eye and
cameras, and a second layer underneath is visible to cameras with near-IR sensitivity
when filtering at the correct wavelength.

FIGURE 4.5: Sign with traditional layer and an added layer visible in the near
infrared. Source: Snyder et al. (2018).

The barcode is visible in the near-IR, has high contrast, and is well suited for ma-
chine readability. This second layer of information can be used to convey information
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such as the position of the sign in geographic coordinates, thus acting as a landmark
to help with positioning. This could be especially useful in areas where there are
known problems in communicating with position services, e.g., tunnels.

4.3.2 Paper II

Paper II used the unified framework of driving to investigate how geometric road
design would be affected by automated drivers. The results, discussed in the previ-
ous section (4.2), provided suggestions on geometric road design parameters in need
of redefinition in the short term and in the long term. A separate regulation for auto-
mated freight transport was also suggested, both due to the limitations imposed by
human comfort (subsection 4.2.2.2) and due to the possibility of changes to vehicle
dynamics as a result of driving automation (subsection 4.2.2.1).

4.3.3 Paper III

In Paper III, the visibilities of road markings were measured by a mobile retroreflec-
tometer attached to a passenger car with an LDW system. Data capture on county
roads and freeways during night and day were performed to compare lane detec-
tion by LDW system to a conventional retroreflectometer. The retroreflectometer
measured the retroreflectivity of the road marking and the contrast to the road sur-
face. These readings, in addition to ambient light measured by the car, and the vehi-
cle speed, were used as predictor variables in a binary logistic regression to predict
whether the LDW system detected road markings. Table 4.1 shows the significance
of the predictor variables in correctly predicting the outcome of the LDW system in
the difference cases (combinations of freeway/county road and daytime/night-time).

TABLE 4.1: Significances of predictor variables for lane detection by LDW.

County road daytime County road night-time
B S.E. Sig. Exp(B) B S.E. Sig. Exp(B)

Retroreflection 0.003 0.000 0.000 1.003 -0.010 0.012 0.000 0.990
Contrast 0.538 0.000 0.000 1.712 0.514 0.067 0.000 1.672
Vehicle Speed 1.127 0.002 0.000 3.087 3.097 0.012 0.000 22.127
Ambient Light 0.000 0.000 0.000 1.000 0.003 0.001 0.000 1.003
Constant -19.30 0.043 0.000 0.000 -50.89 0.207 0.000 0.000

Freeway daytime Freeway night-time
B S.E. Sig. Exp(B) B S.E. Sig. Exp(B)

Retroreflection 0.003 0.000 0.000 1.003 0.004 0.000 0.000 1.004
Contrast 0.538 0.008 0.000 1.713 0.495 0.017 0.000 1.640
Vehicle Speed 1.076 0.002 0.000 2.932 0.429 0.001 0.000 1.536
Ambient Light 0.000 0.000 0.000 1.000 -0.011 0.000 0.000 0.989
Constant -18.39 0.043 0.000 0.000 -8.100 0.023 0.000 0.000

The results showed that retroreflectivity did not affect the outcome of the car’s
lane detection with log odds (Exp(B)) of approximately 1 in all cases. Contrast was
found to be positively related to successful predictions, contributing in the range
of 1.64 to 1.71 for the different scenarios, with slightly higher values for daytime
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conditions. This means a unit change in contrast would result in 1.64–1.71 times the
odds of getting a correct prediction. This result indicates that contrast is a better
indicator of whether the LDW system detected markings than the more widely used
retroreflection quality parameters QD or RL. The retroreflectometer emits laser beams
and detects their reflection and is therefore not affected by ambient light. The LDW
system of the car was camera-based and, thus, dependent on the availability of light.
Ambient light was therefore thought to have an effect on the LDW detections. The
analyses presented in Table 4.1 show that this was not the case as ambient light has
log odds of approximately 1 in all cases. The freeways are lit by streetlights while
the county roads were largely without lighting. This indicates that the headlights of
the car are sufficient for LDW-based lane detection and that these systems are not
dependent on streetlights.

Vehicle speed was the most significant predictor in all cases except freeway at
nighttime where contrast was more influential. This is because the retroreflectometer
logged data as an average over distance (30 m) while the car logged in regular time
intervals. As a result, the data sample rate differed between the two data sources
depending on the vehicle speed. This difference is illustrated in Figure 4.6.

FIGURE 4.6: Data resolution for the car (blue) and retroreflectometer (red).

To investigate this finding, an overlapping portion of the daytime and night-time
data sets for the county roads was extracted. The overlapping segment is represented
by orange squares in Figure 4.7.
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FIGURE 4.7: Plots of position data for 1) Daytime and night-time on freeway,
2) Daytime on county roads, and 3) Night-time on county roads. Visualization:

http://geojsonviewer.nsspot.net.

When the lane detections made by the LDW system were investigated on the
stretch of road indicated by the orange box in Figure 4.7 it was evident that the
night-time driving had a much lower rate of positive detections than the daytime
data collection. This is illustrated in Figure 4.8.

FIGURE 4.8: Overlapping section of county roads with lane detection results
for daytime (left-hand side) and night-time (right-hand side) driving.

http://geojsonviewer.nsspot.net


48 Chapter 4. Discussion of Results

The same difference in positive lane detections between daytime and night-time
was not seen in the freeway cases. Manual searches in the NPRA’s Vegkart webser-
vice (Statens vegvesen, 2021) were performed to shed additional light on the differ-
ence in lane marking detection. These searches found that the night route, in general,
had more spray thermoplastics (1-1.5 mm thickness) than the day route, which had al-
most entirely preformed thermoplastics (3 mm). This could explain the overall trend
of much fewer successful lane detection for night versus day. For the overlapping
segment, however, the marking was thermoplastic which still showed a much poorer
performance for camera-based detection at night. According to the Vegkart service
the marking used on county road 152 was 2 mm thick thermoplastic compared to the
3 mm thick thermoplastic used on the freeway (E6).

In addition to thickness, application and wear can factor into the marking’s vis-
ibility. As ambient light has been shown not to be a predictor for the LDW’s, the
material and thickness used for road marking could be investigated as a predictor for
automated lane detection in future studies.

4.3.4 Paper IV

Colors and patterns have a long history in alerting drivers and commanding atten-
tion when it comes to signage. The same use of colors for other road infrastructure
elements is less common. Roads are generally gray and black, most commonly road
markings are white, and dividers are often found in their natural concrete gray col-
oration. Norway will be the only country in the Nordics using yellow road markings
when Finland finish phasing out yellow markings, a change which is due by the end
of March 2023 (Finnish Transport and Communications Agency, 2020). Road mark-
ings are a major expense for road agencies (Pike and Bommanayakanahalli, 2018) and
using one color is more cost-efficient than two. LDW systems have been proven to
provide safety benefits. They represent core functionality also used in higher levels
of automation and have a high dependency on road markings. It is therefore of im-
portance to make sure that road markings are designed and maintained to ensure
sufficient visibility for both human and automated drivers also in adverse weather.
Adverse weather, and particularly snow, is known to cause problems for automated
lane detection. However, there is a lack of research indicating weather yellow road
markings (used in Norway and in the U.S.) can provide added visibility for auto-
mated drivers in adverse weather such as snow.

To this effect, the use of yellow road markings to enhance visibility in snowy driv-
ing conditions was the subject of Paper IV. Literature suggested that the use of differ-
ent color space representations could affect the visibility of road markings in images.
First, the most commonly used color spaces, RGB and grayscale were assessed. The
results showed that although the yellow road markings are visible to the human eye
in snowy conditions, they are hard to detect by automated and mathematical pro-
cesses. An example is shown in the image from the plowed airstrip in Figure 4.9.
This case only has yellow markings. These are visible to the human eye in Figure
4.9i (RGB representation). However, in the histogram plot of the three channels that
make up the RGB image (Figure 4.9ii), it is not easy to pick out any distinct peaks that
corresponds to the road marking. For the grayscale image, Figure 4.9iii, and the cor-
responding histogram plot, Figure 4.9iv, the road marking is hard to discern in both
representations and thus not suitable for detection by human or machine. The two
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FIGURE 4.9: Example of visibility of lane markings in different color spaces,
visually (left-hand side) and by pixel values (right-hand side).

lower representations of the same image (Figure 4.9v, vii) demonstrate how color
space representations can be used to enhance road features. In both the S-channel
of the HSV image and the V-channel of the YUV image, the yellow road markings
have significantly different pixel intensities compared to both the road surface and
the snow. The histograms confirm the finding from the visual inspection displaying
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distinctive peaks in the position of the road markings (Figure 4.9vi, viii).
In Figure 4.10 an example with both yellow and white markings is shown. This

image is taken in the laboratory and shows the road model covered in 0.5 cm of snow.
There are yellow road markings above the red dotted line and white markings below
it.

FIGURE 4.10: Laboratory road model with 0.5 cm snow (birds-eye view) and
corresponding histograms for RGB and grayscale representations.

In the RGB and grayscale representations the continuous line (right-hand side
marking) creates peaks in the histograms for both white and yellow markings. The
dashed marking (left-hand side marking) on the other hand, is not possible to discern
from the other peaks and troughs of either histogram plot.

White markings create slightly higher peaks due to their higher pixel values, but
the overall plot is not optimal for identifying road markings based on gradients or
thresholds. The following figure (Figure 4.11) shows the histogram plots correspond-
ing to alternative color spaces for the same image. On the left-hand side all channels
are shown in the same plot, while the right-hand side highlights the channels that
are most successful in enhancing the road markings and the difference in visibility
between white and yellow road markings.

The HSL-S, HSV-S, YUV-U and YUV-V channels enhance the pixel intensities for
both yellow and white road marking, setting them apart from the road surface and
the cover of snow. These four channels are therefore shown separately in the right-
hand side in Figure 4.11 which also allows for a comparison of the visibility of white
versus yellow markings. The visibility of the yellow road markings (red and dark
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FIGURE 4.11: Histogram plots for HSL, HSV and YUV color space
representations of Figure 4.10.

blue lines) is much greater than the white markings (yellow and light blue lines) as
shown by the difference in peak heights. The continuous road markings create higher
peaks than dashed lines as expected, as they have more marking pixels thus creating
a higher pixel intensity sum (i.e., peak) in the histogram.

In the case of evening driving on public roads with partial snow cover, a small
segment in the lower half of the image was used to compare the visibility of yel-
low and white road markings in different color spaces. Perspective view images as
shown in Figure 4.12. give wider and lower peaks than the birds-eye perspective as
the marking pixels are spread across more columns of the image. This can to some ex-
tent be corrected by perspective transformation. However, the perspective view was
considered sufficient for examining how different color spaces affected visibility. This
followed the overall methodology of using unaltered images in different color space
representations to assess the impact of color space on the visibility of yellow versus
white markings without introducing unintended effects from image manipulation.

The image in Figure 4.12 has yellow markings on the left-hand side and white
markings on the right-hand side in line with design standards in Norway and the
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FIGURE 4.12: Public road in evening with partial snow cover (RGB and
grayscale representations) and corresponding histogram plots.

U.S. Both the yellow and white lane markings are visible to the human eye, however,
the histogram plots show that for automated detection RGB and grayscale represen-
tations are not well suited to locate either color road marking.

The histogram plots for the alternative color spaces for the public road case are
shown in Figure 4.13. In these challenging conditions, the HSL-S and HSV-S channels
provide distinct peaks corresponding to the yellow road marking (peak on the left-
hand side of the histograms) while the white marking is hard to separate from the
road surface or snow (peak on the right-hand side of the histogram). The YUV-U/V
channels are not able to enhance the yellow or the white road marking.

The results for all cases with snow are summarized in Table 4.2. Overall, the
HSV-S and HSL-S channels were the best at enhancing the road marking, but only
for yellow road markings. The hypothesis stated that yellow road markings could
be more easily visible to both human and automated drivers than white markings,
which was confirmed by these findings. For complete results, refer to Paper IV.

Successful and safe automated driving will need redundancy and robustness in
sensors and software. The added visibility and contrast of yellow road markings indi-
cate that they can provide robustness for lane keeping in adverse weather situations
where there are fewer reference points for the automated driver to depend on.

The value of yellow road markings for lane marking visibility is of importance
to road authorities in relation to road design policies. Norway will soon be the only
country in the Nordics that uses yellow road markings. In the EU, white road mark-
ings are currently the norm. Paper IV suggests that yellow road marking can facilitate
automated driving in snowy conditions. Thus, the use of yellow road markings on
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FIGURE 4.13: Histogram plots for HSL, HSV and YUV color space
representations of the public road driving image (Figure 4.12).

at least one side of the lane is encouraged to enhance visibility of road markings for
both human and automated driver based on the results of this research. The use of
two colors adds information to the driver by indicating whether the adjacent lane is
for the direction the driver is traveling in or for the opposite direction. This is vital
information for all drivers and suggests that keeping two colors could continue to be
beneficial for traffic safety. Continuous lines are easier to discern in adverse weather
conditions and provide higher signal values for sensors such as cameras. The use
of dashed versus continuous lines also relay information to drivers and the visibility
of these compared to continuous lines can be further investigated in efforts to deter-
mine whether the higher visibility of continuous lines outweighs the importance of
knowing the directionality of lanes as the latter can be communicated in other ways
(e.g., through maps).

In summary, the third research objective was to examine how road infrastructure
design and maintenance can facilitate automated driving. Paper I identified differ-
ences between human and automated driver in terms of sensing and cognition. These
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TABLE 4.2: Visibility of yellow and white road markings for cases with snow
coverage based on histogram plots.

Image Gray RGB HSL HSV YUV
Channel R G B H S L H S V Y U V

Laboratory
0.5 cm snow

White + + + + + + + + + + +

Yellow + ++ ++ + + ++ ++

Airfield Plowed ++ ++ ++ ++

Brushed ++ ++ ++ ++ ++ ++

Public
road

White

Yellow ++ ++

changes suggest that color and texture should be researched more actively in appli-
cations for road infrastructure elements to make them easier to detect and classify.
Paper II used the characteristics of automated drivers identified in Paper I to review
current geometric road design and suggested changes to these in the short and long
term. Paper III investigated how road marking quality measures in traditional mea-
surements compared to automated lane detection functionality. The results indicate
that contrast is of higher importance than retroreflectivity for camera based lane de-
tection. Furthermore, LDW functionality does not seem to rely on ambient light-
ing other than the car’s headlights. The thickness, type, and wear of lane markings
should receive more attention in future research efforts to design and maintain roads
for automated drivers. Paper IV investigated whether yellow road markings could
be beneficial to automated driving in adverse weather. The results suggest that yel-
low markings provide significantly higher visibility in snow when the color spaces
HSV–S, HSL–S and YUV-U/V are considered. Yellow road markings are therefore
encouraged on at least one side of lanes to enhance visibility for both human and
automated driver.

4.4 Research Objective 4

4.4.1 Sensor Data from Automated Driving Systems and Suggested
Applications.

Characteristics related to sensory and cognitive capabilities of automated drivers
were identified in Paper I which shed light on how driving automation systems can
be used as mobile sensor arrays to monitor the condition of road assets. Current
levels of ADAS include cameras for LDW and sign recognition, radars for adaptive
cruise control (ACC) and blind spot warning, and ultrasound for parking assistance.
In higher levels of automation, the use of lidar is common. However, lidars are not
yet used in publicly available vehicles due to their high cost. While most modern cars
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have cameras available it is often difficult to obtain video data due to several factors.
Videos require considerable storage space and most commercial vehicles have lim-
ited storage space available. Video may be stored in smaller sections which are later
deleted to perform ADAS functions such as LDW. Getting access to this video would
likely require both cooperation with the car manufacturer, the user acceptance of the
vehicle owner and driver, and high bandwidth communication services. Fortunately,
there are alternatives to gaining access to the video from vehicles. For example, the
output from the ADAS functions themselves can provide useful interpretations of
the road infrastructure such as the discrete lane detection values used in Paper III.
This data is more easily available, requires much less storage and communication
bandwidth, and is not associated with privacy issues. Detection of signs by auto-
mated drivers likewise represents a conversion of image information to less verbose
information. It is therefore also suitable for sharing and can be correlated to road in-
frastructure asset management systems to see whether signs are present and in good
condition. Other types of data derived from driving automation systems such as hard
braking actions or tire slip also provide information that can be used to investigate
what parts of the road infrastructure are more problematic than others. Patterns in
such findings could reveal both issues related to road design, e.g., poorly designed
curvature, and maintenance, e.g., trees causing shading issues or snow.

ADAS data is a combination of the sensing and cognition performed by auto-
mated drivers. While it does not provide access to raw data from sensors, it outputs
the interpretations and actions of the automated driver which ultimately decide how
it performs in the driving environment. Driving automation systems differ in terms
of sensor use and placement, as well as software, which together form the product the
manufacturers of automated drivers are selling. It is, therefore, proprietary informa-
tion. The output of its functionality is less sensitive and, thus, easier to share and will
give road engineers useful information from which to optimize road maintenance
and design.

4.4.2 Findings From Practical Experiments and Suggestions for Ap-
plications

Papers III and IV demonstrated through practical research how ADAS can be used
to monitor the state of road infrastructure and driving conditions using road mark-
ings as a case. Paper III examined how one of the most common ADAS features,
LDW, can be used to monitor the condition of road markings. To evaluate the use
of LDW for this purpose, a retroreflectometer was used as a reference. The test used
known quality measures for lane marking obtained from the retroreflectometer, i.e.,
Retroreflectivity and Contrast, as predictor variables to see if a traditional way of as-
sessing road marking quality coincided with the result from the LDW system. In
addition, Ambient light and Vehicle speed where used as predictor variables predict-
ing the outcome of the car’s lane detection by LDW. Overall, the predictor variables
could successfully forecast the result of the LDW system in 92–98% of cases depend-
ing on conditions (county road versus freeway, and night versus day). The results
are shown in Table 4.3, where 0 indicates that no lane marking was detected, while 1
indicates that the road marking was found.

Table 4.3 shows that the outcome of the lane detection’s functionality was cor-
rectly predicted by the model in 92.1% of cases for the freeway and 92.8% of cases for
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TABLE 4.3: Classification of all cases: freeway and county roads in daytime and
night-time.

Freeway daytime (mean lux = 9663) Freeway night-time (mean lux = 10)

Observed
Predicted

Observed
Predicted

Lane detection Lane detection
0 1 Correct 0 1 Correct

(%) (%)

LDW car 0 959887 55543 94.5 LDW car 0 369022 28771 92.8
1 60635 401120 86.9 1 35314 461956 92.9

Overall (%) 92.1 Overall (%) 92.8
County road daytime (mean lux = 9726) County road night-time (mean lux = 6)

Observed
Predicted

Observed
Predicted

Lane detection Lane detection
0 1 Correct 0 1 Correct

(%) (%)

LDW car 0 1256579 55058 95.8 LDW car 0 1064740 17027 98.4
1 67802 401812 85.6 1 7020 202021 98.1

Overall (%) 93.1 Overall (%) 98.1

county roads in daytime. Regarding nighttime, the results were 93.1% for the free-
way and 98.1% for county roads. There was a higher accuracy level for no detection
of lane marking on the freeway in both daytime and nighttime. The same was true
for the county roads at nighttime, although the difference was not as distinct. With
respect to the county road daytime case, the accuracy was similar between no mark-
ing detected and a marking found. The analyses suggest that LDW systems can be
useful for monitoring road markings. Further testing with several makes of vehicles
and ADAS systems should be performed to confirm this finding.

ROC curves were analyzed to see if threshold values for successful lane detection
for the four predictor values could be identified (Figure 4.14). Vehicle speed has the
largest area under the curve, and thus the highest accuracy in terms of ratio of true
positives and negatives to false positives and negatives. The threshold values for
vehicle speed lie between 56.14 and 57.02 km/h, which suggests that speeds lower
than this provides insufficient data points from the distance based retroreflectometer.
For further testing using LDW (or lane keeping functionality) and retroreflectome-
ters, it is advised to keep this in mind by performing tests at speeds higher than 57
km/h, adjusting the sample rate of the retroreflectometer to less than 30 meters, or, if
possible, using time-based sampling for all data collection.

Ambient light was found to have no predicting quality. This result could be con-
firmed by executing more tests using a greater range of ambient light conditions and
several LDW or lane keeping systems.

Retroreflection and Contrast are the most influential predictors for night-time con-
ditions. As Ambient light was found to have no effect on whether or not the LDW
system detected road markings, this is of interest. It could be that low ambient light
and the use of headlights create higher contrasts between the road marking and the
road surface than in daylight conditions. Possible threshold values for Retroreflection
and Contrast for county road and freeway are shown in Figure 4.14. As discussed in
more detail in the methodology, the thresholds values obtained from ROC analyses
are trade offs between the rate of true positives and negatives to false positives and
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FIGURE 4.14: Receiver operating characteristics curves.

negatives. Therefore, a strategy for what level of accuracy is most beneficial for the
intended use would affect the thresholds chosen.

Contrast ratios for road markings can provide useful input for ensuring road
marking with high visibility for both human and automated driver. Unfortunately,
this measure is not uniformly used or defined in research. In the literature review,
only one research report was found that investigated the contrast ratio in association
with successful lane detection by car (Lundkvist and Fors, 2010). The contrast ratio
used in Paper III was defined by the supplier of the retroreflectometer and was not
directly comparable to the one used by Lundkvist and Fors. Due to differences in
how contrast ratio was defined, it was not possible to directly compare the results of
the two studies.

The mobile retroreflectometer used in Paper III reported contrast values based on
Equation 4.11:

C = 1− return signal (pavement)
return signal (marking)

(4.11)

This value can be converted to a contrast ratio by Equation 4.12 according to the
supplier of the retroreflectometer:

CR =
−1

C− 1
(4.12)
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Substituting Equation 4.11 for C in Equation 4.12 would give Equation 4.13 for deter-
mining contrast ratio (CR) for the study in Paper III, while Lundkvist and Fors (2010)
used Equation 4.14. The equipment used in Paper III did not report Rroadsur f ace, there-
fore, it was not possible to calculate the contrast in the same way as in Equation 4.14.

CR =
return signal (marking)
return signal (pavement)

(4.13)

CRL = |
Rmarking − Rroadsur f ace

Rroadsur f ace
| (4.14)

If the Rroadsur f ace value had been available, the measurements obtained in the test
for Paper III could have been converted to the CRL values used by Lundkvist and
Fors, allowing for a way to compare the two findings.

In the data set from the vehicle, there were additional data that could be useful
for road monitoring. The radar used for ACC logs the distance to vehicles in front
of the test car which can be used in traffic engineering applications. The full feeds
from sensors, such as images/video from in-vehicle cameras or radar reflections from
the ACC system, require substantial resources in storage and communication band-
width. The logged distance to the vehicle in front, however, is information that is
easily stored and shared. Like the discrete lane detection data used in Paper III, this
represents information that could be used at present time without the need of addi-
tional equipment, is easily shared, and do not represent personal data. ADAS data,
e.g., discrete lane marking detections and radar ranges, are examples of ways to start
using automated driving features to monitor road assets and road usage.

In Paper IV the effect of snow depth on the visibility of road markings for cam-
era based lane detection was investigated. The smallest increment of snow depth
achievable in the laboratory was 0.5 cm increments. The 0.5 cm depth of snow was
successful in showing the difference in visibility of road markings in snowy condi-
tions depending on the color space representation. At 1 cm snow coverage in the
laboratory, the images produced showed road markings with too low visibility for
machine vision applications. The road model used in the laboratory was at 1:10 scale
while the snow was not possible to scale down. The physical interaction of light,
snow, and road markings were similar in the lab and the real world and the model
was therefore assumed to produce results applicable to real world settings. However,
real world testing on the airfield showed that it was possible to detect road markings
when a 2.5 cm layer of natural snow had been subject to a ribbed plow with 2 cm high
ribs. The snow left by the ribbed plow was further altered by the wheel passage of
the tractor to which the plow was attached. These results suggest that further inves-
tigations should be made into how the depth of snow and snow removal procedures
affect the visibility of road markings in snow.

To summarize, the fourth research objective was examining how driving automa-
tion systems can act as sensors to monitor the state of road infrastructure. Paper I
reviewed how automated drivers sense their surroundings and process the sensory
input. The findings suggest that the automated driver has a number of sensors that
can be used for road asset monitoring, the most common and applicable being cam-
eras and radars. The raw feeds from such systems are resource intensive in terms
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of storage and communication bandwidth and are seldom willingly shared. How-
ever, the derived information represented by ADAS functionality represent data that
is more accessible and less sensitive providing data sources to monitor both the state
of road assets, e.g., road marking quality, and challenging weather conditions. In
Paper III this was demonstrated by using the discrete data set from an LDW sys-
tem. Logistic regression analyses showed that the success of the LDW system could
be predicted by traditional measuring equipment. This suggests that the output of
the LDW system is useful both to monitor the state of road markings for (predictive)
maintenance applications and to identify situations where the LDW systems fail. The
latter is needed input to be able to include the automated driver in considerations
of road design and maintenance needs (e.g., marking type, marking color and the
need for reapplication). Paper IV investigated the visibility of road markings in snow
providing an example of how automated driving features can alert of conditions that
are challenging for automated driving systems. When ADAS functionality fails on
roads where they usually work fine, it can indicate that there are weather conditions
or other events that require maintenance actions. This input can be correlated to
data from road weather stations for confirmation. Such data can shed light on how
weather conditions such as rain or snow affect the functionality of ADAS features and
higher levels of automation. Based on these data, road maintenance actions can be
taken, predictive maintenance systems can be trained, and information on the needs
of automated drivers can be collected for instance to be used in relation to ODDs and
ISAD frameworks.

4.5 Summary of Main Results

The following section provides a concise summary of the results of each research ob-
jective.
RO1: Establish Automated Drivers as New Road Users Including Identifying Their
Characteristics and How They Compare to Human Drivers’.

• A unified framework for automated and human driving was developed in Pa-
per I (see Figure 4.1).

• The following characteristics of automated drivers were found to have high
relevance to transport engineering:

– Increased electromagnetic (EM) range.

– Greater field of view (FOV).

– Fundamental differences in cognitive processes.

• Evaluation of geometric design parameters in RO2 also contributed towards
establishing automated drivers as new road users.

RO2: Evaluate geometric road design parameters with regards to automated drivers,
in both the short and long term.

• Geometric road design parameters that need to be redefined in the short term
were identified, these were:
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– Eye height, Object height, and Reaction time. New definitions of parame-
ters could include combining eye height and object height to new design
parameters describing line of sight and object detection for automated
drivers.

• A new manual for road design for transportation without human occupants
is advised. The following geometric road design parameters can be revised
with regards to automated freight transport: Vertical acceleration, Relative verti-
cal speed, Minimum vertical curve radius (sag), Clothoid parameter, and Minimum
horizontal curve radius (tunnels).

• Changes related to the shape and dynamic properties of vehicles should be
monitored for changes including Vehicle height, Vehicle width, Wheel distance,
Overhang, Acceleration, Deceleration, and Reaction time.

RO3: Examine how road infrastructure design and maintenance can facilitate au-
tomated driving.

• Color, pattern, and texture can be researched to create higher visibility and rec-
ognizable signatures for road infrastructure elements such as guardrails, di-
viders, and road markings.

• The higher range of electromagnetic sensitivity of automated users suggest that
additional information can be embedded in road infrastructure elements visible
only to automated drivers, e.g., a machine-readable layer in the near-UV for
positioning.

• Contrast between road marking and road pavement is more important for visi-
bility than retroreflectivity considering camera based Lane Departure Warning
(LDW).

• LDW systems appear to not be dependent on exterior lighting (other than head-
lights).

• Yellow road markings have higher visibility and contrast to the road surface
and snow in color spaces HSL, HSV, and YUV.

• Yellow road markings can facilitate automated driving in snow.

• Snow removal by a plow with a perforated steel edge appear to remove enough
snow to make yellow road markings visible to cameras.

• The type and thickness of road marking may affect successful detection by cam-
era based LDW.

RO4: Examine how driving automation systems can act as sensors to monitor the
state of road infrastructure.

• LDW functionality demonstrates that ADAS can be used to monitor the state of
road markings.
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• LDW functionality can identify when conditions such as snow prevent detec-
tion of road marking.

• Output data from automated driving features (ADAS and higher levels of au-
tomation) represent data that is accessible, easy to share, and with few privacy
concerns.

• ADAS data represent starting points for using data from driving automation
systems to monitor and predict the maintenance needs of road assets.

• Data from ADAS systems can be used to define ODDs and ISAD levels.

4.6 Further Work

The unified model of driving was derived through an abductive approach and should
thus be developed as the software and hardware that make up the automated driver
evolves.

The characteristics identified for automated drivers, increased EM sensitivity, FOV
and differences in cognition could be further investigated by:

• Researching the use of visibility in different parts of the EM spectrum for road
applications.

• Researching the use of added information in existing road infrastructure for
automated users (e.g., positions in signs).

• Researching how colors, patterns, and textures can be used actively to facili-
tate recognition of road infrastructure elements (e.g., guardrails, dividers, road
markings).

Lidars do not see colors per se, and, unlike cameras, they actively transmit radiation
making them independent of ambient light. Color still affects how visible an object is
for lidars as lighter colors absorb less light than darker colors making lighter colored
objects easier to detect. It could therefore be of interest to research the use of color
and contrast in road infrastructure elements as it can be beneficial to human vision,
camera-based vision, and lidars.

As an example, guardrails were found to be confused for lane markings in liter-
ature on automated lane detection. In Figure 4.15 an image from a reference camera
for a retroreflectometer is shown.

The image illustrates how guardrails and lane markings are similar in color and
shape, thus causing confusion for automated detection. On the left-hand side of the
vehicle the road markings are also white. These different traffic control devices and
barriers can be hard to correctly identify, especially in the event of snow.

In addition to color, roughness and reflectivity of the objects also affect how they
are perceived by active sensors such as lidars and radars. The surface qualities de-
termine how much light is reflected back and how this signal appears, e.g., smooth
surfaces reflect the light as a specular reflection, while rough surfaces create diffuse
reflection. It is possible to take advantage of this phenomena and further investigate
how the surface texture can help in classification of road environment objects such as
curbs, dividers, road markings, and guardrails.
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FIGURE 4.15: Example of similarity of different road infrastructure elements
considering automated detection. Photo: NPRA.

The evaluations of geometric road design parameters suggested, in the short term,
a redefinition of the Eye height, Object height and Reaction time. How these parameters
are used in relation to automated drivers needs research and involvement from road
authorities. In the longer term, developing a separate standard of geometric road de-
sign considering transportation without human passengers, i.e., automated freight,
is encouraged.

The thesis demonstrated uses of camera based ADAS for 1) identifying how road
design and maintenance can facilitate driving automation, 2) monitoring the state of
road infrastructure assets, and 3) providing input towards defining ODDs and ISADS
based on driving automation. However, the research findings of this thesis should be
validated by additional tests.

The use of camera based LDW to monitor the quality of road markings shown in
Paper III could be validated by performing additional testing with multiple vehicles
with different makes of LDW/lane keeping systems. Testing during a greater range
of ambient light conditions could verify the indication that LDWs are independent
of external light sources (other than the car’s headlights). The type of road marking
used, the marking thickness, the time since application, and traffic volumes (includ-
ing heavy vehicles) could shed additional light on the optimal design and mainte-
nance of road markings for camera based lane detection. Additional testing to verify
that contrast is a more relevant quality parameter for camera based lane detection
than retroreflectivity is suggested. The importance of contrast for automated lane
detection also implies that the asphalt used, and its condition, affects the success of
automated lane detection. Darker colors are optimal to increase the contrast between
road markings and road surface. Harmonization of the definition of contrast ratios
used for road marking assessment is advised to enable comparison of research re-
sults. Alternatively, it is helpful to have access to the return signal of both road mark-
ings and road surface when using active measurements such as retroreflectometers.

To support the findings in Paper IV, further evaluation of the visibility of white
and yellow road markings in snowy conditions for human and automated drivers
could be performed. For visual analyses, a group of people could be used to achieve
more representative evaluations of visibility of road markings for human vision. The
classification of the visibility of road markings could be improved by using more
categories than the three (not visible, somewhat visible, and clearly visible) used in
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this research. For automated drivers, image or video capture by other types of cam-
eras, including high-end cameras and in-vehicle cameras from different producers,
are needed to verify the results of Paper IV that yellow road markings can provide
better visibility than white markings in snowy conditions. For the maintenance as-
pects of Paper IV, investigating how different snow removal procedures affect the
visibility of markings would be beneficial for establishing winter maintenance pro-
cedures to support automation and as input to ODD considerations. Further inves-
tigations on possible thresholds of snow depths related to automated lane detection
and other ADAS functions are also advised as a means to establish maintenance pro-
cedures and ODDs for automated drivers.

This thesis investigated automated detection of road markings, the most widely
used traffic control device, as an example of driving automation functionality. This
is one of many automated driving features and other ADAS functionality including
sign detection and ACC should be explored. More advanced automated driving fea-
tures, such as tracking and classification of dynamic objects, and the general use of
ML and AI, provide further options for research. As the field of driving automation is
so vast and complex, the use of familiar ADAS features that are widely used on pub-
lic roads could continue to provide a useful approach for research on how to design
and maintain roads for both human and automated drivers.
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Chapter 5

Conclusion and Further
Perspectives

This research sought to initiate the process of including automated drivers as new
road users by identify starting points for adapting road design and maintenance to
facilitate automated driving.

The first paper established automated drivers as new road users. It introduced a
unified framework for human and automated driver that for the first time covers all
driving processes. Based on this framework, characteristics pertaining to automated
drivers were identified and compared to human drivers. The main differences were
found to be their field of view (FOV), electromagnetic (EM) sensitivities and cogni-
tion. The sensors and software used for automated driving features give automated
drivers some of their driving characteristics. These are used in advanced driver assis-
tance system (ADAS) functionality as well as in higher levels of automation. ADAS
functionality such as lane departure warning (LDW) represent readily available data
sources that road owners and operators (ROOs) can use to understand what parts of
the road infrastructure are well suited for automated drivers and which are not. This
information can be used to research adaptions to the physical infrastructure, such as
the use of colors, textures, and patterns in road design to increase recognizability of
different road infrastructure elements. This can make classification of objects faster
and more accurate which could positively impact reaction times and traffic safety.

The characteristics of automated drivers established in Paper I were used to ex-
amine how automated driving will affect geometric design parameters in Paper II.
Paper II provided suggestions for adapting geometric road design to facilitate au-
tomated driving in both the short term and the long term. In the short term, the
geometric design parameters Eye height, Object height, and Reaction time need to be re-
defined for automated users. Eye height and Object height can for instance be replaced
with parameters describing sight distances and object detection. In the longer term,
parameters that were found to have potential for creating more flexible road design
for automated freight transport were identified: Vertical acceleration, Relative vertical
speed, Minimum vertical curve radius (sag), Clothoid parameter, and Minimum horizontal
curve radius (tunnels). Also, in a long-term perspective, parameters related to vehicle
dynamics, e.g., Reaction time, Acceleration and Deceleration, should be monitored with
changes in vehicles and increasing automation as these can affect design parameters
including Stopping, Meeting and Passing sight distances.
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Papers III and IV demonstrated that existing driving automation functionality
such as LDW can be used to find avenues of applied research for adapting road de-
sign and maintenance to facilitate automated driving. Paper III compared lane de-
tection by LDW to lane quality assessment by retroreflectometer. The results indicate
that LDW systems can provide efficient ways of monitoring the state of road assets
such as road markings. Paper IV demonstrated that yellow road markings have sig-
nificantly higher visibility than white markings in snowy conditions in color channels
HSV-S, HSL-S and YUV-U/V. Results indicate that the yellow road markings stayed
visible in these color channels in snow depths of 0.5 cm. Snow removal procedures
by plow with a perforated edge and brush were highly effective in making the yel-
low road marking visible. Two of the most commonly used color spaces, RGB and
grayscale, where found to be less suited for lane detection in snow considering auto-
mated road marking detection.

ADAS constitutes mobile sensor systems that were shown to provide data useful
for monitoring the state of road markings. Crowd-sourced data from other sources
including mobile phones, road weather stations, camera surveillance and vehicles are
also of interest in providing efficient ways of monitoring road assets. ADAS systems
are at present time particularly valuable as the information produced by such systems
are anonymous and compact. ADAS outputs are therefore easy to share both with
respect to privacy issues and required communication infrastructure. Furthermore,
ADAS are functionalities that are designed to help with driving tasks and represent
lower levels of automation in driving. Where they fail are, therefore, as interesting
as where they work as this provides insight into how to adapt road infrastructure to
support automated driving.

ADAS, and other crowd-sourced data, can be used to optimize maintenance such
as reapplication of painting or snow removal, as well as to determine the needed level
of service to support driving automation. In essence, these data are descriptions of
operational design domains (ODDs). The insight into the sensory performance of
automated drivers should thus be a source of knowledge for deciding the conditions
for which driving automation can be allowed. This should also affect how the ODDs
themselves are defined. As the sensor systems of automated drivers might require
other quality measures than human drivers (e.g., contrast versus retroreflectivity for
road markings), there will be a need to consider new ways of classifying road infras-
tructure and driving conditions as seen from the perspective of the automated driver.
For instance, ROOs might refer to road classes as part of an ODD, but it might be of
greater importance what type of marking and pavement type (in relation to contrast
between the two) was used, and their condition, to determine which roads are suited
for automated driving. As such, automated drivers represent many unknowns but
are also the proverbial well of Mimir for adapting the road design and maintenance
to support automation.

This research has established automated drivers as new road users and suggested
paths forward to adapt road design and maintenance to facilitate automated driv-
ing. These are starting points in processes to include automated drivers as new road
users. Automated driving can make roads safer, but this requires cooperation be-
tween manufacturers of sensors, software, and vehicles, as well as road owners and
regulators, in continued research efforts to improve driving automation and develop
the road infrastructure to support it.
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ABSTRACT
Although road infrastructure has been designed to accommodate
human drivers’ physiology and psychology for over a century,
human error has always been the main cause of traffic accidents.
Consequently, Advanced Driver Assistance Systems (ADAS) have
been developed to mitigate human shortcomings. These
automated functions are becoming more sophisticated allowing
for Automated Driving Systems (ADS) to drive under an
increasing number of road conditions. Due to this evolution, a
new automated road user has become increasingly relevant for
both road owners and the vehicle industry alike. While this
automated driver is currently operating on roads designed for
human drivers, in the future, infrastructure policies may be
designed specifically to accommodate automated drivers.
However, the current literature on ADSs does not cover all driving
processes. A unified framework for human and automated driver,
covering all driving processes, is therefore presented. The unified
driving framework, based on theoretical models of human driving
and robotics, highlights the importance of sensory input in all
driving processes. How human and automated drivers sense their
environment is therefore compared to uncover differences
between the two road users relevant to adapt road design and
maintenance to include the automated driver. The main
differences identified between human and automated drivers are
that (1) the automated driver has a much greater range of
electromagnetic sensitivity and larger field of view, and (2) that
the two road users interpret sensory input in different ways.
Based on these findings, future research directions for road
design and maintenance are suggested.
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1. Introduction

Although roads have been developed to accommodate human physiology and psychol-
ogy for over a century, human errors have been the main cause of traffic accidents
(National Highway Traffic Safety Administration, 2015; Transportavdelingen Trafikksikker-
het, 2018), with driving performance failures being the greatest contributing factor to

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

CONTACT Ane Dalsnes Storsæter ane.storsater@ntnu.no, ane.storsater@vegvesen.no Norwegian Public Roads
Administration, Abels gate 5, 7030 Trondheim, Norway

TRANSPORT REVIEWS
https://doi.org/10.1080/01441647.2020.1861124

79



these accidents. Other errors in human behaviour include falling asleep, intoxication and
distraction. Consequently, Advanced Driver Assistance Systems (ADAS) have been devel-
oped to mitigate human shortcomings. From the introduction of ADAS to higher levels of
automation, automated driving features have evolved rapidly and are now able to take
over operating a vehicle under an increasing number of road conditions. Due to this evol-
ution, a new road user has emerged, the automated driver.

The automated driver comes with promise and possibilities. For example, in the short
term, lower levels of automation represented by ADAS can reduce the number of traffic-
related accidents (Eckstein & Zlocki, 2013; Östling, Lubbe, Jeppsson, & Puthan, 2019). Fur-
thermore, the sensors utilised by the ADAS features, e.g. cameras and lidars, provide a way
to monitor the road infrastructure. As identified by Osichenko and Spielhofer (2018), this
can eventually replace manual and time-consuming processes used for monitoring road
infrastructure inventory. Currently, maintenance and design factors remain that hinder
the detection of inventory elements, including occlusion of signs, fading or damage to
road signs and markings as well as improper installation (Osichenko & Spielhofer, 2018;
Wali et al., 2019). Some of these issues can be mitigated by improving the automated
detection equipment’s hardware and software. The other piece of the puzzle might lie
in making certain changes to roadway elements, such as paint type or texture choice,
while others could be related to maintenance issues, e.g. trimming vegetation, or repaint-
ing road markings.

In the long term, higher levels of automation are widely expected to produce auto-
mated drivers that are superior to human drivers. Despite this expectation, little effort
has been put into ensuring that the road infrastructure will work for the new automated
road user. Consider the example of roadside LED signs and message boards, which have
been developed as an improvement over conventional signs for humans, both in terms of
visibility and use of dynamic information. On the other hand, LED flicker can adversely
affect an automated driver’s performance. This occurs because camera-based detection
of signage typically uses algorithms to manage exposure, and LED flicker causes oscil-
lations in overall image brightness, leading to automated drivers incorrectly identifying
LED traffic signs (IEEE P2020 Working Group, 2018). Automated driving has also been
suggested to be a factor that lowers road construction costs (Khoury, Amine, & Saad,
2019). The reasoning behind this claim is the idea that an automated driver is assumed
to have different characteristics than humans, including longer sight distances, which
might allow for a more flexible road design that better suits the terrain, leading to less
earthwork during road construction.

Road authorities and society in general therefore have incentives both in terms of
increased safety and higher cost-efficiency to adapt current road design policies to
accommodate automated driving. In order to include the automated driver in road
design, road authorities need to establish characteristics of these automated drivers
that will impact road design and maintenance. SAE International’s established definition
of an automated driving system (ADS) provides a good taxonomy for describing the role
of humans and ADS in driving tasks at different levels of automation (SAE International,
2018). However, it does not include details about these systems’ software and hardware
that shed light on how the ADS differs from human drivers.

In the following, a unified framework of driving covering both human and automated
driver is presented based on existing theoretical models of human driving and mobile
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robotics, respectively. The unified framework presents perception or sensing as a funda-
mental process in all phases of driving. Furthermore, perception/sensing represents the
direct interaction between driver and road infrastructure and is therefore a natural start-
ing point for understanding how road infrastructure design can facilitate automated
driving. Using human senses (sight, hearing, smell, and sense of equilibrium) as refer-
ences, the automated driver’s sensors will be compared and contrasted with these
human senses. Differences between the two road users are discussed, leading to sugges-
tions for road infrastructure design adaptions that could facilitate automated drivers.

2. The driving processes

2.1. Human driving

In order to drive safely, humans need to observe their environment and correctly analyse
it. Groeger (2000) and Underwood and Radach (1998) describe this process as an initial
assessment made of the scene that is immediately followed by rapid analysis. The next
step is establishing regions of potential interest and identifying which parts of the
scene require more attention. The understanding of the driving environment created in
the driver’s mind is referred to as “internal representation” (Van der Molen & Bötticher,
1988). This representation of the environment, along with continued sensory input,
forms the information needed for humans to make decisions while driving, such as choos-
ing their driving trajectories, speed, and manoeuvers.

Figure 1. Human driving based on Michon (1985), Van der Molen and Bötticher (1988) and Näätänen
and Summala (1974).
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As shown in Figure 1, human driving is often separated into three levels: the planning
phase, the manoeuvring phase and the control phase (Michon, 1985; Näätänen &
Summala, 1974; Van der Molen & Bötticher, 1988). In the planning phase, a human
driver performs a strategical assessment of their choice of route, mode of transportation
and intended cruising speed, weighing these against the aim of the trip and time avail-
able for it, e.g. getting to work on time.

In the manoeuvring phase, the overall plan from the planning phase is turned into tac-
tical, long-term driving behaviour, for instance maintaining a preferred speed and follow-
ing the intended route. Environmental input can change this process, for example, queues
on the originally planned route can cause a change in route, or a slow-moving vehicle can
introduce the need to overtake (Van der Molen & Bötticher, 1988).

Lying at the bottom of the hierarchy is the control level, which corresponds to the
operations of the vehicle including steering, acceleration, and deceleration. This is also
where emergency manoeuvring takes place.

2.2. Automated driving processes

The association SAE International has created a taxonomy for driving automation where
the degree of automation is divided into six levels. Level 0 represents no automation,
whereas levels 1 and 2 are driving automation levels that support the human driver
and are typically ADAS functions. Levels 3–5 differentiate between three levels of ADSs,
which are defined as “The hardware and software that are collectively capable of perform-
ing the entire DDT [Dynamic Driving Task] on a sustained basis, regardless of whether it is
limited to a specific operational design domain (ODD)” (SAE International, 2018).

The dynamic driving task entails the real-time operational and tactical functions
required to operate in on-road traffic following the hierarchical structure for human
driving presented in Figure 1, yet excluding the strategic function, i.e. trip scheduling.
The ODD is the set of conditions for which the automated features are expected to
work. For instance, an ADS feature can be designed to operate only on access-controlled
freeways with good lane markings in fair weather conditions. As the SAE definition of
automated driving neither includes the strategic level nor goes into specifics on how
the vehicle works in terms of hardware or software, the framework developed in this
paper will introduce automated driving in terms of frameworks taken from the field of
robotics. This will allow a more comprehensive definition of automated driving processes,
and subsequently the creation of a unified framework for human and automated driving.

Developed half a century ago using Shakey, the first mobile robot, the field of robotics
describes the way a machine moves by naming three distinct processes: sense, plan and
act (known as S-P-A architecture) (Nilsson, 1984). A shortcoming of this architecture is that
a robot has to stop and process information before moving, which creates a stop-and-go
movement instead of a continuous trajectory (Gat, Bonnasso, & Murphy, 1998). In the mid-
eighties, Brooks introduced a reactive alternative known as subsumption architecture
which, unlike S-P-A architecture, did not have to execute movements sequentially. This
ability provided more fluid motion as it reacted faster to its surroundings, but had the
drawback of not being easily taskable, meaning that it needed to be reprogrammed
for new tasks (Brooks, 1986). A third category of robotic architecture is the hybrid
system, which incorporates the deliberative S-P-A architecture in order to obtain the
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best high-level control, for instance finding the optimal path, as well as the reactive archi-
tecture’s superior capability for obstacle avoidance in unknown and dynamic environ-
ments (Davies & Jnifene, 2007; Sheikh, Jamil, & Ayaz, 2014). An example of hybrid
architecture adapted from Davies and Jnifene (2007) can be seen in Figure 2.

The Defense Advanced Research Projects Agency (DARPA) Urban Challenge of 2007
serves as an example of how hybrid architecture works. In this challenge, self-driving
vehicles had to navigate a mock urban setting, while adhering to traffic rules including
passing slow-moving vehicles, handling intersections with other vehicles, and parking
(Montemerlo et al., 2009). Contestants were given a road network description file contain-
ing geometric information on lanes, lane markings, signage, and points of interest, such as
check points, as well as an aerial image of the site. These elements constituted the Global
world model available at the start of the challenge, while data gathered during driving
could be used to enhance this model.

In the Task manager function, a destination was entered, for instance, reaching a given
check point in the Urban Challenge. The desired destination and world model would then
be used to calculate a planned path. This path could be implemented in different ways,
either by using the fastest route or implementing strategies such as added risk manage-
ment, for instance, by avoiding left turns. The Global world model, Task manager and Path
planner make up the deliberate layer in Figure 2.

The vehicle’s trajectory planning and control are in the reactive part of the system,
which can handle new events and is dependent on sensory input. Based on the
planned path from the deliberate layer and live sensor data, the vehicle finds the free
space available and calculates the optimal trajectory. This process involves how the
vehicle understands its own location, detecting static and moving objects in addition

Figure 2. A hybrid robot control architecture adapted from Davies and Jnifene (2007).
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to the expected movements of dynamic features, creating what Gruyer et al. (2017) refer
to as a local dynamic perception map (LDPM). Trajectories can be altered by dynamic
events like an object lying in the road, which imply that the vehicle needs to go
around it. The chosen trajectory is translated into commands to control the vehicle’s
heading and speed and are therefore continually reassessed.

2.3. A unified framework for human and automated driving

As described previously, the processes by which human and automated drivers operate
are similar. Thus, a unified framework for both human and automated driving is presented
in Figure 3. Human and automated drivers alike use external sources of information to
form a global world model based on maps and experience. Driving can be described
for both human and automated drivers as starting with a deliberate planning stage
where the goal of the trip is turned into a route. Next, the actual trajectories are
chosen depending on the driver’s local dynamic perception map, e.g. their knowledge
of the route in question as well as their dynamic perception while driving. The drivers
combine these factors into their actual control of the vehicle, always checking their
planned action against their continual sensory input.

While human and automated driver operate in similar fashion on a general level, the
way in which they solve their tasks is not the same. For example, in simple cases an auto-
mated system can find a suitable path faster than a human (McCourt, Mehta, Doucette, &
Curtis, 2016). At the same time, dependent on conditions, path planning can be complex
and computationally demanding for automated path planners, giving humans, with their
ability to make intuitive decisions based on knowledge and experience, an advantage
(Sun, Cai, & Shen, 2015). Due to their different strengths and weaknesses, human and

Figure 3. Framework for human and automated driving.
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artificial intelligence is sometimes combined. This can be done by humans collaborating
with a machine, for instance where they insert way points that are combined with auto-
matic path planning. It may also take place as separate processes where human and
machine choices comprised of separate confidence estimates are both inserted into a
decision fusion algorithm. The benefit of a combined approach is that a man-machine sol-
ution can both realise dynamic threat avoidance and reflect personal preferences in
chosen paths (McCourt et al., 2016; Sun et al., 2015).

In Figure 3, the global world model includes external information which can be pro-
vided by getting access to positioning services, the internet, or other connected ser-
vices such as ITS-G5/DSRC. Connectivity is thought to dramatically change the
process of driving for automated drivers. Vehicles can first be alerted about objects
or incidents that lie outside their sensor ranges and then communicate amongst them-
selves, theoretically eliminating rear-ending other vehicles, crashing into obstacles and
even front-to-front collisions (Shladover, 2018). There are currently three standardis-
ation initiatives for ITS-G5/DSRC (ARIB in Japan, WAVE in USA and ITS-G5 in the EU)
based on the IEEE 802.11p protocol. It has been suggested that these communication
protocols are not fully developed (Coutinho, Boukerche, & Loureiro, 2018). Insufficient
communication quality in terms of packet delivery rate and update delay have been
identified in the case of vehicle platooning (Rashdan, Müller, & Sand, 2016), while
Zhao, Jing, Hui, Liu, and Khattak (2019) tested a DSRC-based rear-end collision
warning system which had an average correct warning rate of 90%. Line of sight
remains an issue for ITS-G5/DSRC (Huang, Zhao, & Peng, 2017; Lu, Cheng, Zhang,
Shen, & Mark, 2014) as well as privacy (Eckhoff & Sommer, 2014). The alternative, cel-
lular services, would need an unprecedented coverage and level of service to provide
reliable vehicle to vehicle communication. The combination of short-range and cellular
communication is promising according to Bey & Tewolde (2019) and Yang & Hua
(2019). If the issues relating to the quality of communication services are solved, the
safety benefit suggested by Shladover (2018) also requires full penetration of com-
munication devices in vehicles. Furthermore, in some situations, such as avoiding
crashing into obstacles, it would not be applicable for the first driver to reach the
object as it relies on a prior road user to report the obstacle being present. Communi-
cation to and between vehicles still provides an external source of information that can
provide safety benefits in both the short- and long term but cannot, to date, be
assumed to be present at all times or in all cases.

Figure 3 highlights how sensing/perception is essential to all driving processes. The
way human and automated drivers alike sense their driving environment is also the
most direct interaction between driver and roadway infrastructure: for both these
reasons, the sensing processes of human and automated drivers are particularly
focused on in the following section.

3. The sensing processes

Similar to humans, an automated driver is dependent on sensing its surroundings to be able
to understand the traffic and the surrounding environment. To uncover significant differ-
ences between human and automated drivers that might impact road design, the following
section compares the sensory system of the automated driver to that of the human.

TRANSPORT REVIEWS 7
85



As shown in Figure 3 sensory input provides necessary input for the global world
model, the internal representation, manoeuvring and control processes. In the case of
humans, it is easy to only consider vision as the accepted primary sense when it comes
to driving (Macadam, 2003). However, Sivak (1996) evaluated on-road behaviours critical
to driving and found that roughly 30% of these were dependent on more than one sense.
This finding can be related to the fact that human senses are not used separately, but
rather form an understanding of a situation in conjunction with one another (Guttman,
Gilroy, & Blake, 2005; Walker, Stanton, & Young, 2006).

Humans have traditionally been said to have five senses (sight, hearing, taste, smell and
touch), but this fails to recognise the kinesthetic system, which provides a human with an
awareness of their position and movements (Farnell & Miller Jr, 2018). In the following, the
definition by Rye et al. (2013) is used, where the five senses are defined as sight, hearing,
smell, taste and equilibrium (balance and body position). The equilibrium sense includes
the sense of touch, vestibular sensation (an organism’s sense of spatial orientation and
balance), proprioception (position of bones, joints, and muscles), and the sense of limb
position that is used to track kinesthesia (limb movement).

Automated drivers have a range of sensors to generate the sensory input needed for
driving. The selection and configuration of these vary between vehicles; however, the
most commonly used sensors are laser, radar, lidar, ultrasonic and cameras (Gruyer et al.,
2017; Hirz & Walzel, 2018; Steinbaeck, Steger, Holweg, & Druml, 2017). To some extent,
these sensors are similar to human sensing as they function by processing the same phys-
ical effects and forces. For example, electromagnetic radiation is the basis for human vision
and camera-based machine vision. The following section compares the sensory stimulus of
human and automated drivers and summarises known differences. The human senses will
all be covered with the exception of taste, which has limited use for driving purposes.

3.1. Vision

Human vision can be quantified by visual functions such as acuity, field, contrast, colour and
night vision (Colenbrander & De Laey, 2005). Of these, visual acuity, i.e. the ability to resolve
detail, is the only function that is regularly measured, while visual field and contrast sensi-
tivity are only rarely considered (Colenbrander & De Laey, 2005). Despite its reliance on
visual acuity, the relationship between visual acuity and safe driving is found to be weak
at best (Colenbrander & De Laey, 2005; Hills, 1980; Owsley & McGwin, 2010). Rather,
visual acuity is most commonly determined by drivers having relatively good vision, for
instance, 20/40 (Colenbrander & De Laey, 2005), while sight distances for road signs in
the US assume 20/30 binocular visual acuity (Owsley & McGwin, 2010).

Merely looking at visual functions does not fully describe human vision, on the con-
trary, training, experience and familiarity with the driving environment all affect how
human drivers see their surroundings, referred to by Colenbrander and De Laey (2005)
as functional vision.

Field of view (FOV) determines howmuch of the surrounding world a human driver can
observe. Human binocular vision regarding subjects with no visual impairment is approxi-
mately 200° in the horizontal median, and 150° in the vertical (Wolfe, Dobres, Rosenholtz,
& Reimer, 2017). The most widely accepted requirement for visual field is 120° in the hori-
zontal median, although humans are able to rotate their heads to scan more of their
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surroundings. Although there is no equivalent vertical requirement, 40° has been
suggested (Colenbrander & De Laey, 2005). Rear-view and side mirrors allow human
drivers to see the road behind them to some extent; furthermore, ADAS functions, includ-
ing parking aids, can help human vision. However, while humans are in their cars looking
in mirrors or at screens, they lose their forward vision. Drivers having visual field defects,
yet who are still deemed to be safe drivers, were found to engage in more scanning
behaviour (head movement) compared to unsafe drivers having field defects (Owsley &
McGwin, 2010). The area where humans can see clearly is called the Useful Field of
View (UFOV), which is often defined in the region of only 20–30°; however, information
from the peripheral vision is also important for driving (Wolfe et al., 2017).

The range of electromagnetic radiation that humans can detect is from 380 to 750 nan-
ometer (nm) (Best and Textile Institute, 2012), although the range can be as great as 310
to 1100 nm depending on age and the brightness of the light source (Sliney, 2016).

3.1.1. The equivalent to sight for the automated driver
Vision for an automated driver is herein defined as the sensors that utilise electromagnetic
radiation, i.e. cameras, radars and lidars. Automotive imaging consists of many different
types of cameras where the optics are different for differing applications, e.g. the lens
type can be close to either human vision or a wide-angle lens. The sensitivities of
cameras also differ: some cameras utilise visible light, some in UV, while others operate
in the infrared (IR) band. Moreover, there are hyperspectral cameras that cover several
bands (Uzkent, Hoffman, & Vodacek, 2016). The main differences between human and
automotive vision are that the vehicle has a greater FOV and is sensitive to a greater
range of electromagnetic radiation depending on the sensor set-up. A vehicle can have
sensors that cover up to a 360° FOV in the horizontal median, or sensor input can even
form a spherical cap engulfing the vehicle.

To date, there has not been a consistent approach to measuring image quality for the
automotive industry (IEEE P2020 Working Group, 2018). Machine vision for automotive
use is based on a charge-coupled device (CCD) or complementary metal–oxide semicon-
ductor (CMOS) image sensors (Sliney, 2016; Stemmer Imaging, 2019). CMOS is most
widely used due to its better performance at higher temperatures as well as its superior
dynamic range (Hosticka et al., 2003). Cameras for automated driving applications have
sensitivities ranging from the near ultraviolet (UV) through the visible spectrum and up
to about 1000 nm depending on the sensor in question (Stemmer Imaging, 2019;
Zhang & Niu, 2016). They can also have superior night vision to humans through their
use of infrared (IR) imaging (Mahlke, Rösler, Seifert, Krems, & Thüring, 2007). Night
vision enhancement systems (NVES) based on IR radiation come in two categories: near
IR NVES uses active infrared headlights for 750–3000 nm, while far IR NVES are passive
sensors for 6000–30,000 nm (Mahlke et al., 2007). Cameras are used for the ADAS function
Lane Departure Warning, and there has been a fair amount of research completed on how
varying light and weather conditions affect automated detections of road markings. In
general, wet conditions are challenging for camera-based detection (A. Pike, Carlson, &
Barrette, 2018). Successful detection of markings by LDW has been linked to contrast
(A. M. Pike, Barrette, & Carlson, 2018; A. Pike, Carlson, et al., 2018; Hadi & Sinha, 2011;
Pike & Songchitruksa, 2015) and edge smoothness has been suggested as being relevant
to machine-vision detection (Lin, Wu, & Wang, 2016).
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While the camera passively registers light, lidars emit laser light with wavelengths of typi-
cally 850, 905, 940 or 1550 nm (Hecht, 2018; Rablau, 2019); consequently, the camera detects
its surrounding environment in terms of the time it takes for the light to return. Lidars can
use rotating or stationary laser light, pulses, or continuous waves, but all lidars produce point
clouds. Because laser emission at visible wavelengths, 400 nm to 780 nm, and near infrared
wavelengths, 780–1400 nm, can cause eye damage (Douplik, Saiko, Schelkanova, & Tuchin,
2013), lidars can either use pulsing at 905 nm or wavelengths above 1400 nm for safe oper-
ation. The latter option, commonly 1550 nm (Hecht, 2018), produces a longer range, and
with this range, a longer time for the signal to return. The slower response time can be miti-
gated by using multiple beams concurrently (Hecht, 2018). FOV differs for diverse lidars, and
while a greater FOV provides coverage for a larger area, it is more susceptible to interference
for instance from sunlight or headlights (Hecht, 2018). The angular resolution determines the
lidar’s ability to detect smaller objects, such as motorcycles or light poles. The resolution will
depend on the lidar, i.e. the number of laser sources and how they are configured, as well as
the distance to the object. The detection distance also depends on the characteristics of the
object that reflect the light. The roughness, colour and reflectivity of the objects determine
how much light is reflected back to the lidar rather than absorbed or transmitted (Yang &
Wang, 2011). Lighter colours absorb less light than darker colours, and smooth surfaces
reflect the light as a specular reflection, while rough surfaces create diffuse reflection.
While higher levels of reflection generally produce longer detection rates (Hecht, 2018),
highly reflective surfaces can also be difficult for lidars to register (Leonard et al., 2014).
Some surfaces are particularly challenging, for instance glass where the light is transmitted
through the glass and mirrors and where the light is refracted through the glass and hits the
material behind the glass. Surface properties and the ability to detect objects in the road
environment is worth noting for road infrastructure design, as surfaces of road elements
could be optimised to be more prominent for automated drivers.

Radars operate similarly to lidars using radio waves at 24 GHz (1.25*10−2 nm) for short-
range and 76–80 GHz (3.95*10−3 to 3.75*10−3 nm) for long-range (Hecht, 2018). This capa-
bility gives them longer range, lower angular resolution and better performance in poor
weather compared to lidars (Van Brummelen, O’Brien, Gruyer, & Najjaran, 2018). Although
not commonly used in automated vehicles at the present time, ground penetrating
radars (GPR) are also worth noting. Traditional GPR technology used for infrastructure
inspections, through mapping the subsurface profile of road- and railways, operate in
the 1–3 GHz band; in general these provide excellent resolution but poor penetration
depth (Cornick, Koechling, Stanley, & Zhang, 2016; Lalagüe, 2015). In recent years the
use of GPR for localisation has become more common, with an operating range of
100–400 MHz, providing deeper penetration at the cost of resolution (Cornick et al.,
2016; Kuutti et al., 2018) and making them suitable for navigation purposes.

The ranges of electromagnetic sensitivities and FOVs for automated driver and human
driver is summarised in Figure 4.

3.2. Hearing

Auditory information has been found to improve human driving performance as it
reinforces information received from the visual channel (Guttman et al., 2005;
Macadam, 2003). Estimation of speed performed by humans becomes more accurate
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with auditory information (Hellier, Naweed, Walker, Husband, & Edworthy, 2011;
Macadam, 2003; Walker et al., 2006), and conversely, a lack of environmental noise can
increase driving speed, reduce headways and induce more risky gap acceptance
(Hellier et al., 2011; Walker et al., 2006). Recent research has found that when sensory
input from two different senses is in conflict, the most reliable sense for a given task
takes dominance. So although vision is the most trustworthy sense for spatial information,
audition is dominant for temporal input (Guttman et al., 2005).

Auditory feedback in vehicles provides information on the engine, transmission, tyres
and aerodynamics (Walker et al., 2006) as well as warnings of disruptive events such as the
proximity of emergency vehicles (Macadam, 2003). Whether a sound is audible to humans
depends both on the power of the sound, measured in decibels (dB), and the frequency of
the vibration (Hz). Humans hear above 0 dB and feel discomfort from 110 dB and up (Insti-
tute for Quality and Efficiency in Health, 2008). Normal hearing detects frequencies of
sound between 20 and 20,000 Hz (Bagai, 2006). Humans are excellent at localising the
sources of sounds, i.e. determining the range, elevation and azimuth angles of a
sound’s source (Duraiswami & Raykar, 2005). Hearing is also used to determine the move-
ment of objects that are not immediately in view, and it is therefore vital for safe and
effective orientation (Gatehouse & Noble, 2004). The distance range of hearing is depen-
dent on the loudness of the sound (Pasnau, 1999) as well as environmental factors includ-
ing temperature and humidity (Harris, 1966).

3.2.1. The equivalent to hearing for the automated driver
The most common sensor relying on sound waves for vehicles is the ultrasonic sensor
(Gruyer et al., 2017; Hirz & Walzel, 2018). Commercial ultrasonic sensors for automotive
parking applications typically operate in the region of 40–60 kHz, and have a range of
30–450 cm (Nordevall, 2015). They provide distance measurements to objects at low
speeds, which is beneficial for parking aids (Alonso et al., 2011), preventing car crashes
(Alonso, Oria, Fernández, & Rodríguez, 2009), measuring characteristics of road surfaces
(Hirata, Sun, Ueda, & Hachiyay, 2016), detecting moving obstacles (Ohya, Kosaka, & Kak,

Figure 4. Automated driver vs human driver electromagnetic sensitivity and field of view.
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1998), and detection of ice by friction analyses based on noise produced by tyre–road
interaction (Gailius & Jacenas, 2007).

Microphones can also be used to interpret acoustic sensory input. Fazenda, Atmoko,
Gu, Guan, and Ball (2009) used these to warn human drivers of nearby emergency vehicles
as modern cars can be highly insulated against external noise. Such a system could also be
used for automated drivers to make use of external sound signals to help interpret the
driving situation.

3.3. Smell

The car cabin is exposed to several toxic gases, some of which can cause drowsiness, head-
aches, nausea, and dizziness. Humans’ natural breathing can also cause oxygen deficiencies
(Galatsis & Wlodarski, 2006). Smell can provide drivers with an early warning of problems
with their vehicle, e.g. the smell of rotten eggs from a failed catalytic converter (Allen,
2006) or the smell of car parts becoming overheated (Pisaturo & Senatore, 2016), which is
similar to how humans rely on smell to detect general dangers and identify edible food (Bor-
degoni, Carulli, & Shi, 2016). In addition to harmful gases in the car acting as a safety factor for
human operation, smell can also be used to support driving in a more direct manner by
increasing drivers’ attention or providing them with feedback about their driving behaviour.
Bordegoni et al. (2016) performed experiments on the sense of smell (olfaction) and driver
attention, arguing that the visual and auditory stimuli are already subject to high demands.
Olfactory stimuli were found to be more effective at increasing the subjects’ attention level
than auditory stimuli. Furthermore, the subjects found smell to be a more pleasant type of
feedback than sounds (Bordegoni et al., 2016). Dmitrenko, Maggioni, and Obrist (2018)
reported that olfactory notifications telling drivers to slow down or change lanes was less
distracting, more comfortable, and more helpful than visual feedback.

3.3.1. The equivalent to smell for the automated driver
Machine olfaction devices have been utilised for the past 30 years in a wide variety of com-
mercial industries, and work similarly on humans by converting chemicals to electrical signals
(Li et al., 2014). There are a number of different sensors available that cover various gases and
pollutants (Galatsis & Wlodarski, 2006), but they are currently not being used in vehicles for
other purposes than to assess the presence of hazardous fumes, or the pleasant smell of new
cars (Li et al., 2014). However, the use of machine olfaction is being researched to provide
indications of car problems. Similar to how a human can learn to associate the smell of
rotten eggs with a failed catalytic converter (Allen, 2006), machines can be trained to
detect unwanted odours. In higher levels of automation, a car would need to be able to
self-diagnose errors and evaluate its own fitness for driving. Furthermore, olfaction is
being researched as a valuable sensory input for automated driving due to potential custo-
mers’ expectations. Humans prefer a clean ride; therefore, there might be a need to use artifi-
cial noses to detect spills or if the latest customer was a smoker (Walsworth, 2019).

3.4. Sense of equilibrium

Equilibrium senses provide input that human drivers rely on to understand the forces
acting on the vehicle correlated to their own movements. They include temperature,
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pain, pressure and vibration, sense of spatial orientation and balance as well as the pos-
ition of bones, joints, and muscles (Rye et al., 2013). Macadam (2003) discovered that
humans rely on information obtained from the vestibular (inner ear) and kinesthetic
(body distributed) channels for controlling vehicles. Direct contact with the vehicle
through the seat, steering wheel, gear shift and foot pedals provide information on
lateral forces, vehicular changes in stiffness and vibration, and feedback on roadway con-
ditions, for example, changes in the friction level between tyres and road or wind gusts
(Jensen, Tolbert, Wagner, Switzer, & Finn, 2011; Macadam, 2003).

Although there is evidence that humans are sensitive to these stresses, both in terms of
assessing vehicular characteristics such as a car’s size or weight, as well as aligning torque
(i.e. howmuch force is needed to steer through a curve) (Walker et al., 2006), stimuli to the
equilibrium sense remain relatively unexplored in literature compared to audio and visual
feedback (Kammermeier, Kron, Hoogen, & Schmidt, 2004; Riener, Jeon, Alvarez, & Frison,
2017; Walker et al., 2006).

3.4.1. The equivalent of equilibrium for the automated driver
Accelerometers and gyroscopes are widely used in the automotive industry to obtain
information about the vehicle’s velocity, position and heading by measuring forces and
rotations (Elkaim, Lie, & Gebre-Egziabher, 2015; Salychev, 2017). Often found as a set of
three accelerometers and three gyroscopes, they produce a six degree of freedom
sensor system used in the inertial measurement unit (IMU), the output of which is con-
verted to navigation parameters by the inertial navigation system (INS) (Elkaim et al.,
2015). INSs are self-contained non-jammable systems, but suffer errors that have an expo-
nential growth over time and GPS-measurements are used to correct this issue (Spangen-
berg, Calmettes, & Tourneret, 2007). In the absence of GPS or other external sources of
positioning, the vehicle relies on so-called dead-reckoning navigation. Dead-reckoning
uses the initial position and calculates the following positions with the use of the IMU,
the errors of which can be counteracted with the use of additional sensors such as
odometers which alleviates drift, and magnetometers that provide heading and incli-
nation data (Barbour, 2004). Another way to improve localisation performance is by
using map-matching techniques (Spangenberg et al., 2007).

3.5. Cognition

The focus thus far has been on the sensors of the automated driver, compared to the
human sensory system. The sensory inputs are turned into information and understand-
ing through cognition. As Groeger (2002, p. 242) so eloquently puts it:

“Statements to the effect that driving is a largely visual task… are as meaningless as the
assertion that reading is a visual task. Both are obviously heavily dependent on visual percep-
tion. However, it is the further processing of that information which underpins our interpret-
ation, comprehension, memory and non-reflex reactions to what we see”

Human drivers depend heavily on their ability to judge positions and movements of other
road users, and to predict where these will be in the next few seconds (Hills, 1980). The
driving skill has been found to increase with experience. Macadam (2003) linked this to
the understanding of vehicle dynamics. Mourant and Rockwell (1972) found that
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responding to stimuli, especially beyond the visual channel, required experience. While
Hills (1980) concluded that part of the art of driving may be “in developing the skill of
looking in the right place at the right time. It may also involve the ability to predict accu-
rately where the critical points in the scene will be in the next few seconds ahead”.

Hollnagel, Nåbo, and Lau (2003) describe the study of driving as traditionally being
viewed as either as a problem of guidance and control or as a human factors problem,
neither of which is fully adequate to face the challenges of modern and future cars.
They further emphasise that the introduction of ADAS, the human is no longer in
direct control of the vehicle, but rather in co-operation with an automated driving system.

Cognition is connected to response time, a parameter widely used in road geometry
design. Humans have response times as low as 180 milliseconds (ms) for visual stimuli,
and about 140 ms for auditory and tactile stimuli when performing simple tasks
(Macadam, 2003). The American Association of State Highway and Transportation
Officials (2011) state that the reaction time of humans can be from almost negligible to
over 1.64 s. Fuller (2005) found that experienced drivers showed anticipatory avoidance
of hazard, while inexperienced drivers had a reactive mode of dealing with hazards, i.e.
that response time is dependent on experience.

3.5.1. The equivalent of cognition for the automated driver
For the automated driver to outperform humans, they need to correctly understand a
given driving situation, and anticipate the actions of other road users. The automated
driver’s capability to make fast decisions in complex situations, like humans are innately
able to, can, per today’s technological advances, be questioned (Pütz, Murphy, & Mullins,
2019).

Machines need to interpret sensory input, e.g. turning sensor data from the IMU into
the position, heading and velocity in the INS. Although it is often assumed that vehicles
will have shorter reaction times than humans (Farah, Erkens, Alkim, & van Arem, 2018) this
depends on how much data needs to be analysed. The DARPA Urban Challenge in 2007
provides two examples of reaction times. Junior, the Stanford entry which placed second,
had a time delay from entry of sensor data to action of approximately 300 ms (Monte-
merlo et al., 2009). Another participant, Little Ben from the Ben Franklin Racing Team,
used 200 milliseconds as the worst-case scenario for its car’s detection and reaction
time (Benjamin, Leonard, Schmidt, & Newman, 2008). In the challenge, speed was
limited to 30 mph or roughly 50 km/h, with lower speed limits in many places (Monte-
merlo et al., 2009), and there was no requirement for cars to detect traffic lights or
signs (Berger & Rumpe, 2012). Although a technical feat, the challenge is still a long
way from real-world driving. On the other hand, over a decade has passed since the
DARPA 2007 challenge under which time hardware and software has been improved.
Collin et al. (2020) published a study where all driving functions were defined by 24
tasks which were connected by 32 messages. They then simulated the latency of the
system at different architectures with different safety levels, for instance with regard to
redundancy. Their simulation suggested system latencies, or reaction times, of between
0.34 and 0.38 s.

Central to cognition is object recognition. There are several ways to detect objects such
as vehicles and pedestrians through automated features. Vision-based detection can be
made based on the recognition of objects directly from the pixels in images or by
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analysing subsequent frames (Sivaraman & Trivedi, 2013). Sensor fusion techniques allows
for combining the strengths of different sensor types, e.g. cameras and radars (Wang, Xu,
Sun, Xin, & Zheng, 2016) and machine learning techniques can be applied to teach the
machine to discern different elements of the traffic scenario even in challenging lighting
conditions and when the objects are partially occluded (Ohn-bar & Trivedi, 2015).
Machines are generally found to be considerably worse than humans at broad categoris-
ation, e.g. identifying an animal (Branson, Van Horn, Wah, Perona, & Belongie, 2014;
Fleuret et al., 2011; Linsley, Eberhardt, Sharma, Gupta, & Serre, 2018), but superior in
finding small distinctions, e.g. the species of bird in an image. Even when the human
and machine reach the same conclusion, they do this based on different visual markers
(Linsley et al., 2018). Differences in how humans and machines operate are worth
noting, both to ensure safe co-existence on the road, but also to leverage the strengths
of machine sensors and cognition.

Infrastructure design could also impact how fast and successful the processing of
sensor input is. Road marking detection can again serve as an example. Beyond the pro-
blems of capturing the lane markings on camera, lie the problems of correctly analysing
them. Issues have been identified with relation to old markings, worn markings and
asphalt cracks (Chen, Seff, Kornhauser, & Xiao, 2015; A. Pike, Carlson, et al., 2018), but
also problems were other parts of the infrastructure are mistaken for lane markings
such as road marking arrows or guardrails (Borkar, Hayes, Smith, & Pankanti, 2009;
Chen et al., 2015).

4. Discussion

In order for the automated driver to be considered in future road design and maintenance,
its characteristics must first be established. Understanding the differences between human
and automated drivers can provide insight into how to ensure the safety benefits expected
by automated driving. The current definitions of automated drivers, including the SAE Inter-
national’s ADS, do not provide insight into the unique characteristics of the automated
driver. Therefore, a unified framework for driving has been established encompassing all
parts of the driving processes. In this framework, how the driver senses their environment
was shown to impact all the driving processes. Sensing of the environment also represents
the most direct interaction between driver and the road environment. Thus, it is necessary
to focus on the sensing processes of both human and automated road users as well how
this sensory input is processed (cognition).

As presented in the previous section, there is a significant amount of research on
both the different sensors used in driving automation, and the automated driving
functions that they make possible. However, these seldom shed light on what
changes are needed to make the road infrastructure easier to interpret for automated
drivers. The unified framework and analysis of differences between human and
automated drivers presented in this paper provide guidance on how to close this
research gap.

The main differences identified between humans and automated drivers are that the
automated driver has a much greater range of electromagnetic sensitivity and field of
view (related to sight), and that the two road users interpret and act on sensory input
in different ways (related to cognition).

TRANSPORT REVIEWS 15
93



Given the increased electromagnetic sensitivities, there is potential to use colours and
contrasts to aid sensors that depend on available light, e.g. cameras, and use surface tex-
tures (roughness, transparency and reflective properties) to improve detection by sensors
that actively emit radiation, e.g. radars and lidars.

Road design and road maintenance strategies both play a role in the success of auto-
mated driving features. Longitudinal road elements can be hard to distinguish in image
processing, e.g. lane markings, cracks in the road and safety rails. Research on how
different materials and finishes can help automated drivers correctly classify road infra-
structure elements is encouraged. Regarding road maintenance, strategies will need to
be updated to ensure the success of automated drivers, e.g. in relation to road damage
repairs and maintenance of road markings.

Characteristics of the automated driver also have implications for existing road infra-
structure. As mentioned previously, LED signs are hard to read for cameras due to
flicker; for this reason, they might not be a cost-effective investment for the future.
Glass and mirrors can cause lidars to misinterpret distances to objects. The way objects
reflect laser light also impacts lidars’ accuracy of object detection. These mechanisms
should be considered both in the design of the road infrastructure and for the vehicles
themselves. For example, using car paints that are easily detectable by an automated
driver, and, if possible, distinguishable from static parts of the road environment, could
also increase safety and lower reaction times.

Although it depends on the sensors’ set-up on the vehicle, the automated driver
usually has some sort of perception in all directions. The greater FOV of automated
drivers has the potential to increase safety in traffic but depends on the correct interpret-
ation of sensor data. Placement of sensors will have a specific impact on the eye height
parameter which determines sight distance in geometric road design. To include the
automated driver in road design, the current design parameters will need to be reevalu-
ated. Definitions used for human drivers might not be directly transferrable to the auto-
mated driver. For instance, sensor placements are likely to be both higher and lower than
the design criteria of eye height used in current design standards. Sensor fusion, which
involves combining sensor input from different sensors, further complicates this
definition.

Safe driving is dependent not only on what data is collected by sensors, but also
how it is analysed. The amount of sensory data being processed, as well as the proces-
sing algorithms themselves, impacts the reaction time of the automated driver. Lower
reaction times are expected to be a notable benefit from automated driving; however,
in the current stages of development, it will be beneficial to process more sensory data
for greater safety and redundancy. An understanding of trade-offs such as this one is
important as road authorities will find themselves in a position where they need to
develop policies to certify the automated driver for different uses. To better under-
stand how the automated driver operates, one approach is to require programming
that explains how automated drivers interpret their surroundings and how they
reach their decisions, often referred to as explainable AI. The analyses of sensor
data, or cognition of the automated driver, is also related to object detection. The
differences in cognition for human and automated drivers suggest revising par-
ameters (such as object height and reaction time) that are used to determine stopping
sight distance in road design.
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Despite the uncertainty surrounding what sensors the automated driver can be
expected to have, and how the data from these will be interpreted, the findings of this
study suggest areas for future research efforts. The following steps are suggested to ident-
ify concrete measures for including the automated driver in the design and maintenance
of road infrastructure:

1. Parameters for geometric road design needs reevaluating based on the automated
driver’s development. Eye height and object height are examples of parameters that
require a new definition. Reaction time will likewise need to be defined for automated
drivers and monitored as vehicles and systems evolve.

2. The suite of sensors used by the automated driver detects a range of electromagnetic
radiation considerably larger than the range visible to human drivers. This should be
explored to optimise the design of road infrastructure elements. For example, research
can uncover how colours, textures and materials can be used to help machine drivers
separate roadway from safety railings or curbs.

3. Maintenance policies need revision as more knowledge about how wear and damages
to the road infrastructure affect automated driving is generated.

4. Successful automated driving will require co-operation between road authorities,
researchers, and vehicle manufacturers. Transparency with respect to how the infra-
structure is sensed and interpreted should be encouraged, including trade-offs of
latency versus redundancy and classification of objects.

5. Conclusion

As automated driving features continue to develop, a new road user, the automated driver,
has emerged. To build infrastructure suited for this automated driver, more knowledge
about the automated driver combined with a solid understanding of how the roadway is
sensed and interpreted by the automated driver is needed. Current literature lacks a frame-
work for automated driving that covers all driving processes. This paper has established a
unified framework for human and automated driving based on theoretical models of
human driving and robotics. The unified framework of driving provides an approach to
relate the sensor technology used in automated driving to existing human senses to
which the roadway infrastructure is currently adapted. The sensing processes of automated
and human drivers have been reviewed to identify differences between the two road users.
The understanding of these differences provides research directions that can enable inclu-
tion the new automated driver as a road user in road design and maintenance policies.
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Preparing for Automated Drivers – An Evaluation of Current Road Design Parameters 

Geometric road design has evolved over a century based on increased knowledge of 

the human driver, vehicle performance, and the laws of physics.  Recently, a new 

non-human road user has emerged, the automated driver. Born from driving support 

systems and becoming increasingly capable of driving on its own, the automated 

driver senses and acts differently to the roadway environment from a human driver. 

To capitalize on the expected benefits of automated drivers, e.g.  fewer accidents 

and more flexibility in road design and freight, current human-oriented road design 

parameters need to be reconsidered. 

Within this review, Norwegian geometric road design parameters, as well as their 

U.S. equivalents, are evaluated considering the transition from human to automated 

driver. Subsequently, the parameters most likely to be affected by automated 

drivers are highlighted and the consequences of these effects discussed. Parameters 

currently in need of revision as well as those needing monitoring for future 

revisions are indicated. Road design for automated drivers is found to be potentially 

more flexible, which could allow for more cost-efficient roads. However, human 

comfort is a limiting factor in road design where humans are drivers or passengers. 

Development of two sets of road design parameters, one for passenger transport and 

the other for freight transport (without human occupants), may be considered, as 

freight movement might be able to take advantage of greater range in roadway 

design, including smaller radii for roadway curvatures.  

Keywords: road design; automated driving; policy; automated driver; design 

parameters 
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1. Introduction 

Geometric road design is influenced by human physiology and psychology as well as the laws of 

physics. Human reaction times are used to define parameters such as stopping sight distances; 

they are then used to determine vertical crest curves. Human comfort also plays a central role in 

road design. To ensure comfortable driving situations for human drivers and passengers, there 

are limits on road design elements such as sag curves to prevent accelerations beyond human 

acceptance levels. An example of how, also,human psychology influences road design is 

horizontal curvatures, which are designed to help human drivers choose a suitable speed and 

trajectory when driving through curves. Wider curves are more forgiving in terms of the 

trajectory chosen; however, this effect is often negated, as the increased width also encourages 

human drivers to drive faster (Ben-Bassat & Shinar, 2011; Charlton, 2007).  

Finally, the physics of driving revolve around a mechanical interaction of tire and road that 

creates the friction necessary for control, acceleration, and deceleration. It is supported by road 

characteristics such as banking and gradients, which ensure proper run-off of water while 

keeping lateral forces low enough for safe driving. Automated driving may also affect vehicle 

dynamics. For instance, it has been suggested that acceleration and deceleration rates could 

increase with automation (Washburn et al., 2018). 

Some road design parameters have remained unchanged for decades. For instance, 

current definitions of  stopping sight distance (SSD) were developed in the 1940s with minor 

revisions in the mid-eighties (Khoury et al., 2019) and mid-nineties (Transport Research Board, 

1997; Wood & Donnell, 2017), while perception-reaction time road for conditions for drivers 

back to 1954 (Khoury et al., 2019). Since this, a new road user has emerged, the automated 

driver. The automated driver differs significantly from human drivers in terms of physical 

attributes (such as eye height) and cognitive characteristics (such as reaction time).  

National and international road authorities have developed current road design standards 

to make safe and efficient roads for humans. It may be argued that developers of automated 

driving systems need to respond to the roads as they are, and not presuppose that road design will 

take into consideration automated features. The shift from human to automated driver comes 

with a promise of fewer accidents on existing roads, as these accidents are mostly due to human 

error (National Highway Traffic Safety Administration, 2015; Vegdirektoratet, 2018). Yet, some 

crashes are not due to driver error, but instead can arise from poor roadway design, including 

inadequate sight distance or intersection configuration (Noy et al., 2018). In Norway, an average 

of 28 percent of fatal crashes were at least in part due to factors pertaining to the roadway, 

including road alignment, available sight distance and the state of the road surface 

(Vegdirektoratet, 2018). So, to reap the expected benefits of automated driving, it is in the 

interest of the vehicle industry and road authorities alike to a) acknowledge how the automated 

driver differs from humans and b) determine how that knowledge may be used to optimize road 

design for both humans and automated drivers. In addition, it is worth investigating whether the 

new automated driver can allow for road design that is less resource intensive due to factors such 
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as more flexible road design (e.g., smaller radii curves) and fewer safety features (e.g., design 

speed buffers). 

Literature on how the change from human to automated driving could affect physical 

road infrastructure is limited, and research on potential changes in geometric road design at 

different levels of automation is needed (Farah et al., 2018). The existing work most often 

considers scenarios with full automation. It is suggested that automated drivers can lead to 

narrower lanes due to their superior positioning (Hayeri et al., 2015; Lumiaho & Malin, 2016; 

McDonald & Rodier, 2015) and that a need may arise for dedicated lanes and longer ramps to 

accommodate platooning of vehicles, i.e. several vehicles driving together (Deshpande et al., 

1996; Lutin et al., 2013). Based on the assumption that automated drivers have lower reaction 

times compared to those of human drivers, it is suggested that design speeds be increased 

(McDonald & Rodier, 2015; Washburn et al., 2018). Full automation could lead to reduced cut 

and fill volumes for roadway construction due to flexibility caused by using vertical curves with 

smaller radii (Khoury et al., 2019). 

This paper examines how the developing capabilities of automated drivers may be 

included in an iterative process of updating road design parameters. Through a review of the 

Norwegian Handbook of Geometric Road Design (Statens vegvesen, 2019a), and a comparison 

to the equivalent U.S. design parameters from the American Association of State Highway and 

Transportation Officials’ (AASHTO) A Policy on Geometric Design of Highways and Streets, 

parameters that are likely to be affected by this change are suggested. The work is aimed at 

providing transportation engineers and road authorities with a starting point to revise road design 

parameters to accommodate the increasing levels of automation seen in today’s road 

transportation. 

1.1 Geometric Road Design 

The design of roadways in Norway is governed by the Handbook of Road and Street Design 

N100 (Statens vegvesen, 2019a) and the Handbook of Geometric Road Design V120 (Statens 

vegvesen, 2019b). In the following, the road design parameters from the latter, which are used in 

geometric road design and ultimately roadway construction, will be presented and subsequently 

reviewed in light of the automated driver. While these guidelines are specific to Norway, they 

are based on theoretical concepts in physics and geometry that are universally related to road 

design, and thus show similarities to other international design standards. The parameters used in 

Norwegian geometric road design are compared to the U.S. equivalents from AASHTO’s A 

Policy on Geometric Design of Highways and Streets. 

 Geometric road design consists of 1) Basic parameters, e.g., eye height and reaction time, 

and 2) derived Design parameters, including horizontal and vertical curve radii. The parameters 

are presented in Figure 1, where the basic parameters appear in blue and the design parameters 

in white. 
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Figure 1 Relationship between basic parameters (blue) and design parameters (white) 

derived from (Statens vegvesen, 2019b) 

Automated driving features are becoming more common on public roads including Advanced driver 

assistance systems (ADAS) and more advanced systems such as General Motor’s Super Cruise and 

Tesla’s Autopilot. Fully automated driving systems are suggested to be publicly available in two to three 

decades (Litman, 2018). When a road is planned, it is built to serve the traffic needs in the subsequent 20 

years. This indicates that geometric road design needs to be revised to include automated users. The 

following section defines automated drivers and identifies known characteristics of these new road users. 

As automated drivers are under development this definition is based on existing driving automation 

features. 

1.2 Defining the automated driver 

Today’s road design is based on human characteristics, including Eye height and Reaction time. 

To reevaluate current road design considering the new road user, the automated driver must be 

defined. The Society of Automotive Engineers defines six different levels of automated driving 

as shown in Table 1, where level 0 is no automation and level 1 represents ADAS features such 

as lane departure warning, advanced cruise control and parking assistance.  

 Driving automation systems like Autopilot and Super Cruise are at level 2 as they are not 

able to handle the Object and Event Detection and Response (OEDR) functions, e.g., handling 

road works. On level 3, the driving automation is capable of OEDR with the human driver ready 

to take over if needed, i.e., fallback. At level 3 the fallback-ready user can be either a human 

driver or the driving automation system itself. If fallback is necessary, it means that the 

automated driver is unable to perform the driving tasks. If a human is the fallback-ready user it 

may continue to drive if possible, while if the system is the fallback, it will try to achieve a 

minimal risk condition, e.g., stopping at the side of the road. At level 4 and 5 the driving 

automation system handles all dynamic driving tasks. Level 4 may have restrictions on the 
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conditions under which it can operate, known as the operational design domain (ODD), e.g., it 

may not handle snowy conditions.  

Table 1 Levels of driving automation adapted from (SAE International, 2018). 

Dynamic Driving Task (DDT) 

Level Name Sustained lateral and 

longitudinal control 

Object/Event Detection 

and Response (OEDR) 

Fallback Operational Design 

Domain (ODD) 

0 No driving 

automation 

Driver Driver Driver N/A 

1 Driver 

assistance 

Driver and System Driver Driver Limited 

2 Partial driving 

automation 

System Driver Driver Limited 

3 Conditional 

driving 

automation 

System System Fallback-

ready 

user 

Limited 

4 High driving 

automation 

System System System  

5 Full driving 

automation 

System System System Unlimited 

 

 The levels of automation defined by SAE International define the role of human and 

automated driving system but do not describe how the automated driver differs from human 

drivers. Characteristics of automated drivers are related to their sensors, sensor placement and 

the software that interprets the sensor data and controls the vehicle. Based on commonly used 

sensors in modern cars some differences between human and automated driver can be identified. 

 Vehicles with driving automation functionality have sensors that monitor the vehicle 

itself as well as sensors that sense the driving environment outside it. In relation to road design, 

the sensors that sense the environment outside the vehicle are the most important. The most 

commonly used environmental perception sensors are radars, cameras, and sonars (ultrasound) 

when considering publicly available vehicles. Lidars are widely used for development vehicles 

and are likely to be used in cars accessible to the public for higher levels of automation in the 

future (Gruyer et al., 2017; Hirz & Walzel, 2018; Steinbaeck et al., 2017; Van Brummelen et al., 

2018). 

At any level of automation, the automated driving system’s environmental perception is 

different to a human driver’s perception. Humans have one eye height where the value used in 

road design is based on statistical means of human eye height while sitting in the driver seat of a 

car. Humans can use mirrors and aids such as rear-facing cameras to increase their field of view 

but can only look in one direction at a time.  

Sensor placement for cars can be lower than human eye height, e.g., parking sensors, at 

approximately the same height as human eye height, such as cameras in the rear-view mirror 
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sensor cluster, and higher than human sight, e.g., roof-mounted lidars. Sensors are placed around 

the vehicle so that automated driving features have perception in all direction at once. From this 

it is apparent that the Eye height parameter used in geometric road design is not applicable to 

automated drivers.  

2. Related Work 

2.1 The Impact of Automated Driving on Geometric Road Design 

Literature searches were performed in Oria (a database of literature available via Norwegian universities 

and research institutions) and Google Scholar using the search terms: geometric road design AND 

(automated OR autonomous) AND (driving OR driver OR vehicle). Farah et al. (2018) pointed out in 

their state of the art on infrastructure for automated and connected vehicles that adaptions of physical road 

infrastructure to facilitate automated driving represents a knowledge gap. 

  Washburn et al. (2018) discussed the impact of automated driving on transport engineering. 

Related to geometric road design they suggest that automated drivers will have shorter reaction times and 

potentially higher acceleration and deceleration rates which, in turn, can lead to shorter ramps, steeper 

upgrades/downgrades and steeper and/or shorter climbing/passing lanes. A shorter reaction time would 

also lead to shorter stopping and decision sight distances. However, they conclude that vehicle 

performance as a result of driving automation is not likely to impact on geometric design standards due to 

1) limits in acceleration/deceleration due to tire/pavement interface, 2) road design needs to consider 

drivers and vehicles in the lower end of the performance range, and 3) human comfort considerations. 

 Khoury et al. (2019) reviewed the road design parameters stopping sight distance (SSD), decision 

sight distance (DSD), and vertical curve radii. In their analyses they consider only fully automated 

transport  and conclude that the shorter SSDs can be obtained as a result of the expectation of lower 

reaction time and that radii of vertical curves can be reduced while still being limited by human comfort. 

They also find that sensor placement, i.e., the automated drivers eye height impacts the stopping and 

decisions sight distances. 

 Considering reaction time, Khoury et al. suggest 0.5 seconds as the time from an object is 

detected by an automated driver to the brakes are applied. This is in line with the findings of Collin et al. 

(2019) who simulated the performance of different system architectures in terms of latency (e.g., the time 

between identifying an object and a braking action) and cost as defined by the load on the system’s 

processing and communication  (i.e. the cost of the computing system’s processors and buses). In their 

simulation they found the latency of the system architectures performing the tasks to be between 0.34 and 

0.38 seconds (Collin et al., 2019). Reaction time will be dependent on the amount and type of sensors 

used as well as the hardware and software architecture of the driving system as well as the complexity of 

the driving environment. How object detection is defined is also of interest when considering automated 

drivers. Object detection is also dependent on the hardware and software set-up. An object can be 

detected as pixels in one or more frames (Sivaraman & Trivedi, 2013), by fusing sensor signals from 

different sources (Wang et al., 2016) and machine learning can be utilized to help automated drivers 

discern different elements of the driving environment (Ohn-bar & Trivedi, 2015). There is also the issue 

of correctly classifying what the sensors detect. In general, machines are not as adept as humans in broad 

categorization (Branson et al., 2014; Fleuret et al., 2011; Linsley et al., 2017) and they can not be trained on 

every thinkable driving scenario in advance.  
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 Stopping sight distances are based on designing roads where the driver is able to detect an 

obstacle and stopping before hitting it. Urmson (2006) found that swerving around an obstacle requires a 

smaller distance than stopping for it. However, to be able to swerve around an obstacle there needs to the 

available free space outside the normal lane. This will not always be the case due to oncoming traffic or 

safety barriers but may be an option for the future on roads without safety barriers and in instances 

without oncoming vehicles . 

 Regarding horizontal curvature, García et al. (2020) used a vehicle with level 2 automation, 

BMW 520d 2017 model with Active Cruise Control (ACC) and Lane Keeping Assistant (LKA), to 

investigate the maximum speed this lower level of driving automation could obtain through horizontal 

curves. They found that this level 2 driving functionality consistently drove below the posted speed limit. 

This research is based on one specific implementation of level 2 automation which can be assumed also to 

have been programmed to behave on the cautious side. Higher levels of automation should be able to 

drive as fast as humans or faster, however, there are limitations on the minimum radii of horizontal curves 

that relate to the danger of skidding or rollover (Easa & Dabbour, 2003; Harwood & Mason, 1994).   

 Road design is to a large extent governed by the poorest performers. When considering road 

design to include automated users, these are largely expected to be human drivers with the exception of 

level 2 driving automation as identified by García et al. (2020). From this it follows that road design for 

both human and automated users will be limited by human capabilities. This may be the reason that most 

of the research on the impact of driving automation on geometric road design considers full automation 

only. However, there is one other application where the changes to road design as a result of automation 

can be explored; namely automated freight of goods that excludes human passengers.  

 In the following, the geometric road design parameters used in Norwegian road design will be 

assessed considering automated drivers. Norwegian geometric road design is governed by the Handbook 

of Geometric Road Design V120 (Statens vegvesen, 2019b). These will be discussed and compared to 

U.S. road design equivalents primarily governed by the American Association of State Highway and 

Transportation Officials’ (AASHTO) guidelines in A Policy on Geometric Design of Highways and 

Streets (American Association of State Highway and Transportation Officials, 2011). While these 

guidelines are specific to these countries, they are based on theoretical concepts in physics and geometry 

that are universally related to road design, and thus have international relevance. 

3. Analyses 
The analyses will cover what are referred to as basic parameters in Norwegian design standard first as 

they are used in the remaining design parameters discussed in section 3.2. 

3.1 Basic parameters  

Vehicle size and dimensions 

Several basic parameters used in road design are based on the size of the vehicle, including 

Vehicle height, Vehicle width and Wheel distance, Overhang, and Off-tracking. Due to the 

increasingly precise positioning capabilities expected from automated drivers, some researchers 

have suggested that lanes will become narrower (Hayeri et al., 2015). If this is true, it seems 

unlikely that vehicle width will increase. Additionally, increasing the outer dimensions of 

vehicles would mean less distance to other vehicles, curbs, and dividers within the current 
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infrastructure, which in turn would yield smaller safety margins for positioning and 

maneuvering. Moreover, increases in outer size would require that changes be made to 

supporting infrastructure such as on- and offloading facilities. It has been suggested that fully 

automated vehicles can be more flexible in design, for instance as small pods for moving 

passengers or distributing goods in cities (Duarte & Ratti, 2018). In the case of trucks, the outer 

dimensions at present time cannot be decreased without providing less space for goods which is 

undesirable in freight application. Platooning has been suggested to introduce a need for longer 

ramps, shoulders and designated lanes (Farah et al., 2018; Hayeri et al., 2015) will be required, 

all of which could also allow for longer vehicles. 

Although, in time, vehicles may change in size and function due to automation, for now 

there are no clear trends that indicate a need to change the generalized vehicle dimensions used 

in road design. Regardless of this situation, the statistical variance of vehicles should continue to 

be evaluated periodically to check that the parameters relating to vehicle size continue to be 

representative of the current fleet of vehicles of a given class. This includes basic parameters 

such as Vehicle height (a3), Wheel distance (b), Overhang (bo) and Offtracking (boff). Although 

Eye height (a1) can also be said to be related to a vehicle’s outer dimensions, the value will 

depend more on the placement of sensors than the height or width of the vehicle itself. 

Eye height, a1 

For a human driver, Eye height is dependent on the human driver’s height and the position of the 

driver’s seat in relation to the road. In the case of an automated driver, “eye height” is dependent 

on the position of its sensors. Cameras are often placed in the vicinity of the rear-view mirror. 

This placement may produce  a somewhat higher “eye height” than those used in the Norwegian 

and American road standards of 1.1 or 1.08 meters, respectively (AASHTO, 2011; Statens 

vegvesen, 2019b). Radars and ultrasound are normally placed below the windows on the 

vehicle’s body.  In this case, the “eye height” of the vehicle is lower than that of a human. The 

use of multiple sensors therefore allows the automated driver to obtain visibility far beyond the 

human driver. A low sensor placement can give vision below vehicles or other obstacles, sensor 

placement above the standardized human eye height allow for longer sight lines for example in 

the case of crest curves. Furthermore, placing sensors in the extremes of the width of the vehicle 

can give superior sight lines in horizontal curves. The Eye height parameter is not applicable to 

automated driving systems and should therefore be revised. 

Eye height is used in the design of crest curves (Figure 2).  

 

Figure 2 Crest curve and the use of eye height and object height 
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The requirement for the smallest vertical crest curve in the Norwegian Handbook of Geometric 

Road Design is based on securing an adequate stopping distance before an object on the other 

side of the crest curve. 

Object height, a2 

Object height is defined as the height of an object that a driver can detect and stop for. The 

detection of an object by a human in the Norwegian road design standard is defined as seeing a 

sector of the object covered by an angle of one arcminute (as shown in Figure 2). Object height 

is set at 0.25 m (Statens vegvesen, 2019b). The U.S. value is 0.60 m, based on the finding that 

objects with heights less than this are not likely to be involved in crashes (AASHTO, 2011).  If a 

crest curve were to be designed for meeting sight distance, for example on a one-lane road, 

values of vehicle height (a3) measuring 1.25 m and 1.08 m would be used in Norway and the US, 

respectively (AASHTO, 2011; Statens vegvesen, 2019b).  

The detection of an object by an automated driver may be done by many different 

sensors; therefore, it can be defined in different ways. For example, for a camera it can be based 

on the number of pixels at a given distance; however, the number of pixels seen at a given 

distance does not indicate a quality of perception without the viewer knowing something about 

the size of the object. Regarding other sensors, such as radars and lidars, the detection of an 

object could be defined by a defined signal response. The signal that is transmitted and reflected 

depends on the hardware and software used. Furthermore, the reflected signal depends on the 

surface characteristics as well as the size and movement of the object in question (Yang & 

Wang, 2011). Thus, it might be more reasonable to define object detection by an automated 

driver as correct identification based on its software. This detection relies on input from either 

the automated driver’s own sensors or a trusted external source, for instance via communication 

with another vehicle or roadside sensors. The software must be able to both identify an object’s 

existence and determine if this object must be avoided. The Object height parameter should be 

revised in conjunction with eye height. For automated users parameter(s) describing the sight 

lines and object detection capabilities are suggested in place of the eye height and object height 

parameters used in human-oriented road design. 

Reaction time, tr. 

Reaction time is a crucial parameter when considering any type of driving, as it impacts the 

distance needed to stop at a given speed. The parameter is used to find stopping and meeting 

sight distance, where a shorter reaction time can theoretically allow for a higher speed limit on 

an existing roadway or reduce sight distance design requirements for a new roadway.  

It is challenging to estimate the Reaction time for an automated driver because it is a 

systemic response, and the system has not yet been fully defined.  Humans’ reaction times may 

span from almost negligible to over 1.64 seconds (AASHTO, 2011) depending on the 

complexity of the situation,  attention of the driver and individual performance. The 

recommended design criteria for reaction time is 2.5 seconds in the U.S. (AASHTO, 2011), 

while the Norwegian standard uses 2.0 seconds  (Statens vegvesen, 2019b). It is generally 
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expected that automated drivers will have shorter reaction times than human drivers (Farah et al., 

2018; Teoh & Kidd, 2017). The automated driver’s Reaction time depends on vehicle 

characteristics and driving situations. The more sensors the vehicle has, the more information it 

has to create an understanding of its surroundings while adding to the data load. Hardware,(e.g. 

sensors and processing power) and software determine the system’s processing speed  

(Katrakazas et al., 2015). The automated driver’s Reaction time also depends on the complexity 

of the situation it is interpreting. 

The push for low reaction times and long detection ranges conflict with high resolution 

and sample rates, limiting the overall amount of data processed. Robust and accurate algorithms 

that turn the sensor data into correct decisions might increase the computational complexity of 

driving (Shi et al., 2017). For instance, automated drivers are often developed using machine 

learning, and the training set contains a large number of scenarios where there is nothing out of 

the ordinary happening, e.g., driving on a freeway. This means that the automated driver trains 

mostly on dealing with easy scenarios; as a result, it does  not become as accomplished at 

handling extraordinary events, referred to as corner cases (Bolte et al., 2019). More complex 

software thus requires more advanced hardware to obtain acceptable reaction times (Collin et al., 

2019; Shi et al., 2017). The artificial intelligence behind the decision-making process will 

continue to evolve, which means that the automated drivers’ choices and latencies can change 

over time (Shi et al., 2017). Reaction time, therefore, also needs to be revised to include 

automated drivers where the ability to correctly interpret driving situations and make correct 

decisions must be assured when the Reaction time of a driving automation system is considered. 

Design speed, V. 

The design speed is used to determine elements of the horizontal alignment, vertical alignment, 

and cross-sectional design. Furthermore, design speed (along with braking friction) affect 

stopping and meeting distances, which will be covered in section 2.2. 

The Design speed is the speed limit plus a buffer that depends on the road standard. The 

added buffer considers measured operating speeds and accounts for risks associated with driving 

on the road,  increasing with higher speed limits and the average annual daily traffic rate (Statens 

vegvesen, 2019a). The Design speed also impacts the basic parameters of lateral and braking 

friction, as tire/road friction decreases non-linearly with increasing speed (Fan et al., 2010; 

Heinrichs et al., 2004).  

Design speed may be affected by automated driving in two ways. First, automated drivers 

can be programmed to adhere to speed limits. This would make speed limits equivalent to 

operating speeds and reduce the need for safety buffers in design speeds, which would not 

impact geometric design, as the Design speed does not change. Secondly, if automated drivers 

can be assumed to have lower Reaction times than humans, it could allow higher Design speeds 

for existing infrastructures (McDonald & Rodier, 2015; Washburn et al., 2018). Indeed, in the 

short term, speed limits could be set equivalent to the design speed for automated drivers. If 

lower reaction times and safe operations can be consistently demonstrated by automated drivers 
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under challenging conditions, then it may be considered if established speed limits and design 

speed could be increased. However, Design speed, as well as other design parameters such as 

minimum curve radii, are also limited by human comfort. The road design developed over the 

last century considers the forces acting on the human body due to inertia to ensure that driving 

feels comfortable for humans. 

Vehicle dynamics 

Vehicle dynamics such as Acceleration, a, and Retardation (Deceleration), r, are dependent on 

vehicle characteristics and road conditions, including the available friction of the road surface. 

Both parameters are used in Norway to determine the length of road sections where active 

acceleration or deceleration takes place, i.e., ramps for entering or exiting highways. It has been 

suggested that automated drivers are more effective at braking than human drivers (Washburn et 

al., 2018), yet there is no data or information on vehicle dynamics associated with automated 

drivers providing insight into how acceleration and retardation may change. Additionally, 

advances in rates of acceleration and deceleration may find themselves limited by human 

comfort. These parameters should therefore be reassessed as more information on automated 

drivers emerges, and they should also be considered more specifically in transport cases without 

human passengers.  

Vertical acceleration (av) 

The limit on Vertical accelerations (0.3 ms-2) is used to ensure the comfort of the human driver 

or passenger (Statens vegvesen, 2019a) and factors into the minimum Vertical curve radius in 

sag curves. During automated driving, this means that if there are human passengers in the 

vehicle, this parameter is likely to remain the same. In the event of automated driving without 

humans, e.g., freight, the maximum Vertical acceleration might be relaxed, if the goods 

transported would not be negatively affected.  

Relative vertical speed (vvs) 

The Relative vertical speed is the difference in vertical speeds of wheels located on the same 

axle, for instance due to turning motions caused by the outer and inner wheel following radii of 

different sizes. In road design Relative vertical speed is used to determine the lengths required to 

achieve a certain superelevation. As with vertical acceleration, the parameter limit (0.05ms-1) is 

set due to human comfort (Statens vegvesen, 2019a) and could be altered for transportation 

without humans.   

Total available friction (ft) 

Drivers need friction to brake and avoid unwanted lateral movement while moving through a 

horizonal curve. The design values for available friction levels are based on empirical findings. 

The values used in Norway are assumed to be valid for 95% of the road surface under wet 

conditions when measured at 60 km/h and adjusted for other speeds (Statens vegvesen, 2019b). 

Although total friction values are not used in road design, they may be broken down to obtain 

braking friction, fb, and lateral friction, fk, as seen below in Equation 1.  
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𝑓𝑡
2 = 𝑓𝑘

2 + 𝑓𝑏
2   (1) 

The Braking friction is not expected to change when an automated driver is behind the steering 

wheel, as the total friction required to halt the vehicle from its current speed is not dependent on 

the driver. Similarly, as previously mentioned, while Lateral friction is assumed to remain 

unaffected, any increases made to design speed will decrease tire/road friction levels.  

Superelevation (e) 

Superelevation helps keep vehicles on the road while they are moving through horizontal curves 

by increasing the lateral friction, thereby affecting horizontal radii. The maximum value of 

superelevation, emax, in Norway (8%) is limited by winter conditions, which results in slow-

moving vehicles not being able to slide inwards on the curve in icy conditions. Higher 

Superelavations also increase the probability of rollover for larger vehicles (Easa & Dabbour, 

2003; Harwood & Mason, 1994). The corresponding value for emax in the U.S. is 12% 

(AASHTO, 2011). Superelevation also impacts the length of clothoids (also known as spiral 

transition curves), allowing for safe and comfortable transitions between cross-sloped and 

superelevated road segments. Because of these winter driving conditions, it is unlikely that any 

change will be made to these requirements.  

3.2 Implications for Design Parameters 

This section discussed the impact of automated drivers on design parameters. 

Stopping sight distance (Ds) 

The Stopping sight distance is the distance drivers need to stop for an object in the road and is 

equal to the sum of the reaction distance, Dr, and braking distance, Db, i.e.:   

 𝐷𝑠 = 𝐷𝑟 + 𝐷𝑏 = 0.278 ∗ 𝑡𝑟 ∗ 𝑉 +
𝑉2

254.3∗(𝑓𝑏+𝑠)
  (2) 

It is dependent on Design speed, V (kmh-1), and Reaction time, tr (s), as well as Braking friction, 

fb, and Gradient, s. In the formula used in Norwegian design, the constant value 0.278 accounts 

for unit conversion, and the constant value 254.3 accounts for gravitational acceleration and unit 

conversion. Given the expected changes to reaction times (and possibly design speeds), this 

distance is likely to be affected by changing to an automated driver because a lower reaction time 

will have the potential to reduce the stopping distance considerably, even when applying a higher 

design speed.  

To illustrate, Figure 3 shows how the SSD is affected by changes in reaction time and 

design speed. For instance, given a design speed of 80 kmh-1, a reduction in the reaction time 

from 2 seconds to 1 second produces a 22.4 percent lower stopping sight distance.  
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Figure 3 The effect of reductions in reaction time (tr) and increases in design speed (V) on stopping 

sight distances 

Meeting sight distance (Dm) 

The Meeting sight distance is defined by Equation 3: 

𝐷𝑚 = 2𝐷𝑠 + 10  (3) 

The Meeting sight distance is directly related to the Stopping sight distance, which means that 

the effects of having an automated driver would be similar, i.e.  a lower Reaction time will yield 

lower meeting sight distances, even when considering higher design speeds.  

Passing sight distance (Dp) 

The passing sight distance is calculated by a model for overtaking, as shown in Figure 4 (Statens 

vegvesen, 2019a). The model is based on three vehicles, an active vehicle that is trying to 

overtake another vehicle, a passive vehicle, and an oncoming vehicle.  

 

Figure 4 Passing sight distance (Statens vegvesen, 2019b) 
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The speeds of the vehicles are found in Equations 4-6: 

𝑉𝑎𝑐𝑡𝑖𝑣𝑒 = 1.19 ∗ 𝑉𝑝𝑎𝑠𝑠𝑖𝑣𝑒+3.87   (4) 

𝑉𝑝𝑎𝑠𝑠𝑖𝑣𝑒 = 𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 − 5 𝑘𝑚ℎ−1  (5) 

𝑉𝑜𝑛𝑐𝑜𝑚𝑖𝑛𝑔 = 𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 + 5 𝑘𝑚ℎ−1  (6) 

The passing sight distance is the sum of the passing distance, safety distance and distance 

covered by the oncoming vehicle, as illustrated by Figure 4. 

The three individual distances that make up the passing sight distance are all related to 

one or more of the three vehicle speeds found in the model. The potential increase in speed 

following the automation of driving would therefore increase passing sight distances. 

Vertical curve radius (Rv) 

The minimum Vertical curve radius for crest curves is determined by the Stopping sight distance 

(Ds), as well as the Eye height (a1) and Object height (a2), or Meeting sight distance (Dm), Eye 

height, Vehicle height (a3) for one-lane roadways, as shown in Equation 7.  

𝑅𝑣,𝑚𝑖𝑛 =
1

2
∗ (

𝐷𝑠(𝑚)

√𝑎1+√𝑎2(3)
)

2

   (7) 

As described above, the sight distance is linked to speed and reaction times. A higher Design 

speed alone will therefore result in a larger radii vertical curve, while a lower Reaction time will 

reduce the radius, even at a higher design speed. 

Vertical crest curve radii are also affected by the vehicle characteristics of the automated 

driver that are equivalent to human eye height. An Eye height that is higher above the road than 

the values currently used for human Eye height will allow for a smaller Vertical curve radius 

(Khoury et al., 2019).  Object height is also central to the determination of crest curve radii, and, 

as previously stated, should be revised for automated drivers given that there are differences in 

the way automated vehicles identify objects in the roadway. Vehicle height is not considered to 

be affected by automated drivers at present time. While sight distance currently controls the 

design of crest curves, if reductions to sight distance requirements were great enough, a limiting 

factor might still be comfort, i.e., whether it is possible to increase speed or make curvatures 

smaller without compromising on the human comfort factor.  

For vertical sag curves, Rvmin is defined by Equation 8: 

 𝑅𝑣,𝑚𝑖𝑛 =
𝑉2

12.96∗𝑎𝑣
  (8) 

In the formula, the constant value 12.96 accounts for unit conversion. 

 Sag curves are designed for daylight conditions in Norway; thus, they inherently have 

less sight distance concerns and are designed to ensure the comfort of the driver/passenger. The 
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limitation is therefore in the Vertical acceleration, av, which in Norwegian and U.S. design 

requirements is set to 0.3 ms-2. As a result, roads designed without human comfort in mind could 

use smaller radii for both crest and sag curves.  

Horizontal curve radius (Rh) 

Rh,min is related to Design speed, V (kmh-1), Superelevation (e), and Lateral friction (fk) as shown 

in Equation 9. In the formula, the constant value 127 accounts for gravitational acceleration and 

unit conversion. 

   𝑅ℎ,𝑚𝑖𝑛 =
𝑉2

127∗(𝑒𝑚𝑎𝑥+𝑓𝑘)
  (9)  

An increased Design speed would lead to a larger minimum curvature. While the Superelevation 

emax is not likely to change due to danger of skidding or rollover issues.  

Tunnels comprise a unique case in road design since the tunnel walls restrict the available 

sight distance through curves. Thus, the minimum horizontal curvature in tunnels is controlled 

by sight distance and is determined by Equation 10:   

𝑅ℎ,𝑚𝑖𝑛 =
𝐷𝑠

2

8∗𝐵
    (10) 

In this equation, Ds is the required Stopping sight distance, and B is the distance from the center 

of the lane to the tunnel wall. A lower Reaction time would have the potential to reduce the 

minimum horizontal curvatures due to its relation to the stopping distance. 

Clothoid parameter (A) 

A Clothoid is a spiral curve used to transition between different horizontal curve radii. The 

minimum Clothoid parameter, Amin, is related to the minimum Horizontal curve radius, Rh,min, 

and length, as shown by Equations 10 and 11:  

𝐴𝑚𝑖𝑛 =  √𝑅ℎ,𝑚𝑖𝑛 ∗ 𝐿𝑜,𝑚𝑖𝑛  (10),  where  𝐿𝑜,𝑚𝑖𝑛 =
𝑏∗𝑉∗𝑒𝑚𝑎𝑥

3,6∗𝑣𝑣𝑠
        (11)     

Lo,min is the distance needed to achieve the maximum Superelevation, and it increases at 

higher speeds, while the Superelevation and Wheel distance, b, are assumed to remain the same. 

A reduction in length could result from a greater relative vertical speed that could be considered 

for human-free movement, which is again due to relaxing comfort restraints. 

Road widening (∆B) 

Road widening is necessary in small horizontal curves (less than 500m in radius) and increases 

with larger vehicle types. Based on arguments pertaining to the size and dimension of vehicles 

with the evolution of the automated driver, the parameters related to vehicle size are assumed to 

stay the same. As Road widening is related to the Horizontal curve radii, significant decreases in 

minimum Horizontal curve radii would increase the design needs for Road widening; however, 

this would not change the widening width itself. 
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4. Discussion 

The parameters for geometric road design were evaluated in light of the automated driver. The 

results of the analyses in section 3.1 and 3.2 are summarized in Figure 5. 

 

Figure 5 Parameters of geometric road design affected by the automated driver 

Eye height, Object height and Reaction time are basic parameters that differ significantly from 

human to automated driver, as these depend on the automated driver’s hardware (i.e., sensors) 

and software. The concept of Eye height is a direct consequence of human anatomy and as such 

is not applicable to an automated driver. An automated vehicle is likely to be surrounded by 

sensor perception located at different heights. This means that the concept of Eye height and 

design parameters linked to eye height, i.e., the minimum vertical crest curve, should be revised.  

Similarly, Object height (i.e. detecting objects ahead in the road) is a fundamentally 

different concept when considering an automated rather than a human driver. Like Eye height, 

Object height is currently used in the calculation of minimum crest curves. It might be more 

relevant to look at the processing and classification of sensory input to establish criteria on object 

height detection for automated drivers. As automated driving is under development, perception 

and classification by automated systems should continue to be investigated while encouraging 

developers of automated vehicles to design vehicles that can explain what they sense and why 

they choose the actions that they do, e.g., through explainable artificial intelligence.  

Design speed can be considered a redundant parameter when exclusively considering 

automated drivers as they can be programmed to adhere to the maximum operating speed. While 

this fact alone does not change the geometric design parameters, as automated drivers increase in 

number and potential safety effects are realized, policies concerning design speed versus 

operating speed may be considered. 

If automated drivers can be expected to have lower Reaction times than humans, it could 

have significant implications for road design. Reaction time and Design speed feature jointly in 

Stopping sight distance (Ds), Meeting sight distance (Dm), Horizontal curve radius (Rh) and 

Vertical crest curve radius (Rv,crest). In these instances, lower Reaction times allow for greater 
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Design speeds while still reducing distances and curve radii. This is not the case for passing 

distances (given the current Norwegian definition) or for vertical sag curve radii (Rv,sag) which 

are only related to Design speed and not to Reaction time. While Reaction time is expected to be 

lower for automated drivers than for human drivers; at the same time, this will require further 

monitoring in relation to how Reaction times for automated drivers are defined and under which 

circumstances this lower Reaction time occurs. 

Although lane width is not part of the Norwegian geometric design parameters as 

described within this study, it is relevant to the discussion of how automated drivers can change 

road design. As mentioned, it has been suggested that lane widths could be made narrower due to 

the superior positioning of automated vehicles (Hayeri et al., 2015; Lumiaho & Malin, 2016; 

McDonald & Rodier, 2015), which could in turn either increase capacity by adding lanes to 

existing multilane roads or reduce the cost of building new roads. At present time, however, the 

accuracy of positioning is not high enough to warrant decreasing lane width (Cui et al., 2016), so 

mixed traffic will have to be assumed. Lane width reduction could be relevant for roads designed 

specifically for automated drivers. 

4.1 Comfort 

When considering the changes that could be made possible by automated drivers, including 

smaller horizontal and vertical curve radii, there might still be restrictions related to human 

comfort factors. The parameters linked to human comfort are indicated by green in Figure 5. 

The physical forces acting on the body are the foundation of how human comfort is currently 

factored into current geometric road design parameters. However, the term comfort may be 

perceived differently when it concerns an automated driver compared to a human driver. 

Research shows that the preferred driving style of an automated driver does not necessarily 

correspond to how humans would drive the vehicle themselves (Bellem et al., 2018). Humans 

indicated that they preferred the automated driver to perform distinct and observable movements 

(i.e., change speed or direction, or both), to signal that a maneuver was initiated in situations in 

which a critical element might arise, and provide a more flexible onset of actuators when the 

situation was not critical. 

While accelerations associated with smaller radii curves might be problematic in terms of 

human comfort, they are of less concern if considering roads which serve only non-human 

transport. This type of road project has been suggested to take place between Detroit and Ann 

Arbor, Michigan (Roberts, 2020). In such a situation, automated drivers could potentially use a 

more flexible road design where narrower curves could be combined with wider curves to better 

suit the terrain (Khoury et al., 2019). Yet if considering roads designed specifically for freight 

vehicles, smaller radii curves may be problematic for trucks in terms of forces acting on the 

vehicle and cargo. Today, successive radii have similar sizes, a factor that makes the road 

predictable for humans and supports steady speeds. In Norwegian road design, long stretches of 

straight roads are also avoided to mitigate human drivers’ drowsiness. Removing the comfort-
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related aspects of predictability and variability needed for human drivers and passengers could 

thus make possible road alignments that are more cost-efficient to build.  

4.2 Connectivity 

If vehicles can communicate with each other, then theoretically, vehicles could be notified of 

obstacles in the road well in advance of reaching them (Farah et al., 2018), giving an altogether 

different meaning to reaction time and sight distances. However, this implies flawless coverage 

and communication services, which is unlikely to occur; furthermore, it would require that a 

previous vehicle would pass on this information. As the latter cannot be assumed to be true, 

connectivity is no substitute for needing a reaction time generated by the system. 5.  

5. Conclusion 

Road design parameters must be updated to accommodate the new road user, the automated 

driver. As a starting point for making way for the automated driver in road design, after a review 

of the current Norwegian road design standards, the following action points are suggested. 

Short-term recommendations are to redefine the following road geometry parameters: 

▪ Eye height 

▪ Object height 

▪ Reaction time 

These parameters are the ones most impacted by the introduction of the automated driver, 

affecting road design parameters such as sight and stopping distances as well as horizontal and 

vertical curvatures. Given the way automated drivers identify and react to obstacles in the 

roadway, traditional considerations of these parameters need to be revisited and likely revised.  

Long-term recommendations are to evaluate the possibility of a geometric road design 

standard for automated freight where the following design parameters are found to be 

promising candidates for increasing the flexibility of road design: 

▪ Vertical acceleration 

▪ Relative vertical speed 

▪ Clothoid parameter 

▪ Minimum vertical curve radii (crest) 

▪ Minimum vertical curve radii (sag) 

▪ Horizontal curve radii 

Current road geometry parameters are closely linked to human comfort. Redefining standards of 

road design to incorporate the automated driver could include designing freight roads without 

human passengers, allowing for a more flexible design through smaller radii curves and shorter 

transition elements, for instance ramps or clothoids. Additionally, if higher 

Acceleration/Deceleration rates can be ensured, Stopping, Meeting, and Passing sight distances 

can be decreased. 
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Vehicle characteristics relating to both the physical dimensions of AVs, e.g., vehicle width or 

wheelbase, as well as vehicle dynamics, should be monitored so that changes to the assumptions 

used in the road design standards are aligned with the vehicle fleet. Additionally, consideration 

of whether design speed can be increased based on the performance of AVs is required.   

Within this study, the need to revise current geometric road design parameters with the 

introduction of the automated driver has been highlighted, and recommendations on starting 

points for this iterative process have been presented. The greatest potential advantages with 

respect to freedom of road design are for automated freight transportation on designated roads. 

Building roads for these purposes might be worth the investment for specific cases, e.g., 

transporting goods from a production to a distribution site in challenging terrain. This could be 

met by a specific geometric road design standard for roads operated by solely automated drivers. 

The possibility of reducing the horizontal and vertical curvatures should be assessed with the risk 

of unintended effects in mind, e.g., inducing unwanted forces acting to move the cargo away 

from the vehicle. Increases in fuel consumption should also be considered. In the case of mixed 

traffic, more research is needed on how automated driving affects human comfort. 
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Abstract: Pavement markings are used to convey positioning information to both humans and
automated driving systems. As automated driving is increasingly being adopted to support safety, it
is important to understand how successfully sensor systems can interpret these markings. In this
effort, an in-vehicle lane departure warning system was compared to data collected simultaneously
from an externally mounted mobile retroreflectometer. The test, performed over 200 km of driving
on three different routes in variable lighting conditions and road classes found that, depending on
conditions, the retroreflectometer could predict whether the car’s lane departure systems would
detect markings in 92% to 98% of cases. The test demonstrated that automated driving systems can
be used to monitor the state of pavement markings and can provide input on how to design and
maintain road infrastructure to support automated driving features. Since data about the condition of
lane marking from multiple lane departure warning systems (crowd-sourced data) can provide input
into the pavement marking management systems operated by many road owners, these findings also
indicate that these automated driving sensors have an important role in enhancing the maintenance
of pavement markings.

Keywords: lane detection; retroreflectometer; road asset management; road maintenance; ADAS;
automated driving; road infrastructure

1. Introduction

Road authorities around the world face the challenges of maintaining visible road
markings under varying conditions. There are a number of factors that affect the degra-
dation of road markings, including the material (thermoplastic, spray plastic, paint, etc.),
location/climate (coastal, inland, etc.), share of studded tires usage, annual average daily
traffic (AADT), pavement surface characteristics and conditions, heavy vehicle percent-
ages, quality control in applying the marking material and the use of salts, abrasives or
mechanical snow removal [1–3].

Gathering data to keep an updated status and inventory of road marking quality is
a time-consuming process using specialized equipment and personnel [4]. Road asset
management systems are being developed to help with these tasks. A Nordic certification
system for road marking materials was introduced in 2015 and adopted by Norway,
Sweden, and Denmark [5]. The certification system is based on the European standards
EN 1824 Road marking materials—Road trials, EN 436 Road marking materials—Road
marking performance for road users, and EN 12,802 Road marking materials—Laboratory
methods for identification. Documented performance measurements of material samples
applied on test fields on public roads are the basis for the certification system. Performance
requirements include the coefficient of retroreflected luminance (RL), under wet and dry

Sensors 2021, 21, 1737. https://doi.org/10.3390/s21051737 https://www.mdpi.com/journal/sensors

133



Sensors 2021, 21, 1737 2 of 17

conditions, luminance coefficient under diffuse illumination (Qd) as well as friction and
color coordinates. Approval is granted in relation to the number of wheel passages the
material will withstand [5].

In the United States, the Missouri Department of Transportation developed a Pave-
ment Marking Management System (PMMS) as “the only practical method to allow state
highway agencies to track the materials, age, cumulative traffic exposure, and retroreflec-
tivity level of existing pavement markings and to enable systematic decisions concerning
when, and with what materials, existing markings should be renewed or replaced.” [6].
Likewise, between June 2001 and December 2002 a maintenance management program for
the North Dakota Department of Transportation was developed. The program investigated
the use of technology such as cameras and positioning devices, along with new software,
to allow for more efficient registration of road signs in the field [4].

Advanced driver assistance systems (ADAS) have been developed to support human
drivers. Lane departure warning (LDW) systems, a form of ADAS, have the potential to
decrease the number of accidents but typically rely on road markings to do so [7,8]. The
increasing use of cameras and automation in ADAS introduces a possibility to gain access
to data for road asset management systems through crowdsourcing [9]. ADAS could thus
provide quality assurance systems such as the PMMS with the data to successfully predict
maintenance needs.

A report from the European Road Assessment Programme (EuroRAP) has suggested
that inadequate road maintenance and the lack of marking consistency across Europe nega-
tively influence the efficacy and implementation of advanced driver assistance systems [10].
ADAS functionality is a step toward increasing driving automation, introducing a new
road user: the automated driving system (ADS). However, little effort has thus far been
spent on understanding the implications of changing from a human driver to an ADS for
the physical road infrastructure and vice versa [11]. ADSs are expected to contribute to
safer roads. To ensure this outcome, the design and maintenance of road infrastructure
must be correctly interpreted by both humans and machines. To evaluate existing quality
parameters such as the visibility of road markings considering automated driving systems
can help future-proof road infrastructure.

Lane detection is considered to be important for any ADS [12–15] and is dependent
on the visibility and consistency of lane markings [16,17]. Identification of lanes via
longitudinal road markings is usually done with cameras, in either monocular or stereo
vision [13,14,18]. Lane detection systems need to overcome several challenges, including
knowing which lane a vehicle is in on a multilane road, separating road markings from
other longitudinal lines such as asphalt surface cracks and guardrails, and accurately
detecting worn markings, even in challenging light and weather conditions [12]. Worn
markings pose a similar safety concern for human drivers [19,20].

Given the continuing development of vehicle technology, ADAS is a promising source
of data on both the condition of road infrastructure elements and how to facilitate auto-
mated detection of such elements. This data is valuable input for road asset management
systems and can facilitate safer roads through design and management that play to the
strengths of driver support systems. The aim of this study was to determine whether con-
ventional methods of assessing road marking quality through retroreflectivity are consistent
with lane marking detection systems found in cars that typically rely on cameras. The
conventional method utilizes a retroreflectometer, and those results were then compared to
results from a lane departure warning system. A similar comparison was made by [18]. In
their study, they used two different vehicles to cover a 100 km stretch of highway outside
Prague, one with a lane departure warning system and another with a retroreflectometer
attached. In contrast, this study used a mobile retroreflectometer on the same vehicle that
had the lane departure warning system. In this way, the data collected were known to be
consistent for the two sources. Moreover, this study investigated the differences between
freeways and county roads, as well as both daytime and night-time conditions. Another
effort to relate the quality of road markings to the success of automated camera-based
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lane detection was presented in [19]. The research compared the retroreflection measured
by a roof-mounted Automatic Road Analyzer to the results of a Mobileye lane detection
system. The Mobileye system was mounted on the vehicle equipped with the Automatic
Road Analyzer and results suggest that a Qd higher than 135 mcd/m2/lux improves the
detection of lane markings using a Mobileye lane detection system. A reference test system
for camera-based lane detection was developed in [15]. In this research, it is stated that
there are no available standards or benchmarks to assess the quality of either road markings
or perception algorithms associated with these. While it could be argued that there are
benchmarks for road markings, e.g., there are both European [20] and Nordic standards
for evaluating the quality of road markings [5], it highlights the need for similar standards
for machine-vision applications. Where the work in [15] compares videos annotated with
additional data by mobile retroreflectometer, the video and reference data were not gath-
ered simultaneously. There is no information on the retroreflectometer readings in terms
of how it logged data (time-based versus distance-based) or whether the readings were
averaged over some time or distance. Due to these two reasons, there are unknown sources
of errors in the use of the mobile retroreflectometer as a reference. While the study in [15]
investigates different lane detection algorithms used on annotated videos, the research
described in this paper shows how the output from the LDW system could be used directly
by road owners and operators (ROOs). This is an important difference as the video on
which the LDW system relies is generally not available while the output of the LDW system
is a binary output that could easily be shared between vehicles and ROOs.

Two of the most commonly used properties to assess the quality of road markings are
the luminance factor under diffuse illumination, Qd, and the coefficient of retroreflected
luminance, RL. Qd is a measure for visibility under daylight conditions, during which
natural light hits the marking and is dispersed in all directions. RL is used under night-time
or otherwise dark conditions, during which an active light source is directed toward the
marking and reflection is measured. Mobile retroreflectometers have been developed
that can measure the night-time retroreflectivity of road markings using a laser beam to
simulate vehicle headlights, and these measurements are independent of ambient light
levels. Retroreflectometers are designed to match the entrance and observation angles
from a driver’s eye to the road marking [21]. The coefficient of retroreflected luminance,
RL, measured in millicandelas per lux per square meter (mcd/m2/lux), is defined by the
American Society for Testing and Materials as the ratio of the luminance of a projected
surface to the normal illuminance at the surface on a plane normal to the incident light [22].

Today, it is common for road agencies to use reflectorized pavement markings that
contain glass or ceramic beads. Nonreflectorized markings also have reflectivity based on
the type of material, but reflectorized markings are generally preferred because of their
higher reflectivity at night [23]. Experts have highlighted the need for a minimum require-
ment for retroreflectivity [24]. In Europe, a minimum retroreflectivity of 150 (mcd/lux/m2)
has been suggested for dry conditions, which is in line with the minimum requirement
already in effect in several European countries [10]. In the US, a supplemental notice of
proposed amendment (SNPA) establishes a revised set of standards to be incorporated
in the American Manual on Uniform Traffic Control Devices [25]. The SNPA suggests
a minimum retroreflectivity level of 50 mcd/lux/m2 for speed limits of greater than 35
mph. For speed limits above 70 mph, the minimum retroreflectivity level suggested is 100
mcd/lux/m2.

Contrast has been identified as important for humans to be able to detect road mark-
ings [26,27] and stay in their lanes [28]. For ADSs, the need for contrast has likewise been
identified [8,19,29,30].

Retroreflectometers, like the equipment used in this study, provide only RL and con-
trast values. These were also crucial in the study by Lundkvist and Fors [31] to determine
whether current Swedish requirements for road markings were sufficient for the LDW
system of a Volvo S80. They used a mobile retroreflectometer to obtain the retroreflective
value of the marking, RL dry, and contrast, along with an optocator to provide macrotex-
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ture readings of the road surface. Tests were performed on roads of different classes and
under varying conditions (wet, dry, day, and night). Their study showed that the LDW
system worked well on primary roads during daytime conditions (wet and dry), with a
detection rate of about 99%. While the same was true for night-time dry conditions, for
night-time wet conditions the rate dropped to 92%. For secondary roads, the detection
rate for daytime was 80%, and the lower detection rate was accredited to worn or dirty
markings. Lundkvist and Fors stated that the detection rate for secondary roads during
night-time wet conditions was very low on some roads, and no overall rate of detection for
this case was given. The reason for the lack of detection was thought to be the low contrast
between the markings and pavement as well as the fact that the secondary roads did not
have retroreflective markings. Another case that proved difficult for the LDW system was
when the sun was low on the horizon, which caused detection rates as low as 50%. The
study identified lower limits for RL, Qd, and their respective contrasts. The contrast for Qd
was calculated by using Equation (1) and equivalently calculated for CRL. The lower limits
are presented in Table 1.

CQD =

∣∣∣∣∣
Qmarking − Qroad sur f ace

Qroad sur f ace

∣∣∣∣∣ (1)

Table 1. Estimated lower limits for detection by LDW [31].

Condition Lowest Qd [mcd/m2/lux] Lowest RL [mcd/m2/lux] Lowest CQD Lowest CRL

Daytime, dry ≈65 ≈0.08
Daytime, wet ≈65 ≈0.08

Night-time, dry ≈70 ≈3.7
Night-time, wet ≈20 ≈3.0

The visibility of markings is affected by the available ambient light. Night-time light
conditions provide lower visibility for both humans and machines [8,21], although some
machine vision systems have shown better results during wet night-time conditions than
during wet daytime conditions [29]. Bright illumination in low light conditions, for instance
from street lights or headlights, can saturate the image and make the detection of lane
markers challenging, especially if the road marking is aged and worn [32].

Lin et al. [33] proposed edge smoothness as a new quality indicator specifically for
machine vision systems. Algorithms detect road markings in images by using lines, edges,
and rectangular shapes; therefore, their research has suggested that road markings with
smooth edges would be easier to identify, as they resemble the straight lines used in the
algorithms’ computations. Edge smoothness has not traditionally been measured in the
field: to do so, both the measurement device and relevant thresholds would need to be
determined. Edge smoothness was not evaluated in this study, as relevant data for this
type of analysis were not available from the equipment used.

Finally, speed impacts the ability to identify markings, as speed determines the amount
of time the driver has to detect markings. Zwahlen and Schnell [26] performed numerous
simulator studies using human drivers. Their studies showed that an increase in vehicle
speed required a considerable increase in minimum retroreflectivity levels to attain the
same preview time. For a machine vision system, higher speeds would mean fewer frames
for analysis and less time for processing.

This paper investigates if ADAS functionality, represented by the case of LDW, pro-
vides an efficient way to monitor the road infrastructure and assesses how traditional
measures of quality, for example, retroreflection, affect the outcome of lane detection by the
LDW. The following section describes the design of the experiment and the data collected.
Section 3 describes the results of the data analyses, while the implications and future
research avenues are discussed in the fourth and final section.

136



Sensors 2021, 21, 1737 5 of 17

2. Methods

In May 2019, a test was performed by the paper’s authors to compare the mea-
surements of a retroreflectometer with the lane detection results from a car with LDW
functionality. A car with a built-in lane detection camera was outfitted with a retroreflec-
tometer and driven on three routes between the locations of Oslo, Moss, and Drøbak in
Norway (Figure 1). Route 1 was on freeways (E-road 6), and routes 2 (daytime driving
on county roads 152, 155, 156, and 1386) and 3 (night-time driving on county roads 51, 60,
152, 316, and 1422) were on county roads. The higher maintenance level of the freeway
meant that those road markings were subject to stricter requirements, although this does
not always guarantee that freeways have higher levels of retroreflectivity and contrast [34].
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route, (3) county road night-time route. Visualization: http://geojsonviewer.nsspot.net/ (accessed
on 20 February 2021).

The requirements for retroreflection from the Norwegian road manual are dependent
on winter maintenance classes, which are divided into five levels. Freeways require the
highest level of winter maintenance, class DkA, while county roads call for the second-
highest level, the DkB class. For both the DkA and DkB classes, the minimum required RL
is dependent on the average annual daily traffic (AADT). If AADT is below 5000, as seen
along parts of county roads, the minimum RL is 100 mcd/m2/lux. For AADTs greater than
5000, which includes the freeways and remaining sections of county roads, the requirement
is 150 mcd/m2/lux [35].

The conditions during the test were dry asphalt, and data were recorded for both
daytime and night-time. In the freeway case, the data were recorded along the same route
for both day and night (route 1 in Figure 1). For the county roads, the data captured for
day and night did not follow the same route, as a malfunction in the retroreflectometer
caused by low temperatures at night prevented the logging of data. For the county road,
daylight data were from route 2, and night-time data were from route 3 (Figure 1). A visual
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comparison of routes 2 and 3 indicated that there were no large differences in the standards
of the roads or road markings.

The daytime measurements were taken on a generally overcast day, with the car
reporting a lux value for ambient light of around 10,000. For reference, bright sunlight
produces lux values of between 50,000 to 100,000 [36]. The night-time measurements were
performed from approximately 9:30 pm to midnight, with most lux readings taken between
0 and 11.

The test was performed by using a single 2018-model car with an LDW system. The
data from the car were made available from the manufacturer. The LDW system produced
data in four discrete values, indicating whether the system registered no detection, left-
hand detection, right-hand detection, or detection on both sides. The LDW system used a
mono camera mounted behind the rear-view mirror, a height similar to the eye height of
humans. It also used data from an odometer and an inertial measurement unit; the latter
indicated the forces acting on the car and its heading.

A Laserlux G7 retroreflectometer from RoadVista was used to register the retroreflec-
tion and contrast of the longitudinal road marking. It was attached to the car with the LDW
system as shown in Figure 2. The retroreflectometer measured the quality of road markings
while driving at highway speeds, registering data averaged over 30 m. The distance was
set to 30 m as this setting gave a consistent flow of registered data; smaller values often
resulted in improperly recorded data. A secondary reference camera was installed within
the vehicle to capture video logs of the test conditions.
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Figure 2. Illustration of the test set-up.

The Laserlux retroreflectometer can only measure road markings on one side of the
car at a time. Zwahlen and Schnell [37] found in their research that the distance at which
humans can see road markings is mainly governed by the visibility of the right edge line in
the case of a fully marked road. The retroreflectometer was therefore attached to the right
side of the car with respect to the driving direction, and the car was driven in the rightmost
lane throughout the test, thus detecting the fog line. The retroreflectometer’s laser beams
hit the road at approximately 1.5 m in front of the car on the fog line (Figure 2).

The laser beams had an impact width of about three times the width of the freeway
markings and about five times the width of the county road markings (because of the
difference in road marking widths). The data were collected by driving so that the retrore-
flectometer’s lasers hit the fog line; given the impact width, the laser was therefore thought
to have hit the markings throughout most of the experiment. Some discrepancies were
expected, as the car was driven manually.

The differences in lane marking detection by a camera and a retroreflectometer are
worth noting. In comparison to retroreflectometers, a car’s camera has a relatively high
position, which provides a much greater vision angle and viewing distance (Figure 2). In
addition to the different positions of the sensing media, the camera is more dependent
on ambient light than the retroreflectometer. This is because the latter has active lighting
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in the form of laser beams, which hit the markings so their reflection can be measured,
making the system insensitive to ambient light. Because of these differences, it was of
interest to determine whether detection by the retroreflectometer, an established quality
assessment tool for road markings, would be comparable to detection by a typical lane
departure warning system. Table 2 shows the data collected.

Table 2. Data used for analysis.

Retroreflectometer Laserlux G7 Car with Lane Departure Warning

Data Sample rate Unit Data Sample rate Unit
Latitude, longitude 30 m WGS84 Latitude, longitude 12.5Hz WGS84

Vehicle speed 30 m km/h Vehicle speed 200 Hz m/s
Retroreflection average 30 m mcd/lux/m2 Ambient light 100 Hz lux

Contrast 30 m Contrast (Equation (1)) Lane detection 50 Hz Yes/No

The mobile retroreflectometer reported contrast values based on Equation (2):

C = 1 − return signal (pavement)
return signal (marking)

(2)

This value can be converted to a contrast ratio by Equation (3):

CR =
−1

C − 1
(3)

The retroreflectometer collects data based on distance, whereas the car’s data capture
is based on time. These differences resulted in different data densities for different speeds.
The car had a high data sample rate, 12.5200 Hz (Table 2). The retroreflectometer collected
data and averaged them over 30 m. This provided low data densities at low speed and
denser data at higher speeds.

The four previously described categories of lane detection were converted to a binary
set in which values for None and Left-hand detection were set at 0, and values for Both and
Right-hand detection were set at 1 to identify when the right-side marking was detected.
The other data were resampled with interpolation to match the sample rate of the Lane
detection values by using the Python data analysis library Pandas. The reason for choosing
Lane detection values as the sampling reference was their binary nature. Resampling the
lane detection values would change them from discrete to an artificial continuous set of
values and make the analyses less meaningful. The data were time-series data which are
classified as ordered data. They could therefore be merged on the time variables using
Pandas function pdmerge_ordered with forward fill. Forward fill propagates the last valid
observation forward in the case of missing values.

Binary logistic regressions were performed in SPSS to investigate whether the data
from the retroreflectometer could predict the outcome of the lane detection. Binary re-
gression was used since the predicted outcome, whether the LDW function detected the
road marking, was a binary outcome. The binary logistic regression is expressed as the
estimated probability that Y equals 1 given input X, where Y ε {0,1}:

Prob{Y = 1|X} = [1 + exp(−Xβ)]−1 (4)

The regression parameters β are estimated by the method of maximum likelihood [38].
Four cases were considered: two sets of data from the freeway between Oslo and Moss
(route 1), one for daytime, and another for night-time. Another two sets were from the
county roads. The day case covered roads between Drøbak and Oslo (route 2, Figure 1),
and the night case involved roads between Moss and Oslo (route 3, Figure 1). Regarding
the binary logistic regression, the predictors were Retroreflection, Contrast, Vehicle speed, and
Ambient light, and the dependent variable was Lane detection. Retroreflection was chosen

139



Sensors 2021, 21, 1737 8 of 17

as a predictor since it is the most common measure of road marking quality and Contrast
was chosen due to the body of research indicating its importance for both human and
machine perception of lanes. The Vehicle speed was selected as a predictor because the
retroreflectometer logged data based on distance while the vehicle logged based on time,
and Ambient light was chosen as visibility is related to available light.

3. Results

The binary logistic regression model determined to what extent the Retroreflection,
Contrast, Vehicle speed, and Ambient light could be used to predict whether the LDW system
in the vehicle detected the fog line.

Examples of daytime situations are shown in Figure 3. Please note that these are from
the reference camera and not from the car’s camera.
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Figure 3. Light conditions for daytime driving for freeway (left) and county road (right).

Figure 4 shows images from the freeway (left) and county road (right), both with
and without street lighting, also taken from the reference camera. The retroreflectometer’s
lasers is visible in the images in Figure 4 and, as previously stated, was not dependent
on ambient light (unlike the camera). In the lower right image, the headlights saturate
the image to the extent that the road marking is difficult to discern from the pavement,
highlighting the challenges of camera detection with low ambient light.
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3.1. Binary Regression for Freeway and County Road in Daytime and Night-Time Conditions

The results of the binary regression analysis are presented in Table 3. The cut value
was set to 0.5 for the analysis in Table 3, meaning that if the probability of lane marking
being detected was greater than 50%, it would be classified as a positive detection (=1).

Table 3. Classification of all cases: freeway and county roads in daytime and nighttime.

Freeway Daytime (Lux Values: Mean = 9663, Median = 10,000), (Cut Value is 0.5) Freeway Night-Time (Lux Values: Mean = 10, Median = 7), (Cut Value is 0.5)

Observed
Predicted

Observed
Predicted

Lane detection Correct (%) Lane detection Correct (%)0 1 0 1

Lane detection by car 0 959,887 55,543 94.5 Lane detection by car 0 369,022 28,771 92.8
1 60,635 401,120 86.9 1 35,314 461,956 92.9

Overall (%) 92.1 Overall (%) 92.8

County road daytime (lux values: mean = 9,726, median = 10,000), (cut value is 0.5) County road night-time (lux values: mean = 6, median = 3), (cut value is 0.5)

Observed
Predicted

Observed
Predicted

Lane detection Correct (%) Lane detection Correct (%)0 1 0 1

Lane detection by car 0 1,256,579 55,058 95.8 Lane detection by car 0 1,064,740 17,027 98.4
1 67,802 401,812 85.6 1 7,020 202,021 96.6

Overall (%) 93.1 Overall (%) 98.1

In the table, 0 indicates that no lane marking was detected, while 1 indicates that
the road marking was found. Table 3 shows that the outcome of the lane detection’s
functionality was correctly predicted by the model in 92.1% of cases for the freeway and
92.8% of cases for county roads in the daytime. Regarding night-time, the results were
93.1% for the freeway and 98.1% for county roads. There was a higher accuracy level for no
detection of lane markings on the freeway in both daytime and night-time. The same was
true for the county roads at night-time, although the difference was not as distinct. With
respect to the county road daytime case, the accuracy was similar between no marking
detected and a marking found. There was a considerable difference between the freeway
and county roads in the share of cases concerning where markings were detected versus
where they were not. The county roads had higher rates of unmarked roads than the
freeway. This was expected because of the county roads’ lower maintenance level.

3.2. Significance of the Predictor Variables

In the case of binary logistic regression, it is assumed that observations are indepen-
dent and that the explanatory variables are not linear combinations of each other. This
ensures that multicollinearity is not introduced into the analysis. In this model, the two
predictor variables Retroreflection and Contrast were related by Equation (2). According to
Midi et al. [39], “Multicollinearity does not reduce the predictive power or reliability of the
model as a whole; it only affects calculations regarding individual predictors.” To inves-
tigate the impacts of the four individual predictors without multicollinearity issues, the
binary regression analyses were performed using the Retroreflection and Contrast predictors
separately, keeping the other two predictor variables. As the values for Vehicle speed and
Ambient light remained almost identical in the analyses with Retroreflection and Contrast,
respectively, their values were averaged, as shown in Table 4. In Table 4, B represents the
regression weights, that is, the βs from Equation (4), S.E. is an abbreviation for Standard
Error, Sig. is an abbreviation for statistical significance, and the Exp(B) is the exponential
of B also known as the odds ratio which signifies how the odds change with respect to
changes in the associated predictor variable.
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Table 4. Significance of predictor variables.

County Road Daytime County Road Nighttime
B S.E Sig. Exp(B) B S.E. Sig. Exp(B)

Retroreflection 0.003 0.000 0.000 1.003 Retroreflection −0.010 0.012 0.000 0.990
Contrast 0.538 0.000 0.000 1.712 Contrast 0.514 0.067 0.000 1.672

Vehicle Speed 1.127 0.002 0.000 3.087 Vehicle Speed 3.097 0.012 0.000 22.127
Ambient Light 0.000 0.000 0.000 1.000 Ambient Light 0.003 0.001 0.000 1.003

Constant −19.30 0.043 0.000 0.000 Constant −50.89 0.207 0.000 0.000

Freeway daytime Freeway nighttime
B S.E. Sig. Exp(B) B S.E. Sig. Exp(B)

Retroreflection 0.003 0.000 0.000 1.003 Retroreflection 0.004 0.000 0.000 1.004
Contrast 0.538 0.008 0.000 1.713 Contrast 0.495 0.017 0.000 1.640

Vehicle Speed 1.076 0.002 0.000 2.932 Vehicle Speed 0.429 0.001 0.000 1.536
Ambient Light 0.000 0.000 0.000 1.000 Ambient Light −0.011 0.000 0.000 0.989

Constant −18.39 0.043 0.000 0.000 Constant −8.100 0.023 0.000 0.000

In all cases, Ambient light had no impact on a successful prediction, as indicated by
the exponential(B) or odds ratio ≈ 1 in Table 4. It is possible that the scenarios used in this
study did not provide a wide enough range of ambient light values to correctly identify
its significance in camera-based lane detection. However, the results were in line with
Table 2, which showed that the best prediction of road marking detection occurred at
night, suggesting that the LDW system was not dependent on ambient light. These results
indicate that the combination of low ambient light and headlights, as shown in Figure 4,
does not pose a problem for machine vision lane detection. In fact, the model performed
overall better at night, which was contrary to findings by Lundkvist and Fors [31] and
Borkar et al. [32].

Similarly, regarding Retroreflection, the odds ratio was close to 1.0 in all four cases,
meaning it had very little effect on predicting a correct outcome. As retroreflection is the
most common indicator of quality in traditional road marking evaluation, this is of interest
and suggests that other parameters (e.g., contrast and edge smoothness) might be needed
to evaluate the quality of road markings for machine vision-based systems.

Vehicle speed proved to be the most influential predictor of the analysis. That was not
surprising, as the data collection used as input was directly dependent on speed. When
a vehicle travels faster, more distance is covered, providing more data points from the
input data generated by the retroreflectometer. This means that the faster the vehicle with
the retroreflectometer travels, the more data points the retroreflectometer has on which to
base its prediction of the LDW system’s outcome, relative to the time constant machine
vision. In both daytime conditions, the analyses yielded an odds ratio of approximately
3, meaning that a one-point increase in speed would produce a threefold increase in
successful predictions. Under night-time conditions, the results showed a clear difference
between road types. On the freeway, the effect of speed was lower, at an odds ratio of
about 1.5, whereas on the county road, the odds ratio for speed was about seven times
higher than for day, at 22.1. To interpret these results, the difference between road types
must be considered. For instance, vehicle speeds on the freeway had a smaller range
and higher mean, as driving at the speed limit on the freeway resulted in a consistent
speed of about 80 km/h. On the county roads, speeds varied more, from low speeds in
corners and roundabouts to about 60 km/h in straight sections. The freeway case, therefore,
produced a higher and more consistent rate of data from the retroreflectometer, the input
data. Regarding the county roads, the range in speed meant that at low speeds the input
data were very scarce in comparison to the output they were meant to predict, while at
higher speeds the input data were denser than the time constant LDW data.

To further understand the great difference in odds ratios for the Vehicle speed on county
roads given the time of day, an overlapping section on route 2 (daytime) and route 3
(night-time) was isolated. The overlapping segment is shown in Figure 5.
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Figure 5. Overlapping road sections on county roads for daytime (2) and night-time (3) driving.

In this section, no positive identifications of lane marking could be found in the night-
time case, yet there are numerous positive identifications for the daytime case (Figure 6).
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Figure 6. Overlapping segment on county roads for daytime vs. night-time.

The data were collected on consecutive days and under the same weather conditions,
which means that the main difference was the amount of ambient light available. The
videos from the stretch of road were reviewed to find causes for the lack of detections. Some
on-coming traffic was noted, which can be problematic for the LDW [31], but this would
not have accounted for the complete lack of detections at night. The type of marking used,
that is, paint or thermoplastic, was rudimentarily checked by manually comparing the
stretches of road for the day and night scenario, respectively, where information on what
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material was used was available. The night route had more spray thermoplastics (1–1.5
mm thickness) than the day route, which had almost entirely preformed thermoplastics
(3 mm). This could explain the overall trend of much fewer successful lane detection for
night versus day. For the overlapping segment, however, the marking was thermoplastic
marking in both cases. The marking used on county road was 2 mm thick thermoplastic
compared to the 3mm thick thermoplastic used on the freeway. In addition to thickness,
application and wear can factor into the marking’s visibility. As ambient light was shown
not to be a predictor for the outcome of the LDW, the material and thickness used for road
marking could be investigated as a predictor for automated lane detection in future studies.

Contrast was the second most influential predictor, contributing in the range of 1.64 to
1.71 for the different scenarios, with slightly higher values for daytime conditions. This
means a unit change in contrast would result in 1.64–1.71 times the odds of getting a correct
prediction. Lundkvist and Fors [31] found that the successful detection of road markings
by an LDW system in daytime did not require high contrast, and the results of binary
logistic regression indicated that contrast was a better indicator of whether the LDW system
detected markings than the more widely used Qd or RL. Contrast has been identified as an
important parameter for both human and machine detection [8,34], a finding supported
by these results. The level to which it contributed was modest but consistent across all
scenarios.

3.3. Evaluation of Possible Threshold Values

Receiver operating characteristic (ROC) curves can be used to look for threshold
values for successful detection. The ROC curve summarizes the trade-off between the
true positive rate and false-positive rate for a predictive model and is used as a diagnostic
tool for the model. The four predictor parameters were used as test variables, and the
positive lane detection was set as the state variable. Figure 6 shows the ROC curves for
the four cases, with sensitivity plotted on the y-axis and 1-specificity on the x-axis, as per
convention. The sensitivity and specificity are defined by Equations (5) and (6) [40]:

Sensitivity =
True positives

True positives + False negatives
(5)

Speci f icity =
True negatives

True negatives + False positives
(6)

In the figure, the larger the area under the curve (AUC) for a given line, the more
accurate the variable is at predicting the outcome. Threshold values for the variables are
located at points as far upward and to the left on the curve being analyzed as possible. The
higher up on the y-axis, the more true positives are included. However, as the x values
increases, so does the rate of false positives.

A curve close to the diagonal reference line indicates that the test variable is not useful
for distinguishing between a positive or negative outcome. In Figure 7, ambient light lies
close to the diagonal in all cases except for the freeway night-time case, which has a slight
distinction. The ROC curves indicate that ambient light is not a good indicator of whether
the lane is detected, as was seen in the regression analyses.

144



Sensors 2021, 21, 1737 13 of 17Sensors 2021, 21, x FOR PEER REVIEW  14 of 18 
 

 

 

Figure 7. Receiver operating characteristics curves and suggested threshold values for the predictor variables. 

The ROC curves  for Vehicle speed have  large AUCs,  indicating  that a high  level of 

sensitivity and specificity can be obtained without introducing too many false positives 

or negatives. As with the binary logistic regression analysis, they have the largest impact 

on predicting the outcome. Additionally, Figure 7 shows the chosen threshold points and 

values for the test variables. With respect to Vehicle speed, the threshold values lie between 

56.14 and 57.02 km/h. 

The night‐time contrasts  thresholds  reported were converted  to contrast  ratios by 

Equation  (3),  and  county  roads were  associated with  a  threshold  contrast  ratio  of  8, 

whereas for the freeway the threshold equated to a contrast ratio of 2.74. The required 

contrast for detection of road markings by LDW identified by Lundkvist and Fors (2010), 

CRL, was 3 (Table 1). Unfortunately, as the retroreflectometer used was not the same, and 

data were not derived in the same manner, it is difficult to compare the results of the two 

studies. Substituting Equation (2) for C in Equation (3) would give Equation (7) for deter‐

mining CR within this study, while Lundkvist and Fors used Equation (8). The equipment 

used in this work did not report R, therefore, it was not possible to calculate the contrast 

in the same way as in Equation (8). 

𝐶𝑅
𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑖𝑔𝑛𝑎𝑙
𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑖𝑔𝑛𝑎𝑙

  (7)
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Figure 6 shows that with respect to daytime driving, Retroreflection and Contrast also
seemed to have little predictive quality. Under night-time conditions, the AUC is larger
for these two variables, and within these two cases, the curves for the county road are the
best in terms of establishing a threshold cut-off. Resulting in a high level of sensitivity and
relatively low value for 1-specificity.

In the tables that accompanied the ROC curves, the value of the test variable that
corresponded to an identified threshold point on the curve (high y-coordinate, low x-
coordinate) could be extracted. These threshold values are indicated in Figure 7.

The ROC curves for Vehicle speed have large AUCs, indicating that a high level of
sensitivity and specificity can be obtained without introducing too many false positives
or negatives. As with the binary logistic regression analysis, they have the largest impact
on predicting the outcome. Additionally, Figure 7 shows the chosen threshold points and
values for the test variables. With respect to Vehicle speed, the threshold values lie between
56.14 and 57.02 km/h.

The night-time contrasts thresholds reported were converted to contrast ratios by
Equation (3), and county roads were associated with a threshold contrast ratio of 8, whereas
for the freeway the threshold equated to a contrast ratio of 2.74. The required contrast for
detection of road markings by LDW identified by Lundkvist and Fors (2010), CRL, was 3
(Table 1). Unfortunately, as the retroreflectometer used was not the same, and data were
not derived in the same manner, it is difficult to compare the results of the two studies.
Substituting Equation (2) for C in Equation (3) would give Equation (7) for determining CR
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within this study, while Lundkvist and Fors used Equation (8). The equipment used in this
work did not report R, therefore, it was not possible to calculate the contrast in the same
way as in Equation (8).

CR =
return signalmarking

return signalpavement
(7)

CRL =

∣∣∣∣∣
Rmarking − Rroad sur f ace

Rroad sur f ace

∣∣∣∣∣ (8)

4. Discussion

This study compared data from a conventional performance measure for longitudinal
road marking, a retroreflectometer, to those from a modern ADAS feature, LDW, which
utilizes a camera within the vehicle. The aim was to determine to what extent the con-
ventional retroreflectometer could predict the outcome of the LDW’s ability to detect lane
markings. The results give insight into both whether the established quality parameters for
road markings are suitable for automated detection systems and whether crowdsourced
data from vehicles can be used to monitor pavement marking conditions.

The binary regression analyses showed that the model, correctly predicts the result of
the car’s lane detection in 92.1% to 98.1% of cases, depending on driving conditions.

The results indicate that the in-vehicle camera’s ability to detect lane markings could
potentially be used as a surrogate for conventional methods of assessing the status of
pavement markings. The impact of the specific input variables on the model was also
considered to better understand how traditional metrics associated with the assessment of
lane markings impact the LDW predictions.

Ambient light and Retroreflection were found to have minimal impact on the success
of predictions. The lack of impact of ambient light might be due to the limited range of
input values, as the measurements were taken in either high or very low ambient light
conditions and did not cover the middle ground. Another possibility is that the LDW
system is not dependent on ambient light and that headlights provide sufficient lighting
to detect markings. Additional investigations are likely needed, but these results indicate
that the LDW system is not dependent on street lighting which is a useful input towards
facilitation for driving automation in road design.

Retroreflection is the most common parameter for the quality assessment of road
markings today. This work indicates that the retroreflection value in itself is not important
for the successful identification of road marking by machine vision. The algorithms used
to detect markings search for lines, edges, and rectangular shapes, making the contrast
between the road surface and road marking more critical than solely the amount of light
reflected from the marking. Threshold values for Contrast could only be suggested in
nighttime driving, and for these limited tests, the contrast ratio thresholds were found to
be 2.74 for the freeway and 8 for the county roads. Contrast, as well as edge smoothness,
are suggested as quality parameters for machine vision detection of lane markings. Yet,
as contrast is calculated differently depending on the method used, it may be difficult to
specify a universal threshold value.

The analysis showed that Vehicle speed had the strongest impact on the success of
predictions. This is because of its direct relation to the amount of data captured. The speed
of the vehicle carrying the retroreflectometer should be 57 km/h or higher for best results.

The high probability of predicting the outcome of the lane detection feature, despite
relying on few input variables (Retroreflectivity and the derived Contrast) suggests that the
LDW system is more dependent on longitudinal road markings than other elements of the
road geometry such as the road’s width, edge, or centerline.

Further investigations should be performed to affirm the indication that LDW func-
tionality can be used to monitor the state of road markings. This could include using
different makes of cars and collecting data from more roads. The indication that ambient
light does not affect the success of the LDW system could be researched further by driving
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in different conditions of natural and artificial light. The effect of road marking material
and thickness on lane detection by the LDW is encouraged as it could be particularly
useful for adapting design and maintenance of roads to support automated driving fea-
tures. Harmonization of measurement techniques would be beneficial in supporting earlier
findings. For instance, the contrast measurement in [31] is not directly comparable to the
contrast measurement in this paper. Likewise, the retroreflectivity in [19] is of Qd which is
dependent on ambient light, while this paper used an active laser measuring RL.

This research has shown that ADAS functionality such as LDW provides an efficient
way to monitor the road infrastructure. The work identified that contrast between the road
marking and the adjacent road surface is of more importance than the retroreflectivity of
the road marking material, suggesting that contrast should be a metric for quality of road
marking to start including automated driving functions in the design and maintenance of
roads. Gaining knowledge about how well infrastructure designed for humans also sup-
ports automated driving systems will be useful for future-proofing roads. It will help reap
the promised safety benefits of automated driving features, from today’s ADAS to more
comprehensive future ADS. Additionally, crowdsourcing is an efficient way of monitoring
the state of road infrastructure and can provide systems for predicting road maintenance,
such as the PMMS, with highly valuable data. Understanding how infrastructure is “seen”
by both humans and ADSs will allow engineers to prepare for higher levels of automation
by taking incremental steps in which road infrastructure design and maintenance can be
developed in parallel with vehicle automation.
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Abstract 

Road markings are beneficial to human drivers, advanced driver assistance systems (ADAS) and 

automated driving systems (ADS). Snow coverage on roads provides a challenging case for lane 

detection as the white road marking is hard to distinguish from the snow. For human drivers, 

yellow road markings provide a visual contrast to the snow that can increase visibility. Yet, 

yellow road markings are becoming increasingly rare due in Europe due to the cost of installing 

and maintaining two road marking colors. With increased reliance on automated driving, the 

question of whether yellow road markings can be of value to automatic lane detection functions 

arises.  

To answer this question, images from snowy conditions are assessed to see how different 

representations of colors in images (color spaces) affect the visibility of white and yellow road 

markings. The results indicate that images represented by RGB chrominance and grayscale 

images provide poor contrast between road markings and snow. Color spaces HSL, HSV and 

YUV show promise in creating images where road markings have higher visibility for machine 

vision in snowy conditions.  

The results presented in this paper suggest that yellow markings have benefit for automated 

driving and gives recommendations on the most appropriate color spaces for lane detection in 

snowy conditions. To obtain the safest and most cost-efficient roads for the future, both human 

and automated drivers must be considered. Road authorities and car manufacturers have a shared 

interest in discovering how road infrastructure design, including road marking, can be adapted to 

support automated driving.  

Keywords: Automated driving, road infrastructure, computer vision, lane detection, lane 

marking 
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1 INTRODUCTION 

Driving is becoming increasingly automated. Advanced driver assistance systems (ADAS) have 

become ubiquitous, providing driver support such as lane departure warning (LDW) for lateral 

control and adaptive cruise control (ACC) for longitudinal control. These ADAS functions are 

evolving into automated driving systems (ADSs) that perform increasingly advanced driving 

tasks. ADSs represent a new type of road user (Storsæter et al., in press), and, like ADAS 

systems, they rely on sensors to sense their surroundings as well as software to interpret the data 

these create. The sensory system of an automated driver is different to that of a human, thus, it is 

essential that roads are designed and maintained to facilitate the sensory apparatus of both human 

and automated road users during the transition to higher levels of automation in driving.  

To investigate the requirements for road infrastructure for highly automated driving, Nitsche et 

al. (2014) used a literature review and a web questionnaire with participants from research and 

development, academia, automotive or supplier industry and public authorities. They conclude 

that the visibility and quality of lane markings are of particular importance, specifically in 

adverse weather. Shladover (2018) further suggests that road authorities need guidance about 

possible modifications to road markings in response to automated drivers.  

Road markings have the following main functions (Carlson et al., 2009; Statens Vegvesen, 

2015): 

1. Leading traffic; through enhancing the road geometry, road delineation and lanes. 

2. Notifying drivers; through information on specific stretches of road that require more 

attention, or adaption of driving. 

3. Regulating traffic; through road markings that assign rules to the use of the road.  

Lane detection, i.e. identifying road marking, is considered to be important for any autonomous 

driving system (Aly, 2008; Chen et al., 2015; Yi et al., 2015) and ADAS functionality such as 

LDW has been found to increase traffic safety (Kusano and Gabler, 2015; Sternlund, 2017). 

Lane detection can be accomplished by using different sensors, e.g. camera, lidar or radar. 

However, the most widely used method is camera-based (Bar Hillel et al., 2014; Chetan et al., 

2020; Gruyer et al., 2017; Xing et al., 2018). Adverse weather, e.g. rain, fog and snow,  can be 

challenging for vision-based lane detection (Bar Hillel et al., 2014; Huang et al., 2009; Stevic et 

al., 2020; Xuan et al., 2017; Yinka et al., 2014; Zhang et al., 2020). Gruyer et al. (2017) 

establishes that fog and snow are particularly problematic for camera-based driving features.   

Several studies consider how road marking design and quality influences detection rates of 

camera-based LDW systems (Lundkvist and Fors, 2010; Pike et al., 2018), which shed light on 

how road design and maintenance can support automated driving. However, there is a lack of 

research on how design and maintenance of road markings can increase lane detection in snowy 

conditions. Facilitating automated recognition of road infrastructure elements can be beneficial 

to traffic safety both to increase the probability of correct identification of road features, and to 

help attain low reaction times for automated driving features. Algorithms for lane detection are 

continually improving and, consequently, adverse weather issues are more frequently addressed. 
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For instance, algorithms that can detect lane markings in rain and snow have been developed 

(Lee and Moon, 2018; Yinka et al., 2014). They are useful contributions to lane detection 

software development, but do not give the information needed for road authorities to know 

whether road markings should be modified, or snow removal procedures changed. Furthermore, 

the amount of snow considered in the aforementioned research is limited, suggesting further 

research is needed on lane detection with a deeper cover of snow. For guidance on future-

proofing road marking design and snow removal procedures, there is a need to know when the 

LDW systems work or not, as well as why.  

While not snow, Blake et al. (2016) performed experiments to see how volcanic ash covering 

reduced visibility of white road markings. The results found that “very small accumulations of 

ash are responsible for road marking coverage and suggest that around 8 % visible white paint or 

less would result in the road markings being hidden.” Furthermore, they report that road 

markings are more easily covered by fine-grained ash, and that the color of the ash influences 

detection. The study used image processing as well as visual inspection in their research, which 

both concluded that white road markings covered by light-colored deposits were especially 

detrimental to lane detection. White ash on white markings can be compared to snow on white 

markings when considering camera-based lane detection. The fundamental task, finding lane 

markings on the road, is a question of contrast. Although white generally produces the greatest 

contrast to the road surface, it is also similar in color to naturally occurring elements in nature 

that can hinder detection including ash and snow. Vehicles will typically have redundancy of 

sensors and not rely on cameras alone. However, in the case of sensors that actively send out 

light and read their reflection (e.g. lidar), snow coverage may make lane detection even more 

challenging (Aldibaja et al., 2017; Razmi Rad et al., 2020). 

In the interest of creating the safest and most cost-efficient road infrastructure for the future the 

issue of lane detection in snow also intersects with another road marking design choice, whether 

to use yellow road markings. Road markings are a major expense for road agencies (Pike and 

Bommanayakanahalli, 2018). While still in use in the U.S., yellow road markings are 

disappearing in Europe. The European Union does not require it to be used (European Union 

Road Federation, 2012) and there are significant cost savings in using solely white road 

markings. In the Nordic countries, Finland is in the process of phasing out yellow markings, 

leaving Norway as the only country using yellow center road markings (Finnish Transport and 

Communications Agency, 2020; Vadeby et al., 2018). In Iceland, yellow road markings are still 

in use, though not as center line markings but rather to inform drivers that parking or stopping is 

illegal.  

In the U.S. and Norway, yellow longitudinal markings separate traffic traveling in opposite 

directions and are used on the left-hand edge of the roadways of divided highways and one-way 

streets or ramps (Statens Vegvesen, 2015; U.S. Department of Transportation, 2009). Yellow 

markings, thus, give the driver additional information on the characteristics of adjacent lanes 

which is thought to be beneficial for driving safety for humans (Schnell and Zwahlen, 2000).  

For both road authorities and vehicle manufacturers to be able to make informed decisions, there 

is a need to know whether yellow road markings can be beneficial for camera-based lane 
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detection in snowy conditions. It has been shown that yellow markings are less visible in 

grayscale images than white markings (Lee and Moon, 2018; Lin et al., 2010). However, in 

challenging condition such as snow, yellow road marking may offer higher visibility in color 

images. The purpose of this paper is to compare the visibility and contrast of white and yellow 

road markings compared to adjacent surfaces in snowy conditions. Color images can be 

represented by several different mathematical representations known as color spaces. To 

compare white and yellow road markings, images of lane marking in a set of snowy conditions 

are converted to different color spaces and the visibility and contrast of the lane marking are 

assessed by visual assessment and histogram plots of the pixel intensities. Furthermore, at what 

depth of snow automated lane detection becomes unfeasible is discussed. 

2 IMAGE-BASED LANE DETECTION 

The process of lane detection in images typically includes camera calibration, correction of 

image distortions, conversions of color space (if needed), application of a mask to set the region 

of interest, noise-filtering, and edge detection. In this research, camera calibration and correction 

of distortions will not be applied as the focus is on how color space representations affect the 

visibility of markings. 

Lane detections in images are mainly based on changes in colors and patterns between the road 

surface and road marking (Hernández et al., 2016). The representation of a road marking 

adjacent to the road surface in images (under most conditions) provide a significant change in the 

intensity and contrast of pixels, i.e. an edge. Edge detection is thus based on identifying the 

greatest changes in image intensity or contrast in an image (Acharjya et al., 2012; Samuel et al., 

2018).  

The simplest form of edge detection is simply by using thresholds. In many cases, a threshold at 

a certain pixel intensity can be enough to separate an object from the background (Kaur et al., 

2012). However, a more robust approach is found in traditional edge detector algorithms, e.g. 

Sobel, Prewitt, Laplacian of Gaussian (LOG) and Roberts, that use kernels, i.e. small matrices, to 

calculate gradients of the pixel intensities along rows and columns of images.  

The difference in the way humans see and extract information from images and how an 

automated driver, a machine, does it, is shown in Figure 1. Humans view an image and identify 

the lane markings directly, but a machine does not interpret the image in the same way. An 

automated driving system will look at the information contained in the pixels that make up an 

image. In a black and white image, the intensity value of the pixels typically varies from black 

(0) to white (255). To identify features, the automated system scans the rows and columns to 

look for trends that can help it pick out features. In Figure 1, the left hand side shows the lane 

markings as humans see them, where on the right is one way for an automated system to see the 

road markings. The histogram is plotted by adding the pixel values for each column, then 

plotting the result with the sum of the pixel intensities on the y-axis and the column number on 

the x-axis. The histogram plot shows very distinct peaks with high gradients which identifies and 

positions the lane marking in the image. The dashed lane marking produces a lower sum of pixel 

values than the continuous line, resulting in a slightly lower peak height. 
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Figure 1 Representing lane marking for human drivers versus for automated drivers 

2.1 COLOR SPACES 

Different color spaces are ways of mathematically expressing color that have their advantages 

and limitations depending on the application. Grayscale images consists of a single channel 

indicating brightness, compared to three channels for color images, and are the most commonly 

used image representation in lane detection (Aly, 2008; Huang et al., 2009; Li et al., 2018; 

Narote et al., 2018; Xuan et al., 2017). Grayscale images provide an effective approach as some 

cameras used in automotive applications are grayscale cameras, but also as lane detection 

algorithms typically use a single channel as input. How colors appear in an image is dependent 

on the ambient light, i.e. the same color will give different pixel values in different lighting 

conditions. This makes grayscale images attractive to use as white road marking will appear as 

some of the brightest pixels in a grayscale images in a variety of conditions. The software 

performing the lane detection will search for contrast, i.e. bright pixels identifying lane lines 

adjacent to darker pavement pixels. This also implies that the color and texture of the road 

surface affects lane detection by cameras, where a darker road surface creates a greater contrast 

to lane markings. 

The most common way of depicting color images is using red (R), green (G) and blue (B) 

chromaticities, known as the RGB color space (Wang et al., 2014). In RGB, a color is 

represented as the additive combination of the three separate color channels, for instance, white 

would be given as R = 255, G = 255 and B = 255, i.e. the maximum value for the red, green and 

blue color channels, respectively. 

Colors are a vital part of image and video processing. They are, for instance, used to identify 

objects, and from these, segment an image into meaningful elements such as roadway, vehicles, 

and signs. Depending on the goal of the image processing, different approaches are used; clusters 

of similar pixels can represent as an object, other times edge detection can be more relevant such 

as for lane detection.  
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Given the application of lane marking detection, yellow markings are less visible in grayscale 

images than white markings, prompting some researchers to use color images to achieve better 

lane detection rates (for roads with both white and yellow markings) in challenging weather and 

light conditions (Lee and Moon, 2018; Lin et al., 2010). This is also seen in research by Yinka et 

al. (2014) who suggested an approach for finding the drivable path for a vehicle in snow and rain 

using computer vision. They introduced a filter to remove the snow or rain in the imagery, based 

on the difference in intensity of pixels representing snow or rain particles with respect to the 

background. Such an approach supports the use of colored road marking, as yellow road marking 

would have a color and intensity profile that would be different to rain and snow particles. 

There are many ways to depict color for images. The RGB color space use three channels (red, 

green and blue) to make color images and was used by Yinka et al. (2014) in their work when 

filtering out rain and snow. However, research suggests that the color space YUV is better suited 

both for computer and human vision (Lee and Moon, 2018; Podpora et al., 2014). In the YUV 

color space, the first channel, Y, refers to luminance independent of color. The next two channels 

are color channels that can be defined in various ways; however, “U” is often the blue-luminance 

and “V” the red-luminance (this instance of YUV is referred to as YCbCr). This separation of 

black and white information, or luminance, from color is thought to be similar to how the human 

eye works as humans are unable to differentiate colors in low lighting settings (Podpora et al., 

2014). YUV color space was selected by Lee and Moon (2018) and Lin et al. (2010) in their 

respective works. Another color space; Hue, Saturation and Lightness (HSL) has also been 

shown to be well-suited for lane detection, particularly in images with lighter road surface colors 

(Haque et al., 2019). Hue is a representation of color described in a 360 spectrum as shown in 

Figure 2.  

 

Figure 2 Graphical illustration of the HSL (left) and HSV (right) color spaces (Anisetti, 2009) 

It can be thought of as a disk where the radial value indicates the Saturation, i.e. the difference 

between the color and a grayscale value of equal intensity of the color in question (Wang et al., 

2014). Finally, Lightness forms the height of the column, indicating how white a color is. 

Another color space similar to HSL is the Hue, Saturation and Value (HSV) color space. It 

consists of the same first two channels, but the third, Value, indicates the brightness of a color. 

An illustration of the HSL and HSV color spaces are shown in Figure 2. 
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3 METHOD 

To investigate if using color images will enhance the visibility of yellow and white markings in 

snowy conditions, a range of images from three scenarios: a laboratory, a test track, and public 

roads, were collected. The images were analyzed in grayscale, RGB, HSL, HSV and YUV color 

spaces. Images of white and yellow road markings from seven different cases shown in Figure 3 

and described in Table 1.   

 

Figure 3 The images used from each of the seven cases. 

For the different cases, video was captured using a GoPro Hero 7 camera. In addition, a Canon 

EOS 5D camera was used for taking birds-eye view images for Case 1c. The GoPro Hero 7 

captured video at a resolution of 3840x2160 at 60 frames per second (GoPro, 2020). The Canon 

EOS 5D was equipped with 50 mm lens and images were shot in RAW format at 6720 x 4480 

resolution. 

The first scenario was a laboratory setting where a scaled-down road model with both yellow and 

white road markings was used, and artificially created snow could be produced and applied on 

site at a given depth. The GoPro and Canon cameras were used to provide different view 

160



9 
 

perspectives of the test setup. The second scenario was a closed airfield with a wide yellow 

centerline covered in snow.  The airfield strip was filmed using a GoPro attached to a bicycle. 

Filming occurred at a snow depth of 2.5 cm, and then again after two different snow removal 

procedures had been performed. Lastly, field footage from a public road with white and yellow 

road markings was collected via a GoPro attached to the windshield providing an example of 

snowy and low ambient light conditions.  

Table 1 Description of the seven cases of video and image capture 

Case Description Markings Camera 

White Yellow 

1a Laboratory, 1:10 road model, bare road Yes Yes GoPro Hero7 

1b Laboratory, 1:10 road model, 0.5 cm 

snow, rear-view mirror perspective 

Yes Yes GoPro Hero7 

1c Laboratory, 1:10 road model, 0.5 cm 

snow, birds-eye perspective 

Yes Yes Canon EOS 5D 

2a Airfield strip, 2.5 cm snow No Yes GoPro Hero7 

2b Airfield strip, plowed No Yes GoPro Hero7 

2c Airfield strip, brushed No Yes GoPro Hero7 

3 Low light conditions on public road Yes Yes GoPro Hero7 

3.1 LABORATORY IMAGE CAPTURE (CASES 1A, 1B AND 1C) 

The experiment was performed in a snow laboratory which consists of a narrow lane (50 cm x 2 

m) with a moving equipment rig that can move back and forth above it. In the lane, a miniature 

road was constructed consisting of six consecutive tiles of asphalt, approximately 30 x 30 cm in 

size. Cameras were passed over the scaled down road under two different road conditions: bare 

road and 0.5 cm of snow.  

The road was made by scaling down the asphalt and road markings to make the geometry 

consistent with a real-world road. The miniature road geometry was made based on the template 

in Figure 4 (Statens vegvesen, 2019). The design standard in Figure 4 corresponds to the 

minimum requirements when upgrading an existing road in Norway (values given in meters). 

The miniature road model was made for one lane (right-hand side), with a dashed center line and 

a continuous edge/fog line. The geometry of the road markings was given by the Norwegian 

standard for road marking, N302 (Statens Vegvesen, 2015). Roads with speed limits at or below 

60 km/h and total width below 7.5 meters should use a width of 0.1 m for both center line and 

edge/fog line. Given the available space in the track of the snow lab, this allowed for the creation 

of a 1:10 model of the road. 
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Figure 4 Minimum requirements for upgrading existing roads (values in meters)  (Statens 

vegvesen, 2019) 

On the first three tiles white thermoplastic road marking was used, followed by three tiles were 

yellow thermoplastic road marking was applied. The road marking pattern consisted of nine 

meter long dashes with three meter long spacing (Figure 5), this is in accordance with the 

standard for a 60 km/h road in the condition where the sight distance is too short for safe 

overtaking (Statens Vegvesen, 2015). The thermoplastic marking was applied to the road with 

the use of a heat gun following the same procedures as used by road crews. The finished result is 

shown in Figure 5. The thermoplastic marking product used was white and yellow ViaTherm 

31H 25. 

 

Figure 5 Applied thermoplastic road marking to 1:10 scale. 

The GoPro was mounted in the rig above the scaled-down road. The height was chosen to be 11 

cm above the road which is 1/10 the eye height definition used in road design in the U.S. 

(AASHTO, 2011) and similar to the height of a rear-view mirror where the camera for a lane 
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detection system generally is mounted. The cameras were positioned to have the road model in 

view and focus. 

3.1.1 Snow production and application 

Snow was produced in the lab using a snow machine (Giudici et al., 2017). The snow produced 

was a loose dendritic snow with a density of 302 kgm-3. This density is found in settled snow 

(Armstrong and Paterson, 1982). In the snowy condition, the road was covered in a 0.5 cm layer 

of snow. To apply the layer of snow, a sifter was crafted for the experiment to try to achieve an 

even layer of snow that fit with custom wooden frames of 0.5 cm height Figure 6. 

 

Figure 6 Sifting tool (left) and the applied 0.5 cm snow layer with the wooden frame (right) 

3.1.2 Similitude 

Similitude is a term used to describe the similarity between a model and the original. Generally, 

the scale effects for a phenomenon increase with the scale factor given by Equation 1, where LP 

is a length in the real world application and LM the corresponding length in the downscaled 

model (Heller, 2011). The inverse of the Equation 1 gives the scale 1:. 

𝑙 =
𝐿𝑃

𝐿𝑀
= 10    Equation 1 

Geometric similarity requires that all lengths and dimensions be scaled down according to . For 

the road model described this will hold true for the lane width and markings, as well as the 

camera height. The height of the markings will not be to scale and, therefore, the volume of 

marking will also be larger than the scale factor would suggest. The heating of the thermoplastic 

removes any hard edges as in real-life road application. Lastly, the particle size and height of the 

snow is not scaled down as this was not achievable in the lab. 

The material used for the road model is an asphaltconcrete type with stones up to 2 mm in size 

(Ab2), especially manufactured for lab use. Asphaltconcrete is commonly used in the top layer of 

the road construction for average annual daily traffic volumes between 3000 and 15 000. The 

stone sizes used in asphaltconcrete are 4, 8, 11, 16 and 22 mm (Statens vegvesen, 2005). The 2 
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mm stone size used at 1:10 scale is therefore within the range of stone sizes found in real life 

asphaltconcrete application, i.e. between 0.4 and 2.2 mm. 

The set-up of the camera rig provides a model geometry similar to a car with a camera in the 

rear-view mirror sensor cluster. The cameras passed over the scaled road at speeds of 1/10 of 30 

km/h. There was no interaction between the cameras and the snow or road and therefore no 

forces to scale down. The cameras detect light particles that are scattered from the road surface, 

road marking, snow, and surroundings. In addition to the moving GoPro camera, a Canon EOS 

5D camera was used to take still photos in a birds-eye view.  

If scaled up, the snow depth used would correspond to a real-life depth of 5 cm. However, the 

greater depth of snow, the more visible light is reflected from the snow itself (Perovich, 2007). 

More light reflected from the snow means less light hitting the road model. This causes overall 

brighter images with low chances of seeing the underlying road and markings. The physical 

interaction of light, snow and road marking is the same for the road model as for a full-scale road 

and using 0.5 cm deep snow was therefore assumed to produce a situation closest to a real-world 

road with a 0.5 cm depth of snow.  

According to McEvoy and Castañer (2003) the amount of light reflected from new snow is 

between 80 and 90 percent of the incident light, although depth is not specified for these values. 

Furthermore, how much light is reflected from the snow and road model to the camera is 

dependent on several factors including the angle of incident light, the angle of the viewer, and 

the properties of the snow (age, density, particle size) (O’Neill and Gray, 1972; Perovich, 2007). 

In outside conditions both the zenith angle, i.e. how high the sun is in the sky, and the azimuth 

angle, i.e. the sun’s position relative to the north, will affect the reflection of light from a snow 

surface, known as the albedo. In the lab setting, the artificial light is mounted in the roof making 

the zenith angle and the amount of ambient light constants. The two viewing angles represented 

by the moving GoPro camera and the Canon camera taking stills, will experience different 

amounts of reflected light from the snow and road model. The greater viewing zenith angle for 

the GoPro camera, θv1, theoretically suggests a lower reflection of light than for the smaller 

viewing angle for the Canon camera, θv2, (Kokhanovsky et al., 2005) as shown in Figure 7. 

 

Figure 7 Zenith viewing angles for GoPro and EOS cameras 
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3.2 AIRFIELD TEST TRACK IMAGE CAPTURE (CASES 2A, 2B AND 2C) 

An airfield with a wide yellow center line was the second scenario for image capture. The videos 

were captured using a bicycle with the camera mounted on the bar as shown in Figure 8.  

 

Figure 8 i) Video capture set-up for airfield scenario, ii) 2.5 cm snow coverage on test track, iii) 

Test track after snow removal by ribbed plow and  iv) Test track after snow removal by brush 

The camera height was 1 meter above the ground. Videos were recorded under three different 

conditions. The first was a 2.5 cm coverage of natural snow (Figure 8ii). The second video was 

taken after a ribbed plow with rib height of 2 cm had been applied to the test track (Figure 8iii). 

Finally, the third video was shot after the same part of the test track had been brushed (Figure 

8iv). The yellow road marking was 43.5 cm wide of type ViaTherm 31H 25. The snow had a 

temperature of -2.5 degrees Celsius and the air temperature was -5.5 degrees Celsius. The snow 

had a density of 99.7 kgm-3 typical for damp new snow. For the first snow removal procedure, 

the ribbed plow left 2cm ribs of snow, however the wheels of the tractor subsequently passed 

over the road marking and adjacent road surface creating a varying snow coverage from 0 to 2 

cm (Figure 8iii). After the second snow removal procedure, the brushing process, the road 

marking appeared to be close to bare while the adjacent road surface had small amounts of snow 

with the asphalt clearly seen underneath (Figure 8iv). 
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3.3 PUBLIC ROAD IMAGE CAPTURE (CASE 3) 

Videos were also captured from public road driving. In this case, the GoPro camera was mounted 

on the inside of the front wind shield slightly to the left of the rear-view mirror. The video was 

recorded on European route 6 (latitude 9.366) at 15:30 on December 2nd, 2019. This represents a 

challenging scenario with low ambient light due to the sun being low in the horizon and the 

weather overcast, as well as a snow coverage of between 0 and 2 cm of snow and snow drift. The 

road marking on this road was the same type of thermoplastic material (Viatherm 31H 25) as in 

the other cases, with a yellow dashed centerline and white solid edge line. The air temperature 

was -5.2° C and road surface temperature -7.3° C.  

3.4 LANE DETECTION PROCEDURE 

From the videos captured in each of the cases, every 10th frame was extracted to create images 

for comparing color spaces. One frame was selected manually for each case and converted to 

different color spaces using OpenCV, Matplotlib and Python. The images were imported as RGB 

images using the Matplotlib function imread and subsequently converted to other color spaces 

using the functions cv2.COLOR_RGB2GRAY, cv2.COLOR_RGB2HLS, cv2.COLOR_RGB2HSV 

and cv2.COLOR_RGB2YUV. Note that the OpenCV function uses HLS as the color space most 

often referred to as HSL. The images from the different color spaces where then split into their 

separate color channels for comparison. The images were assessed by visual inspection. In 

addition, histograms of the different cases and color spaces were created to assess the change in 

pixel intensity between the road marking and the surroundings. In the histograms distinct peaks 

or troughs corresponding to the white or yellow marking, signify lane markings that are 

detectable by thresholding or by identifying gradients of pixel values. 

4 RESULTS 

The seven images, one for each of the cases (Figure 3) were imported as RGB and converted to 

grayscale, HSL, HSV and YUV color spaces. Grayscale images have 1 channel while the color 

spaces consist of three channels. This gives 17 different representations of each image, one for 

the grayscale image and four for each color space (the three separate channels plus all channels 

combined). To assess how the color representation affects the visibility of the white and yellow 

markings, respectively, the images will be analyzed visually and then using histograms for each 

of the color channels.  

4.1 GRAYSCALE REPRESENTATION 

Converting images to grayscale representation is a common way of turning a 3-channel image 

into a single channel image. In Figure 9, the images representing each case are shown in 

grayscale representation. 
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Figure 9 Grayscale representation of cases 

Case 1a (Figure 9i), the bare road model, represents an ideal situation for lane detection: new 

road marking, new asphalt, and good lighting. The markings are clearly visible in grayscale as 

they were in the RGB version of the image, with the yellow markings appearing slightly grayer 

in the grayscale image, as expected. In cases 1b (Figure 9ii) and 1c (Figure 9iii), the road model 

is covered in 0.5 cm of snow. The road markings hard to visually detect in case 1b where the 

camera was placed at an angle representative to that of a camera in vicinity of the rear-view 

mirror. When the image is taken directly overhead, case 1c, the white lane lines are visible in the 

lower part of the image. In the upper half, the yellow markings again appear grayer than the 

white markings making them road marking hard to see.  

In case 2a (Figure 9iv) the field test with 2.5 cm snow, the road marking is not visible. In 2b 

(Figure 9v) and 2c (Figure 9vi) different snow removal procedures have been performed. In the 

RGB images (Figure 3) the yellow markings were clearly visible, but more difficult to see in the 

grayscale images.  
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Case 3 (Figure 9vii) shows a snowy public road in low ambient light. Both the yellow lane 

marking on the left side and the white road marking on the right side are visible in the grayscale 

representation, as they were in RGB color space. However, the markings and snow are of similar 

intensity in the images, which might make the edge between road surface and road marking 

challenging to identify. 

In summary, the road markings appear distinct and much lighter in color than the adjacent 

asphalt when the road is bare but a visual inspection of the images indicates that lane detection 

may be more problematic under snow cover for the conventionally used RGB and grayscale 

images. Both white and yellow road markings will, in grayscale images, have pixel intensities 

similar to parts of the snow coverage. This is especially evident in Case 2b (Figure 9v).  

In the following section, the images are assessed in the color spaces RGB, HSL, HSV and YUV 

by visual inspection and using histograms. Based on the visual inspection of the cases in RBG 

and grayscale presentations, cases 1b and 2a will be omitted. In the first instance, case 1c will 

make for a better comparison between the white and yellow markings as these appear at the same 

distance and in equal quantities in the image. For case 2a, the road marking is not visible and will 

therefore not provide additional information in other color spaces or corresponding histograms.  

4.2 COLOR SPACE REPRESENTATION 

The images analyzed are cases 1c, 2b, 2c and 3. The images are shown in the four color spaces 

RGB, HSL, HSV and YUV and in their respective channels.  

Case 1a (Figure 10) shows an ideal situation for lane detection. In the upper part of the images 

there is yellow markings and in the lower part white markings with the transition between the 

marking colors indicated by the red dashed line. Figure 10 shows the four color representations: 

RGB, HSL, HSV and YUV in the top row, and the three separate channels they are made up of 

in the color spaces respective columns. A mask has been added manually to focus on the road 

and lane marking rather than the adjacent metal edges in the lab setting. For RGB, the white 

marking is visible in all channels, while the yellow seems most prominent in the R channel, 

slightly less so in the G and not very prominent in the B channel. For the HSV color space, 

neither white or yellow marking is visible in the H-channel, the yellow marking is clear while the 

white marking is more muted in the S- channel, while the white marking is most prominent in the 

V-channel. For the HSL representation, the H- and S- channels show similar result to the HSV 

color space. The HSV-V channel on the other hand, shows the yellow marking more clearly than 

the HSL-S channel. In the rightmost column, the YUV representation of the image, the Y-

channel shows both markings clearly, while the U- and V- channels highlight the yellow 

marking. The difference between the YUV-U and YUV-V channels being that the former 

represents the yellow marking as the darkest part of the image, while the latter conversely 

represents it as the lightest part of the image. This difference will make the YUV-U histogram 

form a trough representing the marking while the YUV-V channel will show the road marking as 

a peak. 
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Figure 10 Case 1a in RGB, HSL, HSV and YUV color spaces and corresponding channels 

Next, the images featuring different snow coverages will be presented in the respective color 

spaces. First, case 1c, the road model with 0.5 cm snow coverage in birds-eye view (Figure 11). 

There is white marking in the lower end of the image and yellow marking above the red dashed 

line. The effect of the different color space representation is the same for case 1c as it was for the 

previous case, 1a. However, the snow cover makes the markings that appeared clearly in Case 1a 

challenging to see in Case 1c. In the bare road case (1a) four channels enhanced only the yellow 

marking: HSL-S, HSV-S, YUV-U and YUV-V. Interestingly, these channels seem to work even 

better for the 0.5 cm snow coverage but only for the yellow marking. The white elements, 

represented by the white road marking and the snow, are no longer clearly visible.    
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Figure 11 Case 1c in RGB, HSL, HSV and YUV color spaces and corresponding color channels 

The next 2 figures show the airfield images in different color spaces. Case 2b, the image after 

snow plowing (Figure 12) is therefore presented, followed by case 2c, the image after brushing 

(Figure 13). In these two cases, there is only yellow marking. 
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Figure 12 Case 2b in RGB, HSL, HSV and YUV color spaces and corresponding color channels 

For case 2b, the yellow road marking is clearly visible to the human eye in the RGB image. 

However, when considering the separate channels of the image, the marking is harder to detect. 

In the RGB-R channel the tire track from the tractor is clearer than the road marking. In the 

RGB-G channel it is hard to distinguish the road marking, tire track and other elements of snow. 

In the RGB-B channel the marking is visible and similar in pixel value to the right edge of the 

snow removal area. The channels that look most promising in terms of visibility and contrast of 

the yellow marking are HSL/HSV-S, YUV-U and YUV-V, as in the two previous cases. HSL-L 

and HSV-V channels are not suited to enhance the road marking, while the HSL/HSV-S channel 

in this case shows the markings but with low contrast to the road surface on the right hand side. 

The airfield strip after snow has been removed by brush, case 2c, is shown in Figure 13. 
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Figure 13 Case 2c in RGB, HSL, HSV and YUV color spaces and corresponding color channels 

In case 2c, the brushing of the snow coverage has removed most of the snow on the right hand 

side of the yellow road marking, while the snow coverage on the left hand side of the marking 

remains mostly intact. Having snow on one side of the yellow marking and dark road surface on 

the other creates an interesting situation in terms establishing contrast between the road and road 

marking in images. In the RGB image, the yellow color is clearly seen, but when considering the 

separate channels usually used in analyses, the contrast is low between the snow and the marking 

in the RGB-R channel, and conversely, between the marking and the road surface in the RBG-B 

channel. In the RGB-G channel the road marking does provide a contrast to the snow and road 

surface, but the pixel values are also similar to the snow which would make it challenging to 

separate the marking from longitudinal snow elements. In the HSL image, the marking is hard to 

separate from the snow, however the HSL-H and HSL-S channels highlight the yellow marking 

in light versus dark pixel representation. The same channels in the HSV image, HSV-H and 

HSV-S show similar results, while the HSV image provides a better separation of road marking 

to snow and road surface than the HSL image. The HSV-V channel and HSL-L channel are not 

optimal to enhance the yellow marking, as in case 1c and 2b. The YUV image representation 

provides an identifiable color for the yellow marking, like the RGB and the HSV images. 

Considering the separate channels, the YUV-Y channel is poorly suited to detect lane markings, 

while the YUV-U and YUV-V channels separate the yellow marking from both the snow and the 

dark road surface in opposite ways.  
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The final scenario, case 3, considers an image taken in the afternoon (15:30) driving on a public 

road (Figure 14). There is a yellow road marking on the left-hand side and white road marking 

on the right-hand side. In Figure 14 the white road marking is visible in all the RGB channels, 

but the contrast to the snow next to it is not high. The H-channels from the HSL and HSV 

representations are inapt to show the lane markings. In the S-channels for these two color spaces, 

the yellow marking is visible, but not the white. The HSL-L and HSV-V channels provide 

similar results as the RGB channels, where the lines are visible, but have low contrast to other 

elements of the scene. The YUV and YUV-Y representations of the image are not favorable in 

locating the lane markings, while the YUV-U and YUV-V channels provide what seems like the 

highest contrast between the yellow road marking and the snow and road surface.   

 

Figure 14 Case 3 in RGB, HSL, HSV and YUV color spaces with corresponding color channel 

In summary, a consistent set of color channels: HSL-S, HSV-S, YUV-U and YUV-V, seem to 

amplify the visibility of the yellow marking in the four images of snow conditions (cases 1c, 2b, 

2c and 3). In case 1c, the airfield strip with snow on the left hand side and almost bare road on 

the right hand side, the color spaces HSL/HSV-H also set the road marking apart from the rest of 

the image. For the white markings (case 1c and 3), the highest visibility was in the three RGB-

channels, YUV-Y, HSV-L and HSV-V.  
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The visual analyses of the visibility of white and yellow road markings in snowy conditions are 

summarized in Table 2. Case 1a has been grayed out as this image does not have snow in it and 

serves as a reference for the bare road situation. 

Table 2 Visual assessment of visibility of white and yellow markings in different color channels where ‘+’ 

means the marking is somewhat visible and ‘++’ that the marking is clearly visible. 

   Image 

Case      

Gray RGB-

R 

RGB-

G 

RGB-

B 

HSL-

H 

HSL-

S 

HSL-

L 

HSV-

H 

HSV-

S 

HSV-

V 

YUV-

Y 

YUV-

U 

YUV-

V 

1a W ++ ++ ++ ++   ++   ++ ++ +  

1a Y ++ ++ ++ +  ++ +  ++ ++ ++ ++ ++ 

1c W  + + +   +   +  ++  

1c Y + +    +   ++ + + + ++ 

2b    + + ++  + ++   ++ ++ 

2c + + + + ++ ++  ++ ++ + + ++ ++ 

3 W + + + +   +   + +   

3 Y + + +   +   + + + ++ ++ 

From Table 2 the color channels that provide the highest visibility overall are HSL-S, HSV-S, 

YUV-U and YUV-V. The visibility in snowy conditions is higher for yellow markings than for 

white markings in these instances. Table 2 summarizes a subjective way of visually analyzing 

images. The following section will therefore establish an objective assessment of the visibility of 

the road markings using histogram plots. 

4.3 HISTOGRAMS OF PIXEL VALUES 

Whether lane markings are detected by thresholding or by using gradients, lane detection 

algorithms generally rely on distinct changes in pixel values to establish edges. The four images 

of snowy conditions (Cases 1c, 2b, 2c and 3) are therefore assessed with regard to changes in 

pixel values through sets of histogram plots. The plot is produced by adding the individual pixel 

intensities for each column of pixels for a given color channel. The pixel column is on the x-axis 

and the summed pixel values on the y-axis. The aim is to achieve a clear indication of where the 

road marking is in the image given by a distinct rise or fall in the sum of pixel values. When the 

pixels representing the road markings are light in color they will have high intensity values 

creating high sums and, thus, peaks in the plot. In instances where the road marking appears as 

the darkest part of the image, the road marking pixels have a low sum and should create a visible 

trough in the plot. The more distinct the peak or trough is in the plot, the more ideal the image is 

for lane detection will be. Plots with no clear peaks or troughs mean that the road marking is 

challenging to identify in the image. The next sections will first present the traditional 

representations, RGB and grayscale, and then the alternative representations, HSL, HSV and 

YUV for the selected cases with snow and visible markings: Case 1c, 2b, 2c, and 3. 

4.3.1 Case 1c 

For Case 1c, the top half of the image has yellow markings, and the bottom image has white 

markings. To compare the white and yellow markings, two histogram plots are made: one for the 

lower half (white markings) and one for the upper half (yellow markings). In Figure 15, the 

RGB-channels and the grayscale representation are shown. In these histograms, there is a peak 

on the right side of the image where the continuous lane marking is, for both white and yellow 
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marking. The dashed line does not produce a peak higher than those of the road surface. The 

peak is most distinct in RGB-R for both colors, while RGB-G and -B also provide peaks that for 

white markings. The RGB-B channel has a trough for the yellow continuous marking which 

would be hard to discern from the rest of the minima in the plot. The grayscale histograms show 

peaks for both white and yellow markings, however, the white marking peak is significantly 

more prominent than the yellow marking peak. Again, only the continuous lines are detected in 

the histogram plots. 

 

Figure 15 Case 1c RGB and Grayscale histograms 

Figure 16 shows the histograms for the channels of the HSL, HSV and YUV color spaces. The 

histograms on the left-hand side show all channels and the histograms on the right-hand side 

show the channels that appear to be most suited to detect the lane markings in terms of changes 

in pixel value. In the HSL and HSV plots, the HSL-S channel has been highlighted as it shows 

distinct peaks for both the dashed and the continuous line. The HSL-L channel has a peak for the 

continuous white line only. In the top right-hand side plot the difference between the visibility of 

the yellow markings is evident with the yellow markings providing clear peaks for both dashed 

and continuous lines.  
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Figure 16 Case 1c HSL, HSV and YUV histograms 

The same effect is seen in the HSV plots, where the HSV-S plots have very distinct peaks for the 

road marking and low sums for the columns representing the rest of the image. For the YUV 

representations, the V- and U-channels show the most distinct peaks, where the road markings 

have significantly higher values than the surrounding surfaces. In these channels, both the dashed 

line (left) and the continuous line (right) can be detected in contrast to the RGB and grayscale 

histograms which only detected the continuous lines. The YUV-U channel shows the road 

markings appear as troughs but in this case, as opposed to the RGB-B plot, the troughs would be 

identifiable as local/global minima. The histogram plots are consistent with the findings in the 

previous section (Table 2), where the HSL/HSV-S and YUV-U/V channels provided the highest 

visibility of the yellow marking in snowy conditions.   
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4.3.2 Case 2b 

In Cases 2b and 2c, there is only a continuous yellow marking. The histograms are created based 

on the lower half of the images, focusing on the area of the image with the lane marking. Figure 

17 shows the histograms for Case 2b as represented by RGB and grayscale images. In Case 2b it 

is not possible to separate a threshold or peak that represents the road marking from the 

surroundings in either the RGB or grayscale histogram plots.  

 

Figure 17 Case 2b RGB and grayscale histograms 

In Figure 18, the histograms for the HSL, HSV and YUV representation of the Case 2b image 

are shown. On the left-hand side the three channels of the color spaces are plotted, while the 

right-hand side highlights the channels that provide the best detection of lane markings. In the 

HSL representation, the S-channel provides the most prominent peak. This is also true for the 

HSV histogram. In Case 2b, the YUV-U and YUV-V channels also produce a distinct trough and 

peak respectively, this is consistent with the findings in the visual inspection. 
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Figure 18 Case 2b HSV HSL and YUV histograms 
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4.3.3 Case 2c 

The RGB and grayscale histograms for Case 2c are shown in Figure 19. As in the previous case, 

2b, these representations are not well suited to detect the single continuous yellow road marking.  

 

Figure 19 Case 2c RGB and grayscale histograms 

In the HSL, HSV and YUV representation in Figure 20, the H- and S- channels of the HSL and 

HSV color spaces, as well as the U- and V- channels of the YUV representations, all show 

identifiable peaks for the yellow road marking. For the HSL and HSV color spaces, the H-

channel is particularly successful at isolating the road marking as the only peak in contrast to 

both the snow and almost bare road. When the road marking pixels form the clear local or global 

maxima the image representation is well suited for lane detection as there are no peaks that can 

be misidentified as road markings.  This echoes the result seen in the summary of the visual 

inspection in Table 2. 
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Figure 20 Case 2c HSL HSV and YUV histograms 
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4.3.4 Case 3 

Case 3 has a yellow dashed line on the left-hand side and a white continuous line on the right-

hand side of the image. In this case, the part of the image used in creating the histograms is the 

very lower end of the image as indicated below the white line in Figure 21. This section of the 

image provides a continuous section of both yellow and white marking. The RGB and grayscale 

histograms are also shown in Figure 21. The histograms for these conventionally used image 

representations are not suited to identify either the white or the yellow marking. 

 

Figure 21 Case 3 RGB and grayscale histograms 

The HSL, HSV and YUV histograms for Case 3 are shown in Figure 22. In this case, the only 

channels that provide visible peaks are the HSL-H and HSV-H channels. A peak large enough to 

separate it from the rest of the plot is seen on the left-hand side, i.e. stemming from the yellow 

road marking, while the white road marking’s pixel values are not distinguishable from the 

surrounding environment. In Case 3, the YUV channels are not able to pick out any road 

marking. 
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Figure 22 Case 3 HSL HSV and YUV histograms 

The visibility of the white and yellow road markings based on the histogram analyses have been 

summarized in Table 3.  

Table 3 Summary of visibility of road markings based on histogram plots where ‘+’ means the marking is 

somewhat visible and ‘++’ that the marking is clearly visible.  

   Image 

Case      

Gray RGB-

R 

RGB-

G 

RGB-

B 

HSL-

H 

HSL-

S 

HSL-

L 

HSV-

H 

HSV-

S 

HSV-

V 

YUV-

Y 

YUV-

U 

YUV-

V 

1c W + + + +  + +  + + + + + 

1c Y  +    ++   ++ + + ++ ++ 

2b      ++   ++   ++ ++ 

2c     ++ ++  ++ ++   ++ ++ 

3 W              

3 Y      ++   ++     
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The results from the analyses of the histogram plots is in line with the findings for the visual 

inspection (Table 2). In both cases the color channels HSL-S, HSV-S, YUV-U and YUV-V 

perform the best in identifying lane markings in snowy conditions. However, in Case 3 the 

YUV-U and V channels do not provide identifiable peaks for the white or yellow markings.  

5 DISCUSSION 

The aim of the paper was to determine whether yellow road marking could be beneficial for 

automated lane detection in snowy conditions. From the seven initial cases (one image depicting 

a bare road and six images depicting snowy roads) five images were chosen as most appropriate 

for analyzes by visual inspection and four images by using histogram plots.  

The visual analyses were performed for the five cases 1a, 1c, 2b, 2c and 3, followed by 

histogram plots of the intensity values of the pixels in the different color channels for the four 

cases with snowy conditions: Cases 1c, 2b, 2c and 3. The histogram plots provided an objective 

and machine friendly interpretation of the visibility of the lane markings. The results of these  

analyses were summarized in Table 2 and Table 3, and when compared yield similar results. 

The most common image representations, RGB and grayscale, work well for lane detection on 

bare roads (Case 1a). However, for snowy conditions, Case 1c was the only case where the lane 

marking was visible in RGB and grayscale histogram plots and then only for the white 

continuous line (Table 3). HSV-S and HSL-S channels provide high visibility in all four cases. 

Of these two, the HSV-S provides the most distinct peaks for the lane marking and lowest pixel 

value for the surroundings. In Case 2c, the H-channels of the HSV and HSL color spaces 

highlight the yellow marking well, however this is not the true for the other cases. The U- and V- 

channels of the YUV image representation are successful in identifying the lane marking in the 

three conditions with good ambient light, Cases 1c, 2b and 2c. In Case 3, the yellow marking 

appear to be visible to the human eye in the U- and V-channels (Figure 14), but the histogram 

representation (Figure 22) show that there is no identifiable peak for machine vision. The low 

light conditions, video capture at about 80 km/h, snow and snowdrift provide low contrast 

between lane marking and road surface. Case 3 represents driving at around rush hour (15:30) on 

a European route, i.e. a road of high standard, in Norway. It is thus a realistic case for winter 

driving and makes the fact that the HSV-S channel has a clear peak for the yellow marking even 

more promising. 

Two cases with both white and yellow road marking were analyzed, Cases 1c (birds-eye view of 

0.5 cm snow in lab) and 3 (public road with low ambient light). The results show that the white 

marking is hard to detect in all color spaces, supporting the theory presented that white marking 

is hard to distinguish from the snow. As the snow and white road marking have similar pixel 

values in the various color spaces, this suggests that for snowy conditions yellow marking can 

provide higher visibility of lane markings for camera-based lane detection applications.  

Regarding snow depth, the image analysis shows that a relatively uniform coverage of 0.5 cm is 

problematic for a GoPro Hero 7 camera recording at an angle comparable to a camera in the rear-

view mirror instrument cluster of vehicles. The same snow depth is less problematic 

photographed in birds-eye view and with the Canon EOS 5D. The difference in visibility of the 
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road marking from the GoPro at eye height to the Canon EOS 5D taking images from a birds-eye 

view could be related to the fact that the latter camera produced higher quality images, that the 

GoPro was moving, as well as the angle of the camera. The GoPro position in both the lab and 

airfield images is close to the eye height of a human driver as well as the height of many sensor 

clusters used for ADAS applications. A higher position of the camera and a smaller zenith angle 

might be beneficial for lane detection by camera in snow.  

In the airfield test track, the first image was from a snow depth of 2.5 cm at which lane detection 

is not possible with the given equipment. Performing snow removal by using a ribbed plow with 

a rib height of about 2 cm was sufficient to make the road marking possible to detect. The color 

of the lane marking is clearly visible in the HSL-H, HSV-H, YUV-U and YUV-V channels after 

plowing with the ribbed plow, and it would be interesting to investigate whether the pattern left 

by the combination of plow and plow tires have a negative effect on establishing lines for lane 

keeping. Considering other methods of winter maintenance, the effect of salting of the road 

would also be worth investigating in terms of how it affects the visibility of lane markings. 

6 CONCLUSION 

This paper has investigated how the visibility of white and yellow road markings in snowy 

conditions is affected by different color space representations using three different scenarios: a 

laboratory model, a closed airfield, and public roads. The aim of the study was to determine 

whether yellow road markings could be beneficial for camera-based lane detection in snow. 

Images were analyzed by visual inspection and using histogram plots of the pixel intensities. 

Visually, RGB color channels and grayscale images provided poor visibility of road markings in 

snowy conditions. Among the HSL, HSV and YUV color spaces and their respective channels, 

the HSL-S, HSV-S, YUV-U and YUV-V channels provided the clearest depictions of the lane 

markings. The yellow markings had consistently better visibility than the white markings. The 

histogram plots gave similar results, with the HSL/HSV-S and YUV-U/V channels providing the 

most distinct peaks indicating a higher likelihood of automated identification and positioning of 

lane markings in the images. The HSV-S channel provided highest visibility overall. Again, the 

yellow road marking produced the clearest peaks indicating that yellow road markings are 

beneficial for automated driving in snow. 

The results suggest that snow depths of 0.5 cm can cause problems for camera-based lane 

detection when there is a relatively uniform snow coverage. Snow removal procedures that leave 

parts of the road marking exposed were shown to be effective in making road marking visible in 

color images but also leave patterns that could be confusing for edge detection. Where markings 

were partially covered by snow after snow removal procedures the grayscale images were not 

able to detect lanes. Further investigation into snow removal procedures for camera-based lane 

detection is recommended to establish what snow depth cause lane keeping systems to struggle. 

This research suggests that yellow road markings are beneficial for automated lane detection 

based on cameras. More research on the visibility of yellow versus white road markings for both 

human and automated drivers is encouraged especially considering the trend towards removing 

yellow road markings in the Nordic countries.  
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Further investigations could include: 

- A more comprehensive investigation of the effect of snow depth on camera-based lane 

detection. 

- The effectiveness of different winter maintenance approaches, including the effect of 

salting on the visibility of road markings in snowy conditions 
- The effect of different camera characteristics and the position of the camera on the 

accuracy of automated lane detection 

- How different types of road markings, e.g. color and thickness, affect camera-based lane 

detection. 

- How different types of road surfaces, e.g. color and texture, affects camera-based lane 

detection 

Road markings are a universally used means of leading and regulating traffic. Adapting 

infrastructure design and maintenance to support automated driving features relies on both the 

strategies of road authorities and the hardware and software solutions developed by the vehicle 

industry. Cooperation between these agents will be beneficial in implementing safe and efficient 

automated driving features.  

  

185



34 
 

REFERENCES 

Acharjya, P.P., Das, R., Ghoshal, D., 2012. Study and Comparison of Different Edge Detectors 

for Image Segmentation. Glob. J. Comput. Sci. Technol. Graph. Vis. 12, 29–32. 

Aldibaja, M., Suganuma, N., Yoneda, K., 2017. Improving localization accuracy for autonomous 

driving in snow-rain environments. SII 2016 - 2016 IEEE/SICE Int. Symp. Syst. Integr. 

212–217. https://doi.org/10.1109/SII.2016.7844000 

Aly, M., 2008. Real time detection of lane markers in urban streets, in: IEEE Intelligent Vehicles 

Symposium, Proceedings. Eindhoven, Netherlands, pp. 7–12. 

https://doi.org/10.1109/IVS.2008.4621152 

American Association of State Highway and Transportation Officials, 2011. A Policy on 

Geometric Design of Highways and Streets, 6th ed. American Association of State Highway 

and Transportation Officials, Washington DC, USA. 

Anisetti, M., 2009. Fast and Robust Face Detection, in: Jeong, J., Damiani, E. (Eds.), Multimedia 

Techniques for Device and Ambient Intelligence. Springer-Verlag US, New York, USA. 

https://doi.org/10.1007/978-0-387-88777-7_3 

Armstrong, R.L., Paterson, W.S.B., 1982. The Physics of Glaciers. Arct. Alp. Res. 14, 176. 

https://doi.org/10.2307/1551118 

Bar Hillel, A., Lerner, R., Levi, D., Raz, G., 2014. Recent progress in road and lane detection: A 

survey. Mach. Vis. Appl. 25, 727–745. https://doi.org/10.1007/s00138-011-0404-2 

Blake, D.M., Wilson, T.M., Gomez, C., 2016. Road marking coverage by volcanic ash: an 

experimental approach. Environ. Earth Sci. 75. https://doi.org/10.1007/s12665-016-6154-8 

Carlson, P.J., Park, E.S., Andersen, C.K., 2009. Benefits of pavement markings: A renewed 

perspective based on recent and ongoing research. Transp. Res. Rec. 2017, 59–69. 

https://doi.org/10.3141/2107-06 

Chen, C., Seff, A., Kornhauser, A., Xiao, J., 2015. DeepDriving: Learning Affordance for Direct 

Perception in Autonomous Driving, 2015 IEEE International Conference on Computer 

Vision (ICCV). Santiago. https://doi.org/10.1016/S1573-4285(07)00003-8 

Chetan, N.B., Gong, J., Zhou, H., Bi, D., Lan, J., Qie, L., 2020. An Overview of Recent Progress 

of Lane Detection for Autonomous Driving, in: Proceedings - 2019 6th International 

Conference on Dependable Systems and Their Applications, DSA 2019. IEEE, Harbin, 

China, pp. 341–346. https://doi.org/10.1109/DSA.2019.00052 

European Union Road Federation, 2012. Marking the way towards a safer future an ERF 

Position PaPer on how road Markings can Make our road safer. Brussels, Belgium. 

Finnish Transport and Communications Agency, 2020. New road markings and traffic signs 

[WWW Document]. Road Traffic Act 2020. URL 

https://www.traficom.fi/en/transport/road/new-road-markings-and-traffic-signs (accessed 

11.2.20). 

Giudici, H., Dahl Fenre, M., Klein-Paste, A., Rekilä, K.-P., 2017. A technical description of 

186



35 
 

LARS and Lumi: Two apparatus for studying tire-pavement interactions. Routes/Roads 

Mag. 49–54. 

Gruyer, D., Magnier, V., Hamdi, K., Claussmann, L., Orfila, O., Rakotonirainy, A., 2017. 

Perception, information processing and modeling: Critical stages for autonomous driving 

applications. Annu. Rev. Control 44, 323–341. 

https://doi.org/10.1016/j.arcontrol.2017.09.012 

Heller, V., 2011. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 49, 

293–306. https://doi.org/10.1080/00221686.2011.578914 

Hernández, D.C., Kurnianggoro, L., Filonenko, A., Jo, K.H., 2016. Real-time lane region 

detection using a combination of geometrical and image features. Sensors (Switzerland) 16. 

https://doi.org/10.3390/s16111935 

Huang, A.S., Moore, D., Antone, M., Olson, E., Teller, S., 2009. Finding multiple lanes in urban 

road networks with vision and lidar. Auton. Robots 26, 103–122. 

https://doi.org/10.1007/s10514-009-9113-3 

Kaur, J., Agrawal, S., Vig, R., 2012. A Comparative Analysis of Thresholding and Edge 

Detection Segmentation Techniques. Int. J. Comput. Appl. 39, 29–34. 

https://doi.org/10.5120/4898-7432 

Kokhanovsky, A.A., Aoki, T., Hachikubo, A., Hori, M., Zege, E.P., 2005. Reflective properties 

of natural snow: Approximate asymptotic theory versus in situ measurements. IEEE Trans. 

Geosci. Remote Sens. 43, 1529–1535. https://doi.org/10.1109/TGRS.2005.848414 

Kusano, K.D., Gabler, H.C., 2015. Comparison of Expected Crash and Injury Reduction from 

Production Forward Collision and Lane Departure Warning Systems. Traffic Inj. Prev. 16, 

109–114. https://doi.org/10.1080/15389588.2015.1063619 

Lee, C., Moon, J.H., 2018. Robust lane detection and tracking for real-time applications. IEEE 

Trans. Intell. Transp. Syst. 19, 4043–4048. https://doi.org/10.1109/TITS.2018.2791572 

Li, L., Luo, W., Wang, K.C.P., 2018. Lane marking detection and reconstruction with line-scan 

imaging data. Sensors (Switzerland) 18, 1–23. https://doi.org/10.3390/s18051635 

Lin, Q., Youngjoon, H., Hahn, H., 2010. Real-time lane detection based on extended edge-

linking algorithm, in: 2nd International Conference on Computer Research and 

Development, ICCRD 2010. IEEE, Kuala Lumpur, Malaysia, pp. 725–730. 

https://doi.org/10.1109/ICCRD.2010.166 

Lundkvist, S.-O., Fors, C., 2010. Lane Departure Warning System – LDW Samband mellan 

LDW:s och vägmarkeringars funktion VTI notat 15-2010. Linköping, Sweden. 

Markvart, T., Castañer, L., 2003. Practical Handbook of Photovoltaics: Fundamentals and 

Applications, Practical Handbook of Photovoltaics: Fundamentals and Applications. 

Elsevier Ltd, Oxford, UK. https://doi.org/10.1016/B978-1-85617-390-2.X5000-4 

Narote, S.P., Bhujbal, P.N., Narote, A.S., Dhane, D.M., 2018. A review of recent advances in 

lane detection and departure warning system. Pattern Recognit. 73, 216–234. 

https://doi.org/10.1016/j.patcog.2017.08.014 

187



36 
 

Nitsche, P., Mocanu, I., Reinthaler, M., 2014. Requirements on tomorrow’s road infrastructure 

for highly automated driving, in: 2014 International Conference on Connected Vehicles and 

Expo, ICCVE 2014 - Proceedings. IEEE, Shenzhen, China, pp. 939–940. 

https://doi.org/10.1109/ICCVE.2014.7297694 

O’Neill, A.D.J., Gray, D., 1972. Solar radiation penetration through snow. Proc. UNESCO-

WMO-IAHS Symp. Role Snow Ice Hydrol. Vol. 1 1, 229–249. 

Perovich, D.K., 2007. Light reflection and transmission by a temperate snow cover. J. Glaciol. 

53, 201–210. https://doi.org/10.3189/172756507782202919 

Pike, A., Carlson, P., Barrette, T., 2018. Evaluation of the Effects of Pavement Marking Width 

on Detectability By Machine Vision : 4-Inch vs 6-Inch Markings. Virginia, USA. 

Pike, A.M., Bommanayakanahalli, B., 2018. Development of a Pavement Marking Life Cycle 

Cost Tool. Transp. Res. Rec. 2672, 148–157. https://doi.org/10.1177/0361198118758012 

Podpora, M., Korbaś, G.P., Kawala-Janik, A., 2014. YUV vs RGB—Choosing a Color Space for 

Human-Machine Interaction. Position Pap. 2014 Fed. Conf. Comput. Sci. Inf. Syst. 3, 29–

34. https://doi.org/10.15439/2014f206 

Razmi Rad, S., Farah, H., Taale, H., van Arem, B., Hoogendoorn, S.P., 2020. Design and 

operation of dedicated lanes for connected and automated vehicles on motorways: A 

conceptual framework and research agenda. Transp. Res. Part C Emerg. Technol. 117, 

102664. https://doi.org/10.1016/j.trc.2020.102664 

Rezwanul Haque, M., Milon Islam, M., Saeed Alam, K., Iqbal, H., 2019. A Computer Vision 

based Lane Detection Approach. Int. J. Image, Graph. Signal Process. 11, 27–34. 

https://doi.org/10.5815/ijigsp.2019.03.04 

Samuel, M., Mohamad, M., Saad, S.M., Hussein, M., 2018. Development of Edge-Based Lane 

Detection Algorithm using Image Processing. JOIV  Int. J. Informatics Vis. 2, 19. 

https://doi.org/10.30630/joiv.2.1.101 

Schnell, T., Zwahlen, H.T., 2000. Computer-Based Modeling to Determine the Visibility and 

Minimum Retroreflectivity of Pavement Markings. Transp. Res. Rec. 1708. 

Shladover, S.E., 2018. Connected and automated vehicle systems: Introduction and overview. J. 

Intell. Transp. Syst. Technol. Planning, Oper. 22, 190–200. 

https://doi.org/10.1080/15472450.2017.1336053 

Statens vegvesen, 2019. Håndbok N100 - Veg- og gateutforming. Vegdirektoratet, Oslo, 

Norway. 

Statens vegvesen, 2005. Asfalt 2005-materialer og utførelse Håndbok 246. Vegdirektoratet, 

Trondheim, Norway. 

Statens Vegvesen, 2015. Vegoppmerking Tekniske bestemmelser og retningslinjer for 

anvendelse of utforming. Statens vegvesen, Oslo, Norway. 

Sternlund, S., 2017. The safety potential of lane departure warning systems—A descriptive real-

world study of fatal lane departure passenger car crashes in Sweden. Traffic Inj. Prev. 18, 

188



37 
 

S18–S23. https://doi.org/10.1080/15389588.2017.1313413 

Stevic, S., Dragojevic, M., Krunic, M., Cetic, N., 2020. Vision-Based Extrapolation of Road 

Lane Lines in Controlled Conditions, in: 2020 Zooming Innovation in Consumer 

Technologies Conference (ZINC). Novi Sad, Serbia, pp. 174–177. 

https://doi.org/10.1109/zinc50678.2020.9161779 

Storsæter, A.D., Pitera, K., McCormack, E.D., n.d. The Automated Driver as a New Road User. 

Transp. Rev. https://doi.org/10.1080/01441647.2020.1861124 

U.S. Department of Transportation, 2009. Manual on uniform traffic control devices for streets 

and highways. Washington DC, USA. 

Vadeby, A., Kjellman, E., Fors, C., Lundkvist, S.-O., Berne Nielsen, V., Cato Johansen, T., 

Nilsson, C., 2018. ROMA state assessment of road markings in Denmark, Norway and 

Sweden - Results from 2017. 

Wang, X., Hänsch, R., Ma, L., Hellwich, O., 2014. Comparison of different color spaces for 

image segmentation using graph-cut. VISAPP 2014 - Proc. 9th Int. Conf. Comput. Vis. 

Theory Appl. 1, 301–308. https://doi.org/10.5220/0004681603010308 

Xing, Y., Lv, C., Chen, L., Wang, Huaji, Wang, Hong, Cao, D., Velenis, E., Wang, F.Y., 2018. 

Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and 

Perspectives on ACP-Based Parallel Vision. IEEE/CAA J. Autom. Sin. 5, 645–661. 

https://doi.org/10.1109/JAS.2018.7511063 

Xuan, H., Liu, H., Yuan, J., Li, Q., 2017. Robust Lane-Mark Extraction for Autonomous Driving 

under Complex Real Conditions. IEEE Access 6, 5749–5765. 

https://doi.org/10.1109/ACCESS.2017.2731804 

Yi, S.C., Chen, Y.C., Chang, C.H., 2015. A lane detection approach based on intelligent vision. 

Comput. Electr. Eng. 42, 23–29. https://doi.org/10.1016/j.compeleceng.2015.01.002 

Yinka, A.O., Ngwira, S.M., Tranos, Z., Sengar, P.S., 2014. Performance of drivable path 

detection system of autonomous robots in rain and snow scenario, in: 2014 International 

Conference on Signal Processing and Integrated Networks, SPIN 2014. IEEE, Dehli, India, 

pp. 679–684. https://doi.org/10.1109/spin.2014.6777041 

Zhang, L., Yin, Z., Zhao, K., Tian, H., 2020. Lane detection in dense fog using a polarimetric 

dehazing method. Appl. Opt. 59, 5702. https://doi.org/10.1364/ao.391840 

 

 

189





191

Appendix E

Code for Data Analyses in Paper
III

LISTING E.1: Example of code used to create data input for logistic binary re-
gression analyses.

# This is code used to create data sets analysed in publications
# by Ane Dalsnes Storsæter. The code shows examples of merging
# vehicle data with different sample rates , continuous and
# discrete , and the creation of data sets used to perform
# binary logistic regressions to correlate data from a lane
# departure warning (LDW) system and a mobile
# retroreflectometer.

import pandas as pd
import numpy as np
#from datetime import datetime
import datetime as dt
#import traces
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
import sklearn as sk
import pandas as pd
import xticks
GPSdata= pd.read_csv(r"VehicleData.txt",usecols =[n,n+1,n+2],

low_memory=False ,names=[’T’,’Longitude ’,’Latitude ’])
DiscreteLane= pd.read_csv(r"VehicleData.txt",usecols =[x,x+1],

low_memory=False ,names=[’T2’,’LaneDetn ’])
VehicleSpeed= pd.read_csv(r"VehicleData.txt",usecols =[y,y+1],

low_memory=False ,names=[’T3’,’VehSpeed ’])
AmbLight= pd.read_csv(r"VehicleData.txt",usecols =[z,z+1],

low_memory=False ,names=[’TAmb’,’AmbLight ’])
GPSdata = GPSdata.dropna(how=’all’)
DiscreteLane = DiscreteLane.dropna(how=’all’)
VehicleSpeed = VehicleSpeed.dropna(how=’all’)
AmbLight = AmbLight.dropna(how=’all’)

#Set date to today’s date but leave time stamp:
dateUsed = ’2019 -08 -30␣21:30:44 ’
dateCorr = ’2019 -08 -30␣21:28:00 ’

# Lane detection is the sampling rate to match due to its
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# categorical nature. Resampling lane detection will create
# falsely continuous values. Therefore , we want to downsample
# vehicle speed and average the values , upsample lat and long
# with interpolation , and upsample retromeasurements with
# interpolation.

#Converting time to datetime
VehicleSpeed.index = pd.to_datetime(VehicleSpeed[’T3’],

unit=’s’,origin=pd.Timestamp(dateUsed ))
GPSdata.index = pd.to_datetime(GPSdata[’T’], unit=’s’,

origin=pd.Timestamp(dateUsed ))
DiscreteLane.index = pd.to_datetime(DiscreteLane[’T2’],

unit=’s’, origin=pd.Timestamp(dateUsed ))
AmbLight.index = pd.to_datetime(AmbLight[’TAmb’], unit=’s’,

origin=pd.Timestamp(dateUsed ))

#Clean up columns.
GPSdata[’Time’]= GPSdata[’T’]
VehicleSpeed[’Time’]= VehicleSpeed[’T3’]
del GPSdata[’T’]
del VehicleSpeed[’T3’]

#Merging GPS and Vehicle speed with interpolation.
GPSVehSpeed = pd.merge_ordered(GPSdata , VehicleSpeed ,

left_on=’T’, right_on=’T3’, how=’outer’,
fill_method=’ffill ’)

GPSVehSpeed.head (15)

#Clean up columns.
DiscreteLane[’Time’]= DiscreteLane[’T2’]
del DiscreteLane[’T2’]

# Making index datetime format.
GPSVehSpeed.index = pd.to_datetime(GPSVehSpeed[’Time_y ’],

unit=’s’, origin=pd.Timestamp(dateUsed ))

#Clean up columns.
GPSVehSpeed[’Time’] = GPSVehSpeed[’Time_y ’]
del GPSVehSpeed[’Time_y ’]

# Merge gps data , vehicle speed and discrete lane data
# with interpolation.
GPSSpeedLane = pd.merge_ordered(GPSVehSpeed ,

DiscreteLane , left_on=’Time’, right_on=’Time’,
how=’outer ’, fill_method=’ffill ’)

#Clean up columns.

AmbLight[’Time’]= AmbLight[’TAmb’]
del AmbLight[’TAmb’]

# Merge gps , speed , lane det with ambient light.
GPSSpeedLaneAmb = pd.merge_ordered(GPSSpeedLane , AmbLight ,

left_on=’Time’, right_on=’Time’,
how=’outer ’, fill_method=’ffill ’)

GPSSpeedLaneAmb.head (15)
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#Plot for sanity check:
GPSSpeedLaneAmb.plot(x=’Time’, y= ’AmbLight ’)

#Done merging vehicle data at different sample rates ,
# now to add laser data (retroreflectometer ).
# Reading files:
df = pd.read_csv(r"LaserDataPart1.csv",sep=’;’,skiprows=n,

usecols = [’Time’, ’Latitude ’,’Longitude ’,
’Valid_Scans_Left ’,’Retro_Left_Average ’,
’Retro_Left_Contrast ’,’Odometer ’,’Vehicle␣Speed ’])

df2 = pd.read_csv(r"LaserDataPart2.csv",sep=’;’,skiprows=n,
usecols =[’Time’, ’Latitude ’,’Longitude ’,
’Valid_Scans_Left ’,’Retro_Left_Average ’,
’Retro_Left_Contrast ’,’Odometer ’,’Vehicle␣Speed ’])

# Making sure vehicle speed is in the same units for
# vehicle and retroreflectometer:
df[’Vehicle␣Speed’]=0.277777778* df[’Vehicle␣Speed ’]
df2[’Vehicle␣Speed’]=0.277777778* df2[’Vehicle␣Speed ’]

# Concatenate data sets to get the data set that matches
# the vehicle data in time:
frames = [df , df2]
laserFullBothWays = pd.concat(frames ,ignore_index=True)

# Changing time columns to datetime format for both
# vehicle and retroreflectometer data:
laserFullBothWays[’TimePlot ’] = \

pd.to_datetime(laserFullBothWays[’Time’])
GPSSpeedLaneAmb[’TimeMerge ’] = \

pd.to_datetime(GPSSpeedLaneAmb[’Time’], unit=’s’,
origin=pd.Timestamp(dateCorr ))

# Sanity check:
laserFullBothWays.dtypes

GPSSpeedLaneAmb.dtypes

# Merge Vehicle data with retroreflectometer data:
VehicleLaser = pd.merge_ordered(GPSSpeedLaneAmb ,

laserFullBothWays ,left_on=’TimeMerge ’,
right_on=’TimePlot ’,fill_method=’ffill ’,
how=’outer ’)

VehicleLaser.head (5)

# Plotting to check that data is overlapping and correct:
ax3 = VehicleLaser.plot(x=’Time_y ’, y=’VehSpeed ’,

linewidth =3.3)
ax4 = VehicleLaser.plot(x=’Time_y ’, y=’Vehicle␣Speed’,

color=’g’, ax=ax3)

print(ax3 == ax4)

# Position data (lat ,lon) is not always accurate.
# Performing additional sanity check that the merge is
# correct by correlation vehicle speed measure in
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# vehicle and by retroreflectometer:
VehicleLaser[’VehSpeed ’].max()
VehicleLaser [[’VehSpeed ’]]. idxmax ()
print(VehicleLaser[VehicleLaser.VehSpeed ==

VehicleLaser.VehSpeed.max ()])
print(VehicleLaser[VehicleLaser[’Vehicle␣Speed’] ==

VehicleLaser[’Vehicle␣Speed ’].max ()])
VehicleLaser.shape

# Creating sections of data needed for analyses:
VehicleLaserFormer = VehicleLaser [286940:1200000]
VehicleLaserLatter = VehicleLaser [1200001:2787897]

# Plots to check:
ax321 = VehicleLaserFormer.plot(x=’Time_y ’, y=’VehSpeed ’,

linewidth =3.3)
ax432 = VehicleLaserFormer.plot(x=’Time_y ’, y=’Vehicle␣Speed’

, color=’g’, ax=ax321)
print(ax321 == ax432)

# More plots to check:
ax33 = VehicleLaserLatter.plot(x=’Time_y ’, y=’VehSpeed ’,

linewidth =3.3)
ax44 = VehicleLaserLatter.plot(x=’Time_y ’, y=’Vehicle␣Speed ’,

color=’g’,
ax=ax33)

print(ax33 == ax44)

# Even more plots to check:
ax01 = VehicleLaserFormer.plot(x=’Time_y ’, y=’Latitude_x ’,

linewidth =3.3)
ax02 = VehicleLaserFormer.plot(x=’Time_y ’, y=’Latitude_y ’,

color=’r’, ax=ax01)
ax01.set_ylim (59.3 ,60)
print(ax01 == ax02)

# Some more plots:
ax011 = VehicleLaserFormer.plot(x=’Time_y ’, y=’Longitude_x ’,

linewidth =4)
ax022 = VehicleLaserFormer.plot(x=’Time_y ’, y=’Longitude_y ’,

color=’r’, ax=ax011)
ax011.set_ylim (10.6 ,11)
print(ax011 == ax022)

# Some plots:
ax1 = VehicleLaserLatter.plot(x=’Time_y ’, y=’Latitude_x ’,

linewidth =3.3)
ax2 = VehicleLaserLatter.plot(x=’Time_y ’, y=’Latitude_y ’,

color=’g’, ax=ax1)
ax1.set_ylim (59.3 ,60)
print(ax1 == ax2)

# Plots:
ax11 = VehicleLaserLatter.plot(x=’Time_y ’, y=’Longitude_x ’,

linewidth =3.3)
ax22 = VehicleLaserLatter.plot(x=’Time_y ’, y=’Longitude_y ’,

color=’g’, ax=ax11)
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ax11.set_ylim (10.6 ,11)
print(ax11 == ax22)

# Look at discrete lane detection in a histogram:
VehicleLaserLatter.hist(column=’LaneDetn ’)

# Change discrete values to binary values:
laneBinary = []
for value in VehicleLaserLatter["LaneDetn"]:

if value == 0:
laneBinary.append("0")

elif value == 1:
laneBinary.append("0")

elif value == 2:
laneBinary.append("1")

elif value == 3:
laneBinary.append("1")

else:
laneBinary.append("0")

VehicleLaserLatter["laneBinary"] = laneBinary
VehicleLaserLatter["laneBinary"] = \

VehicleLaserLatter["laneBinary"]. astype(int)

#New plot of LaneDet values to validate conversion to
# binary set.
VehicleLaserLatter.hist(column=’laneBinary ’)

# Change discrete values to binary values:
laneBinary2 = []
for value in VehicleLaserFormer["LaneDetn"]:

if value == 0:
laneBinary2.append("0")

elif value == 1:
laneBinary2.append("0")

elif value == 2:
laneBinary2.append("1")

elif value == 3:
laneBinary2.append("1")

else:
laneBinary2.append("0")

VehicleLaserFormer["laneBinary"] = laneBinary2
VehicleLaserFormer["laneBinary"] = \

VehicleLaserFormer["laneBinary"]. astype(int)

#New plot of LaneDet values to validate conversion to
# binary set.
VehicleLaserFormer.hist(column=’laneBinary ’)

# Plot:
ax17 = VehicleLaserFormer.plot(x=’Time_y ’, y=’Latitude_x ’,

linewidth =3.3)
ax27 = VehicleLaserFormer.plot(x=’Time_y ’, y=’Latitude_y ’,

color=’g’, ax=ax17)
print(ax17 == ax27)
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# Create files for statistical analyses:
# County road night:
VehicleLaserLatter.to_csv(r’CountyRoadNight.csv’)
# Freeway night:
VehicleLaserFormer.to_csv(r’FreewayNight.csv’)
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Appendix F

Code for Image Analyses in
Paper IV

LISTING F.1: Example of code used for converting images to different color
spaces and creating corresponding histograms.

#!/usr/bin/env python
# coding: utf -8

# In[1]:

# This is an example of code used to produce different color
# space representations and histograms for the paper
# "Camera -Based Lane Detection - Can Yellow Road Marking
# Facilitate Automated Driving in Snow?" Authors: Ane Dalsnes
# Storsæter , Kelly Pitera and Edward McCormack ,
# submitted to the Journal of Field Robotics in December 2020.
# The aim of the paper was to investigate if yellow road
# marking could be beneficial for camera -based lane detection.
# Code by Ane Dalsnes Storsæter.

# Import libraries
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import cv2
import math

# In[2]:

# Setting title to make it easier to find and sort the images
# that are produced. Change this title when changing images or
# if you don’t want to overwrite previously produced images and
# plots.
title= "Case_1a_test_"

# Reading image from local folder , replace with own location.
img = mpimg.imread(’testImages /1 a_croppedROI.jpg’)

# Addressing the three color channels to be used to show and
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# plot the respective color channels.
R = img[:,:,0]
G = img[:,:,1]
B = img[:,:,2]

# Finding the shape of the image , used to do simple slicing.
h, w, c = img.shape
print(’width:␣␣’, w)
print(’height:␣’, h)
print(’channel:’, c)

# Removing axis on image , showing image and saving image.
# Set the save location to a folder that exists and update
# the savefig -location.
plt.axis(’off’)
plt.imshow(img)
plt.savefig(’C:/Cases/’+title+’RGB’+’.jpg’, dpi=300,

bbox_inches=’tight ’, pad_inches =0)

# In[3]:

# For Case 1a, the image is not sliced in half , instead
# the pixel row to separate white from yellow markings is
# set manually. Creating upper half of image
# (yellow marking ).
sub_image = img [0:430 ,:]

# Showing upper part of image
plt.axis(’off’)
plt.imshow(sub_image)

# In[4]:

# The lower part of the image is also manually set in
# this case.
sub_image2 = img [500:1344 ,:]

# Showing lower part of image (white marking)
plt.axis(’off’)
plt.imshow(sub_image2)

# In[5]:

# In Case 1a the upper and lower part of the image have
# different color marking. As the difference between
# these two markings , in terms of visibility in color
# spaces and histograms , is the aim of the paper the
# upper and lower parts of the image are plotted separately
# to look at differences.

# Histograms are found by using the np.sum function and
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# plotted for upper (yellow) and lower (white) parts of
# the image for the three different color spaces of the RGB
# color space.

Rlow = np.sum(R[500:1344 ,:] , axis =0)
Rhigh = np.sum(R[0:430 ,:] , axis =0)
Glow = np.sum(G[500:1344 ,:] , axis =0)
Ghigh = np.sum(G[0:430 ,:] , axis =0)
Blow = np.sum(B[500:1344 ,:] , axis =0)
Bhigh = np.sum(B[0:430 ,:] , axis =0)
plt.plot(Rhigh , color = ’red’, label =’RGB -R_yellow ’)
plt.plot(Ghigh , color = ’green ’, label =’RGB -G_yellow ’)
plt.plot(Bhigh , color = ’blue’, label =’RGB -B_yellow ’)
plt.plot(Rlow , color = ’orange ’, label =’RGB -R_white ’)
plt.plot(Glow , color = ’lightgreen ’, label =’RGB -G_white ’)
plt.plot(Blow , color = ’lightblue ’, label =’RGB -B_white ’)

plt.legend(bbox_to_anchor =(1.05 , 1), loc=’upper␣left’)
plt.savefig(’C:/Cases/’+ title+’RGBhisthighlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In[6]:

# Plotting only the upper part of the image ,
# i.e. yellow marking.

plt.plot(Rhigh , color = ’red’, label =’RGB -R_yellow ’)
plt.plot(Ghigh , color = ’green ’, label =’RGB -G_yellow ’)
plt.plot(Bhigh , color = ’blue’, label =’RGB -B_yellow ’)

plt.legend(bbox_to_anchor =(1.05 , 1), loc=’upper␣left’)
plt.savefig(’C:/Cases/’+ title+’RGBhisthigh ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In[7]:

# Plotting only the lower part of the image ,
# i.e. white marking.

plt.plot(Rlow , color = ’red’, label =’RGB -R’)
plt.plot(Glow , color = ’green ’, label =’RGB -G’)
plt.plot(Blow , color = ’blue’, label =’RGB -B’)
plt.legend(bbox_to_anchor =(1.05 , 1), loc=’upper␣left’)
plt.savefig(’C:/Cases/’+title+’RGBhistlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In[8]:

# Highlighting the channels that give the most
# distinct peaks at the position of the road markings.
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plt.plot(Rhigh , color = ’red’, label =’RGB -R␣yellow ’)
#plt.plot(Ghigh , color = ’green ’, label =’RGB -G_yellow ’)
#plt.plot(Bhigh , color = ’blue ’, label =’RGB -B_yellow ’)
plt.plot(Rlow , color = ’orange ’, label =’RGB -R␣white’)
#plt.plot(Glow , color = ’green ’, label =’RGB -G ’)
#plt.plot(Blow , color = ’blue ’, label =’RGB -B ’)
#plt.legend(bbox_to_anchor =(1.05 , 1), loc=’upper left ’)
plt.legend ()
plt.savefig(’C:/Cases/’+title+’Rhist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In[9]:

#plt.plot(Rhigh , color = ’red ’, label =’RGB -R yellow ’)
plt.plot(Ghigh , color = ’green’, label =’RGB -G␣yellow ’)
#plt.plot(Bhigh , color = ’blue ’, label =’RGB -B_yellow ’)
#plt.plot(Rlow , color = ’orange ’, label =’RGB -R white ’)
plt.plot(Glow , color = ’lightgreen ’, label =’RGB -G␣white’)
#plt.plot(Blow , color = ’blue ’, label =’RGB -B ’)
#plt.legend(bbox_to_anchor =(1.05 , 1), loc=’upper left ’)
plt.legend ()
plt.savefig(’C:/Cases/’+title+’Ghist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [10]:

#plt.plot(Rhigh , color = ’red ’, label =’RGB -R yellow ’)
#plt.plot(Ghigh , color = ’green ’, label =’RGB -G_yellow ’)
plt.plot(Bhigh , color = ’blue’, label =’RGB -B␣yellow ’)
#plt.plot(Rlow , color = ’orange ’, label =’RGB -R white ’)
#plt.plot(Glow , color = ’green ’, label =’RGB -G ’)
plt.plot(Blow , color = ’lightblue ’, label =’RGB -B␣white’)
#plt.legend(bbox_to_anchor =(1.05 , 1), loc=’upper left ’)
plt.legend ()
plt.savefig(’C:/Cases/’+title+’Bhist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [11]:

# Converting the RGB image to grayscale
gray = cv2.cvtColor(img , cv2.COLOR_RGB2GRAY)

# Showing image and saving image
plt.axis(’off’)
plt.imshow(gray , cmap=’gray’)
print(gray.shape)
plt.savefig(’testImages/gray.jpg’)
plt.savefig(’C:/Cases/’+title+’gray’+’.jpg’, dpi=300,

bbox_inches=’tight ’, pad_inches =0)



Appendix F. Code for Image Analyses in Paper IV 201

# In [12]:

# Making histogram plots for the upper and lower part of
# the image for the grayscale representation
histogramgraylow = np.sum(gray [0:430 ,:] , axis =0)
histogramgrayhigh = np.sum(gray [500:1344 ,:] , axis =0)
plt.plot(histogramgraylow , color = ’gray’,

label = ’Gray␣white’)
plt.plot(histogramgrayhigh , color = ’black ’,

label = ’Gray␣yellow ’)

plt.legend ()
plt.savefig(’C:/LD/Cases/’+title+’grayhist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [13]:

# Converting the RGB image to HSL color space , OpenCV
# uses the order HLS.
hls = cv2.cvtColor(img , cv2.COLOR_RGB2HLS)

# Naming the three color channels of the HLS
# representation.
H = hls[:,:,0]
L = hls[:,:,1]
S = hls[:,:,2]

# Finding the shape of the image
he , wi , ch = hls.shape
print(’width:␣␣’, wi)
print(’height:␣’, he)
print(’channel:’, ch)

# Showing and saving the HLS representation
plt.imshow(hls)
plt.axis(’off’)
plt.savefig(’C:/Cases/’+title+’HLS’+’.jpg’, dpi=300,

bbox_inches=’tight ’, pad_inches =0)

# In [14]:

# Separating the upper and lower part of the image to
# produce histogram plots for the lower and upper part
# of the image.

Hlow = np.sum(H[500:1344 ,:] , axis =0)
Hhigh = np.sum(H[0:430 ,:] , axis =0)
Llow = np.sum(L[500:1344 ,:] , axis =0)
Lhigh = np.sum(L[0:430 ,:] , axis =0)
Slow = np.sum(S[500:1344 ,:] , axis =0)
Shigh = np.sum(S[0:430 ,:] , axis =0)
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# Plotting the histograms for the lower part of the
# image (white)
plt.plot(Hlow , color = ’blue’, label =’HSL -H’)
plt.plot(Llow , color = ’green ’, label =’HSL -L’)
plt.plot(Slow , color = ’red’, label =’HSL -S’)
#plt.legend ()
plt.legend(bbox_to_anchor =(1.05 , 1), loc=’upper␣left’)
plt.savefig(’C:/Cases/’+title+’HLShistlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [15]:

# Plotting the histograms for the L-channel from the
# HSL image , comparing the white marking
# (lower part of image) to the yellow marking
# (upper part of image).

plt.plot(Llow , color = ’lightgreen ’,
label =’HSL -L␣white’)

plt.plot(Lhigh , color = ’green’,
label =’HSL -L␣yellow ’)

plt.legend ()
plt.savefig(’C:/Cases/’+title+’HSL -Lhist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [16]:

# Plotting the histograms for the H-channel from the
# HSL image , comparing the white marking
# (lower part of image) to the yellow marking
# (upper part of image).

plt.plot(Hlow , color = ’lightblue ’, label =’HSL -H␣white’)
plt.plot(Hhigh , color = ’blue’, label =’HSL -H␣yellow ’)

plt.legend ()
plt.savefig(’C:/Cases/’+title+’HSL -H_histhighlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [17]:

# Plotting the histograms for the S-channel from the
# HSL image , comparing the white marking
# (lower part of image) to the yellow marking
# (upper part of image).

plt.plot(Slow , color = ’orange ’, label =’HSL -S␣white’)
plt.plot(Shigh , color = ’red’, label =’HSL -S␣yellow ’)

plt.legend ()
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plt.savefig(’C:/Cases/’+title+’HSL -Shistlow ’+’.jpg’,
dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [18]:

# Converting the RGB image to HSV color space and naming
# the three color channels

hsv = cv2.cvtColor(img , cv2.COLOR_RGB2HSV)
H2 = hsv[:,:,0]
S2 = hsv[:,:,1]
V = hsv[:,:,2]

# Showing and saving the HLS representation
plt.imshow(hsv)
plt.axis(’off’)
plt.savefig(’C:/Cases/’+title+’HSV’+’.jpg’, dpi=300,

bbox_inches=’tight ’, pad_inches =0)

# In [19]:

# Separating the white (low) from the yellow (high) in
# the histogram plots

H2low = np.sum(H2[500:1344 ,:] , axis =0)
H2high = np.sum(H2[0:430 ,:] , axis =0)
Vlow = np.sum(V[500:1344 ,:] , axis =0)
Vhigh = np.sum(V[0:430 ,:] , axis =0)
S2low = np.sum(S2[500:1344 ,:] , axis =0)
S2high = np.sum(S2[0:430 ,:] , axis =0)

plt.plot(H2low , color = ’blue’, label =’HSV -H’)
plt.plot(Vlow , color = ’green ’, label =’HSV -V’)
plt.plot(S2low , color = ’red’, label =’HSV -S’)

plt.legend(bbox_to_anchor =(1.05 , 1), loc=’upper␣left’)
plt.savefig(’C:/Cases/’+title+’HSVhistlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [20]:

# Plotting the histograms for the H-channel from the
# HSV image , comparing the white marking
# (lower part of image) to the yellow marking
# (upper part of image).

plt.plot(H2low , color = ’lightblue ’, label =’HSV -H␣white’)
plt.plot(H2high ,color=’blue’, label =’HSV -H␣yellow ’)

plt.legend ()
plt.savefig(’C:/Cases/’+title+’HSV -Hhist_highlow ’+’.jpg’,
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dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [21]:

# Plotting the histograms for the S-channel from the
# HSV image , comparing the white marking
# (lower part of image) to the yellow marking
# (upper part of image).

plt.plot(S2low , color = ’orange ’, label =’HSV -S␣white’)
plt.plot(S2high ,color=’red’, label =’HSV -S␣yellow ’)

plt.legend ()
plt.savefig(’C:/Cases/’+title+’HSV -Shist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [22]:

# Plotting the histograms for the V-channel from the
# HSV image , comparing the white marking
# (lower part of image) to the yellow marking
# (upper part of image).

plt.plot(Vlow , color = ’lightgreen ’,
label =’HSV -V␣white’)

plt.plot(Vhigh ,color=’green ’, label =’HSV -V␣yellow ’)

plt.legend ()
plt.savefig(’C:/Cases/’+title+’HSV -Vhist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [23]:

# Converting the RGB image to YUV color space and naming
# the three color channels

yuv = cv2.cvtColor(img , cv2.COLOR_RGB2YUV)

Y = yuv[:,:,0]
U = yuv[:,:,1]
V2 = yuv[:,:,2]

# Showing and saving the image
plt.axis(’off’)
plt.imshow(yuv)
plt.savefig(’C:/Cases/’+title+’YUV’+’.jpg’, dpi=300,

bbox_inches=’tight ’, pad_inches =0)

# In [24]:
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# Separating the white (low) from the yellow (high) in
# the histogram plots

Ylow = np.sum(Y[500:1344 ,:] , axis =0)
Yhigh = np.sum(Y[0:430 ,:] , axis =0)
V2low = np.sum(V2[500:1344 ,:] , axis =0)
V2high = np.sum(V2[0:430 ,:] , axis =0)
Ulow = np.sum(U[500:1344 ,:] , axis =0)
Uhigh = np.sum(U[0:430 ,:] , axis =0)

plt.plot(Ylow , color = ’green ’, label =’YUV -Y’)
plt.plot(Ulow , color = ’blue’, label =’YUV -U’)
plt.plot(V2low , color = ’red’, label =’YUV -V’)
plt.legend(bbox_to_anchor =(1.05 , 1), loc=’upper␣left’)
plt.savefig(’C:/Cases/’+title+’YUV_hist ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [25]:

# Plotting the histograms for the Y-channel from the
# YUV image , comparing the white marking
# (lower part of image) to the yellow marking
# (upper part of image).

plt.plot(Ylow , color = ’lightgreen ’, label =’YUV -Y␣white’)
plt.plot(Yhigh , color = ’green ’, label =’YUV -Y␣yellow ’)

plt.legend ()
plt.savefig(’C:/Cases/’+title+’YUV -Yhist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [26]:

# Plotting the histograms for the U-channel from the
# YUV image , comparing the white marking
# (lower part of image) to the yellow marking
# (upper part of image).

plt.plot(V2low , color = ’orange ’, label =’YUV -V␣white’)
plt.plot(V2high , color = ’red’, label =’YUV -V␣yellow ’)

plt.legend ()
plt.savefig(’C:/Cases/’+title+’YUV -Vhist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [27]:

# Plotting the histograms for the V-channel from the
# YUV image , comparing the white marking
# (lower part of image) to the yellow marking
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# (upper part of image).

plt.plot(Ulow , color = ’lightblue ’, label =’YUV -U␣white’)
plt.plot(Uhigh , color = ’blue’, label =’YUV -U␣yellow ’)

plt.legend ()
plt.savefig(’C:/Cases/’+title+’YUV -Uhist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)

# In [28]:

# Plotting the histograms for the U- and V- channels
# from the YUV image , only for the yellow marking.

plt.plot(Uhigh , color = ’blue’, label =’YUV -U␣yellow ’)
plt.plot(V2high , color = ’red’, label =’YUV -V␣yellow ’)

plt.legend ()
plt.savefig(’C:/Cases/’+title+’YUV -UVhist_highlow ’+’.jpg’,

dpi=300, bbox_inches=’tight ’, pad_inches =0)
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