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Introduction

Along with this introduction, four papers together constitute this thesis:

• On support varieties and tensor products for finite dimensional al-
gebra, Journal of Algebra (2020), volume 547, pages 226-237;

• Higher Koszul duality and connections with n-hereditary algebras ;
• Classification results for n-hereditary monomial algebras;
• Skew group algebras, the (Fg) property and self-injective radical
cube zero algebras.

All of these are concerned with or motivated by applications to a theory of
support varieties defined via Hochschild cohomology, although this is not
immediately obvious for the second and third paper. Moreover, all but the
first paper have connections with or are concerned with (generalized) Koszul
algebras and (higher) hereditary algebras.

In the following, we begin by giving some light background before we
expand upon and explain some of the connections just outlined with a par-
ticular focus on showing how the second and third papers are related to and
motivated by the aforementioned theory of support varieties. We end the
introduction by discussing some avenues for future work.

Support varieties

The celebrated theory of cohomological support varieties for modular
representations of finite groups was introduced in the early eighties by Carl-
son [6, 7]. Analogous theories of varieties have been produced in many
settings in the years since, e.g. for restricted Lie algebras [15] and finite di-
mensional cocommutative Hopf algebras, and support varieties for complete
intersections have been introduced by Avramov and Buchweitz [1].

Solberg and Snashall [33] launched an investigation of cohomological
support varieties of arbitrary finitely generated modules over finite dimen-
sional algebras via the action of the Hochschild cohomology ring on the Ext-
algebras of modules. In [12,33], it was shown that these varieties have many
of the same elementary properties as those in the setting of group algebras,
at least provided certain finite generation properties hold: e.g. modules of
finite projective dimension have trivial varieties, every closed homogeneous
subvariety of an appropriately chosen subring of the Hochschild cohomology
ring can be realized by a module, and decomposable modules have reducible
varieties.
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2 INTRODUCTION

One crucial result has nevertheless proven elusive, namely some version
of a tensor product formula: in the case of group algebras, the variety of
a tensor product (over the base field) of two modules is precisely the in-
tersection of the varieties of the modules. The first paper listed above is
related to this as we investigate the possibility of certain bimodule versions
of such a formula, in particular showing that certain reasonable versions of
such formulas cannot hold in full generality.

The (Fg) property and higher hereditary algebras

For group representations, cocommutative Hopf algebras, and restricted
Lie algebras, the direct sum of all Ext-groups between any two finitely gen-
erated modules is a finitely generated module over the Noetherian (graded)
commutative ring defining the support varieties. Call this property (Fg).
This condition is of pivotal importance in all aforementioned settings. It is
known that not all finite dimensional algebras satisfy (Fg), and one may
thus ask, “When does a finite dimensional algebra satisfy (Fg)?”

In the framework of [12,33], one equivalent way to state this property
is as follows: one says that a finite dimensional algebra ⇤ has (Fg) provided

Ext⇤⇤e(⇤, U) = �i�0 Ext
i
⇤e(⇤, U)

is a Noetherian module over the Hochschild cohomology ring of ⇤

HH⇤(⇤) = Ext⇤⇤e(⇤,⇤)

for every finitely generated ⇤e-module U , where ⇤e := ⇤op ⌦k ⇤ is the
enveloping algebra of ⇤. Note that it is in this more restricted sense we use
the term henceforth. Also note that any finite dimensional algebra satisfying
(Fg) must be Gorenstein by [12].

Since answering the question in general even in this sense is likely to
be a hard problem, we narrowed our scope and looked at situations that
seemed more tractable. In doing so, we believe we have found links with
higher Auslander–Reiten theory and n-hereditary algebras. These areas
have been much studied in recent years (see e.g. references cited in the
introductions to the second and third paper listed above, i.e. respectively
[17] and [31]). These areas have been shown to have connections with
e.g. algebraic geometry and combinatorics [11,19], and both are “higher”
generalizations of classical theories. Note that for the latter, setting n = 1
yields ordinary, honest hereditary algebras.

One suggestion of why pursuing such a link might be fruitful comes from
the classification of the representation infinite weakly symmetric radical-
cube-zero algebras satisfying (Fg) given by [13]. Reviewing that classi-
fication, one can see that, with some exceptions, the classes all seem to
essentially consist of the Koszul duals of the preprojective algebras of tame
hereditary algebras. Moreover, to all of them one can attach an extended
Dynkin graph via the type of a self-injective radical-cube-zero algebra in the
sense of [13, Definition 7.1].



THE (FG) PROPERTY AND HIGHER HEREDITARY ALGEBRAS 3

Classical hereditary algebras also show up in connection with algebras
satisfying (Fg) in other ways: e.g. whenever the base field is algebraically
closed, it is known that the representation finite self-injective algebras all
satisfy (Fg) by, essentially, a combination of the results in [16] and [10].
Recall that an algebra is periodic provided it has a periodic projective reso-
lution when considered as a bimodule. Then, roughly speaking, the results
in the former allows one to deduce that a periodic algebra must satisfy (Fg),
whereas the latter yields that all representation finite self-injective algebras
are periodic. Of course, from the work of Riedtmann and others (see e.g.
[4,28,29]), we know that to each representation finite self-injective algebra
we can attach a representation finite hereditary algebra, at least provided
the base field is algebraically closed and of odd characteristic.

Additionally, any finite dimensional algebra derived equivalent to a tame
hereditary algebra of an extended Dynkin type with bipartite orientation has
a trivial extension that can easily be seen to be (Fg) by combining the main
results in [14] and [23]: by the former, any trivial extension (see [17, Section
2.3] for a definition)

�A = A�DA

of such a hereditary algebra A has (Fg), it is well known that trivial ex-
tensions of derived equivalent algebras are derived equivalent [27], and the
(Fg) property is preserved by derived equivalences by the latter reference.

Since n-hereditary algebras for n > 1 also come in two flavours of a simi-
lar kind, i.e. n-representation-finite [21, Definition 2.2] and n-representation
infinite tame [20, Definition 6.10] (henceforth, respectively n-RF and n-RI
tame, and we note that one can also see [17, Section 5] in the second paper
for background and definitions for n-RF and n-RI algebras.) This suggests
that one might – perhaps a bit naively – expect to be able to find new classes
of self-injective algebras satisfying (Fg) near classes of n-hereditary algebras
of those flavours. Additionally, in the same perhaps naive vein, one might
hope to develop useful methods for verifying that an algebra has (Fg) using
techniques and results involving such n-hereditary algebras.

In fact, it is not too hard to find examples of this happening: [20, Section
5] introduces the class of n-RI algebras of type eA and [20, Example 6.11]
shows that these are n-RI tame. Any n-hereditary algebra has an associated
higher preprojective algebra and by the same example those associated to
n-RI algebras of type eA are of the following form: if S is a polynomial ring
in n + 1 variables over an algebraically closed field k of characteristic zero
and G is a finite abelian subgroup of SLn+1(k), then the associated higher
preprojective algebra is of the form SG, the skew group algebra of S and G
as in, say, [9,26] and which one can recall has underlying vector space given
by S ⌦k kG and multiplication given by

sg · th = sg(t)gh

with s, t 2 S and g, h 2 kG.



4 INTRODUCTION

If one lets SG be the invariant subring of S, then by [20, Example 6.11]
SG is finitely generated as a module over SG, which is itself Noetherian.
Now, SG is a Koszul algebra with Koszul dual EG if we let E be the exterior
algebra over k in the same number of variables. See e.g. [2] for definitions and
background on Koszul algebras and Koszul duals. Alternatively, one can use
the definitions [17, Definition 3.4, Definition 3.6] in the second paper listed
above. According to [14, Theorem 1.3], to check whether a Koszul algebra
has (Fg), it su�ces to check whether its Koszul dual is finitely generated
as a module over a Noetherian central subalgebra. Consequently, EG must
thus satisfy (Fg).

One can also note that this possible connection with n-RI tame algebras
is utilised in the fourth paper listed above, i.e. [32]. In [32], we almost finish
the classification of radical-cube-zero selfinjective algebras satisfying (Fg)
begun in [13,30], leaving open only the case of the algebras of type eAn. After
using the n-quasi-Veronese construction as in [25] to reduce to a normal form
that is a twisted trivial extension of a bipartite tame hereditary algebra, we
are able to employ results about the latter class in a crucial simplifying step
for the main result of that paper. See also [32] for definitions.

The (Fg) property and higher Koszul algebras

There are also other reasons to investigate such a link, as we now ex-
plain: In the general setting in which Solberg and Snashall introduced sup-
port varieties [12,33], the best understood case is perhaps that of Koszul
algebras. In [5], one finds work of Briggs and Gelinas suggesting why this
should have been so: [5] shows that the Hochschild cohomology of ⇤, i.e.
HH⇤(⇤), surjects along a well-known canonical map onto the A1-centre of
Ext⇤(⇤0,⇤0). See e.g. the surveys [22, 24] on A1-algebras and related
notions for definitions. In particular, Koszul algebras are characterized as
having Ext⇤(⇤0,⇤0) for ⇤0 = ⇤/ rad⇤ with trivial A1-structure, allowing
one to work with the graded centre instead. Thus, verifying (Fg) becomes
far easier than what would otherwise be the case.

However, as A1-techniques are subtle and little is known even in many
well-studied settings – say in group representation theory [34] – this is some-
how unfortunate, and working around this obstruction was partly the mo-
tivation for the second article listed above, i.e. [17]: higher Koszul algebras
⇤ replace ⇤/ rad⇤ with a ⇤0-tilting module T having properties that force
Ext⇤(T, T ) to have trivial A1-structure. This suggests that it is a natural
and perhaps tractable class of algebras to investigate with an eye towards
future applications involving the (Fg) property, and in [17] we do this by
characterising “well-graded” Frobenius higher Koszul algebras in terms of
certain associated algebras being n-RI. Recall that a basic self-injective alge-
bra is necessarily Frobenius, where the latter simply means that the algebra
and the k-dual of the algebra are isomorphic as right modules. Alternatively,
see [17, Section 2.3] for a definition.
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In particular, using the results in [17, Section 6], one can deduce that
Ext⇤�A(A,A) has trivial A1-structure for A some n-RI algebra, where the
same is not necessarily true for the Ext-algebra of the simples of �A, e.g.
whenever A is basic tame hereditary with an orientation of its quiver that
is not bipartite.

The (Fg) property, periodic and higher almost Koszul algebras

Another reasonably well-understood and perhaps tractable class of (Fg)
algebras are the periodic algebras. As stated before, these are defined by
the algebra considered as a bimodule having a periodic projective resolu-
tion. Also as mentioned before, a periodic algebra must satisfy (Fg) as a
consequence of [16].

Recent work by Chan et al. [8] has shown that the trivial extension of an
algebra being periodic is closely connected to the fractionally Calabi–Yau
property of that algebra. Recall that if A is a finite dimensional algebra
of finite global dimension and Db(modA) is its bounded derived category,
then the latter has a Serre functor (see [17, Definition 4.4]) given by the
derived Nakayama functor ⌫. One calls A fractionally Calabi–Yau provided
there are integers ` > 0 and m such that ⌫` is naturally isomorphic to [m]
as functors on Db(modA), where [m] is the mth power of the shift functor
on Db(modA).

Examples of the fractionally Calabi–Yau algebras are in particular given
by some n-representation finite algebras as in [21]. Moreover, there is also
a weaker notion called a twisted fractionally Calabi-Yau algebra, where the
defining natural isomorphism is taken only up to a twist by an algebra au-
tomorphism. Herschend and Iyama show in [18] that all n-RF algebras are
twisted fractionally Calabi–Yau, and they ask whether all n-RF algebras are
actually fractionally Calabi–Yau. Similarly, there is a notion of a twisted
periodic algebra, wherein the algebra considered as a bimodule has a pro-
jective resolution that is periodic up to a twist by an algebra automorphism.
However, one can note that these do not necessarily satisfy (Fg).

While the connection between tame and representation finite hereditary
algebas is well-understood, the same cannot be said for n-RI tame algebras
and n-RF algebras for n > 1. Nevertheless, [20, Theorem 5.10] shows that
the higher type A n-RF algebras introduced in [21] are quotients of n-RI
algebras of type eA by ideals generated by some idempotent, and one might
suspect that similar things can be said more generally. Hence, studying n-
RF algebras potentially provides several possible avenues for finding classes
of (Fg) algebras via trivial extensions and related constructions, and this
might also lead to results of independent interest.

This was thus partially the motivation for the third paper, i.e. [31], in
which we classify the quadratic monomial 2-hereditary algebras with higher
preprojective algebra given by a planar quiver with potential, showing that
there are essentially only two, both being 2-RF. See e.g. [31] for definitions.
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Moreover, without the planarity assumption, we show that for each n � 3
there is exactly one quadratic monomial n-RF algebra. Roughly speaking,
the strategy was to try to find new classes of n-RF algebras by looking for
intersections with homologically “well-behaved” classes of algebras such as
monomial algebras.

Moreover, this is also connected to the work in section 7 of the second
article, i.e. [17], in which we introduce a generalization of the almost Koszul
algebras of [3] and characterize these in terms of associated algebras being
n-RF. It is easy to show that these higher almost Koszul algebras are twisted
periodic, but we do not know whether they are periodic.

Future work

Unpublished work of the author using dg-homological algebra shows that
trivial extension algebras that are higher Koszul have resolutions similar to
those one obtains in the classical Koszul case, say as in [2]. Note that when
⇤ is higher Koszul in the sense of [17, Definition 3.4], this is defined relative
to a ⇤0 tilting module T ; see also [17, Section 2-3] for definitions. Using
this, we believe we are able to show that the canonical map from HH⇤(⇤)
to Ext⇤⇤(T, T ) surjects onto the latter’s graded centre, hence establishing
(Fg) for these reduces to verifying that Ext⇤⇤(T, T ) is finitely generated as
a module over its graded centre.

We also hope to generalize the results in the preceding paragraph to
more general higher Koszul algebras by explicitly constructing resolutions
or by other means. Furthermore, we would investigate more closely the
connection between (Fg) algebras and tame n-hereditary algebras. Using
the aforementioned unpublished work, it should already be possible to show
that an n-hereditary algebra is tame if and only if its trivial extension is
higher Koszul and satisfies (Fg), but we believe more can be said.
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It has been asked whether there is a version of the tensor 
product property for support varieties over finite dimensional 
algebras defined in terms of Hochschild cohomology. We show 
that in general no such version can exist. In particular, we 
show that for certain quantum complete intersections, there 
are modules and bimodules for which the variety of the tensor 
product is not even contained in the variety of the one-sided 
module.

© 2019 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In [11,12], Carlson introduced cohomological support varieties for modules over group 
algebras of finite groups, using the maximal ideal spectrum of the group cohomology ring. 
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These varieties behave well with respect to the typical operations such as directs sums 
and syzygies. Moreover, they encode important homological information. For example, 
the dimension of the support variety of a module equals the complexity of the module. 
In particular, the variety of a module is trivial if and only if the module is projective.

Shortly after these cohomological support varieties were introduced, it was shown in 
[1] that the variety of a tensor product of modules equals the intersection of the varieties 
of the modules. This property is commonly referred to as the tensor product property. 
As shown in [14], it holds also for modules over finite dimensional cocommutative Hopf 
algebras; for such algebras, there is a theory of support varieties generalizing that for 
groups. In fact, one can define support varieties over any finite dimensional Hopf algebra, 
cocommutative or not, using the Hopf algebra cohomology ring. However, it is not known 
if this cohomology ring is finitely generated in general. What is known is that the tensor 
product property may or may not hold for non-cocommutative Hopf algebras having 
finitely generated cohomology rings. Namely, as shown in [6,18,19], there are examples 
of such algebras where the tensor product property holds, and examples where it does 
not.

Why do we care about the tensor product property? There are several reasons. Not 
only does it look good; it indicates that the homological behavior of a tensor product is 
closely related to each of the factors. When the property does not hold, some peculiar 
things can happen; examples in [6] show that the tensor product of two modules in one 
order can be projective, but non-projective in the other order. Another reason why the 
tensor product property is of interest is that in many cases, it is connected with the 
classification of thick subcategories. It is an ingredient in Balmer’s classification of thick 
tensor ideals of tensor triangulated categories (cf. [2]), and a necessary consequence of 
Benson, Iyengar and Krause’s stratification approach in [4,5], as shown in [4, Theorem 
7.3]. In general, one is often in a situation where some triangulated tensor category (where 
the tensor product is not necessarily symmetric) acts on a triangulated category, and 
where the latter comes with a theory of support varieties relative to some cohomology 
ring; this is studied in detail in [10]. If the appropriate tensor product property holds, 
then it is sometimes the case that the thick subcategories are actually tensor ideals.

In [13,20,21], a theory of support varieties for arbitrary finite dimensional algebras 
was developed, using Hochschild cohomology rings. For such an algebra A, there is in 
general no natural tensor product between one-sided modules, as is the case for Hopf 
algebras. However, one can tensor any left A-module with a bimodule, and obtain a new 
left A-module. It has therefore been asked whether some version of the tensor product 
property holds in this setting. In other words, given a bimodule B and a left A-module 
M , is there an equality

V(B ⊗A M) = V(B) ∩ V(M)

of support varieties? This does not immediately make sense: how should we define the 
support variety of a bimodule? If we just use the same definition as for one-sided modules, 
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then the support variety of any bimodule which is one-sided projective is trivial. In this 
case, the variety of the tensor product A ⊗A M would be V(M), whereas V(A) ∩ V(M)
would always be trivial. However, as we explain at the end of Section 2, there are actually 
several possible meaningful ways of defining a support variety theory for bimodules, using 
Hochschild cohomology. On the other hand, we show that the tensor product property 
can never hold in general, regardless of which bimodule version of support variety theory 
we use. In fact, we show in Theorem 2.2 that when A is a quantum complete intersection 
of a certain type, then there exists a left A-module M and a bimodule B for which

V(B ⊗A M) ! V(M)

One consequence of the failure of such an inclusion is that in the stable module category 
and the bounded derived category of A-modules, there are thick subcategories that are 
not tensor ideals.

2. Support varieties and tensor products

Let us first recall the basics on the theory of support varieties for finite dimensional 
algebras, using Hochschild cohomology. We only give a very brief overview; for details, 
we refer the reader to [13,20,21].

Let k be a field and A a finite dimensional k-algebra with radical r. All modules 
considered will be finitely generated left modules, and we denote the category of such 
A-modules by modA. A bimodule over A is the same thing as a left module over the 
enveloping algebra Ae = A ⊗k Aop, and the Hochschild cohomology ring of A is the 
graded ring

HH∗(A) =
∞⊕

n=0
ExtnAe(A,A)

with the Yoneda product. This ring is graded-commutative, and so its even part HH2∗(A)
is commutative in the ordinary sense. Now let M and N be A-modules, and consider the 
graded vector space

Ext∗A(M,N) =
∞⊕

n=0
ExtnA(M,N)

The Yoneda product makes this into a graded left module over Ext∗A(N, N), and a graded 
right module over Ext∗A(M, M). Since for every L ∈ modA the tensor product − ⊗A L

induces a homomorphism

ϕL : HH∗(A) → Ext∗A(L,L)
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of graded rings, we see that Ext∗A(M, N) becomes a module over HH∗(A) in two ways: 
via the ring homomorphisms ϕN and ϕM . However, the scalar multiplication via these 
two ring homomorphisms coincide up to a sign.

Now suppose that H is a graded subalgebra of HH2∗(A). Then for every pair (M, N)
of A-modules, we can define the support variety VH(M, N) using the maximal ideal 
spectrum of H:

VH(M,N) = {m ∈ MaxSpecH | AnnH (Ext∗A(M,N)) ⊆ m}

There are equalities

VH(M,M) = VH(M,A/r) = VH(A/r,M)

and we define this to be the support variety VH(M) of the single module M . These 
support varieties share many of the properties enjoyed by the cohomological support va-
rieties for modules over group rings, in particular when H is noetherian and Ext∗A(M, N)
is a finitely generated H-module for all M, N ∈ modA. If this is the case, we say that 
the algebra A satisfies Fg with respect to H. Note that by [21, Proposition 5.7], the (even 
part of the) Hochschild cohomology ring is universal with this property, in the following 
sense: the algebra A satisfies Fg with respect to some H ⊆ HH∗(A) if and only if HH∗(A)
is noetherian and Ext∗A(A/r, A/r) is a finitely generated HH∗(A)-module.

The finite dimensional algebras we shall study are of a very special form, namely 
quantum complete intersections. These are quantum commutative analogues of truncated 
polynomial rings. Let us therefore fix some notation that we shall use throughout.

Setup. (1) Fix an algebraically closed field k, together with two integers c ≥ 2 and a ≥ 2.
(2) Define an integer ā by

ā =
{

a if char k = 0
a/ gcd(a, char k) if char k > 0

and fix a primitive āth root of unity q ∈ k.
(3) Denote by Ac

q the quantum complete intersection

k〈x1, . . . , xc〉/ (xa
1 , . . . , x

a
c , {xixj − qxjxi}i<j)

This is a local selfinjective algebra of dimension ac, and by [8, Theorem 5.5] it satisfies
Fg with respect to HH2∗(Ac

q). In [3], it was shown that one can actually define rank vari-
eties over this algebra, and that these varieties behave very much like the rank varieties 
for group algebras. It was then shown in [7] that these rank varieties are isomorphic 
to the support varieties one obtains by using a suitable polynomial subalgebra of the 
Hochschild cohomology ring. We now point out some facts about this algebra and its 
support varieties.
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Fact 2.1. (1) By [8, Theorem 5.3], the Ext-algebra Ext∗Ac
q
(k, k) of the simple module k

admits a presentation

k〈z1, . . . , zc, y1, . . . , yc〉/a

where a is the ideal generated by the relations




zizj − zjzi for all i, j
ziyj − yjzi for all i, j
yiyj + qyjyi for all i > j

y2
i for all i if a > 2
y2
i − zi for all i if a = 2





Here, the homological degree of each yi is one, whereas that of each zi is two. In particular, 
the zi generate a polynomial subalgebra k[z1, . . . , zc] over which Ext∗Ac

q
(k, k) is finitely 

generated as a module.
(2) As explained in [7, Section 2], it follows from [17, Corollary 3.5] that the image of 

the ring homomorphism

ϕk : HH2∗(Ac
q) → Ext∗Ac

q
(k, k)

is the whole polynomial subalgebra k[z1, . . . , zc]. Consequently, there exists a polynomial 
subalgebra k[η1, . . . , ηc] of HH2∗(Ac

q) with the following properties: each ηi is a homo-
geneous element in HH2∗(Ac

q) of degree two with ϕk(ηi) = zi, and Ac
q satisfies Fg with 

respect to k[η1, . . . , ηc].

We now prove our main result. It shows that there exists an Ac
q-module M and a 

bimodule B for which the support variety of the tensor product B⊗Ac
q
M is not contained 

in the support variety of M .

Theorem 2.2. Let k[η1, . . . , ηc] be a polynomial subalgebra of HH2∗(Ac
q) as in Fact 2.1. 

Then for every graded subalgebra H of HH∗(Ac
q) with

k[η1, . . . , ηc] ⊆ H ⊆ HH2∗(Ac
q)

the following hold:
(1) the algebra H is noetherian, and Ac

q satisfies Fg with respect to H;
(2) there exists an Ac

q-module M and a bimodule B with VH(B ⊗Ac
q
M) ! VH(M).

Proof. Let us simplify notation a bit and write A for our algebra Ac
q. Since it satisfies

Fg with respect to k[η1, . . . , ηc], it follows from [13, Proposition 2.4] that the Hochschild 
cohomology ring HH∗(A) is finitely generated as a module over k[η1, . . . , ηc]. Note that 
the assumption in [13, Proposition 2.4] is that Fg holds with respect to a graded subal-
gebra of HH∗(A) whose degree zero part coincides with HH0(A), which is the center of 
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A. This is not the case for the polynomial subalgebra k[η1, . . . , ηc], since the center of A
is not of dimension one. However, this assumption is not needed in the result.

Since HH∗(A) is finitely generated as a module over the noetherian ring k[η1, . . . , ηc], 
the same is true for H, since this is a k[η1, . . . , ηc]-submodule of HH∗(A). Then H
is noetherian as a ring, since it contains k[η1, . . . , ηc] as a subring. Moreover, since 
Ext∗A(k, k) is finitely generated over k[η1, . . . , ηc], it must also be finitely generated over 
the bigger algebra H. This proves (1).

To prove (2), we first show that we may without loss of generality assume that H =
k[η1, . . . , ηc]. To do this, consider the ring homomorphism

ϕk : HH∗(A) → Ext∗A(k, k)

By Fact 2.1, the image of HH2∗(A) is the polynomial subalgebra k[z1, . . . , zc] of 
Ext∗A(k, k), and this is also the image of k[η1, . . . , ηc]; after all, that is how we con-
structed k[η1, . . . , ηc] in the first place. Therefore, since k[η1, . . . , ηc] ⊆ H ⊆ HH2∗(A), 
we see that the image of k[η1, . . . , ηc] is the same as that of H, namely k[z1, . . . , zc]. Now 
take any A-module X, and consider its support variety VH(X), which by definition is 
the set

{m ∈ MaxSpecH | AnnH (Ext∗A(X,X)) ⊆ m}

By [20, Theorem 3.2], there is an equality

VH(X) = {m ∈ MaxSpecH | AnnH (Ext∗A(X, k)) ⊆ m}

and so by [9, Proposition 3.6] the variety VH(X) is isomorphic to the set of maximal 
ideals of k[z1, . . . , zc] containing the annihilator of Ext∗A(X, k). Here we view Ext∗A(X, k)
as a left module over Ext∗A(k, k), and in this way it becomes a module over the subalgebra 
k[z1, . . . , zc]. The isomorphism respects inclusions of varieties, and this proves the claim.

In light of the above, we now take H = k[η1, . . . , ηc]. Since k is algebraically closed, 
we may identify the maximal ideal spectrum of H with the affine space kc. For a point 
λ = (λ1, . . . , λc) in kc, we denote the corresponding maximal ideal (η1 − λ1, . . . , ηc − λc)
in H by mλ, and when λ is nonzero we denote the corresponding line

{(γλ1, . . . , γλc) | γ ∈ k}

in kc by %λ. Moreover, we denote the element 
∑c

i=1 λixi in A by uλ, and by F (λ) the 
point (λa

1 , . . . , λ
a
c ) in kc. By [7, Proposition 3.5], the support variety VH(Auλ) of the 

cyclic A-module Auλ equals %F (λ), that is, there is an equality

VH (Auλ) =
{
mγF (λ) | γ ∈ k

}
= {(η1 − γλa

1 , . . . , ηc − γλa
c ) | γ ∈ k}

Note that F (λ) = 0 if and only if λ = 0.
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Now take any point µ = (µ1, . . . , µc) in kc with µi *= 0 for all i, and consider the 
automorphism ψµ : A → A given by xi +→ µixi. What happens to the cyclic A-module 
Auλ when we twist it by this automorphism? In general, for an A-module X and an 
automorphism ψ of A, the twisted module ψX is the same as X as a vector space, but 
for w ∈ A and x ∈ X the scalar multiplication is w · x = ψ(w)x. Now denote the point 
(µ−1

1 λ1, . . . , µ−1
c λc) in kc by µ−1λ, and consider the map

Auµ−1λ → ψµ (Auλ)
wuµ−1λ +→ ψµ(w)uλ

Note that since uµ−1λ = ψ−1
µ (uλ), this map is obtained by simply applying ψµ to the 

elements in Auµ−1λ. It is k-linear, and for every element v ∈ A and wuµ−1λ ∈ Auµ−1λ

there are equalities

ψµ

(
v · (wuµ−1λ)

)
= ψµ

(
vwuµ−1λ

)

= ψµ(u)ψµ(w)uλ

= u · (ψµ(w)uλ)

Thus the map is an A-homomorphism. Similarly, the inverse automorphism ψ−1
µ induces 

an A-homomorphism in the other direction, hence Auµ−1λ and ψµ (Auλ) are isomorphic 
A-modules. Using [7, Proposition 3.5] again, we now see that VH

(
ψµ (Auλ)

)
equals the 

line %F (µ−1λ).
Twisting an A-module X by an automorphism ψ is the same as tensoring with the 

bimodule ψA1, i.e. ψX , ψA1⊗AX. Therefore, with λ and µ as above, the support variety 
VH

(
ψµA1 ⊗A Auλ

)
is the line %F (µ−1λ). On the other hand, the support variety VH(Auλ)

is the line %F (λ), which generically differs from %F (µ−1λ). For example, with λ = (1, . . . , 1), 
any µ whose components are not all the same when raised to the ath power will do. 
Consequently, for this λ and such a µ, we see that VH

(
ψµA1 ⊗A Auλ

)
! VH(Auλ). !

As a consequence of the theorem, there cannot exist a bimodule version of the tensor 
product property for support varieties over the algebra Ac

q.

Corollary 2.3. Let H, M and B be as in Theorem 2.2, and suppose that Vb
H is some 

support variety theory on the category of Ac
q-bimodules, defined in terms of the maximal 

ideal spectrum of H. Then VH(B ⊗Ac
q
M) *= Vb

H(B) ∩ VH(M).

For a finite dimensional algebra A, there are actually several possible ways of defining 
support varieties for bimodules. Namely, take any commutative graded subalgebra H of 
HH∗(A). For a bimodule B, we can view Ext∗Ae(B, A) as a left module over HH∗(A), and 
in this way it becomes an H-module. We can then define

Vb
H(B) = {m ∈ MaxSpecH | AnnH (Ext∗Ae(B,A)) ⊆ m}
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Similarly, we can use the fact that Ext∗Ae(A, B) is a right module over HH∗(A) and 
obtain another support variety. These types of one-sided support varieties were studied 
in [9], where it was shown that they satisfy many of the properties one expects for a 
meaningful theory of support.

Now suppose that we take a bimodule B which is projective as a left A-module. Then 
if we take any exact sequence η of bimodules, the sequence η⊗A B remains exact. Thus 
we obtain a ring homomorphism

HH∗(A) → Ext∗Ae(B,B)
η +→ η ⊗A B

of graded rings, and we can define

Vb
H(B) = {m ∈ MaxSpecH | AnnH (Ext∗Ae(B,B)) ⊆ m}

Similarly, if B is projective as a right A-module, we obtain a version by tensoring with 
B on the left. Consequently, for bimodules which are projective as both left and right 
A-modules, there are totally at least four ways of defining support varieties using H, and 
there is in general no reason to expect them to be equivalent.

Suppose now that A is a finite dimensional selfinjective algebra satisfying Fg with 
respect to some subalgebra H of its Hochschild cohomology ring. We then ask: what 
are the consequences of having a tensor product formula for bimodules acting on left 
modules? In order to investigate this, assume that

VH(B ⊗A M) = Vb
H(B) ∩ VH(M)

for all B in a tensor closed subcategory X of bimodules and all left A-modules M , where 
VH is the usual support variety theory on left modules and Vb

H is some support variety 
theory for bimodules in X (defined in terms of the same geometric space as VH , namely 
the maximal ideal spectrum of H). Then

Vb
H(B1 ⊗A B2) ∩ VH(M) = VH((B1 ⊗A B2) ⊗A M)

= VH(B1 ⊗A (B2 ⊗A M))
= Vb

H(B1) ∩ VH(B2 ⊗A M)
= Vb

H(B1) ∩ Vb
H(B2) ∩ VH(M)

= Vb
H(B2) ∩ Vb

H(B1) ∩ VH(M)
= VH(B2 ⊗A (B1 ⊗A M))
= VH((B2 ⊗A B1) ⊗A M)
= Vb

H(B2 ⊗A B1) ∩ VH(M)
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for all B1 and B2 in X og all left A-modules M . Then we claim that the equality

Vb
H(B1 ⊗A B2) = Vb

H(B2 ⊗A B1)

holds for all bimodules B1 and B2 in X . To see this, choose M = A/r, where r is 
the radical of A. Then VH(M) is the whole defining maximal ideal spectrum of H, so 
that Vb

H(B1 ⊗A B2) = Vb
H(B2 ⊗A B1). Hence, one consequence is that the bimodule 

support variety Vb
H must be independent of the order of the terms in a tensor product 

of bimodules, and therefore forcing some type of symmetry on the tensor products of 
bimodules in X .

Let η : Ωn
Ae(A) → A represent a homogeneous element in H, where Ωn

Ae(A) is the nth 
syzygy in a minimal projective resolution of A over Ae. Taking the pushout along this 
homomorphism and the minimal projective resolution of A over Ae gives rise to a short 
exact sequence

0 → A → Mη → Ωn−1
Ae (A) → 0

as defined in [13]. The bimodules Mη for homogeneous elements η in H have the following 
property

VH(Mη1 ⊗A · · ·⊗A Mηt ⊗A M) = VH(〈η1, . . . , ηt〉) ∩ VH(M).

If there is a support variety Vb
H of bimodules such that

Vb
H(Mη1 ⊗A · · ·⊗A Mηt) = V(〈η1, . . . , ηt〉),

then Vb
H must in particular satisfy

Vb
H(Mη1 ⊗A Mη2) = Vb

H(Mη2 ⊗A Mη1).

For example, let Vb
H(B) = VH(B ⊗A A/r) for a bimodule B. Then it follows that

Vb
H(Mη1 ⊗A · · ·⊗A Mηt) = VH(〈η1, . . . , ηt〉)

for all homogeneous elements ηi in H, and Vb
H satisfies the above symmetry condition. 

Since

Ext∗A (B ⊗A A/r, A/r) , Ext∗Ae (B,HomA(A/r, A/r))
, Ext∗Ae(B,A/r ⊗k A/r)
, Ext∗Ae(B,Ae/ radAe)

as H-modules, and A/r ⊗kA/r , Ae/ radAe when A/r is separable over the field k, then 
applying similar arguments as in [20] we obtain that
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Vb
H(B) = V(AnnH Ext∗Ae(B,Ae/ radAe))

= V(AnnH Ext∗Ae(B,B))
= V(AnnH Ext∗Ae(Ae/ radAe, B)).

In other words, adapting the notion from [20],

Vb
H(B) = Vb

H(B,Ae/ radAe) = Vb
H(B,B) = Vb

H(Ae/ radAe, B).

Then it is natural to ask how we can/should choose X . If we are thinking in terms of 
subcategories of the stable category of bimodules, can we choose X to be the tensor 
closed subcategory generated by the bimodules Mη for all homogeneous elements η in 
H? If all Mη’s are in X , we do not know how Mη1 ⊗A Mη2 and Mη2 ⊗A Mη1 are related 
as bimodules in general.

Let us now return to our quantum complete intersection Ac
q. Corollary 2.3, which is a 

direct consequence of Theorem 2.2, shows that the tensor product property for support 
varieties over this algebra cannot hold in general, now matter how one defines support 
varieties for bimodules. Another consequence of Theorem 2.2 is that not all the thick 
subcategories of the derived category and the stable module category of Ac

q are tensor 
ideals. In order to explain this, let us first briefly describe a general framework where 
one typically is interested in such questions; for details, we refer to [10]. Let C be a 
triangulated tensor category, that is, a triangulated category which is at the same time a 
(possibly non-symmetric) tensor category, and where the two structures are compatible. 
Furthermore, suppose that C acts on a triangulated category D . This means that there 
exists an additive bifunctor

C × D → D

(C,D) +→ C ∗D

which is compatible in a natural way with the structures of both C and D . Finally, 
suppose that H is a commutative graded subalgebra of the graded endomorphism ring 
End∗

C (I) of the unit object I in C , or, more generally, that there exists a ring homo-
morphism H → End∗

C (I). Then for all objects D1, D2 ∈ D , the graded homomorphism 
group Hom∗

D(D1, D2) becomes a left and a right H-module, and left and right scalar mul-
tiplication coincide up to a sign. One can then define the support variety VH(D1, D2)
as usual, in terms of the variety of the annihilator ideal AnnH (Hom∗

D(D1, D2)). For 
a single object D ∈ D , one defines the support variety by VH(D) = VH(D, D). If H
is Noetherian and the graded H-modules Hom∗

D(D1, D2) are finitely generated for all 
objects D1 and D2 in D , then one obtains a meaningful theory of support varieties.

Given any triangulated category, it is of great interest to classify its thick subcate-
gories. The first example of such a classification was the celebrated result of Hopkins-
Neeman, for the category of perfect complexes over a commutative noetherian ring (cf. 



236 P.A. Bergh et al. / Journal of Algebra 547 (2020) 226–237

[15,16]). That particular classification result showed for free that all the thick subcate-
gories are actually thick tensor ideals. Now given C and D as above, one may ask for a 
similar classification of thick subcategories of D , and whether these are all tensor ideals. 
Here, the notion of tensor ideals in D refers to the action of C on D : a thick subcategory 
A ⊆ D is a tensor ideal if C ∗A ∈ A for all C ∈ C and A ∈ A .

Suppose that V is a closed homogeneous subvariety of MaxSpecH, and define a full 
subcategory AV of D by

AV = {D ∈ D | VH(D) ⊆ V }

This is a thick subcategory of D , and there are several classes of examples of triangulated 
categories where all the thick subcategories are of this form. For example, this is the case 
for the category of perfect complexes over a commutative noetherian ring. The crucial 
point now is that whenever VH(C ∗D) ⊆ VH(D) for all objects C ∈ C and D ∈ D , then 
AV is automatically a thick tensor ideal for all V . This indicates the importance of the 
inclusion property

VH(C ∗D) ⊆ VH(D)

for support varieties in the setting of a triangulated tensor category acting on a trian-
gulated category.

Now consider our quantum complete intersection A = Ac
q again. This is a selfinjective 

algebra, and so the stable module category modA is triangulated. The enveloping algebra 
Ae is also selfinjective, and its stable module category modAe, that is, the stable module 
category of A-bimodules, is a triangulated tensor category. It acts on modA by tensor 
products over A, and so we are in a setting where all of the above applies. However, 
let H, M and B be as in Theorem 2.2. Since VH(B ⊗A M) ! VH(M), not all thick 
subcategories of modA can be tensor ideals. Namely, take V = VH(M) and define 
AV as above. This is a thick subcategory of modA, but it is not a tensor ideal since 
M ∈ AV but B ⊗A M /∈ AV . Finally, note that the bimodule B we used in the proof 
of Theorem 2.2 is actually projective as a left and as a right A-module. The bounded 
derived category of such bimodules is also a triangulated tensor category, and it acts on 
the bounded derived category Db(modA) of A-modules. Thus also in Db(modA) there 
are thick subcategories that are not tensor ideals.
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Abstract. We establish a connection between two areas of independent in-
terest in representation theory, namely Koszul duality and higher homological
algebra. This is done through a generalization of the notion of T -Koszul alge-
bras, for which we prove that an analogue of classical Koszul duality still holds.
Our approach is motivated by and has applications for n-hereditary algebras. In
particular, we characterize an important class of n-T -Koszul algebras of highest
degree a in terms of (na�1)-representation infinite algebras. As a consequence,
we see that an algebra is n-representation infinite if and only if its trivial ex-
tension is (n + 1)-Koszul with respect to its degree 0 part. Furthermore, we
show that when an n-representation infinite algebra is n-representation tame,
then the bounded derived categories of graded modules over the trivial exten-
sion and over the associated (n + 1)-preprojective algebra are equivalent. In
the n-representation finite case, we introduce the notion of almost n-T -Koszul
algebras and obtain similar results.
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1. Introduction

Global dimension is a useful measure for the objects one studies in representation
theory of finite dimensional algebras. However, while algebras of global dimension
0 and 1 are exceptionally well understood, it seems quite difficult to develop a
general theory for algebras of higher global dimension. This is a background for
studying the class of n-hereditary algebras [6,9,12,13,15,16,19–21]. These algebras
play an important role in higher Auslander–Reiten theory [17, 18, 24], which has
been shown to have connections to commutative algebra, both commutative and
non-commutative algebraic geometry, combinatorics, and conformal field theory
[1,7,14,22,32]. An n-hereditary algebra has global dimension less than or equal to
n and is either n-representation finite or n-representation infinite. As one might
expect, these notions coincide with the classical definitions of representation finite
and infinite hereditary algebras in the case n = 1.

Like in the classical theory, n-hereditary algebras have a notion of (higher) pre-
projective algebras. If A is n-representation infinite and the (n+ 1)-preprojective
⇧n+1A is graded coherent, there is an equivalence Db(modA) ' Db(qgr⇧n+1A),
where qgr⇧n+1A denotes the category of finitely presented graded modules modulo
finite dimensional modules [29, 30].

On the other hand, the bounded derived category of a finite dimensional algebra
of finite global dimension is always equivalent to the stable category of finitely
generated graded modules over its trivial extension [11]. Combining these two
equivalences, and using the notation �A for the trivial extension of A, one obtains

(1.1) gr(�A) ' Db(qgr⇧n+1A).

The equivalence above brings to mind the acclaimed Bernštĕın–Gel0fand–Gel0fand-
correspondence, which can be formulated as gr⇤ ' Db(qgr⇤!) for a finite dimen-
sional Frobenius Koszul algebra ⇤ and its graded coherent Artin–Schelter regular
Koszul dual ⇤! [4]. The BGG-correspondence is known to descend from the Koszul
duality equivalence between bounded derived categories of graded modules over
the two algebras, as indicated in the following diagram

Db(gr⇤) Db(gr⇤!)

gr⇤ Db(qgr⇤!).

'

'

It is natural to ask whether something similar is true in the n-representation infinite
case. i.e. if the equivalence (1.1) is a consequence of some higher Koszul duality
pattern. This is a motivating question for this paper.

Motivating question. Is the equivalence (1.1) a consequence of some higher
Koszul duality pattern?
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One reasonable approach to this question is to study generalizations of the
notion of Koszulity. A positively graded algebra ⇤ generated in degrees 0 and 1
with semisimple degree 0 part is known as a Koszul algebra if ⇤0 is a graded self-
orthogonal module over ⇤ [3,33]. This means that Exti

gr⇤
(⇤0,⇤0hji) = 0 whenever

i 6= j, where h�i denotes the graded shift. Using basic facts about Serre functors
and triangulated equivalences, one can show that a similar statement holds for �A
with respect to its degree 0 part (�A)0 = A in the case where A is n-representation
infinite. Here, the algebra A is clearly not necessarily semisimple, but it is of finite
global dimension.

In [10] Green, Reiten and Solberg present a notion of Koszulity for more gen-
eral graded algebras, where the degree 0 part is allowed to be an arbitrary finite
dimensional algebra. Their work provides a unified approach to Koszul duality
and tilting equivalence. Koszulity in this framework is defined with respect to a
module T , and thus the algebras are called T -Koszul. Madsen [28] gives a simpli-
fied definition of T -Koszul algebras, which he shows to be a generalization of the
original one whenever the degree 0 part is of finite global dimension.

We generalize Madsen’s definition to obtain the notion of n-T -Koszul algebras,
where n is a positive integer and n = 1 returns Madsen’s theory. In Theorem 3.9
we prove that an analogue of classical Koszul duality holds in this generality, and
we recover a version of the BGG-correspondence in Proposition 3.11. Moreover,
Theorem 6.4 provides a characterization of an important class of n-T -Koszul alge-
bras of highest degree a in terms of (na�1)-representation infinite algebras. More
precisely, we show that a finite dimensional graded Frobenius algebra of highest
degree a � 1 is n-T -Koszul if and only if eT = �a�1

i=0
⌦�niT hii is a tilting object in the

associated stable category and the endomorphism algebra of this object is (na�1)-
representation infinite. As a consequence, we see in Corollary 6.6 that an algebra
is n-representation infinite if and only if its trivial extension is (n+1)-Koszul with
respect to its degree 0 part. Furthermore, we show in Corollary 6.9 that when A
is n-representation infinite, then the higher Koszul dual of its trivial extension is
given by the associated (n + 1)-preprojective algebra. Combining this with our
version of the BGG-correspondence, Corollary 6.10 gives an affirmative answer to
our motivating question. In particular, we see that when an n-representation in-
finite algebra A is n-representation tame, then the bounded derived categories of
graded modules over �A and over ⇧n+1A are equivalent, and that this descends
to give an equivalence gr(�A) ' Db(qgr⇧n+1A). Notice that in some sense, the
theory we develop is a generalized Koszul dual version of parts of [30].

Having developed our theory for one part of the higher hereditary dichotomy,
we ask and provide an answer to whether something similar holds in the higher
representation finite case. Inspired by and seeking to generalize the notion of
almost Koszul algebras as developed by Brenner, Butler and King [5], we arrive
at the definition of almost n-T -Koszul algebras. This enables us to show a similar
characterization result as in the n-T -Koszul case, namely Theorem 7.17.
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This paper is organized as follows. In Section 2 we highlight relevant facts about
graded algebras, before the definition and general theory of n-T -Koszul algebras
is presented in Section 3. In Section 4 we give an overview of the notions of tilting
objects and Serre functors, and construct an equivalence which will be heavily
used later on. As a foundation for the rest of the paper, Section 5 is devoted to
recalling definitions and known facts about n-hereditary algebras. Note that this
section does not contain new results. In Section 6 we state and prove our results
on the connections between n-T -Koszul algebras and higher representation infinite
algebras. Finally, almost n-T -Koszul algebras are introduced in Section 7, and we
develop their theory along the same lines as was done in Section 6.

1.1. Conventions and notation. Throughout this paper, let k be an algebraically
closed field and n a positive integer. All algebras are algebras over k. We denote
by D the duality D(�) = Homk(�, k).

Notice that A and B always denote ungraded algebras, while the notation ⇤ and
� is used for graded algebras. We work with right modules, homomorphisms act on
the left of elements, and we write the composition of morphisms X

f�! Y
g�! Z as

g � f . We denote by ModA the category of A-modules and by modA the category
of finitely presented A-modules.

We write the composition of arrows i
↵�! j

��! k in a quiver as ↵�. In our
examples, we use diagrams to represent indecomposable modules. This convention
is explained in more detail in Example 6.5.

Given a set of objects U in an additive category A, we denote by addU the full
subcategory of A consisting of direct summands of finite direct sums of objects
in U . If A is triangulated, we use the notation ThickA(U) for the smallest thick
subcategory of A which contains U . When it is clear in which category our thick
subcategory is generated, we often omit the subscript A.

Moreover, note that we have certain standing assumptions given at the beginning
of Section 3 and Section 6.

2. Preliminaries

In this section we recall some facts about graded algebras which will be used later
in the paper. In particular, we observe how a graded algebra can be considered as
a dg-category concentrated in degree 0. This plays an important role in our proofs
in Section 3. We also provide an introduction to a class of algebras which will be
studied in Section 6 and Section 7, namely the graded Frobenius algebras.

2.1. Graded algebras, modules and extensions. Consider a graded k-algebra
⇤ = �i2Z⇤i. The category of graded ⇤-modules and degree 0 morphisms is denoted
by Gr⇤ and the subcategory of finitely presented graded ⇤-modules by gr⇤. Recall
that gr⇤ is abelian if and only if ⇤ is graded right coherent, i.e. if every finitely
generated homogeneous right ideal is finitely presented.
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Given a graded module M = �i2ZMi, we define the j-th graded shift of M to be
the graded module Mhji with Mhjii = Mi�j. The following basic result relates
ungraded extensions to graded ones.

Lemma 2.1. (See [31, Corollary 2.4.7].) Let M and N be graded ⇤-modules.
If M is finitely generated and there is a projective resolution of M such that all
syzygies are finitely generated, then

Exti
⇤
(M,N) '

M

j2Z

Exti
Gr⇤

(M,Nhji)

for all i � 0.

A non-zero graded module M = �i2ZMi is said to be concentrated in degree m
if Mi = 0 for i 6= m. When ⇤ is finite dimensional and M finitely generated, there
is an integer h such that Mh 6= 0 and Mi = 0 for every i > h. We call h the highest
degree of M . In the same way, the lowest degree of M is the integer l such that
Ml 6= 0 and Mi = 0 for every i < l.

2.2. Graded algebras as dg-categories. Recall that a dg-category is a k-linear
category in which the morphism spaces are complexes over k and the composition
is given by chain maps. We refer to [25] for general background on dg-categories.

In [27, Section 4] it is explained how one can encode the information of a graded
algebra as a dg-category concentrated in degree 0. This is useful, as it enables us
to apply known techniques developed for dg-categories to get information about
the derived category of graded modules. Let us briefly recall this construction,
emphasizing the part which will be useful in Section 3.

Given a graded algebra ⇤ = �i2Z⇤i, we associate the category A, in which
Ob(A) = Z and the morphisms are given by HomA(i, j) = ⇤i�j. Multiplication
in ⇤ yields composition in A in the natural way. Observe that the Hom-sets of A
behaves well with respect to addition in Z, namely that for any integers i and j,
we have
(2.1) HomA(i, 0) ' HomA(i+ j, j).

The category of right modules over A, meaning k-linear functors from Aop into
Mod k, is equivalent to Gr⇤. Similarly, as A is a dg-category concentrated in
degree 0, dg-modules over A correspond to complexes of graded ⇤-modules. Con-
sequently, one obtain D(A) ' D(Gr⇤), i.e. that the derived category of the dg-
category A is equivalent to the usual derived category of Gr⇤.

Instead of starting with a graded algebra, one can use this construction the
other way around. Given a dg-category A concentrated in degree 0, for which the
objects are in bijection with the integers and the condition (2.1) is satisfied, we
can identify the category with the graded algebra

⇤ =
M

i2Z

HomA(i, 0),
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in the sense that D(A) ' D(Gr⇤). Notice that the fact that certain Hom-sets
coincide is necessary in order to be able to use composition in our category to
define multiplication in ⇤.

2.3. Graded Frobenius algebras. Recall that twisting by a graded algebra au-
tomorphism � of a graded algebra ⇤ yields an autoequivalence (�)� on gr⇤. Given
M in gr⇤, the module M� is defined to be equal to M as a vector space with right
⇤-action m · � = m�(�), while (�)� acts trivially on morphisms.

A finite dimensional positively graded algebra ⇤ will be called graded Frobenius
if D⇤ ' ⇤h�ai as both graded left and graded right ⇤-modules for some integer
a. Notice that if ⇤ is concentrated in degree 0, we recover the usual notion of a
Frobenius algebra. Observe also that the integer a in our definition must be equal
to the highest degree of ⇤, as (D⇤)i = D(⇤�i). We will usually assume a � 1.

Being graded Frobenius is equivalent to being Frobenius as an ungraded algebra
and having a grading such that the socle is contained in the highest degree.
Lemma 2.2. Let ⇤ = �i�0⇤i be a finite dimensional algebra of highest degree a.
The following are equivalent:

(1) ⇤ is graded Frobenius.
(2) There exists a graded automorphism µ of ⇤ such that 1⇤µh�ai ' D⇤ as

graded ⇤-bimodules.
(3) ⇤ is Frobenius as ungraded algebra and has a grading satisfying Soc⇤ ✓ ⇤a.

Proof. If ⇤ is graded Frobenius, [30, Lemma 2.9] implies that there exists a graded
automorphism µ of ⇤ such that

D⇤ ' 1⇤µh�ai ' µ�1⇤1h�ai
as graded ⇤-bimodules. It is hence clear that (1) is equivalent to (2).

To see that (1) is equivalent to (3), use that graded lifts of finite dimensional
modules are unique up to isomorphism and graded shift [3, Lemma 2.5.3] together
with the fact that SocD⇤ ✓ (D⇤)0. ⇤

The automorphism µ of a Frobenius algebra ⇤ as in the lemma above, is
unique up to composition with an inner automorphism and is known as the graded
Nakayama automorphism of ⇤. We call ⇤ graded symmetric if µ can be chosen to
be trivial, and note that this notion also descends to the ungraded case.

One class of examples which will be important for us, is that of trivial extension
algebras. Recall that given a finite dimensional algebra A, the trivial extension
of A is �A := A � DA as a vector space. The trivial extension is an algebra
with multiplication (a, f) · (b, g) = (ab, ag + fb) for a, b 2 A and f, g 2 DA. We
consider �A as a graded algebra by letting A be in degree 0 and DA be in degree
1. Observe that �A is graded symmetric as it is symmetric as an ungraded algebra
and satisfies Soc�A ✓ (�A)1.

The stable category of finitely presented graded modules over a graded algebra ⇤
is denoted by gr⇤. If ⇤ is self-injective, the category gr⇤ is a Frobenius category,
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and gr⇤ is triangulated with shift functor ⌦�1(�). Notice that every Frobenius
algebra is self-injective. Observe that twisting by a graded automorphism � of ⇤
descends to an autoequivalence (�)� on gr⇤. This functor commutes with taking
syzygies and cosyzygies, as well as with graded shift.

We will often consider syzygies and cosyzygies of modules over self-injective
algebras even when we do not work in a stable category. Whenever we do so,
we assume having chosen a minimal projective or injective resolution, so that our
syzygies and cosyzygies do not have any non-zero projective summands. Because
of our convention with respect to (representatives of) syzygies and cosyzygies, the
notions of highest and lowest degree make sense for these too.

Throughout the paper, we often need to consider basic degree arguments, as
summarized in the following lemma. We include a short proof for the convenience
of the reader.

Lemma 2.3. Let ⇤ = �i�0⇤i be a finite dimensional self-injective graded algebra
of highest degree a and Soc⇤ ✓ ⇤a. The following statements hold:

(1) Given any non-zero element x 2 ⇤, there exists � 2 ⇤ such that x� 2 ⇤a

is non-zero.
(2) Let P be an indecomposable projective graded ⇤-module of highest degree

h. Then, given any non-zero element x 2 P , there exists � 2 ⇤ such that
x� 2 Ph is non-zero.

(3) Let M and P be finitely generated graded ⇤-modules with P indecomposable
projective. Denote the highest degree of P by h. Then, for every non-zero
morphism f 2 Homgr⇤(M,P ), there exists an element x 2 M such that
f(x) 2 Ph is non-zero.

(4) Let M be an non-projective finitely generated graded ⇤-module of highest
degree h and lowest degree l. Then the highest degree of ⌦iM is less than
or equal to h in the case i  0 and greater than or equal to l+a in the case
i > 0.

(5) Assume a � 1, and let M and N be modules concentrated in degree 0. Then
Homgr⇤(M,N) ' Homgr⇤(M,N).

(6) Let M be a module concentrated in degree 0. Then
Homgr⇤(M,⌦iMhji) = 0

for i, j < 0.
(7) Let M be a module concentrated in degree 0. Then

Homgr⇤(M,⌦iMhji) = 0

for i > 0 and j � 1� a.

Proof. Combining the assumption Soc⇤ ✓ ⇤a with the facts that Rad⇤ is nilpo-
tent and Soc⇤ = {y 2 ⇤ | yRad⇤ = 0}, one obtains (1).

Part (2) follows from (1), as projectives are direct summands of free modules.
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For (3), let y 2 M such that f(y) 6= 0. By (2), there exists an element � 2 ⇤
such that f(y)� 2 Ph is non-zero. Consequently, the element x = y� yields our
desired conclusion.

In order to prove (4), let us first consider the case i  0. The statement
clearly holds if i = 0. Observe next that SocM has highest degree h. Hence, the
injective envelope of M also has highest degree h. Since M is non-projective, the
cosyzygy ⌦�1M is a non-zero quotient of this injective envelope, and consequently
has highest degree at most h. We are thus done by induction.

For the case i > 0, note that each summand in the projective cover of M has
highest degree greater than or equal to l + a. As ⌦M is a submodule of this
projective cover, it follows from (3) that ⌦M also has highest degree greater than
or equal to l + a. Moreover, the syzygy is itself non-projective of lowest degree
greater than or equal to l, so the claim follows by induction.

To verify (5), notice that there can be no non-zero homomorphism M ! N
factoring through a ⇤-projective. Otherwise, one would have non-zero homomor-
phisms M ! ⇤hii and ⇤hii ! N for some integer i. The former is possible only if
i = �a by (3). However, if i = �a, the latter is impossible as ⇤h�ai is generated
in degree �a.

Observe that (6) is immediate in the case where M is projective. Otherwise,
note that the highest degree of ⌦iM is at most 0 by (4). Hence, the highest degree
of ⌦iMhji is less than or equal to j. As j < 0, this yields our desired conclusion.

For (7), it again suffices to consider the case where M is non-projective. Apply-
ing (4), our assumptions yield that the highest degree of ⌦iMhji is greater than or
equal to 1. By (3), this gives Homgr⇤(M,⌦iMhji) = 0, as syzygies are submodules
of projectives. ⇤

3. Higher Koszul duality

Throughout the rest of this paper, let ⇤ = �i�0⇤i be a positively graded algebra,
where ⇤0 is a finite dimensional algebra augmented over k⇥r for some r > 0. We
assume that ⇤ is locally finite dimensional, i.e. that ⇤i is finite dimensional as a
vector space over k for each i � 0.

In this section we define more flexible notions of what it means for a module T
to be graded self-orthogonal and an algebra to be T -Koszul than the ones Madsen
introduces in [28, Definition 3.1.1 and 4.1.1]. This enables us to talk about higher
T -Koszul duality for a more general class of algebras. In particular, we obtain a
higher Koszul duality equivalence in Theorem 3.9 and we recover a version of the
BGG-correspondence in Proposition 3.11. Note that the ideas in this section are
similar to the ones in [28]. For the convenience of the reader, we nevertheless give
concise proofs of this section’s main results, to show that the arguments work also
in our generality.

It should be noted that it is also possible to derive Theorem 3.9 by using [28,
Theorem 4.3.4]. This strategy involves regrading the algebras so that they satisfy
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Madsen’s definition of graded self-orthogonality and tracking our original (derived)
categories of graded modules through his equivalence. We spell this out in greater
detail after our proof of Theorem 3.9. Proceeding in this way, one can recover
generalized analogues of many of the results in [28]. We make no essential use of
these results, but this approach could be relevant for future related work.

We remark that we believe it to be undesirable to work with the regraded al-
gebras throughout, since – as will become clear – the resulting graded module
categories are in some sense too big. Moreover, we consider endomorphism alge-
bras of tilting objects, and it is less convenient to study regraded versions of these.
In particular, as we want to relate our results to existing ones involving graded
modules over trivial extensions or preprojective algebras, we cannot always work
directly with the regraded algebras.

In order to state our main definitions, let us first recall the notion of a tilting
module.

Definition 3.1. Let A be a finite dimensional algebra. A finitely generated A-
module T is called a tilting module if the following conditions hold:

(1) proj.dimA T <1;
(2) ExtiA(T, T ) = 0 for i > 0;
(3) There is an exact sequence

0! A! T 0 ! T 1 ! · · ·! T l ! 0

with T i 2 addT for i = 0, . . . , l.

We now define what it means for a module to be graded n-self-orthogonal.

Definition 3.2. Let T be a finitely generated basic graded ⇤-module concentrated
in degree 0. We say that T is graded n-self-orthogonal if

Exti
gr⇤

(T, T hji) = 0

for i 6= nj.

Usually, it will be clear from context what the parameter n is, so we often simply
say that a module satisfying the description above is graded self-orthogonal.

Notice that this definition of graded self-orthogonality is more general than the
one given in [28]. More precisely, the two definitions coincide exactly when n is
equal to 1. In this case, examples of graded self-orthogonal modules are given by
⇤0 in the classical Koszul situation or tilting modules if ⇤ = ⇤0. Moreover, we see
in Section 6 that n-representation infinite algebras provide examples of modules
which are graded n-self-orthogonal for any choice of n.

In general, a graded self-orthogonal module T might have syzygies which are
not finitely generated, so Lemma 2.1 does not apply. However, the following
proposition gives a similar result for graded self-orthogonal modules. This is an
analogue of [28, Proposition 3.1.2]. The proof is exactly the same, except that we
use our more general version of what it means for T to be graded self-orthogonal.
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Proposition 3.3. Let T be a graded n-self-orthogonal ⇤-module. Then
Extni

⇤
(T, T ) ' Extni

gr⇤
(T, T hii)

for all i � 0.

Using our definition of a graded self-orthogonal module T , we also get a more
general notion of what it means for an algebra to be Koszul with respect to T .

Definition 3.4. Assume gl.dim⇤0 <1 and let T be a graded ⇤-module concen-
trated in degree 0. We say that ⇤ is n-T -Koszul or n-Koszul with respect to T if
the following conditions hold:

(1) T is a tilting ⇤0-module.
(2) T is graded n-self-orthogonal as a ⇤-module.

Remark 3.5. In Definition 3.2 we require a graded n-self-orthogonal module to
be basic for consistency with [28]. As a consequence of this choice, we later as-
sume that certain algebras are basic, for instance in Corollary 6.6. Note that this
assumption does not usually play an important role in our proofs, and could be
omitted if one is willing to consider n-Koszul algebras with respect to a possibly
non-basic module T .

Like in the classical theory, we want a notion of a Koszul dual of a given n-T -
Koszul algebra.

Definition 3.6. Let ⇤ be an n-T -Koszul algebra. The n-T -Koszul dual of ⇤ is
given by ⇤! = �i�0 Ext

ni
gr⇤

(T, T hii).
Note that while the notation for the n-T -Koszul dual is potentially ambiguous,

it will in this paper always be clear from context which n-T -Koszul structure the
dual is computed with respect to.

By Proposition 3.3, we get the following equivalent description of the n-T -Koszul
dual.

Corollary 3.7. Let ⇤ be an n-T -Koszul algebra. Then there is an isomorphism
of graded algebras ⇤! ' �i�0 Ext

ni
⇤
(T, T ).

Given a set of objects U ✓ Db(gr⇤), let Thickh�i(U) denote the smallest thick
subcategory of Db(gr⇤) which contains U and is closed under graded shift. Using
that ⇤0 has finite global dimension and that T is a tilting ⇤0-module, one obtains
that T generates the entire bounded derived category of gr⇤ whenever ⇤ is an
n-T -Koszul algebra.

Lemma 3.8. Let ⇤ be a finite dimensional n-T -Koszul algebra. Then Thickh�i(T ) =
Db(gr⇤).

The proof of Theorem 3.9 uses notions and techniques of dg-homological algebra.
Since this is the only section where these are used, we refer the reader to [25] for
an introduction. Notice that we have more or less adopted the notation of that
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source for the reader’s convenience. In particular, recall from [25] that given a
dg-category B, we define the category H0 B to have the same objects as B and
morphisms given by taking the 0-th cohomology of the morphism spaces in B.
Similarly, also the category ⌧0 B has the same objects as B, and morphisms given
by taking subtle truncation.

We are now ready to state and prove the main result of this section, namely
to show that we obtain a higher Koszul duality equivalence. This recovers [28,
Theorem 4.3.4] in the case where n = 1 and is a version of [3, Theorem 2.12.6] in
the classical Koszul case.

Theorem 3.9. Let ⇤ be a finite dimensional n-T -Koszul algebra and assume that
⇤! is graded right coherent and has finite global dimension. Then there is an
equivalence Db(gr⇤) ' Db(gr⇤!) of triangulated categories.

Proof. Consider the full subcategory U = {T hii[ni] | i 2 Z} of Db(gr⇤). Using a
standard lift [25, Section 7.3], we replace U by a dg-category B which has objects
{P hii[ni]}, where P is some graded projective resolution of T , and

HomB(P hii[ni], P hji[nj])k =
Y

m2Z

Homgr⇤(P
m+nihii, Pm+nj+khji).

In other words, morphism spaces are given by all homogeneous maps of complexes
that are also homogeneous of degree 0 with respect to the grading of ⇤. The
morphism spaces are complexes with the standard super commutator differential
defined by

d(f) = dP hji[nj] � f � (�1)kf � dP hii[ni]

for f in HomB(P hii[ni], P hji[nj])k.
Notice that Thick(U) = Thickh�i(T ) = Db(gr⇤). Since we have used a stan-

dard lift and idempotents split in Db(gr⇤), we get that Thick(U) = Db(gr⇤) is
equivalent to Dperf(B), i.e. the subcategory of perfect objects.

As T is graded n-self-orthogonal, the cohomology of each morphism space in B
is concentrated in cohomological degree 0. Hence, we get a zigzag of dg-categories

H0 B ⌧0B B

in which the dg-functors induce quasi-equivalences. Thus, we also get an equiva-
lence D(H0 B) ' D(B) [25, Sec. 7.1-7.2 and 9.1]. This equivalence descends to one
on the compact or perfect objects, and so we get Dperf(H0 B) ' Dperf(B).

The dg-category H0 B is concentrated in degree 0, its objects are in natural
bijection with the integers and we can identify it with a graded algebra as described
in Section 2.2. As we wish this algebra to be positively graded, we let the object
P hii[ni] in H0 B correspond to the integer �i. This yields the algebra

M

i�0

Hom
H

0 B(P, P hii[ni]) '
M

i�0

Extni
gr⇤

(T, T hii) = ⇤!.
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It now follows that D(H0 B) ' D(Gr⇤!), which again yields an equivalence
Dperf(H0 B) ' Dperf(Gr⇤!). As in the ungraded case, compact objects of D(Gr⇤!)
coincides with perfect complexes, i.e. bounded complexes of finitely generated
graded projective modules [25, Theorem 5.3]. Hence, as ⇤! is graded right coherent
of finite global dimension, we also have the equivalence Dperf(Gr⇤!) ' Db(gr⇤!),
which completes our proof. ⇤

Let us now provide more details on how to obtain the above theorem and gen-
eralized analogues of other results in [28] using the equivalence constructed there.
Observe first that given ⇤ = �i�0⇤i satisfying the assumptions in Theorem 3.9,
one can rescale the grading so that the regraded algebra ⇤⇢ is T -Koszul in the
sense of [28, Definition 4.1.1]. To be precise, let ⇤⇢

i = ⇤j if i = nj for some in-
teger j and ⇤⇢

i = 0 otherwise. The category gr⇤ embeds into gr⇤⇢ as the full
subcategory consisting of modules which are non-zero only in degrees multiples
of n. As the embedding is exact, it induces a triangulated functor between the
corresponding derived categories. By [37, Lemma 13.17.4], this functor yields an
equivalence Db(gr⇤)

'�! Db
gr⇤

(gr⇤⇢), where Db
gr⇤

(gr⇤⇢) denotes the full subcate-
gory of Db(gr⇤⇢) consisting of objects with cohomology in gr⇤.

Using that ⇤⇢ is T -Koszul and noticing that (⇤!)⇢ ' (⇤⇢)!, we get by [28,
Theorem 4.3.4] the equivalence in the upper row of the diagram

Db(gr⇤⇢) Db(gr(⇤!)⇢)

Db(gr⇤) Db
gr⇤

(gr⇤⇢) Db
gr⇤!(gr(⇤!)⇢) Db(gr⇤!).

'

' ' '

In order to deduce Theorem 3.9 from this, we need to show that the equivalence
restricts as indicated by the dashed arrow. It is sufficient to show that objects
which are non-zero only in degrees multiples of n are sent to objects satisfying the
same property. Examining the construction of the equivalence, we see that it is
essentially the same as the one given in the proof of Theorem 3.9 in the case n = 1.
Consequently, we are done if the equivalences in the zig-zag and the equivalence
from Thick(U) to Dperf(B) satisfy the desired condition.

For the former equivalences, this is easily verified and is left to the reader,
whereas for the latter, we begin by first recalling some necessary notions. Let
A be the dg-category obtained by regarding the graded algebra ⇤⇢ as a category
as outlined in Section 2.2, and recall that D(A) ' D(Gr⇤⇢). Moreover, see [25,
Section 1.2] for the definition of the dg-category DifA, and [25, Section 6.2] for
the definition of the triangulated functor RHX for X an A-B-dg-bimodule. If A
is an ordinary algebra concentrated in cohomological degree 0, the objects of the
category DifA are complexes of modules over A and the morphisms are given by
homogeneous maps which do not necessarily respect the differentials. In this case,
the functor RHX would be quasi-isomorphic to regular RHoms. The theory of
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standard lifts [25, Section 7.3] implies that the equivalence Thick(U) ! Dperf(B)
is the restriction of the functor RHX : D(A) ! D(B), where X is the A-B-dg-
bimodule given by X(j, k)l = P l�k

j+k , which has property (P) as defined in [25,
Section 3.1]. Hence, we get

RHX(M)lk = HomDif A(X(?, k),M)l

=
Y

m2Z

HomGr⇤⇢(Pm�kh�ki,Mm+l)

' RHomGr⇤⇢(P h�ki[�k],M)l.

If n does not divide k, this is zero whenever M is non-zero only in degrees that are
multiples of n. Hence, one obtains that Madsen’s equivalence between Db(gr⇤⇢)
and Db(gr(⇤!)⇢) restricts to yield an equivalence between Db(gr⇤) and Db(gr⇤!)
as claimed.

In our following two propositions, we denote by K : Db(gr⇤) ! Db(gr⇤!) the
equivalence from Theorem 3.9. Since shifting by 1 in gr⇤ corresponds to shifting
by n in gr⇤⇢, the argument above together with [28, Proposition 3.2.1] yield the
following.

Proposition 3.10. Let ⇤ be a finite dimensional n-T -Koszul algebra and assume
that ⇤! is graded right coherent and has finite global dimension. We then have
K(Mhii) = K(M)h�ii[�ni] for M 2 Db(gr⇤).

We finish this section by showing that an analogue of the BGG-correspondence
holds in our generality. Recall that qgr⇤! is defined as the localization of gr⇤! at
the full subcategory of finite dimensional graded ⇤!-modules.

We hence have a natural functor Db(gr⇤!)! Db(qgr⇤!). In the case where ⇤ is
graded Frobenius, there is a well-known equivalence Db(gr⇤)/Dperf(gr⇤) ' gr⇤
[36, Theorem 2.1]. Note that we recall this result as Theorem 4.2 in our next
section. One consequently obtains a functor

Db(gr⇤)! Db(gr⇤)/Dperf(gr⇤)
'�! gr⇤.

These two functors give the vertical arrows in the diagram in our proposition
below.

Proposition 3.11. Let ⇤ be a finite dimensional n-T -Koszul algebra and assume
that ⇤! is graded right coherent and has finite global dimension. If ⇤ is graded
Frobenius, then the equivalence K descends to yield gr⇤ ' Db(qgr⇤!), as indicated
in the following diagram

Db(gr⇤) Db(gr⇤!)

gr⇤ Db(qgr⇤!).

K

'
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Proof. Since D⇤ is injective, we get that the k-th cohomology of RHX(D⇤hii)j is
zero unless k = ni = �nj, in which case it is isomorphic to

HomDb
(gr⇤)

(T,D⇤) ' Homgr⇤(T,D⇤)

' Homgr⇤op(⇤, DT )

' DT.

Chasing this through the equivalences in the zig-zag in the proof of Theorem 3.9,
we notice that this stalk complex has the ⇤!-action one expects, i.e. the action
induced by letting ⇤!

0
' Endgr⇤(T ) ' End⇤0(T ) act on T on the left by endo-

morphisms. Our argument above hence yields that K restricts to an equivalence
Thickh�i(D⇤)

'�! Thickh�i(DT ).
Since tilting theory implies that DT is a tilting module over End⇤0(T ), one

deduces that Thickh�i(DT ) is the full subcategory of Db(gr⇤!) of all objects with
finite dimensional cohomology. As qgr⇤! is the localization of gr⇤! at the Serre
subcategory of finite dimensional ⇤!-modules and the quotient functor in this case
is known to have a left adjoint, we get that

Db(gr⇤!)/Thickh�i(DT )
⇠�! Db(qgr⇤!)

is an equivalence by [37, Lemma 13.17.2-3].
The triangulated quotient functor Q : Db(gr⇤!)! Db(gr⇤!)/Thickh�i(DT ) has

kernel Thickh�i(DT ) ' K Thickh�i(D⇤), and hence composing it with K induces a
triangulated functor

K : Db(gr⇤)/Thickh�i(D⇤)! Db(qgr⇤!)

satisfying K �P = Q�K by the universal property of quotient categories, in which
P is the quotient functor

P : Db(gr⇤)! Db(gr⇤)/Thickh�i(D⇤).

As gr⇤ ' Db(gr⇤)/Thickh�i(D⇤) by [36, Theorem 2.1] and it is straightforward
to check that K is an equivalence, we are hence done. ⇤

4. Tilting objects, equivalences and Serre functors

Tilting objects and the equivalences they provide play a crucial role throughout
the rest of this paper. In this section we recall relevant notions and apply one of
Yamaura’s ideas to give an explicit construction of an equivalence which will be
heavily used in Section 6 and Section 7. We also describe the correspondence of
Serre functors induced by this equivalence.

Definition 4.1. Let T be a triangulated category. An object T in T is a tilting
object if the following conditions hold:

(1) HomT (T, T [i]) = 0 for i 6= 0;
(2) ThickT (T ) = T .
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The first condition in the definition above is often referred to as rigidity.
A triangulated category is called algebraic if it is triangle equivalent to the stable

category of a Frobenius category. Recall that when ⇤ is a self-injective graded
algebra, the category gr⇤ is Frobenius, and consequently the stable category gr⇤
is an algebraic triangulated category. By Keller’s tilting theorem [25, Theorem
4.3], we hence know that if T is a tilting object in gr⇤ and B = Endgr⇤(T )
has finite global dimension, then there is a triangle equivalence gr⇤ ' Db(modB).
While Keller’s result is proved by applying general techniques from dg-homological
algebra, we need a more explicit description of this equivalence. Recall first that
gr⇤ can be realized as the quotient category Db(gr⇤)/Dperf(gr⇤).

Theorem 4.2. (See [36, Theorem 2.1].) Let ⇤ be finite dimensional and self-
injective. Then the canonical embedding gr⇤ ! Db(gr⇤) induces an equivalence
gr⇤ '�! Db(gr⇤)/Dperf(gr⇤) of triangulated categories.

Denote by G the quasi-inverse to the equivalence described in Theorem 4.2 and
by P the projection functor Db(gr⇤)! Db(gr⇤)/Dperf(gr⇤). As T has a natural
structure as a left B-module, we can consider the left derived tensor functor

Db(modB)
�⌦L

BT
����! Db(gr⇤).

Note that when we think of the tilting object T in gr⇤ as a graded ⇤-module, we
choose a representative without projective summands.

We now give an explicit description of the equivalence gr⇤ ' Db(modB). This
construction and proof is essentially the same as [38, Proposition 3.14], but we
show that it also works in our more general setup.

Proposition 4.3. Let ⇤ be finite dimensional and self-injective and assume that
gl.dim⇤0 < 1. Consider a tilting object T in gr⇤ and denote its endomorphism
algebra by B = Endgr⇤(T ). Then the composition

F : Db(modB)
�⌦L

BT
����! Db(gr⇤)

P�! Db(gr⇤)/Dperf(gr⇤)
G�! gr⇤

is an equivalence of triangulated categories.

Proof. Observe first that rigidity of T yields
HomDb

(B)
(B,B[i]) ' Homgr⇤(T,⌦

�iT )

for every i 2 Z. As F (B) is isomorphic to T in gr⇤, this means that the restriction
of F to the subcategory X = {B[i] | i 2 Z} is fully faithful. As ⇤0 has finite global
dimension, so has B by [38, Corollary 3.12]. Consequently, one obtain

Thick(B) = Thick(X ) = Db(modB).

Using that X is closed under translation, this implies that F is fully faithful.
Since Thick(T ) = gr⇤ and idempotents split in Db(modB), the functor F is also
essentially surjective, and hence an equivalence. ⇤
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In the same way as B is the preimage of T under our equivalence above, we
can also describe projective B-modules in terms of summands of T . Given a
decomposition T ' �t

i=0
T i of T , let ei : T ⇣ T i ,! T denote the i-th projection

followed by the i-th inclusion. This yields a decomposition B ' �t
i=0

P i of B
into projectives P i = eiB. Notice that the projective P i is the preimage of the
summand T i under the equivalence F , as eiB ⌦L

B T ' eiT = T i.
From Section 6 and on, the following notion will be crucial.

Definition 4.4. Let T be a k-linear Hom-finite triangulated category. An additive
autoequivalence S on T is called a Serre functor provided there exists a bifunctorial
isomorphism

HomT (X, Y ) ' DHomT (Y,SX)

for all objects X and Y in T .

We want to compare the Serre functor on Db(modB) to that of gr⇤ when ⇤ is
a graded Frobenius algebra of highest degree a with Nakayama automorphism µ.
In this case, it follows from Auslander–Reiten duality, see [2] and [35, Proposition
I.2.3], combined with the characterization in Lemma 2.2 that ⌦(�)µh�ai is a Serre
functor on gr⇤. As B is a finite dimensional algebra of finite global dimension,
the derived Nakayama functor ⌫(�) = �⌦L

B DB is a Serre functor on Db(modB).
By uniqueness of the Serre functor, the equivalence F from Proposition 4.3 yields
a commutative diagram

Db(modB) gr⇤

Db(modB) gr⇤.

F

⌫ ⌦(�)µh�ai

F

Note that throughout the rest of this paper, we will often use the equivalence
from Proposition 4.3 and the correspondence of the Serre functors described in the
diagram above without making the reference explicitly.

5. On n-hereditary algebras

The class of n-hereditary algebras was introduced in [15] and consists of the
disjoint union of n-representation finite and n-representation infinite algebras. In
this section we recall some definitions and basic results from [15, 20, 21]. This
forms a necessary background for exploring connections between the notion of n-T -
Koszulity and higher hereditary algebras, which is the topic our next two sections.
Note that Section 5 does not contain any new results. Throughout this section, let
A be a finite dimensional algebra. Recall that if A has finite global dimension, then
the derived Nakayama functor ⌫(�) = �⌦L

A DA is a Serre functor on Db(modA).
We use the notation ⌫n = ⌫(�)[�n]. The algebra A is called n-representation



HIGHER KOSZUL DUALITY AND CONNECTIONS WITH n-HEREDITARY ALGEBRAS 17

finite if gl.dimA  n and modA contains an n-cluster tilting object. We have the
following criterion for n-representation finiteness in terms of the subcategory

U = add{⌫i
nA | i 2 Z} ✓ Db(modA).

Theorem 5.1. (See [21, Theorem 3.1].) Assume gl.dimA  n. The following
are equivalent:

(1) A is n-representation finite;
(2) DA 2 U ;
(3) ⌫ U = U .

In particular, an algebra A with gl.dimA  n is n-representation finite if and
only if there for any indecomposable projective A-module Pi, is an integer mi � 0
such that ⌫�mi

n (Pi) is indecomposable injective. We will need the following well-
known property of n-representation finite algebras.

Lemma 5.2. (See [15, Proposition 2.3].) Let A be n-representation finite. For
each indecomposable projective A-module Pi, we then have Hl(⌫�m

n (Pi)) = 0 for
l 6= 0 and 0  m  mi, where mi is given as above.

Moving on to the second part of the n-hereditary dichotomy, recall that A is
called n-representation infinite if gl.dimA  n and Hi(⌫�j

n (A)) = 0 for i 6= 0 and
j � 0.

The following basic lemma will be needed in our next two sections. This fact
should be well-known, but we include a proof as we lack an explicit reference.
In the proof we abuse notation by letting ⌫ denote both the derived Nakayama
functor and the ordinary Nakayama functor, as context allows one to determine
which one is intended.

Lemma 5.3. Let gl.dimA <1 and assume that for each indecomposable projec-
tive A-module P , we have Hi(⌫�1

n (P )) = 0 for i /2 {0,�n}. Then gl.dimA  n. If
there is at least one non-injective projective A-module, then gl.dimA = n.

Proof. To show gl.dimA  n, it is sufficient to check that inj.dimA  n, as A has
finite global dimension.

Let P be an indecomposable projective A-module. Assume that in computing
⌫�1

n (P ) we use a minimal injective resolution I• of P . As gl.dimA < 1, this
resolution is finite. If inj.dimP = m /2 {0, n}, our assumption yields

Hm(⌫�1(P )) ' Hm�n(⌫�1

n (P )) = 0.

However, if there is no cohomology in degree m, this implies that the morphism
⌫�1(Im�1 ! Im) is an epimorphism. As ⌫�1(Im) is projective, this morphism must
split. Since ⌫�1 is an equivalence when restricted to addDA, this contradicts the
minimality of the resolution I•, and we can conclude that inj.dimP = 0 or n. In
particular, one obtains inj.dimA  n. If there exists P non-injective, we clearly
get the second claim. ⇤



18 JOHANNE HAUGLAND AND MADS HUSTAD SANDØY

Like in the classical theory of hereditary algebras, the class of n-hereditary al-
gebras also has an appropriate version of (higher) preprojective algebras which
is nicely behaved. Given an n-hereditary algebra A, we denote the (n + 1)-
preprojective algebra of A by ⇧n+1A. Recall from [21, Lemma 2.13] that

⇧n+1A '
M

i�0

HomDb(A)(A, ⌫
�i
n (A)).

If A is n-representation finite, the associated (n + 1)-preprojective is finite di-
mensional and self-injective, whereas in the n-representation infinite case, the
(n + 1)-preprojective is infinite dimensional graded bimodule (n + 1)-Calabi–Yau
of Gorenstein parameter 1.
Remark 5.4. Note that other authors refer to the classes of algebra we discuss
here using different terms. For instance, an n-representation finite algebra is called
‘n-representation-finite n-hereditary’ in [23]. This terminology is very reasonable,
but as we need to mention n-representation finite algebras frequently, we stick to
the notion from [20] for brevity.

6. Higher Koszul duality and n-representation infinite algebras

In this section we investigate connections between n-representation infinite al-
gebras and the notion of higher Koszulity. Let us first present our standing as-
sumptions.
Setup. Throughout the rest of this section, let ⇤ = �i�0⇤i be a finite dimensional
graded Frobenius algebra of highest degree a � 1 with gl.dim⇤0 < 1. Let T
denote a basic graded ⇤-module which is concentrated in degree 0 and a tilting
module over ⇤0. Consider a decomposition T ' �t

i=0
T i into indecomposable

summands and assume that twisting by the Nakayama automorphism µ of ⇤ only
permutes these summands. This means that we have a permutation, for simplicity
also denoted by µ, on the set {1, . . . , t} such that T i

µ ' T µ(i). For our fixed positive
integer n, we consider the module

eT =
a�1M

i=0

⌦�niT hii.

We denote the endomorphism algebra Endgr⇤(eT ) by B.
One should note that in the classical case, the Nakayama automorphism induces

a permutation of the simples, i.e. the module corresponding to our T . This justifies
the assumption that twisting by the Nakayama automorphism of ⇤ only permutes
the indecomposable summands of T . Note that using this, we immediately obtain
Tµ ' T , and hence ⌦Tµh�ai ' ⌦T h�ai.

Our first aim in this section is to describe the endomorphism algebra B as an
upper triangular matrix algebra of finite global dimension. We start by recalling
the following lemma.
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Lemma 6.1. (See [8, Corollary 4.21 (4)].) Let A and A0 be finite dimensional
algebras and M an Aop ⌦k A0-module. Then the algebra


A M
0 A0

�

has finite global dimension if and only if both A and A0 have finite global dimension.

In Lemma 6.2 we describe B as an upper triangular matrix algebra associated
to the graded algebra � = �i�0 Ext

ni
gr⇤

(T, T hii). Notice that in the case where ⇤
is n-T -Koszul, the algebra � coincides with the n-T -Koszul dual ⇤!.

Lemma 6.2. The algebra B = Endgr⇤(eT ) is isomorphic to the upper triangular
matrix algebra

B '

0

BB@

�0 �1 · · · �a�1

0 �0 · · · �a�2

...
... . . . ...

0 0 · · · �0

1

CCA ,

where � = �i�0 Ext
ni
gr⇤

(T, T hii). In particular, the global dimension of B is finite.

Proof. For 0  i, j  a� 1, we consider
Homgr⇤(⌦

�njT hji,⌦�niT hii) ' Homgr⇤(T,⌦
�n(i�j)T hi� ji).

In the case i < j, we note that |i � j|  a � 1 and so Lemma 2.3 (7) applies.
Consequently,

Homgr⇤(T,⌦
�n(i�j)T hi� ji) ' Homgr⇤(T,⌦

�n(i�j)T hi� ji) = 0.

If i = j, one obtains Endgr⇤(T ), which is isomorphic to Endgr⇤(T ) = �0 by
Lemma 2.3 (5). For i > j, we get

Homgr⇤(T,⌦
�n(i�j)T hi� ji) ' Extn(i�j)

gr⇤
(T, T hi� ji) = �i�j.

Computing our matrix with respect to the decomposition
eT = ⌦�n(a�1)T ha� 1i � · · ·� ⌦�nT h1i � T,

this yields our desired description.
To see that B is of finite global dimension, notice that �0 ' End⇤0(T ). As

End⇤0(T ) is derived equivalent to ⇤0, which is of finite global dimension, Lemma 6.1
applies and the claim follows. ⇤

Note that we could also have deduced that B is of finite global dimension from
[38, Corollary 3.12]. In the main result of this section, Theorem 6.4, we characterize
when our algebra ⇤ is n-T -Koszul in terms of B being (na � 1)-representation
infinite. Our next lemma provides an important step in the proof of this result.

Recall that given a graded ⇤-module M = �i2ZMi, each graded part Mi is also
a module over ⇤0. On the other hand, every ⇤0-module is trivially a graded ⇤-
module concentrated in degree 0. In the proof of Lemma 6.3, we repeatedly vary
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between thinking of graded ⇤-modules concentrated in one degree and modules
over the degree 0 part.

We use the notation M�i for the submodule of M with

(M�i)j =

(
Mj j � i

0 j < i,

while the quotient module M�M�i+1
is denoted by Mi. Note that Mi is isomorphic

to M�i�M�i+1
.

Lemma 6.3. The module eT generates gr⇤ as a thick subcategory, i.e. we have
Thickgr⇤(eT ) = gr⇤.

Proof. We divide the proof into two steps. In the first part, we show that the set
of objects {⇤0hii}i2Z generates gr⇤ as a thick subcategory. In the second part, we
prove that this set is contained in Thickgr⇤(eT ), which yields our desired conclusion.

Part 1:
Notice first that every graded ⇤-module which is concentrated in degree i is

necessarily contained in the thick subcategory generated by ⇤0hii. To see this,
apply hii to a finite ⇤0-projective resolution of the module, split up into short exact
sequences and use that thick subcategories have the 2/3-property on distinguished
triangles.

Let M be an object in gr⇤. Denote the highest and lowest degree of M by h and
l, respectively. Observe that M�h = Mh. By the argument above, we know that
Mj is in Thickgr⇤({⇤0hii}i2Z) for every j. Considering the short exact sequences

(6.1) 0 M�j+1 M�j Mj 0

for j = l, . . . , h�1, we can hence conclude that also M�l = M is in our subcategory.
This proves that Thickgr⇤({⇤0hii}i2Z) = gr⇤.

Part 2:
As thick subcategories are closed under direct summands and translation, we

immediately observe that T hii is in Thickgr⇤(eT ) for i = 0, . . . , a � 1. Since T is
a tilting module over ⇤0, and ⇤0hii thus has a finite coresolution in addT hii, this
implies that ⇤0hii is in Thickgr⇤(eT ) for i = 0, . . . , a�1. Note that by our argument
in Part 1, we hence know that every module which is concentrated in degree i for
some i = 0, . . . , a� 1, is contained in our subcategory.

Consider the short exact sequences (6.1) for M = ⇤, and recall that the module
⇤�0 = ⇤ is projective and hence zero in gr⇤. By a similar argument as before,
this yields that ⇤a is contained in Thickgr⇤(eT ). We next explain why this entails
that also ⇤0hai is in our subcategory.
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Since ⇤ is graded Frobenius, we have ⇤h�ai ' D⇤ as graded right ⇤-modules,
and thus D⇤0 ' ⇤a as ⇤0-modules. As ⇤0 has finite global dimension, this im-
plies that ⇤0 is contained in ThickDb

(⇤0)
(⇤ah�ai). Composing the equivalence

from Theorem 4.2 with the associated quotient functor, one obtains a triangulated
functor Q : Db(gr⇤)! gr⇤. From the chain of subcategories

ThickDb
(⇤0)

⇤ah�ai ✓ ThickDb
(gr⇤)

⇤ah�ai ✓ Q�1(Thickgr⇤ ⇤ah�ai),

we see that ⇤0hai is in Thickgr⇤(⇤a), which again is contained in Thickgr⇤(eT ).
Shifting the short exact sequences involved by positive integers and using the

same argument as above, one obtains that ⇤0hii is in Thickgr⇤(eT ) for all i � 0.
That ⇤0hii is in Thickgr⇤(eT ) for all i < 0 is shown similarly using the short exact
sequences

0 ⇤j ⇤j ⇤j�1 0

for j = 1, . . . , a. We can hence conclude that ⇤0hii is in Thickgr⇤(eT ) for every
integer i, which finishes our proof. ⇤

We are now ready to state and prove the main result of this section.

Theorem 6.4. The following statements are equivalent:
(1) ⇤ is n-T -Koszul.
(2) eT is a tilting object in gr⇤ and B = Endgr⇤(eT ) is (na� 1)-representation

infinite.

Proof. We begin by proving (1) implies (2). To see that eT is a tilting object, notice
first that it generates gr⇤ by Lemma 6.3. Thus, we need only check rigidity,
i.e. that Homgr⇤(eT ,⌦�l eT ) = 0 whenever l 6= 0. Splitting up on summands of
eT = �a�1

i=0
⌦�niT hii and reindexing appropriately, we see that it is enough to show

(6.2) Homgr⇤(T,⌦
�(nk+l)T hki) = 0 for l 6= 0

for any integer k with |k|  a� 1.
Assume nk+ l = 0. Now l 6= 0 implies k 6= 0, so the condition above is satisfied

as our morphisms are homogeneous of degree 0.
Let nk + l > 0. Now,

Homgr⇤(T,⌦
�(nk+l)T hki) ' Extnk+l

gr⇤
(T, T hki),

which is zero for l 6= 0 as ⇤ is n-T -Koszul.
It remains to verify (6.2) in the case where nk + l < 0. As |k|  a� 1, part (7)

of Lemma 2.3 applies. We hence see that (6.2) is satisfied also in this case, which
means that eT is a tilting object in gr⇤.

Recall from Lemma 6.2 that B has finite global dimension. To see that B is
(na � 1)-representation infinite, we use that eT is a tilting object in gr⇤. Hence,
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the equivalence and correspondence of Serre functors described in Section 4 yields

Homgr⇤(eT ,⌦�(nai+l) eT haii) ' HomDb
(B)

(B, ⌫�i(B)[nai� i+ l])(6.3)
' HomDb

(B)
(B, ⌫�i

na�1
(B)[l])

' Hl(⌫�i
na�1

(B)),

where we have implicitly used that Tµ ' T and that the functors ⌦±1(�), h±1i
and (�)µ commute.

Splitting up on summands of eT and reindexing appropriately, we notice that
Homgr⇤(eT ,⌦�(nai+l) eT haii) = 0 for l 6= 0 and i > 0 if and only if (6.2) is satisfied
for k > 0. The latter follows by the same argument as in our proof of rigidity
above, so we can conclude that Hl(⌫�i

na�1
(B)) = 0 for i > 0 and l 6= 0. Note that

when i = 0 and l 6= 0, we have Hl(⌫�i
na�1

(B)) = Hl(B) = 0. Consequently, our
algebra B is (na� 1)-representation infinite by Lemma 5.3.

To show that (2) implies (1), we verify that given any integer k, one obtains
Extnk+l

gr⇤
(T, T hki) = 0 for l 6= 0. If nk + l  0, this is immediately satisfied, so

assume nk + l > 0. As before, we now have
Extnk+l

gr⇤
(T, T hki) ' Homgr⇤(T,⌦

�(nk+l)T hki).
If k < 0, this is zero by Lemma 2.3 (6), so it remains to check the case where k is
non-negative.

Observe that the isomorphism

Homgr⇤(eT ,⌦�(nai+l) eT haii) ' Hl(⌫�i
na�1

(B))

from (6.3) still holds, as eT is assumed to be a tilting object in gr⇤. As B is
(na � 1)-representation infinite, we know that Hl(⌫�i

na�1
(B)) = 0 for i � 0 and

l 6= 0. The isomorphism above hence yields that (6.2) is satisfied for k � 0.
This allows us to conclude that T is graded n-self-orthogonal. As T is a tilting

module over ⇤0 by our standing assumptions, we have hence shown that ⇤ is
n-T -Koszul. ⇤

To illustrate our characterization result, we consider an example. As can be
seen below, we use diagrams to represent indecomposable modules. The reader
should note that in general one cannot expect modules to be represented uniquely
by such diagrams, but in the cases we look at, they determine indecomposable
modules up to isomorphism.
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Example 6.5. Let A denote the path algebra of the quiver
2

1 4

3

↵3↵1

↵2 ↵4

modulo the ideal generated by paths of length two. The trivial extension �A is
given by the quiver

2

1 4

3

↵3

↵0
1

↵1

↵2

↵0
3

↵0
4

↵4

↵0
2

with the trivial extension relations, i.e. all length two zero relations with the ex-
ception of ↵i↵0

i and ↵0
i↵i. Instead, these latter paths satisfy all length two commu-

tativity relations, i.e. ↵1↵0
1
� ↵2↵0

2
, ↵3↵0

3
� ↵0

1
↵1, ↵0

4
↵4 � ↵0

3
↵3, and ↵0

2
↵2 � ↵4↵0

4
.

Moreover, we let �A be graded with the trivial extension grading.
The indecomposable projective injectives for �A can be given as the diagrams

10
30 20

11

20
11 40

21

30
11 40

31

40
21 31,

41

where the (non-subscript) numbers represent elements of a basis for the module,
each of which is annihilated by all the idempotents except for ei with i equal to
the number. The subscript numbers represent the degree of the basis element.

Let T be the tilting A-module given by the direct sum of the following modules
10

30 20
20 30

20 30.
40

The initial two terms of the minimal injective �A-resolution of the first summand
of T as well as the first two cosyzygies can be given as

3�1

4�1 10
30

�
2�1

10 4�1

20

3�1 2�1

4�1 10 4�1

4�2

2�1 3�1

4�1

�
1�1

3�1 2�1

10
�

4�2

2�1 3�1

4�1

4�2 1�1 4�2

2�1 3�1 2�1 3�1.

Looking at this part of the resolution, it is not so obvious that T is graded 2-self-
orthogonal as a �A module, whereas by using the equivalence Db(modA) ' gr�A

or by degree arguments as we have done before, it is immediate that eT ' T is
a tilting object in gr�A. It is also easy to check that Endgr�A(T ) is isomorphic



24 JOHANNE HAUGLAND AND MADS HUSTAD SANDØY

to the hereditary algebra given by the path algebra of the quiver of A, which is
representation infinite. Using Theorem 6.4, we can hence conclude that the algebra
�A is 2-T -Koszul.

Note that this example also illustrates that, as has been remarked on in the
literature before, one cannot always expect nice minimal resolutions of T for (gen-
eralized) T -Koszul algebras.

As a consequence of Theorem 6.4, our next corollary shows that an algebra is
n-representation infinite if and only if its trivial extension is (n + 1)-Koszul with
respect to its degree 0 part. This result is inspired by connections between n-
representation infinite algebras and graded bimodule (n+ 1)-Calabi–Yau algebras
of Gorenstein parameter 1, as studied in [1,15,26,30]. In some sense, the corollary
below is a T -Koszul dual version of [15, Theorem 4.36].

Note that in the first part of Corollary 6.6, we set T = ⇤0 and hence assume
that the Nakayama automorphism of ⇤ only permutes the summands of ⇤0. This
is trivially satisfied whenever our algebra is graded symmetric.

Corollary 6.6. If a = 1, our algebra ⇤ is (n + 1)-Koszul with respect to T = ⇤0

if and only if ⇤0 is n-representation infinite. In particular, we obtain a bijective
correspondence

8
<

:

isomorphism classes
of basic n-representation
infinite algebras

9
=

;�

8
<

:

isomorphism classes of graded symmetric finite
dimensional algebras of highest degree 1 which are
(n+ 1)-Koszul with respect to their degree 0 part

9
=

; ,

where the maps are given by A 7�! �A and ⇤0  � [ ⇤.

Proof. Notice that Endgr⇤(⇤0) ' Endgr⇤(⇤0) ' ⇤0 by Lemma 2.3 (5). Observe
that Homgr⇤(⇤0,⌦�i⇤0) ' Homgr⇤(⌦i⇤0,⇤0) = 0 for all i 6= 0. This follows
by degree considerations similar to those used in the proof of Lemma 2.3 and
using the fact that syzygies of ⇤0 are generated in degrees greater or equal to 1.
Combining this with Lemma 6.3, one obtains that ⇤0 is a tilting object in gr⇤,
and consequently our first statement follows from Theorem 6.4.

We get the bijection as a special case of this, as �A is a graded symmetric finite
dimensional algebra of highest degree 1 and ⇤ ' �⇤0 as graded algebras in the
case where ⇤ is symmetric. ⇤

Our aim for the rest of this section is to use the theory we have developed to
provide an affirmative answer to our motivating question from the introduction.
As in the case of the generalized AS-regular algebras studied by Minamoto and
Mori in [30], the notion of quasi-Veronese algebras is relevant.
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Definition 6.7. Let � = �i2Z�i be a Z-graded algebra and r a positive integer.
The r-th quasi-Veronese algebra of � is a Z-graded algebra defined by

�[r] =
M

i2Z

0

BB@

�ri �ri+1 · · · �ri+r�1

�ri�1 �ri · · · �ri+r�2

...
... . . . ...

�ri�r+1 �ri�r+2 · · · �ri

1

CCA .

In Proposition 6.8 we show that if ⇤ is n-T -Koszul, then the na-th preprojective
algebra of B = Endgr⇤(eT ) is isomorphic to a twist of the a-th quasi-Veronese of ⇤!.
In order to make this precise, notice first that a graded algebra automorphism �
of a graded algebra � induces a graded algebra automorphism �[r] of �[r] by letting
�[r]((�j,k)) = (�(�j,k)). Here we use the notation (�j,k) for the matrix with �j,k in
position (j, k). Recall also that we can define a possibly different graded algebra
h�i� with the same underlying vector space structure as �, but with multiplication
� · �0 = �i(�)�0 for �0 in �i.

Recall that µ is the Nakayama automorphism of ⇤, and denote our chosen
isomorphism Tµ ' T from before by ⌧ . Note that twisting by µ might non-
trivially permute the summands of T . In the case where ⇤ is n-T -Koszul, let µ be
the graded algebra automorphism of ⇤! defined on the i-th component

⇤!

i = Extni
gr⇤

(T, T hii) ' Homgr⇤(T,⌦
�niT hii)

by the composition

Homgr⇤(T,⌦
�niT hii) (�)µ��! Homgr⇤(Tµ,⌦

�niTµhii)
(�)

⌧

��! Homgr⇤(T,⌦
�niT hii),

where
(�)⌧ = ⌦�ni(⌧)hii � � � ⌧�1

for � in Homgr⇤(Tµ,⌦�niTµhii).
Before showing Proposition 6.8, recall that a decomposition of eT yields a de-

composition of B = Endgr⇤(eT ). In the proof below, we denote the summands of
eT by X i = ⌦�niT hii, while P i is the projective B-module which is the preimage
of X i under the equivalence Db(modB)

'�! gr⇤ from Proposition 4.3.

Proposition 6.8. Let ⇤ be n-T -Koszul. Then ⇧naB ' h(µ�1
)[a]i(⇤

!)[a] as graded
algebras. In particular, we have ⇧naB ' (⇤!)[a] in the case where ⇤ is graded
symmetric.

Proof. As ⇤ is n-T -Koszul, we know from Theorem 6.4 that eT is a tilting object
in gr⇤ and that B is (na� 1)-representation infinite. The i-th component of the
na-th preprojective algebra of B is given by (⇧naB)i = HomDb

(B)
(B, ⌫�i

na�1
B). For
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0  j, k  a� 1, we hence consider

HomDb
(B)

(P k, ⌫�i
na�1

P j) ' Homgr⇤(X
k,⌦�(na�1)i�iXj

µ�ihaii)

' Homgr⇤(T,⌦
�n(ai+j�k)Tµ�ihai+ j � ki)

(⇤)
' Extn(ai+j�k)

gr⇤
(T, Tµ�ihai+ j � ki) ' ⇤!

ai+j�k.

Notice that the first isomorphism is a consequence of the equivalence and cor-
respondence of Serre functors described in Section 4, while (⇤) is obtained by ap-
plying Lemma 2.3 (5) and (7). The last isomorphism follows from the assumption
Tµ ' T .

Computing our matrix with respect to the decomposition

B ' P a�1 � · · ·� P 1 � P 0,

this yields

(⇧naB)i '

0

BB@

⇤!

ai ⇤!

ai+1
· · · ⇤!

ai+a�1

⇤!

ai�1
⇤!

ai · · · ⇤!

ai+a�2

...
... . . . ...

⇤!

ai�a+1
⇤!

ai�a+2
· · · ⇤!

ai

1

CCA ,

which shows that our two algebras are isomorphic as graded vector spaces.
In order to see that the multiplications agree, consider the diagram

(P j, ⌫�i0

na�1
P j0)⌦ (P k, ⌫�i

na�1
P j) (P k, ⌫�(i+i0)

na�1
P j0)

(⌫�i
na�1

P j, ⌫�(i+i0)
na�1

P j0)⌦ (P k, ⌫�i
na�1

P j) (P k, ⌫�(i+i0)
na�1

P j0)

(Xj
µ�i(ai), X

j0

µ�(i+i0)(a(i+ i0)))⌦ (Xk, Xj
µ�i(ai)) (Xk, Xj0

µ�(i+i0)(a(i+ i0)))

⇤!

ai0+j0�j ⌦ ⇤!

ai+j�k ⇤!

a(i+i0)+j0�k.

For simplicity, we have here suppressed the Hom-notation and denoted ⌦�ni(�)hii
by (�)(i). The horizontal maps are given by multiplication or composition, and
the vertical maps give our isomorphism of graded algebras. In particular, the
middle two horizontal maps are merely composition, whereas the top and bottom
horizontal maps are the multiplication of ⇧naB and h(µ�1

)[a]i(⇤
!)[a], respectively.

Moreover, the bottom vertical maps are given by

f ⌦ g 7!
i0�1Y

l=0

⌧�1

µl�i0 (ai
0 + j0 � j) � fµi(�ai� j)⌦

i�1Y

l=0

⌧�1

µl�i(ai+ j � k) � g(�k)
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and

f � g 7!
i+i0�1Y

l=0

⌧�1

µl�i�i0 (a(i+ i0) + j0 � k) � (f � g)(�k).

As the diagram commutes, we can conclude that ⇧naB ' h(µ�1
)[a]i(⇤

!)[a] as
graded algebras. If ⇤ is assumed to be graded symmetric, the Nakayama au-
tomorphism µ can be chosen to be trivial, so one obtains ⇧naB ' (⇤!)[a]. ⇤

In the corollary below, we show that the (n + 1)-th preprojective of an n-
representation infinite algebra is isomorphic to the n-T -Koszul dual of its trivial
extension. This is a T -Koszul dual version of [30, Proposition 4.20].

Corollary 6.9. If A is basic n-representation infinite, then ⇧n+1A ' (�A)! as
graded algebras.

Proof. Let A be a basic n-representation infinite algebra. It then follows from
Corollary 6.6 that �A is (n + 1)-Koszul with respect to A. By Lemma 2.3 part
(5), one obtains Endgr�A(A) ' Endgr�A(A) ' A. Recall that �A is graded
symmetric of highest degree 1. Applying Proposition 6.8 to �A hence yields our
desired conclusion. ⇤

We are now ready to give an answer to our motivating question from the intro-
duction, namely to see that we obtain an equivalence gr(�A) ' Db(qgr⇧n+1A)
which descends from higher Koszul duality in the case where A is n-representation
infinite and ⇧n+1A is graded right coherent.

Recall that an n-representation infinite algebra A is called n-representation tame
if the associated (n+1)-preprojective ⇧n+1A is a noetherian algebra over its center
[15, Definition 6.10]. Notice that a noetherian algebra is graded right coherent, so
our result holds in this case.

Corollary 6.10. Let A be a basic n-representation infinite algebra with ⇧n+1A
graded right coherent. Then there is an equivalence Db(gr�A) ' Db(gr⇧n+1A) of
triangulated categories which descends to an equivalence gr(�A) ' Db(qgr⇧n+1A).
In particular, this holds if A is n-representation tame.

Proof. It is well-known that ⇧n+1A is of finite global dimension [30, Theorem 4.2].
Hence, we get the equivalence Db(gr�A) ' Db(gr⇧n+1A) by Theorem 3.9 com-
bined with Corollary 6.6 and Corollary 6.9. By Proposition 3.11, this equivalence
descends to yield gr(�A) ' Db(qgr⇧n+1A). ⇤

7. Higher almost Koszulity and n-representation finite algebras

In our previous section, we gave connections between higher Koszul duality and
n-representation infinite algebras. Having developed our theory for one part of
the higher hereditary dichotomy, it is natural to ask whether something similar
holds in the n-representation finite case. To provide an answer to this question,
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we introduce the notion of higher almost Koszulity. As before, this should be
formulated relative to a tilting module over the degree 0 part of the algebra, which
is itself assumed to be finite dimensional and of finite global dimension. Notice
that after having presented the definitions and basic examples, we prove our results
given the same standing assumptions as in Section 6.

Our definition of what it means for an algebra to be almost n-T -Koszul is inspired
by and generalizes the notion of almost Koszulity, as introduced in [5]. Let us hence
first recall the definition of an almost Koszul algebra.

Definition 7.1. (See [5, Definition 3.1].) Assume that ⇤0 is semisimple. We say
that ⇤ is (right) almost Koszul if there exist integers p, q � 1 such that

(1) ⇤i = 0 for all i > p;
(2) There is a graded complex

0! P�q ! · · ·! P�1 ! P 0 ! 0

of projective right ⇤-modules such that each P�i is generated by its com-
ponent P�i

i and the only non-zero cohomology is ⇤0 in internal degree 0
and P�q

l ⌦⇤0 ⇤p in internal degree p+ q.
If ⇤ is almost Koszul for integers p and q, one also says that ⇤ is (p, q)-Koszul.

Roughly speaking, by iteratively taking tensor products over the degree 0 part,
we see that if ⇤ is almost Koszul, then ⇤0 has a somewhat periodic projective
resolution which is properly piecewise linear for p > 1. This may remind one of
the behaviour of the inverse Serre functor of an n-representation finite algebra on
indecomposable projectives. However, note that for the latter the periods may be
different for different indecomposable projectives. This highlights one additional
area in which we must generalize the notion of almost Koszulity, namely that the
length of the period of graded n-self-orthogonality can vary for different summands
of our tilting module.

Motivated by our observations above, let us now define what it means for a
module to be almost graded n-self-orthogonal. Recall that we consider a fixed
decomposition T ' �t

i=1
T i into indecomposable summands.

Definition 7.2. Let T ' �t
i=1

T i be a finitely generated basic graded ⇤-module
concentrated in degree 0. We say that T is almost graded n-self-orthogonal if for
each i 2 {1, . . . , t}, there exists an object T 0 2 addT and positive integers li and
gi such that the following conditions hold:

(1) ⌦�liT i ' T 0h�gii;
(2) Extj

gr⇤
(T, T ihki) = 0 for j 6= nk and j < li.

This leads to our definition of what it means for an algebra to be almost n-T -
Koszul.
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Definition 7.3. Assume gl.dim⇤0 <1 and let T be a graded ⇤-module concen-
trated in degree 0. We say that ⇤ is almost n-T -Koszul or almost n-Koszul with
respect to T if the following conditions hold:

(1) T is a tilting ⇤0-module.
(2) T is almost graded n-self-orthogonal as a ⇤-module.

Whenever we work with an almost n-T -Koszul algebra, we use the notation li
and gi for integers given as in Definition 7.2.

As a first class of examples, we verify that Definition 7.3 is indeed a generaliza-
tion of Definition 7.1.

Example 7.4. Let ⇤ be a (p, q)-Koszul algebra. We show that ⇤ is almost 1-
Koszul with respect to ⇤0. It is immediate that gl.dim⇤0 < 1 and that ⇤0 is a
tilting module over itself. To see that ⇤ is almost 1-Koszul with respect to ⇤0,
we must hence check that ⇤0 is almost graded 1-self-orthogonal as a ⇤-module.
Note that by letting li = q + 1 and gi = p+ q for every i 2 {1, . . . , t}, we get that
condition (2) of Definition 7.1 implies conditions (1) and (2) of Definition 7.2. To
see this, we use the fact that an algebra is left (p, q)-Koszul if and only if it is right
(p, q)-Koszul, i.e. [5, Proposition 3.4]. Hence, we get a left projective resolution of
⇤0, which can be dualized to yield a right injective resolution of ⇤0.

Trivial extensions of n-representation finite algebras provide another important
class of examples of algebras satisfying Definition 7.3, as can be seen through the
theory we develop in the rest of this section. Our main result is Theorem 7.17,
which is an almost n-T -Koszul analogue of the characterization result in Section 6,
i.e. Theorem 6.4. We divide the proof of Theorem 7.17 into a series of smaller
steps. In order to state our precise result, we need information about the relation
between the integers li and gi of an almost n-T -Koszul algebra. As will become
clear from the proof of our characterization result, the notion given in the definition
below is sufficient. Recall that we consider a fixed decomposition T ' �t

i=1
T i into

indecomposable summands.

Definition 7.5. An almost n-T-Koszul algebra ⇤ of highest degree a is called
(n,mi, �i)-T -Koszul or (n,mi, �i)-Koszul with respect to T if for each i 2 {1, . . . , t},
there exists non-negative integers mi and �i with �i  a� 1 such that

(1) li = nami � n�i + 1;
(2) gi = a(mi + 1)� �i;
(3) There is no integer k satisfying 0 < nk < li and ⌦�nkT i ' T 0h�ki with

T 0 2 addT .
We say that an algebra is (n,m, �)-T -Koszul if it is (n,mi, �i)-T -Koszul with
mi = m and �i = � for all i.

One can think of part (3) in the definition above as a minimality condition for
each li, as explained in the following remark.
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Remark 7.6. When T is almost graded n-self-orthogonal, part (3) in the definition
above is equivalent to that there exist no integers l0i and g0i with l0i < li satisfying
Definition 7.2. Note in particular that given such integers, one must have l0i = ng0i
as T is almost graded n-self-orthogonal. This contradicts the third requirement in
Definition 7.5.

Similarly as in Example 7.4, we see that almost Koszul algebras give rise to
natural examples of algebras which are (n,mi, �i)-T -Koszul.

Example 7.7. Let ⇤ be a (p, q)-Koszul algebra in the sense of Definition 7.1 and
assume that ⇤ is graded Frobenius of highest degree a � 2. Then ⇤ is (1,m, �)-
Koszul with respect to ⇤0, where m and � are the unique integers such that
q = am� � with 0  �  a� 1. Note that as p = a, it follows from Example 7.4
that part (1) and (2) of Definition 7.5 are satisfied. As the integers li and gi do
not depend on the parameter i, we simply denote them by l and g.

It remains to check minimality, i.e. that part (3) of Definition 7.5 holds. Assume
to the contrary that there exist integers l0 and g0 as described in Remark 7.6. As
n = 1, this in particular means that

(7.1) ⌦�l0⇤0 ' ⇤0h�l0i.

By the existence of the almost Koszul resolution from Definition 7.1, we have
an epimorphism I l

0�1h1 � l0i ⇣ ⌦�l0⇤0, where I l
0�1 is a summand of D⇤ as

graded modules. Since ⇤ is graded Frobenius and hence D⇤ ' ⇤h�ai, the mod-
ule I l

0�1h1 � l0i is a direct summand of ⇤h1 � l0 � ai. Consequently, the top of
I l

0�1h1� l0i is concentrated in degree 1� l0�a. However, by the isomorphism (7.1),
the projective module I l

0�1h1� l0i projects onto a semisimple module concentrated
in degree �l0. This yields that Top I l0�1h1� l0i is concentrated in degree �l0, which
is a contradiction as a � 2.

Recall that a Dynkin quiver is said to have bipartite orientation if every vertex
is either a sink or a source. Just as in the study of almost Koszul algebras in
[5], trivial extensions of bipartite Dynkin quivers provide an important class of
algebras which are (n,mi, �i)-T -Koszul.

Example 7.8. Let ⇤ be given by the quiver

1 2 3
↵0

↵0
0 ↵0

1

↵1

with relations ↵0↵0
1
, ↵1↵0

0
, and ↵0

0
↵0 � ↵0

1
↵1. This algebra is graded symmetric of

highest degree 2 with grading induced by letting the arrows be in degree 1. The
indecomposable projective injectives can be represented by the diagrams

10
21
12

20
11 31

22

30
21
32
,
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where the subscripts indicate the degrees of the basis elements. Computing injec-
tive resolutions of the simples, one can check directly that ⇤ is (1, 1, 0)-Koszul with
respect to ⇤0 = ⇤/Rad⇤, i.e. it is (1,mi, �i)-⇤0-Koszul with (mi)3i=1

= (1, 1, 1) and
(�i)3i=1

= (0, 0, 0). Moreover, one can verify that f⇤0 is a tilting object in gr⇤ with
1-representation finite endomorphism algebra. Note that this is a specific case of
what we prove more generally in our characterization result for (n,mi, �i)-T -Koszul
algebras given in Theorem 7.17. In particular, we see that the endomorphism al-
gebra of f⇤0 in gr⇤ decomposes as the direct sum of the endomorphism algebras
of

10

2�1

10 30 30

and

20

1�1

20
3�1

20
,

which are respectively isomorphic to the path algebras of the quivers

1 2 3

and

1 2 3.

Note that ⇤ in the example above is the trivial extension of a bipartite Dynkin
quiver of type A3 endowed with the grading given by putting arrows in degree
1. The behaviour exhibited in the example is typical of the general case, and we
summarize this in the following proposition. See for instance [12, Section 3.1] for
an overview of the Coxeter numbers of different Dynkin quivers.

Proposition 7.9. Let Q be a bipartite Dynkin quiver with Coxeter number h � 4.
Consider ⇤ = �kQ with grading given by putting arrows in degree 1. Then ⇤ is
(1, h�2

2
, 0)-⇤0-Koszul if h is even and (1, h�1

2
, 1)-⇤0-Koszul otherwise.

Proof. As Q is a bipartite Dynkin quiver and h � 4, it follows from [5, Proposition
3.11, Corollary 4.3] that ⇤ is (2, h� 2)-Koszul in the sense of Definition 7.1. Our
conclusion now follows by the argument in Example 7.7. ⇤

From now on, we make the same standing assumptions as we did in order to
develop our theory in Section 6.

Setup. Throughout the rest of this paper, we use the standing assumptions de-
scribed at the beginning of Section 6.

Given these assumptions, let us first show that the data of an (n,mi, �i)-T -
Koszul algebra determines a permutation on the set {1, . . . , t} in a natural way.
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Lemma 7.10. Let ⇤ be (n,mi, �i)-T -Koszul. There is then a permutation ⇡ on
the set {1, . . . , t} such that

⌦�liT i ' T ⇡(i)h�gii
for each i 2 {1, . . . , t}.

Proof. Let i 2 {1, . . . , t}. As T is almost graded n-self-orthogonal, there exists an
object T 0 2 addT such that

⌦�liT i ' T 0h�gii.
Recall that T is concentrated in degree 0 and that a � 1. Since it follows from
Lemma 2.2 that Soc⇤ ✓ ⇤a, this implies that T i is not projective as a ⇤-module
by Lemma 2.3 (3). As ⌦�1(�) is an equivalence on the stable category, the object
T 0 is indecomposable, and consequently T 0 ' T i0 for some i0 2 {1, . . . , t}. This
allows us to define the map

⇡ : {1, . . . , t}! {1, . . . , t}
by setting ⇡(i) = i0.

We next show that ⇡ is injective and hence a permutation. Let ⇡(i) = ⇡(j)
and assume li 6= lj. Without loss of generality, we consider the case li > lj. Our
assumption yields

⌦�(li�lj)T i ' T jh�(gi � gj)i.
Observe that the integers l0i = li � lj and g0i = gi � gj hence satisfy Definition 7.2.
Note in particular that 0 < l0i < li and that positivity of l0i combined with T being
almost graded n-self-orthogonal implies positivity of g0i. This contradicts part (3)
of Definition 7.5 by Remark 7.6, so we must have li = lj, which implies T i ' T j.
As T is basic, this means that i = j, which finishes our proof. ⇤

Using our fixed decomposition T ' �t
i=1

T i together with the definition of eT , we
see that the algebra B = Endgr⇤(eT ) decomposes as

B '
tM

i=1

a�1M

j=0

Homgr⇤(eT ,X i,j),

where X i,j = ⌦�njT ihji. Hence, the indecomposable projective B-modules

P i,j = Homgr⇤(eT ,X i,j)

are indexed by the set
J = {(i, j) | 1  i  t and 0  j  a� 1}.

Notice that if eT is a tilting object in gr⇤, then X i,j is the image of P i,j under the
equivalence Db(modB) ' gr⇤, which was explicitly constructed in Proposition 4.3.

Given a permutation � on the index set J , we let �L
j and �R

i be defined by

�(i, j) = (�L
j (i), �

R
i (j)).



HIGHER KOSZUL DUALITY AND CONNECTIONS WITH n-HEREDITARY ALGEBRAS 33

We are now ready to state and prove the first part of our characterization result.
Note that this direction in the proof of Theorem 7.17 explains and justifies the
somewhat technical definition of an (n,mi, �i)-T -Koszul algebra.

Theorem 7.11. If eT is a tilting object in gr⇤ and B = Endgr⇤(eT ) is (na � 1)-
representation finite, then there exist integers mi and �i such that ⇤ is (n,mi, �i)-
T -Koszul.
Proof. By [12, Proposition 0.2], there is a permutation � on J such that for every
pair (i, j) in J there is an integer mi,j � 0 with

⌫
�mi,j

na�1
P i,j ' I�(i,j),

as B is (na� 1)-representation finite. Applying ⌫�1

na�1
on both sides, we get

⌫
�mi,j�1

na�1
P i,j ' P �(i,j)[na� 1].

Since eT is a tilting object in gr⇤, we have an equivalence Db(modB) ' gr⇤ as
described in Proposition 4.3. Using that X i,j = ⌦�njT ihji is the image of P i,j

under this equivalence, combined with the correspondence of Serre functors, one
obtains

⌦�(na�1)(mi,j+1)�(mi,j+1)X i,j

µ�mi,j�1ha(mi,j + 1)i ' ⌦�(na�1)X�(i,j).

This again yields

(7.2) ⌦�nami,j�1Xµ�mi,j�1
(i),j ' X�(i,j)h�a(mi,j + 1)i,

as (�)µ commutes with cosyzygies and graded shifts and permutes the summands
of T . It follows that for each pair (i, j) in J , we get

(7.3) ⌦�nami,j�1�n(j��R
i (j))T µ�mi,j�1

(i) ' T �L
j (i)h�a(mi,j + 1) + �R

i (j)� ji.
Twisting by µmi,j+1 and setting j = 0, one obtains

(7.4) ⌦�(nami,0�n�R
i (0)+1)T i ' T µmi,0+1

(�L
0 (i))h�a(mi,0 + 1) + �R

i (0)i.
Letting mi := mi,0 and �i := �R

i (0), we hence see that li and gi can be chosen so
that part (1) of the definition for being almost graded n-self-orthogonal is satisfied
for T , and that parts (1) and (2) of being (n,mi, �i)-T -Koszul is satisfied for ⇤.
Note that since gi of this form is always positive, so is li, as can be seen by applying
Lemma 2.3 (6).

In order to show part (3) of Definition 7.5, consider an integer k satisfying
0 < nk < li. Note that we can write k = qa � r with q � 1 and 0  r  a � 1.
Aiming for a contradiction, assume that there is an integer j 2 {1, . . . , t} with

⌦�n(qa�r)T i ' T jh�(qa� r)i.
Twisting by (�)µ�q and using the equivalence Db(modB) ' gr⇤ in a similar way
as in the beginning of this proof, we obtain

⌫�q
na�1

P i,0 ' P µ�q
(j),r.
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Applying ⌫na�1 on both sides yields

(7.5) ⌫�(q�1)

na�1
P i,0 ' Iµ

�q
(j),r[�na+ 1].

From the assumption nk < li along with the description of li, we deduce that
0  q � 1  mi. As long as na > 1, the expression (7.5) hence contradicts
Lemma 5.2, so we can conclude that the third condition of Definition 7.5 is satisfied.
If na = 1, the algebra B is semisimple. In particular, this implies that li = 1, so
the condition is trivially satisfied in this case.

It remains to prove that T satisfies part (2) of Definition 7.2, i.e. that for each
i 2 {1, . . . , t}, we have Extnk+l

gr⇤
(T, T ihki) = 0 for l 6= 0 and nk+l < li. If nk+l  0,

this is immediately clear, so we can assume nk + l > 0. This yields
Extnk+l

gr⇤
(T, T ihki) ' Homgr⇤(T,⌦

�(nk+l)T ihki).
In the case k < 0, this is zero by Lemma 2.3 (6), and we can thus assume k � 0.

As eT is a tilting object in gr⇤, a similar argument as in the proof of Theorem 6.4
yields an isomorphism

(7.6) Homgr⇤(eT ,⌦�(nam+l)Xµ�m
(i),jhami) ' Hl(⌫�m

na�1
(P i,j))

for every pair (i, j) in J . By Lemma 5.2, we know that Hl(⌫�m
na�1

(P i,j)) = 0 for
l 6= 0 and 0  m  mi,j as B is (na � 1)-representation finite. Using that
(�)µ is an equivalence on gr⇤, that eTµ ' eT and splitting up on summands of
eT = �a�1

s=0
⌦�nsT hsi, this yields

(7.7) Homgr⇤(T,⌦
�(n(am�s+j)+l)T iham� s+ ji) = 0

for l 6= 0 and 0  m  mi,j. We simplify this by letting j = 0. Hence, we have
mi,j = mi. In the case k  ami, we can write k = am � s for appropriate values
of m and s, so (7.7) implies our desired conclusion in this case. If k > ami, we use
the isomorphism T i ' ⌦liT ⇡(i)h�gii to rewrite

Homgr⇤(T,⌦
�(nk+l)T ihki) ' Homgr⇤(T,⌦

li�(nk+l)T ⇡(i)hk � gii).
When nk + l < li, this is 0 by Lemma 2.3 (7). To see this, notice that the
assumption k > ami combined with the definition of gi yields k� gi � 1� a. This
finishes our proof. ⇤

Before giving a result which explains why our choices of mi and �i are reasonable,
we need the following lemma.

Lemma 7.12. If eT is a tilting object in gr⇤, then the algebra B = Endgr⇤(eT ) is
basic.

Proof. As eT is a tilting object in gr⇤, it suffices to show that eT is basic. Note
that the indecomposable summands of eT are of the form ⌦�njT ihji with 0  i  t
and 0  j  a� 1. Assume that we have isomorphic summands

⌦�njT ihji ' ⌦�nlT khli.
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If j = l, it follows that i = k as T is basic. Without loss of generality, we hence
assume j > l. Consider now

Homgr⇤(T
i, T i) ' Homgr⇤(T

i,⌦�n(l�j)T khl � ji),

which is non-zero as T i 6= 0. This contradicts Lemma 2.3 (7), as l� j � 1� a and
�n(l � j) > 0, so we can conclude that (i, j) = (k, l). ⇤

Recall from [12, Proposition 0.2] and the proof of Theorem 7.11 that when B is
(na � 1)-representation finite, there is a permutation � on J such that for every
pair (i, j) in J there is an integer mi,j � 0 with

⌫
�mi,j

na�1
P i,j ' I�(i,j).

As before, we use the notation

�(i, j) = (�L
j (i), �

R
i (j)).

The proposition below provides more information about how the permutation �
and the integers mi,j associated to B being (na�1)-representation finite are related
to the parameters mi and �i.

Proposition 7.13. If eT is a tilting object in gr⇤ and B = Endgr⇤(eT ) is (na�1)-
representation finite, then ⇤ is (n,mi, �i)-T -Koszul with mi = mi,0 and �i = �R

i (0)
and we have

�R
i (j) =

⇢
�i + j if �i + j  a� 1
�i + j � a if �i + j > a� 1

and

mi,j =

⇢
mi if j  �R

i (j)
mi � 1 if j > �R

i (j).

Additionally, if ⇡ is the permutation on {1, . . . , t} induced by ⇤ being (n,mi, �i)-
T -Koszul, we have

�L
j (i) = µ�mi,j�1(⇡(i)).

Proof. Recall first that ⇤ is (n,mi, �i)-T -Koszul with mi = mi,0 and �i = �R
i (0)

by Theorem 7.11 and its proof. From now, consider a fixed integer i 2 {1, . . . , t}
and let 0  j  a� 1.

Our next aim is to verify the first two equations in the formulation of the propo-
sition. Note that to get the desired expression for �R

i (j), it is enough to show
that

�R
i (j) =

⇢
�R
i (0) + j if j  �R

i (j)
�R
i (0) + j � a if j > �R

i (j).

To see that this is sufficient, observe that given the expression above, one has
j  �R

i (j) if and only if �i + j  a� 1. Indeed, if j  �R
i (j), our formula gives

�R
i (j) = �R

i (0) + j = �i + j,
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so �i + j  a� 1. On the other hand, the assumption j > �R
i (j) yields

�R
i (j) = �R

i (0) + j � a = �i + j � a,

which implies �i + j > a� 1.
Assume j  �R

i (j). Observe that one obtains

⌦�nami,j�1Xµ�mi,j�1
(i),0 ' X�(i,j)�(0,j)h�a(mi,j + 1)i

by applying ⌦nj(�)h�ji to (7.2). Our assumption yields 0  �R
i (j)� j  a�1, so

we can run the argument at the beginning of the proof of Theorem 7.11 in reverse
to get

⌫
�mi,j

na�1
P i,0 ' I�(i,j)�(0,j).

Recall that H0(⌫�1

na�1
�) ' ⌧�1

na�1
as endofunctors on modB, where ⌧�1

na�1
denotes the

(na � 1)-Auslander–Reiten translation. Note that the ⌧�1

na�1
-orbit of a projective

B-module contains precisely one injective [19, Proposition 1.3]. Compare our
expression above with

⌫
�mi,0

na�1
P i,0 ' I�(i,0).

If na > 1, we deduce that mi,j = mi,0 and I�(i,j)�(0,j) ' I�(i,0). If na = 1, then B
is semisimple. This implies mi,j = mi,0 = 0, and the same conclusion thus follows.
In particular, this yields

�(i, j)� (0, j) = �(i, 0)

as B is basic. Consequently, we obtain our desired expressions for �R
i (j) and mi,j

once we have made the substitutions mi = mi,0 and �i = �R
i (0).

For the second case, assume j > �R
i (j). Note that we now necessarily have

na > 1 as mi = 0 implies �i = 0. Apply ⌦�n(a�j)(�)ha� ji to (7.2) to get

⌦�na(mi,j+1)�1Xµ�(mi,j+1)
(i),0 ' X�(i,j)+(0,a�j)h�a((mi,j + 1) + 1)i.

Our assumption yields 0 < �R
i (j) + a� j  a� 1. Twisting by (�)µ�1 and again

reversing the argument at the beginning of the proof of Theorem 7.11, we hence
obtain

⌫
�(mi,j+1)

na�1
P i,0 ' Iµ

�1
(�L

j (i)),�R
i (j)+a�j.

Similarly as above, this leads to our desired expressions for �R
i (j) and mi,j.

It remains to check that �L
j (i) = µ�mi,j�1(⇡(i)). This follows by applying what

we have shown so far to (7.3). ⇤
Our next aim is to prove the other direction of this section’s main result. Let

us first give an overview of some useful observations.

Lemma 7.14. Let ⇤ be (n,mi, �i)-T -Koszul. The following statements hold for
1  i  t:

(1) We have ⇡ �µ = µ �⇡, where ⇡ is the permutation on {1, . . . , t} induced by
⇤ being (n,mi, �i)-T -Koszul.

(2) The constants li and gi satisfy li = lµ(i) and gi = gµ(i).
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(3) The constants mi and �i satisfy mi = mµ(i) and �i = �µ(i).
(4) We have gi � a. Moreover, if mi = 0, then �i = 0.

Proof. For part (1) and (2), recall that ⌦±1(�) and h±1i both commute with
(�)µ. This implies that ⌦�liT µ(i)hgii ' T µ(⇡(i)) and ⌦�lµ(i)T µ(i)hgµ(i)i ' T ⇡(µ(i)),
and hence arguments similar to those in Remark 7.6 and Lemma 7.10 are sufficient.

Comparing the expressions for gi and gµ(i), we see that part (3) follows from (2)
by a number theoretical argument.

Part (4) is a consequence of the definition of li and gi. To be precise, it is clear
that mi = 0 implies �i = 0 as li is positive. Using this, the assumption �i  a� 1
yields our first statement. ⇤

Compared to what was the case for n-T -Koszul algebras, it is somewhat more
involved to show that eT is a tilting object in gr⇤ whenever ⇤ is (n,mi, �i)-T -
Koszul. We hence prove this as a separate result.

Proposition 7.15. If ⇤ is (n,mi, �i)-T -Koszul, then eT is a tilting object in gr⇤.

Proof. Since Lemma 6.3 yields Thickgr⇤(eT ) = gr⇤, we only need to check rigidity.
As in the proof of Theorem 6.4, it is enough to verify that

Homgr⇤(T,⌦
�(nk+l)T hki) = 0 for l 6= 0

for any integer k with |k|  a � 1. In the cases nk + l = 0 and nk + l < 0, the
argument is exactly the same as in the proof of Theorem 6.4, so assume nk+ l > 0.
For each summand T i of T , one now obtains

Homgr⇤(T,⌦
�(nk+l)T ihki) ' Extnk+l

gr⇤
(T, T ihki).

In the case nk+l < li, this is zero for l 6= 0 as T is almost graded n-self-orthogonal.
Otherwise, we use the isomorphism T i ' ⌦liT ⇡(i)h�gii to rewrite the expression
above. In the case nk + l = li, we get

Homgr⇤(T,⌦
�(nk+l�li)T ⇡(i)hk � gii) = Homgr⇤(T, T

⇡(i)hk � gii).

This is zero as |k|  a � 1 together with Lemma 7.14 (4) yields k � gi < 0. If
nk + l > li, one obtains

Homgr⇤(T,⌦
�(nk+l�li)T ⇡(i)hk � gii) ' Extnk+l�li

gr⇤
(T, T ⇡(i)hk � gii).

As nk + l � li > 0 and k � gi < 0, the first expression can not be written as an
n-multiple of the second. If nk + l � li < l⇡(i), we are hence done. Otherwise, we
iterate the argument until we reach our desired conclusion. ⇤

We are now ready to show the other direction of Theorem 7.17.

Theorem 7.16. If ⇤ is (n,mi, �i)-T -Koszul, then eT is a tilting object in gr⇤ and
B = Endgr⇤(eT ) is (na� 1)-representation finite.
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Proof. Since eT is a tilting object in gr⇤ by Proposition 7.15, we only need to show
that B = Endgr⇤(eT ) is (na� 1)-representation finite. Let us first use the integers
mi and �i to define �R

i (j), mi,j and �L
j (i) for (i, j) in J by the formulas in the

formulation of Proposition 7.13. Note that this yields 0  �R
i (j)  a � 1, as well

as 1  �L
j (i)  t and mi,j � 0. The latter is a consequence of Lemma 7.14 (4).

Using that ⇤ is assumed to be (n,mi, �i)-T -Koszul, we see that (7.4) is satisfied.
Furthermore, we can run the argument at the beginning of the proof of Theo-
rem 7.11 in reverse, using that eT is a tilting object in gr⇤. Consequently, one
obtains

⌫
�mi,j

na�1
P i,j ' I�(i,j)

for every indecomposable projective B-module P i,j, where

�(i, j) := (�L
j (i), �

R
i (j)).

Our next aim is to show that � is a permutation on J . As J is a finite set, it
is enough to check injectivity. Recall that µ and ⇡ are permutations, and hence
injective. Combining this with Lemma 7.14 (1) and (3), notice that also �L

0
is

injective.
Assume that �(i, j) = �(k, l) for (i, j) and (k, l) in J . If j  �R

i (j) and l  �R
k (l),

we see that
�L
0
(i) = �L

j (i) = �L
l (k) = �L

0
(k),

so i = k by injectivity of �L
0
. As we in this case also have

�R
i (0) + j = �R

i (j) = �R
k (l) = �R

k (0) + l,

it follows that j = l, so � is injective. The argument in the case j > �R
i (j) and

l > �R
k (l) is similar.

By symmetry, it remains to consider the case where j  �R
i (j) and l > �R

k (l).
Here, the assumption �(i, j) = �(k, l) yields

�L
0
(i) = �L

j (i) = �L
l (k) = µ(�L

0
(k)).

Consequently, Lemma 7.14 (1) and (3) imply that i = µ(k) and �R
i (0) = �R

k (0).
As we in this case also have

�R
i (0) + j = �R

i (j) = �R
k (l) = �R

k (0) + l � a,

this means that j = l � a, contradicting the assumption 0  j, l  a � 1. Hence,
this case is impossible, and we can conclude that � is a permutation.

It now follows that every indecomposable injective, and hence also DB, is con-
tained in the subcategory

U = add{⌫ l
na�1

B | l 2 Z} ✓ Db(modB).

By Theorem 5.1, it thus remains to prove that gl.dimB  na � 1. To show this,
observe first that B has finite global dimension by Lemma 6.2. As eT is a tilting
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object in gr⇤, it follows from (7.6) in the proof of Theorem 7.11 that we have

Hl(⌫�1

na�1
(P i,j)) ' Homgr⇤(eT ,⌦�(na+l)Xµ�1

(i),jhai)

'
a�1M

s=0

Homgr⇤(T,⌦
�(n(a+j�s)+l)T iha+ j � si)

for every pair (i, j) in J . We want to show that this is zero whenever l 62 {1�na, 0}.
Note that the argument for this is similar to the proof of Proposition 7.15. In
particular, it is enough to consider the case n(a+j�s)+ l � li for each i, since the
remaining cases are covered by our previous proof. Using that ⌦�liT i ' T ⇡(i)h�gii,
the summands in our expression above can be rewritten as

Homgr⇤(T,⌦
�n(�i+j�s�ami)�(na�1+l)T ⇡(i)h�i + j � s� amii).

If n(�i+ j�s�ami)+na�1+ l < l⇡(i), this is non-zero only when l is as claimed.
Otherwise, Lemma 7.14 (4) implies that we get a negative graded shift in the next
step of the iteration, and we are done by the same argument as in the proof of
Proposition 7.15. From this, one can see that the assumptions in Lemma 5.3 are
satisfied, and hence gl.dimB  na� 1. Applying Theorem 5.1, we conclude that
B is (na� 1)-representation finite, which finishes our proof. ⇤

Altogether, combining Theorem 7.11 and Theorem 7.16, we have now proved
this section’s main result. Recall that we use the standing assumptions described
at the beginning of Section 6.

Theorem 7.17. The following statements are equivalent:
(1) There exist integers mi and �i such that ⇤ is (n,mi, �i)-T -Koszul.
(2) eT is a tilting object in gr⇤ and B = Endgr⇤(eT ) is (na� 1)-representation

finite.
Moreover, the parameters mi, �i and the permutation ⇡ obtained from ⇤ being
(n,mi, �i)-T -Koszul correspond to the parameter mi,j and the permutation � ob-
tained from B being (na�1)-representation finite as described in Proposition 7.13.

We now present some consequences of our characterization theorem similar
to the ones in Section 6. Notice that unlike the corresponding result for n-
representation infinite algebras, the following corollary is not – as far as we know
– an analogue of anything existing in the literature. Mutatis mutandis, the proof
is the same as that of Corollary 6.6 and is hence omitted. The parameters of ⇤
and ⇤0 in the statement correspond as described in Theorem 7.17.

Note that in the first part of the corollary below, we set T = ⇤0 and hence
assume that the Nakayama automorphism of ⇤ only permutes the summands of
⇤0. This is trivially satisfied whenever our algebra is graded symmetric.

Corollary 7.18. If a = 1, our algebra ⇤ is (n + 1,mi, �i)-Koszul with respect to
T = ⇤0 if and only if ⇤0 is n-representation finite. In particular, we obtain a
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bijective correspondence
8
<

:

isomorphism classes of
basic n-representation finite
algebras A

9
=

;�

8
>><

>>:

isomorphism classes of graded symmetric finite
dimensional algebras of highest degree 1 which
are (n+ 1,mi, �i)-Koszul with respect to their
degree 0 parts

9
>>=

>>;
,

where the maps are given by A 7�! �A and ⇤0  � [ ⇤.

Just like in Section 6, it is natural to consider the notion of an almost n-T -Koszul
dual of a given almost n-T -Koszul algebra.

Definition 7.19. Let ⇤ be an almost n-T -Koszul algebra. The almost n-T -Koszul
dual of ⇤ is given by ⇤! = �i�0 Ext

ni
gr⇤

(T, T hii).

As before, note that while the notation ⇤! is potentially ambiguous, it is for us
always clear from context which structure the dual is computed with respect to.

Our next proposition shows that if ⇤ is (n,mi, �i)-T -Koszul, then the na-th
preprojective algebra of B = Endgr⇤(eT ) is isomorphic to a twist of the a-th quasi-
Veronese of ⇤!. The proof is exactly the same as that of the corresponding result
in Section 6, namely Proposition 6.8.

Proposition 7.20. Let ⇤ be (n,mi, �i)-T -Koszul. Then ⇧naB ' h(µ�1
)[a]i(⇤

!)[a]

as graded algebras. In particular, we have ⇧naB ' (⇤!)[a] in the case where ⇤ is
graded symmetric.

The proof of our final corollary is similar to that of Corollary 6.9 and is hence
omitted.

Corollary 7.21. If A is basic n-representation finite, then ⇧n+1A ' (�A)! as
graded algebras.
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Abstract. We classify n-hereditary monomial algebras in three natural contexts: First, we
give a classification of the n-hereditary truncated path algebras. We show that they are exactly
the n-representation-finite Nakayama algebras classified by Vaso. Next, we classify partially the
n-hereditary quadratic monomial algebras. In the case n = 2, we prove that there are only two
examples, provided that the preprojective algebra is a planar quiver with potential. The first
one is a Nakayama algebra and the second one is obtained by mutating A3 ⌦k A3, where A3

is the Dynkin quiver of type A with bipartite orientation. In the case n � 3, we show that
the only n-representation finite algebras are the n-representation-finite Nakayama algebras with
quadratic relations.
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1. Introduction

Auslander–Reiten theory has proven to be a central tool in the study of the representation
theory of Artin algebras [ARS97]. In 2004, Iyama introduced a generalisation of some of the key
concepts to a ‘higher-dimensional’ paradigm [Iya07a, Iya07b]. To put it in his own words, “in
these Auslander–Reiten theories, the number ‘2’ is quite symbolic”. For example, the Auslander
correspondence establishes a bijection between finite-dimensional representation-finite algebras
and finite-dimensional algebras of global dimension at most 2 and dominant dimension at least

2020 Mathematics Subject Classification. 16G20 (Primary), 16E30.
Key words and phrases. n-hereditary algebra, n-representation-finite algebra, n-representation-infinite algebra,

preprojective algebra, Jacobian algebra, selfinjective algebra, Calabi–Yau algebra, Auslander–Reiten theory.
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2 [Aus71]. This realisation was the starting point of very fruitful research which has had ap-
plications in representation theory, commutative algebra, as well as commutative and categori-
cal algebraic geometry (e.g. [Iya11, IO11, MM11, IO13, HIO14, HIMO14, IW14, AIR15, IJ17,
DJW19, JK19, BHon]).

Auslander–Reiten theory is particularly nice over finite-dimensional hereditary algebras ⇤. For
example, there is a trichotomy in the representation theory of these algebras into preprojective,
regular and preinjective modules. Moreover, their preprojective algebra ⇧ = T⇤ Ext

1
⇤(D⇤,⇤)

provides very useful information [BGL87]. This motivated the study of the so-called n-hereditary
algebras, which consist of the n-representation-finite (henceforth abbreviated as n-RF) [Iya07b,
HI11a, HI11b, Iya11, IO11, IO13] and n-representation-infinite (henceforth n-RI) [HIO14] alge-
bras. These are finite-dimensional algebras of global dimension n which enjoy properties analo-
gous to hereditary algebras in the classical theory. There is also a natural generalisation of the
preprojective algebra over these algebras.

Many instances of n-hereditary algebras were discovered over the years (e.g. [HI11b, IO13,
AIR15, Pet19, Pas20, BHon]). For example, algebras of higher type A and type Ã are n-RF and
n-RI, respectively [IO11, HIO14]. The defining properties of n-hereditary algebras are rather
strong, so classes of examples should be expected to be somewhat special. However, it seems
that we are still in an early stage, and that many more classes of examples and classification
results have yet to be discovered. Such results would allow an even better understanding of the
role of these algebras.

The aim of this paper is to study characteristics of certain n-hereditary monomial algebras.
On many occasions, we use the fact that n-hereditary algebras ⇤ enjoy the property that
Ext

j
⇤e(⇤,⇤e

) = 0 for all 0 < j < n [IO13], which we refer to as the vanishing-of-Ext condi-
tion. Since monomial algebras have a nice bimodule resolution, provided by Bardzell [Bar97],
we have a good control over these extension groups. Using that fact and a classification of the
n-representation-finite Nakayama algebras by Vaso [Vas19], we obtain the following result for
truncated path algebras.

Theorem A (Proposition 3.6, Theorem 3.7). Let ⇤ = kQ/J ` be a truncated path algebra, where
` � 2, Q is a finite quiver and J is the arrow ideal. Let Am be the linearly oriented Dynkin
quiver of type A with m vertices.

(1) If Q is acyclic and Ext
j
⇤e(⇤,⇤e

) = 0 for all 0 < j < gl.dim ⇤, then Q = Am, for some
m.

(2) The following are equivalent:
(a) ⇤ is n-hereditary;
(b) ⇤ ⇠= kAm/J `, for some m, and ` |m� 1 or ` = 2.
In this case, n = 2

m�1
` and ⇤ is an n-representation-finite Nakayama algebra.

We note that the vanishing-of-Ext condition already allows us to reduce the number of cases
by a lot.

Next, we move to the study of quadratic monomial algebras. Our main results are given as
follows.

Theorem B (Theorem 4.1, Corollary 4.20, Theorem 4.26). Let ⇤ = kQ/I be a quadratic mono-
mial algebra of global dimension n.

(1) Suppose that n = 2.
(a) If Ext1⇤e(⇤,⇤e

) = 0, then Q is an (r, s)-star quiver (Definition 4.19).
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(b) If ⇤ is n-hereditary and the preprojective algebra ⇧(⇤) is a planar quiver with po-
tential, then ⇤ is given by one of the following two 2-RF algebras:

(1.1)

where the dotted arcs denote relations. Note that the first algebra is the Nakayama
algebra kA3/J 2.

(2) Suppose that n � 3 and ⇤ is n-RF. Then ⇤ ⇠= kAn+1/J 2.

Perhaps surprisingly, we see that the class of 2-RF quadratic monomial algebras is richer than
those in higher global dimension. In the n = 2 case, we assumed that the preprojective algebra
was a planar QP. There are examples of other 2-RF quadratic monomial algebras where this
property is not satisfied, see Example 4.24. This assumption appears often, at least implicitly, in
different results aimed at understanding some selfinjective Jacobian algebras and 2-RF algebras
(e.g. [HI11b, Pet19, Pas20]). Note that all examples covered in the previous theorem were already
known to be n-RF. The algebra corresponding to the (4, 4)-star above is a cut of ⇧(Abip

3 ⌦kAbip
3 ),

where Abip
3 is the Dynkin quiver of type A with bipartite orientation and ⇧ denotes the higher

preprojective algebra.

Acknowledgements. We thank Martin Herschend for pointing out a mistake in the statement
of Proposition 3.6 when the results were first announced at the fd-seminar in June 2020, and
we thank Steffen Oppermann and Øyvind Solberg for carefully reading an earlier version of the
manuscript.

Setup. Let k be an algebraically closed field. The k-dual Homk(�, k) is denoted by D. Unless
specified otherwise, all modules are left modules. The idempotent associated to a vertex i is
denoted by ei. If a and b are arrows in a quiver, then ab denotes the path b followed by a.
The head of an arrow a : i ! j is denoted by h(a) and equals j, and the tail is denoted by t(a)
and equals i. These extend to paths p = p`p`�1 · · · p1 by letting h(p) = h(p`) and t(p) = t(p1).
Moreover, the length of a path p = p`p`�1 · · · p1 is ` and this is denoted by L(p). The syzygy
of a module N is the kernel of the projective cover of N and this is denoted by ⌦N . If ⇤ is
a k-algebra, then mod⇤ denotes the category of finitely generated left modules and Db

(mod⇤)
the bounded derived category. When ⇤ = kQ/I is a basic algebra, we always assume that Q is
a connected quiver.

2. Preliminaries

2.1. n-hereditary algebras. Let ⇤ be a finite-dimensional algebra of global dimension n. Let

S := D⇤
L
⌦⇤� : Db

(mod⇤) ! Db
(mod⇤)

be the Serre functor with inverse

S�1
= RHom⇤(D⇤,�) : Db

(mod⇤) ! Db
(mod⇤).

Denote by Sn the composition Sn := S � [�n].

Definition 2.1. We say that ⇤ is
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• n-representation-finite (n-RF) if for any indecomposable projective P 2 proj⇤, there
exists i � 0 such that S�i

n (P ) 2 inj⇤, the category of finitely generated injective modules.
• n-representation-infinite (n-RI) if S�i

n (⇤) 2 mod⇤ for any i � 0.
• n-hereditary if Hj

(Sin(⇤)) = 0 for all i, j 2 Z such that j 62 nZ.

These definitions, as written, were given in [HIO14], but the concept of n-RF algebras was
studied before in [Iya07b, HI11a, HI11b, Iya11, IO11, IO13].

We have the following dichotomy.

Theorem 2.2 ([HIO14, Theorem 3.4]). Let ⇤ be a ring-indecomposable k-algebra. Then ⇤ is
n-hereditary if and only if it is either n-RF or n-RI.

Recall that hereditary algebras ⇤ are formal, that is, for any X 2 Db
(mod⇤), there is an

isomorphism
X ⇠=

M

i2Z
H

j
(X)[�j].

An important feature of n-hereditary algebras is that a certain generalisation of this property
holds. This follows from [Iya11, Lemma 5.2].

Proposition 2.3. Let ⇤ be an n-hereditary algebra. Then for any i 2 Z and an indecomposable
projective module P 2 proj⇤, there exists j 2 Z such that

Sin(P ) ⇠= H
nj
(Sin(P ))[�nj].

As a consequence, n-hereditary algebras satisfy a condition which is closely related to the
vosnex (“vanishing of small negative extensions”) property (see [IO13, Notation 3.5]).

Corollary 2.4. Let ⇤ be an n-hereditary algebra. Then

Ext
`
⇤(D⇤,⇤) = 0 (2.1)

for all 0 < ` < n.

We refer to this property as the vanishing-of-Ext condition.
As for classical hereditary algebras, preprojective algebras play an important role.

Definition 2.5. Let ⇤ be a finite-dimensional algebra of global dimension n. The (n + 1)-
preprojective algebra ⇧(⇤) is defined as

⇧(⇤) := T⇤ Ext
n
⇤(D⇤,⇤) ⇠=

M

`�0

H
0
(S�`

n (⇤)).

Note that Ext
`
⇤(D⇤,⇤)

⇠= Ext
`
⇤e(⇤,⇤e

) [GI19, Lemma 2.9], a fact that we use often.
Preprojective algebras and n-hereditary algebras are connected in the following way.

Theorem 2.6. Let ⇤ be a finite-dimensional algebra.
(1) If ⇤ is an n-representation-finite algebra. Then ⇧(⇤) is a selfinjective algebra. The

converse holds if ⇤ has global dimension 2.
(2) The following are equivalent.

a) ⇤ is n-representation-infinite;
b) ⇧(⇤) is a bimodule Calabi–Yau algebra of Gorenstein parameter 1.

Here, (1) is due to [IO13, Corollary 3.4 & Corollary 3.8], whereas (2) is an amalgam of
results from [Kel11, Theorem 4.8], [MM11, Corollary 4.13], [HIO14, Theorem 4.36], and [AIR15,
Theorem 3.4]. We refer to the papers for definitions.
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In the case where ⇤ is Koszul, we have a good understanding of the construction of preprojec-
tive algebras. To present the construction we need certain notions of derivatives which we define
below, and we note that they are used extensively in this paper, and not just in the context of
Koszul algebras.

Notation for derivatives. Let S be a semisimple k-algebra and V be an S-bimodule. Let
p = v` ⌦ · · ·⌦ v1 2 V ⌦S`. We define the linear morphisms

�Lm(p) := v`�m ⌦ · · ·⌦ v1 and �Rm(p) := v` ⌦ · · ·⌦ vm+1.

for m < ` and we let both equal 0 when ` = m.
Moreover, we define

Lm(p) := v` ⌦ · · ·⌦ v`�m+1 = �R`�m(p) and Rm(p) = vm ⌦ · · ·⌦ v1 = �L`�m(p).

The subscript is dropped if m = 1.
We also define linear morphisms associated to elements q 2 V ⌦m, for m  `:

�Lq (p) :=

⇢
a if p = q ⌦ a
0 else and �Rq (p) :=

⇢
b if p = b⌦ q
0 else.

Similarly, we define

Lq(p) :=

⇢
b if p = b⌦ q ⌦ a
0 else and Rq(p) :=

⇢
a if p = b⌦ q ⌦ a
0 else.

When p = b⌦ q ⌦ a for some paths a and b, we say that q divides p and denote this by q|p.

Description of the n-preprojective algebra of a Koszul n-hereditary algebra. Recall
that if ⇤ is Koszul, it can be given as a tensor algebra TSV/hMi where, as in the previous
section, S is some semisimple k-algebra, V is an S-bimodule, and M ⇢ V ⌦S V is a subbimodule
[BGS96]. Let then

K` :=

`�2\

µ=0

(V ⌦µ ⌦M ⌦ V ⌦`�µ�2
)

be the terms appearing in the minimal Koszul resolution of ⇤ according to [BGS96]. Moreover,
given a vector space V , let B(V ) be a basis.

Proposition 2.7 ([GI19, Proposition 3.12], [Thi20, Corollary 3.3]). Let ⇤ = TSV/hMi be a
finite-dimensional Koszul algebra of global dimension n. Let {ei | 1  i  m} be a complete set
of primitive orthogonal idempotents in ⇤. Let V be the vector space obtained from V by adding
a basis element eiaqej for each element q 2 B(ejKnei). Let M be the union of M with the set
fM of quadratic relations given by

fM :=

8
<

:
X

q2B(Kn)

aq�
R
p (q) + (�1)

n
X

q2B(Kn)

�Lp (q)aq | p 2 B(Kn�1)

9
=

; .

There is an isomorphism of algebras

⇧ ⇠= TSV /hMi.
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2.2. Monomial algebras. In this subsection, we define monomial algebras and describe certain
minimal projective resolutions.

Definition 2.8. Let ⇤ = kQ/I, where Q is a finite quiver and I an admissible ideal. We say
that ⇤ is a monomial algebra if I can be generated by a finite number of paths.

There is a nice description of the minimal projective ⇤-bimodule resolution of ⇤, due to
Bardzell [Bar97]. Let M be a minimal set of paths of minimal length which generates I. Given
a path p, define the support to be the set of all vertices dividing p. For every directed path T in
Q, there is a natural order < on the support of T . Let M(T ) be the set of relations which divide
T .

Definition 2.9. Let p 2 M(T ). We define the left construction associated to p along T by
induction. Let r2 2 M(T ) be the path (if it exists) in M(T ) which is minimal with respect to
t(p) < h(r2) < h(p). Now assume we have constructed r1 = p, r2, . . . , rj . Let

Lj+1 = {r 2 M(T ) | h(rj�1)  t(r) < h(rj)}.

If Lj+1 6= ?, let rj+1 be such that t(rj+1) is minimal in Lj+1.

Definition 2.10. Let p 2 M and ` � 2 be an integer. We define

ASp(`) := {(r1 = p, r2, . . . , r`�1) | (r1, r2, . . . , r`�1) is a sequence of paths associated
to p in the left construction}.

For each element (r1, . . . , r`�1) 2 ASp(`), define p` to be the path from t(p) to h(r`�1) and let
APp(`) be the set of all p`. Finally, we define

AP(`) :=
[

p2M
APp(`),

if ` � 2 and AP(0) := Q0, AP(1) := Q1.

The vector spaces kAP(`) are the kQ0-bimodules which appear in the minimal resolution we
want to construct. Note that AP(2) = M . If p 2 AP(`), define

Sub(p) := {q 2 AP(`� 1) | q divides p}.

Lemma 2.11 ([Bar97, Lemma 3.3]). The set Sub(p) contains two paths p0 and p1 such that
t(p0) = t(p) and h(p1) = h(p). Moreover, if ` is odd, then Sub(p) = {p0, p1}.

We are now ready to define morphisms

d` :
M

p2AP(`)

⇤eh(p) ⌦k et(p)⇤!
M

p2AP(`�1)

⇤eh(p) ⌦k et(p)⇤,

noting that we give our conventions with respect to idempotents, and heads and tails of arrows
and paths in the setup immediately following the introduction. Recall that if p 2 AP(`) and
q 2 Sub(p), we write p = Lq(p)qRq(p). By the previous lemma, we have that Sub(p) = {p0, p1}
if ` is odd, in which case p = Lp0(p)p0 and p = p1Rp1(p). Then we define

d`((eh(p) ⌦ et(p))p) :=

(
(Lp0(p)eh(p0) ⌦ et(p0))p0 � (eh(p1) ⌦ et(p1)Rp1(p))p1 if ` is oddP

q2Sub(p)(Lq(p)eh ⌦ etRq(p))q if ` is even.

Here, we use the notation (�⌦�)p to denote an element in the p-th component in
L

p ⇤ei⌦k ej⇤.
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Theorem 2.12 ([Bar97, Theorem 4.1]). The complex

· · · dn+1���!
M

p2AP(n)

⇤eh(p) ⌦k et(p)⇤
dn�! · · · d1�!

M

ei2AP(0)

⇤ei ⌦k ei⇤
µ�! ⇤! 0, (2.2)

where µ((ei ⌦ ei)ei) = ei, is a minimal projective resolution of ⇤ as a ⇤-bimodule.

2.3. Computing Ext
`
⇤e(⇤,⇤e

). In the next sections, we use on many occasions Corollary 2.4 as
an obstruction for certain algebras to be n-hereditary. We therefore explain here how to compute
Ext

`
⇤e(⇤,⇤e

) for 1  `  n.
Let ⇤ be a basic finite-dimensional algebra. By [Hap89, Section 1.5], ⇤ has a minimal projective

bimodule resolution of the form

P• : · · ·
dn+1���!

M

p2B(En(i,j))

⇤eh(p) ⌦k et(p)⇤
dn�! · · · d1�!

M

ei2B(E0(i,j))

⇤ei ⌦k ei⇤! 0,

where E`
(i, j) := Ext

`
⇤(Si, Sj) and Si denotes the simple module at vertex i. In the case where

⇤ is monomial, we have E`
(i, j) ⇠= ejkAP(`)ei. Note that, in general, it is hard to determine

the differentials d`.
In order to compute Ext

`
⇤e(⇤,⇤e

), we apply Hom⇤e(�,⇤e
) to P• and use the isomorphisms

 : Hom⇤e(⇤ej ⌦k ei⇤,⇤e
) ⇠= ej⇤⌦k ⇤ei ⇠= ⇤ei ⌦k ej⇤

� 7! �(ej ⌦ ei)
ej ⌦ ei 7! ei ⌦ ej

to obtain a complex

Hom⇤e(P•,⇤
e
) : 0 !

M

ei2B(E0(i,j))

⇤ei⌦k ei⇤
d̃1�! · · · d̃n�!

M

p2B(En(i,j))

⇤et(p)⌦k eh(p)⇤! · · · , (2.3)

where d̃`(ei ⌦ ej) =  ( �1
(ei ⌦ ej) � d`).

Computing Ext
`
⇤e(⇤,⇤e

) requires the understanding of the morphisms d̃`, which we do have
in the case where ⇤ is monomial. In fact, we have

d̃`((et(p)⌦eh(p))p) =

(P
q2AP(`)(et(q) ⌦ eh(q)�

R
p (q))q �

P
q2AP(`)(�

L
p (q)et(q) ⌦ eh(q))q if ` is odd

P
q2AP(`) | p2Sub(q)(Rp(q)et(q) ⌦ eh(q)Lp(q))q if ` is even.

In further sections, we use these to describe cocycles and coboundaries, allowing us to show
that some Ext

`
⇤e(⇤,⇤e

) does not vanish for some algebra, thus preventing them from being n-
hereditary. Using Corollary 2.4, we can already give a necessary condition for a monomial algebra
to be n-hereditary. This is analogous to results established in [GI19, Proof of Theorem 3.14] and
[Thi20, Proof of Theorem 3.6] in the case where ⇤ is Koszul.

Lemma 2.13. Let ⇤ be a monomial algebra and define

�(E(i, j)`) := {w 2 E(i, j)`�1 | w 2 Sub(w0
) for some w0 2 E(i, j)`}.

Then E(i, j)`�1
= �(E(i, j)`) for all 2  `  n.

Proof. Suppose by contradiction that there exists w 2 E(i, j)`�1 which does not divide any
element of E(i, j)`, for some `. Then

d̃`((et(w) ⌦ eh(w))w) = 0,

which means that (et(w) ⌦ eh(w))w is an (` � 1)-cocycle in Hom⇤e(P•,⇤e
). However, it is not a

coboundary, implying that Ext
`�1
⇤e (⇤,⇤e

) 6= 0. This contradicts Corollary 2.4. ⇤
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Corollary 2.14. Let ⇤ = kQ/hMi be a basic n-hereditary monomial algebra where M is a set
of relations given by paths in kQ. Then every arrow in Q1 is part of a relation in M .

Proof. By Lemma 2.13, we have that �(M) = V . ⇤

3. Classification of n-hereditary truncated path algebras

In this section, we assume that ⇤ = kQ/I is a monomial finite-dimensional algebra, that is,
the ideal I in a presentation of ⇤ can be chosen to be generated by paths. Moreover, for the rest
of the text, whenever ⇤ is assumed to be monomial, we also assume I = hMi with M a minimal
set of paths of minimal length.

Recall that, by the vanishing-of-Ext condition, we have that Exti⇤e(⇤,⇤e
) = 0 for all 0 < i < n

for any n-hereditary algebra ⇤. We thus seek to understand what knowledge one can obtain from
this property. As an application, we use this information to classify the truncated path algebras
⇤ = kQ/J `, where J is the arrow ideal, which are n-hereditary in the second subsection.

3.1. Vanishing-of-Ext condition for monomial algebras. In this subsection, we find nec-
essary conditions on the quiver and relations of monomial path algebras in order to satisfy the
vanishing-of-Ext condition. To be more precise, we only look into the vanishing of the first
Ext. Recall that, by Lemma 2.13, every arrow has to be part of at least one relation, otherwise
Ext

1
⇤e(⇤,⇤e

) 6= 0. This is a first obstruction, which does not require the monomial hypothe-
sis. We therefore assume this property for the class of algebras we consider in this subsection.
Throughout, we let ⇤ be a monomial algebra in which every arrow divides at least one relation.

The main strategy is to construct cocycle elements which are not coboundaries in the complex
(2.3), defined as Hom⇤e(P•,⇤e

), where P• is the minimal projective ⇤-bimodule resolution of ⇤,
described in the preliminaries. We refer to Sections 2.2 and 2.3 for more details and the notation.

Proposition 3.1. Suppose that there exists an arrow a which is the start (resp. the end) of
every relation it divides and such that t(a) (resp. h(a)) is not a source (resp. a sink). Then
Ext

1
⇤e(⇤,⇤e

) 6= 0.

Proof. Assume that there is an arrow a which is the end of every relation ri it divides and such
that h(a) is not a sink. The other case is dual. We consider the element

(aet(a) ⌦k eh(a))a 2
M

v2Q1

⇤et(v) ⌦k eh(v)⇤

from complex (2.3). Then

d̃2((aet(a) ⌦k eh(a))a) =
X

i

(aR1(ri)et(ri) ⌦k eh(a))ri = 0,

so it is a cocycle in complex (2.3). However, since h(a) is not a sink, (aet(a) ⌦k eh(a))a cannot be
a coboundary. In fact, let b be an arrow such that h(a) = t(b). Then,

d̃1((eh(a) ⌦k eh(a))eh(a) = (aet(a) ⌦k eh(a))a + (eh(a) ⌦k eh(b)b)b + . . .

This is the only place where (aet(a) ⌦k eh(a))a appears as a summand of an element in the image
of d̃1. The same is true for (eh(a) ⌦k eh(b)b)b, which means that this term cannot be cancelled
by other elements in the image of d̃1. Therefore, (aet(a) ⌦k eh(a))a is not a coboundary and
Ext

1
⇤e(⇤,⇤e

) 6= 0. ⇤
We say that two relations intersect with each other if there is at least one arrow which divides

both of them. We have the following corollary.
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Corollary 3.2. Assume that there is a relation r which does not intersect with any other relation
and such that t(r) and h(r) are not both a source and a sink. Then Ext

1
⇤e(⇤,⇤e

) 6= 0.

Continuing on the same ideas, we explore what happens at sinks and sources. We show that
the vanishing-of-Ext conditions implies that sinks and sources divide only one arrow.

Proposition 3.3. Assume that there is a vertex i in Q which is a sink (resp. a source), such
that there is at least two arrows having i as head (resp. as tail). Then Ext

1
⇤e(⇤,⇤e

) 6= 0.

Proof. We suppose that i is a sink. The other case is dual. Let a and b be two arrows such that
h(a) = h(b) = i. We claim that the element (aet(a) ⌦k ei)a 2

L
v2Q1

⇤et(v) ⌦k eh(v)⇤ is a cocycle
in degree 1. In fact, since h(a) is a sink, every relation r containing a is of the form r = aRr(a)
for some path Rr(a). Therefore,

d̃2((aet(a) ⌦k ei)a) =
X

a|r

(aRr(a)et(r) ⌦ ei)r = 0.

This is however not a coboundary. In fact, since i is also the head of another arrow, we have
that

d̃1((ei ⌦ ei)ei) = (aet(a) ⌦k ei)a + (bet(b) ⌦k ei)b + . . .

By the same reasoning as in Proposition 3.1, we conclude that Ext
1
⇤e(⇤,⇤e

) 6= 0. ⇤
3.2. n-hereditary truncated path algebras. We now consider the case of truncated path
algebras ⇤ = kQ/J ` for some ` � 2, where Q is a finite quiver and J is the arrow ideal. In
this case, the terms in the Bardzell resolution (2.2) are particularly easy to describe. Indeed,
the vector space kAP(i) is generated by all paths of length i

2 · ` if i is even and those of length�
i�1
2 · `+ 1

�
if i is odd. Let L(p) denote the length of a path p. We use the following results.

Theorem 3.4. [DHZL08, Theorem 2] Let ⇤ be a truncated path algebra. If N is a non-zero
⇤-module with skeleton �, then the syzygy of N

⌦N ⇠=
M

q �-critical

⇤q.

We refer to the paper for the definitions of skeletons � and of �-critical paths.
We also need the following result regarding extensions of certain kinds of indecomposable

modules.

Proposition 3.5 ([Vas19, Proposition 3.1]). Let ⇤ be a finite-dimensional algebra. Let N 2
mod⇤ be a non-projective indecomposable module. If ⌦N is decomposable, then Ext

1
⇤(N,⇤) 6= 0.

Let now Am be the linearly oriented Dynkin quiver of type A

with m vertices.

Proposition 3.6. Let Q be a finite acyclic quiver and assume that Q 6= Am. Let ⇤ := kQ/J `

for some ` � 2 be a truncated path algebra. Then there exists 0 < j < gl.dim ⇤ such that
Ext

j
⇤e(⇤,⇤e

) 6= 0.

Proof. By Proposition 3.3, if Q is a Dynkin quiver of type A with a non-linear orientation, then
Ext

1
⇤e(⇤,⇤e

) 6= 0. Since Q 6= Am, there exists a vertex i which divides at least 3 arrows. If i is
either a source or a sink, then Ext

1
⇤e(⇤,⇤e

) 6= 0 by Proposition 3.3 as well.
Now suppose that i is the head of at least two arrows and the tail of at least one arrow. The

opposite case is treated similarly. Among the arrows with head i we pick two, say, ar and bs
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satisfying that ar 6= bs and that there exist paths T1 := ar · · · a1 and T2 := bs · · · b1 which are
maximal in the following sense: without loss of generality, we let T1 be the longest path in kQ
ending at i and T2 the maximal path in kQ ending at i not divided by ar. Note that this uses
that Q is acyclic. In particular, we assume L(T2)  L(T1). Moreover, we let T3 := ct · · · c1 be
the longest path in kQ beginning in i.

We may also assume that h(T3) is only a sink to the arrow ct and t(Ti) is a source to only one
arrow for i = 1, 2, since otherwise Ext

1
⇤e(⇤,⇤e

) 6= 0 and we are done.
We split the proof into the following cases:
C1: L(T3T2)  `� 1

C2: L(T3T2) � `
a) L(T2)  `� 1

b) L(T2) � `
i) L(T3) � `� 1

ii) L(T3)  `� 2

C1: If L(T3T2)  `� 1, then bs does not divide any relation, by the maximality assumption on
the length of T3T2. As a consequence of Lemma 2.13, Ext1⇤e(⇤,⇤e

) 6= 0 and we are done.

C2: Now suppose that L(T3T2) � `.

a) If L(T2)  ` � 1, then for any relation path p (of length `) such that bs divides p, we have
that

L(Lbs(p)) � `� s � max(1, `� r),

where r := L(T1) and s := L(T2). The first inequality is explained by the maximality assumption
on L(T3T2). For the second inequality, recall that we have assumed without loss of generality
that r � s. This means that any path of maximal length starting at i is of length at least
max(1, `� r). Therefore, the element

(et(bs) ⌦k eiar · · · amax(1,r�`+2))bs 2
M

v2Q1

⇤et(v) ⌦k eh(v)⇤

is a non-trivial cocycle. It is not a coboundary since the only two ⇤-bimodule generators inL
i2Q0

⇤ei ⌦k ei⇤ which map non-trivially via d̃1 to an element in ⇤et(bs) ⌦k ei⇤ are

(et(bs) ⌦k et(bs))et(bs) 7! (et(bs) ⌦k eibs)bs + . . .

and
(ei ⌦k ei)ei 7! (bset(bs) ⌦k ei)bs + . . .

and they cannot be linearly combined to obtain our cocycle. Thus, Ext1⇤e(⇤,⇤e
) 6= 0.

b.i) We now consider the case where L(T2) � `. Let j 2 N�1 be such that the length of the
paths in kAP(j) is less than or equal to L(T2), but the length of the paths in kAP(j + 1) is
strictly bigger than L(T2). If L(T3) � ` � 1, then 0 < j < gl.dim ⇤, since kAP(j + 1) is non
empty, as it contains a path dividing T3T2. Let T := bs · · · bx be the path in kAP(j) ending at i
and dividing T2. Then the element

(et(T ) ⌦k eiar · · · ar�`+2)T 2
M

p2AP(j)

⇤et(p) ⌦k eh(p)⇤
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is a cocycle. Indeed, for any T 0 2 AP(j+1) which is divided by T , we have L(LT (T 0
)) � 1. This

is explained by the fact that L(T 0
) > L(T2) and the maximality assumption on the length of T2.

In fact, if L(LT (T 0
)) = 0, then h(T 0

) = i and L(T3T 0
) > L(T3T2), contradicting our hypothesis.

The element is not a coboundary for a similar reason as above.

b.ii) Now, if L(T3)  `� 2, then we consider the indecomposable injective module I associated
to the vertex h := h(T3). We show that either there are more than one �-critical paths or there
is only one �-critical path q and ⇤q is projective. In the former case, we conclude by Theorem
3.4 and Proposition 3.5 that Ext1⇤e(⇤,⇤e

) ⇠= Ext
1
⇤(D⇤,⇤) 6= 0. In the latter case, we obtain the

same conclusion since proj.dim I = 1.
We call branching points the vertices which divide at least 3 arrows. Let Sh be the support of

paths of length `� 1 in kQ which end in h. Let Bh be the set of branching points which are in
Sh. Since L(T3)  `� 2, we have that i 2 Bh.

Let S 0
h ⇢ Sh be the set of vertices which start the paths of length ` � 1 that end in h. Note

that P :=
L

◆2S0
h
⇤em(◆)

◆ is the projective cover of I, where m(◆) is the number of paths of length
` which ends in h and starts in ◆. Because L(T3) < ` � 1, we have |S 0

h| � 2, since it contains a
vertex in T1 and T2. Thus, I is not a projective module.

Let x 2 Bh be such that there exist arrows ↵ and � ending in x. Then either paths of the
form ↵p or of the form �q are in the skeleton �, for p, q 2 �. The paths not in � must then be
�-critical. In fact, they get identified via P ⇣ I. Thus, every such branching point gives rise to
�-critical paths.

Now suppose that there exists a vertex x 2 Bh which is the start of an arrow ↵ not in a path
of length `� 1 ending in h. Then for any skeleton �, we have that any path of the form ↵p, for
p 2 �, is �-critical, since it goes to 0 via P ⇣ I.

Therefore, in order to have only one �-critical path, it is necessary that the full subquiver Q̄
containing all the directed paths connected to the branching points in Bh is given by

i h

In this case, we have that ⌦I ⇠= ⇤ei is projective. ⇤

The n-representation-finite Nakayama algebras were classified by Vaso in [Vas19]. Using
his classification, we obtain as a corollary of the previous proposition a classification of all
n-hereditary algebras of the form ⇤ = kQ/J `.

Theorem 3.7. Let ⇤ = kQ/J ` for some ` � 2 and finite quiver Q. The following are equivalent.
(1) ⇤ is n-hereditary;
(2) ⇤ ⇠= kAm/J `, for some m, and ` |m� 1 or ` = 2.

In this case, n = 2
m�1
` and ⇤ is a Nakayama n-representation-finite algebra.

Proof. By [DHZL08, Theorem 5], any truncated path algebra of finite global dimension must have
an acyclic quiver. By Proposition 3.6, if ⇤ is n-hereditary, then its quiver must be Am, since
n-hereditary algebras satisfy the property that Ext

i
⇤e(⇤,⇤e

) = 0 for all 0 < i < n. Therefore, ⇤
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is an n-representation-finite Nakayama algebra. The result thus follows from [Vas19, Theorem
3]. ⇤

4. Classification of n-hereditary quadratic monomial algebras

In this section, we give a partial classification of the n-hereditary quadratic monomial algebras.
Let ⇤ = kQ/I be such an algebra. In the first subsection, we tackle the case n = 2. With the
additional assumption that the preprojective algebra can be given by a planar selfinjective quiver
with potential, we show that there are only two examples. Then, in the next subsection, we show
that provided n � 3, the only n-hereditary quadratic monomial algebras are the Nakayama ones
given in the previous section.

4.1. The case n = 2. The goal of this section is to prove the following theorem.

Theorem 4.1. Let ⇤ = kQ/I be a 2-hereditary quadratic monomial algebra. Assume that ⇧(⇤)
is given by a planar quiver with potential. Then ⇤ is one of the two bounded quiver algebras given
in (1.1). These algebras are 2-representation-finite.

These two algebras were already known to be 2-representation-finite. In fact, the first one
appears already in [IO13, Theorem 3.12]. The second one is a cut, a notion defined below, of
⇧(Abip

3 ⌦k Abip
3 ), where Abip

3 is the Dynkin quiver of type A with three vertices and bipartite
orientation.

We provide more information on the preprojective algebra ⇧(⇤) of a 2-hereditary algebra.
It is a Jacobian algebra which is selfinjective in the case when ⇤ is 2-representation-finite, and
3-Calabi–Yau in the case when ⇤ is 2-representation-infinite. We give a brief overview of these
useful facts. They are key in our classification result.

Definition 4.2. Let Q be a quiver and J be the ideal generated by arrows. A potential W is
an element in ckQ/[ \kQ, kQ], where ckQ is the completion of the path algebra with respect to the
J -adic topology.

Definition 4.3. Let (Q,W ) be a quiver with potential. The Jacobian algebra of (Q,W ) is
defined as

P(Q,W ) := ckQ/h�aW | a 2 Q1i.
Every 3-preprojective algebra is a Jacobian algebra.

Theorem 4.4. [Kel11, Theorem 6.10] Let ⇤ be a finite-dimensional algebra of global dimension
2. Then there exists a quiver Q⇤ and a potential W⇤ such that ⇧(⇤) ⇠= P(Q⇤,W⇤).

Let M be a minimal set of relations in ⇤. The quiver of Q⇤ is given by adding new arrows
c⇢ : i ! j for every relation ⇢ : j ! i in M . The potential W⇤ is given by

W⇤ =

X

⇢2M
⇢c⇢.

In particular, if ⇤ is quadratic, then ⇧(⇤) is quadratic as well.
One important assumption for the main result of this section is that ⇧(⇤) is a planar quiver

algebra with potential. In fact, we give at the end of this subsection an example of a 2-hereditary
quadratic monomial algebra whose preprojective algebra does not satisfy this property. We
provide the definition here.

Definition 4.5. Let Q be a quiver without loops or 2-cycles. An embedding ✏ : Q ! R2 is a
map which is injective on the vertices, sends arrows a : i ! j to the open line segment la from
✏(i) to ✏(j), and satisfies
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• ✏(i) 62 la for every i 2 Q0 and a 2 Q1 and
• la \ lb = ? for all a 6= b 2 Q1.

The pair (Q, ✏) is called a plane quiver. A face of (Q, ✏) is a bounded component of R2 \ ✏(Q)

which is an open polygon.

Definition 4.6. Let (Q, ✏) be a plane quiver such that every bounded connected component of
R2 \ ✏(Q) is a face and the arrows bounding every face are cyclically oriented. The potential
induced from (Q, ✏) is the linear combination W of the bounding cycles of all faces. The quiver
with potential (Q,W ) is called the planar QP induced from (Q, ✏) and any quiver with potential
obtained in this way is called a planar QP.

Remark 4.7. A quiver with potential whose underlying quiver is planar is not necessarily a planar
QP. In fact, the planarity has to be compatible with the potential, that is, each face is bounded
by an oriented cycle.

We can obtain algebras of global dimension at most 2 from ⇧ by using cuts. In fact, let (Q,W )

be a quiver with potential and C ⇢ Q1 be a subset. We define a grading gC on Q by setting

gC(a) :=

⇢
1 a 2 C
0 a 62 C

for each a 2 Q1.

Definition 4.8. A subset C ⇢ Q1 is called a cut if W is homogeneous of degree 1 with respect
to gC .

When C is a cut, there is an induced grading on P(Q,W ). We denote by P(Q,W )C the degree
0 part with respect to this grading.

Definition 4.9. A cut C is called algebraic if it satisfies the following properties:
(1) P(Q,W )C is a finite-dimensional k-algebra with global dimension at most two;
(2) {�cW}c2C is a minimal set of generators in the ideal h�cW | c 2 Ci.

All truncated Jacobian algebras P(Q,W )C given by algebraic cuts C are cluster equivalent
[HI11b, Proposition 7.6]. These are related to 2-APR tilts [IO11].

When ⇤ is 2-hereditary, ⇧ enjoys some additional characteristics.

Proposition 4.10. Let ⇤ be a k-algebra such that gl.dim ⇤  2.
• [HIO14, Theorem 5.6] The following are equivalent.

(1) ⇧(⇤) = P(Q,W ) is a bimodule 3-Calabi–Yau Jacobian algebra of Gorenstein param-
eter 1;

(2) ⇧(⇤)C is a 2-representation-infinite algebra for every cut C ⇢ Q1.
• [HI11b, Proposition 3.9] The following are equivalent.

(1) ⇧(⇤) = P(Q,W ) is a finite-dimensional selfinjective Jacobian algebra;
(2) ⇧(⇤)C is a 2-representation-finite algebra for every cut C ⇢ Q1.

This characterisation allows us to work with the following exact sequences.

Theorem 4.11. Let ⇧ = P(Q,W ) be a Jacobian algebra.
• [Boc08, Proof of Theorem 3.1] ⇧ is 3-Calabi–Yau if and only if the following complex of

left ⇧-modules is exact for every simple module Si:

0 ! Pi
[a]�!

M

a2Q1
h(a)=i

Pt(a)

[�(a,b)W ]
�����!

M

b2Q1
t(b)=i

Ph(b)
[b]�! Pi ! Si ! 0, (4.1)
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where Pj := ⇧ej and �(a,b)W := �La � �Rb W .
• [HI11b, Theorem 3.7] ⇧ is selfinjective if and only if it is finite-dimensional and the

following complex of left ⇧-modules is exact for every simple module Si:

Pi
[a]�!

M

a2Q1
h(a)=i

Pt(a)

[�(a,b)W ]
�����!

M

b2Q1
t(b)=i

Ph(b)
[b]�! Pi ! Si ! 0. (4.2)

We also need a couple of additional definitions to treat the case when ⇤ is in addition a
quadratic monomial algebra. Let ⇧ be a Jacobian algebra with potential W . We say that ⇧
admits a monomial cut C if ⇧C is a monomial algebra. Also, an arrow a in the quiver of ⇧ is
called a border if a is part of exactly one summand of W . It is clear that if ⇧ is quadratic,
then W is a sum of cyclic paths of length 3, since it is homogeneous of degree 1. We call those
summands triangles. By ideas similar to Lemma 2.13, every arrow is part of at least one triangle.

The following lemma is clear.

Lemma 4.12. A cut C is monomial if and only if the arrows in degree 1 are borders.

In particular, the existence of a monomial cut in ⇧ implies that there is at least one border
in each summand. An important step in our classification proof is to show that there is exactly
one border, unless there is only one summand.

The following lemma is elementary, but we include a proof for the convenience of the reader.

Lemma 4.13. Let ⇧ = P(Q,W ) be a Jacobian algebra which is either selfinjective or Calabi–
Yau. The matrix [�(a,b)W ] in the complexes (4.1) and (4.2) is indecomposable, that is, it is not
similar to a block matrix.

Proof. Suppose by contradiction that the complexes can be written as

Pi

"
[a0]
[a00]

#

����!
M

a2Q1
h(a)=i

Pt(a)

2

4[�(a0,b0)W ] [0]

[0] [�(a00,b00)W ]

3

5

�������������������!
M

b2Q1
t(b)=i

Ph(b)

h
[b0] [b00]

i

��������! Pi ! Si ! 0,

for some vectors of arrows [a0], [a00], [b0], [b00]. Then the element ([0], [a00]) 2
L

a2Q1
h(a)=i

Pt(a) is a cycle

which is not a boundary, contradicting the exactness of the complex. ⇤

Using this, we now show that we can exclude an important class of examples, namely those
coming from truncated Nakayama algebras.

Lemma 4.14. Let ⇧ := P(Q,W ) be a Jacobian algebra which is either selfinjective or Calabi–
Yau. Suppose that there exists a summand W 0 of W in which every arrow is a border. Then ⇧
is given by the quiver

�
,

with potential the one obtained by summing over every cyclic rotation of the complete cycle.
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Proof. Let W 0
= xn · · ·x1 be the summand in which every arrow is a border. By Lemma 4.13,

the matrix
[�(a,b)W ] :

M

a2Q1
h(a)=h(xn)

Pt(a) !
M

b2Q1
t(b)=h(xn)

Pt(b),

is indecomposable. However, the column

[�(a,x1)W ]h(a)=h(xn)

and the row
[�(xn,b)W ]t(b)=h(xn)

each only have one non-zero element, since x1 and xn are borders. Thus, [�(a,b)W ] can only be
indecomposable if its dimension is 1⇥ 1. This means that xn is the only arrow ending at h(xn)
and x1 is the only arrow starting at h(xn). Repeating the argument with x1, x2, . . ., xn�1, we
deduce that there is also only one arrow ending and one starting at h(xi), for i = 1, . . . , n� 1, as
well. Since the quiver Q is connected, ⇧ must be given by the QP described in the statement. ⇤

Now assume that ⇧ is the preprojective algebra of a 2-hereditary algebra. If ⇧ admits a
monomial cut, then we show that summands of the potential cannot have two borders either.
For this, we need the following proposition. It is shown in [HI11b] in the case where P(Q,W ) is a
selfinjective algebra, but the same proof also works in the case when P(Q,W ) is a 3-Calabi–Yau
algebra.

Proposition 4.15 ([HI11b, Proposition 3.10]). Let P(Q,W ) be a preprojective algebra over a
2-hereditary algebra. Then every cut C ⇢ Q1 is algebraic.

Lemma 4.16. Let ⇧ = P(Q,W ) be a quadratic Jacobian algebra which is either selfinjective or
3-Calabi–Yau. Suppose that ⇧ admits a monomial cut. Then there does not exist a triangle W 0

of W which has exactly two borders.

Proof. Suppose by contradiction that W 0
= xyz is a triangle of W such that x and y are both

borders, and z is not. Then there is another summand W 00
= uvz containing z. Let C be the

monomial cut on ⇧, in which we may assume without loss of generality that x is in degree 1.
Then, the grading C0 obtained from C by putting x in degree 0 and y in degree 1 is also a cut,
since x and y are borders which do not appear in other triangles. Now, suppose that v is in
degree 1. Then, in ⇧C , we have that zu = 0 and yz = 0. Thus gl.dim ⇧C � 3, and C is not
algebraic, contradicting Proposition 4.15. Similarly, if u is in degree 1, then C0 is a non algebraic
cut. As z cannot be in degree 1 in a monomial cut, W 00 cannot be put in degree 1 in C. ⇤

Combining the previous two lemmas, we obtain the following corollary.

Corollary 4.17. Let ⇧ = P(Q,W ) be a quadratic Jacobian algebra which is selfinjective or
3-Calabi–Yau and admits a monomial cut. Then either every summand of W has exactly one
border, or ⇧ is the quiver algebra with potential with a unique triangle:

�

Note that the latter case is the preprojective algebra of kA3/J 2, the first example in our main
theorem.

The vanishing-of-Ext condition also gives information about the quiver of 2-hereditary qua-
dratic monomial algebras. We have the following corollary to Proposition 3.1.
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Corollary 4.18. Let ⇤ be a quadratic monomial algebra with Ext
1
⇤e(⇤,⇤e

) = 0. Then for every
relation ⇢ = ba, the vertex h(b) is a sink and the vertex t(a) is a source.

Proof. Since gl.dim ⇤ = 2, every arrow is either the start or the end of every relation they divide.
The result thus follows directly from Proposition 3.1. ⇤

This leads to the following definition.

Definition 4.19. Let r, s 2 Z�1. The (r, s)-star quiver, denoted by S(r,s), is the quiver

with r + s + 1 vertices and a central vertex z which is the head of r arrows and the tail of s
arrows. We always denote the arrows i ! z by ai and the arrows z ! j by bj .

We conclude that every quadratic monomial 2-hereditary algebra is a bound quiver algebra
over a star quiver.

Corollary 4.20. Let ⇤ be a quadratic monomial algebra with Ext
1
⇤e(⇤,⇤e

) = 0. Then the quiver
of ⇤ is an (r, s)-star quiver. In particular, 2-hereditary quadratic monomial algebras are given
by quotients of (r, s)-star quiver algebras.

Proof. By Corollary 4.18, every relation is a path of length 2 which starts at a source and ends
at a sink. Furthermore, Proposition 3.3 implies that these vertices can only be source and sink
to one arrow. This means that the quiver of ⇤ is made of paths of length 2 which all intersect
at a common middle vertex. ⇤

Before completing the proof of the main theorem of this section, we explore further some
quick restrictions on the relations which are imposed by the vanishing-of-Ext condition. From
now on in this section, we let ⇤ be a bound (r, s)-star quiver algebra. For each arrow a such that
h(a) = z, we define

Za := {b : z ! j | ba = 0}
and we define a set Zb similarly for arrows b such that t(b) = z. By Lemma 4.16, we have that
|Za| and |Zb| are greater than or equal to 2, unless (r, s) = (1, 1).

Lemma 4.21. Let ⇤ be as above. If there are two distinct arrows a and a0 such that Za ⇢ Za0 ,
then Ext

1
⇤e(⇤,⇤e

) 6= 0.

Proof. Suppose that the two arrows in the statement are such that h(a) = h(a0) = z, the case
where t(a) = t(a0) = z being similar. Consider then the element

(et(a0) ⌦k eza)a0 2 ⇤et(a0) ⌦k ez⇤.

This is a cocycle since Za ⇢ Za0 . It is however not a coboundary, by the same principles as in
section 3. ⇤

We obtain the following corollary as a particular case.

Corollary 4.22. Let ⇤ be as above and assume that Ext1⇤e(⇤,⇤e
) = 0. Suppose that s � 2 and

let a be an arrow such that h(a) = z. Then |Za|  s � 1. Similarly, if r � 2 and b is an arrow
such that t(b) = z, then |Zb|  r � 1.

We now show that the upper bound on |Za| is even smaller if ⇤ is 2-RF.
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Lemma 4.23. Let ⇤ be as above and suppose that ⇤ is 2-RF. Suppose that s � 2 and let a be
an arrow such that h(a) = z. Then |Za|  s� 2. Similarly, if r � 2 and b is an arrow such that
t(b) = z, then |Zb|  r � 2.

Proof. We can use a Loewy length (``) argument as follows. Suppose that there is an arrow
ai : i ! z such that |Zai | = s� 1. Consider the preprojective algebra ⇧ over ⇤. We refer to its
description below Theorem 4.4. Let Pi := ⇧ei. We show that ``(Pi) = 3, whereas ``(Pz) � 4.
Since ⇧ is selfinjective, this contradicts [MV99, Theorem 3.3].

Let bj : z ! j be the only arrow such that bjai 6= 0. Let ⇢ = bjax be a relation in ⇤ and c⇢
be the corresponding arrow in ⇧. Then c⇢bjai = �

P
c⇢0bj0ai = 0, where the sum is taken over

relations of the form ⇢0 := bj0ax in ⇤ which are not equal to ⇢. The sum is not empty since s � 2.
This shows that ``(Pi) = 3. Now, since a path of the form a⌫c⇢bµ is never 0 in ⇧ for any vertices
⌫, µ and relations ⇢, we have ``(Pz) � 4. Here, we have used the fact that |Zbµ |, |Za⌫ | � 2. The
argument is dual for an arrow b : z ! i such that |Zb| = r � 1. ⇤

In particular, this implies that, if ⇤ is 2-RF, then either (r, s) = (1, 1), or r, s � 4.
We now have plenty of tools to give a full classification of the monomial 2-hereditary algebras

whose preprojective algebras is a planar quiver with potential. We prove the main theorem of
this section. Note that, for the previous results of this section, we have not assumed that the
preprojective algebra is a planar QP. We need the hypothesis now.

Proof of Theorem 4.1. By reasons given above, one can easily check that the two bound quiver
algebras described in (1.1) are 2-RF. Assume that ⇤ is a 2-hereditary quadratic monomial algebra
whose preprojective algebra is a planar quiver with potential. We prove that they are the only
ones coming from a planar quiver with potential.

By Corollary 4.20, ⇤ is an (r, s)-star quiver. By [Pet19, Proposition 3.15], the planarity
assumption allows us to conclude that every arrow in ⇧(⇤) is contained in at most two summands
of the potential W . Combining this with Lemma 4.16, we see that every arrow in ⇤ is part of
exactly 2 relations. Therefore, the quiver of ⇧(⇤) is given by the intersection of oriented triangles
which all share a common vertex z, thus forming a regular polygon shape. In particular, r = s.
In addition, if ⇤ is 2-RF, then we have that r, s � 4 by Lemma 4.23, unless (r, s) = (1, 1). If ⇤ is
2-RI, then we also obtain the same conclusion, since in the case r = 2 or r = 3, the preprojective
algebra is clearly finite-dimensional. If r = 1 or r = 4, then we recover the bound quiver algebras
described in (1.1).

Assume that r � 5. We show that Ext
1
⇤e(⇤,⇤e

) ⇠= Ext
1
⇤(D⇤,⇤) 6= 0. Let Im be the injective

module associated to a sink m and b : z ! m. Also recall that Z{
b := Q1 \Zb. Then |Z{

b | = r�2.
Let a1, . . . , ar�2 be the arrows in Z{

b and define ti := t(ai) for i = 1, . . . , r � 2. Without loss of
generality, we can assume that we ordered the arrows so that |Zai\Zai+1 | = 1 for i = 1, . . . , r�3.
This is due to the planarity assumption on ⇧(⇤). We call bi the arrow in this intersection for
i = 1, . . . , r � 3 and define hi := h(bi). Then the projective resolution of Im is given by

0 !
M

i=1,...,r�3

Phi ! P r�3
z !

M

i=1,...,r�2

Pti ! 0.

Applying Hom⇤(�,⇤et2), we obtain a complex

0 !
M

i=1,...,r�2

eti⇤et2 ! (ez⇤et2)
r�3 !

M

i=1,...,r�3

ehi⇤et2 ! Ext
2
⇤(Im,⇤et2) ! 0.

This complex is not exact at (e1⇤et2)r�3 since dimk(
L

i=1,...,r�2 eti⇤et2) = 1, dimk((ez⇤et2)
r�3

) =

r� 3 and dimk(
L

i=1,...,r�3 ehi⇤et2) = r� 5. The last equality can be explained by the fact that
ba2 = 0 for b 2 Q1 if and only if b = b1 or b2.
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Thus Ext
1
⇤(D⇤,⇤) 6= 0. Note that we could have chosen to take Hom⇤(�,⇤etµ) for any

µ = 2, . . . , r � 3 and still obtain the same conclusion. ⇤

Example 4.24. We give an example of a quadratic monomial 2-RF algebra whose 3-preprojective
algebra is a non-planar selfinjective quiver with potential. If (r, s) = (9, 6) with arrows ai : i ! z
for i = 1, . . . , 9 and bj : z ! j, for j = 1, . . . , 6 one gets an example with relations

b1a1, b4a1, b1a2, b5a2, b1a3, b6a3, b2a4, b4a4, b2a5, b5a5, b2a6, b6a6, b3a7, b4a7, b3a8, b5a8, b3a9, b6a9.

This can be seen to be a cut of ⇧(D4 ⌦ D4), where both copies of D4 are oriented with
arrows going out of the central vertex. Since D4 with this orientation is `-homogeneous, [HI11a,
Proposition 1.4] implies that the tensor product is 2-RF, and hence, this example is also 2-RF.
As the quiver of ⇧(D4 ⌦ D4) is a non-planar graph, the example is non-planar, too.

We note that by observing that to get a quadratic monomial cut the QP must have “enough”
borders, it is not too hard to see that the only possible tensor products of Dynkin diagrams
that have 3-preprojective algebras with such cuts involve A3 and D4 with bipartite orientation.
Moreover, A3 ⌦ D4 can be checked to not be 2-RF, and A3 ⌦ A3 yields the planar example.

Remark 4.25. One should note that many natural constructions on algebras that preserve the
property of being n-hereditary do not necessarily preserve being monomial. For instance, this
includes tensor products and certain skew-group ring constructions.

Moreover, while there exist other non-planar examples, the ones we know of are all fairly large
and are somewhat more complicated than the one mentioned above.

4.2. The case n � 3. We classify all n-representation-finite quadratic monomial algebras of
global dimension higher than 2. Note that we do not assume that the preprojective algebra is a
planar QP.

Theorem 4.26. With the exception of kAn+1/J 2, there are no quadratic monomial n-RF alge-
bras for n � 3.

Proof. To begin with, we observe that, by Proposition 3.1, every arrow in ⇤ lies on some maximal
path

0 ! 1 ! 2 ! · · · ! i ! i+ 1 ! · · · ! n� 2 ! n� 1 ! n

in which every two consecutive arrows are a relation. Also note that 0 must be a source and n
a sink.

We begin by showing that there cannot exist an arrow in ⇤ different from the one in the
diagram above leaving a vertex i with i < n � 1. Indeed, let a : i ! i + 1 be the arrow in
the diagram and assume there was some other arrow a0 : i ! j. Since ⇧(⇤) is selfinjective, the
projective at i over ⇧(⇤) cannot have a non-simple socle. Hence, there must be a commutation
relation in ⇧(⇤) starting at i of the form ra+ ⌃k↵krkbk with arrows r and rk in ⇧(⇤) (but not
in ⇤), arrows bk, with ↵k scalars, and ↵k 6= 0 for some arrow bk 6= a.

Indeed, to see that the latter claim must hold, let ⇧(⇤) = kQ/I with I = h⇢li where {⇢l} is
a set of relations which we can assume to be the one obtained via Proposition 2.7. Then, if we
have paths pa, qa0 2 soc⇧(⇤)ei non-zero in ⇧(⇤), we have

pa� qa0 2 h⇢li,

at least provided we adjust, say, q by a scalar. In other words, we get

pa� qa0 = ⌃lul⇢lvl
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where ul and vl can be assumed to be paths up to scalars. Using that each vl has either first
arrow equal to a, a0 or neither, we can rewrite this as

pa� qa0 = ⌃lul⇢lvl

= ⌃mum⇢mvm + ⌃mu0m⇢0mv0ma+ ⌃mu00m⇢00mv00ma0

with v0m, v00m paths and vm some path beginning with neither a nor a0. We see that if the paths
pa, qa0 are non-zero in ⇧(⇤) and a 6= a0, then

⌃mum⇢mvm = pa� qa0 � ⌃mu0m⇢0mv0ma� ⌃mu00m⇢00mv00ma0 6= 0

as otherwise pa = ⌃mu0l⇢
0
mv0ma 2 h⇢ji and pa would be zero in ⇧(⇤). Moreover, we observe that

some vl equals ei up to scalars and some ⇢l occurring in a term of ⌃mum⇢mvm must be of the
form ↵ra + ⌃k↵krkbk as stated above. In particular, if there is no term ra + ⌃k↵krkbk with
↵k 6= 0 for some arrow bk 6= a we would again have pa zero in ⇧(⇤). This establishes the claim.

Note that ⇤ is Koszul, so by Proposition 2.7, we know that such a commutation relation and
new arrows beginning in vertices i+1 and jk in the preprojective correspond to elements in Kn

ending with arrows a : i ! i+ 1 and bk : i ! jk, and differing only in the final arrow. However,
there can be no such element ending in i+ 1 as i+ 1 < n is not a sink.

Since ⇤ is n-RF if and only if ⇤op is n-RF, we have also shown that there are no arrows ending
in i with 1 < i. Hence, without loss of generality, we can assume that if ⇤ has quiver different
from linearly oriented An, then there must be at least two distinct arrows starting in n� 1.

Yet, if this was the case, the ⇧(⇤)-projective at n�1 would be of Loewy length � 3 whereas a
⇧(⇤)-projective at i < n�2 would be of Loewy length  2, as there cannot be any new arrows in
⇧(⇤) not in ⇤ going out of i or i+1 as they are not sinks in ⇤. Of course, by what we have shown
above, there are also no arrows in ⇤ going out of i or i+1 other than those in the diagram. This
yields a contradiction by the fact that ⇧(⇤) has homogeneous relations and [MV99, Theorem
3.3]. By using Vaso’s classification ([Vas19]) of n-RF algebras that are quotients of Nakayama
algebras, we are done. ⇤
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