
On the Impact of Software Failures on Time Division
Multiplexed Passive Optical Networks Dependability

Álvaro Fernández, Norvald Stol
Department of Telematics

Norwegian University of Science and Technology
Trondheim, Norway

alvarof@item.ntnu.no, norvald.stol@item.ntnu.no

Abstract—Passive Optical Networks (PONs) are widely regarded

as the best suited technology for deploying broadband access

networks. As new services emerge, the dependability of PONs has

become critical as end users expect access networks to be highly

reliable. Although PONs dependability regarding hardware

failures has been extensively studied, very little attention has

been drawn to software failures in PONs. Chiefly, this paper aims

at performing an exhaustive analysis of the effect of software

failures in PONs dependability and failure-related costs.

Additionally, hardware failures are also included for the sake of

completeness and comparison. By applying Duane’s model for

reliability growth to current literature results, the PON software

dependability is estimated as a function of the testing phase

duration. Then, a Markov cost model, accounting for both

hardware and software failures is developed and solved by means

of Monte Carlo simulations. Hence, the effect of software failures

in PONs asymptotic availability, failure impact and

dependability-related costs is detailed; revealing to be of utmost

importance. Moreover, how the testing process duration affects

these three parameters is also pinpointed.

Keywords–Availability; failure impact; Operational Expenditures;

Passive Optical Networks; software failures;

I. INTRODUCTION

Over the last years, the increase in bandwidth requirements
demanded by end users has pushed operators into the
deployment of broadband access networks. Amid other options,
Passive Optical Networks (PONs) are considered to be the best
suited technology for meeting such demands [1]. PONs not
only provide high bandwidth on a per-user basis, but are also
scalable and flexible. Additionally, PONs present a relatively
low-cost deployment and energy consumption when compared
with other alternatives. Consequently, PONs have been already
widely deployed, while Next-Generation PONs (NG-PONs)
are regarded as the most promising solution for future
broadband fiber-based access networks [2].

Yet, as time passes, end users and services also demand
higher service dependability in addition to higher bandwidth.
Telemedicine, interactive gaming or e-commerce have caused
end users (both residential and business) to expect reliable
service delivery. Subsequently, the importance and significance
of access networks’ dependability has arisen as a cause of
concern over the past years. As a matter of fact, several
protection schemes and dependability-cost analyses for

different PON and NG-PON flavors can be found in literature
[3], [4], [5], [6].

Generally, the dependability of a system is assessed by its
asymptotic availability, a parameter which is close to the users’
perception. Operators are also concerned about the number of
clients affected by a failure (i.e. failure impact), as large
outages can cause negative publicity. Besides, operators’
interest in dependability is also focused on the costs associated
to failures, which are part of the Operational Expenditures
(OPEX). Dependability-related OPEX include the cost of
repair, the payment of penalties and loss of reputation,
especially if the failure impact or the outage times are large.

Still, most of the already published PON dependability
studies are focused on hardware, physical faults and/or
environment failures. Even though software faults are the cause
of an important part (usually bigger than hardware faults) of
service failures in many systems [7], [8]; very few papers
address software dependability in PONs.

Hence, the aim of this paper is to give a deep insight into
the effect of software failures in Time Division Multiplexed
(TDM) PONs’ dependability and failure-related OPEX. Based
on the results in [9], where software bugs in Gigabit-capable
TDM PONs (GPONs) were studied; this paper performs a
thorough analysis of software failures in TDM PONs. By
applying Duane’s model for reliability growth [10] to these
results, the failure intensity of software failures in TDM PONs
is estimated as a function of the testing time. Then, a Markov
cost model [11], including both hardware and software failures,
is developed to capture the dynamic dependability behavior of
PONs. Thus, this study is able to detail the effects not only of
hardware failures, but also of software failures and software
testing time in the availability, failure impact and
dependability-related OPEX in TDM PONs.

The remainder of this paper is organized as follows. First,
Sect. II introduces the basic PON architecture. Section III
presents the software dependability modelling approach taken
in this study. Section IV describes the Markov cost model
employed to assess the dependability and dependability-related
OPEX of hardware and software failures in TDM PONs.
Section V presents the analysis results in terms of asymptotic
availability, failure impact and dependability-related OPEX.
Finally, Sect. VI gives the conclusions of this work.

II. PON ARCHITECTURE

In this section, the PON architecture assumed along the
paper is presented.

Succinctly, the typical PON architecture presents a tree
structure, as depicted in Fig. 1. At the operator’s Central Office
(CO), the Optical Line Terminal (OLT) is housed – the root of
the tree structure. Two different elements are considered at the
OLT: the OLT ports where fibers are connected and the OLT
chassis that hosts the OLT ports. Resembling the leaves of the
tree, the equipment at the user’s side is denoted as Optical
Network Unit (ONU). Amid the CO and the ONUs, the
Remote Node (RN) is deployed and serves as splitting point.
Similarly to the OLT, the RN consists of the RN chassis which
accommodates the set of passive elements performing the
signal splitting. Basically, the passive elements can be pure
optical splitters for TDM PONs, Arrayed Waveguide Gratings
(AWGs) for Wavelength Division Multiplexing (WDM) PONs,
or a combination of both for Hybrid WDM/TDM PONs. As
this study is focused on the impact of software failures in TDM
PONs, GPONs in particular; splitters are assumed as passive
elements at the RN. In accordance with the GPON ITU-T
Standard [12], the splitters’ split ratio is fixed to 1:32.
Necessarily, the OLT equipment and software are also that of a
GPON technology.

When regarding the fiber infrastructure, two different fiber
sections can be identified. First, the fibers interconnecting the
OLT and the RN, typically denoted as Feeder Fiber (FF).
Generally, feeder fibers span over several kilometers as users
in the same PON share the feeder fiber infrastructure. Second,
the fibers laid between the RN and the final users, called
Distribution Fibers (DF). Distribution fibers cover a smaller
distance than feeder fibers, being 20 kilometers the maximum
reach of the basic GPON technology [12].

III. SOFTWARE DEPENDABILITY MODELLING

In this section, the model used to assess the dependability
of the software in the OLT is introduced.

A. Duane’s Model for Software Reliability Growth

Mainly, software reliability growth models have been
developed in order to forecast the dependability of a software
system. Reliability growth models measure the improvement of
software reliability through the testing phase, typically
predicting the software failure intensity at the end of the testing
and debugging process [10]. As a result, the failure intensity
(thus dependability) of the delivered software can be predicted.

Inversely, the dependability requirement can be fixed
beforehand, and the reliability growth model employed to
predict the time (and effort) necessary to meet this requirement.
Among a vast number of reliability growth models, Duane’s
model has been chosen due to its simplicity and straightforward
application. Intentionally, a brief description of Duane’s model
is presented here, while a more thorough description can be
found in, e.g., [10].

Essentially, Duane’s model is based on the observation that
if the cumulative number of failures (N(t)) versus the
cumulative testing time (t) was plotted on a log-log scale; it
was quite close to a straight line. Consequently, failures during
the testing phase occur following an inhomogeneous Poisson
process, whose intensity can be derived as follows. First, due to
the aforementioned observation, the cumulative number of
failures, N(t), can be written as

log N(t) ≈ log α + β∗log t, (1)

being α and β the parameters of the model. Hence, the
cumulative failure intensity, Z(t), is modelled as

Z(t) = α∗tβ, (2)

and the failure intensity, z(t), is easily derived as

z(t) = d/dt(Z(t)) = α∗β∗t(β−1). (3)

Subsequently, the estimation of α and β (and thus the
software operational failure intensity at the end of the
debugging process) is straightforward if the number of software
failures and the testing time are known. Basically, this
estimation can be done by direct fitting on the log-log plot, or
by means of maximum likelihood estimation.

B. OLT Software Dependability

As mentioned before, both the number of software failures
as well as the testing time is needed in order to predict the
software operational failure intensity. Notably, the software
dependability analysis in this paper builds on the results
presented in [9].

Basically, the authors in [9] report the results of applying a
regression testing technique to a GPON OLT software during
more than one year. Additionally, not only the number of
software failures is reported, but also the distribution of these
failures over the testing time. Hence, when applying Duane’s
model to these results, it is possible to obtain a reasonable
estimation of the GPON OLT software failure intensity as a
function of the testing time.

After analyzing these results, the cumulative number of
failures versus the cumulative testing time log-log plot is
presented in Fig. 2 with red dots. In the figure, the cumulative
testing time has been normalized in hours. Additionally, Fig. 2
also shows the fitted cumulative failure intensity (Z(t))
according to Duane’s model, in blue. Particularly, the values of
α and β for the fitted cumulative failure intensity are 0.311543
and 0.761157 respectively. Consequently, by substituting these
values in (2), the fitted cumulative failure intensity of OLT
software failures follows

Z(t) = 0.311543∗t0.761157, (4)

Fig. 1. Schematic PON architecture.

while the software failure intensity follows

z(t) = d/dt(Z(t)) = 0.237133∗t −0.238843. (5)

By employing (5), the software failure intensity can be
calculated for different values of the cumulative testing time.
Finally, this failure intensity is used in the next section to
introduce software failures into the Markov cost model
assessing the dependability and failure costs of PONs.

IV. MARKOV COST MODEL FOR PON DEPENDABILITY AND

DEPENDABILITY-RELATED OPEX

In this section, the Markov cost model employed to analyze
both the dependability and dependability-related OPEX of
PONs is introduced. First, the Markov cost model for hardware
failures is presented. Then, this Markov model is modified with
the software failure intensity calculated in Sect. III to include
software failures in the dependability-cost analysis.

Briefly, Markov cost models allow for including cost
considerations into Markov models, so that both dependability
and failure-related costs can be calculated at the same time
[11]. Markov cost models stem from the notion of Markov
reward models, which associate a reward rate ci with each state
i of the Markov model. When dealing with failure costs
calculations, the rewards are the cost rates (cost per unit time)
related to failures in the corresponding state. As in [13], two
dependability-related costs are considered in this study: costs
related to failure repair and costs of paying penalties.
Decidedly, the cost rate of a given state consists of two terms:
the Repair Cost Rate (RCR) and the Penalty Cost Rate (PCR).

Regarding the RCR, failure repair costs are directly related
to the repair crew’s salary, the number of operative repair
crews and the repair time. Subsequently, the RCR in a given
state i is proportional to the crew’s salary (S – in $/hour) and
the number of operative crews in state i (OCi):

RCRi = S ∗ OCi. (6)

Concerning the PCR, penalty costs depend on the agreed
penalty rate (PR), the number of failed clients (FC) and the
disconnection time. Also, in order to account for the impact of
reputation loss in case of large outages, an exponential impact
factor, χ, is introduced. Thus, the PCR in a given state i follows

PCRi = FCi
χ ∗ PR. (7)

Purposely, the impact factor χ allows for a smooth insertion
of the loss of reputation due to failures into the PCR. It was
first introduced in [13], in a similar way as in [5]. Mainly, the
basic idea behind the impact factor χ is to increase the PCR if
the number of clients affected by a failure is high, due to the
impact of negative publicity. From an operator’s point of view
and considering the same time period, failures affecting a large
number of clients at the same time have a bigger impact than a
large number of independent, non-overlapping in time failures
affecting a small number of clients. Succinctly, over a month, a
single failure (e.g. a digging) affecting 5 000 clients is much
worse than 5 000 failures affecting one client, occurring at
different non-overlapping times over the same month. The
former type of failure will lead to negative press releases.
Intentionally, a value of 1.1 is proposed for χ. Then, if the
number of failed clients is small, the PCR will be almost the
same as if χ is not included. In fact, it is the same if there is
only 1 failed client. On the other hand, when the number of
failed clients is considerable, the PCR will grow larger. For
example, the PCR of a failure affecting 10 000 clients is 2.5
times larger than the same failure without any impact factor.

A. PON Hardware Failures

Let us now consider the Markov cost model when only
hardware failures are present. As there are no software failures
in this case, it will be used as baseline to measure the impact of
software failures on the dependability and failure costs.

In essence, the modelled system is the PON architecture
depicted in Fig. 1. For illustration, a significant part of the
Markov model is shown in Fig. 3. Namely, state definition
depends on the type of failed element. As explained in Sect. II,
the different elements of the PON architecture are OLT chassis,
OLT ports, feeder fiber, RN chassis, splitters, distribution fiber
and ONUs. Since the split ratio is fixed to 1:32, the number of
ONUs is also 32 (denoted N in Fig. 3). Additionally, splitters in
the RN are assumed to fail if the RN chassis fails, and the same
applies to the OLT ports hosted in an OLT chassis. Failure
rates for the different components are taken from [3] and [14].
Typically, the longer the fiber, the more likely it is to fail, thus
the fiber failure rate in [3] depends on the length of the fiber. In
this study, different values for the lengths of feeder and
distribution fibers are considered, in order to model dense or
sparse PON deployment scenarios, following the values of the
studies in [6], [13]. Dense scenarios correspond to densely
populated urban areas, where users are located close to each
other. Thus, the length of the feeder fiber is fixed to 3.75 Km.,
while the length of the distribution fiber is fixed to 0.375 Km.
Sparse scenarios correspond to suburban or rural areas, being
the lengths of the feeder and distribution fibers 18.2 and 1.8
Km. respectively.

As for the number of failed clients in each state, it
decidedly depends on the type of failed element. Following the
values presented in [6], [13]; the number of clients affected by
each type of failure has been fixed as follows. OLT chassis
failures typically affect 1 600 clients, while RN chassis affect
100 clients. OLT ports and splitters only affect the 32 clients
associated to the PON. Unequivocally, ONU failures affect
only 1 client. Regarding fiber failures, the number of affected

Fig. 2. Cumulative number of software failures as a function of the testing
time (Data from [9]) and the Dunae’s Z(t) fitted estimation.

clients is slightly more complicated to calculate. In general,
fiber failures are related to diggings in the trenches containing
the fibers. Hence, if the digging occurs very close to the CO, it
will affect a large number of fibers, and thus a large number of
clients. Contrarily, the number of affected clients will be
smaller if the digging occurs far from the CO. To model this
effect, the number of affected clients in case of feeder fiber
failure is assumed to be a random variable uniformly
distributed between 1 000 and 5 000 clients. In case of
distribution fiber failure, the same reasoning applies, but the
uniform variable is defined between 1 and 100 failed clients.

Finally, regarding the repair process, repair rates for the
different elements are also taken from [3] and [14]. Besides, it
is assumed that there is only one repair crew, as it was shown
in [13] that one repair crew is enough to handle repairs in most
situations. If there are two or more failed elements, the
component leading to a higher reduction in the cost rate in a
shorter repair time is repaired first.

B. OLT Software Failures Modelling

In order to include software failures into the model, two
new states are introduced into the Markov model of Sect. IV A.
Additionally to the data presented in Sect. III, the GPON OLT
software failures reported in [9] are categorized into four
different grades with respect to their criticality. Namely, these
four categories are “low criticality bugs”, “medium criticality
bugs”, “high criticality bugs” and “very high criticality bugs”.

Low and medium criticality bugs are stated to somewhat
hamper the PON performance, but they do not lead to total
crash or total service interruption. High and very high
criticality bugs, on the other hand, interrupt system operation
and affect basic functionalities. To model the latter, the state
named “software failure” is introduced in the Markov chain,
and it is assumed to be a down state as service is interrupted.
Low and medium criticality bugs are modelled with the state
called “excited software”. As there is no clear indication in [9]
of how big the performance reduction becomes when these
bugs occur, two different approaches are assumed. In the
optimistic approach, the system is considered to be working
when in the excited software state. Mainly, this means that
although the performance may be reduced, end users do not
notice it. Contrarily, the pessimistic approach assumes the
excited software state to be a failed state, where part of the
OLT software is down and end users do notice the outage.

A reduced version of the Markov model accounting for
both hardware and software failures is depicted in Fig. 4. The
dashed oval in Fig. 4 represents all hardware and hardware-
software possible failure combinations, according to the states
in the dashed box of Fig. 3. Please note that the state
corresponding to OLT chassis failure is repeated in both figures
for clarity.

In Fig. 4, λsoft is the software failure intensity in (5), which
depends on the testing time. When computing this intensity, all
types of bugs were considered. However, high and very high
criticality bugs are reported to account for a 33% of the total
number of bugs. Thus, the intensity leading to the software
failure state is multiplied by 0.33 (denoted p in Fig. 4).
Decidedly, low and medium criticality bugs represent a 66% of

Fig. 3. Markov model considering only hardware failures.

Fig. 4. Modified Markov model for both hardware and software failures.

the total software failures. Thus, the intensity leading to the
excited software state is multiplied by 0.66 (1-p in Fig. 4).
Noticeably, OLT software is assumed to be running on the
OLT chassis. Hence, there cannot be software failures if there
is an OLT chassis hardware failure (there are no transitions
from the OLT chassis failure state to the excited software state
or the software failure state). Besides, hardware repair of the
OLT chassis assumes to fix also software failures, as the OLT
chassis is switched off and on and the software brought to a
consistent initial state.

Regarding software repairs, two different restoration
actions are considered. A system in the excited software state is
assumed to be brought back to a free-failure state by a restart,
while a system in the software failure state requires a full
reload of the system. When a restart is initiated, the process
with the failure is stopped, a subset of the processor’s data
reset, and the processing resumed. Because the bugs in the
excited software state have not a high criticality, the restart is a
quick process (5 minutes, γrestart = 1/12 h-1), and negligible
human intervention is assumed (there is no impact to the RCR).

 On the other hand, a reload is a more complex action and
requires more time, as the software failures in this case are
more severe. During a reload, the processor and peripherals are
reset and tested, while the processor’s software and data are
reloaded. The average duration of this action is assumed to be
30 minutes (µreload = 1/2 h-1), and human intervention is not
negligible (it does affect the RCR). Note that software
restart/reload can be done in parallel with hardware repairs –
i.e. there is one dedicated repair crew for hardware and another
for software failures.

Finally, the number of affected clients due to software
failures is fixed as follows. In the software failure state, the
OLT chassis system is considered to be down, thus this kind of
failure affect 1 600 clients. When the system is in the excited
software state, the number of failed clients depends on the
chosen approach. Because the software is assumed to be
working in the optimistic approach, there are no failed clients
in this case. Yet, the pessimistic approach considers that some
end users do notice the outage, thus the number of failed clients
is modelled as a uniform variable between 1 and 400.

V. DEPENDABILITY AND FAILURE-RELATED OPEX

SIMULATION RESULTS

This section presents the results of the dependability and
failure-related OPEX study, after solving the Markov models
presented in Sect. IV by means of simulations. After a brief
description of the simulator, results for the availability, failure
impact and dependability-related OPEX are reported.

Due to the large number of states, simulations are required
to solve the Markov models. Amid other options, a uniformized
simulator [15] has been implemented; solved by means of
Monte Carlo simulation because of its flexibility and easy
implementation [11]. As explained in Sect. IV. A, two different
scenarios have been considered, namely dense and sparse
scenarios. Additionally, two different approaches for the
excited software state are assumed as explained in Sect. IV B –
the optimistic and the pessimistic approach. The effect of the
testing phase duration (which affects λsoft as described in Sect.

III) is also investigated by varying the testing time from 5 500
(duration of testing phase in [9]) to 50 000 hours. Finally,
results also include the case with only hardware failures as
baseline to measure the hampering of software failures in the
PON dependability and failure-related OPEX.

A. Asymptotic Availability

Regarding asymptotic availability, Fig. 5 shows the results
for dense scenarios, while Fig. 6 depicts the results for sparse
scenarios. Results are presented with 95% confidence intervals,
although most of them are hidden behind the marked points.
Undoubtedly, results when software failures are not present do
not depend on the testing time.

Let us focus first on dense scenarios (Fig. 5). Decidedly,
results show that software failures markedly dominate the PON
system availability, both for the optimistic and pessimistic
approach. The effect of high and very high criticality bugs is
the difference between the no software and the optimistic
approach curves – notably dominating the availability
reduction. Besides, the effect of the low and medium criticality
bugs (if assumed to cause a failure) is the difference between
the optimistic and pessimistic curves. Even if the testing phase
is notably large (50 000 hours), availability drops from 0.99975
(no software) to 0.9968 (optimistic) or 0.9957 (pessimistic).

As the software testing time is increased, the availability
also increases for both approaches, as the software failure
intensity decreases following Duane’s model. Yet, this increase
is more remarkable with testing times between 5 500 and
20 000 hours. Asymptotically, both approaches tend to the no
software case, as software failures become negligible.

Fig. 5. Availability results for dense scenarios.

Fig. 6. Availability results for sparse scenarios.

As for the availability in sparse scenarios, depicted in Fig.
6, roughly the same considerations are shown. Software
failures also dominate the availability, although in a lesser way
than in dense scenarios, with the biggest reduction due to high
and very high criticality bugs. Besides, the biggest reduction in
the effect of software failures is achieved during the first
20 000 hours as in dense scenarios. Yet, the availability is also
noticeably affected by hardware failures due to larger feeder
and distribution fibers. In the best case (50 000 testing hours),
the availability is reduced from 0.99884 (no software) to
0.9959 (optimistic) or 0.9948 (pessimistic), where
approximately a reduction of 0.00091 with respect to the dense
scenario correspond to hardware failures (fiber infrastructure).

B. Failure Impact

As for the failure impact results, Fig. 7 and Fig. 8 show the
Cumulative Distribution Function (CDF) of the cumulative
number of failed clients for dense and sparse scenarios. Plainly,
these figures show the probability of a failure causing less than
or equal to a given number of failed clients (i.e. failure impact).
Figures depict not only the case with only hardware failures,
but also the optimistic and pessimistic approaches with the
smallest and highest testing times. Curves for other testing
times lie in between these two and are not presented for clarity.

In dense scenarios, Fig. 7, it is clear that concerning
hardware failures, feeder fiber failures dominate the failure
impact. The cumulative probability of failures with small
impact is modest till 1 000 failed clients, when it starts
increasing due to the effect of feeder fiber failures. When
software failures are included, all cases present an increase in
the cumulative probability around 1 600 failed clients. Notably,
this probability corresponds to the software failure state,
dominating the failure impact. Markedly, the probability
decreases as the testing time increases (solid versus dashed
curves) as the software becomes less failure-prone. Finally, the
difference between the optimistic and pessimistic approach is
also notable. In the optimistic approach (green curves), the
probability of failures with small impact is scant as the excited
software state does not contribute to the failure impact. Yet,
this probability is noteworthy in the pessimistic approach;
although still the high and very high criticality bugs dominate.

Results in sparse scenarios, Fig. 8, present almost the same
concerns as dense scenarios. However, fiber failures become
more notable in this case. Especially, the probability of failures
with more than 1 000 failed clients increases considerably, due

to larger feeder fibers. In fact this probability is now
comparable with that of the excited software state in the
pessimistic approach, but with a much larger failure impact.
Besides, the probability of hardware failures with small impact
is also noticeable, caused by distribution fiber failures.

C. Dependability-related OPEX

Finally, dependability-related OPEX costs are presented as
expected cost per client (in $) over a time span of 1 year. The
expected cost is assessed by multiplying the Expected Cost
Rate (ECR) by the time span of interest. The ECR comes from
the cost rate of each state (ci) and their probabilities (pi) as

ECR = ∑i ci ∗ pi. (8)

Besides, expected costs are broke down into Expected
Repair Costs (ERC) and Expected Penalty Costs (EPC) as the
cost rate of each state consists of the RCR and the PCR. As
parameters for the cost analysis, the repair crew’s salary is
fixed to 190 $/hour and the penalty rate to 10 $/hour. Results
are presented with 95% confidence intervals.

Fig. 9 shows the expected costs per client in dense
scenarios. Decidedly, repair costs are almost negligible with
respect to penalty costs. As expected from previous results,
software failures remarkably increase the expected costs.
Among software failures, high and very high criticality bugs
(optimistic approach) produce the biggest increase, due to their
large failure impact (1 600 clients) and larger repair process.
The expected cost increase due to low and medium criticality
bugs (pessimistic approach) is almost comparable to the cost of
hardware failures. Still in terms of costs, the latter is bigger due

Fig. 7. CDF of the cumulative failure impact in dense scenarios.

Fig. 8. CDF of the cumulative failure impact in sparse scenarios.

Fig. 9. Expected cost per client in $ for dense scenarios in 1 year time span.

to the large failure impact of feeder fiber failures. When the
testing time is increased, the costs are also reduced. Yet, this
reduction grows smaller for testing times larger than 20 000
hours, as hinted from the availability and failure impact results.

In sparse scenarios, Fig. 10, the same trends can be
identified. As larger fibers become more failure-prone, there is
an increase in the expected cost because of fiber infrastructure
failures. Especially feeder fiber failures, because of their large
failure impact and long repair time, lead to a large increase in
the expected costs. Contrarily, the expected cost due to low and
medium criticality bugs is now of minor importance, as the
expected costs of the optimistic and pessimistic approach are
almost the same. High and very high criticality bugs are still
the most significant, being the biggest contribution to the
expected costs. As before, increasing the testing time beyond
20 000 hours does reduce the costs, but in a marginal way.

VI. CONCLUSIONS

In this paper, a thorough dependability and failure-related
OPEX study of TDM PONs has been performed. While
software failures have been the main object of the study;
hardware failures have also been included for the sake of
completeness. By applying Duane’s model for reliability
growth to the results in [9], the dependability (more precisely,
the failure intensity) of the OLT software as a function of the
testing time has been estimated. Subsequently, a Markov cost
model accounting for both hardware and software failures has
been developed. Finally, the asymptotic availability, failure
impact and dependability-related OPEX of these two types of
failures in TDM PONs have been assessed. While high and
very high criticality bugs are considered to cause a failure; two
different approaches have been considered regarding low and
medium criticality bugs, namely optimistic and pessimistic
approach. The optimistic approach assumes that low and
medium criticality bugs do not cause a failure, while these bugs
do cause a failure in the pessimistic approach.

Primarily, this paper shows that software failures present a
significant threat for PONs dependability and OPEX in both
dense and sparse scenarios. High and very high criticality bugs
not only seriously hinder the availability, but their large failure
impact considerably increases the failure-related OPEX. In
dense scenarios, low and medium criticality bugs, when
considered to cause a failure, hamper the availability in a
greater way than hardware failures. Yet, their relatively small

failure impact and quick repair make their effect with respect to
failure-related costs comparable to hardware failures in dense
scenarios. Contrarily, in sparse scenarios, low and medium
criticality bugs pose the same threat to availability as hardware
failures. Yet with respect to failure-related OPEX in sparse
scenarios, hardware failures are far more serious than low and
medium criticality bugs. Mainly, this occurs because hardware
failures are typically related to fiber cuts, with a large failure
impact and repair time. Expectedly, the effect of software
failures can be reduced by increasing the duration of the
software testing time. However, this reduction becomes
marginal for testing times greater than 20 000 hours.

Finally, the results presented in this paper call for further
research. Due to the lack of information regarding software
failures in PONs, software failure classification and description
as well as the software dependability modelling is minimal.
Also, a proper cost analysis of software failures requires
modelling of the resources and costs associated to the testing
phase. This way, a precise analysis of the trade-off between
testing phase duration and costs versus the effect of software
failures in service provision can be performed.

REFERENCES
[1] F. Effenberger et al., “An introduction to PON technologies,” IEEE

Commun. Mag., Vol. 45, Issue 3, pp. S15 – S25, Mar. 2007.

[2] G. Kramer, M. De Andrade, R. Roy and P. Chowdhury, “Evolution of
optical access networks: architectures and capacity upgrades,” Proc. of
the IEEE, Vol. 100, pp. 1188 – 1196, May 2012.

[3] J. Chen, L. Wosinska, C. M. Machuca and M. Jaeger, “Cost vs.
reliability performance study of fiber access network architectures,”
IEEE Commun. Mag., Vol. 48, Issue 2, pp. 56 – 65, Feb. 2010.

[4] E. Wong, “Survivable architectures for time and wavelength division
multiplexed passive optical networks,” Journal of Optics
Communications, Vol. 325, pp. 152 – 159, Apr. 2014.

[5] A. Dixit et all., “Protection strategies for next generation passive optical
networks -2,” Proc. of ONDM 2014, Stockholm, Sweden, May 2014.

[6] A. Fernandez and N. Stol, “Protecting PONs: a failure impact,
availability, and cost perspective based on a geometric model,” Proc. of
DRCN 2014, pp. 1 – 8, Ghent, Belgium, Apr. 2014.

[7] D. Oppenheimer and D. A. Patterson, “Architecture and dependability of
large-scale internet services,” IEEE Internet Comput., Vol. 6, Issue 5,
pp. 41 – 49, Sept./Oct. 2002.

[8] L. A. Barroso, J. Clidaras and U. Hölzle, “The datacenter as a computer:
an introduction to the design of warehouse-scale machines,” 2nd edition,
Synthesis series on Computer Architecture, Morgan & Claypool
Publishers, pp. 101 – 113, May 2013.

[9] A. C. Fadel, R. Moraes and E. Martins, “Automated validation of
embedded optical network software,” Proc. of LADC 2011, Sao Jose dos
Campos, Brazil, Apr. 2011.

[10] M. R Lyu (ed.), “Handbook of Software Reliability Engineering,” Ch. 3,
pp. 98 – 99, McGraw-Hill/IEEE Comp. Soc. Press, Apr. 1996.

[11] G. J. Anders and A. M. Leite da Silva, “Cost related reliability measures
for power system equipment,” IEEE Trans. Power Syst., Vol. 15, No. 2,
pp. 654 – 660, May 2000.

[12] ITU-T Rec. G984.1, “Gigabit-capable passive optical networks (GPON):
general characteristics,” Mar. 2008.

[13] A. Fernandez and N. Stol, “OPEX simulation study of PONs based on a
network geometric and Markov cost models,” Proc. of ONDM 2014,
Stockholm, Sweden, May 2014.

[14] OASE Project, “D4.2.1: Technical Assessment and comparison of next-
generation optical access systems concepts,” Oct. 2011.

[15] S. M. Ross, “Introduction to probability models,” 10th edition, Ch. 6, pp.
406 – 408, Academic Press, Oxford, United Kingdom, 2010.

Fig. 10. Expected cost per client in $ for sparse scenarios in 1 year time span.

