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Abstract—Passive Optical Networks (PONSs) are widely regardk
as the best suited technology for deploying broadibal access
networks. As new services emerge, the dependabiliof PONs has
become critical as end users expect access netwotksbe highly
reliable. Although PONs dependability regarding hadware

failures has been extensively studied, very littlattention has
been drawn to software failures in PONs. Chiefly,His paper aims
at performing an exhaustive analysis of the effecbf software
failures in PONs dependability and failure-related costs.
Additionally, hardware failures are also included Pr the sake of
completeness and comparison. By applying Duane’s miel for

reliability growth to current literature results, t he PON software
dependability is estimated as a function of the tésg phase
duration. Then, a Markov cost model, accounting forboth

hardware and software failures is developed and se¢d by means
of Monte Carlo simulations. Hence, the effect of $tware failures

in PONs asymptotic availability, failure impact and
dependability-related costs is detailed; revealingo be of utmost
importance. Moreover, how the testing process dur&n affects
these three parameters is also pinpointed.

Keywords—Availability; failure impact; OperationaExpenditures;
Passive Optical Networks; software failures;

. INTRODUCTION

Over the last years, the increase in bandwidthireaents
demanded by end users has pushed operators into
deployment of broadband access networks. Amid atpgéons,
Passive Optical Networks (PONSs) are considerecktthe best
suited technology for meeting such demands [1]. POt
only provide high bandwidth on a per-user basis,dre also
scalable and flexible. Additionally, PONs presentekatively
low-cost deployment and energy consumption whenpeoed
with other alternatives. Consequently, PONs hawn zdready
widely deployed, while Next-Generation PONs (NG-FDN
are regarded as the most promising solution fouréut
broadband fiber-based access networks [2].

Yet, as time passes, end users and services aisande
higher service dependability in addition to highemdwidth.
Telemedicine, interactive gaming or e-commerce haesed
end users (both residential and business) to exmdicble
service delivery. Subsequently, the importancesagwificance
of access networks’ dependability has arisen asusec of
concern over the past years. As a matter of famtersl
protection schemes and dependability-cost analyk®s

different PON and NG-PON flavors can be found far&ture
[3], [4], [5], [6].

Generally, the dependability of a system is assebgdts
asymptotic availability, a parameter which is clos¢he users
perception. Operators are also concerned aboututhdber of
clients affected by a failure (i.e. failure impacgs large
outages can cause negative publicity. Besides, atgst
interest in dependability is also focused on thetxassociated
to failures, which are part of the Operational Egitures
(OPEX). Dependability-related OPEX include the cadt
repair, the payment of penalties and loss of rejmta
especially if the failure impact or the outage tinaee large.

Still, most of the already published PON dependtsbil
studies are focused on hardware, physical faultd/oan
environment failures. Even though software faulesthe cause
of an important part (usually bigger than hardwidts) of
service failures in many systems [7], [8]; very feapers
address software dependability in PONSs.

Hence, the aim of this paper is to give a deemhsinto
the effect of software failures in Time Division Mplexed
(TDM) PONs’ dependability and failure-related OPEBased
on the results in [9], where software bugs in Gigehpable
TDM PONs (GPONs) were studied; this paper perfoans
thorough analysis of software failures in TDM PONBy
tBBplying Duane’s modelor reliability growth [10] to these
results, the failure intensity of software failuiasTDM PONs
is estimated as a function of the testing time.riTteeMarkov
cost model [11], including both hardware and sofeMailures,
is developed to capture the dynamic dependabiétyalior of
PONSs. Thus, this study is able to detail the effewit only of
hardware failures, but also of software failuresl aoftware
testing time in the availability, failure impact dan
dependability-related OPEX in TDM PONSs.

The remainder of this paper is organized as folldvist,
Sect. Il introduces the basic PON architecture.ti@eclll
presents the software dependability modelling aggnataken
in this study. Section IV describes the Markov costdel
employed to assess the dependability and depeitgablhted
OPEX of hardware and software failures in TDM PONSs.
Section V presents the analysis results in termasgmptotic
availability, failure impact and dependability-rld OPEX.
Finally, Sect. VI gives the conclusions of this wor



II.  PONARCHITECTURE

In this section, the PON architecture assumed albeg
paper is presented.

Succinctly, the typical PON architecture presentsres
structure, as depicted in Fig. 1. At the operat@estral Office
(CO), the Optical Line Terminal (OLT) is housedhe troot of
the tree structure. Two different elements are idensd at the
OLT: the OLT ports where fibers are connected ded@LT
chassis that hosts the OLT ports. Resembling tineke of the
tree, the equipment at the user's side is denose@gatical
Network Unit (ONU). Amid the CO and the ONUs, the
Remote Node (RN) is deployed and serves as spglifimint.
Similarly to the OLT, the RN consists of the RN s$ia which
accommodates the set of passive elements perforthiag
signal splitting. Basically, the passive elemeras e pure
optical splitters for TDM PONSs, Arrayed Waveguideathgs
(AWGS) for Wavelength Division Multiplexing (WDM)®Ns,
or a combination of both for Hybrid WDM/TDM PONs.sA
this study is focused on the impact of softwarkufas in TDM
PONs, GPONSs in particular; splitters are assumegaasive
elements at the RN. In accordance with the GPON-TTU
Standard [12], the splitters’ split ratio is fixew 1:32.
Necessarily, the OLT equipment and software are thlat of a
GPON technology.

When regarding the fiber infrastructure, two diéfer fiber

sections can be identified. First, the fibers iobenecting the
OLT and the RN, typically denoted as Feeder FibreF).(

Generally, feeder fibers span over several kilonsets users
in the same PON share the feeder fiber infrastractBecond,
the fibers laid between the RN and the final useedled

Distribution Fibers (DF). Distribution fibers cover smaller
distance than feeder fibers, being 20 kilometegsntiaximum

reach of the basic GPON technology [12].

Fig. 1. Schematic PON architectu

I1l.  SOFTWAREDEPENDABILITY MODELLING

In this section, the model used to assess the dapity
of the software in the OLT is introduced.

A. Duane’s Model for Software Reliability Growth

Mainly, software reliability growth models have bee
developed in order to forecast the dependability sbftware
system. Reliability growth models measure the inapnoent of
software reliability through the testing phase, idgfly
predicting the software failure intensity at the @fi the testing
and debugging process [10]. As a result, the failntensity
(thus dependability) of the delivered software barpredicted.

Inversely, the dependability requirement can beedix
beforehand, and the reliability growth model emplbyto
predict the time (and effort) necessary to mestitbguirement.
Among a vast number of reliability growth modelsjdbe’s
model has been chosen due to its simplicity aradgsttforward
application. Intentionally, a brief description @fiane’s model
is presented here, while a more thorough descriptiEn be
found in, e.g., [10].

Essentially, Duane’s model is based on the observ#tat
if the cumulative number of failures (N(t)) versube
cumulative testing time (t) was plotted on a log-kcale; it
was quite close to a straight line. Consequenrdijiifes during
the testing phase occur following an inhomogendeoisson
process, whose intensity can be derived as foll&ivst, due to
the aforementioned observation, the cumulative rermdf
failures, N(t), can be written as

log N(t) (1)

being a andbthe parameters of the model. Hence, the
cumulative failure intensity, Z(t), is modelled as

loga + b*log t,

Z(t) =art’ 2
and the failure intensity, z(t), is easily deriva
z(t) = d/dt(z(t)) =a*b* 1O @)

Subsequently, the estimation af andb (and thus the
software operational failure intensity at the enfl the
debugging process) is straightforward if the nundfesoftware
failures and the testing time are known. Basicallfis
estimation can be done by direct fitting on the-llog plot, or
by means of maximum likelihood estimation.

B. OLT Software Dependability

As mentioned before, both the number of softwailerts
as well as the testing time is needed in orderrtaipt the
software operational failure intensity. Notablye toftware
dependability analysis in this paper builds on tesults
presented in [9].

Basically, the authors in [9Eport the results of applying a
regression testing technique to a GPON OLT softvadaming
more than one year. Additionally, not only the nemiof
software failures is reported, but also the distitn of these
failures over the testing time. Hence, when apglyuane’s
model to these results, is possible to obtain a reasonable
estimation of the GPON OLT software failure intépsas a
function of the testing time.

After analyzing these results, the cumulative numdbfke
failures versus the cumulative testing time log-lplpt is
presented in Fig. 2 with red dots. In the figuhes tumulative
testing time has been normalized in hours. Addilgn Fig. 2
also shows the fitted cumulative failure intensi€f(t))
according to Duane’s model, in blue. Particulatity values of
a andb for the fitted cumulative failure intensity are 01%43
and 0.761157 respectively. Consequently, by suwitistif these
values in (2), the fitted cumulative failure intépsof OLT
software failures follows

Z(t) = 0.3115 431076115 @



Fig. 2 Cumulative number of software failures as a fiomcbf the testin
time (Data from [9]) and the Dunae’s Z(t) fittedismtion.

while the software failure intensity follows
z(t) = d/dt(Z(t)) =0.237133t 023884, 5)

By employing (5), the software failure intensityncée
calculated for different values of the cumulatiesting time.
Finally, this failure intensity is used in the neséction to
introduce software failures into the Markov cost delo
assessing the dependability and failure costs N0

IV. MARKOV COSTMODEL FORPONDEPENDABILITY AND
DEPENDABILITY-RELATED OPEX

In this section, the Markov cost model employedrnalyze
both the dependability and dependability-relatedERPoOf
PONs is introduced. First, the Markov cost modelfardware
failures is presented. Then, this Markov model aglified with
the software failure intensity calculated in Sélitto include
software failures in the dependability-cost analysi

Briefly, Markov cost models allow for including dos
considerations into Markov models, so that bothedéepbility
and failure-related costs can be calculated atsdme time
[11]. Markov cost models stem from the notion of ries
reward models, which associate a reward ratgth each state
i of the Markov model. When dealing with failure tos
calculations, the rewards are the cost rates fmasunit time)
related to failures in the corresponding state.irA§l3], two
dependability-related costs are considered in ghisly: costs
related to failure repair and costs of paying piesl
Decidedly, the cost rate of a given state consiktsvo terms:
the Repair Cost Rate (RCR) and the Penalty Cost (RER).

Regarding the RCR, failure repair costs are diyeeflated
to the repair crew’s salary, the number of opeeatiepair
crews and the repair time. Subsequently, the RCR given
statei is proportional to the crew’s salary (S — in $/fjoand
the number of operative crews in staf(®C):

RCR=S* OC. (6)

Concerning the PCR, penalty costs depend on theedgr
penalty rate (PR), the number of failed clients XE@d the
disconnection time. Also, in order to account foe tmpact of
reputation loss in case of large outages, an expiahémpact
factor,c, is introduced. Thus, the PCR in a given stétdlows

PCR=FG" * PR. @)

Purposely, the impact factorallows for a smooth insertion
of the loss of reputation due to failures into P€R. It was
first introduced in [13], in a similar way as in][®ainly, the
basic idea behind the impact factois to increase the PCR if
the number of clients affected by a failure is highe to the
impact of negative publicity. From an operator'snp®f view
and considering the same time period, failuresctffg a large
number of clients at the same time have a biggpagnthan a
large number of independent, non-overlapping iretfailures
affecting a small number of clients. Succinctlyepa month, a
single failure (e.g. a digging) affecting 5 000ealis is much
worse than 5 000 failures affecting one client,undng at
different non-overlapping times over the same moiithe
former type of failure will lead to negative presseases.
Intentionally, a value of 1.1 is proposed for Then, if the
number of failed clients is small, the PCR will &lenost the
same as it is not included. In fact, it is the same if thése
only 1 failed client. On the other hand, when thenber of
failed clients is considerable, the PCR will groavger. For
example, the PCR of a failure affecting 10 000nteis 2.5
times larger than the same failure without any iabfactor.

A. PON Hardware Failures

Let us now consider the Markov cost model when only
hardware failures are present. As there are navaddtfailures
in this case, it will be used as baseline to meathe impact of
software failures on the dependability and failcosts.

In essence, the modelled system is the PON artlnigec
depicted in Fig. 1. For illustration, a significapart of the
Markov model is shown in Fig. 3. Namely, state wigbn
depends on the type of failed element. As expthineSect. I,
the different elements of the PON architectureGit& chassis,
OLT ports, feeder fiber, RN chassis, splitterstritistion fiber
and ONUs. Since the split ratio is fixed to 1:3% tumber of
ONUs is also 32 (denoted N in Fig. 3). AdditionaByplitters in
the RN are assumed to fail if the RN chassis faitg] the same
applies to the OLT ports hosted in an OLT chadsalure
rates for the different components are taken fr@fjrahd [14].
Typically, the longer the fiber, the more likelyistto fail, thus
the fiber failure rate in [3flepends on the length of the fiber. In
this study, different values for the lengths of diee and
distribution fibers are considered, in order to elodense or
sparse PON deployment scenarios, following theesahf the
studies in [6], [13]. Dense scenarios correspondi¢asely
populated urban areas, where users are located thosach
other. Thus, the length of the feeder fiber isdixe 3.75 Km.,
while the length of the distribution fiber is fixed 0.375 Km.
Sparse scenarios correspond to suburban or rigakabeing
the lengths of the feeder and distribution fibeBs2land 1.8
Km. respectively.

As for the number of failed clients in each staite,
decidedly depends on the type of failed elemento®ng the
values presented in [6], [L3he number of clients affected by
each type of failure has been fixed as follows. Qitiassis
failures typically affect 1 600 clients, while RMassis affect
100 clients. OLT ports and splitters only affect 882 clients
associated to the PON. Unequivocally, ONU failuedfect
only 1 client. Regarding fiber failures, the numbéaffected



Fig. 3. Markov model considering only hardwaretfegk.

clients is slightly more complicated to calculale. general,
fiber failures are related to diggings in the ttegg containing
the fibers. Hence, if the digging occurs very clas¢he CO, it
will affect a large number of fibers, and thus my¢éanumber of
clients. Contrarily, the number of affected cliemsll be
smaller if the digging occurs far from the CO. Taodsl this
effect, the number of affected clients in case edder fiber
failure is assumed to be a random variable unifprml
distributed between 1000 and 5000 clients. Ineca$
distribution fiber failure, the same reasoning &l but the
uniform variable is defined between 1 and 100 dadkents.

Finally, regarding the repair process, repair rdt@sthe
different elements are also taken from §8d [14]. Besides, it
is assumed that there is only one repair crewt ass$ shown
in [13] that one repair crew is enough to handfene in most
situations. If there are two or more failed elersenthe
component leading to a higher reduction in the cast in a
shorter repair time is repaired first.

B. OLT Software Failures Modelling

In order to include software failures into the mipdeo
new states are introduced into the Markov mod@&eift. IV A.
Additionally to the data presented in Sect. llie tBPON OLT
software failures reported in [9] are categorizedbo ifour
different grades with respect to their criticalityamely, these
four categories are “low criticality bugs”, “mediuaniticality

bugs”, “high criticality bugs” and “very high criality bugs”.

Low and medium criticality bugs are stated to sofmaw
hamper the PON performance, but they do not leatbttd
crash or total service interruption. High and vehnigh
criticality bugs, on the other hand, interrupt systoperation
and affect basic functionalities. To model thedatthe state
named “software failure” is introduced in the Mavkohain,
and it is assumed to be a down state as servicgeisupted.
Low and medium criticality bugs are modelled wilte tstate
called “excited software”. As there is no clearigation in [9]
of how big the performance reduction becomes wlese
bugs occur, two different approaches are assumedhe
optimistic approach, the system is considered tawvbeking
when in the excited software state. Mainly, thisane that
although the performance may be reduced, end wensot
notice it. Contrarily, the pessimistic approachuasss the
excited software state to be a failed state, wipare of the
OLT software is down and end users do notice thagesu

A reduced version of the Markov model accounting fo
both hardware and software failures is depicte#ign 4. The
dashed oval in Fig. 4 represents all hardware ardware-
software possible failure combinations, accordimghie states
in the dashed box of Fig. 3. Please note that tiate s
corresponding to OLT chassis failure is repeatdabii figures
for clarity.

In Fig. 4,1 sris the software failure intensity in (5), which
depends on the testing time. When computing thénsity, all
types of bugs were considered. However, high amy kigh
criticality bugs are reported to account for a 38f4he total
number of bugs. Thus, the intensity leading to sbé&ware
failure state is multiplied by 0.33 (denoted p ifg.F4).
Decidedly, low and medium criticality bugs represe$6% of

Fig. 4. Modified Markov model for both hardware asaftware failures.



the total software failures. Thus, the intensitadiag to the
excited software state is multiplied by 0.66 (1rpHig. 4).
Noticeably, OLT software is assumed to be runnimgtioe
OLT chassis. Hence, there cannot be software &ilifrthere
is an OLT chassis hardware failure (there are masfitions
from the OLT chassis failure state to the exciteftwgare state
or the software failure state). Besides, hardwapair of the
OLT chassis assumes to fix also software failusesthe OLT
chassis is switched off and on and the softwareiditbto a
consistent initial state.

Regarding software repairs, two different restorati
actions are considered. A system in the excitetlvaoé state is
assumed to be brought back to a free-failure &tate restart,
while a system in the software failure state rezpin full
reload of the system. When a restart is initiatee, process
with the failure is stopped, a subset of the preces data
reset, and the processing resumed. Because theibubs
excited software state have not a high criticatity, restart is a
quick process (5 mMinuteSeswr= 1/12 H), and negligible
human intervention is assumed (there is no impuettted RCR).

On the other hand, a reload is a more complewmaetnd
requires more time, as the software failures iis tase are
more severe. During a reload, the processor anphegals are
reset and tested, while the processor’'s softwack data are
reloaded. The average duration of this action ssirmed to be
30 minutes Mfeoaq= 1/2 hHY), and human intervention is not
negligible (it does affect the RCR). Note that weaite
restart/reload can be done in parallel with haréwapairs —
i.e. there is one dedicated repair crew for hardvesid another
for software failures.

Finally, the number of affected clients due to \wafie
failures is fixed as follows. In the software fadustate, the
OLT chassis system is considered to be down, thiakind of
failure affect 1 600 clients. When the system ighie excited
software state, the number of failed clients depeod the

chosen approach. Because the software is assumdzk to

working in the optimistic approach, there are nitethclients
in this case. Yet, the pessimistic approach corsittat some
end users do notice the outage, thus the numbailed clients
is modelled as a uniform variable between 1 and 400

V. DEPENDABILITY AND FAILURE-RELATED OPEX

SIMULATION RESULTS

This section presents the results of the depentahihd
failure-related OPEX study, after solving the Markmodels
presented in Sect. IV by means of simulations. rA&tebrief
description of the simulator, results for the aafaiiity, failure
impact and dependability-related OPEX are reported.

Due to the large number of states, simulationsegeaired
to solve the Markov models. Amid other optionsndarmized
simulator [15] has been implemented; solved by rseah
Monte Carlo simulation because of its flexibilitywda easy
implementation [11]. As explained in Sect. IV. a different

scenarios have been considered, namely dense ardesp

scenarios. Additionally, two different approachesr fthe
excited software state are assumed as explaingddn IV B —
the optimistic and the pessimistic approach. Thecefof the
testing phase duration (which affettgy as described in Sect.

Il) is also investigated by varying the testingnd from 5 500
(duration of testing phase in [9]) to 50 000 houFmally,

results also include the case with only hardwaikires as
baseline to measure the hampering of softwareréslin the
PON dependability and failure-related OPEX.

A. Asymptotic Availability

Regarding asymptotic availability, Fig. 5 shows thsults
for dense scenarios, while Fig. 6 depicts the tedal sparse
scenarios. Results are presented with 95% confidienervals,
although most of them are hidden behind the magadts.
Undoubtedly, results when software failures arepresent do
not depend on the testing time.

Let us focus first on dense scenarios (Fig. 5).idzety,
results show that software failures markedly domeihe PON
system availability, both for the optimistic andsgienistic
approach. The effect of high and very high crittgabugs is
the difference between the no software and thenmugic
approach curves — notably dominating the availgbili
reduction. Besides, the effect of the low and medaiticality
bugs (if assumed to cause a failure) is the diffezebetween
the optimistic and pessimistic curves. Even if tbgting phase
is notably large (50 000 hours), availability drdgsm 0.99975
(no software) to 0.9968 (optimistic) or 0.9957 gesstic).

As the software testing time is increased, the |lalviity
also increases for both approaches, as the softfediee
intensity decreases following Duane’s model. Yt tncrease
is more remarkable with testing times between 5 30d
20 000 hours. Asymptotically, both approaches teenthe no
software case, as software failures become nelgigib

Fig. 5. Availability results for dense scenarios.

Fig. 6. Availability results for sparse scenarios.



As for the availability in sparse scenarios, degucin Fig.
6, roughly the same considerations are shown. Softw
failures also dominate the availability, althoughailesser way
than in dense scenarios, with the biggest reductiento high
and very high criticality bugs. Besides, the biggeduction in
the effect of software failures is achieved durithg first
20 000 hours as in dense scenarios. Yet, the bildilds also
noticeably affected by hardware failures due tgdarfeeder
and distribution fibers. In the best case (50 G&ding hours),
the availability is reduced from 0.99884 (no soft®jato
0.9959 (optimistic) or 0.9948 (pessimistic),
approximately a reduction of 0.00091 with respedhe dense
scenario correspond to hardware failures (fibeastfucture).

B. Failure Impact

As for the failure impact results, Fig. 7 and FRBgshow the
Cumulative Distribution Function (CDF) of the curative
number of failed clients for dense and sparse suEndlainly,
these figures show the probability of a failuresiag less than
or equal to a given number of failed clients (fiaélure impact).
Figures depict not only the case with only hardwiaitires,
but also the optimistic and pessimistic approachéh the
smallest and highest testing times. Curves for rothsting
times lie in between these two and are not preddoteclarity.

In dense scenarios, Fig. 7, it is clear that camogr
hardware failures, feeder fiber failures domingte failure
impact. The cumulative probability of failures witsmall
impact is modest till 1000 failed clients, when starts
increasing due to the effect of feeder fiber fakir When
software failures are included, all cases preserherease in
the cumulative probability around 1 600 failed ot Notably,
this probability corresponds to the software falustate,
dominating the failure impact. Markedly, the protigb
decreases as the testing time increases (solidisvetashed
curves) as the software becomes less failure-pifinally, the
difference between the optimistic and pessimistipraach is
also notable. In the optimistic approach (greerves); the
probability of failures with small impact is scaag the excited
software state does not contribute to the failunpact. Yet,
this probability is noteworthy in the pessimistippaoach;
although still the high and very high criticalityds dominate.

Results in sparse scenarios, Fig. 8, present althestame
concerns as dense scenarios. However, fiber failbezome
more notable in this case. Especially, the probigwf failures
with more than 1 000 failed clients increases a®rsibly, due

Fig. 7. CDF of the cumulative failure impact in derscenarios.

where

Fig. 8. CDF of the cumulative failure impact in sg@scenarios.

to larger feeder fibers. In fact this probabilitg inow
comparable with that of the excited software statethe
pessimistic approach, but with a much larger failimpact.
Besides, the probability of hardware failures vathall impact
is also noticeable, caused by distribution fibdufas.

C. Dependability-related OPEX

Finally, dependability-related OPEX costs are pngse as
expected cost per client (in $) over a time spat géar. The
expected cost is assessed by multiplying the ErpeCost
Rate (ECR) by the time span of interest. The ECResfrom
the cost rate of each stat@ @nd their probabilities (pas

ECR= ic*p. (8)

Besides, expected costs are broke down into Exgecte

Repair Costs (ERC) and Expected Penalty Costs (EB@)e
cost rate of each state consists of the RCR andP@R. As
parameters for the cost analysis, the repair craalary is
fixed to 190 $/hour and the penalty rate to 10 @/h&esults
are presented with 95% confidence intervals.

Fig. 9 shows the expected costs per client in dense

scenarios. Decidedly, repair costs are almost gietgi with

respect to penalty costs. As expected from previessilts,
software failures remarkably increase the expeatedts.
Among software failures, high and very high crilivabugs
(optimistic approach) produce the biggest incredse,to their
large failure impact (1 600 clients) and largeraiegprocess.
The expected cost increase due to low and mediitioadity

bugs (pessimistic approach) is almost comparaktleet@ost of
hardware failures. Still in terms of costs, thédais bigger due

Fig. 9. Expected cost per client in $ for dens@ages in 1 year time span.



Fig. 10. Expected cost per client in $ for spacsmnarios in 1 year time span.

to the large failure impact of feeder fiber failsréVhen the
testing time is increased, the costs are also eztlu¥et, this
reduction grows smaller for testing times largeantt20 000
hours, as hinted from the availability and failingact results.

In sparse scenarios, Fig. 10, the same trends ean
identified. As larger fibers become more failureq, there is
an increase in the expected cost because of fifi@structure
failures. Especially feeder fiber failures, becaabé¢heir large
failure impact and long repair time, lead to a éangcrease in
the expected costs. Contrarily, the expected agstal low and
medium criticality bugs is now of minor importancas the
expected costs of the optimistic and pessimistigr@gch are
almost the same. High and very high criticality $uage still
the most significant, being the biggest contributito the
expected costs. As before, increasing the testing beyond
20 000 hours does reduce the costs, but in a nzdngay.

VI. CONCLUSIONS
In this paper, a thorough dependability and faiwlated

OPEX study of TDM PONs has been performed. Whlle[]

software failures have been the main object of shely;
hardware failures have also been included for thiee sof
completeness. By applying Duane’s model for religbi
growth to the results in [9], the dependability (e@recisely,
the failure intensity) of the OLT software as adtion of the
testing time has been estimated. Subsequently, radMaost
model accounting for both hardware and softwareifes has
been developed. Finally, the asymptotic availahilfailure
impact and dependability-related OPEX of these types of
failures in TDM PONs have been assessed. While higth
very high criticality bugs are considered to caadailure; two
different approaches have been considered regatowgnd
medium criticality bugs, namely optimistic and pesstic
approach. The optimistic approach assumes that dod
medium criticality bugs do not cause a failure, levtihese bugs
do cause a failure in the pessimistic approach.

Primarily, this paper shows that software failupessent a
significant threat for PONs dependability and OPEXboth
dense and sparse scenarios. High and very higbatitit bugs
not only seriously hinder the availability, but ithiarge failure
impact considerably increases the failure-related@EXR. In
dense scenarios, low and medium criticality bug$env
considered to cause a failure, hamper the avatlabit a
greater way than hardware failures. Yet, theirtiadly small

failure impact and quick repair make their effedhwespect to
failure-related costs comparable to hardware fedun dense
scenarios. Contrarily, in sparse scenarios, low araium
criticality bugs pose the same threat to availgbds hardware
failures. Yet with respect to failure-related OPHX sparse
scenarios, hardware failures are far more serioais bbw and
medium criticality bugs. Mainly, this occurs becaumsrdware
failures are typically related to fiber cuts, wihlarge failure
impact and repair time. Expectedly, the effect oftwsare
failures can be reduced by increasing the duratbrthe
software testing time. However, this reduction Imees
marginal for testing times greater than 20 000 siour

Finally, the results presented in this paper aalftirther
research. Due to the lack of information regardsagtware
failures in PONs, software failure classificatiomdadescription
as well as the software dependability modellingmigimal.
Also, a proper cost analysis of software failuresjuires
modelling of the resources and costs associateéletdesting
phase. This way, a precise analysis of the trafi&etiveen
kesting phase duration and costs versus the effespftware
failures in service provision can be performed.
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