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A B S T R A C T

Tuning of vessel models in real-time based on vessel measurements and weather information is of great interest
in order to increase the safety and efficiency of marine operations. Vessel motion signals usually contain high-
frequency noise. For an unbiased model tuning algorithm, it is essential to filter the noisy signals in order to
identify the power of the wave-induced first-order vessel response. Lowpass filters with high accuracy should
therefore be applied. However, it is a challenge to design such a filter since the optimal cutoff frequency
can vary with sea states, vessel dimensions, vessel conditions, etc. This paper proposes a novel algorithm to
adaptively search for the optimal cutoff frequency for a lowpass filter with high accuracy. The algorithm is
fundamentally based on the facts that the vessel naturally acts as a lowpass filter and the energy from the
high-frequency components, e.g., signal noise, is significantly smaller than that from the wave-induced vessel
response. The algorithm is validated by 500 numerically simulated vessel motion signals with quite high noise
levels and also by analysis of several on-site full-scale vessel motion signals. The improvements to the tuning
results for the vessel parameters are demonstrated.
1. Introduction

Marine operations are usually designed onshore before they are
executed. Operational limits are determined based on presumed oper-
ational scenarios, loading conditions, etc. Practically, it is common to
calculate the wave-induced loads and motions based on linear transfer
functions, named response amplitude operators (RAOs) (DNVGL-ST-
N001, 2016). However, the applied RAOs at the design stage may not
represent the true vessel conditions during operation in an adequate
manner, because (1) conservative engineering assumptions are usually
made to cover the variation of vessel loading conditions during ma-
rine operations, e.g., pipe laying; and (2) the onboard vessel loading
condition (inertia distribution) may deviate from the presumed one.

These limitations could lead to over-conservative and inefficient ma-
rine operations, or even risky operations with increased possibility of
accidents. Therefore, a dynamically adaptive tuning of vessel numerical
models could continuously help to improve the knowledge on the real-
time vessel condition, and hence increase the efficiency and safety of
the marine operations. Han et al. (2021a) proposed an algorithm based
on Bayesian inference to improve the knowledge about these real-time
vessel conditions and to reduce the model uncertainty quantitatively
by using (1) onboard data from sensor systems, e.g., motion reference
unit (MRU) and global navigation satellite system (GNSS); (2) wave
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information such as 𝐻𝑠 (significant wave height), 𝑇𝑝 (spectral peak
period), 𝛽𝑊 (wave direction), directional spreading, and spectral shape.
As explained in Han et al. (2021a), tuning of a vessel hydrodynamic
model is a multi-modal, multi-dimensional, and nonlinear problem.

The vessel motion measurements are extremely important for many
onboard systems, e.g., dynamic positioning (DP) systems and active
heave compensators (AHCs). A typical MRU system uses measurements
from an inertial measurement unit (IMU) which consists of accelerom-
eters measuring translational accelerations and gyroscopes measuring
rotational velocities. It is well recognized that all measurements are
inexact but usually they can statistically represent the true value (Hub-
bard, 2014). The accuracy and precision of the measurements depend
on the involved methods, processes, and instruments. IMU measure-
ments may contain errors due to misalignment, mis-scaling, constant
and slow-varying biases, gravity-related terms, and nonlinearities from
the gyro torque and accelerometers (Grewal et al., 1991). Sensor fu-
sion and signal filtering techniques should therefore be applied to
achieve high-fidelity motion monitoring, reduce sensor noise, and avoid
measurement drift (Fossen, 2011).

Filters can be categorized into model-free and model-based ap-
proaches, depending on whether a representative model is applied.
Kalman filters and the associated extended methods have been the most
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Nomenclature

𝛼𝑗 Sensor screening ratio (SSR) for sensor j
�̄�𝑗 The mean of the measured filtered time

series for sensor 𝑗
𝛽44 Ratio between the additional roll damping

and the critical roll damping
𝛽𝑊 Wave direction w.r.t. vessel coordinate

system
𝜂33, ̇𝜂33, ̈𝜂33 Heave displacement, velocity, acceleration
𝛾𝑝 Peak enhancement factor
�̂�𝑗

(

𝑓𝑙𝑝
)

The standard deviation of signal from sen-
sor 𝑗 after filtered at cutoff frequency
𝑓𝑙𝑝

�̂�𝑋 The filtered vessel motion signal STD
�̂�𝑧 The zero-upcrossing period of the filtered

vessel motion signal
�̂�𝑗 (𝑡) The filtered time series for sensor 𝑗 at time

step 𝑡
𝜔 Wave frequency
𝜔𝑝 Wave spectral peak frequency

𝑊𝑗 The weight matrix (likelihood function)
based on the received measurements from
sensor 𝑗

𝛷𝑚 The uncertain vessel parameter to be tuned,
𝑚 ∈ {1, 2, ...,𝑀}

𝜎∗𝑋 The true vessel motion signal STD
𝜎2𝑁 Variance of noise
𝜎2𝑋 Variance of response
𝜎𝜎𝑟,𝑗 The STD of 𝜎𝑟,𝑗 over 𝑟 ∈ {1, 2, ..., 𝑁𝑅𝐴𝑂}
𝜎𝑟,𝑗 The predicted STD by using 𝑅𝐴𝑂𝑟,𝑗
𝑓 ∗
𝑙𝑝 The optimal cutoff frequency [Hz] for a

lowpass filter
𝑓𝑙𝑝 Lowpass filter cutoff frequency [Hz]
𝐻

(

𝜔, 𝛽𝑊
)

Linear transfer function between wave and
vessel (heave) response, i.e. RAO

𝐻𝑠 Significant wave height
𝐼𝑚 The number of the discrete values used for

RAO database for the vessel parameter 𝛷𝑚
𝑖𝑚 The 𝑖𝑚th value of the variable 𝛷𝑚 in the

RAO database
𝑗 Sensor ID, the 𝑗th sensor, representing dif-

ferent quantities (displacement, velocity,
acceleration) and locations

𝐾𝑚 The number of the discrete values use for
the probability distribution model for the
vessel parameter 𝛷𝑚

𝑘𝑚 The 𝑘𝑚th value of the discretized variable
𝛷𝑚 in the probability distribution model

𝑀 The number of considered variables for
tuning

𝑁𝜔 The number of discretized frequencies
𝑁𝑡 The number of discretized time steps
𝑁𝑃𝑟𝑜𝑏 The total number of the discrete points

for the joint probability distribution model,
𝑁𝑃𝑟𝑜𝑏 =

∏𝑀
𝑚=1(𝐾𝑚)

popular model-based approaches, due to their convenient formulation

for state estimation and feasibility in relation to time-varying systems
2

𝑁𝑅𝐴𝑂 The total number of possible vessel pa-
rameter combinations to build the RAO
database, 𝑁𝑅𝐴𝑂 =

∏𝑀
𝑚=1(𝐼𝑚)

𝑝 Power parameter
𝑃 (𝑛) (𝛷1, ..., 𝛷𝑀

)

The updated discrete joint probability dis-
tribution after the 𝑛th updating step

𝑟55 Pitch radius of gyration
𝑅𝐴𝑂𝑟,𝑗 The RAO based on the variable combi-

nation 𝑟, for the sensor 𝑗 (location and
quantity)

𝑆+
𝜁𝜁

(

𝜔, 𝛽𝑊
)

Single-sided power spectral density of long-
crested waves

𝑆+
𝑋𝑋 (𝜔) Single-sided power spectral density of ves-

sel response X
𝑇𝑝 Spectral peak period
𝑇𝑧 Zero-upcrossing period
𝑤𝑟,𝑗 Weight factor for the 𝑟th variable combi-

nation based on measurement from sensor
𝑗

𝑥𝑗 (𝑡) The original signal for sensor 𝑗 at time step
𝑡

FFT Fast Fourier transform
GMT Correction to the transverse metacentric

height due to free surface effects
IMU Inertial measurement unit
MRU Motion reference unit
OSV Offshore supply vessel
PDF Probability density function
PM Pierson–Moskowitz spectrum
RAO Response amplitude operator
SNR Signal-to-noise ratio
STD Standard deviation
WN White noise
XCG Longitudinal coordinate of vessel center of

gravity

in the time domain (Simon, 2006). Most MRU applications use model-
based advanced Kalman filters for the convenient applications of sensor
fusion. Ren et al. (2019) proposed motion estimation algorithms by fus-
ing the IMU and GNSS measurements. Grewal et al. (1991) introduced
a dual extended Kalman filter for estimating the measurement errors
from gyroscopes and accelerometers separately. The separated filtering
of gyro and accelerometer measurements reduces the number of coef-
ficients to be tuned. Besides, significant amounts of motion estimation
algorithms have been developed based on various Kalman filters, such
as unscented Kalman filter (Zhang et al., 2005), adaptive Kalman
filter (Li and Wang, 2013), and exogenous Kalman filter (Stovner et al.,
2018). An alternative type of model-based filtering technique is based
on the Lyapunov stability concept (Fossen and Strand, 1999; Grip
et al., 2015). The residual error converges to zero or a bounded region
according to online approximation and adaptive updating.

Taking advantage of their simple form, model-free filter techniques
are easier to apply. Usually, one is interested to extract the signals
within a certain frequency range by applying a bandpass, notch, low-
pass, or highpass filter. Many different signal filters have been devel-
oped and applied in different fields, e.g., Butterworth filters (Butter-
worth, 1930) and Kolmogorov filters (Challa and Bar-Shalom, 2000).
However, the cutoff frequency should be designed and tuned, either
explicitly or implicitly in the filter models. As the first statistically
designed filter, the Wiener filter (Wiener, 1964) can optimally extract
the true signal from noise within the frequency domain by designing the
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Fig. 1. Process of tuning vessel hydrodynamic model parameters, based on the vessel motion measurements and wave spectrum. Precise knowledge about wave spectrum is
assumed.
filter as a linear time-invariant system, requiring knowledge about the
noise-free signal spectrum and the noise spectrum. For processing with
heave motion measurements, Godhaven (1998) proposed an adaptive
highpass filter where the optimal cutoff frequency was obtained by min-
imizing the measurement errors, which depends on the measured wave
condition, the selected filter model and filter order, the considered error
sources, etc.

Parametric sensitivity studies of the vessel model tuning algorithm
proposed by Han et al. (2021a) showed that the quality of the tuned
results highly relies on a reliable filtering of signal noise to identify
the vessel motion energy in the wave frequency region. Assuming
that the noise energy is mainly within the high-frequency region, a
lowpass filter should therefore be applied to remove the high-frequency
components (e.g., noises) from the vessel motion signals. Its optimal
cutoff frequency depends on many parameters such as sea state, vessel
advancing speed, vessel heading, etc. This paper focuses on developing
an adaptive algorithm to find the optimal cutoff frequency for the
lowpass filter.

The paper is organized as follows. Section 2 briefly describes the
procedures of the proposed model tuning algorithm. Section 3 describes
3

the basic inputs of the performed analyses and the scope of work to find
an algorithm or a function which could calculate the optimal cutoff
frequency. Being the core of this paper, Section 4 aims to identify
the important parameters correlated to the optimal cutoff frequency
and explore the properties associated with the signals and the cutoff
frequencies. Consequently, a novel algorithm is then proposed in Sec-
tion 4, which can adaptively tune the optimal cutoff frequencies. Then
the proposed algorithm is verified by means of 500 randomly generated
time series in addition to several on-site vessel motion measurements,
described in Section 5. The influence of the proposed adaptive lowpass
filter on the vessel model tuning results is then evaluated. Conclusions
and future work are presented in Section 6.

2. Basic vessel model tuning procedure

The considered vessel seakeeping model tuning procedure proposed
by Han et al. (2021a) is briefly repeated in this section and illus-
trated in Fig. 1. The joint probability distribution of the uncertain
vessel parameters (𝛷 ,… , 𝛷 ,… , 𝛷 , 𝑚 ∈ {1, 2,… ,𝑀}), after tuning
1 𝑚 𝑀
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i
a
s
p

n times based on the proposed tuning procedure can be expressed
as 𝑃 (𝑛) (𝛷1, 𝛷2,… , 𝛷𝑀

)

. The update is based on the provided wave
nformation, vessel motion measurements (e.g., at a sensor numbered
s 𝑗), and a prepared RAO database which covers all the considered
ensors and the whole uncertainty ranges of the considered vessel
arameters:

1. Filter the vessel motion measurements from sensor 𝑗, 𝑥𝑗 (𝑡).
In reality, the raw motion signal includes noise in the high-
frequency range, a low-frequency signal bias, and environment-
induced low-frequency motions. It is important to filter out
such disturbances and to identify the first-order wave-induced
motions.

2. Calculate the standard deviation (STD) of the filtered signal, �̂�𝑗 ,
by

�̂�𝑗 =

√

√

√

√

∑𝑁𝑡
𝑡=1

(

�̂�𝑗 (𝑡) − �̄�𝑗
)2

𝑁𝑡 − 1
(1a)

�̄�𝑗 =
∑𝑁𝑡

𝑡=1 �̂�𝑗 (𝑡)
𝑁𝑡

(1b)

where �̂�𝑗 (𝑡) means the estimated time series of the filtered signal
for sensor 𝑗 at the time step 𝑡, 𝑁𝑡 is the total number of discrete
time steps of the signal, and �̄�𝑗 is the mean value of the filtered
signal.

3. Calculate the standard deviations of the possible vessel response
𝜎𝑟,𝑗 , based on the corresponding wave spectrum and the candi-
date RAO from the RAO database

𝜎𝑟,𝑗 =

√

√

√

√

𝑁𝜔
∑

𝑛=1
𝑆+
𝑋𝑋,(𝑟,𝑗)

(

𝜔𝑛
)

⋅ 𝛥𝜔 (2a)

𝑆+
𝑋𝑋,(𝑟,𝑗) (𝜔) =

|

|

|

𝐻𝑟,𝑗
(

𝜔, 𝛽𝑊
)

|

|

|

2
⋅ 𝑆+

𝜁𝜁
(

𝜔, 𝛽𝑊
)

(2b)

where 𝑁𝜔 is the total number of discretized frequencies for
the response spectrum, 𝑆+

𝑋𝑋,(𝑟,𝑗) (𝜔) is the spectrum for response
𝑋, 𝑆+

𝜁𝜁
(

𝜔, 𝛽𝑊
)

is the long-crested wave spectrum without con-
sidering directional spreading. 𝑆+ means single-sided power
spectrum, 𝐻𝑟,𝑗

(

𝜔, 𝛽𝑊
)

represents the RAO candidate calculated
based on vessel parameter combination 𝑟 for sensor 𝑗. Each pos-
sible combination of the considered vessel parameters, i.e.,

(

𝛷𝑖1,
𝛷𝑖2,… , 𝛷𝑖𝑀

)

, is subscripted with number 𝑟 ∈
{

1, 2,… , 𝑁𝑅𝐴𝑂
}

,
where 𝑁𝑅𝐴𝑂 =

∏𝑀
𝑚=1 𝐼𝑚 is the total number of vessel parameter

combinations and 𝐼𝑚 is the number of the discretized values
of the considered uncertain vessel parameter 𝛷𝑚. The possible
response STD with the 𝑟th combination of parameters for the
sensor 𝑗 is denoted by 𝜎𝑟,𝑗 .

4. Screen out insensitive sensor measurements with respect to the
considered vessel model parameters for the current sea state.
A new parameter 𝛼𝑗 , named sensor screening ratio (SSR), is
introduced

𝛼𝑗 =
𝜎𝜎𝑟,𝑗
�̂�𝑗

(3a)

𝜎𝜎𝑟,𝑗 =

√

√

√

√

∑𝑁𝑅𝐴𝑂
𝑟=1

(

𝜎𝑟,𝑗 − �̄�𝑅,𝑗
)2

𝑁𝑅𝐴𝑂 − 1
(3b)

�̄�𝑅,𝑗 =
∑𝑁𝑅𝐴𝑂

𝑟=1 𝜎𝑟,𝑗
𝑁𝑅𝐴𝑂

(3c)

where 𝜎𝜎𝑟,𝑗 is the STD of 𝜎𝑟,𝑗 for 𝑟 ∈
{

1, 2,… , 𝑁𝑅𝐴𝑂
}

. The
previous study used a screening criterion of 𝛼0 = 0.05. For a
certain sensor 𝑗, if 𝛼𝑗 < 0.05, then the sensor 𝑗 will be excluded
when updating the parameters. SSR basically represents how im-
portant the considered vessel parameters are under the current
4

sea state at sensor 𝑗.
5. Calculate the weight factor for each 𝜎𝑟,𝑗 by

𝑤𝑟,𝑗 =
1

|

|

|

𝜎𝑟,𝑗 − �̂�𝑗
|

|

|

𝑝 (4)

where 𝑝 ∈ R+ is called the power parameter. The choice of 𝑝
value depends on the number of dimensions (𝑀) for the model
tuning, the sensitivity and uncertainty range of the considered
vessel parameters, and the engineering judgment.

6. Establish the weight matrix 𝑊𝑗 , i.e., the likelihood function,
for all possible combinations of vessel parameters in the RAO
database. The weight matrix has the size of 𝐼1 × 𝐼2 ×⋯ × 𝐼𝑀 .

7. Linearly interpolate the weight matrix 𝑊𝑗 from the size of 𝐼1 ×
𝐼2 × ⋯ × 𝐼𝑀 (variable resolution in the RAO database) to the
size of 𝐾1 × 𝐾2 × ⋯ × 𝐾𝑀 (variable resolution in the discrete
joint probability distribution model).

8. Update the joint probability distribution 𝑃 (𝑛+1) (𝛷1, 𝛷2,… , 𝛷𝑀
)

by multiplying the prior discrete joint probability density with
the weight matrix 𝑊𝑗 element-wise

𝑃𝐷𝐹 (𝑛+1) (𝛷1,… , 𝛷𝑀
)

= 
(

𝑃𝐷𝐹 (𝑛) (𝛷1,… , 𝛷𝑀
)

⊙𝑊𝑗

)

(5)

where 𝑃𝐷𝐹 means the probability density function, ⊙ operator
means the element-wise multiplication of two matrices, i.e., a
Hadamard product (Scheick, 1997).  ( ⋅ ) is a normaliza-
tion operator, so that the sum of the probabilities in the joint
probability distribution remains 1.0 after every tuning.

The main idea is to transfer the objective of recursively calculat-
ing direction-dependent vessel motion RAOs based on vessel motion
measurements and wave information to the statistical inference on the
vessel model parameters which are direction-independent. The benefits
are (1) the tuned results also indicate the confidence; (2) the tuned
results can be used to predict the future vessel responses for different
sea states and wave directions.

3. Problem statement

Early case studies (Han et al., 2021a) indicated the key role of signal
filtering for unbiased vessel model tuning results. Both over-filtering
and under-filtering of signal noise could lead to biased tuning results.
The high-frequency components of the motion signal which are mainly
due to the signal noise and the local vibrations can be removed by a
lowpass filter. For the lowpass filter, it is essential to find the optimal
cutoff frequency which depends on the sea state, vessel dimension, and
vessel condition. However, the wave spectrum can be represented in
terms of a number of parameters, such as 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , wave spreading
and spectral shape which in reality may not be accurately described
by any of the well-known wave spectral types, e.g., Pierson–Moskowitz
(PM), JONSWAP, and Thorsethaugen. Therefore, it is difficult to find
a general function relating the optimal cutoff frequency to the sea
state, vessel dimensions, and vessel condition. In addition, due to the
random nature of signal noises, mathematically accurate expression for
the function of the optimal cutoff frequency 𝑓 ∗

𝑙𝑝 becomes a challenge.
This paper focuses on finding the optimal lowpass filter cutoff

frequency (𝑓 ∗
𝑙𝑝) in order to estimate the energy of the true wave-induced

first-order vessel motion as accurately as possible. The signals are
assumed to have no low-frequency components, and therefore only a
lowpass filter was required for the signal. With the ambition of finding
relations between sea states and 𝑓 ∗

𝑙𝑝, the analysis scope described in
Section 3.2 is performed. All the analyses were based on one selected

vessel with several sensor systems as described in Section 3.1.
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Fig. 2. Illustration of vessel coordinate system and locations of considered measurement points.
𝜂
𝜂

Table 1
Vessel information, base case.

Parameters Description Value Unit

𝐿𝑃𝑃 Length between perpendiculars ∼120 m

B Breadth ∼27 m

D (Ballast) Draft ∼5.1 m

3.1. Vessel model

The numerical studies are based on an offshore supply vessel (OSV)
close to its ballast condition (Han et al., 2021a). The primary vessel
dimensions are summarized in Table 1. The vessel reference coordinate
system moves steadily at the vessel forward speed, as illustrated in
Fig. 2. The positive 𝑋-axis along the longitudinal symmetric axis points
from the stern to the bow (𝑋 = 0 aft), the 𝑍-axis is pointing vertically
upwards from the keel (𝑍 = 0), and the 𝑌 -axis is normal to the 𝑋–𝑍
plane where 𝑌 = 0 is at the vessel longitudinal symmetry plane. The
wave direction 𝛽𝑊 follows the same coordinate system, i.e. waves at
180◦ heading propagate along the negative 𝑋-axis.

The RAO database was established (1) to generate signals for dif-
ferent locations and responses of the vessel; and (2) to evaluate the
effects of the adaptive lowpass filter on the model tuning performance.
Based on the early sensitivity studies of the hydrodynamic model
parameters in relation to the vessel motions of interest (Han et al.,
2020), variation of five vessel parameters was considered for the RAO
database. The considered uncertainty ranges are summarized in Ta-
ble 2. The discrete values for each parameter are evenly distributed
within its uncertainty range. Seakeeping analyses were performed by
Wasim (DNV, 2018) (from the DNV Sesam family), applying the Rank-
ine panel method (Kring, 1994). Running analyses through all wave
periods in the time domain, the outputs can then be transferred to
the frequency domain in order to build the RAOs. A RAO database
was then established by considering all possible combinations of the
discrete values for the five vessel parameters. Heave responses are often
of interest for marine operations (e.g., heavy lift). Therefore, heave
RAOs (i.e. displacement, velocity and acceleration) at three different
locations (see Fig. 2) were included in the RAO database, for each
combination of vessel parameters. As described in Table 3, 9 different
measured quantities (sensors) associated with heave response were
considered in the model tuning simulations. Only zero advancing speed
5

Table 2
Range of vessel model parameters in RAO database.

Parameters Variation range Number of values

Mass [−6%, +6%] 7

XCG [−4 m, +4 m] 5

𝑟55 [−9%, +9%] 7

GMTa [0, 1 m] 6

𝛽44 [2%, 14%] 7

aHere ‘‘GMT’’ represents the free surface correction to the transverse metacentric height.
𝐺𝑀𝑇 = 0.5 m here means that the transverse metacentric height is corrected with
−0.5 m due to free surface effects. It is not the value of the transverse metacentric
height.

Table 3
Description of sensor measurements.

Sensor ID Location Coordinate (x,y,z) [m] Signal/measurements

Disp_A A (60.0, 0.0, 10.0) 𝜂33 (𝑡) at location A
Disp_B B (60.0, 13.0, 10.0) 𝜂33 (𝑡) at location B
Disp_C C (0.0, 10.0, 14.0) 𝜂33 (𝑡) at location C
Vel_A A (60.0, 0.0, 10.0) �̇�33 (𝑡) at location A
Vel_B B (60.0, 13.0, 10.0) �̇�33 (𝑡) at location B
Vel_C C (0.0, 10.0, 14.0) �̇�33 (𝑡) at location C
Acc_A A (60.0, 0.0, 10.0) �̈�33 (𝑡) at location A
Acc_B B (60.0, 13.0, 10.0) �̈�33 (𝑡) at location B
Acc_C C (0.0, 10.0, 14.0) �̈�33 (𝑡) at location C

𝜂33 (𝑡): time series of heave displacement;
̇ 33 (𝑡): time series of heave velocity;
̈33 (𝑡): time series of heave acceleration.

was considered for simplicity in order to avoid dealing with the 3-to-1
mapping problem between the absolute wave frequency and encounter
frequency for following waves (Lewandowski, 2004). In total, 13 Wave
headings between 0◦ and 180◦ with a 15◦ interval were considered in
the RAO database for the 9 sensor measurements.

3.2. Finding the optimal cutoff frequency

It is assumed that the high-frequency signal errors can be repre-
sented by white noise

𝑊𝑁 ∼ 
(

0, 𝜎2
)

(6)
𝑁
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Fig. 3. Flow chart for the purpose of simulating noisy vessel response measurements.. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
where the variance of the noise 𝜎2𝑁 is determined by the signal-to-noise
ratio (SNR)

𝑆𝑁𝑅 =
𝜎2𝑋
𝜎2𝑁

(7)

where 𝜎2𝑋 is the variance of the true signal.
The response signal can be simulated according to the process in

Fig. 3. Blocks in blue are the required inputs which together can
uniquely determine the output signal. The seed number was used to
generate both the relative phase 𝜑𝑛 for each frequency component 𝜔𝑛
and the noise for each time step. A massive amount of vessel heave
motion signals were generated by varying all the input parameters in
Fig. 3, in order to investigate the relations between inputs and 𝑓 ∗

𝑙𝑝.
The considered variation of inputs are summarized in Table 4. Each

simulation lasts for 1 h. The time series were generated based on
the corresponding response spectrum by application of the following
relationships:

𝑥 (𝑡) =
𝑁𝜔
∑

𝑛=1
𝐶𝑛

(

𝜔𝑛
)

cos
(

𝜔𝑛𝑡 + 𝜑𝑛
)

(8a)

𝐶𝑛
(

𝜔𝑛
)

=
√

2𝑆+
𝑋𝑋

(

𝜔𝑛
)

⋅ 𝛥𝜔 (8b)

𝑆+
𝑋𝑋 (𝜔) =|𝐻𝑋 (𝜔, 𝛽𝑊 )|2 ⋅ 𝑆+

𝜁𝜁 (𝜔, 𝛽𝑊 ) (8c)

where 𝜑𝑛 ∈ [0, 2𝜋) is a random phase angle which is continuous
and uniformly distributed, 𝛥𝜔 is the width of the radial frequency
interval of 𝜔𝑛, and 𝑁𝜔 is the total number of the discrete frequen-
cies for the response spectrum. 𝑆+

𝑋𝑋
(

𝜔𝑛
)

is the single-sided response
spectrum for the response 𝑋, calculated by Eq. (8c). |𝐻𝑋 (𝜔, 𝛽𝑊 )| is
the RAO of the response 𝑋 for a specific vessel condition. The vessel
condition in the present paper is defined by the 5 vessel parameters
in Table 2. One vessel condition was randomly selected among the
RAO database for the studies of finding the optimal cutoff frequency.
𝑆+
𝜁𝜁 (𝜔, 𝛽𝑊 ) is the wave spectrum. The influence of wave spectral type

on the optimal cutoff frequency was studied where three wave spectral
types (DNVGL-RP-C205, 2017) were considered, i.e., PM, JONSWAP,
and Torsethaugen.

The PM wave spectrum 𝑆𝑃𝑀 (𝜔), originally proposed for fully-
developed sea, can be calculated based on 𝐻𝑠 and 𝑇𝑝:

𝑆𝑃𝑀 (𝜔) = 5
16

𝐻2
𝑠𝜔

4
𝑝𝜔

−5 exp(−5
4
( 𝜔
𝜔𝑝

)−4) (9)

where 𝜔𝑝 = 2𝜋∕𝑇𝑝 is the wave spectral peak frequency.
The JONSWAP spectrum 𝑆𝐽𝑂𝑁 (𝜔), representing a fetch limited

developing sea state, can be calculated by

𝑆 (𝜔) = (1 − 0.287 ln (𝛾 ))𝑆 (𝜔,𝜔 ,𝐻 )𝛾
exp (−0.5(

𝜔−𝜔𝑝
𝜎𝑤𝜔𝑝

)2)
(10a)
6

𝐽𝑂𝑁 𝑝 𝑃𝑀 𝑝 𝑠 𝑝
𝛾𝑝 =

⎧

⎪

⎨

⎪

⎩

5 for 𝑇𝑝∕
√

𝐻𝑠 ≤ 3.6
exp (5.75 − 1.15 𝑇𝑝

√

𝐻𝑠
) for 3.6 < 𝑇𝑝∕

√

𝐻𝑠 < 5

1 for 𝑇𝑝∕
√

𝐻𝑠 ≥ 5

(10b)

𝜎𝑤 =

{

0.07 for 𝜔 ≤ 𝜔𝑝

0.09 for 𝜔 > 𝜔𝑝
(10c)

where 𝛾𝑝 is the peak enhancement factor calculated based on 𝐻𝑠 and
𝑇𝑝, and 𝜎𝑤 is the spectral width parameter.

The double-peaked Torsethaugen spectrum can be calculated based
on the simplified form described in Appendix A.2 in DNVGL-RP-C205
(2017). It is the sum of two JONSWAP spectra described in Eq. (10).
The simplified formulation of the Torsethaugen spectrum 𝑆𝑇 𝑜𝑟(𝜔) is
different for the case of sea states dominated by wind seas versus those
dominated by swells. These are distinguished based on the value of the
parameter 𝑇𝑓 = 6.6𝐻1∕3

𝑠 :

𝑆𝑇 𝑜𝑟(𝜔) = 𝑆𝐽𝑂𝑁,𝑤(𝜔|𝐻𝑠,𝑤, 𝑇𝑝,𝑤, 𝛾𝑝,𝑤) + 𝑆𝐽𝑂𝑁,𝑠𝑤(𝜔|𝐻𝑠,𝑠𝑤, 𝑇𝑝,𝑠𝑤, 𝛾𝑝,𝑠𝑤)

(11a)

For wind dominated sea (𝑇𝑝 ≤ 𝑇𝑓 ):

𝐻𝑠,𝑤 = 𝑟𝑝𝑤𝐻𝑠 (11b)

𝑇𝑝,𝑤 = 𝑇𝑝 (11c)

𝛾𝑝,𝑤 = 35[ 2𝜋
𝑔

𝐻𝑠,𝑤

𝑇 2
𝑝

]0.857 (11d)

𝐻𝑠,𝑠𝑤 =
√

1 − 𝑟2𝑝𝑤𝐻𝑠 (11e)

𝑇𝑝,𝑠𝑤 = 𝑇𝑓 + 2.0 (11f)

𝛾𝑝,𝑠𝑤 = 1 (11g)

𝑟𝑝𝑤 = 0.7 + 0.3 exp (−(2
𝑇𝑓 − 𝑇𝑝

𝑇𝑓 − 2
√

𝐻𝑠
)2) (11h)

For swell dominated sea (𝑇𝑝 > 𝑇𝑓 ):

𝐻𝑠,𝑤 =
√

1 − 𝑟2𝑝𝑠𝐻𝑠 (11i)

𝑇𝑝,𝑤 = 6.6𝐻1∕3
𝑠,𝑤 (11j)

𝛾𝑝,𝑤 = 1 (11k)

𝐻𝑠,𝑠𝑤 = 𝑟𝑝𝑠𝐻𝑠 (11l)

𝑇𝑝,𝑠𝑤 = 𝑇𝑝 (11m)

𝛾𝑝,𝑠𝑤 = 35[ 2𝜋
𝑔

𝐻𝑠
2
]0.857(1 + 6

𝑇𝑝 − 𝑇𝑓
25 − 𝑇

) (11n)

𝑇𝑓 𝑓
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Table 4
Parameter variation for generating heave response signals.

Parameter Values Unit Number of values

𝐻𝑠 {1, 4} m 2
𝑇𝑝 {5, 6,… , 25} s 21
𝛽𝑊 {0, 30, 60, 90} ◦ 4
Wave spectrum {PM, JONSWAP, Torsethaugen} – 3
Seed variation Random [1, 300] – 10
SNR {10, 30, 100} – 3
Sensor Described in Table 3 – 9

Fig. 4. Distribution of 𝜆, i.e., the ratio between standard deviations calculated based
on the spectrum by Eq. (2a) and the time series by Eq. (1a) without noises.

𝑟𝑝𝑠 = 0.6 + 0.4 exp (−(
𝑇𝑝 − 𝑇𝑓

0.3(25 − 𝑇𝑓 )
)2) (11o)

where 𝐻𝑠,𝑤, 𝑇𝑝,𝑤, and 𝛾𝑝,𝑤 stand for the associated 𝐻𝑠, 𝑇𝑝, and 𝛾𝑝 of the
wind sea component 𝑆𝐽𝑂𝑁,𝑤(𝜔|𝐻𝑠,𝑤, 𝑇𝑝,𝑤, 𝛾𝑝,𝑤), while 𝐻𝑠,𝑠𝑤, 𝑇𝑝,𝑠𝑤, 𝛾𝑝,𝑠𝑤
correspond to the swell component 𝑆𝐽𝑂𝑁,𝑠𝑤(𝜔|𝐻𝑠,𝑠𝑤, 𝑇𝑝,𝑠𝑤, 𝛾𝑝,𝑠𝑤).

A FFT (Cooley and Tukey, 1965) lowpass filter using the Python
SciPy package (Virtanen et al., 2020) was applied to filter each signal,
by application of many different cutoff frequencies 𝑓𝑙𝑝 ∈ [0.05, 2.0] Hz.
The optimal cutoff frequency 𝑓 ∗

𝑙𝑝, therefore, can be determined by
comparing the STD of the filtered signal �̂�𝑋

(

𝑓𝑙𝑝
)

with the STD of the
true response time series 𝜎∗𝑋 . The study tested 25 cutoff frequencies for
each signal, i.e., 𝑓𝑙𝑝 ∈ {0.050, 0.053, 0.056 ,0.059, 0.063, 0.067, 0.071,
0.077, 0.083, 0.091, 0.10, 0.111, 0.125, 0.143, 0.167, 0.20, 0.25, 0.30,
0.33, 0.40, 0.50, 0.60, 0.75, 1.0, 1.5, 2.0} Hz.

4. Data exploration

This section aims to identify the most relevant input parameters for
the optimal cutoff frequency 𝑓 ∗

𝑙𝑝 and to propose a way to find 𝑓 ∗
𝑙𝑝. Due to

the limited number of discretized frequencies and discretized time steps
for a given simulation length based on Eq. (8), the generated response
time series will not contain exactly the same power as the response
power spectrum. Fig. 4 indicates that there may be up to about a ±2.5%
error/
uncertainty for the studied 1-h response realizations with a limited
number of discrete frequencies and time steps. This approximately
corresponds to a SNR of 20. The uncertainty can be reduced by
increasing the number of discretized frequencies, reducing the time
series sampling interval, and increasing the duration of the realization.
The studies did not attempt to reduce this error.

Fig. 5 shows the overall distribution of the optimal cutoff frequency
𝑓 ∗
𝑙𝑝 together with the 5-, 25-, 50-, 75-, and 95-percentile values. The

optimal cutoff frequencies are well concentrated between 0.15 Hz and
7

Fig. 5. Histogram of the optimal lowpass filter cutoff frequencies.

0.3 Hz. However, further data exploration has to be performed in order
to find any possible relation between 𝑓 ∗

𝑙𝑝 and the input parameters
quantitatively.

Initial data exploration shows that the optimal cutoff frequency
𝑓 ∗
𝑙𝑝 can be influenced by the characteristic spectral period (e.g., 𝑇𝑝),

incoming wave direction 𝛽𝑊 , wave spectral shape, the sensor location,
and noise level SNR. In addition, the significant influence from seed
variation is also observed. The optimal cutoff frequency value from
signals with higher SNR (less noise) seems to be more affected by seed
variation.

Note that there were very few cases (0.005%) that failed to find
an optimal cutoff frequency within the tested range ([0.05,2.0] Hz),
mostly due to the effects from seed variation, and the limitations in
accuracy which are associated with numerical calculations based on
discrete frequencies and time steps. It only happened for SNR = 100.

Plots show that the function 𝑓 ∗
𝑙𝑝
(

𝑇𝑝
)

could be well fitted by a linear
function (e.g., 𝑓 ∗

𝑙𝑝 = 𝑎𝑇𝑝+𝑏) or a bi-linear function (e.g., 𝑓 ∗
𝑙𝑝 = 𝑎𝑇𝑝+𝑏 for

all 𝑇𝑝 ≤ 𝑇0; 𝑓 ∗
𝑙𝑝 = 𝑐𝑇𝑝+𝑑 for all 𝑇𝑝 > 𝑇0). However, the fitted parameters

(e.g., 𝑎, 𝑏, 𝑇0, etc.) depend on many input parameters, such as 𝛽𝑊 ,
wave spectral shape, sensor location, vessel condition, etc. Therefore,
it is difficult to find a clear function for the optimal cutoff frequency
directly with respect to the wave and sensor inputs, i.e., 𝑓 ∗

𝑙𝑝(𝑇𝑝, 𝛽𝑊 ,
spectral type, sensor, etc.).

4.1. Standard deviation and zero-upcrossing period of filtered signals

Therefore, it is of interest to further investigate details on how the
standard deviation (STD) and zero-upcrossing period of the filtered
signal (�̂�𝑋 (𝑓𝑙𝑝) and �̂�𝑧(𝑓𝑙𝑝)) changes with changing cutoff frequency. For
example, Figs. 6 and 7 show that:

1. The optimal cutoff frequency 𝑓 ∗
𝑙𝑝 always stays at or near the

turning point of the �̂�𝑋 -𝑓𝑙𝑝 curve.
2. The optimal cutoff frequency 𝑓 ∗

𝑙𝑝 is always on the ‘‘plateau’’ of
the �̂�𝑧-𝑓𝑙𝑝 curves, but not necessarily at the turning point.

3. When a larger 𝑓𝑙𝑝 applies, less noise is filtered out. But �̂�𝑋
(

𝑓𝑙𝑝
)

increases very slowly with increasing 𝑓𝑙𝑝 for 𝑓𝑙𝑝 > 𝑓 ∗
𝑙𝑝. This

means that even though applying larger 𝑓𝑙𝑝 may lead to biased
tuning results, it is still much safer to use a slightly larger 𝑓𝑙𝑝
than a slightly smaller 𝑓𝑙𝑝 relative to 𝑓 ∗

𝑙𝑝.

The reason for the existence of the ‘‘plateau’’ in the �̂�𝑧-𝑓𝑙𝑝 curve is
the clear distinction between the main frequency regions for the true
vessel response versus the signal noise. In addition, the less the noise
level is (i.e., larger SNR), the flatter and longer the ‘‘plateau’’ will be.
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̂

Fig. 6. �̂�𝑋 -𝑓𝑙𝑝 and �̂�𝑧-𝑓𝑙𝑝 curves for Disp_A sensor, SNR = 10, 𝛽𝑊 = 90◦, 𝑇𝑝 = 6 s, 12 s, and 18 s.
Fig. 7. �̂�𝑋 -𝑓𝑙𝑝 and �̂�𝑧-𝑓𝑙𝑝 curves for Acc_C sensor, SNR = 10, 𝛽𝑊 = 0◦, 𝑇𝑝 = 6 s, 12 s, and 18 s.
This is because less noise will have less influence on the overall signal
zero-upcrossing period.

Therefore, it can be helpful to determine the optimal cutoff fre-
quency based on the characteristics of the �̂�𝑋 -𝑓𝑙𝑝 and �̂�𝑧-𝑓𝑙𝑝 curves.
Two parameters are introduced, representing the absolute values of the
normalized slopes of the �̂�𝑧 - 𝑓𝑙𝑝 and �̂�𝑋 - 𝑓𝑙𝑝 curves. The hat operator
⋅ means the filtered results.

The efficiency of increasing or reducing the cutoff frequency on the
change of the filtered signal energy, is referred to as 𝜃

(

𝑓𝑙𝑝
)

, defined by

𝜃
(

𝑓𝑙𝑝,𝑖
)

=
�̂�𝑋

(

𝑓𝑙𝑝,𝑖
)

− �̂�𝑋
(

𝑓𝑙𝑝,𝑖−1
)

�̂�𝑋
(

𝑓𝑙𝑝,𝑖
)

⋅
(

𝑓𝑙𝑝,𝑖 − 𝑓𝑙𝑝,𝑖−1
) (12)

where �̂�𝑋
(

𝑓𝑙𝑝,𝑖
)

means the filtered signal STD by application of the
cutoff frequency 𝑓
8

𝑙𝑝,𝑖
The effect of increasing or reducing the cutoff frequency on the
change of the zero-upcrossing period of the filtered signal, is referred
to as 𝜆

(

𝑓𝑙𝑝
)

𝛾
(

𝑓𝑙𝑝,𝑖
)

=
�̂�𝑧

(

𝑓𝑙𝑝,𝑖−1
)

− �̂�𝑧
(

𝑓𝑙𝑝,𝑖
)

�̂�𝑧
(

𝑓𝑙𝑝,𝑖
)

⋅
(

𝑓𝑙𝑝,𝑖 − 𝑓𝑙𝑝,𝑖−1
)

(13)

where �̂�𝑧
(

𝑓𝑙𝑝,𝑖
)

means the zero-upcrossing period of the filtered signal
based on the cutoff frequency of 𝑓𝑙𝑝,𝑖. Please note that 𝛾 is positive when
the slope of the �̂�𝑧-𝑓𝑙𝑝 curve is negative. When

(

𝑓𝑙𝑝,𝑖 − 𝑓𝑙𝑝,𝑖−1
)

→ 0,
𝜃
(

𝑓𝑙𝑝,𝑖
)

represents the normalized slope of the �̂�𝑋 -𝑓𝑙𝑝 curve at 𝑓𝑙𝑝,𝑖,
while 𝛾

(

𝑓𝑙𝑝,𝑖
)

represents the opposite value of the normalized slope
of the �̂�𝑧-𝑓𝑙𝑝 curve at 𝑓𝑙𝑝,𝑖. The true response STD is in the following
defined as 𝜎∗ .
𝑋
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Fig. 8. Normalized histogram of 𝜃−, 𝜃0, and 𝜃+ based on all studied signals. The fitted
lines are the estimated Gaussian kernel densities (Waskom et al., 2020) based on the
corresponding normalized histograms. KDE: kernel density estimation.

The program tested a limited number of discrete 𝑓𝑙𝑝 values gradually
as described in Section 3.2. Therefore, the optimal frequency is actually
found by interpolation between the neighboring frequencies, 𝑓𝑙𝑝,𝑖∗ and
𝑓𝑙𝑝,𝑖∗+1, where �̂�𝑋

(

𝑓𝑙𝑝,𝑖∗
)

≤ 𝜎∗𝑋 ≤ �̂�𝑋
(

𝑓𝑙𝑝,𝑖∗+1
)

for 𝑓𝑙𝑝,𝑖∗ ≤ 𝑓 ∗
𝑙𝑝 ≤ 𝑓𝑙𝑝,𝑖∗+1.

Due to the mentioned findings of the two curves, the distributions
of the 𝜃 and 𝛾 values around the optimal cutoff frequency 𝑓 ∗

𝑙𝑝 are of
great interest to further investigate, and these are therefore defined as
follows:

𝜃− =
�̂�𝑋

(

𝑓𝑙𝑝,𝑖∗
)

− �̂�𝑋
(

𝑓𝑙𝑝,𝑖∗−1
)

�̂�𝑋
(

𝑓𝑙𝑝,𝑖∗
)

⋅
(

𝑓𝑙𝑝,𝑖∗ − 𝑓𝑙𝑝,𝑖∗−1
) (14a)

𝜃0 =
�̂�𝑋

(

𝑓𝑙𝑝,𝑖∗+1
)

− �̂�𝑋
(

𝑓𝑙𝑝,𝑖∗
)

�̂�𝑋
(

𝑓𝑙𝑝,𝑖∗+1
)

⋅
(

𝑓𝑙𝑝,𝑖∗+1 − 𝑓𝑙𝑝,𝑖∗
) (14b)

𝜃+ =
�̂�𝑋

(

𝑓𝑙𝑝,𝑖∗+2
)

− �̂�𝑋
(

𝑓𝑙𝑝,𝑖∗+1
)

�̂�𝑋
(

𝑓𝑙𝑝,𝑖∗+2
)

⋅
(

𝑓𝑙𝑝,𝑖∗+2 − 𝑓𝑙𝑝,𝑖∗+1
) (14c)

𝛾− =
�̂�𝑧

(

𝑓𝑙𝑝,𝑖∗−1
)

− �̂�𝑧
(

𝑓𝑙𝑝,𝑖∗
)

�̂�𝑧
(

𝑓𝑙𝑝,𝑖∗
)

⋅
(

𝑓𝑙𝑝,𝑖∗ − 𝑓𝑙𝑝,𝑖∗−1
)

(15a)

𝛾0 =
�̂�𝑧

(

𝑓𝑙𝑝,𝑖∗
)

− �̂�𝑧
(

𝑓𝑙𝑝,𝑖∗+1
)

�̂�𝑧
(

𝑓𝑙𝑝,𝑖∗+1
)

⋅
(

𝑓𝑙𝑝,𝑖∗+1 − 𝑓𝑙𝑝,𝑖∗
)

(15b)

𝛾+ =
�̂�𝑧

(

𝑓𝑙𝑝,𝑖∗+1
)

− �̂�𝑧
(

𝑓𝑙𝑝,𝑖∗+2
)

�̂�𝑧
(

𝑓𝑙𝑝,𝑖∗+2
)

⋅
(

𝑓𝑙𝑝,𝑖∗+2 − 𝑓𝑙𝑝,𝑖∗+1
)

(15c)

Note that the values of 𝜃 and 𝛾 can be influenced by the resolution
of the tested 𝑓𝑙𝑝 values. The histograms of the parameters 𝜃−, 𝜃0,
𝜃+, 𝛾−, 𝛾0, and 𝛾+ are shown in Figs. 8 and 9. Because of the large
difference between the bin ranges for the parameters (e.g., 𝜃−, 𝜃0, and
𝜃+), the plotted histograms were normalized for the purpose of easier
comparison between them. The histogram of each variable considered
100 bins, and the histogram was normalized so that the height (denoted
as ℎ) of the histogram plot represents the probability density of the
parameter (denoted as 𝑣). The bins are evenly distributed, so that
𝛥𝑣 = 𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛

100 . The plotted normalized histogram plots fulfill

100
∑

𝑖=1
ℎ𝑖 ⋅ 𝛥𝑣 = 1.0. (16)

It is clear that 𝜃+ is highly concentrated in a much smaller 𝜃 value
range, as compared with the distributions of 𝜃− and 𝜃0. However,
𝛾 , 𝛾 and 𝛾 are all distributed around zero, with 𝛾 having the
9

− 0 + +
Fig. 9. Normalized histogram of 𝛾−, 𝛾0, and 𝛾+ based on all studied signals. The fitted
lines are the estimated Gaussian kernel densities based on the corresponding normalized
histograms. KDE: kernel density estimation.

Table 5
Distribution of 𝜃 and 𝛾 values near the optimal cutoff frequency.

Parameter P5 P25 P50 P75 P95

𝑓 ∗
𝑙𝑝 0.136 0.191 0.239 0.296 0.624

𝜃− 0.0011 0.0258 0.189 0.569 2.263
𝜃0 0.001 0.0082 0.0371 0.0989 0.341
𝜃+ 0.001 0.0033 0.009 0.0181 0.0502
𝛾− −0.111 0.062 0.359 0.961 2.591
𝛾0 −0.137 0.000559 0.109 0.285 0.841
𝛾+ −0.136 −0.00056 0.053 0.139 0.36

smallest variance. These observations positively support the findings
from Figs. 6 and 7. The statistical percentile values of all these 6
parameters are summarized in Table 5.

It is also interesting to find that the uncertainty of 𝜃
(

𝑓 ∗
𝑙𝑝

)

is highly
correlated with the SNR. Larger noise leads to larger variation of
𝜃
(

𝑓 ∗
𝑙𝑝

)

for different signals (seed variation) from the same response
spectrum. However, this does not conflict with the previous findings
that higher noise leads to less variation of 𝑓 ∗

𝑙𝑝 for different signals due
to seed variation for the same response spectrum. The distributions of
𝜃−, 𝜃0, 𝜃+ become even more distinguishable for a certain SNR value
(e.g., Figs. 10 and 11).

As shown in Table 5 and Fig. 9, the 𝛾 values are small and stable
near 𝑓 ∗

𝑙𝑝, which means that the optimal cutoff is on the ‘‘plateau’’ of the
�̂�𝑧-𝑓𝑙𝑝 curve. As 𝛾−, 𝛾0, 𝛾+ are similarly distributed, the criterion for 𝛾
must be relaxed, acting as a supplementary rule for the 𝜃 criterion.

4.2. Proposed strategy to find optimal cutoff frequency

Due to the large slope of the �̂�𝑋 - 𝑓𝑙𝑝 curve for 𝑓𝑙𝑝 < 𝑓 ∗
𝑙𝑝, it is better

to filter slightly less noise than risking to filter out too much energy.
Assuming no low-frequency motion, the proposed strategy to find the
optimal lowpass filter cutoff frequency 𝑓 ∗

𝑙𝑝 in order to retain only the
signals within the wave frequency region is summarized as follows.

1. Starting from a small cutoff frequency 𝑓𝑙𝑝,1 of, e.g., 0.02 Hz, filter
the noisy signal 𝑥(𝑡), and calculate the STD and zero-upcrossing
period of the filtered signal, i.e., �̂�𝑋 (𝑓𝑙𝑝,1) and �̂�𝑧(𝑓𝑙𝑝,1).

2. Repeat step 1 by gradually increasing the cutoff frequency
𝑓𝑙𝑝,𝑖, 𝑖 = 2, 3,…. Calculate �̂�(𝑓𝑙𝑝,𝑖), �̂�𝑧(𝑓𝑙𝑝,𝑖), 𝜃(𝑓𝑙𝑝,𝑖), and 𝛾(𝑓𝑙𝑝,𝑖)
for 𝑖 = 2, 3,….
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Fig. 10. Normalized histogram of 𝜃−, 𝜃0, and 𝜃+ based on the studied signals for a
SNR of 10. The fitted lines are the estimated Gaussian kernel densities based on the
corresponding normalized histograms. KDE: kernel density estimation.

Fig. 11. Normalized histogram of 𝜃−, 𝜃0, and 𝜃+ based on the studied signals for a
SNR of 30. The fitted lines are the estimated Gaussian kernel densities based on the
corresponding normalized histograms. KDE: kernel density estimation.

3. Then the first cutoff frequency 𝑓𝑙𝑝,𝑖∗ where both the values of
𝜃𝑓𝑙𝑝,𝑖∗ and 𝛾𝑓𝑙𝑝,𝑖∗ meet the preset criteria, will be considered as
the optimal cutoff frequency, denoted as 𝑓 ∗

𝑙𝑝.

It is not necessary to explicitly define the ‘‘turning’’ point of the
�̂�𝑋 -𝑓𝑙𝑝 curve. When the resolution of the tested 𝑓𝑙𝑝 is sufficiently fine,
𝜃0 and 𝜃+ will be very close, and practically it does not matter which
of these values is selected. Based on the statistical distribution of 𝜃 and
𝛾 summarized in Table 5, the following criteria are considered as the
base case.

𝜃(𝑓 ∗
𝑙𝑝) ≤0.05 (17a)

𝛾(𝑓 ∗
𝑙𝑝) ≤0.9 (17b)

The 𝜃(𝑓 ∗
𝑙𝑝) ≤ 0.05 was chosen based on statistical information about

𝜃0 and 𝜃+ so that 𝜃+ meets the criterion for 95% of the cases, and more
than half of 𝜃0 meets the criterion. The histograms of 𝜃−, 𝜃0, 𝜃+ indicate
that the selected criterion is statistically appropriate.

As the 𝜃 and 𝛾 criteria are based on statistics of a case study, it
cannot guarantee that the present procedure will find the optimal cutoff
frequency for all signals. Therefore, one supplementary requirement
was introduced to ensure returning an ‘‘optimal’’ cutoff frequency value
10
for signal filtering, i.e., 𝑓 ∗
𝑙𝑝 must be within [0.1, 0.9] Hz, i.e.,

𝑓 ∗
𝑙𝑝 =

⎧

⎪

⎨

⎪

⎩

0.1 Hz, if 𝑓 ∗
𝑙𝑝 < 0.1 Hz

0.9 Hz, if 𝑓 ∗
𝑙𝑝 > 0.9 Hz

𝑓 ∗
𝑙𝑝, otherwise

(18)

where 𝑓 ∗
𝑙𝑝 means the identified optimal cutoff frequency based on the

main proposed strategy with the criteria in Eq. (17). The algorithm are
also summarized in pseudo code format.

Algorithm 1: Recursive searching of optimal cutoff frequency.
Initialize: i=0, 𝜃 = 1.0, 𝛾 = 10.0;
Input: Predefined 𝑓𝑙𝑝 values in ascending order and the signal 𝑥(𝑡);
while 𝜃 > 0.05 or 𝛾 > 0.9 do

𝑖 = 𝑖 + 1;
Obtain �̂�(𝑡) by filtering 𝑥(𝑡) at cutoff frequency of 𝑓𝑙𝑝,𝑖;
Calculate �̂�𝑋 (𝑓𝑙𝑝,𝑖) and �̂�𝑧(𝑓𝑙𝑝,𝑖);
if 𝑖 > 1 then

Calculate 𝜃(𝑓𝑙𝑝,𝑖) by Equation (12) and 𝛾(𝑓𝑙𝑝,𝑖) by Equation
(13);
𝜃 = 𝜃(𝑓𝑙𝑝,𝑖);
𝛾 = 𝛾(𝑓𝑙𝑝,𝑖);

end
end
𝑓 ∗
𝑙𝑝 = 𝑓𝑙𝑝,𝑖;
if 𝑓 ∗

𝑙𝑝 < 0.1 Hz then
𝑓 ∗
𝑙𝑝 = 0.1𝐻𝑧;

else if 𝑓 ∗
𝑙𝑝 > 0.9 Hz then

𝑓 ∗
𝑙𝑝 = 0.9 Hz;

else
𝑓 ∗
𝑙𝑝 = 𝑓 ∗

𝑙𝑝;
end
return 𝑓 ∗

𝑙𝑝;

5. Test of strategy

5.1. Simulated signals

The proposed strategy was tested for 500 randomly generated vessel
motion signals, based on randomly selecting the values of the input
parameters summarized in Table 6.

In total, 83 values of 𝑓𝑙𝑝 ∈ [0.06, 5.13] Hz were considered for
the lowpass filter, as shown in Fig. 12. The resolution was gradually
increased with decreasing 𝑓𝑙𝑝, especially for 𝑓𝑙𝑝 ∈ [0.1, 0.3] Hz.

Different values of 𝜃 and 𝛾 criteria were also tested, as summarized
in Table 7. The parameter 𝜅 was defined in order to evaluate the results
of the adaptive filtering based on different criteria,

𝜅 =
�̂�𝑋

(

𝑓 ∗
𝑙𝑝

)

𝜎∗𝑋
(19)

where �̂�𝑋
(

𝑓 ∗
𝑙𝑝

)

is the filtered signal STD at the found optimal cutoff
frequency 𝑓 ∗

𝑙𝑝.
Fig. 13 shows the distributions of 𝜅 from the 500 test cases (Table 6)

for the 4 different sets of criteria (Table 7). Among the results, 𝜃 = 0.05
with 𝛾 = 0.9 generally leads to the best filtering results with respect to
the response STD, for which the filtered signal STDs are concentrated
mostly around the true values. The distribution of 𝜅 for Crit2 shows
slightly more spreading when using a smaller 𝛾 criterion, indicating
that 𝛾 serves to provide a supplementary criterion for the adaptive
filtering process. Results from Crit3 with a much higher 𝜃 value are
the worst with respect to the filtered signal STD. The distribution is
dramatically skewed to the left, indicating that many signals were over-
filtered. This is due to a too ‘‘relaxed’’ 𝜃 criterion. Crit4 is most strict,
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Table 6
Applied parameters related to the strategy test for the adaptive lowpass filter.

Parameter Values Unit

𝐻𝑠 Uniformly distributed in [1.0, 4.0] m
𝑇𝑝 Uniformly distributed in [5.0, 22.0] s
𝛽𝑊 Randomly selected among 13 discrete directions

within [0,180]
◦

Seed Uniformly distributed in [1, 300] –
Duration 3600 s
SNRa Randomly selected among 15 discrete values

within [𝑖𝑛𝑡(5 × 1.2𝑖), 𝑖 ∈ [0, 15]]
–

Vessel condition Randomly selected among 10 vessel conditions
within the RAO database

–

Sensor Randomly selected among the 9 sensors described
in Table 3

–

aThe discrete SNR values are determined with approximately 20% difference between
neighboring values, for SNR∈ [5, 64].

Fig. 12. Histogram of tested 𝑓𝑙𝑝 values. The blue sticks along the 𝑓𝑙𝑝 axis represent
the data points.

Table 7
Tested 𝜃 and 𝛾 criteria.

Case ID 𝜃 𝛾

Crit1 0.05 0.9

Crit2 0.05 0.36

Crit3 0.3 0.9

Crit4 0.02 0.2

which, however, did not lead to better filtering results than the base
case (Crit1). It can be seen in Fig. 13 that there is a notable skewing to
the right, indicating that the signals may be under-filtered.

5.2. On-site MRU measurements

It is interesting to test the proposed strategy by application of on-
site measurements. However, it is impossible to know the vessel’s true
on-site response due to the inevitable measurement uncertainties (Hub-
bard, 2014). Therefore, it was only possible to test whether or not the
�̂�𝑋 - 𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves show similar characteristics as described
in Section 4.1, and to discuss the limitations. It is worth mentioning
that the vessel motion signals obtained from MRU are already filtered
through, e.g., application of an extended Kalman filter, to avoid drift.

5.2.1. Gunnerus seakeeping and DP tests
The MRU measurements of the NTNU research vessel Gunnerus

during seakeeping and DP tests in 2013 (Steen et al., 2016) were
11
Fig. 13. Normalized histograms of 𝜅 values for the strategy test with different criteria.
The fitted lines are the estimated Gaussian kernel densities based on the corresponding
normalized histograms (Waskom et al., 2020).

Fig. 14. �̂�𝑋 - 𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves of heave motion for CaseA1.

considered. Two test cases were reported, one 2-hour DP test (CaseA1)
under a sea state with 2 significant peak periods (8.5 s and 13.3 s),
and one half-hour seakeeping test (CaseA2) with 10.4kn speed under a
swell-dominated sea state.

The quickly reduced slopes of the �̂�𝑋 -𝑓𝑙𝑝 curves were observed for
both cases for all MRU measurements with respect to heave, pitch,
and roll, e.g., Fig. 14. Because the received MRU signals were already
filtered, the noise level was low, as expected. In addition, Gunnerus is
a research vessel with a relatively small dimension (about 30 m long),
and accordingly its resonance response periods are relatively small.
Therefore, the �̂�𝑧-𝑓𝑙𝑝 curves, as expected, becomes very flat when the
cutoff frequency is sufficiently large.

It is interesting to observe the reduced slopes for the �̂�𝑋 -𝑓𝑙𝑝 and
�̂�𝑧-𝑓𝑙𝑝 curves within the wave frequency region for heave and pitch
measurements (e.g., Fig. 15). This is because CaseA2 was a swell-
dominated sea condition (𝑇𝑝 = 13.5 s) with a small wind sea. The vessel
was mostly excited within a relatively low frequency region, while the
vessel response resonance was in a relatively high frequency region due
to Gunnerus’ small dimensions. Therefore, there was a clear gap with
respect to the frequencies of the excited vessel motion by the swell and
the wind sea.
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Fig. 15. �̂�𝑋 - 𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves of pitch motion for CaseA2.

Fig. 16. �̂�𝑋 - 𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves of pitch motion for CaseB1.

5.2.2. Normand vision
The MRU measurements (CaseB1) from Normand Vision during a

lifting operation in 2017 were also tested. The operation lasted for a
total of 2 hours. The �̂�𝑋 - 𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves for the 2-hour pitch
and roll responses are shown in Figs. 16 and 17. The �̂�𝑧 - 𝑓𝑙𝑝 curve for
pitch is not smooth near the turning point. For roll motion, the �̂�𝑧 -
𝑓𝑙𝑝 curve shows an oscillatory behavior, with the �̂�𝑧 value converging
around 44 s which is larger than the wave periods.

A closer look at the time series of pitch and roll motions indicates
that the unstable behavior of the �̂�𝑧 - 𝑓𝑙𝑝 curves were due to the
additional low-frequency motion caused by the lift-off and landing
operations, see Fig. 18. Consequently as shown in Fig. 19, the vessel
trim was also changed due to the change of vessel CoG during the
operation.

Then a highpass filter with cutoff frequency of 0.04 Hz was applied
to filter out the low-frequency motions before applying the adaptive
lowpass filter. The updated �̂�𝑋 - 𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves of roll motion are
shown in Fig. 20. Compared with Fig. 17, the �̂�𝑧 - 𝑓𝑙𝑝 curve in Fig. 20
becomes smoother and converges to a reasonable value.
12
Fig. 17. �̂�𝑋 - 𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves of roll motion for CaseB1.

Fig. 18. Time series of roll motion for CaseB1.

Fig. 19. Time series of pitch motion for CaseB1.
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Fig. 20. �̂�𝑋 - 𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves of the highpass filtered roll motion for CaseB1.

Table 8
Applied parameters related to the model tuning process for method validation.

Parameter Value Unit

𝐻𝑠 Uniformly distributed in [1.0, 4.0] m

𝑇𝑝 Uniformly distributed in [5.0, 20.0] s

𝛽𝑊 Randomly selected among 13 discrete directions within [0,180] ◦

Seeds Randomly generated within [1,300]a -

Duration 3600 s

SNR Randomly selected among [5, 10, 20, 40, 80] –

𝛼 0.05 –

𝑝 0.4 –

aTwo seeds were generated for each sea state. One was applied for the generation of
true response time series, the other was applied in order to add noise to the signal.

5.3. Influence on the model tuning results

So far, the proposed adaptive lowpass filter has been shown to be
stable with respect to variation of sea states, vessel conditions and
noise levels. This section focuses on investigating how much benefit
the model tuning can get from the adaptive lowpass filter with the
proposed procedure of finding the optimal cutoff frequency. In total,
200 model tuning cases were run with both the adaptive lowpass filter
and a lowpass filter with a fixed cutoff frequency of 1.0 Hz. Each model
tuning case used vessel response measurements and wave information
from 6 randomly generated sea states. The main wave information, the
parameters applied to generating measurements, and the parameters
used for model tuning are summarized in Table 8. The true vessel con-
dition and the initial probability distributions of the considered vessel
model parameters are summarized in Table 9, which is different from
the considered vessel condition for algorithm development described
in Section 3.2 and Section 4. It is worth mentioning that the important
uncertain vessel parameter 𝛽44, representing the ratio between the
additional (mainly caused by viscous effect) and critical roll damping,
actually varies with sea states (Han et al., 2021b). However, a constant
true value of 𝛽44 was considered for simplicity. The considered vessel
parameters were tuned simultaneously.

Compared with the model tuning results with a fixed cutoff fre-
quency of 1.0 Hz, the results show that the adaptive filter approach
statistically improved the accuracy with respect to the expected values
(see Fig. 21) and reduced the variance of the considered parameters
13
Table 9
Prior information and true values of the considered vessel parameters.

Parameter Mean 𝜎2 ±3𝜎 True value 𝐼𝑘a 𝐼𝑚b

GMT [m] 0.5 0.015 [0.13, 0.87] 0.4 40 6

𝛽44 0.07 4.0E−04 [1%, 13%] 0.04 50 7

𝑟55 [m] 32.5 1.0 [29.5, 35.5] 30.55 30 7

XCG [m] 59.4 1.21 [56.1, 62.7] 61.4 30 5

aNumber of discrete variable values for the joint probability model.
bNumber of discrete parameter values used in the RAO database.

(see Fig. 22). However, the improvements of the less sensitive param-
eters (GMT and 𝑟55) were not very significant, particularly in terms of
the tuned expected values.

6. Conclusions and future work

An algorithm to find the sea state and vessel dependent optimal
cutoff frequency for a lowpass filter has been proposed, to improve
extracting vessel motions in the wave frequency region from the noisy
vessel motion measurement signals. It is difficult to find and express
the explicit relation between the optimal cutoff frequency and the
characteristics of the sea state, vessel dimensions, and vessel condition.
In addition, the environmental uncertainties are difficult to measure,
quantify, and control. The proposed algorithm significantly eases these
challenges by introducing two parameters 𝜃 and 𝛾, based on the statisti-
cal characteristics of the �̂�𝑋 - 𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves around the optimal
cutoff frequencies, and these characteristics are not explicitly linked to
any sea state or vessel property.

Applying the algorithm to the vessel model tuning process, statisti-
cally improves the tuning results, however, to a limited degree for some
parameters due to (1) the numerical errors from STD calculations of
vessel motions based on discrete time series and spectral densities; and
(2) the fact that the considered parameters (e.g., GMT and 𝑟55) may
not be very sensitive to the involved sea states. The improvements in
relation to tuning of 𝛽44 and XCG are rather significant because they
are more sensitive to the considered vessel motions at the involved sea
states.

It has been found important to choose a reasonable set of criteria
for 𝜃 and 𝛾. A relaxed 𝜃 criterion can lead to significant signal over-
filtering, while too strict criteria may cause the signal under-filtered.
Too strict criteria may also make the algorithm fail to find the opti-
mal cutoff frequency based on the proposed normal procedure. Even
though the capability of extending the algorithm and the preset 𝜃 and
𝛾 criteria for other vessel conditions and dimensions has not been
fully demonstrated, all the validation tests described in Section 5 used
either different vessel conditions (i.e., Sections 5.1 and 5.3) or different
vessels (i.e., Section 5.2), rather than the one used for deriving the
algorithm (Section 4). This tends to support the hypothesis that the
proposed adaptive lowpass filter would work for different vessels and
vessel conditions. Section 5 showed that the algorithm is stable and the
on-site full-scale measurements also fulfill the characteristics of the �̂�𝑋 -
𝑓𝑙𝑝 and �̂�𝑧 - 𝑓𝑙𝑝 curves as described in Section 4.1. The algorithm works
because:

1. The vessel itself is by nature a lowpass filter of the wave energy.
Therefore, the high-frequency response normally has much less
energy.

2. The noise mainly carries energy in the high-frequency domain
distinguishably outside of the frequency region for the main ves-
sel response. Sensor misalignment and bias are slowly varying,
i.e., with low frequencies.

3. Signal noise has considerably less energy compared with the true
vessel response energy. The SNR values applied for all presented
case studies were higher than 5.
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Fig. 21. Normalized histograms (vertical axes) of the expected values for the tuned vessel parameters, comparing the adaptive filter approach with use of a fixed cutoff frequency
𝑓𝑙𝑝 = 1.0 Hz. The red and blue lines are the corresponding estimated Gaussian kernel densities. KDE: kernel density estimation. The parameters with subscript of 0 in the legends
refer to the initial values.
Fig. 22. Normalized histograms (vertical axes) of the variances for the tuned vessel parameters, comparing the adaptive filter approach with use of a fixed cutoff frequency
𝑓𝑙𝑝 = 1.0 Hz. The red and blue lines are the corresponding estimated Gaussian kernel densities. KDE: kernel density estimation. The parameters with subscript of 0 in the legends
refer to the initial values.
The proposed adaptive filter algorithm is believed to be a flexible
solution, because:

1. It does not require to know the weather or vessel conditions.
2. It is not directly linked to any specific filter. The algorithm uses

properties of the standard deviation and zero-upcrossing period
of the filtered signal which are available for most signal filters.
Even though the present study made use of the FFT filter, the
method can be applied based on any other normal filters of any
order, as long as the cutoff frequency of that filter model can be
explicitly expressed.

3. It does not strictly require a stationary condition. It has been
demonstrated in Section 5.2.2 that the �̂�-𝑓𝑙𝑝 and �̂�𝑧-𝑓𝑙𝑝 curves for
the non-stationary signals are similar to the curves for stationary
signals (e.g., as illustrated in Figs. 6 and 7) as discussed in
14
Section 4.1. However, special attention should be paid to those
non-stationary conditions which may introduce low-frequency
components with high energy.

4. It is expected to be stable at least for vessels with similar
dimensions and displacement.

More comprehensive analyses should be performed to verify that
the proposed adaptive lowpass filter and its preset 𝜃 and 𝛾 criteria
work for other and significantly different vessels and vessel conditions.
The proposed adaptive lowpass filter requires that the power of the
response spectrum should be sufficient in magnitude for frequencies
less than the optimal cutoff frequency. For a sea state consisting of
one wind sea component with a small 𝑇𝑝,𝑤 and one swell component
with a large 𝑇𝑝,𝑠𝑤 and with two different directions, there might be
no wave energy in some periods between 𝑇 and 𝑇 . The proposed
𝑝,𝑤 𝑝,𝑠𝑤
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c

method might fail if the search for 𝑓 ∗
𝑙𝑝 stops immediately after fulfilling

the criteria with respect to 𝜃 and 𝜆. However, this could be solved by
ontinuously checking the 𝜃 and 𝛾 values with increasing 𝑓𝑙𝑝, ensuring

all the considered 𝑓𝑙𝑝 values larger than 𝑓 ∗
𝑙𝑝 meet the preset 𝜃 and

𝛾 criteria as well. Alternatively, the algorithm can be modified so
that searching 𝑓 ∗

𝑙𝑝 starts from the smaller wave spectral peak period
(e.g., corresponding to 𝑓𝑙𝑝 of 1∕𝑇𝑝,𝑤 Hz).

The cases of model tuning considered four uncertain vessel pa-
rameters. The interpolation and multiplication operators within the
4-dimensional space requires a significant amount of computer mem-
ory. In reality, additional uncertain parameters should be included
in the algorithm of model tuning, e.g., vessel heading, vessel speed
and wave spectrum related parameters such as 𝐻𝑠, 𝑇𝑝, 𝛽𝑊 , directional
spreading, etc. As a consequence, the methodology could face the com-
mon challenge referred to as the curse of dimensionality in connection
with discrete Bayesian inference (Gelman et al., 2013). Modification
of the model tuning algorithm should be considered in the future in
order to improve the computational efficiency, e.g., by only taking into
account the mean vector and covariance matrix of the uncertain vessel
parameters (Han et al., 2021c).
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