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i

Engineering problems are under-defined, there are many solutions, good,
bad and indifferent. The art is to arrive at a good solution. This is a creative
activity, involving imagination, intuition and deliberate choice.”

Ove Nyquist Arup (1895-1988), Engineer and philosopher, author of Phi-
losophy of Design book and founder of Arup firm.

The problem in this business isn’t to keep people from stealing your ideas;
it’s making them steal your ideas!”

Howard Hathaway Aiken (1900-1973), Engineer, physicist and a pioneer
in computing, recipient of IEEE’s Edison Medal in 1970 for his contribution
to the development of digital computers.
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Abstract

According to EU 2050 plan, offshore wind farms based on large floating wind
turbines are considered as a main source of power supply in the coming
future. Among the turbine systems, drivetrain contributes significantly in
levelized cost of energy (LCOE). In other words, the careful selection of the
drivetrain configuration and the employment of properly designed condition
monitoring systems can help to considerably reduce the cost of energy in
floating offshore wind turbines.

As the first study in this thesis, an analytical system-level drivetrain
design approach supported by numerical simulations is employed to identify
the most economical drivetrain configuration of large floating offshore wind
turbines in a life cycle perspective.

The medium-speed PMSG drivetrain technology is selected as a compro-
mise between design, manufacturing and installation, and operation and
maintenance costs, and in the next steps of this research, the drivetrain
vibration-based condition monitoring tools are designed or developed to re-
alize the improved availability of future offshore wind turbines by following
the sequence described underneath:

In the first step, the classical vibration-based condition monitoring based
on the time and frequency domain analytical tools based on the translational
vibration measurements captured by accelerometers which are placed on the
different parts of drivetrain are reviewed as the wind turbine standard con-
dition monitoring solution. As the research contribution in time domain
analysis of translational vibration measurements for condition monitoring
of the drivetrain components, a data-driven statistical learning-based con-
dition monitoring approach grounded on monitoring the unusual variations
of the parameters of the multi-variate distribution which fits the combined
measurements of the drivetrain accelerometers is studied. The potentials of
this approach in early-stage fault detection compared to the classical time-
domain fault detection approach based on monitoring the exceedance of the
root mean square (RMS) of the axial and lateral acceleration and velocity is
demonstrated. To take the vibration-based condition monitoring of the driv-
etrain further, the topic of innovative condition monitoring of the drivetrain
based on the torsional vibration measurements captured by the drivetrain
encoders is introduced and discussed, and the possibility of observing the
different classes of drivetrain faults by using the torsional instead of trans-
lational vibration measurements is studied. The possibility of using the tor-
sional response to provide better insights into the drivetrain internal and
external excitation sources is discussed, which can be used to improve the
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available condition monitoring systems for realizing an earlier stage fault
detection.

As the second step, the drivetrain condition monitoring by using the tor-
sional measurements is investigated in more detail. In this study, the possi-
bility of performing drivetrain modal analysis by using the torsional response
is discussed. Then an analytical approach is proposed to diagnose the driv-
etrain faults at system-level by monitoring the variations of the drivetrain
dynamic properties (i.e. natural frequencies, mode shapes and damping coef-
ficients) which can be estimated from the torsional measurements.

In the third step, the drivetrain online fault prognosis by monitoring the
residual life of the components is emphasized. For this purpose, the multi-
degree of freedom (DOF) linear torsional models of the drivetrain are pro-
posed to be used as the digital twin of drivetrain, and their capabilities in
prediction of the remaining useful lifetime (RUL) of the different drivetrain
components is discussed. Digital twin in this thesis context is defined as
the combination of equivalent model, online measurements and RUL model.
The algorithm for the near real-time estimation of the parameters of drive-
train equivalent reduced order model (ROM) in the cases of different degrees
of model complexity by using the drivetrain torsional measurements is pre-
sented, and the application of proposed digital twin model for estimating the
degradation of the drivetrain gears and shafts is demonstrated. Load ob-
servers are designed for the different components of the drivetrain, which
receive the parameters of the updated drivetrain equivalent model and the
online torsional response to estimate loads in the different components of the
drivetrain. The employed stochastic physics-based degradation model works
based on the real-time cycle counting of the equivalent stress, and is able to
provide confidence interval for the estimated damage.

The integration of the model with the real-time operational data in a dig-
ital twin platform, which provides the drivetrain updated ROM parameters
and dynamic properties, can also support fault diagnosis algorithms which
are discussed in this PhD thesis: In a direct way, by having access to the
real-time values of system parameters, it is possible to define different fault
states of the different classes of progressive faults in the drivetrain compo-
nents in terms of the variation of the ROM parameters. Seeing that the ROM
parameters are directly connected to the physics of the system and the com-
ponents, defining thresholds for the different states of progressive faults is
straightforward. In an indirect approach, the proposed algorithm provides
the real-time values of drivetrain dynamic properties, which can support the
proposed fault diagnosis approach based on monitoring the variations of dy-
namic properties to estimate the state of the faults.
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Chapter 1

Introduction

1.1 Background & motivation

The increase of Europe’s offshore wind capacity from its current level of 12
GW to 60 GW (5 fold) by 2030 and 300 GW (25 fold) by 2050 is presented by
the European Commission as a part of the European Union’s (EU) planned
strategy to meet the EU’s goal of climate neutrality by 2050 [1]. There have
been about 84 MW of floating wind turbines (FWT) installed worldwide at
the end of 2019. Globally there are over 7000 MW of FWT in planning and
permitting phases of development, with the first commercial-scale project
expected to be operational in 2024 [2]. However, there are yet very limited
experiences with floating wind turbines to estimate the actual operational ex-
penditure (OPEX). The overall risk of loss of turbine is expected to be higher
in FWT mainly because of higher power ranges, larger components and being
exposed to wider range of excitation frequencies. Based on a report published
by the National Renewable Energy Laboratory (NREL), the levelized cost of
energy (LCOE) of FWT will reach the same level with land-based turbines,
and technological innovations in maintenance strategies based on condition-
based maintenance is emphasized as a significant contributor [2]. According
to the study performed by Ioannou et al. [3], the proportion of OPEX ex-
penses to the total costs in offshore wind turbines are in average twice more
than the land-based wind turbines. In this between, the reduced availability
of offshore turbines due to longer downtime caused by first more difficulty
in access to offshore assets and second the utilization of larger components
to realize the higher power ranges play a significant role. Dynamic asset
management by using preventive condition-based maintenance techniques
to optimize the scheduled maintenance intervals based on monitoring the op-
erating states of the critical components is considered as an effective solution

1
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to flatten the gap between OPEX in offshore and land-based wind turbines.
The drivetrain system including rotor, shafts, main bearings, gearbox,

generator and power converter accounts for 57% of turbine total failures and
65% of turbine total downtime [4], which shows a high potential in reduc-
tion of OPEX by applying innovative condition monitoring strategies to the
drivetrain system.

The motivation of this research is improving the availability of drivetrain
system of future large FWTs by applying innovative condition-based mainte-
nance approaches which are computationally inexpensive, are able to detect
the drivetrain system faults in early stages, and can estimate the residual
life of the drivetrain components near real-time.

Condition-based and predictive maintenance types are the subcategories
of preventive maintenance strategies, aimed at reducing downtime and op-
timizing resources by performing maintenance when it is needed [5]. In
condition-based approaches, maintenance is initiated when a condition vari-
able approaches or passes a threshold value. Predictive maintenance offers
a higher level functionality by combining the fault detection algorithm with
precise algorithmic formulas to predict the exact moment when a mainte-
nance action should be taken.

Condition monitoring in this thesis context means fault diagnosis and
prognosis activities including the estimation of remaining useful lifetime
(RUL).

1.2 Drivetrain basics and available technologies

In the definition of drivetrain in this thesis, this system consists of all the
components of the wind turbine rotary system and the related controller. On
this basis, the drivetrain system consists of prime mover/rotor, main bear-
ing/bearings, main shaft, gearbox, high-speed shaft, generator and power
converter system.

A review of the different drivetrain technologies for different ranges of
power and application (onshore/offshore) is performed by Moghadam and Ne-
jad [6] in paper 1. A brief overview of the commercialized wind turbines (see
Table 1.1) and the reference turbines developed by research institutions and
universities [7, 8] shows a unanimous interest in PMSG for high-power off-
shore wind turbine drivetrain systems. According to [9], a higher efficiency
due to external excitation circuit removal; higher reliability and availability,
and less maintenance costs due to the compactness and lightweight design
and brushes elimination are the motivations for choosing permanent magnet
synchronous generator (PMSG) drivetrain technology in high-power offshore
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wind turbine applications with the nominal power higher than 8 MW. For
this reason, PMSG drivetrain technology is selected as the main case study
of the drivetrain analyses in this research. However, the methods developed
in this research for the drivetrain condition monitoring are not restricted
by the drivetrain technology and configuration, so that they can be adjusted
according to the drivetrain design for various applications.

PMSG-based drivetrain technology can be realized based on two different
configurations, namely with and without gearbox. The gearbox in the wind
turbine drivetrain can be based on different combinations of planetary and
parallel gear stages aimed to realize different gear ratios. The frequency of
the rotation of prime mover/rotor is far less than the frequency of the gen-
erated electrical power, and the gearbox is responsible to adjust/convert the
lower speed of the prime mover to the proper speed level for the generator
operation. In fact, in order to convert the variable frequency of the rotor to
a regulated frequency of the generator output electrical power which is nec-
essary for the synchronization of the wind farm with the power grid, three
strategies are simultaneously used, which are the use of gearbox, the use of
generator with a proper number of poles and the active control implemented
by the power converter system. A tailored combination of these strategies
can significantly influence the efficiency, weight and dimension of drivetrain,
and subsequently the manufacturing and O&M costs. A comparison between
different PMSG-based drivetrain configurations by taking into account the
costs over the drivetrain life cycle is presented in Chapter 3. The drivetrain
configuration which offers a better compromise between the criteria obliged
by the life cycle assessment approach is selected as the main case study for
the condition monitoring studies in this PhD thesis.

Table 1.1: Drivetrain most conventional technologies

HSSCIG HSDFIG DDWRSG MSWRSG DDPMSG MSPMSG
SWT-4.0-130 GE 5.3-153 EN136-4.2 SCD 8.0/168 SG 14-222 V164-10

Siemens General Electric Envision Aerodyn Siemens Vestas
4 MW 5.3 MW 4.2 MW 8 MW 14 MW 10 MW

Off-/onshore Onshore Off-/onshore Offshore Offshore Offshore
Geared (1:119) Geared (NA) Direct-drive Geared (1:27) Direct-drive Geared (1:38)
V136-4.2 MW 6.2M126 E-126 7.580 NA GE Haliade-X 12 BW 14.xM225

Vestas Senvion Enercon NA General Electric Bewind
4 MW 6.2 MW 7.6 MW NA 12 MW 14 MW

Onshore Offshore Onshore NA Offshore Offshore
Geared (NA) Geared (1:97) Direct-drive NA Direct-drive Geared (NA)
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1.3 Drivetrain failures

Functional failures and failure modes in the horizontal axis wind turbines
including the drivetrain faults are summarized in [10] and [6] (paper 1). A
basic failure modes study about the generator and gearbox in PMSG drive-
train systems is presented in Table 1.2.

Table 1.2: Basic failure modes study of PMSG drivetrain components [6] (pa-
per 1)

PMSG ([11, 12, 13, 14])
Possible faults

Mechanical faults
Blocking bearings
Stucking filings in the air-gap
Electrical faults
Short circuit faults
Finite resistance circuit faults
Open circuit faults
Magnetic faults
Demagnetization of rotor magnets
Detachment of rotor magnets

Root causes
Over current
Voltage sags, swells and harmonics
Cooling and lubrication system dysfunction
Sensors and communication network dysfunction
Rotor torque oscillation by wave/wind induced moments
Electromagnetic torque oscillations
Poor or contaminated bearing lubrication
Bearing installation problems

Failure modes
Stator winding insulation fail (fatigue, ultimate)
Demagnetization: magnet heating (ultimate)
Demagnetization: increased flux density (ultimate)
Phase/path cut-off (fatigue, ultimate)
Stator tooth fretting damage/crack (fatigue/ultimate)
Detached magnet:raised centrifugal forces (fatigue)
Bearing pitting and sanding (fatigue)
Bearing brinelling/false brinelling (fatigue)

Gearbox ([15, 16])
Possible faults

Gear fault
Shaft fault
Bearing fault
Shaft misalignment
Shaft bending
Shaft loose
Housing fault
Fastener fault
Seal fault

Root causes
Underestimated design loads
Torque overloads
Material defects
Manufacturing errors
Dirt in the lubricant or poor lubrication
Damage during transportation and assembly
Misalignment of components in the shaft

Failure modes
Gear wear, scuffing and contact fatigue (fatigue)
Gear plastic deform, crack, fracture, bending (ultimate/fatigue)
Bearing spalling: excessive load/poor lubrication (fatigue)
Bear. smearing: foreign objects trapped within (fatigue)
Bear. worn surface: skewed roller/lubrication (fatigue)
Bear. partial chipping of rings/roller:excessive load (fatigue)
Bear. ring split/crack:excessive load/loose fit (fatigue)
Bear. fretting corrosion:fluctuating load/lubrication (fatigue)
Bear. electrical pitting:sparks by electric current (fatigue)
Bear. damaged retainer:heavy vibration/speed change (fatigue)

Drivetrain faults can be classified into two main categories of the faults
in the electrical and mechanical components. Based on this classification, the
faults in the permanent magnets and winding of the generator, and the faults
in the power converter system (e.g. faulty power electronic switches, the ca-
pacitors of DC-link and grid filter) are considered as electric faults. However,
the faults in the rotor blades and bearings, gearbox gears and bearings, gen-
erator bearings, shafts and couplings are considered as mechanical faults.

In this PhD thesis, the mechanical faults of the drivetrain system are fo-
cused. Drivetrain mechanical faults can also be classified into two categories
of system- and component-level faults:

System-level faults are categorized into the faults which change the tor-
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sional stiffness the most (e.g. crack in the shafts and bearing wear specially
in gearbox), and faults which influence mostly the inertia of the drivetrain
components (changes in mass balance/distribution which can be due to e.g.
loss of mass, wear and unbalance; and also change in the axis of rotation
which can be due to e.g. misalignment and looseness).

Component-level faults consist of faults in the subcomponents of the main
drivetrain components. For example, faults in each bearing or gear of the
gearbox, each bearing of the generator, each blade of the rotor or each of the
main bearings are considered in this category.

The possibility of detecting the different classes of drivetrain mechanical
faults, namely system- and component-level faults, by using different tech-
niques which are based on vibration measurements are investigated in this
thesis.

1.4 Available drivetrain performance and condition
monitoring techniques

The fault diagnosis of the drivetrain components of the available wind tur-
bines is mostly reliant on monitoring the performance of the individual com-
ponents by using the variations in physical parameters e.g. temperature and
pressure. The latter is supported by condition monitoring systems based on
three-axial measurements of translational vibrations in the different places
of the drivetrain to support an earlier stage component-level fault detection
in the drivetrain.

The classical performance and condition monitoring of the drivetrain is
performed by analyzing one or a combination of different types of measure-
ments by using several techniques to create a feature space for fault diagno-
sis and prognosis purposes [17], namely vibration analysis [18, 19], electri-
cal signature (currents, voltages and power signals) [20], acoustic emissions
analysis [21], thermography [22] and temperature analysis [23], oil pressure
and analysis of oil particles [24].

The focus of this PhD research is the drivetrain condition monitoring by
using the vibration measurements including both torsional and translational
vibrations, by leveraging the combination of physical models and data-driven
approaches.
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1.5 Aims and scope

This thesis is written as the summary of papers, including two published
journal articles, a published conference article, and three submitted journal
articles, as attached in the Appendix. One paper is under preparation and
thus has not been included in this thesis. The scope of the thesis is shown
in Figure 1.1 where the main topics and the interconnections between the
appended papers and chapters are demonstrated.

Figure 1.1: Relations between the appended papers and the thesis chapters.

As discussed earlier, available drivetrain health monitoring solutions do
not sufficiently address the needs of future FWT. We need approaches which
can more efficiently capture the internal dynamics of the drivetrain system
and the interactions with the loads and the rest of turbine and power grid,
which calls for the employment of innovations in the drivetrain condition
monitoring solutions. Therefore, the main purpose of this thesis is proposing
innovative and cost effective condition monitoring approaches mainly based
on the drivetrain torsional vibrations for improving the availability of future
FWT. The proposed methods are computationally fast, simple to implement,
and can be integrated into the available control and monitoring system of
both turbine and farm levels. This goal is achieved by the realization of the
following procedure:

The evaluation of different available drivetrain topologies for high power
FWT applications over the drivetrain life cycle by considering simultaneously
the design, manufacturing, installation and operation & maintenance costs is
investigated in paper1. The outcome determines the drivetrain configuration
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and dimensions for further studies which are focused on fault diagnosis and
prognosis of the drivetrain system and components.

A data-driven drivetrain condition monitoring approach based on trans-
lational vibrations by assuming the drivetrain vibration measurement set
as a Gaussian Markov random field (GMRF) is discussed in paper 7. The
drivetrain condition monitoring by time and frequency domain analyses of
angular velocity residual function as the drivetrain torsional response, and
its performance compared to the conventional approaches based on analysis
of lateral and axial vibrations are discussed in paper 2. The possibility of
using torsional response for estimation of the drivetrain torsional modes is
explained in paper 3. The analytical proof of the drivetrain modal estimation
by using the torsional response, and the design of an analytical approach to
detect the drivetrain system-level faults by monitoring the variations in the
dynamic properties of the drivetrain over the time are presented in paper
4. The fault detection approach combines a data-driven approach to esti-
mate the dynamic properties from operational torsional measurements, and
a physics-based approach for extracting fault detection features and defining
thresholds based on analysing the analytical relationship between the vari-
ations of the physical system and the variations of the system dynamics, so
that the result can be quantified into different states of a progressive faults
to determine the state/condition of the system.

The other perspective of condition-based maintenance is predicting the
system faults by estimating the residual life of the system components. In
order to achieve this purpose as the main goal of this PhD project, a digital
twin modelling approach for estimating the near real-time value of load in
the different components of the drivetrain by using the drivetrain torsional
measurements, and the subsequent use of estimated loads for estimating the
equivalent stress and then the fatigue damage in the drivetrain components
are discussed. The application of proposed digital twin model as the combi-
nation of the drivetrain near real-time estimated equivalent model, online
measurements and the degradation model, for monitoring the RUL of the
gears is discussed in paper 5. The application of the digital twin model for
estimating the residual life of the main shaft while addressing the different
sources of uncertainty by using statistical approaches and stochastic mod-
els is studied in paper 6. The proposed digital twin model is presented in
the general form, so that it can be adjusted and used for the residual life
monitoring of different drivetrain components.
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1.6 Thesis outline

The chapters are structured in the same sequence as one carries out the wind
turbine drivetrain condition monitoring analysis. A brief description of each
chapter is provided as follows:

Chapter 1:
This chapter includes introduction, background, motivations, aim and scope
and outline of the thesis. The brief review of the common drivetrain tech-
nologies of large FWT, the different categories of drivetrain failures, and
the available solutions of drivetrain performance and condition monitoring
is performed.

Chapter 2:

Wind turbine global analysis and drivetrain decoupled simulation ap-
proach are discussed in this chapter. The drivetrain loads which are esti-
mated from the global simulations play the role as inputs applied to the driv-
etrain model used for the drivetrain studies of papers 1, 3, 4, 5, 6 and 7.

Chapter 3:

In this chapter, different PMSG-based drivetrain configurations are de-
scribed, and the pros and cons of each configuration over the drivetrain life
cycle are discussed. This chapter covers the main results of paper 1 with
the main focus on the optimization of drivetrain in a life cycle perspective
in both system and component levels to obtain the most promising PMSG-
based drivetrain configuration for future high-power FWT by considering
simultaneously the design, manufacturing, installation and operation and
maintenance (O&M). The design specifications of the different PMSG-based
drivetrain configurations are presented. The medium-speed PMSG drive-
train topology selected in this study is considered as the main simulation
case used throughout this thesis, and used as the drivetrain model in papers
3, 4 and 6. The main contribution of this chapter is establishing a drive-
train system optimization approach which ensures an optimized overall cost,
weight, size, and improved efficiency and reliability.

Chapter 4:

The classification of different vibration-based condition monitoring ap-
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proaches is presented in this chapter. The literature of vibration-based condi-
tion monitoring grounded on translational vibrations obtained by accelerom-
eters by using both physics-based and data-driven approaches is reviewed.
The condition monitoring based on translational vibrations is used as a base-
line to validate the condition monitoring methods developed in papers 2, 3,
4, 5, 6 and 7. The performance of a novel data-driven statistical learning-
based condition monitoring approach grounded on translational vibrations
compared to the conventional time-domain approaches is evaluated. Then
as a separate part in this chapter, drivetrain innovative condition monitor-
ing techniques based on monitoring the torsional vibrations are introduced.
The performance of condition monitoring by the time and frequency domains
analysis of torsional vibrations and their residual functions is demonstrated
and compared to the case of using lateral and axial vibrations, so that the
complementary role of torsional vibrations to the available approaches is
demonstrated. It is shown that how torsional measurements can provide
better understanding about the excitation sources, which can be used for
finding the root cause of different drivetrain failures and also to support the
detection of faults in an earlier stage. The test case used for the experimen-
tal studies is Vestas V66-1.750MW high-speed drivetrain technology. This
chapter covers the main results of papers 2 and 7. The torsional vibrations
are then investigated in more detail in papers 3, 4, 5 and 6. The main con-
tributions of this chapter are: first developing a drivetrain fault diagnosis
method at component level based on the translational vibrations by using
the combination of physics-based and data-driven approaches, and monitor-
ing the variations of drivetrain statistical properties; and second classifying
the different sources of excitation in drivetrain condition monitoring analy-
ses and proposing the efficient vibration-based diagnosis solutions based on
the source of excitation

Chapter 5:

This chapter performs a more detailed investigation of the drivetrain tor-
sional vibration response. A drivetrain fault diagnosis algorithm by using the
torsional vibrations based on the estimation of drivetrain dynamical proper-
ties from the preprocessed torsional measurements is discussed. An ana-
lytical model which defines the logical relationship between the drivetrain
faults at system level and the variations of drivetrain dynamic properties
is presented. The test case used for the simulation studies of this chapter
is DTU 10 MW medium-speed drivetrain. The test case for the experimen-
tal studies is Vestas V66-1.750MW high-speed drivetrain technology. This
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chapter covers the main results of papers 3 and 4. The main contributions
of this chapter are: first designing methods for drivetrain modal analysis by
means of torsional vibrations; and second designing methods for drivetrain
fault diagnosis at both system and component levels based on monitoring the
variations of the drivetrain dynamic properties.

Chapter 6:

This chapter investigates in more detail the innovative drivetrain condi-
tion monitoring based on the torsional measurements but for a higher level
purpose which is the online estimation of the RUL of the drivetrain com-
ponents. The application of digital twin as the combination of equivalent
reduced-order model, online measurements and RUL model to support the
predictive maintenance of the drivetrain system is discussed, and the pro-
posed algorithm for the near real-time estimation of drivetrain equivalent
model parameters by using the torsional measurements is explained. The
test cases for simulation studies of this chapter are DTU 10 MW medium-
speed and NREL 5 MW high-speed PMSG-based drivetrain technologies.
This chapter covers the main results of papers 5 and 6. The main contri-
butions of this chapter are: first establishing the digital twin approach for
fault prognosis of the drivetrain components by using the drivetrain tor-
sional measurements; and second designing a robust and computationally
fast method for estimating the parameters of drivetrain equivalent models
of different degrees of complexity by using the torsional measurements, for
fault diagnosis and prognosis applications.

Chapter 7:
This chapter includes the conclusions made by this PhD project, the original
contributions of the work and the recommendations for future researches.



Chapter 2

Global dynamic response
analysis

2.1 General

Accurate and computationally inexpensive models for modelling faults and
analyzing the system behavior under fault conditions are highly demanded
by offshore wind industry where faults can be extremely costly [25]. The
simulation-based condition monitoring study of the drivetrain system of a
spar floating wind turbine concerns modelling of turbine including drive-
train, tower, support substructure and environmental loads. This model
should be able to capture the global dynamics of spar FWT from the inter-
actions with the environmental loads and determine the influences on the
drivetrain loads and motions. To this target, there are some challenges of
using the coupled models for two main reasons: First, the weakness of sim-
ulation tools in modelling such a complex dynamical system with various
loads, components dynamics and uncertainties; Second, the high computa-
tional complexity of such huge dynamical model in which the simulation time
step should be small enough to capture the very fast dynamics of the drive-
train components (e.g. those related to the gears and bearings of the high-
speed side) with the defect frequencies pretty higher than the frequencies of
the other turbine components. The decoupled simulation-based analysis of
the turbine and drivetrain is an alternative to coupled simulations, which
is proposed in literature to cope with the aforedescribed challenges. Nejad
et al. [26] reports the successful use of a decoupled simulation approach
for estimating load effects and subsequently the fatigue damage of the drive-
train components. The procedure for estimating the drivetrain loads from the
global simulations and then applying them to a decoupled drivetrain model

11
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to estimate the load effects and responses of the gears of the drivetrain gear-
box is summarized in Figure 2.1.

Figure 2.1: Decoupled simulation approach for wind turbine drivetrain anal-
ysis [26].

2.2 Decoupled analysis approach

The decoupled analysis approach is used for the drivetrain studies in this
work. The latter means that the rotor aerodynamic loads and the bed-plate
motions obtained from turbine global simulation study are applied to a de-
coupled detailed model of drivetrain in a secondary software. Then the driv-
etrain components load effects and responses are calculated for post process-
ing analysis aimed at condition monitoring of the drivetrain system compo-
nents. The implementation of decoupled simulation approach consists of two
steps:

In the first step, global simulation analysis in different environmental
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conditions is performed. In the global simulation, the blades and hub as-
sembly, the structural module including the flexible multi-body systems for
tower and platform including the floating support substructure and the na-
celle are modelled. This model is coping with combined aerodynamic and
hydrodynamic loads by using probabilistic numerical models of wind, waves
and current in the global simulation software to capture the integrated and
synergistic effects of the environmental loads and the wind turbine control
system on the turbine components. The results of the global simulation are
the load effects in the different parts of turbine, which contain the informa-
tion about the interactions between the turbine subsystems. The latter in-
cludes the loads and motions transferred from the rotor and structure to the
drivetrain described by the time series of the resultant moments and forces
on the rotor, tower top accelerations, bed-plate motions and other responses
of interest.

In the second step of the decoupled analysis, the calculated rotor aerody-
namic torque and the responses of interest estimated from the global simu-
lation are applied as the input to a decoupled offline drivetrain model in an-
other simulation software suitable for multiple physics modelling and analy-
sis of rotating machinery to calculate and analyse the drivetrain components
load effects and responses. Then the results are used for post processing
analyses aimed at health monitoring the drivetrain at component and sys-
tem levels.

Decoupled simulation models are computationally faster than coupled/co-
simulation models, where the sampling frequency for each decoupled simula-
tion model can be decided based on the type of analysis and the physical prop-
erties of system. Decoupled analysis approach is employed for all the drive-
train studies in this thesis. The decoupled approach is used by Moghadam
and Nejad in paper 1 [6] aimed at optimizing the drivetrain system by the
analysis of torsional dynamics in the different drivetrain topologies, in pa-
pers 3 and 4 [27, 28] focused on modal analysis and fault diagnosis in the
drivetrain system, and the researches conducted in papers 5 and 6 [29, 30]
on the estimation of the remaining useful lifetime of the drivetrain system
components.

2.3 Test cases

Two different wind turbine models are applied to the drivetrain simulation-
based studies of this thesis, namely DTU 10 MW and NREL 5 MW turbine
models, which are equipped with spar floating support substructures.

DTU 10 MW reference wind turbine [7] with a spar floating support sub-
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structure is the main test case. The wind turbine specification and the over-
all characteristics of the floating platform is obtained from [7] and [31]. The
drivetrain system is a medium-speed permanent magnet synchronous gen-
erator technology based on the gearbox and generator design specifications
reported by Moghadam and Nejad (paper 1) [6]. DTU 10 MW global simula-
tion model is simulated in SIMA global simulation software, a simulation and
analysis tool developed by SINTEF Ocean [32]. SIMA is the updated version
of SIMO-RIFLEX-AeroDyn global simulation software [33], which includes
SIMO-RIFLEX, and an updated aerodynamics module which is not the same
as AeroDyn. The global simulation results are applied as input to the driv-
etrain model for the condition monitoring studies as reported in papers 3, 4
and 6 [27, 28, 30].

NREL 5 MW reference wind turbine [34] with a spar floating support
substructure is selected as the second case study. The wind turbine specifica-
tion and the overall characteristics of the floating platform is obtained from
[35]. This model is able to capture the global dynamics of spar FWT from the
interactions with the environmental loads and turbine control. NREL 5 MW
global simulation is performed by SIMO-RIFLEX-AeroDyn [33]. The 5 MW
reference drivetrain [36] is employed as the drivetrain configuration in this
test case. The results are applied as input to the drivetrain condition moni-
toring studies performed by Moghadam et al. [29] in paper 5, and Moghadam
and Nejad in paper 7 [37], respectively aimed at the real-time estimation of
the residual life of the gears in 5 MW drivetrain system gearbox, and the
data-driven diagnosis of faults in the drivetrain components including the
bearings, gears and shafts.

For all these test cases, the wind flow in the global simulations is assumed
turbulent, assuming a Kaimal spectrum for IEC61400-1 class B turbines [38]
and a normal turbulence model. The turbulence intensity at hub height I (−)
depending on the average wind speed at hub height, is obtained according
to IEC 61400-1 class B turbines [38]. The wave is also modelled stochastic
by two parameters, namely significant wave height Hs (m) and peak period
Tp (s). For 10 MW simulations, four different environmental conditions are
simulated to realize the drivetrain different operating conditions including
near rated, over rated and under rated operations, as it can be found in pa-
pers 1, 3, 4 and 6 [6, 27, 28, 30]. For 5 MW simulations, one environmental
condition to realize the drivetrain near rated operation is considered [29].

The rotor torques obtained from global simulation models of both 10 MW
and 5 MW, which are related to the operation of turbines near the rated
condition, are shown in Figure 2.2.

In the DTU 10 MW rotor torque shown in Figure 2.2a the average wind



2.3. Test cases 15

(a) DTU 10 MW

(b) NREL 5 MW

Figure 2.2: Rotor torque obtained from global simulation models, near the
rated wind speed (a) DTU 10 MW equipped with spar floating substructure,
(b) NREL 5 MW equipped with spar floating substructure.

speed is 11 m/s which is a little lower than the nominal speed (11.6 m/s).
In the below rated wind speed, there is only torque control and not any
blade pitch, but since the mean wind speed is very close to rated, it will also
use pitch control sometimes during the simulation (when the turbulent wind
speed comes over rated). The case is similar for the 5 MW model (as shown
in Figure 2.2b), where the rotor torque is similarly obtained from the turbine
operation near the rated condition. One reason for that the torques obtained
from these two models look qualitatively different for these two spar floaters
could be the chosen control strategy above rated for the torque controller. In
practice, there are two choices, either "constant torque" control strategy (al-
ways keep the torque equal to the rated torque for above the rated wind) or
"constant power" control strategy (it varies the torque such that the power is
always equal to the rated power for above the rated wind, which can cause
higher oscillations of the torque). The 10 MW model uses constant power
control strategy (which leads to higher torque oscillations), while the 5 MW
model uses constant torque strategy. In this case, the dips in the 5 MW model
torque curve would then occur when the wind speed drops below rated, and
it can no longer keep rated torque, but will change it according to the torque
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versus speed control region.
There is another difference between 5 and 10 MW models, which could

contribute to the difference between the calculated torques. The demon-
strated 10 MW torque shows the pure aerodynamic torque. There is the
aerodynamic inertia in the model, but it does not include the rotor inertia.
For the 5 MW model, the rotor inertia is included in the model. Modeling
the rotor inertia in 5 MW model is the other factor which contributes to the
smoother torque observed in this model compared to 10 MW model.



Chapter 3

Optimal drivetrain
configuration for large
turbines

3.1 General

This chapter compares different drivetrain configurations based on perma-
nent magnet synchronous generator technology to realize the drivetrain sys-
tem of 10 MW FWT. The advantages and drawbacks of each configuration
are discussed. The drivetrain optimization is mostly studied in literature
in a component level [39, 40] perspective. The drivetrain optimization in
system level for lower power ranges (upto 5 MW) is studied by considering
the cost of raw material of both the generator and gearbox as the objective
function by [41]. Moghadam and Nejad [6] (paper 1) study the drivetrain op-
timization for DTU 10 MW turbine with a spar floating support substructure
in a life cycle perspective in the system level by simultaneously taking into
consideration multiple costs, namely the design and manufacturing, instal-
lations process and O&M costs, so that the different drivetrain system con-
figurations based on PMSG, namely direct-drive (DDPMSG), medium-speed
(MSPMSG) and high-speed (HSPMSG) drivetrains are studied by taking into
account the aforementioned factors participating in the drivetrain costs.

The objective of this chapter is presenting the summary of the work in [6]
(paper 1). In other words, the pros and cons of the different 10 MW PMSG
drivetrain system configurations over the drivetrain life cycle are studied in
this chapter, which is holistic and valuable. In this perspective, the optimal
drivetrain system topology is the one which offers a better compromise be-

17
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tween the raw material costs, construction efforts, installation costs, overall
rated efficiency, power quality and system availability. The selected configu-
ration should also make sure about the safe operation over the turbine speed
range and leaving a safe margin between the system natural frequencies and
the external/internal excitation frequencies with a significant energy to pre-
vent resonances in the system.

The research contributions of this PhD work which are covered by this
chapter are:

The drivetrain cost optimization by using a life cycle assessment ap-
proach is introduced. Many researchers have done optimization, but
we do in a life cycle perspective which is more holistic and valuable. A
new analytical design approach is proposed for the optimized design of
PMSG based on the optimization of the active material cost. An analyt-
ical design model of the gearbox is presented, and a new optimization
approach is proposed to optimize the gearbox weight. A comprehen-
sive comparison between the design, raw material cost, weight, size,
efficiency and reliability of DDPMSG, MSPMSG and HSPMSG drive-
train technologies is presented. The first torsional natural frequency
of the three under consideration PMSG-based drivetrain configurations
is calculated, and the feasibility of application in floating offshore wind
turbines is investigated.

3.2 Life cycle optimization

The drivetrain life cycle assessment approach and the part of cycle which is
emphasized for the optimized drivetrain design in this thesis is demonstrated
in Figure 3.1.

Design concerns the complexities of design, maximal design utilization
and higher degree of adaptation to site-specific conditions, reliability and
controllability. It is important to know that the most of failure modes can be
rooted back to design stage. Reliability-based design is concerned with drive-
train design considering failure modes to ensure a safe and reliable operation
over the operating speed and torque range [42], while the failure modes de-
pend on the drivetrain technology [6] (paper 1). As a design study in the
drivetrain life cycle-based analysis, the first torsional natural frequency of
the three different under consideration PMSG-based drivetrain systems is
studied, and the feasibility of using these configurations in floating platforms
is investigated by performing a study about the possibility of resonance due
to the coincidence of the drivetrain natural frequency with the excitation fre-
quencies.
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Figure 3.1: Drivetrain life cycle assessment approach [6].

In manufacturing and installation, weight, compactness, and special man-
ufacturing and installation requirements are emphasized. An example of
more manufacturing efforts is the construction process of DDPMSG, where
the high pole count causes small rotor poles with fine stator slotting which
makes manufacturing more expensive. In installation efforts, for instance, a
less weight drivetrain configuration and the resultant reduced weight nacelle
and tower could help to reduce the transportation and craning requirements.
The minimization of weight, raw material cost and size of the under consid-
eration drivetrain configurations are among the main objectives addressed
in the drivetrain system optimization problem in this thesis, which provides
the necessary inputs for further studies about the manufacturing and instal-
lation costs.

Operation and maintenance (O&M) is concerned with performance, effi-
ciency, reliability, availability and maintenance costs. In performance, the
output power quality of the generator is concentrated, where the generator
technology and the power frequency converter play a significant role. In effi-
ciency, improving the efficiency of drivetrain system is emphasized to specify
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which technology and configuration can offer a greater efficiency, which can
contribute in the reduction of the cost of energy. For this purpose, the effi-
ciency of all the individual components of the drivetrain system should be
taken into consideration. Then the overall efficiency of the different drive-
train systems in the rated power is calculated and compared. In reliability,
the failure rates of different drivetrain components and the critical failure
modes of the different configurations should be analyzed. Therefore, the fail-
ure modes of the subcomponents must be listed, so that the components and
subsequently the drivetrain systems could be ranked from the highest to the
lowest probability of failure (POF) regarding the most critical failure modes.
In availability, the downtime of the unit consisting of the downtime of both
scheduled and unscheduled maintenance operations, due to the different fail-
ure modes of the drivetrain components are studied. In order to maintain the
tip speed ratio (TSR) of larger rotors in higher powers to achieve the highest
value of power coefficient, the nominal rotational speed of rotor is reduced.
The latter causes different drivetrain dynamic behaviors in the wind turbines
of the same technology but different rated powers. Moreover, floating support
substructures encounter turbines into different motions induced by the syn-
ergistic impacts of wind, wave, and the gravity of turbine on the floater. The
lower rotor speed, more diverse excitation frequencies and higher amplitude
excitations necessitate a special O&M study for the drivetrain in high-power
floating applications. For the under consideration PMSG-based drivetrain
topologies, the overall efficiency is calculated and compared considering the
efficiency of the individual components, where the efficiency of individual
components are seen in the local component-level optimization problems. As
a reliability analysis, the failure modes, the defect frequencies and the possi-
bility of coincidence of these frequencies with the excitation frequencies and
the system natural frequencies are investigated, while the component level
constraints are also imposed to the local problems to mitigate loads and im-
prove the operation. The failure modes affected by the rotor torque and gen-
erator electromagnetic torque oscillations in the three under consideration
configurations are also discussed and compared. Unequal values of genera-
tor cogging torque and frequencies of occurrence in the under consideration
drivetrain configurations also influences the different torsional vibration be-
haviors.

3.3 Drivetrain optimization approach

The three under consideration configurations are listed in Table 3.1. These
topologies are selected by taking into consideration the available drivetrain
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configurations close to the turbine rated power selected in this research.

Table 3.1: Case study technologies

Topology Rated power (MW) Application Generator Gearbox
Type 1 (DDPMSG) 10 floating PMSG direct-drive
Type 2 (MSPMSG) 10 floating PMSG planetary-planetary-parallel (1:50)
Type 3 (MSPMSG) 10 floating PMSG three-planetaries (1:50)
Type 4 (HSPMSG) 10 floating PMSG three-planetaries (1:156)

3.3.1 Algorithm

The proposed drivetrain optimized design algorithm is summarized in the
flowchart in Figure 3.2.

The gearbox affects both the input torque and speed of the generator,
which are among the crucial parameters of the design of generator. The
weight and size of generator is directly proportional to these two parameters.
In each iteration of the proposed drivetrain system optimization approach,
the gear-ratio is fixed by the outer loop. Therefore, the optimization prob-
lem of each drivetrain configuration is broken into two decoupled problems
of optimized gearbox and generator designs. As a result, for each drivetrain
topology (or, interchangeably, for each gear ratio), two internal component-
level optimization problems are solved.

3.3.2 Generator optimization

Different objective functions with different sets of optimization variables are
proposed in literature for the design of PMSG. Li et al. [41] tried to minimize
the cost of active material, Dubois et al. [43] recommended the ratio of the
cost of active material to the torque density, and Røkke et al. [14] proposed
the minimization of the combination of the cost of the active materials (in-
cluding the housing) and the cost of the lost energy in the machine over the
PMSG lifetime. In this thesis, an analytical design based on the minimiza-
tion of the ratio of the cost of active material to the torque density is em-
ployed to find the optimized design of the generator in each of the DDPMSG,
MSPMSG and HSPMSG drivetrain configurations. The latter ensures the
minimized cost while the electromagnetic (developed) torque density and uti-
lization of the generator weight is maximized. The proposed analytical model
represents the cost function and the design constraints as a function of five
geometrical variables.
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Figure 3.2: Proposed drivetrain optimization approach [6].

The generator optimization problem is defined by

x∗ = argmin
x

( costactive(x)
Td(x)

)
, (3.1a)

costactive(x)= cost f e(x)+ costcu(x)+ costpm(x), (3.1b)

Td(x)= TN

V (x)
, (3.1c)
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where x is a vector which represents the optimization variables. x∗ is called
optimal, or a solution of the problem. costactive is the cost of active materials
in generator construction in Euro. The cost of active materials consists of
the cost of the iron used in rotor and stator yokes and stator teeth, the cop-
per used in stator windings, and the surface mounted permanent magnets.
cost f e is the total cost of iron, costcu is the cost of copper, and costmagnet rep-
resents the cost of magnet material. TN is the nominal torque in kN.m and
V is the generator active volume in m3. Td is the generator torque density
in kN.m/m3. The variables in equation 3.1 are defined by

x= [x1, x2, x3, x4, x5]T = [Ds,Ls,bs,hs,hm]T , (3.2a)

costcu = ccumcu, (3.2b)

costpm = cpmmpm, (3.2c)

cost f e = c f emf e, (3.2d)

V =π
D2

so

4
Le, (3.2e)

The optimization problem variables Ds, Ls, bs, hs and hm are respec-
tively the air-gap diameter, active length of generator, slot width, slot height
and magnet height. c f e, mf e, ccu, mcu, cpm and mpm are respectively the
specific costs and total weights of core, copper and magnet. The design of
surface mounted PMSG deals with the determination of a high number of
variables related to the generator geometry and operation. In the proposed
optimized design approach, it was observed that all the generator design
variables can be either defined as a function of the five aforementioned geo-
metrical optimization variables, or considered constant, or changed in opti-
mization problem outer loops. The latter helps to turn the generally nonlin-
ear and strongly nonconvex problem of PMSG optimized design to a convex
problem to be able to find the global optimizer.

Equation 3.2 is used as the base model in the proposed PMSG analytical
design approach by [6] aimed at optimizing PMSG design as discussed in
more detail in paper 1.

3.3.3 Gearbox optimization

The gearbox design optimization objective function concerns the minimiza-
tion of the cost of active material in gearbox by optimizing the stage gear
ratios. The optimization problem to optimize a three-stages configuration of
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the gearbox is defined by

u∗ = argmin
u

(
costgear(u)

)
, (3.3a)

costgear(u)= coststage1(u)+ coststage2(u)+ coststage3(u), (3.3b)

where u is the vector of optimization variables. u∗ is called optimal, or a
solution of the problem. costgear is the total raw material cost of the gears of
gearbox stages in Euro. The variables of equation (3.3) are described as

u = [u1,u2,u3]T , (3.4a)

costplanetary
stage = cgearmplanetary

gear , (3.4b)

costparallel
stage = cgearmparallel

gear , (3.4c)

In the above equation, cgear is the unit cost of the gears material, and
mplanetary

gear and mparallel
gear represent the weights of planetary and parallel stages,

respectively, which are defined as the function of gearbox design optimization
variables by using the model described in [36] as

mplanetary
gear (u)= 2ρ f eQS

k
(
1
B

+ 1
B( u

2 −1)
+ (

u
2
−1)+ (

u
2
−1)2 +kr

(u−1)2

B
+

(3.5a)

kr
(u−1)2

B( u
2 −1)

),

mparallel
gear (u)= 2ρ f eQP

k
(1+ 1

u
+u+u2), (3.5b)

In the above equation, QS and QP are the input torques applied to the
sun and pinion of planetary and parallel stages, respectively. u is the gear-
ratio, B is number of planets of the planetary stage, and kr is ring scaling
factor of the planetary stage. k is the intensity of tooth loads factor.

Equation 3.4 is used as the basis for the optimization of gearbox design
studied in paper 1 [6], where a new method is proposed to solve the gear-
box weight optimization problem. Even though the optimization problem
shows a disciplined nonconvex problem, it demonstrates a convex behavior
in the multi-dimensional graphical representation of the objective function
and constraints in the defined range of variation of the optimization vari-
ables. Therefore, it is possible to find the global optimizer.
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3.4 Comparison of different configurations

Drivetrain performance-based and reliability-oriented constraints are im-
posed to the generator and gearbox component-level optimization problems
to ensure the feasibility of the generator and gearbox designs and a fair com-
parison between the under investigation drivetrain configurations. Finally,
the designed drivetrain systems are compared concerning the total weight,
cost, size, efficiency and dynamic behaviors.

The results of overall drivetrain weight, cost, efficiency and the first nat-
ural frequency for DDPMSG, MSPMSG and HSPMSG drivetrain configura-
tions are summarized in Figures 3.3a-3.3c. The MSPMSG results are related
to the MSMPSG configuration of type 2, which is realized based on planetary-
planetary-parallel gear stages. As it can be seen, by moving from the direct-
drive technology to the medium-speed, the drivetrain weight, raw material
cost, efficiency and electromagnetic torque oscillations are significantly im-
proved. A transition from the medium-speed to the high-speed generator still
helps to slightly improve all the aforementioned properties.

A larger distance between the drivetrain natural frequency and the rotor
torque oscillation frequencies which have a significant energy in the frequen-
cies lower than 1 Hz is an advantage of lower speed generator technologies,
where DDPMSG outperforms but HSPMSG falls behind the other configu-
rations. However, the DDPMSG drivetrain with the higher value of first
torsional frequency is more susceptible to the torsional vibration frequencies
induced by the PMSG, especially seeing that there is no coupling between
the generator and rotor to suppress the generator electromagnetic torque vi-
brations.

As it is discussed in more detail in paper 1 [6], the utilization of gearbox
can result in a better dynamic performance and can reduce the possibility of
resonance in the drivetrain due to the coincidence of the excitation frequen-
cies which are induced by aerodynamic torque and electromagnetic torque,
with the first drivetrain torsional frequency and the individual components
defect frequencies, though new failure modes due to the presence of gearbox
also appear in the geared drivetrain systems. It is shown that by consid-
ering the interactions between the drivetrain components, MSPMSG driev-
train topology can mitigate the influence of excitation sources on some failure
modes of the generator and the main bearings while keeping a safe distance
between the excitation frequencies and the drivetrain torsional frequency.

Therefore, the selection of drivetrain technology is a multidisciplinary
task which needs to compromise between the criteria obliged by the life cycle
assessment approach. With respect to weight, material cost, size, efficiency,
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Figure 3.3: Comparison between different drivetrain topologies: DDPMSG,
MSPMSG and HSPMSG [6] (paper 1)

possibility of resonances and failure modes analysis, MSPMSG can demon-
strate a better compromise so that is selected as the main case study of the
drivetrain condition monitoring studies in the rest of this PhD thesis.



Chapter 4

Physics-based and
data-driven vibration-based
condition monitoring

4.1 Literature review on vibration-based condition
monitoring methods

The main condition monitoring technique used for fault diagnosis in gears
and bearings of the wind turbine drivetrain is vibration analysis. The idea
behind the vibration-based condition monitoring of drivetrain as a rotational
system is that, generally speaking, the faults in rotational systems in later
stages show themselves by increased vibration levels in the drivetrain com-
ponents represented by the drivetrain vibrational responses, namely trans-
lational/torsional acceleration, velocity and displacement, though it may also
depend on the location of fault and where the response is measured. There-
fore, the act of exceeding the predefined limits of prespecified vibration sig-
nal features can be used as criterion to detect abnormalities in the system.
Thanks to this general rule, there are guidelines presented in standards,
e.g. ISO10816-21 [44], ISO 13379, ISO 13374 and ISO 13373-1 [45], for
condition monitoring of rotating systems. Classical model-based feature ex-
traction techniques as reviewed by [46] include classical time-domain anal-
ysis of the vibrations signals (e.g. RMS, energy, peak, average, kurtosis,
skewness) [47, 48, 49], frequency-domain analysis (e.g. fast Fourier trans-
form (FFT), auto- and cross power spectral density (PSD)) [50] and time-
frequency-domain analysis (e.g. short-time Fourier transform (STFT), dis-
crete wavelet transform, wavelet packet transform) [51, 52]. Those conven-

27



28 28

tional time and frequency domains methods are followed by more advanced
data-driven time-domain approaches such as statistical learning- and arti-
ficial neural networks-based approaches, which are considered as the sub-
categories of artificial intelligence approaches. Statistical learning condition
monitoring approaches are based on statistical interpretations obtained from
the statistical analysis of the unexpected variations of the distribution fit-
ting the measurements which can be supported by the graphical models of
the sensors network data, so that abnormal variations from the multivari-
ate distribution describing the correlations related to normal operations can
represent defects in system. One common category of statistical learning
approaches track the variations in the correlation of the data (e.g. the devel-
oped methods proposed by Moghadam and Nejad [37] in paper 7, and Zhang
et al. in [53]) (including autocorrelation of each sensor data and cross corre-
lation between the measurements of different sensors). The other category
of artificial intelligence-based condition monitoring approaches are related
to classification tools and feature extraction based on regression analysis,
by using support vector machine and neural network techniques [54]. The
combination of the different artificial intelligence techniques [55], and the
combination of an artificial intelligence technique with classical time and
frequency domain approaches [53, 51] are also reported in literature for con-
dition monitoring of the drivetrain components of wind turbines.

There are controversies in applying the different categories of vibration-
based condition monitoring approaches to wind turbine drivetrain systems.
Standard time-domain approaches are commonly used by the industry for
condition monitoring of the drivetrain components based on online/offline
analysis of vibration data. They are mainly based on the RMS and peak
values of acceleration, velocity and displacement. The applicability of these
approaches is when the fault is in a severe condition so that it can result in
a considerable amount of energy in different frequency components. In com-
plex systems, it is a bit difficult to rely on this method as literature reports
the insufficiency of classical time-domain solutions based on the wind tur-
bine standard ISO10816-21 [44] and other generalized condition monitoring
guidelines such as ISO 13379, ISO 13374, ISO 13373-1 [45], in the detection
of drivetrain faults of the gears and bearings [25]. The other relevant chal-
lenges are in localizing and measuring the state of faults. The frequency-
domain approaches based on monitoring the amplitude of response around
the characteristic frequencies of the system including the resonance frequen-
cies and the defect frequencies of the components associated to the differ-
ent failure modes have been suggested in literature to support/improve the
time-domain fault detection. The latter could support the fault diagnosis,
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but there are still challenges. More specifically, some defects demonstrate
nonlinear and complex frequency patterns which may not be possible to ob-
serve specially in complex systems like wind turbine drivetrain which in-
cludes many components with different dynamic behaviors. In other words,
each component has different failure modes and defect frequencies, and fault
in different stages of progress represent various frequency patterns in fre-
quency spectrum of response with some similarities between the patterns of
the different types of faults. External excitations induced by environmen-
tal loads, structural motions, generator and power grid cause also additional
harmonics in the response which may not necessarily represent faults in the
drivetrain system. The variable wind conditions and turbine operational
speed change the characteristic frequencies of the drivetrain components,
which can also make the frequency-based fault detection more challenging.
Statistical approaches also rely on the assumption that the distribution and
covariance matrix of the sensors network data are stationary which may not
be realistic due to consistent variations in turbine operating conditions and
loads. Then the variations of the parameters of the fitting multivariate dis-
tribution are monitored, and the role of each sensor measurements in the
variations is measured. Some authors have suggested cyclostationary anal-
ysis methods to improve the accuracy of statistical approaches [56], whereas
others have been investigating into different types of probability distribu-
tions to find the one which better describes the trend of data indicating the
normal operations. Multi-sensor data fusion method based on deep convo-
lutional neural networks is also proposed as another category of condition
monitoring approaches based on the classification of data and the extract of
features out of data. The latter is widely used in other areas such as in im-
age processing applications, but is recently proposed for the detection and
prediction of faults in the bearings and gears of the wind turbine drivetrain.
In general, the lack of complete verification under complex operation scenar-
ios and difficulty in generalizing the results for different sites and operating
conditions are barriers for broad application of these techniques in industry.

There are also different attitudes in both preprocessing and post-processing
of the data. Some researchers reported using frequency-domain filtering to
cope with background noises, the revolution frequencies and some external
excitation frequencies to increase the observability of the defect frequencies
of the bearings and gears. Some others have proposed windowing [57] and
time synchronous averaging [58] approaches in the time domain, which can
improve the effectivity of frequency-domain tools to investigate into a specific
failure mode of a subcomponent e.g. wear in a tooth of a gear or a rolling ele-
ment of a roller bearing to support more detailed frequency domain studies.
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Preprocessing of the measurements includes the algorithms to neutralize the
influences of operational conditions due to the time-varying rotational speed
and fluctuating loads. The procedure to compensate the time-varying rota-
tional speed impacts on the measured data can be based on two different
strategies, i.e. eliminating the corresponding side effect by using the order
tracking algorithms and identifying the time-varying spectral components by
time-frequency domain analysis [59], even though some negligence in com-
pensating fast and large speed oscillations has been reported in literature.
For example, in order to compensate load fluctuation effects on the planetary
gear stages of wind turbine drivetrain, there are challenges to realize an ef-
ficient algorithm to eliminate the corresponding side effects. The available
algorithms are usually designed for other applications than wind turbines
(e.g. excavator and helicopter planetary gearbox fault diagnosis) with dif-
ferent system dynamics and loading conditions, which need to be developed
and adjusted for the different wind turbines applications. The envelope tech-
nique of amplitude demodulation is also another preprocessing tool which is
employed in some researches to reveal the defect frequencies in some defects
which can appear in the amplitude of the vibration signal, [60] and [61] (pa-
per 2). There are also different post-processing approaches to render the fea-
tures obtained by analyzing data into meaningful conclusions about defects
in the system. Post-processing involves the determination of fault sensitive
and easy to implement features as the combination of extracted features in
data processing step and setting suitable thresholds for the fused features.
An effective approach is determining thresholds for the selected features by
using the system analytical models supported by extensive simulations and
observations. To this purpose, vibration-based condition monitoring of the
drivetrain components (e.g. gears and bearings of the gearbox) can start
from the specification of permissible stress and load due to the specific failure
mode of the component, and then estimating the response as a result of ap-
plied permissible stress. Some challenges in the realization of this approach
are the influences of different failure modes together on the measurements
of a sensor in reality. The other threshold specification approach relies on
statistical analyses mainly based on extensive observations of various fault
cases, which calls for a large amount of data including different turbines and
the drivetrain systems of the same type but in different operating conditions.

In the following two sections, drivetrain condition monitoring based on vi-
bration measurements is investigated in more detail. First, a novel computationally-
fast data-driven condition monitoring technique based on drivetrain transla-
tional vibrations is discussed, and the performance of this method in com-
parison with standard solutions is demonstrated. Second, innovative con-
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dition monitoring solutions based on analyzing the drivetrain torsional vi-
bration measurements are introduced and then compared with translation
vibrations regarding the possibilities of detecting different types of faults by
using those measurements.

The research contributions of this PhD work which are covered by this
chapter are:

A statistical learning approach based on the graphical model of driv-
etrain obtained from Lagrangian approach is proposed for fault detec-
tion in the wind turbine drivetrain components. Fulfilling Gaussian
Markov Random Field (GMRF) properties in the drivetrain vibration
measurements motivated using the features any graph in this field
obeys, namely the stationarity of the inverse of covariance matrix in
a GMRF and its conditional dependence properties are used to achieve
a drivetrain computationally fast abnormality detection approach. The
method is able to diagnose the faults that are not detectable by stan-
dard condition monitoring approaches. The latter is shown by both
experimental and simulation studies.

An experimental comparison between different available solutions for
detecting drivetrain bearings and gears defects initiated by different
sources of excitation is performed. Torsional vibrations residual func-
tion which is recently proposed in literature of vibration-based condi-
tion monitoring of wind turbine drivetrain is experimentally validated
by time and frequency domain analysis of torsional versus transla-
tional vibrations. To this purpose, Different frequency-domain tools
for detecting abnormalities in the drivetrain system, namely FFT, PSD
and envelope PSD spectrums and analysis of the energy of the signal
at the defect frequencies are employed experimentally by using opera-
tional measurements.

4.2 Data-driven condition monitoring based on trans-
lational vibrations

As an example of data-driven approaches based on artificial intelligence, the
performance of an statistical learning-based approach developed grounded
on the drivetrain physical model is discussed in the following. This approach
is based on the correlation analysis of time-domain translational vibration
measurements. Our extensive observations of both simulation and experi-
mental data captured by translational accelerometers show that the vibra-
tion measurements of a rotating system follow a Gaussian distribution for
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each turbine operational speed, [62] and [30] (paper 6). Therefore, the set
of vibration measurements placed on the different locations of the drive-
train can model a multivariate Gaussian distribution. The other property
of the set of vibration sensors in this system is that the measured response
at each time step only depends on one previous step (characterized by the
memoryless property of Markov processes), which supports the possibility to
model the drivetrain vibration measurements network data as a Gaussian
Markov random field (GMRF). Therefore, it is possible to take advantage of
the rules that each data set in this field follows. One of these rules is that
the covariance matrix of the measurements set stays uniform. By GMRF
assumption, the centralized/global estimation of information matrix J - de-
fined as the inverse of covariance matrix- of the drivetrain graphycal model
represented by G (V ,E ) (where V models the node set (V = 1,2, ...,v) and E

models the edge set (E = 1,2, ..., e)) turns to the simplified convex form as [63]

ĴGlobal
centralized = argmin

J
tr(SJ)− log(det(J)),

subject to: J(i, j)= 0, ∀(i, j) ∉ E ,

J≥ 0,
(4.1)

which is based on the maximum likelihood (ML) principle. The estimate is
chosen as the parameter that maximizes the log-likelihood function, which
turns to the above minimization problem in terms of J as the optimization
variable. S is the covariance matrix of the nodes data in the system graph.
This optimization problem is solved iteratively subject to the equality con-
straints related to zero elements of the matrix which refer to the unconnected
nodes specified by the drivetrain graphical model, which imposes sparsity on
the inverse covariance. The inequality constraint is to force the positive def-
initeness to the optimization matrix variable to ensure the convexity of the
problem to attain the global optimizer. Since the variations of drivetrain as
a physical system can be monitored by tracking the deviations of autocorre-
lation and cross correlation of the vibration data time series, any variation
in the covariance matrix and the role of each sensor can provide useful in-
formation about the variations of this system’s physical properties which can
represent faults. The inverse covariance, named information matrix can pro-
vide the conditional dependencies between the different nodes of the graph-
ical model of drivetrain system. In other words, the zero non-diagonal ele-
ments of the adjacent information matrix of the drivetrain system graphical
model represent the conditional independence of the data of the associated
sensors. Therefore, since the graph of drivetrain is sparse, this sparsity can
be imposed to the information matrix estimation problem to reduce the com-
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putational complexity. The problem of inverse covariance estimation with a
known graphical model is known a priori [63]. The sample covariance matrix
of the vibration measurements is near singular (non–invertible); therefore,
the ML estimation is used to obtain the information matrix. The graphical
demonstration of the drivetrain is a physics-based model obtained from La-
grangian approach. By applying the Lagrange’s equation to drive the equa-
tions of motion, the lumped model and then the equivalent graphical model
of the drivetrain system is obtained. Figure 4.1 shows the graphical model of
gearbox of NREL 5 MW drivetrain. In this physics-based graph, each node
represents the moment of inertia of a drivetrain subsystem and the asso-
ciated vibration sensor, and the edges model the stiffness between the sub-
systems. Si, i = (1, ...,24) in Figure 4.1 represents the sensor which measures
the acceleration on ith inertia. The sparsity of the graph is imposed to the op-
timization problem defined by the equation 4.1 to reduce the computational
complexity and improve accuracy of the ML estimation problem. The physi-
cal properties of the system inherited in the described graphical model help
to derive a physics-based statistical learning approach to obtain a both sim-
ple and accurate drivetrain condition monitoring tool. In order to determine
the role of each node/sensor in the discrepancy between the estimated infor-
mation matrices of the normal and faulty operating cases, an anomaly score
metric based on the relative entropy calculated by expected Kullback-Leibler
(KL) divergence equation is employed [64], which uses a matrix partitioning
to quantify the contribution of each node in discrepancy between the two dif-
ferent sets of information matrices. Anomaly score of the node i by using the
information matrix J and the inverse of information matrix J−1 is calculated
as

J1(i)=
[

L1[Ni Ni] l1[Ni i]
lT
1 [i Ni]

λ1[i i]

]
, J−1

1 (i)=
[

W1[Ni Ni] w1[Ni i]
wT

1 [i Ni]
σ1[i i]

]
,

J2(i)=
[

L2[Ni Ni] l2[Ni i]
lT
2 [i Ni]

λ2[i i]

]
, J−1

2 (i)=
[

W2[Ni Ni] w2[Ni i]
wT

2 [i Ni]
σ2[i i]

]
,

AS1(i)= wT
1 (l2 − l1)+ 1

2
{
lT
2 W1l2

λ2
− lT

1 W1l1

λ1
}+ 1

2
{ln

λ1

λ2
−σ1(λ2 −λ1)},

AS2(i)= wT
2 (l1 − l2)+ 1

2
{
lT
1 W2l1

λ1
− lT

2 W2l2

λ2
}+ 1

2
{ln

λ2

λ1
−σ2(λ1 −λ2)},

AS(i)= max{AS1(i), AS2(i)} ,

(4.2)

In the above equation, J1 and J2 are respectively the information matri-
ces of normal and abnormal cases. Ni is defined as the set of neighbors of ith
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node, L, l, lT and λ are the partitions of information matrix J, and W , w, wT

and σ are the partitions of the inverse information matrix J−1.

Figure 4.1: Graphical model of gearbox for NREL 5 MW drivetrain.

The described algorithm can be used for offline processing of the drive-
train logged data. It is also possible to implement the algorithm for real-time
condition monitoring. In other words, it is possible to classify the operational
rotor speeds and the average wind into different intervals, and then obtain-
ing the information matrix of the normal operation for each interval of rotor
speed and average wind variations. If the variations of information matrix
of each interval is more than a prespecified threshold, an alarm is triggered.
The threshold can be set empirically by looking into various sets of data as-
sociated with normal operations. In contrast to the other machine learning
approaches, the proposed algorithm does not need a large volume of data so
that by using few data samples with a moderate sampling frequency, it is
possible to have a good estimation of information matrix to be used for mon-
itoring the variations of system. This algorithm can be integrated with the
turbine main control system where we can access both the rotor speed and
the sufficient processing power to implement the method.

NREL 5 MW drivetrain is simulated in SIMPACK [36] to study the driv-
etrain dynamic response based on the model and the fault case shown in
Figure 4.2. Damage in the radial direction of the high-speed shaft bearing
(HS-A) is applied by changing the bearing stiffness in different directions in
the model, as explained in [25]. The model is free to vibrate in translational
and rotational directions, which can capture the vibrations of the bodies in
XYZ directions. The observability of the under consideration fault by using
the acceleration measurements of the different directions is shown in Fig-
ure 4.3. The fault is observable in all the three directions. By imposing the
sparsity, computational complexity reduces to less than half while accuracy
is maintained.
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Figure 4.2: SIMPACK model and the fault case.

Figure 4.3: Observability of the bearing fault by using the acceleration mea-
surements of different XYZ directions and the proposed data-driven approach.

In order to experimentally validate the proposed approach, the acceler-
ation measurements of an operational Vestas V66-1.750MW turbine drive-
train are employed. The results of applying the algorithm to the lateral ac-
celeration measurements of the Vestas turbine drivetrain to detect a fault in
the main bearing (AC2) is shown in Figure 4.4, which shows the success of
proposed approach in the diagnosis of the fault. The anomaly scores calcu-
lated for the other sensor nodes are also nonzero, because the data associated
with those nodes are correlated with the data obtained from the faulty node.

In both the simulation study performed by NREL 5 MW drivetrain model
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Figure 4.4: Experimental validation on Vestas 1.75 MW turbine.

in SIMPACK and the experimental study based on Vestas 1.750 MW oper-
ational turbine, the faults cannot be detected by the analysis of the RMS of
the time series of translational acceleration based on the guideline presented
in the standard ISO 10816-21 according to the operating speed.

4.3 Innovative condition monitoring by means of
torsional vibrations

The rotational motion of the drivetrain system and the torsional nature of
most drivetrain loads motivate the application of torsional vibrations for
the condition monitoring of the drivetrain components. The latter can pro-
vide insight regarding the excitation sources, components defect frequencies
and drivetrain system properties as the information which can support both
design and condition monitoring of the drivetrain system. The frequency
domain torsional vibration response of the equivalent 1-DOF damped rota-
tional model of drivetrain influenced by the excitation source τ(t) in non-
dimensional form can be described by

|θ(Ω)| =
|τ(Ω)|

kt√
(1− ( Ω

Ωn
)2)2 + (2ζωt ( Ω

Ωn
))2

, (4.3)

where θ(Ω) and τ(Ω) are the Fourier transforms of angular position and the
excitation torque, respectively. Ωn is the undamped torsional natural fre-
quency of the system, kt is the torsional stiffness of the shaft, and ζt is the
torsional damping coefficient of the mode Ωn at the operating speed ω.

Therefore, by the evaluation of the torsional response, it could be possi-
ble to find the response amplified harmonics excited by torsional excitation
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frequencies, which can include the components defect frequencies and the
system torsional natural frequencies.

4.3.1 Torsional responses error function

In the recent literature of vibration-based condition monitoring, the applica-
tion of angular velocity measurements for condition monitoring of gearbox is
proposed (e.g. by Nejad et al. in [25] and Sankar et al. in [65]). In [65], the
power spectral density (PSD) of angular velocity measurements is used for
the fault detection in a gearbox. In [25], the energy of the residuals of an-
gular velocity measurements obtained from different places of a 5 MW high
fidelity wind turbine drivetrain model is used for the gearbox fault detection.

The angular velocity residual function eωtot between rotor and generator
from the high-speed side is defined by [61] (paper 2)

eωtot =ωHS −a1a2a3ωLS, (4.4)

where ωHS and ωLS are the rotational speed in rad
s obtained from the high-

and low-speed shafts encoders, respectively. a1, a2 and a3 are the inverse of
gear ratios of the gearbox stages. Gear ratio as per definition is ni

no
, where

ni and no are the speeds of input and output shafts, respectively. The error
function main feature is removing the excitation frequencies which are trans-
mitted to the drivetrain through the housing, from the resultant torsional
response. Angular displacement and acceleration are the other torsional re-
sponses of the drivetrain system which could theoretically be used instead of
angular velocity for condition monitoring purposes. To this purpose, similar
to eωtot, the angular position error function eθtot and the angular acceleration
error function eαtot are defined by the following equations obtained from paper
3 [28]

eθtot = θHS −a1a2a3θLS, eαtot =αHS −a1a2a3αLS. (4.5)

Faults in the drivetrain components may cause a torsional oscillation
component which can be observed in the torsional response [17]. In par-
ticular, angular acceleration is the torsional response which has a direct re-
lation with the applied load, and contains useful information about how the
applied torque interacts with the system. If acceleration or displacement
is used for the drivetrain fault studies, the frequency-domain fault crite-
ria obtained by the analysis of angular velocity tend to change, because the
relation between acceleration and displacement with velocity in frequency-
domain is the function of frequency. The Fourier series of eωtot, eαtot and
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eθtot are defined by eωtot(Ω) = ∑∞
n=−∞ CneiknΩ, eαtot(Ω) = ∑∞

n=−∞ Cn(ikn)eiknΩ,
eθtot(Ω)=∑∞

n=−∞ Cn(ikn)−1eiknΩ.
Differentiation and integration are linear operations that are distributive

over addition. As it can be seen, in eαtot compared to eωtot, the amplitudes of
the frequency components higher than 1 Hz are magnified with the gain kn,
and the frequencies lower than 1 Hz are weakened with the same proportion.
In eθtot compared to eωtot, the amplitudes of the frequency components lower
than 1 Hz are magnified with the gain k−1

n , and the frequencies higher than
1 Hz are weakened with the same proportion.

In the next section, the FFT, PSD and energy of the angular velocity
residual signal etotal and also the angular velocity measurements of indi-
vidual encoders are studied and compared to the conventional method based
on analysis of translational vibrations for the detection of different types of
drivetrain abnormalities. The results of the following section are extracted
from the experimental studies performed by Moghadam and Nejad [61] in
paper 2.

4.3.2 Comparison of translational and torsional vibrations-
based condition monitoring

The normalized Cooley–Tukey FFT algorithm is used as the basis to inves-
tigate into the capability of torsional vibration response compared to trans-
lational acceleration measurements in distinguishing abnormalities, which
is defined by Θ( jΩ) = ∫+∞

−∞ θ(t)e−iΩtdt, where Θ( jΩ) is the spectrum of the
response θ(t).

Afterwards, the PSD and energy of the signal around the suspicious fre-
quency is used as the abnormality detection tool. The PSD of θ is defined
by

SΘΘ(Ω)= |Θ( jΩ) |2
n

, (4.6)

where Sθθ is the PSD spectrum of θ(t). The energy of the frequency domain
signal Θ in the frequency range [Ω1 Ω2] is then calculated by

E = 1
π

∫Ω2

Ω1

|Θ( jΩ)2 | dΩ. (4.7)

The PSD of the envelope of the signal θ obtained by using Hilbert trans-
form is used as the other abnormality detection tool. The Hilbert envelope of
θ and the PSD of the envelope signal are defined by

Θ̃( jΩ)=Θ( jΩ)(− j.sgn(Ω)), SΘ̃Θ̃( jΩ)= | Θ̃(Ω) |2
n

, (4.8)
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where Θ̃ and SΘ̃Θ̃ are the envelope and envelope PSD spectrums of θ, and sgn
is the signum function. The energy of Θ̃ can be used for the fault detection
purpose. Since the measurements are discretized in time, the normalized
energy based on the normalized length-n discrete Fourier transform is used,
where n is the spectrum frequency resolution. The normalization in this
context means a division by

�
n for FFT which is equivalent to a division by

n for the PSD of the signal. Two different energy indices EI1 and EI2 are
then calculated as [61]

EI1 = E∗

E
, EI2 =

E∗
Ωs

EΩs

. (4.9)

where ∗ is used as the indicator of the suspicious data set. E and E∗ are
the energy over all the frequency horizon of normal and suspicious cases,
respectively. Ωs is the frequency horizon which covers the suspicious fre-
quency Ωs

∗ and 10% below and above it. EΩs is the energy of the accelera-
tion signal in the frequency range Ωs filtered by the band-pass filter H(Ωs),
Θ(Ωs)=Θ(Ω)H(Ωs), and E∗

Ωs
is the same parameter for the suspicious case.

With respect to the different types of excitation sources, three different
test scenarios are designed to compare the torsional to the translational vi-
brations for drivetrain condition monitoring purposes. In scenario one, the
system responses including axial/radial accelerations, angular velocity mea-
surements and angular velocities residual signal are studied to investigate
the influence of internal and non-torsional drivetrain excitations on response.
In scenario two, the influence of internal and torsional excitations on the dif-
ferent drivetrain responses is studied, while in scenario three, the influence
of external and torsional excitation sources is investigated. For all these
three test scenarios, the accelerometers and the angular velocity measure-
ments of the drivetrain of Vestas V66 1.75 MW wind turbine are used as the
input measurements for the proposed frequency-domain energy-based con-
dition monitoring approach. The drivetrain topology and the placement of
accelerometers and encoders are specified in Figure 4.5.

In the first scenario, the frequency fm = 529 Hz which is the mesh fre-
quency of the helical gears of the third stage of gearbox, which is a parallel
stage, is studied. The frequency spectrum of drivetrain different responses
in observing this frequency component is shown in Figure 4.6. The amplified
response at this frequency can be due to the defective gear teeth (e.g. due
to pitting or root bending faults), which causes axial/radial vibrations in the
system. The latter can be observed in the frequency spectrum of the radial
and axial acceleration sensors installed in different locations of the gearbox
at the mesh frequency of the gears, fm = 529 Hz. The mentioned abnormality
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(a) Acceleration sensors placement

(b) Angular velocity sensors placement

Figure 4.5: Drivetrain topology, accelerometers and encoders placement [61]
(paper 2).

does not reveal a significant sign in the angular velocity measurements and
the angular velocity residual signal, because it does not produce a significant
vibration frequency component in an early stage in the rotational rotational
degrees of freedom. Data filtering and using higher sampling frequency rates
are suggested for improving the performance of torsional vibrations in ob-
serving those excitation frequencies.

In the second scenario, the frequency 50 Hz and its harmonics are stud-
ied. The frequency spectrum of drivetrain different vibration responses and
the possibility of observing these frequency components is shown in Figure
4.7. These frequency components appear in response due to electromagnetic
torque oscillations which happen significantly with the voltage frequency 50
Hz and the third order harmonics which happen due to the generator electri-
cal current and back emf harmonics influenced by power electronic converter
and the grid low power quality. These abnormalities which can represent
excessive vibrations in drivetrain due to generator electromagnetic torque
oscillations are observable in angular velocity error function but not observ-
able in acceleration measurements.

In the third scenario, the frequencies 0.05 Hz and 0.97 Hz as the re-
sult of structural motions-induced vibrations, respectively due to the excited
first tower side-side natural frequency and the tower shadow effect. The
frequency spectrum of drivetrain different responses in observing frequency
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(a) AC6 spectrum vs.
Frequency

X: 529
Y: 2.76

(b) AC5 spectrum vs.
Frequency

X: 528.5
Y: 0.4051

(c) AC4 spectrum vs.
Frequency

X: 529
Y: 0.9599

(d) AC3 spectrum vs.
Frequency

(e) EN1 spectrum vs.
Frequency

(f) etotal spectrum vs.
Frequency

Figure 4.6: First test scenario [61] (paper 2).

(a) AC8 spectrum vs.
Frequency

(b) AC5 spectrum vs.
Frequency

(c) AC1 spectrum vs.
Frequency

(d) EN1 spectrum vs.
Frequency

(e) EN2 spectrum vs.
Frequency

(f) etotal spectrum vs.
Frequency

Figure 4.7: Second test scenario [61] (paper 2).

components is shown in Figure 4.8. These excitation frequencies are observ-
able in angular velocity measurements but not observable in acceleration
data. The external excitation frequencies are not observable in the angular
velocity error function due to the intrinsic filtering properties.

The performance of energy-based abnormality detection which measures
the energy of signal around the suspicious frequency, by using the different
vibration responses as the input of the energy-based fault detection approach
is reported in Tables 4.1, 4.2 and 4.3. Our extensive observations showed that
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(a) AC8 spectrum vs.
Frequency

(b) AC5 spectrum vs.
Frequency

(c) AC3 spectrum vs.
Frequency

(d) AC1 spectrum vs.
Frequency

(e) EN1 spectrum vs.
Frequency

(f) EN2 spectrum vs.
Frequency

Figure 4.8: Third Test scenario [61] (paper 2).

for different sets of operational data, the threshold 3 can provide a criterion
for the energy indices EI1 and EI2 of all the acceleration and angular velocity
signals to evaluate if the abnormality can be detected by the energy method
applied on the associated sensor. Based on this explanation, the energy index
EI1 is not performing well in detection of the abnormalities, and the energy
index EI2 is preferred based on the simulation study. The higher values of
this index can represent both the severity of the abnormality and the higher
capability of the sensor in observing it.

The frequency components appeared in the torsional response does not
necessarily represent a defect in the system, but provide valuable insights
about the torsional loads which can influence the drivetrain components,
which may not be considered in the design step. An amplified frequency in
angular velocity spectrum can represent either a high-amplitude internal/ex-
ternal torsional excitation source, an amplified component defect frequency
or an amplified system torsional natural frequency. The latter is discussed
in detail in Chapter 5. In any case, it can considerably affect the fatigue life
of the components.

As reported in paper 2 [61], none of the three under consideration cases
can be observed by using the time-domain approach based on the RMS value
of the translational vibrations obtained from the accelerometers time series
data, where these values should not exceed the predefined limits suggested
by the standards ISO 10816-21 and ISO 13373-1 by taking into account the
rotational frequency and type of application.

The possibility of using the torsional responses residual functions and
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Table 4.1: Calculated energy indices for the suspicious frequency ω∗ = 529 Hz.

Criterion
Sensor

AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 EN1 EN2 etotal

EI1 1.64 2.41 2.19 2.25 1.66 1.38 0.92 0.96 1.01 1.01 1.06
EI2 4.71 17.17 25.14 3.19 25.30 7.00 1.11 1.00 1.01 1.00 0.87

Table 4.2: Calculated energy indices for the suspicious frequency ω∗ = 170 Hz.

Criterion
Sensor

EN1 EN2 etotal

EI1 1.01 1.01 1.06
EI2 2.21 1.97 26.47

Table 4.3: Calculated energy indices for the frequency ω∗ = 0.05 Hz.

Criterion
Sensor

EN1 EN2 etotal

EI1 1.01 1.01 1.06
EI2 7.97 7.96 0.64

the low-pass filtered torsional response of individual encoders in estimating
drivetrain dynamic properties, and the applications for detecting drivetrain
faults by monitoring the variations of drivetrain dynamic properties is the
other proposed innovative drivetrain condition monitoring approach based
on torsional vibrations in this thesis, which is discussed in the next chapter.
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Chapter 5

Fault diagnosis and modal
analysis by using torsional
vibrations

5.1 General

This chapter discusses about the methodology and a part of results presented
by Moghadam and Nejad [27, 28] in papers 3 and 4, and Moghadam et al.
[29] in paper 5, related to the drivetrain system modal estimation and fault
diagnosis by monitoring the variations of drivetrain dynamic properties.

As the first step, the proposed modal estimation approach by using the
torsional measurements is presented and proved in the general case for a
multi degree-of-freedom (DOF) torsional model of drivetrain. A detailed para-
metric proof based on 3-DOF model is presented in paper 4 [28]. The method
is tested by using DTU 10 MW and NREL 5 MW simulation models, and
Vestas 1.75 MW operational data.

As the second step, the analytical relationship between the 3-DOF equiv-
alent model parameters and drivetrain dynamic properties is established,
which helps to identify the drivetrain system condition/state-of-operation by
monitoring the variations of drivetrain dynamic properties (undamped nat-
ural frequencies and normal mode shapes) which can be estimated from the
operational measurements by using the proposed modal estimation approach
or any other approach in the literature.

The main emphasis of this chapter is on geared drivetrains of wind tur-
bines. Based on the theoretical studies presented in papers 3 and 4 [27, 28],
a 3-DOF equivalent torsional model of the geared drivetrain is sufficient for

45
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detecting drivetrain faults at a system-level, because system-level faults rep-
resent themselves mainly by changing the torsional stiffness and the mo-
ment of inertia parameters of the 3-DOF equivalent model. System-level
faults are categorized into the faults which change the torsional stiffness the
most (e.g. crack in the shafts and bearing wear specially in gearbox), and
faults which influence mostly the inertia of the drivetrain bodies (changes
in mass balance/distribution which can be due to e.g. loss of mass, wear
and unbalance; and also changes in the axis of rotation which can be due to
e.g. misalignment and looseness), which all can be observed by using 3-DOF
reduced order model (ROM). The other reason for sticking to 3-DOF model
for the proposed drivetain system-level fault diagnosis algorithm, is that the
closed form parametric expressions of the drivetrain dynamic properties as
a function of equivalent model parameters can be obtained for this simpli-
fied model. Those expressions are the required inputs for the proposed fault
detection approach based on monitoring the variations of the drivetrain dy-
namic properties.

The method based on 3-DOF model can be implemented by using only the
filtered measurement obtained from one encoder (this method is explained in
the next section), which is sufficient for estimating the first and second driv-
etrain non-rigid natural frequencies. The experimental results presented in
paper 4 [28] demonstrate the possibility of observing the natural frequen-
cies by using the angular velocity residual function (constructed by using
two encoders measurements) and the filtered angular velocity measurement
of one encoder. One of the reasons that the 3-DOF model based fault de-
tection method is selected and developed in this work is that this approach
can be implemented only by using one encoder. However, the implementa-
tion of method with two encoders renders the easier visibility of torsional
modes but may cause additional costs of implementation if the drivetrain is
equipped with only one encoder. In the SCADA data, it is a common practice
to consider two measurements for the drivetrain speed. Therefore, the cost of
implementation of the approach based on two encoders may only be the cost
of an additional encoder by using the available data logging and communica-
tion infrastructure.

The proposed algorithm for modal analysis and fault diagnosis of the
drivetrain system by using the torsional response, developed for 3-DOF model
is summarized in the flowchart in Figure 5.1. The different parts of algorithm
are explained in the next two sections. The details about the 3-DOF model
and the definition of parameters are provided in paper 3 [27].
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The research contributions of this PhD work which are covered by this
chapter are:

Drivetrain modal analysis by using the different types of torsional mea-
surements is introduced. The proposed modal analysis approach is
analytically proved. The performance of the proposed modal analy-
sis approaches is demonstrated by using both experimental studies
based on the operational data and simulation studies. Two different
simulation studies based on two different drivetrain systems and two
different equivalent models (a simplified 3-DOF and a more complex
14-DOF models) of drivetrain are carried out, and the possibility of ob-
serving the system natural frequencies by using different functions of
torsional measurements is investigated. An analytical approach for es-
timating the damping coefficients associated with the different natural
frequencies and operating speeds by analyzing the variations of ampli-
tude of torsional response residual function at the natural frequencies
and variations of damped natural frequencies in different operating
speeds is proposed.

A drivetrain condition monitoring approach is proposed which works
based on monitoring the variations of the system dynamic properties
and the amplitude of response at the natural frequencies. The drive-
train system fault detection features are extracted by leveraging sensi-
tivity analysis. The method is tested by using both operational and sim-
ulation data obtained respectively from Vestas 1.75 MW and DTU 10
MW wind turbine drivetrains. The results are showing that the state of
progression of different categories of drivetrain faults at system-level
are observable in an early stage by the fault diagnosis method devel-
oped based on 3-DOF equivalent torsional model of the drivetrain, only
by tracking the faults consequent variations in the drivetrain dynamic
properties. The analytical equations of 3-DOF drivetrain model sup-
ported by sensitivity analysis are used to extract the fault detection fea-
tures which are shown to be sufficient to detect the drivetrain faults at
a system level. Then the possibility of extending this work to the driv-
etrain fault diagnosis at component-level by using higher DOF models
of the drivetrain is demonstrated by the simulation studies.
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Figure 5.1: Proposed drivetrain fault diagnosis algorithm by using torsional
measurements and estimated modes [28].

5.2 Drivetrain modal analysis by torsional measure-
ments

5.2.1 Construction of the input function for the modal analy-
sis approach

in order to realize the drivetrain modal analysis by means of torsional mea-
surements, two methods based on the torsional vibration measurements are
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employed:
1- Torsional vibration residual function:
The torsional response residual function between lth and mth inertias

from the point l based on a multi-DOF lumped parameter model of order
n is defined as [30]

eω
l,m(t)�ωl(t)−ul,mωm(t), for l and m ∈ {1, . . . ,n}, (5.1)

with ω as the time series of angular velocity, and ul,m as the relative gear-
ratio between jl and jm to make them in the same coordinate. Gear-ratio
ul,m as per definition is Nl

Nm
, where Nl and Nm are the speeds at lth and mth

inertias. Both the angular velocity and angular acceleration can be used as
the inputs of the residual function. The torsional response can be provided
by encoders or strain gauges. It is assumed that the different types of tor-
sional response can be interchangeably used by performing derivation and
integration operations. In case of 3-DOF model, the residual function can
be constructed by the two encoders located on high- and low-speed shafts of
drivetrain. Since most of the wind turbines are equipped with only one an-
gular velocity measurement, the implementation of this method may require
an additional moderate resolution encoder. One of the significant features of
the error/residual function is the cancellation of the influences of structural
motions which are transferred from the bed plate to the drivetrain, from the
torsional response. The latter leads to a clean signal with the capability of
highlighting the system characteristic frequencies. The transmitted motions
to the drivetrain are mainly influenced by wind, wave, structural resonances,
natural periods of structural motions and interactions between rotor, tower
and support structure, which have a low frequency content. Therefore, the
filtered angular velocity of low-speed shaft, which can be implemented with
one encoder, has also a potential in highlighting the drivetrain torsional fre-
quencies, which makes the basis for the second method as discussed in the
continued part.

2- Low-pass filtered angular velocity function:
The filtered signal X (ΩHP ) is defined by

X (Ω)=ωi(Ω), i ∈ {1, . . . ,n}, X (ΩHP )= X (Ω)H(ΩHP ), (5.2)

where H(ΩHP ) is the transfer function of the high-pass filter applied to the
encoder signal to attenuate the low-frequency noises induced by structural
motions. The performance of filtered angular velocity of low-speed shaft in
highlighting the torsional frequencies compared to the different torsional re-
sponse error/residual functions is tested with both simulation-based and op-
erational measurements as reported in papers 3, 4 and 5 [27, 28, 29].
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The following steps explain the modal estimation approach which are also
summarized in Figure 5.1:

1. The torsional response error function (or interchangeably the low-pass
filtered signal of the main shaft) is generated. The response can be
angular velocity or acceleration.

2. The signal is preprocessed so that the defect frequencies of the com-
ponents structural motions-induced harmonics are filtered. The result
gives the damped torsional natural frequencies of the drivetrain sys-
tem.

3. The natural frequency is validated by the analysis of the variations of
amplitude of response in the suspicious frequencies at different oper-
ating speeds. The variation of the amplitude of response in the system
damped natural frequency due to the variation of damping coefficient
shows a more significant change compared to the variation of the am-
plitude of response in the harmonics. The variation of damping coeffi-
cient is due to the continuous variations in the operating speed.

4. Damping at the natural frequency depends on the operating speed. The
damping coefficient at two ensuing operations in two different speeds
can be estimated by applying the theory developed by Moghadam and
Nejad [27, 28] in papers 3 and 4, based on monitoring the variations
of the natural frequency and amplitude of response between the two
operations.

5. By using the estimated damped natural frequency from torsional re-
sponse and the estimated damping coefficient from the analysis of am-
plitude of response, the undamped natural frequencies are estimated,
which provide inputs for the fault detection approach based on moni-
toring the variations of system dynamic properties.

5.2.2 Analytical proof

The possibility of observing the natural frequencies from the torsional re-
sponse is explained by the following theorem.

Theorem 1. Torsional natural frequencies belong to the set of extreme
points of the torsional response in the frequency domain.

Proof. The general form of the discrete multi-DOF torsional model of
drivetrain with n degrees of freedom in the time domain is defined by

Jθ̈+Cθ̇+Kθ = T(t), (5.3)
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where J, C and K are the moment of inertia, damping and stiffness ma-
trices with the size n× n. θ and T are the response and load vectors with
the size n×1, where each element of these two vectors represent a time se-
ries data. The representation in frequency domain by using the frequency
variable S and Laplace transform is

[JS2 +CS+K]n×n[Θ(S)]n×1 = T(S)n×1. (5.4)

By replacing the characteristic equation JS2 +CS +K with M, the fre-
quency domain response Θ(S) is calculated by

Θ(S)= ad j(M)
det(M)

T(S), (5.5)

where ad j(M) is the adjugate of M, which is a polynomial function with the
matrix variable M. det(M) is the determinant of system characteristic equa-
tion. As it can be seen, the roots of det(M) are the extreme points of response
Θ(S). However, the roots of the determinant of characteristic equation of a
system are the system’s eigenfrequencies. Therefore, the torsional natural
frequencies of the system belong to the set of extreme points of the response.
In the undamped system (C = 0), the roots are pure imaginary which repre-
sent the undamped natural frequencies Ωi

n. In the general damped system,
the roots are the damped natural frequencies Ωi

d with the relationship with
the undamped frequencies as

Ωi
d = ζiΩi

n + jΩi
n

√
1− (ζi)2 i ∈ 1, ..,n. (5.6)

The torsional natural frequencies in both cases of damped or undamped
system based on the provided proof which refers to the general form of damped
system are the extreme points of the frequency-domain response.

Thus, we complete the proof of Theorem 1.
The signal generally used for frequency-domain fault detection studies

is the single-sided amplitude spectrum of response. The possibility of ex-
tending the results of Theorem 1 to the amplitude of torsional response and
more specifically the amplitude of angular velocity error function based on
an equivalent 3-DOF model is explained by Moghadam and Nejad [28] in
paper 4. The 3-DOF model is applied as the base model for the drivetrain
system-level fault diagnosis in Section 5.3.

5.2.3 Results of modal analysis approach validation

The results of modal analysis in three different cases, namely DTU 10 MW,
NREL 5 MW and vestas 1.75 MW, which are a part of results reported in
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papers 3, 4 and 5 are shown in the following.
1- DTU 10 MW 3-DOF model
The PSD spectrum of angular velocity error function obtained from 10

MW drivetrain model and its capability in extracting the 1st and 2nd tor-
sional natural frequencies of the drivetrain compared to angular displace-
ment and angular acceleration error functions is shown in Figures 5.2b-6.2b.
The angular acceleration error function shows a higher performance in re-
vealing the higher frequency modes (the 2nd mode). The higher frequency
modes have usually a lower impact on the response, which complicates the
disclosure of those frequencies. The PSD spectrum of the input torque ap-
plied on the drivetrain MBS model is shown in Fig. 5.2a. This torque con-
tains the majority of frequency components and can excite the drivetrain nat-
ural frequencies. Two methods based on monitoring the variations of natural
frequencies and amplitude of response at natural frequencies between two
different drivetrain operations are proposed in paper 4 [28] for estimating
the damping coefficient from the torsional measurements. The estimated val-
ues of damping coefficients at the 1st mode in two different operating speeds
with two different loading conditions, by using the two methods proposed in
paper 4 [28], are listed in Table 5.1, which show a good agreement between
the estimated values and the actual value from the reference model.

Table 5.1: Estimation of damping coefficient at the 1st mode of DTU 10 MW
model for different operating speeds and loading conditions [28]

Operation ω (rad/s) Ω1
peak (rad/s) |eωtot(Ω

1
peak)| ζ (reference model) ζ (method 1) ζ (method 2)

ω1 0.9 8.67 0.159 0.21 0.21 0.18
ω2 0.7 8.46 0.171 0.26 0.25 0.23

2- NREL 5 MW 14-DOF simulation model
The undamped natural frequencies of the healthy drivetrain system based

on the 14-DOF torsional model are listed in the Table 5.2. As explained by
equation 5.1, the torsional response error function can be defined between
different bodies in the drivetrain model. For example, the undamped nat-
ural frequencies estimated from the angular acceleration error function for
the 2nd gearbox stage are shown in Figure 5.3. It is worth noting that the
damping in this equivalent model is set to be zero, so that the estimated
frequencies are directly giving the undamped natural frequencies.

3- Vestas 1.75 MW operational data
The PSD spectrum of angular velocity error function of the drivetrain op-

erational data of Vestas V66 1.75 MW turbine for a rated operation compared
to angular displacement and acceleration error functions is shown in Figures
5.4a-5.4c, which shows the observability of both the drivetrain and blade
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Figure 5.2: Simulation results of estimating drivetrain torsional natural fre-
quencies based on DTU 10 MW floating wind turbine model [27] (paper 3).
(a) PSD of τrotor. (b) PSD of evel

tot . (c) PSD of eacc
tot . (d) PSD of edis

tot .

Figure 5.3: Estimation of torsional modes by using the error function defined
based on the gearbox 2nd stage torsional responses of NREL 5 MW wind tur-
bine drivetrain [29].

natural frequencies, which are 2.6 Hz and 3.6 Hz, respectively. The results
are validated by comparing the natural frequencies with the 1st drivetrain
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Table 5.2: 14-DOF drivetrain model natural frequencies of NREL 5 MW [29]

Mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Actual 0 2 120 153 208 567 716 716 971 1224 1232 1232 1384 1942
Estimated 0 2 118 153 208 567 706 706 970 1220 1220 1220 1381 1933

and 1st blade edgewise natural frequencies of another turbine with the same
drivetrain technology and power range as reported in [66]. As it can be seen,
angular acceleration performs slightly better in the extraction of characteris-
tic frequencies of higher values. A comparison between the angular velocity
error function PSD in two different operating speeds is shown in Figure 5.4d.
As it can be seen, the higher damping coefficient in lower speeds has resulted
in a lower damped natural frequency. Furthermore, at the drivetrain natu-
ral frequency, the response amplitude reacts more to the variation of damp-
ing. In other words, for a lower rotor speed which corresponds to a higher
damping, the amplitude of response at the natural frequency reduces more
compared with the amplitude of response at the other harmonics. The high-
pass filtered low-speed shaft angular velocity measurement is also shown in
Figure 5.4e. The filtered signal shows some degree of competence with the
angular velocity error function in extracting the torsional properties, i.e. the
drivetrain and the blade edgewise natural frequencies.

5.3 Proposed drivetrain system-level fault diagno-
sis approach

Variations in drivetrain dynamic properties and their relationships with pro-
gressive faults in system and component levels are reported in paper 4 [28]
and paper 5 [29], respectively.

In papers 3 and 4, the diagnosis of drivetrain system-level faults is in-
vestigated. To this purpose, an equivalent 3-DOF model is proved to be suffi-
cient for setting up the analytical relations for detecting the drivetrain faults
at a system level based on monitoring the variations of the first and second
nonrigid modes of the drivetrain system. Therefore, the analytical relation-
ship between the drivetrain dynamic properties and the reduced order model
parameters are obtained by deriving the related nonlinear equations and ap-
plying the normalized local sensitivity analysis to extract meaningful fault
detection criteria for different stages of progressive faults. The methodology
which is summarized in the flowchart in Figure 5.1, is briefly discussed in
the following.
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Figure 5.4: Modal analysis based on Vestas V66 1.75 MW drivetrain torsional
response [27] (paper 3). (a) PSD of eωtot. (b) PSD of eαtot. (c) PSD of eθtot. (d)
PSD of eωtot in two different operations. (e) Comparison of X (ΩHP ) and eωtot(Ω)
performances.

5.3.1 3-DOF equivalent model dynamic properties as a func-
tion of model parameters

The two undamped natural frequencies (nonrigid modes) based on 3-DOF
lumped-mass-spring model of a geared drivetrain, as functions of model pa-
rameters, can be calculated by
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Ωtor
1 =

√√√√ kL

2Jr
+ kL +kH

2Jgr
+ kH

2Jgn
−

√
(
−kL

2Jr
− kL −kH

2Jgr
+ kH

2Jgn
)2 + kLkH

J2
gr

,

(5.7a)

Ωtor
2 =

√√√√ kL

2Jr
+ kL +kH

2Jgr
+ kH

2Jgn
+

√
(
−kL

2Jr
− kL −kH

2Jgr
+ kH

2Jgn
)2 + kLkH

J2
gr

,

(5.7b)

where Ωtor
1 and Ωtor

2 are the 1st and 2nd natural frequencies, kL and kH are
the torsional stiffness of low- and high-speed shafts, and Jr, Jgr and Jgn are
the moment of inertia of rotor, gearbox and generator, respectively.

The two normal mode shapes related to the two non-rigid modes of the un-
der consideration drivetrain model, as functions of model parameters, which
are scaled to unity length are

ΨΩ1
rot =

√√√√ k2
L

k2
H

(kH−Jgn A)2
+ k2

L
(kL−Jr A)2

+1)

kL − Jr A
, ΨΩ2

rot =

√√√√ k2
L

k2
H

(kH−JgnB)2
+ k2

L
(kL−JrB)2

+1

kL − JrB
, (5.8a)

ΨΩ1
gear =

√√√√ 1
k2

H
(kH−Jgn A)2 + k2

L
(kL−Jr A)2 +1

, ΨΩ2
gear =

√√√√ 1
k2

H
(kH−JgnB)2 + k2

L
(kL−JrB)2 +1

,

(5.8b)

ΨΩ1
gen =

√√√√ k2
H

k2
H

(kH−Jgn A)2
+ k2

L
(kL−Jr A)2

+1

kH − Jgn A
, ΨΩ2

gen =

√√√√ k2
H

k2
H

(kH−JgnB)2
+ k2

L
(kL−JrB)2

+1

kH − JgnB
, (5.8c)

where
A =−

√
( kH

2Jgn
− kL

2Jr
+ kH−kL

2Jgr
)2 + kH kL

J2
gr

+ kH
2Jgn

+ kL
2Jr

+ kH+kL
2Jgr

,

B =
√

( kH
2Jgn

− kL
2Jr

+ kH−kL
2Jgr

)2 + kH kL
J2

gr
+ kH

2Jgn
+ kL

2Jr
+ kH+kL

2Jgr
,

ΨΩ1
rot, Ψ

Ω1
gear and ΨΩ1

gen are normal modes at rotor, gearbox and generator
due to the 1st mode. ΨΩ2

rot, Ψ
Ω2
gear and ΨΩ2

gen are the same parameters for the
2nd mode.

The amplitude of the angular velocity residual function at the two natural
frequencies in the general case of a damped system has the relationship with
the system parameters and rotor and generator torques as
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|eωtot(Ω
tor
1 )|=
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|Tg(ω1)|2

√
F A+H+ J2

r J2
gr A2

�
A+|Tr(ω1)|2

√
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�
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√
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(5.9a)

|eωtot(Ω
tor
2 )|=

√
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√
FB+H+ J2

r J2
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�
B+|Tr(ω2)|2

√
EB+G+ J2

gr J2
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4
√
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Lk2

H(Jr+Jgr+Jgn)2+D2(Jr+Jgr+Jgn)2B+J2
r J2

grJ2
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,

(5.9b)

where
D = cLkH + cH kL, E = (cL Jgn + cH Jgr + cH Jgn)2, F = (cL Jr + cL Jgr +

cH Jr)2, G = (JgrkH + JgnkL + JgnkH)2, H = (JrkL + JrkH + JgrkL)2 and
I = cLcH Jr+cLcH Jgr+cLcH Jgn+Jr JgrkH+Jr JgnkL+Jr JgnkH+Jgr JgnkL.

5.3.2 Sensitivity analysis

It was shown that the estimated modes and the amplitude of response at
those frequencies are connected to the system parameters and faults. In
order to establish this relationship to be used in the proposed fault detec-
tion approach, sensitivity analysis is employed. The different categories of
drivetrain system-level faults and their influences on the 3-DOF model pa-
rameters are discussed in paper 4 [28]. This part is aimed to use the closed-
form mathematical relationships between the drivetrain dynamic properties
and amplitude of response with the drivetrain reduced-order model parame-
ters supported by sensitivity analyses for a subsequent use in the proposed
fault diagnosis algorithm, based on the general 3-DOF torsional model of
drivetrain. In order to achieve the above described purposes, two different
sets of sensitivity analyses are performed in this section. First, a sensitiv-
ity analysis is performed on torsional frequencies and normal mode shapes
of the equivalent undamped system to extract drivetrain system-level con-
dition monitoring features. Second, a sensitivity analysis is performed on
the amplitude of response at the natural frequencies primarily to estimate
the damping coefficient and subsequently the undamped natural frequencies
which are required for the first analysis, and secondarily to validate the con-
dition monitoring features obtained in the first sensitivity analysis.

Local sensitivity analysis determines how a small perturbation around
an input parameter value influences the value of the output. In the proposed
fault diagnosis approach, in order to find the parameters with the highest
impact on the drivetrain dynamic characteristics, local sensitivity analysis
is employed for two reasons. First, the motivation of this work is detect-
ing faults in an early stage of progress for preventive maintenance purposes.
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Therefore, variations in the drivetrain system parameters is expected to hap-
pen with a slight change around the nominal values. Second, local sensitiv-
ity analysis derives a closed form expression for the sensitivity value which
is valuable for implementation purposes. Local sensitivity is defined as the
partial derivative of the output function with respect to the input parameters
[67] as

SLoc
k,l = δyk

δxl
, yk ∈ {y1, ..., yp} and xl ∈ {x1, ..., xq}, (5.10)

In the above equation, yk is the kth output and xl is the lth input. In
order to neutralize the impact of large/small inputs and small/large outputs,
the local sensitivity can be normalized by the nominal values of inputs and
outputs as

SNorm
k,l =

xre f
l

yre f
k

δyk

δxl
, (5.11)

In the above equation, xre f
l and yre f

k are the nominal values of xl and yk.
In the 3-DOF torsional model, the input and output vectors for sensitivity
analysis are

x = {kL, kH , Jr, Jgr, Jgn, cL, cH , Tr, Tg}, (5.12a)

y={Ωtor
1 , Ωtor

2 , ΨΩ1
rot, Ψ

Ω2
rot, Ψ

Ω1
gear, Ψ

Ω2
gear, Ψ

Ω1
gen, ΨΩ2

gen, |eωtot(Ω
tor
1 )|, |eωtot(Ω

tor
2 )|}.

(5.12b)

The closed form of equations after applying normalized local sensitivity
analysis to eqs. (5.7), (5.8) and (5.9) to find the sensitivity of drivetrain sys-
tem dynamic properties and amplitude of response at the natural frequencies
to the equivalent model parameters based on 3-DOF model are reported in
paper 4 [28].

5.3.3 Results of proposed fault diagnosis approach validation

As discussed in [28], drivetrain system-level faults represent themselves by
the variations of 3-DOF model equivalent stiffness and inertia parameters.

The detection of the faults which influence the stiffness the most is possi-
ble in the proposed approach by monitoring the consequences of these faults
on the drivetrain torsional modes based on the results of sensitivity analy-
sis. In order to simulate the stiffness related faults, the torsional stiffness
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of the main and high-speed shafts in the SIMPACK model is reduced in four
steps from 5 to 50%. The resultant variations in the natural frequencies and
normal modes are listed in the Tables 5.3 and 5.4.

Table 5.3: Main shaft fault cases [28].

Fault case kL
kn

L

Ωtor
1

Ω
tor,n
1

Ωtor
2

Ω
tor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 0.95 0.975 1.000 1.000 0.950 1.000 1.000 1.000 1.000
LC2 0.85 0.923 0.999 1.000 0.851 1.001 1.000 1.000 1.001
LC3 0.7 0.838 0.999 1.000 0.000 1.003 1.000 1.000 1.003
LC4 0.5 0.709 0.998 1.000 0.000 1.005 1.000 1.000 1.005

Table 5.4: High-speed shaft fault cases [28].

Fault case kH
kn

H

Ωtor
1

Ω
tor,n
1

Ωtor
2

Ω
tor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 0.95 1.000 0.975 1.000 1.052 1.000 1.000 1.000 1.000
LC2 0.85 0.999 0.923 1.000 1.175 0.998 1.000 1.000 0.998
LC3 0.7 0.998 0.838 1.000 1.423 0.996 1.000 1.000 0.996
LC4 0.5 0.996 0.710 0.993 1.983 0.991 1.000 1.000 0.991

As it can be seen from these tables, the simulation results agree with the
results obtained from the analytical sensitivity analysis of natural frequen-
cies and normal modes as reported in paper 4 [28]. The fault detection fea-
tures are obtained from the physical model, and the threshold for these phys-
ical features can accordingly be specified based on the aforedescribed sensi-
tivity analysis applied to a specific drivetrain. As an example of stiffness-
related faults, a shaft crack causes the reduced torsional stiffness of the shaft
and the changed drivetrain torsional natural frequencies. The reduction of
the 1st natural frequency due to a crack in the main shaft is demonstrated
in Figure 5.5a. As it can be seen, for the two operations with the same load-
ing conditions, one for the normal system and the other for the system with
a crack in the main shaft, the amplitude of response at the 1st natural fre-
quency is higher in the system with the cracked shaft compared to the normal
system, which agrees with the results of the analytical sensitivity analysis
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of the amplitude of response as reported in paper 4 [28]. The influence of a
crack in high-speed shaft and its consequence in the drop of the 2nd natural
frequency is shown in Figure 5.5b. A crack in the high-speed shaft causes an
increased amplitude of response at the 2nd natural frequency, which agrees
with the analytical sensitivity analysis results related to the amplitude of
response at the 2nd mode as reported in paper 4 [28]. Figures 5.5a and 5.5b
are normalized with respect to the normal system results.
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)|

Fast Fourier transform
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to
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Figure 5.5: Simulation results of stiffness-related faults based on DTU 10
MW floating wind turbine model [28] (paper 4). (a) Fault in low-speed shaft.
(b) Fault in high-speed shaft.

The detection of inertia-related faults is also possible by monitoring the
consequences on the drivetrain torsional modes based on the sensitivity anal-
ysis results. In here, in order to simulate the severe unbalance faults, the
inertia of the associated component is increased in three steps from 5 to 20%.
The subsequent changes in the drivetrain modes are listed and shown in the
Tables 5.5- 5.7, which show that the simulation results agree with the ana-
lytical sensitivity analysis results as presented in paper 4 [28].

Table 5.5: Inertia-related fault cases (rotor).

Fault case Jr
Jn

r

Ωtor
1

Ω
tor,n
1

Ωtor
2

Ω
tor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 1.05 1.000 1.000 0.952 0.952 1.000 1.000 1.000 1.000
LC2 1.10 0.999 1.000 0.909 0.909 1.000 1.000 1.000 1.000
LC3 1.20 0.998 1.000 0.833 0.833 1.000 1.000 1.000 1.000

As an example of inertia-related faults, unbalance in the rotor, gearbox
or generator results in an increase in the associated equivalent inertia of
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Table 5.6: Inertia-related fault cases (gearbox).

Fault case Jgr
Jn

gr

Ωtor
1

Ω
tor,n
1

Ωtor
2

Ω
tor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 1.05 0.998 0.978 1.004 1.046 1.000 1.000 1.000 1.050
LC2 1.10 0.997 0.957 1.007 1.092 1.000 1.000 1.000 1.100
LC3 1.20 0.993 0.919 1.015 1.183 1.000 1.000 1.000 1.200

Table 5.7: Inertia-related fault cases (generator).

Fault case Jgn
Jn

gn

Ωtor
1

Ω
tor,n
1

Ωtor
2

Ω
tor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 1.05 0.978 0.998 1.046 1.003 1.000 1.000 1.000 0.952
LC2 1.10 0.958 0.997 1.093 1.007 1.000 1.000 1.000 0.909
LC3 1.20 0.920 0.994 1.186 1.012 1.000 1.000 1.000 0.833

the component in the model. The variation of inertia is different dependent
on the severity of unbalance. A slight unbalance can cause a very slight
change in the inertia and subsequently a slight change in the modes which
makes the detection challenging by the proposed approach. The reduction of
1st and 2nd natural frequency due to the increase of the inertia of generator
and gearbox as a result of unbalance faults in generator and gearbox are
respectively shown in Figures 5.6a and 5.6b. The influence of increase of
rotor inertia, which can model the rotor unbalance fault, on the simultaneous
reduction of 1st and 2nd normal mode shapes in rotor position is also shown
in Figure 5.6c. All these three figures are normalized with respect to the
normal system results.

In paper 5 [29], by using a higher DOF torsional model of NREL 5 MW
drivetrain system, the influence of pitting faults in sun-planet gears and
ring-planet gears of the 1st and 2nd gearbox stage and their influences on the
deviation of the drivetrain natural frequencies is investigated, which shows
that monitoring the variations of the natural frequencies can also be used for
detecting the drivetrain faults in a component level, e.g. the gearbox subcom-
ponents.

The experimental studies are related to the torsional measurements of
the drivetrain system of Vestas 1.75 MW turbine. The deviation of 1st nat-
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Figure 5.6: Simulation results of inertia-related faults based on DTU 10 MW
floating wind turbine model [28] (paper 4). (a) Fault in generator. (b) Fault in
gearbox. (c) Fault in rotor.

ural frequency apparently due to a low-speed shaft fatigue crack is shown
in Figure 5.7a, which shows the capability of method in detecting the shaft
abnormalities in the early stages of progression. As it can be seen, the re-
duction of the natural frequency at the same operational speed is observed,
which can be due to a reduction in the low-speed shaft stiffness as a con-
sequence of an early stage fault in the main shaft. The cracked shaft can
represent a periodic reduction in the shaft stiffness due to nonlinear effects
such as breathing of the crack. Dependent on the type of crack the varia-
tion of the stiffness of the different directions of lateral, axial and torsional
could be different, because the stiffness change is dependent on the direc-
tion of bending moment at the crack cross-section. Due to the coupling phe-
nomena in a cracked shaft (i.e. bending–torsion and longitudinal–torsion),
the variations of longitudinal and bending stiffness parameters - they have
relationship with the type and depth of crack- also influence the torsional
stiffness in later fault stages. Therefore, the assumption made for modelling
of a crack with constant torsional stiffness asymmetry seems to be realis-
tic. The performance of the proposed method in the detection of main shaft
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faults is compared with three conventional methods in literature based on
accelerometers measurements, namely the frequency domain indicator based
on observing twice the running frequency component and the subharmonic
resonance crack4, crack3; the variable phase-difference between the time-
domain measurements of the accelerometers placed on the two sides of shaft
at the shaft rotational frequency component; and the RMS of time domain
acceleration based on standard ISO 10816-21. The frequency spectra of the
two accelerometers which are placed on the two main bearings which sup-
port the main shaft are shown in Figure 5.7b. The under consideration tur-
bine has been working with the nominal rotational speed equal to 0.33Hz
in the low-speed side. As it can be seen, the main revolution frequency, the
double frequency and the subharmonics do not show a significant amplitude
in the response. The insufficiency of frequency domain analysis in differ-
ent operating speeds in detecting shaft faults in the general rotor system is
also reported in [68]. The other drawback with frequency domain analysis
based on our observations is that due to the low-frequency content of the
low-speed shaft faults, they can be mistaken with a wide range of excitation
frequencies due to environmental and structural motions-induced vibrations
which happen in the low-frequency range. Figure 5.7c shows the synchro-
nized time-domain acceleration measurements of AC1 and AC2 which are
band-pass filtered around the low-speed shaft rotational frequency. As it can
be seen, the figure does not represent any variation in the phase difference
between these two signals. Monitoring the variations of the phase difference
of the frequency component 0.33Hz can be challenging due to the influence of
the other frequency components which appear in response in this frequency
range. As reported in paper 4 [28], the described abnormality cannot also be
detected by using the third method which is the standard time-domain ap-
proach grounded on the evaluation of the RMS value of the time series data
of the translational vibrations based on standard ISO 10816-21.

By the increase of the order of equivalent model, more dynamic proper-
ties (higher natural frequencies which are not seen by 3-DOF model) can be
employed in the proposed analytical method, which can support a more de-
tailed fault detection in the drivetrain. However, it can be challenging for
currently available modal estimation approaches to observe higher modes
which appear with a low amplitude in the frequency-domain response. In
other words, the actual condition for the modal estimation problem is re-
strictive, so that some of the eigenfrequencies of the drivetrain system may
not be observable, especially the higher eigenfrequencies which can be ex-
cited by the input torque with a lower energy. The application of higher DOF
torsional models as more detailed equivalent models which can capture real-
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Figure 5.7: Experimental results of stiffness-related faults based on Vestas
1.75 MW drivetrain operational data [28] (paper 4). (a) Fault in main shaft:
influence on 1st mode. (b) Fault in main shaft: FFT of accelerometers. (c)
Fault in main shaft: phase difference.

time variations in mesh stiffness and inertia of individual gears and interme-
diate shafts, to detect faults in those subcomponents by taking into account
the components internal dynamics is studied in paper 5 [29]. Deriving the
analytical model for extracting sufficient fault detecting features to diagnose
the drivetrain faults in a component-level is looked as the future work.

In the next chapter, the discussion on torsional vibrations is continued
but for a different purpose which is monitoring the remaining useful lifetime
of the drivetrain components, by using digital twin modeling approaches.



Chapter 6

Digital twin-based fault
prognosis by torsional
measurements

6.1 General

In this chapter, digital twin-based fault prognosis of the drivetrain compo-
nents by using the torsional measurements is discussed. Fault prognosis
in this context means the near real-time estimation of the remaining useful
lifetime (RUL) of the drivetrain components. Digital twin in this context con-
sists of torsional dynamic models, online measurements and fatigue damage
estimation, which are used for RUL estimation.

This chapter summarizes the methodology and reports a part of the re-
sults of the studies performed by Moghadam et al. [29] in paper 5, and
Moghadam and Nejad [30] in paper 6. The method is designed in the general
form for multi-degree-of-freedom (n-DOF) torsional model of the drivetrain.
Then the method is developed for the estimation of RUL in different compo-
nents of the drivetrain system. In paper 6 [30], the method is developed based
on 3-DOF equivalent torsional model of drivetrain as the drivetrain digital
twin (DT) for monitoring the residual life of main and high-speed shafts,
where the fatigue damage due to cyclic torsional-bending load is focused. In
paper 5 [29], the method is developed by using 14-DOF torsional model as
DT of the drivetrain system for estimating the real-time degradation of the
gears in the gearbox due to pitting fatigue damage and the gear pairs contact
loads.

The degradation models are based on proven physics-based approaches

65
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for the estimation of fatigue damage, which are supported by statistical ap-
proaches and stochastic models to address uncertainties to improve the ac-
curacy. These methods which rely on real-time measurements, are compu-
tationally fast, can apply to different drivetrain components and are not re-
stricted by the operational conditions.

In the following sections, the drivetrain DT model and the online estima-
tion of equivalent reduced order model (ROM) parameters by using the tor-
sional response and aerodynamic torque observer is discussed. Then, in the
rest of this chapter, the design of real-time load observers for the drivetrain
components by using DT model and operational measurements, the estima-
tion of equivalent stress and then the degradation model is explained. The
proposed DT model estimation approach and its application for monitoring
drivetrain components residual life is evaluated by the simulation studies
based on the drivetrain systems of DTU 10 MW and NREL 5 MW reference
wind turbines.

The research contributions of this PhD work which are covered by this
chapter are:

Computationally fast digital twin models of the drivetrain system based
on the torsional measurements and computationally inexpensive equiv-
alent torsional models are proposed, which are aimed at monitoring
the residual life of the components. The digital twin model based on
14-DOF equivalent of the drivetrain system is proposed for remaining
useful lifetime (RUL) monitoring of the gearbox, which is tested for es-
timating the residual life of the gears of NREL 5 MW gearbox model
and validated by comparing the results with high-fidelity simulation
models. The digital twin model based on 3-DOF equivalent model is
also proposed for estimating the residual life of main and high-speed
shafts, which is tested by DTU 10 MW model. The proposed digital
twin models leverage stochastic physics-based degradation models for
estimating RUL in the drivetrain components by using the online esti-
mated reduced order model (ROM), real-time torsional measurements,
designed load observers and equivalent stress estimation approaches.
These models take into consideration the various sources of uncer-
tainty by using statistical approaches and stochastic models, namely
Kalman filtering, Monte Carlo simulations and assuming fatigue dam-
age as a random variable.

The online estimation of the parameters of drivetrain equivalent mod-
els of different degrees of freedom by using the torsional response and
the estimated values of drivetrain input torques is discussed. The pro-
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posed robust least square error (LSE) estimator defined based on min-
imizing the difference between the equivalent model and the real-time
measurements provides the best unbiased estimation of the coefficients
in the linear regression model. Confidence intervals for estimation er-
ror of the ROM parameters are provided by using stochastic models
supported by Monte Carlo simulations.

6.2 Estimation of drivetrain equivalent model by
using the torsional measurements

The proposed algorithm for estimating the drivetrain equivalent ROM pa-
rameters and dynamic properties is described in this section.

6.2.1 Estimation of moment of inertia matrix

The general damped n-DOF torsional dynamical model of drivetrain can be
represented by the following equation. The summation of the moments on
each inertia in the lumped parameter model yields n equations of the form
[69]

jiθ̈i(t)+Ci
(
θ̇i(t)− θ̇i−1(t)

)−Ci+1
(
θ̇i+1(t)− θ̇i(t)

)+ki(θi(t)−θi−1(t))−
ki+1(θi+1(t)−θi(t))= Ti(t), for i = (1, . . . ,n). (6.1)

In the above equation, θi is the angular displacement of ith body. ji is the in-
ertia of ith body. ki is the equivalent stiffness between (i−1)th and ith bodies.
ki+1 is the equivalent stiffness between ith and (i+1)th bodies. Ti is the exter-
nal excitation applied to the ith body. By using a matrix form representation,
these set of equations can be rewritten as

JΘ̈ (t)+CΘ̇ (t)+KΘ (t)=T(t). (6.2)

In the above equation, J, C and K are the moment of inertia, damping
and stiffness matrices with the size n×n. Θ and T are the response and load
vectors with the size n×1, where each element of these two vectors repre-
sents a time series data. This model alongside the torsional measurements
provide the inputs for the drivetrain model parameter estimation approach.
The optimization variables are J, C and K matrices which are the drivetrain
equivalent lumped model parameters. The sparsity of the matrix variables
J, C and K are specified based on the drivetrain topology and is imposed to
the optimization problem. Assuming that the load and response time series
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are known, the parameter estimation problem turns to the minimization of
the L2-norm of error. The error function is defined by

E (t)� ĴΘ̈ (t)+ ĈΘ̇ (t)+ K̂Θ (t)−T(t). (6.3)

Therefore, the least square error (LSE) estimator is defined to estimate
the equivalent model parameters by minimizing the error function E be-
tween the model and measurements as

Ĵ
LS

,K̂
LS

,Ĉ
LS ∈ arg min{‖E‖2}
J,K,C≥ 0
Jl,m ∈ SJ

Kl,m ∈ SK

Cl,m ∈ SC

. (6.4)

In the above equation, SJ, SK and SC are the sparsity sets of matrices
J, K and C. The matrix J is diagonal. K and C are non-diagonal symmetric
matrices which are not full rank. The latter may cause computational diffi-
culty for the above quadratic matrix optimization problem, and subsequently
there is a possibility of divergence of the numerical solver. The larger pertur-
bations due to the singular terms into the calculations than the numerically
stable counterpart can cause larger errors in the solution. In order to simul-
taneously remove the coupling between the equations due to the K and C
terms, cope with the error arisen from the ill-condition terms of model, and
reduce the computational complexity by reduction of the number of variables,
a summation operation is applied to the set of dynamic equations (6.1) of each
inertia, which results in the elimination of stiffness and damping from the
resultant scalar optimization problem. The latter leads to the following error
function in terms of the inertia variables ji as the model scalar variables and
the torsional measurements time-series as the inputs, by assuming rotor as
the reference of the rotary coordinate [29, 30].

e (t)= j1Ω̇1 (t)+·· ·+u1,i j iΩ̇i (t)+·· ·+u1,n jnΩ̇n (t)−Tr (t)−u1,nT gn (t) . (6.5)

In the above equation, Ω̇i is the time series of angular acceleration and
ji is the moment of inertia of the ith DOF. Tr and Tgn are the time series
of the rotor and generator torques, respectively. The response used in this
equation is the angular acceleration which can be obtained by applying a
derivation operation to the angular velocity measurements, or the second
derivation to the angular displacement measurements. The sign of u1,i is de-
termined based on the direction of rotation of ji. Since the real-time values of
response are known, the inertia parameters can be estimated by minimizing
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the square error between the model and measurements. The LSE estima-
tor constructed based on the difference between the estimated values as the
model outputs and the actual value as the sensor measurements provides the
best unbiased estimation of the coefficients in a linear regression model. The
LSE function results in the following quadratic scalar optimization problem
as

ĵ
LS = arg min{‖e‖2}

j ≥ 0
. (6.6)

This estimator is robust to the measurement noises, and can provide a
good approximation even with less than n input data samples (underdeter-
mined case). For the case of more than n samples (overdetermined case),
this estimator helps to obtain more accurate estimation than solving the lin-
ear equations, when the input measurements are subject to independent and
identically distributed (IID) Gaussian noise. In other words, the total LSE
technique is able to correct the system with minimum perturbation [70]. The
above convex multi-variate scalar optimization problem can be solved nu-
merically by Matlab CVX, so that the global optimizer jLS = {j1, . . . , jn} is esti-
mated. Since this L2-norm regression optimization problem is in a quadratic
convex form, the results which are the estimated values of the drivetrain
ROM inertia parameters are the global optimizers of the problem.

For the special case of Gaussian noise, the LSE problem is mathemat-
ically equivalent to the maximum likelihood (ML) estimator [30]. The ML
estimator is restricted by the assumption that the form of the distribution of
random noise defined by the error function e(t) is known, so that the likeli-
hood function can be constructed. Based on the extensive simulations, the
error calculated from the torsional measurements in the under consideration
application shows a near Gaussian distribution. Therefore, both LSE and
ML estimators are expected to lead to the similar set of results.

As discussed earlier, the inputs of the optimization problem defined by
equation 6.6 are the torsional response and the rotor and generator torques.
The generator torque is a measurement available in the turbine for the gen-
erator control purposes. The generator torque is estimated from the genera-
tor electrical measurements, which is available in turbine main control unit.
The aerodynamic torque applied to the drivetrain simulation model is ob-
tained from the global simulations. However, in reality, the real value of ap-
plied aerodynamic torque is not available, but a estimation can be available
by using the turbine operational measurements and the general information
of the airfoil. The estimated torque can then be applied as the input to the
drivetrain model identification approach. The algorithms for estimating the
rotor and generator torques from the turbine operational measurements are
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discussed by Moghadam and Nejad [30] in paper 6.

6.2.2 Estimation of stiffness matrix

The proposed method for estimating drivetrain system undamped natural
frequencies from the torsional measurements was discussed in chapter 5.
Therefore, as the next step, the stiffness parameters of the model are esti-
mated by using the estimated inertia parameters from the LSE optimization
problem and the estimated resonance frequencies from the torsional mea-
surements. The undamped natural frequencies are a nonlinear function of
inertia and stiffness as defined by

ωi ( f or i = 1, . . . ,n)=
√

eig(−J−1K). (6.7)

Therefore, the stiffness matrix K is the root of the function gi which is
defined by the following nonlinear equation as [29, 30]

gi =ωi
2 − eig(−J−1K), ( f or i = 1, . . . ,n). (6.8)

By imposing the sparsity and symmetricity to matrix K from the lumped
model, it is possible to find the global optimizer K numerically by using Mat-
lab fsolve. The latter also helps to reduce commutation cost of this matrix
algebraic equation by reducing the number of variables from n2 to n. The
matrix J−1K is not symmetric in the general case which may give the sense
that there are multiple answers for K from this equation. However, the fact
that −J−1K is positive definite, shows that this matrix is a small perturbation
of a symmetric matrix with positive eigenvalues, which keeps the eigenval-
ues positive [71].

The usual condition for the estimation problem is more restrictive. In
other words, it is possible that only some of the eigenfrequencies of the driv-
etrain system can be estimated by employing the aforedescribed modal es-
timation approach, especially the higher eigenfrequencies which are excited
with a lower energy of the input torque. In this case, the matrix K can be
estimated by using the following optimization problem in terms of the first i
eigenfrequencies as defined by using the following least square error estima-
tor as [29, 30]

k̂
LS = arg min{‖λi − eig(Λ, i)‖2}

Λ ∈Λ
. (6.9)

In the above equation, k̂
LS

is the set of nonzero elements of matrix K
which are estimated by the above nonlinear matrix optimization problem.
The sign of the elements of k are forced in the optimization problem. Λ is the
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variable of this optimization problem, which is a function of the unknown
variable K as Λ= −J−1K. λi is the set of i (i ∈ {1, . . . ,n}) smallest magnitude
eigenvalues which are known from the modal estimation, λi = {ω1

2, . . . ,ωi
2}.

eig(Λ, i) is the set of i (i ∈ {1, . . . ,n}) smallest magnitude eigenvalues defined
in terms of matrix J and the unknown matrix K. The feasible set Λ is defined
by

Λ= {Λ :Λ ∈Rn×n, K≥ 0, Λl,m = 0, ∀ Λl,m ∈ SΛ}, (6.10)

In the above equation, SΛ is the sparsity set of matrix Λ. The positive def-
initeness and sparsity of Λ are the constraints imposed to this problem. For
the set of positive semidefinite matrices, this problem is convex so that the
solution gives the global optimizer. However, Λ is not symmetric in general
so that the definition of the problem is nonconvex for the numerical solvers
and convex optimization tools are not able to numerically solve the problem.
In order to solve the aforedescribed optimization problem, Matlab fmincon
solver applicable for nonlinear nonconvex problems is used.

For the system with n-DOF, the system has n−1 nonrigid torsional modes.
The latter leads to n−1 nonlinear equations which are the undamped natu-
ral frequencies as nonlinear functions of equivalent model inertia and stiff-
ness parameters. These set of nonlinear equations are numerically solved,
and n equivalent stiffness seen by each body are estimated. The estimated
values of stiffness parameters are the main diagonal of the matrix. When
the degree of the model increases, it is not easy to access the closed form of
the n scalar nonlinear equations. However, the equations can still be solved
numerically in the matrix form. By the increase of the degree of model, the
computational complexity of algorithm increases, but it can provide more
detailed DT model for condition monitoring of a wider range of drivetrain
subcomponents.

In [30], 3-DOF model is used for RUL monitoring of the drivetrain main
and high-speed shafts. In this case, the nonlinear matrix equation repre-
sented by eq. (6.9) is reduced to the two nonlinear scalar equations for the
two nonrigid modes as [27]

F1(kL,kH)=ω1−
√√√√ kL

2Jr
+kL +kH

2Jgr
+ kH

2Jgn
−

√
(
−kL

2Jr
−kL −kH

2Jgr
+ kH

2Jgn
)2+kLkH

J2
gr

, (6.11a)

F2(kL,kH)=ω2−
√√√√ kL

2Jr
+kL +kH

2Jgr
+ kH

2Jgn
+

√
(
−kL

2Jr
−kL −kH

2Jgr
+ kH

2Jgn
)2+kLkH

J2
gr

. (6.11b)

By solving these two nonlinear equations, the values of kL and kH which
are respectively the stiffness of main and high-speed shafts are estimated.
For all kL,kH ∈R+, there is a unique solution for the above set of nonlinear
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equations which ease solving the equations numerically. The proposed algo-
rithm for estimating the equivalent model parameters of the 3-DOF model
based on the detailed explanation given in the above text is summarized in
the flowchart in Figure 6.1.

� �

� �

�

�

� �

�

Figure 6.1: Proposed algorithm for estimation of drivetrain equivalent model
parameters [30].
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In [29], the algorithm is developed for 14-DOF model to be used for RUL
monitoring of the different gears of the planetary/parallel gear stages of the
drivetrain gearbox. For this case, the nonlinear matrix equation represented
by the equation (6.9) is numerically solved to estimate the stiffness parame-
ters.

6.2.3 Results of ROM model estimation

The results of applying the proposed algorithm for estimation of the equiv-
alent 3-DOF model of DTU 10 MW drivetrain are investigated in here. The
validation criterion for the estimated model parameters is the relative er-
ror percentage of less than 5%. In order to identify the 3-DOF model, five
parameters, namely Jr, Jgr, Jgn, kL and kH which are respectively the equiv-
alent rotor inertia, gearbox inertia, generator inertia, main shaft stiffness
and high-speed shaft stiffness should be specified. The estimated parame-
ters and the errors of estimation versus the number of samples (2, 3, 5, 7,
10, 100, 1000) for the three different drivetrain operational conditions (EC1,
EC2 and EC3, [30]) by using the actual value of input torque are shown in
Figure 6.2.

The procedure explained by paper 6 [30] is followed to provide an ana-
lytical criterion/margin of the error for the proposed parameter estimation
approach. With respect to the fact that the error time series at each test case
meets the conditions of IID central limit theorem (CLT), in order to attain a
reliable value of error in each test case, the number of data blocks for each
test case is selected to ensure that with the confidence 99%, the error places
in the interval μ̂l ±2.58 s�

l
. Therefore, the reported estimated parameters

and errors are the most expected values with the specified confidence inter-
val. For the case of fewer number of samples in each data block, the variance
of errors is higher, which calls for a higher number of data blocks to real-
ize the specified confidence level. In order to realize the confidence 99% for
the interval ±5% around the average estimated error, the minimum required
number of data blocks at each test can be calculated by l> 2662.56( s

μ̂
)2.

As it can be seen in Figure 6.2, the average estimation error is less than
1% when the number of algorithm input samples (the length of each data
block) is more than 5. By increasing the number of samples, the error tends
to zero. In addition, the method is not sensitive to the turbine operational
conditions, and demonstrates a similar performance under different environ-
mental conditions. By reducing the number of input measurement samples
from 1000 to 10, the computational time reduces by about 70%. The saving
in the computation time by reduction of the number of samples is expected to
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be more significant when the number of estimation variables (the degree of
ROM) increases. The use of 10 samples with the sampling frequency 300Hz,
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Figure 6.2: Estimated ROM model parameters of DTU 10 MW drivetrain, by
using the actual aerodynamic torque [30] (paper 6). (a) kL, (b) kL relative
error, (c) kH, (d) kH relative error, (e) Jr, (f) Jr relative error, (g) Jgr, (h) Jgr
relative error, (i) Jgn, (j) Jgn relative error.

means the estimation of parameters in only the fraction of a second, which
shows the possibility of algorithm to be executed in real-time.

The performance of proposed algorithm when the estimate value of aero-
dynamic torque instead of the actual value is applied as input to the algo-
rithm, is shown in Figure 6.3. The latter is to address the uncertainty in the
input torque for the proposed system identification algorithm. The estimated
torque is calculated in real-time by an aerodynamic torque observer based on
the turbine and blades online information by using the theory explained in
paper 6 [30]. As it can be seen, for the case of using the estimated torque, the
method needs more input data to maintain the 5% threshold set for the esti-
mation error. The reason is that in case of few samples, the LSE estimator
is more sensitive to the error of torque estimation of the individual samples.
The error tends mostly to reduce by the increase of the input samples.

The performance of proposed system identification approach in tracking
the variations in the system parameters in five different fault cases, namely
faults in the main shaft, high-speed shaft, rotor, gearbox and generator is
shown in Figure 6.4. More details about the simulated fault scenarios can be
found in paper 6 [30]. These simulation cases are designed to evaluate the
capability of the proposed algorithm in tracking the variations of the system
parameters which are representing different system-level fault cases. Vari-
ations in each equivalent model parameter can represent a specific class of
the drivetrain faults. The results shown in Figure 6.4 prove that the pro-
posed DT model parameter estimation algorithm can track the variations in
system perfectly.

The results related to the estimation of the parameters of the 14-DOF
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(f) Error in estimated rotor iner-
tia vs. ECi

(g) Estimated gearbox inertia vs.
ECi

(h) Error in estimated gearbox
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equivalent torsional lumped parameter model of NREL 5 MW drivetrain by
using the proposed approach are shown in Table 6.1, which show that the
estimation error of model parameters by using the proposed method is less
than 1 %. The details about the 14-DOF model and the definition of the pa-
rameters are presented in paper 5 [29]. The results related to the estimation
of equivalent model parameters in the case that only some of natural fre-
quencies are known, based on solving the optimization problem in equation
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(i) Estimated generator inertia
vs. ECi

(j) Error in estimated generator
inertia vs. ECi

Figure 6.3: Estimated ROM parameters of DTU 10 MW drivetrain, by using
the estimated aerodynamic torque [30] (paper 6). (a) kL, (b) kL relative error,
(c) kH, (d) kH relative error, (e) Jr, (f) Jr relative error, (g) Jgr, (h) Jgr relative
error, (i) Jgn, (j) Jgn relative error.

6.9, is reported in paper 5 [29]. In a stability perspective, the LSE estimator
outperforms the first method which is based on solving the nonlinear equa-
tion 6.8, because the eigenfrequencies of Λ in the LSE estimator are forced to
be positive, which ensures the convergence of the numerical solver. In other
words, the LSE estimator is more robust to the input data, and is recom-
mended also in the case that all the frequency modes are available.

6.3 Estimation of load and stress in the drivetrain
components

6.3.1 Estimation of load and stress in main and high-speed
shafts

The estimation of load and stress in the drivetrain components is possible by
the real-time operational data and the online estimated ROM model, which
both feed the designed load observers aimed at estimating the real-time load
in the drivetrain components. Then the value of load is used to calculate
stress and damage in the components. The algorithm can be adjusted for
lifetime monitoring of different components of the drivetrain dependent on
the degree of the DT model. The algorithm based on 3-DOF DT model is
able to estimate the near real-time load in the main and high-speed shafts
and measures the residual life of shafts by taking into account the varia-
tions of the shafts loading. To achieve this purpose, two torque observers are
designed to estimate the main and high-speed shafts torques by using the
torsional measurements and updated values of torsional stiffness parame-
ters from the DT model. Then by using the estimated loads, the maximum



78 78

Main shaft fault (20% reduction of k
L

)

(a) Tracking main shaft stiff-
ness variation

Main shaft fault (20% reduction of k
L

)

(b) Error in tracking main shaft
stiffness variation

High-speed shaft fault (20% reduction of k
H

)

(c) Tracking HS shaft stiffness
variation

High-speed shaft fault (20% reduction of k
H

)

(d) Error in tracking HS shaft
stiffness variation

Rotor fault (10% increase of J
r
)

(e) Tracking rotor inertia varia-
tion

Rotor fault (10% increase of J
r
)

(f) Error in tracking rotor iner-
tia variation

Gearbox fault (10% increase of J
gr

)

(g) Tracking gearbox inertia
variation

Gearbox fault (10% increase of J
gr

)

(h) Error in tracking gearbox in-
ertia variation

equivalent stress throughout the two shafts is calculated, which provides the
inputs for estimating the fatigue damage and residual life of the two shafts.
In order to account for statistical uncertainties in load estimation approach,
the influence of measurement noise and uncertainties in estimated model
parameters are mitigated by employing Kalman filtering. This technique is
used to preprocess the input torsional response applied to the degradation



6.3. Estimation of load and stress in the drivetrain components 79

Generator fault (10% increase of J
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)

(i) Tracking generator inertia
variation
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Figure 6.4: Estimated ROM model parameters in different fault scenarios [30]
(paper 6). (a) kL, (b) kL relative error, (c) kH, (d) kH relative error, (e) Jr, (f)
Jr relative error, (g) Jgr, (h) Jgr relative error, (i) Jgn, (j) Jgn relative error.

model, by cancelling background noises and estimated model uncertainties.
The assumed linear state-space model as the input numerical model ap-

plied to the Kalman filter is obtained by applying the generalized coordinate
approach. The details about the Kalman filter design can be found in paper
6 [30].

The torsional moment on the main and high-speed shafts is estimated
based on the following equations

TLSS = kLS(θr −θgr)+cLS(Ωr −Ωgr), (6.12a)

THSS = kHS(θgr −θgn)+cHS(Ωgr −Ωgn). (6.12b)

In the above equations, TLSS and THSS are respectively the equivalent torque
on the main and high-speed shafts. θr, Ωr , θgr, Ωgr , θgn and Ωgn are the an-
gular displacement and velocity of rotor, gearbox and generator, respectively.
The shear stress of the shaft can then be calculated by [72]

τ= Tc
J

. (6.13)

In the above equation, T is the online torsional moment which is estimated
by equation 6.12, c is the radial distance from the shaft center line. J is the
polar moment of inertia around the shaft axis defined by

J = π

2
(d4

o −d4
i ). (6.14)

In the above equation, di and do are respectively the inner and outer radius
of the shaft. Therefore, the maximum shear stress happens on the shaft
surface. Due to the large mass of main shaft, the bending stress can take a
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Table 6.1: Estimation of NREL 5 MW drivetrain 14-DOF equivalent model
parameters by using the proposed approach [29].

Digital twin model parameters
Inertia Stiffness
Actual Estimated Error

(%)
Actual Estimated Error

(%)
j1 5.7e7 5.7e7 0.0 kR−R 9.3e8 9.3e8 0.3
j2 1.1e4 1.1e4 0.2 kc1−c1 6.8e10 6.8e10 0.0
j3 2.2e2 2.2e2 0.2 kp11−p11 4.4e8 4.4e8 0.2
j4 2.2e2 2.2e2 0.2 kp12−p12 4.4e8 4.4e8 0.2
j5 2.2e2 2.2e2 0.2 kp13−p13 4.4e8 4.4e8 0.2
j6 3.5e2 3.5e2 0.2 ks1−s1 8.7e9 8.6e9 0.1
j7 2.7e3 2.7e3 0.1 kc2−c2 9.3e10 9.3e10 0.2
j8 2.1e2 2.1e2 0.1 kp21−p21 1.3e10 1.3e10 0.3
j9 2.1e2 2.1e2 0.1 kp22−p22 1.3e10 1.3e10 0.3
j10 2.1e2 2.1e2 0.1 kp23−p23 1.3e10 1.3e10 0.3
j11 1.5e1 1.5e1 0.2 ks2−s2 2.0e9 2.0e9 0.2
j12 1.6e3 1.6e3 0.0 kW−W 6.0e9 6.0e9 0.2
j13 8.0e1 8.0e1 0.0 kP−P 4.7e8 4.7e8 0.3
j14 5.4e3 5.4e3 0.0 kG−G 9.6e7 9.6e7 0.3

significant value which is calculated by [72]

σ= Mc
J

. (6.15)

In the above equation, M is the bending moment of the shaft due to the shaft
weight. By using a distributed mass model, the maximum bending moment
which happens in the center point of the shaft on the surface area can be
calculated by

Mmax = WL2

8
. (6.16)

In the above equation, W is the mass per unit length of the shaft, and L is
the length of the shaft. Therefore, the maximum bending and shear stresses
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happen simultaneously on the surface of the middle of the shaft as

τmax
LSS = 2

π

dLSS
o (kLS(θr −θgr)+cLS(Ωr −Ωgr))

(dLSS
o )4 − (dLSS

i )4
, (6.17a)

τmax
HSS = 2

π

dHSS
o (kHS(θgr −θgn)+cHS(Ωgr −Ωgn))

(dHSS
o )4 − (dHSS

i )4
, (6.17b)

σmax = WL2do

4π(d4
o −d4

i )
. (6.17c)

The equivalent stress is then estimated by applying von Mises theory.
The equivalent stress due to the combined bending and torsion is maximum
in the middle of the shaft on the surface. Von Mises stress under combined
bending and torsion loading is calculated by [73]

σd =
√

σ2
max +3τ2

max. (6.18)

In the above equation, σd is von Mises stress, and τmax and σmax are
respectively the maximum torsional and bending stresses.

The estimations of main shaft load and stress in three different cases,
namely normal operations, fault in the main shaft, and overload conditions
are illustrated in Figures 6.6 and 6.6, respectively. The early stage fault in
the main shaft is modeled with the 10% reduction of the shaft stiffness. The
overload is modeled with the 20% increase of the drivetrain torque. As it
can be seen in these figures, in all the simulation scenarios, the error in the
estimation of load and stress of the main shaft by using the proposed digital
twin technique is less than 5%.

6.3.2 Estimation of contact load and stress at each gear stage

The most prevalent failures of the large gears in wind turbine drivetrain
systems are due to gear tooth root bending and pitting fatigue damage [74].
For monitoring the RUL of the gears in this work, the degradation of the
gears due to pitting fatigue damage and the gear pairs contact loads are
taken into consideration. The contact loads on the gear pairs are estimated
by using the load observers designed for the gear pairs based on the real-time
estimated equivalent torsional model and torsional measurements. NREL
5 MW drivetrain and the 14-DOF equivalent model are employed in this
section to investigate into the possibility of using the proposed DT technique
for the real-time estimation of degradation and residual life of the gears of
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By using actual aerodynamic torque

(a) Main shaft actual torque
By using actual aerodynamic torque

(b) Main shaft estimated torque
By using estimated aerodynamic torque

(c) Main shaft estimated torque
By using actual aerodynamic torque

(d) Main shaft estimated torque error
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By using estimated aerodynamic torque

(e) Main shaft estimated torque error

Figure 6.5: Real-time torque on the main shaft of DTU 10 MW drivetrain
model [30] (paper 6). (a) Actual torque, (b) Estimated torque in case of using
actual aerodynamic torque, (c) Estimated torque in case of using estimated
aerodynamic torque, (d) Torque estimation relative error in case of using ac-
tual aerodynamic torque, (e) Torque estimation relative error in case of using
estimated aerodynamic torque.

wind turbine drivetrain gearbox due to pitting damage. The details about
14-DOF equivalent model are described in paper 5 [29].

In the gearbox of wind turbines, the input and output torques for plane-
tary (parallel) stages are respectively the carrier (pinion) torque TC (TP ) and
the sun (wheel) torque Ts (TW ). The equations describing the internal dy-
namics of different gearbox stages as a function of gears mesh stiffness and
inertia are as follows [29]

Planetary stage:

Js
..
θs = Ts −NprsFsp,

Jp
..
θp = rp(Fpr −Fsp)=−Jp

rs
rp

..
θs,

mpaw
..
θc = Fpr +Fsp −Fpc = mpaw

rs
rs+rr

..
θs,

Jc
..
θc = Tc −NprsFsp = Jc

rs
rs+rr

..
θs.

(6.19)

Parallel stage:

JP
..
θP = TP − rP FPW =−JP

rP
rW

..
θW ,

JW
..
θW = TW − rW FPW .

(6.20)

The detailed definition of the parameters in the above dynamic model is
given in the description of 14-DOF model in paper 5 [29]. It is possible to ob-
tain the relationship between the input and output torques at each stage by
eliminating the internal forces between the elements. The resulted equations
for both the planetary and parallel stages are
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By using actual aerodynamic torque

(a) Main shaft actual maximum stress.
By using actual aerodynamic torque

(b) Main shaft estimated maximum stress.
By using estimated aerodynamic torque

(c) Main shaft estimated maximum stress.
By using actual aerodynamic torque

(d) Main shaft estimated stress error.
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By using estimated aerodynamic torque

(e) Main shaft estimated stress error.

Figure 6.6: Real-time equivalent von Mises stress on the main shaft of DTU 10
MW drivetrain model [30] (paper 6). (a) Actual stress, (b) Estimated stress in
case of using actual aerodynamic torque, (c) Estimated stress in case of using
estimated aerodynamic torque, (d) Stress estimation relative error in case of
using actual aerodynamic torque, (e) Stress estimation relative error in case
of using estimated aerodynamic torque.

Planetary stage:

Ts = JEQ
..
θs −Tc

rs
2aw

, where

J planetary
EQ = Js + Npr2

s
2

(
Jp/r2

p +mp
aw

rs+rr

)
+ Jc

r2
s

2aw(rs+rr) .
(6.21)

Parallel stage:

TW = JEQ θ̈W +TP
rW
rP

, where

J parallel
EQ = JW + JP

r2
W

r2
P

.
(6.22)

In the above equations, J planetary
EQ is the equivalent mass moment of in-

ertia in the planetary stage, having contributions from the sun, Np planet
gears and planet carrier. J parallel

EQ is the same parameter for the parallel
stage. The torque transfer between stages is through the shafts, so that the
transferred torque can be estimated by

Tout = Tin − JS θ̈S. (6.23)

In the above equation, JS θ̈S is the inertial torque from the shaft [42]. For
NREL 5 MW drivetrain, the input and output torques of each stage are cal-
culated by [29] (paper 5)
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Tstage1
in = Tstage1

c = TR − JLSS θ̈R ,
Tstage2

in = Tstage2
c = Tstage1

out − JISS θ̈
stage1
s ,

Tstage3
in = TP = TG − JHSS θ̈G ,

Tstage1
out = Tstage1

s = Jstage1
EQ θ̈

stage1
s −Tstage1

in
rstage1

s

2astage1
w

,

Tstage2
out = Tstage2

s = Jstage2
EQ θ̈

stage2
s −Tstage2

in
rstage2

s

2astage2
w

,

Tstage3
out = TW = Jstage3

EQ θ̈W −Tstage3
in

rW
rP

.

(6.24)

As it can be seen, the torques estimated at each gear stage are func-
tions of drivetrain input torque, torsional response and the parameters of
the equivalent model which are estimated in real-time by using the pro-
posed system identification approach. The input torques estimated above
are then used for estimating the stress at the different gear stages. Gear
contact stresses are analyzed in this work following ISO 6336-2:2019 [75].
According to this standard, the contact stresses are

σHi = ZBD ZH ZE ZZβ

√
KAKγiKviKHβiKHαi

√
2000Ti

d2
1b

u+1
u

. (6.25)

In the above equation, u is the gear-ratio of the pair, d1 and b are ref-
erence diameter and face width of the pinion, respectively, Ti is the input
torque. The other parameters account for different aspects of the problem,
such as contact relations ZBD and ratios Z, material properties ZE, helix
angle Zβ, mesh load Kγ, gear speed Kv, load distributions KHβi and KHαi.
These factors are defined in [75]. Equation (6.25) can be rewritten as

σHi = C
√

Ti. (6.26)

In the above equation, C represents the design parameters in equation 6.25.
This parameter can be roughly estimated from nominal conditions as C =
σHN /

√
TiN , so that equation (6.26) becomes

σHi =σHN

√
Ti

TiN
. (6.27)

In the above equation, σHN and TiN are the nominal contact stress and
torque. The estimated input and output torques of each stage estimated by
using dynamic model described by equation 6.24 are shown in Figure 6.7.
The estimated contact stress at the sun-plant gear pair of the second gear-
box stage by using equation 6.27 is demonstrated in Figure 6.8. These results
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Input torque - Stage 1

Input torque - Stage 2

Input torque - Stage 3

Output torque - Stage 1

Output torque - Stage 2

Output torque - Stage 3

Figure 6.7: Estimated input and output torques of the 1st, 2nd and 3rd gearbox
stages of NREL 5 MW drivetrain.

are obtained based on the simulation studies of [29] (paper 5). The results
show a fair agreement between the estimated stress by using the proposed
DT approach and the estimated values from the drivetrain high-fidelity sim-
ulation models. It is worth noting that the proposed DT algorithm keeps the
same number of stress cycles with the high-fidelity model though the range
of cycles is slightly higher. The latter means that the proposed DT technique
may slightly overestimate the fatigue damage of the gear.

6.4 Degradation model

6.4.1 Degradation model for residual life estimation

Stress-life method is used for estimating the fatigue damage. Stress-life
method has shown proven performance for estimating fatigue in high-cycle
applications with the number of cycles over N > 103 during the component
lifetime. The estimated time series of maximum stress feeds the time-domain
cycle counting approach based on rainflow approach. The rainflow cycle
counting [76] is applied to calculate the number of cycles at different stress
levels. Then damage is estimated in real-time and the residual life of the
component is estimated. Miner’s rule is used to calculate the accumulated
fatigue damage of the drivetrain components.

Cycle counting is especially important for the broad-band stress signals to
distinguish small cycles which are interruptions of larger ones. The outputs
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Figure 6.8: Validation of estimated sun-planet contact stress at the 2nd stage
of gearbox in NREL 5 MW drivetrain: comparison between the contact stress
estimated by using the proposed digital twin approach and the contact stress
obtained from high-fidelity SIMPACK simulation model.

are the amplitude stress levels σs, and the number of stress cycles at σs
f or s = (1, . . . ,S). Goodman rule is employed to calculate the effective stress
(the equivalent zero mean alternating stress) by considering the influence of
nonzero mean stress level by means of the equation [77]

σe
s =

σs

1− σm
σu

, ∀ s ∈ {1, . . . ,S}. (6.28)

In the above equation, σm and σu are the mean stress and material yield
strength, respectively. The accumulated damage for the data block t with S
different stress levels σe

s (s ∈ {1, . . . ,S}) is calculated by using Miner’s rule as

dt =
S∑

s=1

ns

Ns
. (6.29)

In this equation, ns is the number of cycles at the stress level σe
s and Ns

is the number of cycles to yield at stress level σe
s, where the relationship is

defined by S-N curve characteristic as [78]

σe
s = a(2Ns)b. (6.30)

The absolute total online accumulated damage is calculated by

D =
Time∑
t=1

dt. (6.31)

In this equation, Time stands for the last data block which represents the
current time. dt represents the "short-term" damage, which is related to only
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a specific environmental condition. Damage D characterizes the long-term
damage which captures the influence of all possible environmental conditions
[42]. The described damage estimation method can also be used to estimate
the relative damage between different operation periods over the time, which
informs both the operator and designer about the variations in degradation
between different operational periods. It can also be used for estimating the
relative damage between the different drivetrain components at the time, to
give the operator information about the most vulnerable parts of the system
at different periods of operation.

The aforedescribed deterministic damage estimation approach does not
necessarily provide precise results. In order to improve the accuracy of es-
timation, stochastic models which can adequately address the uncertainties
in the stress-life degradation estimation approach can be used in conjunction
with the above described deterministic model-based approach.

The other significant source of uncertainty in the proposed residual life
estimation approach arises from stress-life method [78] and the procedure
employed to obtain S-N curve parameters a and b which represent the best-
fitting estimates of experimental fatigue data [79]. In this thesis, in order to
address the uncertainty in fatigue calculation due to material uncertainties,
damage at each stress level is assumed as a random variable. In other words,
in order to estimate damage for the tth data block of the stress time series,
dt, the damage is calculated by assuming the S-N curve parameters a and b
as random variables, so that for each stress level σi, the number of cycles to
failure are estimated by randomly selecting a and b in the intervals ±5% of
their nominal values.

A detailed analysis of stress signal which helps to obtain a confidence in-
terval for the estimated expected value of damage is carried out by Moghadam
and Nejad [30] in paper 6. Based on the results of this study, the stress
time series of drivetrain components are assumed to be IID at each oper-
ating speed, which helps to obtain confidence interval for average damage,
by using Monte Carlo simulation and the results of IID CLT [80]. With the
confidence 95%, the average damage places in the interval

[μ̂dt −1.96sdt /
√

(k) μ̂dt +1.96sdt /
√

(k)], (6.32a)

μ̂dt = 1
k

k∑
i=1

dt
i , (6.32b)

sdt =
√√√√ 1

k−1

k∑
i=1

(dt
i − μ̂dt)2. (6.32c)

In the above equations, k is the number of cases that the parameters of S-
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N curve are randomly generated for estimation of dt, so that dt
i = (dt

1, ...,dt
k).

The value of k is selected to realize an interval ±5% around the mean value
of dt

i. μ̂dt and sdt are the average and variance estimates.

6.4.2 Degradation of main and high-speed shafts

The algorithm for estimating RUL of the main and high-speed shafts by us-
ing the proposed DT-based residual life monitoring approach is summarized
by the flowchart in Figure 6.9. The proposed DT approach for estimating the
two shafts residual life is based on the 3-DOF equivalent ROM of drivetrain.

The expected values of main shaft accumulated damage in different test
scenarios for 3600 seconds of operation during normal, overload and faulty
conditions are listed in Table 6.2. These simulation studies are based on DTU
10 MW drivetrain system. The S-N curve characteristics of the main shaft
material used for the damage calculations are described in [30]. Actual dam-
age in Table 6.2 represents the accumulated damage when the actual value
of drivetrain parameters and input loads are accessed. Estimated damage1 is
the damage estimated by using the proposed DT model and the actual value
of drivetrain input loads. Estimated damage2 is the damage estimated when
the DT model and estimated values of drivetrain input loads are applied. The
estimated damage in all the different test scenarios agrees with the actual
damage, with an exception for coupled fault and overload test case, where
the proposed approach slightly underestimates the damage.

Table 6.2: Expected value of main shaft accumulated damage in DTU 10 MW
drivetrain for different test scenarios for 3600 seconds of operation at rated
rotor speed [30].

Test scenario Actual damage Estimated damage1 Estimated damage2
Normal operation 1.8e−7 1.8e−7 1.8e−7

Overload (20%) 1.1e−5 1.1e−5 1.1e−5

Fault (10%) 8.3e−7 8.3e−7 8.3e−7

Overload and fault 3.4e−5 3.4e−5 3.3e−5

6.4.3 Degradation of gears in the gearbox

The results of estimating RUL of the different gears in the gearbox by us-
ing the proposed DT approach are reported in Table 6.3. The proposed DT
approach for estimation of the residual life of the gears is based on 14-DOF
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Figure 6.9: Algorithm for estimation of residual life of drivetrain main and
high-speed shafts by using the estimated 3-DOF equivalent model, torsional
measurements and stress-life method [30] (paper 6).

equivalent ROM of drivetrain. The SN curve characteristics for the gears
pitting fatigue damage calculations are described in paper 5 [29]. The sim-
ulation studies are based on NREL 5 MW drivetrain system. The expected
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values of the accumulated damage in different gears for 3600 seconds of op-
eration during normal conditions at a rated drivetrain speed are reported
in Table 6.3, which show an agreement between the actual and estimated
values of damage.

Table 6.3: Expected value of different gears accumulated damage in NREL
5 MW drivetrain, for 3600 seconds of normal operation at rated rotor speed
[29].

Gear Actual damage Estimated damage
1st stage sun 4.8e−6 4.8e−6

2nd stage sun 4.6e−6 4.6e−6

3rd stage pinion 7.6e−6 7.6e−6



Chapter 7

Conclusions

7.1 Conclusions

This PhD thesis was aimed at proposing cost effective and computationally
fast solutions for improving the condition monitoring of the drivetrain sys-
tem of future offshore wind turbines.

In order to achieve this purpose, as the first step, the pros and cons of
different drivetrain configurations were investigated by using a life cycle op-
timization approach. In this approach, the optimization was performed in
both system and component levels by looking into the criteria obliged by the
proposed life cycle assessment approach and taking into account the design,
manufacturing and installation, and O&M costs together. It was shown that
medium-speed permanent magnet synchronous generator (PMSG) drivetrain
technology can offer a better compromise between total weight, raw material
cost, size, efficiency and dynamic behavior analysis, so that it was selected as
the main case study to test the condition monitoring methods designed and
developed for the drivetrain of floating offshore wind turbines in this PhD
project.

The fault diagnosis of the drivetrain by using the time and frequency
domains analyses of the translational vibration measurements was inves-
tigated and the capability of these methods in observing the faults initi-
ated by different sources was explained. A data-driven diagnosis solution
was proposed by using the drivetrain translational vibration data based on
modelling the drivetrain sensor network with the equivalent spatial proba-
bilistic graphical model and assuming the multi-variate distribution which
fits the drivetrain vibration measurements forming a Gaussian Markov ran-
dom field, and leveraging the features that each graph in this field follows.
The experimental and simulation studies proved the successful diagnosis of

93
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faults in the drivetrain at component-level (fault in the main bearing based
on the analysis of experimental data, and fault in the gearbox high-speed
shaft bearing by using the data generated by simulation model), which were
not observable by the standard time-domain approach based on the analysis
of the RMS of acceleration measurements.

Then the innovative condition monitoring solutions of the drivetrain by
using the torsional vibration measurements were focused. The main reason
was developing methods based on using the sensors, communication infras-
tructure and processing power already available in turbine and farm levels,
to propose cost-effective and easy to implement solutions to improve the driv-
etrain condition monitoring in system and component levels. The torsional
measurements can be obtained by the encoders and possibly strain gauges
which are used in drivetrain respectively for the controlling objective and
the measurement of load. As the starting point to study about the feasibil-
ity of using the torsional vibration measurements for the drivetrain condi-
tion monitoring, the classical time and frequency domains analyses of the
torsional measurements and the possibility of observing faults initiated by
different sources were studied, and the performance was compared to the
classical time and frequency domains analyses of translational vibrations. A
frequency-domain data analysis tool based on monitoring the energy of vibra-
tion signal around the suspicious/defect frequency was also developed. The
results of this study showed that the torsional vibration measurements can
improve the condition monitoring based on translational vibrations by offer-
ing an earlier stage fault detection, supporting the root cause analysis and
also giving feedback to the designer on the torsional excitation frequencies
which can result in the accelerated degradation of the components over the
time.

In the next step, the torsional vibrations were selected as the main fo-
cus of this PhD research. The possibility of using two methods based on
torsional vibration measurements, namely torsional response error function
and low-pass filtered torsional response function, to support the drivetrain
system modal analysis was investigated. The results based on both experi-
mental and simulation-based studies were used to prove the possibility of es-
timating the drivetrain natural frequencies by using the torsional vibration
measurements, where the torsional responses obtained from higher-order
drivetrain simulation models showed the possibility of observing the higher
drivetrain frequency modes. The drivetrain faults were classified into two
main categories of system and component levels. Then fault diagnosis algo-
rithms based on monitoring the variations of the drivetrain dynamic prop-
erties, namely the undamped natural frequencies and normal mode shapes,
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were studied. An algorithm for drivetrain fault diagnosis at system-level
was developed based on the 3-DOF equivalent model of drivetrain supported
by sensitivity analysis to measure the contribution of the different stages
of progress of drivetrain system-level faults in the variation of drivetrain
modes. The proposed method which was also implementable by using only
one encoder data, was validated by both experimental and simulation stud-
ies. The results reported by simulation studies proved the successful detec-
tion of different types of system-level faults including the unbalance faults
in rotor, generator and gearbox, and crack in main and high-speed shafts.
The The results reported by experimental studies showed the possibility of
observing an early stage fault in the main shaft which was not detectable by
using the standard condition monitoring methods. Then higher order equiv-
alent models were tested, and the influence of faults at the component level
(more specifically, pitting faults in the different gears of the gearbox) on the
drivetrain dynamic properties was shown by simulation studies. However,
further studies to establish an analytical approach for the drivetrain fault
diagnosis at component-level by monitoring the dynamic properties was con-
sidered as a future work.

A further step was taken in torsional vibrations-based condition mon-
itoring to study the possibility of using torsional vibration measurements
for prognosis of drivetrain faults, by investigating into approaches for the
near real-time estimation of the remaining useful lifetime of the drivetrain
components by using the torsional measurements. To this purpose, a digital
twin modelling approach was proposed as the combination of the real-time
equivalent torsional model, online torsional measurements and degradation
model to estimate the online fatigue damage of the drivetrain components.
A computationally fast algorithm was designed for estimating the drivetrain
equivalent torsional reduced order model parameters by using the torsional
measurements and employing a robust least square error estimator. The
least-square error estimator was designed based on minimizing the square
error between the equivalent model and measurements. The online esti-
mated model and measurements were applied as input to the load observers
to estimate the near real-time load and subsequently equivalent stress in
the drivetrain components by taking into consideration the internal dynam-
ics of the drivetrain components. Then the real-time degradation estimation
for obtaining the residual life of the components was performed based on a
proven physics-based approach grounded on the analysis of the stress life of
the drivetrain components. The degradation estimation approach was sup-
ported by statistical approaches and stochastic models to address the two
main sources of uncertainty in the proposed DT model arisen from first the
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load estimation approach and second the estimation of fatigue damage by re-
lying on the material properties obtained from the S-N curve, to improve the
estimation accuracy and obtain a confidence interval for the estimated ex-
pected value of damage. The employed statistical approaches and stochastic
models include but are not limited to Kalman filtering, Monte Carlo simu-
lation, stochastic modelling of fatigue damage and model identification by
using algorithms with robustive characteristics. In one of the studies, a dig-
ital twin model was developed based on 3-DOF equivalent lumped model for
estimating the residual life of the main and high-speed shafts. In the other
study, a digital twin model was proposed grounded on 14-DOF equivalent
model for estimating the residual life of the gears of the drivetrain gearbox.
The proposed digital twin models were evaluated by simulation studies and
the results were validated by comparing the results of estimated stress from
digital twin model with the estimated stress from high-fidelity simulation
models. The combination of the proposed torsional digital twin model with
translational models aimed at detecting faults in the drivetrain bearings was
considered as the other future work.

7.2 Original contributions

This thesis deals with design and development of innovative and cost-effective
solutions to improve the condition monitoring of the drivetrain system of fu-
ture offshore wind turbines. The main contributions of the thesis can be
summarized as follow:

• Establishing a drivetrain system optimization approach which ensures an
optimized overall cost, weight, size, and improved efficiency and reliability

Drivetrain cost optimization by using a life cycle assessment approach
was introduced. Many researchers have done optimization, but we did in
a life cycle perspective which is more holistic and valuable. A new analyti-
cal design approach was proposed for the optimized design of PMSG based
on the optimization of the active material cost. An analytical design model of
the gearbox was presented, and a new optimization approach was proposed to
optimize the gearbox weight. A comprehensive comparison between the de-
sign, raw material cost, weight, size, efficiency and reliability of DDPMSG,
MSPMSG and HSPMSG drivetrain technologies was presented. The first
torsional natural frequency of the three under consideration PMSG-based
drivetrain configurations was calculated, and the feasibility of application in
floating offshore wind turbines was investigated.
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• Developing a drivetrain fault diagnosis method at component level based on
the translational vibrations by using the combination of physics-based and
data-driven approaches, and monitoring the variations of drivetrain statisti-
cal properties

A statistical learning approach based on the graphical model of drive-
train obtained from Lagrangian approach was proposed for fault detection in
the wind turbine drivetrain components. Fulfilling Gaussian Markov Ran-
dom Field (GMRF) properties in the drivetrain vibration measurements mo-
tivated using the features any graph in this field obeys, namely the station-
arity of the inverse of covariance matrix in a GMRF and its conditional de-
pendence properties were used to achieve a drivetrain computationally fast
abnormality detection approach. The method was able to diagnose the faults
that were not detectable by standard condition monitoring approaches. The
latter was shown by both experimental and simulation studies.

• Classifying the different sources of excitation in drivetrain condition mon-
itoring analyses and proposing the efficient vibration-based diagnosis solu-
tions based on the source of excitation

An experimental comparison between different available solutions for de-
tecting drivetrain bearings and gears defects initiated by different sources of
excitation was performed. Torsional vibrations residual function which is re-
cently proposed in literature of vibration-based condition monitoring of wind
turbine drivetrain was experimentally validated by time and frequency do-
main analysis of torsional versus translational vibrations. To this purpose,
Different frequency-domain tools for detecting abnormalities in the drive-
train system, namely FFT, PSD and envelope PSD spectrums and analysis of
the energy of the signal at the defect frequencies were employed experimen-
tally by using operational measurements.

• Designing methods for drivetrain modal analysis by means of torsional vi-
brations

Drivetrain modal analysis by using the different types of torsional mea-
surements was introduced. The proposed modal analysis approach was ana-
lytically proved. The performance of the proposed modal analysis approaches
was demonstrated by using both experimental studies based on the opera-
tional data and simulation studies. Two different simulation studies based
on two different drivetrain systems and two different equivalent models (a
simplified 3-DOF and a more complex 14-DOF models) of drivetrain were
carried out, and the possibility of observing the system natural frequencies
by using different functions of torsional measurements was investigated. An
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analytical approach for estimating the damping coefficients associated with
the different natural frequencies and operating speeds by analyzing the vari-
ations of amplitude of torsional response residual function at the natural fre-
quencies and variations of damped natural frequencies in different operating
speeds was proposed.

• Designing methods for drivetrain fault diagnosis at both system and com-
ponent levels based on monitoring the variations of the drivetrain dynamic
properties

A drivetrain condition monitoring approach was proposed which works
based on monitoring the variations of the system dynamic properties and
the amplitude of response at the natural frequencies. The drivetrain sys-
tem fault detection features were extracted by leveraging sensitivity analy-
sis. The method was tested by using both operational and simulation data
obtained respectively from Vestas 1.75 MW and DTU 10 MW wind turbine
drivetrains. The results were showing that the state of progression of dif-
ferent categories of drivetrain faults at system-level are observable in an
early stage by the fault diagnosis method developed based on 3-DOF equiva-
lent torsional model of the drivetrain, only by tracking the faults consequent
variations in the drivetrain dynamic properties. The analytical equations of
3-DOF drivetrain model supported by sensitivity analysis were used to ex-
tract the fault detection features which were shown to be sufficient to detect
the drivetrain faults at a system level. Then the possibility of extending this
work to the drivetrain fault diagnosis at component-level by using higher
DOF models of the drivetrain was demonstrated by the simulation studies.

• Establishing the digital twin approach for fault prognosis of the drivetrain
components by using the drivetrain torsional measurements

Computationally fast digital twin models of the drivetrain system based
on the torsional measurements and computationally inexpensive equivalent
torsional models were proposed, which were aimed at monitoring the resid-
ual life of the components. The digital twin model based on 14-DOF equiv-
alent of the drivetrain system was proposed for remaining useful lifetime
(RUL) monitoring of the gearbox, which was tested for estimating the resid-
ual life of the gears of NREL 5 MW gearbox model and validated by com-
paring the results with high-fidelity simulation models. The digital twin
model based on 3-DOF equivalent model was also proposed for estimating
the residual life of main and high-speed shafts, which was tested by DTU 10
MW model. The proposed digital twin models leveraged stochastic physics-
based degradation models for estimating RUL in the drivetrain components
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by using the online estimated reduced order model (ROM), real-time tor-
sional measurements, designed load observers and equivalent stress estima-
tion approaches. These models take into consideration the various sources
of uncertainty by using statistical approaches and stochastic models, namely
Kalman filtering, Monte Carlo simulations and assuming fatigue damage as
a random variable.

• Designing a robust and computationally fast method for estimating the pa-
rameters of drivetrain equivalent models of different degrees of complexity by
using the torsional measurements, for fault diagnosis and prognosis applica-
tions

The online estimation of the parameters of drivetrain equivalent mod-
els of different degrees of freedom by using the torsional response and the
estimated values of drivetrain input torques was discussed. The proposed
robust least square error (LSE) estimator defined based on minimizing the
difference between the equivalent model and the real-time measurements
provided the best unbiased estimation of the coefficients in the linear regres-
sion model. Confidence intervals for estimation error of the ROM parameters
were provided by using stochastic models supported by Monte Carlo simula-
tions.

7.3 Recommendations for future works

• Further development of proposed drivetrain fault diagnosis approach based
on monitoring the drivetrain dynamic properties for detection of the faults at
component level

The proposed fault diagnosis approach and the associated feature space
were analytically designed for detecting system-level faults based on a 3-
DOF equivalent model of drivetrain. The component-level fault diagnosis
was studied heuristically relying on limited simulation studies, which showed
the potential of this method for detection of the faults in the gears. Analyti-
cal methods based on higher DOF equivalent models of drivetrain to obtain
an analytical feature space for detecting drivetrain faults at component level
is the area that is needed to be investigated more in future.

• Further development of the proposed fault prognosis approach based on tor-
sional digital twin models and torsional measurements for prognosis of the
faults in the drivetrain bearings

Combining the proposed torsional digital twin models with translational
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models for prognosis of the fault in the drivetrain bearings has a high poten-
tial to be investigate further in the future.

• Applying and testing the proposed fault diagnosis and prognosis approaches
to other fields of application

The methods developed in this PhD thesis were originally design for the
drivetrain system of floating offshore wind turbines. However, these methods
have a potential to be adjusted and applied to the other application domains
e.g. for condition monitoring of ship propulsion systems and steam turbines.

• Extending the data-driven statistical learning approach proposed in this
PhD project for condition monitoring of the drivetrain, to the monitoring of
the whole turbine and monitoring of the wind farm

The proposed data-driven drivetrain condition monitoring method which
relies on translational vibrations, has a high potential to capture the inter-
actions between different turbine subsystems. The latter can be used to find
the abnormalities in the turbine subsystems based on monitoring the varia-
tion of the correlations between turbine subsystems due to system faults or
unexpected operations, which has a good potential to improve the operation
and maintenance of future floating offshore wind turbines.
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Abstract
This paper presents an in depth evaluation and comparison of three different drivetrain choices
based on permanent-magnet synchronous generator (PMSG) technology for 10-MW offshore
wind turbines. The life cycle approach is suggested to evaluate the performance of the different
under consideration drivetrain topologies. Furthermore, the design of the drivetrain is studied
through optimized designs for the generator and gearbox. The proposed drivetrain analytical
optimization approach supported by numerical simulations shows that application of gearbox
in 10-MW offshore wind turbines can help to reduce weight, raw material cost, and size and
simultaneously improve the efficiency. The possibility of resonance with the first torsional
natural frequency of drivetrain for the different designed drivetrain systems, the influence of
gear ratio, and the feasibility of the application for a spar floating platform are also discussed.
This study gives evidence on how gearbox can mitigate the torque oscillation consequences on
the other components and how the latter can influence the reliability of drivetrain.

KEYWORDS

drivetrain optimization, floating offshore wind turbine, life cycle assessment, permanent-magnet
synchronous generator

1 INTRODUCTION

The capacity of offshore wind turbines and the distance from shores is rising rapidly, so that multigigawatt offshore wind farms based on
multimegawatt floating turbines show potentials to be one of the dominant sources of power production in the future. The latter is due to
availability of better wind resources, less turbulence, steadier winds, and less wind shear; easier transportation of larger turbines on the sea;
technological developments in power electronic converters and direct current (DC) power transmission technologies; the establishments of
required market infrastructures; and technological achievements in installation of turbines in deep waters, which lead to a considerable drop in
the levelized cost of energy (LCOE) of offshore wind turbines. In spite of significant improvements, there are still no unanimous decision about the
drivetrain system technology in offshore wind turbines.1,2 Offshore wind reaches to 10-MW turbines or even higher, but there are still different
interests betweenmanufacturers in the selection of drivetrain technology. One reason is that the drivetrain in wind originally comes from available
experiences in other industries, which has been modified over time. The latter has then been upscaled for higher powers with some modifications
to reduce the production costs and improve the dynamic response. Because the wind turbines are developed for a wide range of power in various
onshore/offshore, fixed/floating, two-/three-bladed rotors, upwind/downwind, high/medium/low wind, fix/variable speed, stall/active yaw, and
stall/active pitch applications, a customized design of the drivetrain for the cost reduction and performance improvement is inevitable. Therefore,
there is a need for a special drivetrain design for each power class for different applications to have the lowest manufacturing, installation, and
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maintenance costs and simultaneously achieve the most reliable and efficient operation. The optimization of the drivetrain system also influences
on the turbine design, because the size and weight of drivetrain is a main constraint in design of nacelle.
Even though the drivetrain system has an important share in manufacturing and maintenance of the turbine, and even if there are some

researches conducted on the optimization of the components of the drivetrain, there is no analytical study about a system-level optimization of
the drivetrain for 10-MW floating wind turbine applications as of the authors' knowledge. The proof for this claim is the different technology
interests in offshore wind turbine industry. Because the drivetrain is a complex electromechanical system, the optimization of this system is a
multidisciplinary task that calls for external system-level and internal component-level optimization problems. The other circumstance is that the
optimizations need to be performed over the life cycle of the system, consisting of design, manufacturing and installation, and operation and
maintenance (O&M). In this paper, different permanent magnet synchronous generator (PMSG)-based drivetrain technologies, that is, direct-drive
permanent-magnet synchronous generator (DDPMSG), medium-speed permanent-magnet synchronous generator (MSPMSG), and high-speed
permanent-magnet synchronous generator (HSPMSG), are designed and compared. This work is a starting point for the optimization of drivetrain
systems for large offshore wind turbines from design, manufacturing, and O&M perspectives. It will be shown that a thoughtful selection of
technology can considerably reduce the drivetrain weight and cost, while improving the overall efficiency and dynamic response. The numerical
results show that the drivetrain system based on MSPMSG could be the most promising choice for 10-MW floating offshore wind turbines.
Four assumptions are made in this research:

1. There are some limitations such as availability of a technology, vendors, and rawmaterials that influence on companies' drivetrain selection.
The latter will not be discussed in this research.

2. The purpose of analytical design of the drivetrain components is to provide input data for the comparison study between different drivetrain
technologies. Complementary component-level detailed design steps such as finite element analysis for more detailed electromagnetic,
structural, and thermal designs are not in the scope of this research.

3. Reliability calculations for under consideration drivetrain systems are not in the scope of this paper, but how the failure modes are affected
by the drivetrain technology is discussed.

4. For each drivetrain technology, the conventional configuration is considered in this study. Some innovative wind turbine drivetrain systems,
such as gearbox integrated main-bearing (used eg in Areva Multibrid M5000 medium-speed technology) and hub-supported drivetrain
(used eg in GE Haliade 150-6MW direct-drive technology) based on more compact and lightweight designs, are not the focus of this work.

The study is carried out on the basis of the most conventional drivetrain configurations available in the market, and the results provide
a baseline for any further investigations on 10-MW PMSG-based wind turbine drivetrain systems. The life cycle approach for performance
assessment of the different drivetrain topologies based on the PMSG technology over the design lifetime is introduced. Over the life cycle, the
research focus will be on design, manufacturing, and operation supported by an analytical model of the drivetrain components. On this basis, the
contributions of this paper are the following:

1. Drivetrain performance assessment using the life cycle approach is introduced.
2. A new drivetrain optimization approach is proposed, which ensures an optimized overall cost and weight, improves the reliability and

efficiency, and simultaneously assesses the feasibility of the design.
3. A new analytical design approach is proposed for the optimized design of PMSG based on the optimization of the active material cost. The

optimization problem is solved numerically, and the global optimizer is determined. The design is validated by ANSYS-RMxprt software.
4. An analytical design model of the gearbox is presented, and a new optimization approach is proposed to optimize the gearbox weight.

KISSsoft software is used to validate the feasibility of the design.
5. A comprehensive comparison between the design, raw material cost, weight, size, efficiency, and reliability of DDPMSG, MSPMSG, and

HSPMSG drivetrain technologies is presented.
6. The first torsional natural frequency of three under consideration drivetrain technologies is calculated, and the feasibility of application in

floating offshore wind turbines is investigated.

The selection of drivetrain technology is a multidisciplinary task that needs to compromise between the criteria obliged by the life cycle
assessment approach. By using DDPMSG, the generator will be larger, heavier, and more expensive, which can also increase the weight and the
cost of nacelle, tower, and platform consequently. The latter also affects the installation and maintenance costs. The first research problem would
be if the extra weight of a low-speed generator could compensate the weight reduction due to the gearbox removal. The second question is if the
elimination of gearbox can improve the reliability because the nullification of one of the subsystems in a serial system seems to help reach a higher
reliability if the reliability of components is fixed. The third challenge is if the gearbox removal can improve the drivetrain efficiency using the
same justification that was provided for the reliability. The last question is which topology can safely work with floating offshore platform, which
is expected to be widely used in high-power offshore wind turbines. This research uses analytical models of the drivetrain components along
with numerical optimization techniques and deals with the described research problems. It is analytically proven that for the under consideration
range of speed and power, gearbox helps to improve the operation and reduce the raw material cost of drivetrain. The main focus of this work
is studying about the design interactions and dynamic couplings between gearbox and generator in offshore floating wind turbines' drivetrain
systems. Higher level details of the drivetrain design including the design of main bearings, high-speed and low-speed shafts, and bedplate are
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not discussed in this work. The weight of bedplate has an important role on the drivetrain overall weight. The bedplate sizing depends on a wide
range of parameters including drivetrain technology, rotor weight, rotor overhang, main shaft dimension, main bearings weight, gearbox weight,
generator weight, converter weight, and transformer weight. In addition to individual component weights that the bedplate must support, the
bedplate model must take into account rotor loads. For the design of bedplate for the under consideration drivetrain systems, readers are referred
to Guo et al.3,4

The paper is organized as follows: The state-of-the-art of wind turbine drivetrain technologies for offshore and onshore applications is
presented in Section 2. In Section 3, the drivetrain life cycle performance assessment approach and the proposed drivetrain optimization
algorithm are described. The analytical design and optimization procedure of the three under consideration PMSGs, that is, DDPMSG, MSPMSG,
and HSPMSG, and the associated gearboxes are elaborated in the same section. Numerical simulations to validate the optimized generators and
gearboxes design and a detailed comparison study between the under consideration drivetrain systems concerning cost, weight, operation, and
performance are presented in Section 4. The paper is concluded in Section 5.

2 STATE-OF-THE-ART TECHNOLOGIES

A review on commercialized drivetrain system technologies of wind turbines with a power higher than 4 MW is performed in this section. The
dominant drivetrain technologies for the under consideration power are DDPMSG, MSPMSG, direct-drive wound rotor synchronous generator
(DDWRSG),medium-speedwound rotor synchronous generator (MSWRSG), high-speed doubly fed induction generator (HSDFIG), and high-speed
squirrel cage induction generator (HSSCIG) (Table 1). DDPMSG is the dominant technology of Siemens Gamesa (power range 6-8 MW) and GE
(power range 6-12MW) for fixed/floating platforms. MSPMSG is MHI Vestas' solution for the power higher than 8MW, Aeorodyn for 6MW, and
Adwen and Areva for 8 and 5 MW, respectively. MSWRSG is Aerodyn's alternative for 8 MW. HSSCIG is the technology used by both Siemens
and Vestas (power range 3-4 MW). HSDFIG is the technology used by Senvion and REpower for 6.2 MW offshore. DDWRSG is the Enercon
technology interest for the power up to 8 MW but for onshore applications. Some research-scale offshore drivetrain designs prototyping in the
5 to 12 MW range have also been considered in this study. An overview of the most recent application of different drivetrain technologies is
shown in Table 2. Based on this summary, all these technologies show potentials for the drivetrain in offshore wind turbines. Even though the
most recent literature recommends DDPMSG because of efficiency and reliability considerations,5 the diversity in drivetrain technology interests
in both industry and academia shows that other factors influence on the selection of the wind turbine drivetrain. In the meantime, there are
many other technologies that have not been commercialized. For instance, direct-drive and medium-speed DFIG with a high number of poles are
less efficient due to a high excitation loss.6 Brushless DFIG is not an efficient machine due to a low-power torque density compared with typical
induction and synchronous generators.7 Superconducting direct-drive synchronous generators are still far from being commercialized regarding
standardization and some open paths to explore regarding cost and reliability.8 An overview on the commercialized turbines (see Table 2) and
the reference turbines developed by research institutions and universities9,10 shows a unanimous interest in PMSG for high-power offshore wind
turbine drivetrain systems. Higher efficiency due to external excitation circuit removal, higher reliability and availability, and less maintenance
costs due to the compactness and lightweight design and brushes elimination are the motivations.10 Different designs for permanent-magnet
generators are proposed in the literature. The latter includes vernier/conventional generators, axial/radial flux, surface-mounted/interior rotor
magnets, slotted/slotless stator, inner/outer rotor, distributed/concentrated winding, and integer-/fractional-slot winding machines.11 However,
still, the commercialized designs for wind turbine drivetrain systems, that is, radial flux, inner rotor, and surface-mounted PMSGs, are the focus
of this research.
In the continued section, the priorities which may be considered by the different turbine manufacturers in selection of the PMSG drivetrain

technology is analytically studied. It is aimed to find which PMSG-based drivetrain topology will probably be the future trend based on the
analysis of the available choices. The power range and turbine platform are emphasized as the other important criteria which affect the drivetrain
technology chosen by different manufacturers.

3 METHODOLOGY

For this study, the DTU 10 MW reference wind turbine is used.9 The parameters of the DTU turbine used for the drivetrain studies are listed in
Table 3. The other parameters related to the drivetrain components are updated based on the designed generators and gearboxes in this paper.

3.1 Life cycle approach
In the life cycle performance assessment approach, to have a meaningful comparison between different drivetrain technologies, the overall costs
and benefits are evaluated over the design lifetime, and the outcome is expressed by using levelized values as equivalent costs and benefits at
the regular intervals during all the system life. By using this method, the costs and revenues of various drivetrain technologies are needed to be
studied over design, manufacturing, installation, O&M, life extension, and decommissioning12 (see Figure 1). The optimal configuration is the one
that gives the highest profit over the cycle.
In design, concerns related to design, for example, complexities in design, maximal design utilization, and higher degree of adaptation to

site-specific conditions, reliability, and controllability, are important. A preliminary failure modes study about the generator and gearbox in
PMSG drivetrain is summarized in Table 4. It is interesting to observe that the most of failure modes can be rooted back to design stage. In
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TABLE 1 State-of-the-art of drivetrain technologies in multimegawatt onshore and offshore wind turbines at a glance (up to
10 MW)

Technology Layout

1. High-speed squirrel cage induction generator
•Merits: cheap, simple generator design
• Drawbacks: sensitive to transients, low efficiency

2. High-speed doubly fed induction generator
•Merits: cheap, fractional converter
• Drawbacks: sensitive to transients, low efficiency

3. Direct-drive wound rotor synchronous generator
•Merits: cheap
• Drawbacks: brushes, low efficiency, higher weight

4. Medium-speed wound rotor synchronous generator
•Merits: cheap
• Drawbacks: brushes, low efficiency

5. Direct-drive permanent-magnet synchronous generator
•Merits: low maintenance, high efficiency
• Drawbacks: expensive

6. Medium-speed permanent-magnet synchronous generator
•Merits: low maintenance, high efficiency, less weight for higher powers
• Drawbacks: expensive

reliability-based design, one should look at the reliability of a drivetrain design considering failure modes to ensure a safe and reliable operation
over the operating speed and torque range. However, the failure modes depend on the drivetrain technology. Furthermore, regarding specific
operating conditions, some modes are of a higher importance. The failure functions will then be defined for the components and subsequently
the drivetrain system based on a criticality analysis of the failure modes of the components. The impacts of uncertainty sources such as wind,
wave, material strength model, and power grid can be modelled by using safety factors in a deterministic design or applying a multiplicative
model of uncertainties in a stochastic design approach.18 The outcome of reliability-based design will specify the expected lifetime of drivetrain
system. For new systems and applications, for example, PMSG-based drivetrain systems for 10 MW spar floating offshore wind turbine, due to
the lack of standards for the design load cases, design is more challenging, which requires to leverage the similar experiences accompanied by a
wide range of numerical simulations. As a design study in this paper, the first torsional natural frequency of under consideration PMSG-based
drivetrain systems is studied, and design remarks are given about the feasibility of using these technologies in floating platforms.
In manufacturing and installation, weight, compactness, and special manufacturing and installation requirements should be taken into

consideration. An example of more manufacturing efforts is in manufacturing DDPMSG, where the too high pole count causes small rotor poles
with fine stator slotting, which makes manufacturing expensive. About installation efforts, for instance, less weight drivetrain technology and the
consequent reduced weight nacelle and tower help to reach less cost transportation and craning requirements. For more clarification, a promising
solution for a floating wind turbine transport and installation is to preassemble the whole turbine in one piece in the shipyard, towing to the
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TABLE 2 Drivetrain most conventional technologies

HSSCIG HSDFIG DDWRSG MSWRSG DDPMSG MSPMSG
SWT-4.0-130 GE 5.3-153 EN136-4.2 SCD 8.0/168 SG 8.0-167 DD V164-10.0MW
Siemens General Electric Envision Aerodyn Siemens Vestas
4 MW 5.3 MW 4.2 MW 8 MW 8 MW 10 MW
Offshore/onshore Onshore Offshore/onshore Offshore Offshore Offshore
Geared (1:119) Geared (NA) Direct-drive Geared (1:27) Direct-drive Geared (1:38)
V136-4.2 MW 6.2M126 E-126 7.580 NA YZ150/10.0 Adwen AD 8-180
Vestas Senvion Enercon NA Swiss Electric Adwen
4 MW 6.2 MW 7.6 MW NA 10 MW 8 MW
Onshore Offshore Onshore NA Offshore Offshore
Geared (NA) Geared (1:97) Direct-drive NA Direct-drive Geared (1:41)

Abbreviations: DDPMSG, direct-drive permanent-magnet synchronous generator; DDWRSG,direct-drive wound rotor
synchronous generator; HSDFIG, high-speed doubly fed induction generator; HSSCIG, high-speed squirrel cage
induction generator; MSPMSG,medium-speed permanent-magnet synchronous generator; MSWRSG, medium-speed
wound rotor synchronous generator.

Parameter Value
Rated power (MW) 10
Rated rotor speed (rpm) 9.6
Rated wind speed (m/s) 11.4
Equivalent driveshaft linear spring constant (N.m/rad) 2,452,936,425
Rotor moment of inertia Jr (kg.m2) 8 × 108

TABLE 3 Turbine specification9

FIGURE 1 Drivetrain life cycle assessment approach [Colour figure can be
viewed at wileyonlinelibrary.com]

offshore deployment site, and using a large floating crane to hook up with mooring systems,19 where the most important limitation is the turbine
weight. A significant part of this paper is dedicated to the optimization of weight, raw material cost, and size for under consideration drivetrain
technologies as a necessary input to study manufacturing and installation costs.
In O&M, performance, efficiency, reliability, availability, and maintenance costs are required to be addressed. In offshore wind turbine

applications, especially in high-power floating installations in deep waters, due to farther distance from shores, broader ranges of excitation
sources and motions, and utilization of large, massive, and expensive components, any improvement in efficiency, reliability, and availability can
help to reduce cost of electricity. It is reported that O&M contributes in order of 30% of LCOE in offshore wind turbines.20 In performance, the
quality of generator output power is concentrated, where the generator technology and the power frequency converter play a significant role. In
efficiency, improving the efficiency of the drivetrain is discussed. It is needed to evaluate which technology and configuration will give a greater
efficiency, which helps to reduce the electricity cost. Therefore, there will be a need to look into all the individual components of the drivetrain
system. Then, the overall efficiency in the rated power is calculated/compared for the different technologies. In reliability, the failure rates of
different drivetrain components and fault tolerance properties of each technology is required to be analyzed. Therefore, the failure modes of
the subcomponents must be listed, so that the components and subsequently the drivetrain systems could be studied/sorted according to the
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TABLE 4 Basic failure modes study of PMSG drivetrain components

PMSG11,13-15 Gearbox16,17

Possible faults Possible faults
Mechanical faults Gear fault
Blocking bearings Shaft fault
Stucking filings in the air gap Bearing fault
Electrical faults Shaft misalignment
Short circuit faults Shaft bending
Finite resistance circuit faults Shaft loose
Open circuit faults Housing fault
Magnetic faults Fastener fault
Demagnetization of rotor magnets Seal fault
Detachment of rotor magnets Fault reasons
Fault reasons Underestimated design loads
Overcurrent Torque overloads
Voltage sags, swells, and harmonics Material defects
Cooling and lubrication system maloperation Manufacturing errors
Sensors and communication network maloperation Dirt in the lubricant or poor lubrication
Rotor torque oscillation by wave-/wind-induced moments Damage during transportation and assembly
Electromagnetic torque oscillations Misalignment of components in the shaft
Poor or contaminated bearing lubrication Failure modes
Bearing installation problems Gear wear; scuffing and contact fatigue (fatigue)
Failure modes Gear plastic deform; crack; fracture; bending (ultimate = fatigue)
Stator winding insulation fail (fatigue, ultimate) Bearing spalling : excessive load = poor lubrication (fatigue)
Demagnetization: magnet heating (ultimate) Bear: smearing : foreign objects trapped within (fatigue)
Demagnetization: increased flux density (ultimate) Bear: worn surface : skewed roller = lubrication (fatigue)
Phase/path cutoff (fatigue, ultimate) Bear: partial chipping of rings = roller : excessive load (fatigue)
Stator tooth fretting damage/crack (fatigue/ultimate) Bear: ring split = crack : excessive load = loose fit (fatigue)
Detached magnet: raised centrifugal forces (fatigue) Bear: fretting corrosion : fluctuating load = lubrication (fatigue)
Bearing pitting and sanding (fatigue) Bear: electrical pitting : sparks by electric current (fatigue)
Bearing brinelling/false brinelling (fatigue) Bear: damaged retainer : heavy vibration = speed change (fatigue) different

Abbreviation: PMSG, permanent-magnet synchronous generator.

highest to the lowest probability of failure regarding the most critical failure modes. The latter can be based on the failure reports if enough event
logs and trouble shooting reports of the operation are available. It can also be based on the post processing of real operational data measured
from the system21 to calculate the fatigue damage and remaining useful life of the system. The latter could be supported by sufficient simulated
models under the different load cases dependent on the application. In general, a combination of these two approaches is used. Obtaining the
vulnerability map for each component considering the critical failure modes, which indicates the subcomponents from the highest to lowest
probability of damage is the basis for reliability-based maintenance. The latter supported by lifetime-predicting models will give an insight
about the reliability and remaining lifetime of the system, which is needed to be done for the different drivetrain technologies. In availability,
the downtimes of the wind turbine due to the drivetrain shutdowns, including downtimes for periodic maintenance or unscheduled repairs for
different technologies, are needed to be discussed. Furthermore, the possibility of usingmodular design for different gearboxes and generators for
reduction of downtime in different drivetrain technologies relates to availability studies. In order to compare reliability and availability of different
technologies, a detailed analysis of each component's failure modes, probability of failure, and the downtimes is required. Maintenance costs
will relate to the failure rate of components, labor, parts, operations, equipment, and facilities.22 The technology of high-power floating offshore
wind turbines is new, and there are only few operational turbines of this type. An accurate O&M comparison between different technologies
relies on an access to operational data of the same system under the same load cases; however, approximated analyses can be attained based
on available experiences in lower power ranges, similar experiences from other industries, some limited data in access from the same operational
turbines and applications, scaled-down laboratory-based systems, supported by high-fidelity simulation models and theoretical analyses. Each
drivetrain technology is finally needed to be scored based on O&M criteria, namely, efficiency, reliability, availability, and maintenance costs. The
other fact that makes O&M analysis more difficult is that each drivetrain technology is a different dynamic system with different responses.
To maintain the tip speed ratio of larger rotors in higher powers to reach the highest power coefficient, the nominal rotational speed of rotor
is reduced, which causes different dynamic responses even for the turbines of the same technology but a different rated power. Moreover,
floating offshore platforms encounter turbines into different motions induced by the synergistic impacts of wind and wave, the gravity of the
turbine, and the floating platform. The lower rotor speed and more diverse and higher amplitude excitations necessitate a special O&M study
for the drivetrain in high-power floating applications. In this research, for the under consideration PMSG-based drivetrain topologies, the overall
efficiency is calculated/compared considering the efficiency of the individual components. As a reliability analysis, the drivetrain failure modes
affected by the rotor torque and generator electromagnetic torque oscillations of different technologies are discussed and compared. Unequal
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Technology Type 1 (DDPMSG) Type 2 (MSPMSG) Type 3 (HSPMSG)
Rated power(MW) 10 10 10
Application Floating offshore Floating offshore Floating offshore
Generator PMSG PMSG PMSG
Gearbox Direct-drive Three stages (1:50) Three stages (1:156)

Abbreviations: DDPMSG, direct-drive permanent-magnet synchronous genera-
tor; HSPMSG, high-speed permanent-magnet synchronous generator; MSPMSG,
medium-speed permanent-magnet synchronous generator; PMSG, permanent-magnet
synchronous generator.

TABLE 5 Case study technologies

cogging torque values in different drivetrain technologies cause different rotational vibration performances. The part of the life cycle that is
emphasized is specified in Figure 1.

3.2 Proposed drivetrain design optimization

The selection of drivetrain technology is a multidisciplinary task that needs to make compromises between the criteria obliged by the life
cycle approach. As explained earlier, PMSG is the promising technology for high-power offshore wind turbines. Because 10 MW PMSG-based
drivetrain can be realized by different gear ratios, it is needed to assess different gear ratios over the life cycle. Gear ratio as per definition in
IEC 61400-4 is n

nr
, where n and nr are the speeds of input and output shafts, respectively.23 The three under consideration drivetrain topologies

are DDPMSG, MSPMSG, and HSPMSG technologies, which are specified in Table 5). The 2D view of PMSG overall design that is used for the
three under consideration drivetrain technologies is shown in Figure 2A. DDPMSG is a direct-drive technology. MSPMSG is the medium-speed
drivetrain technology, which can be realized by either two or three stages. The operational high-power medium-speed technologies are often
based on hybrid gearboxes containing three stages, including planetary gears in the upwind stages and parallel gear pairs, which can be used
to realize the gear ratio 1 ∶ 36 to 1 ∶ 108. The mentioned gearbox topology is selected for the MSPMSG drivetrain technology in the paper.
HSPMSG is a high-speed drivetrain technology. The gearbox for the high-speed technology can be realized by three planetary stages with a gear
ratio variable from 1 ∶ 108 to 1 ∶ 216. The gearbox topology for the MSPMSG and HSPMSG drivetrain technologies is shown in Figures 2B and
2C. In industry, based on the rule of thumb, the conventional parallel stage is used for realization of the inverse of gear ratio 1 < 𝛼 < 3, and
a conventional planetary stage is used for 3 < 𝛼 < 6. For 1 < 𝛼 < 3, the industry interest is in using a parallel stage. The reason that planetary
gear is not dominant for 1 < 𝛼 < 3 is due to more complex design and manufacturing, more difficult access for maintenance, and difficulty
in fault detection and condition monitoring. Therefore, for the realization of the gear ratio 1 ∶ 50 suggested in DTU 10-MW turbine design,
the gearbox topology based on two planetary gear stages and one parallel stage is studied in the paper as the most conventional topology to
realize the similar gear ratios in the medium-speed wind turbine drivetrain systems but for lower power ranges. In the power range 10 MW in a
medium-speed application, there is no agreed topology and gear ratio in the gearbox design. Somemanufacturers have recently used other design
topologies to meet better the requirements of offshore application by a less weight and more robust design under load variations, for example,
Vestas V164-9.5MW and Adwen AD 8MW-180 have used three-stage compound planetary stages and two-stage compound planetary stages,
respectively, to realized the gear-ratios 1 ∶ 38 and 1 ∶ 41. Because no reference was found, which prohibits the utilization of three planetary
stages to realize an MS gearbox, another MS topology based on three planetaries is also studied. For the HS design with the assumed gear ratio
156, the most practical way to realize the gearbox is using three planetary stages.
Larger generator in DDPMSG technology causes more costly manufacturing, installation, and maintenance. Even though the general idea is that

a direct-drive generator is more reliable, available, and efficient due to a gearbox removal (eg, in Polinder et al20,25 and Zhang et al24), the different
generators and gearboxes in DDPMSG, MSPMSG, and HSPMSG drivetrain technologies result in different dynamic responses, efficiencies, and
weights of the components and the drivetrain, which calls for an analytical study before judging about operations and economics. Generator and
gearbox are focused. The other significant components are converter system and main bearings. The main bearings in the under consideration
technologies are the same because they are placed on low-speed side. The power converter system depends on rated power and voltage.
Because the three generators are designed for the same power factor and consequently apparent power, the rated power of the converters is the
same. However, the increased design voltage in MSPMSG and HSPMSG drivetrains compared with DDPMSG helps to reach a higher efficiency
for the power converter with less effort due to reduction of switching losses, but the increased voltage raises the power converter cost due to
the increased cost of the switches, DC link, and some auxiliary circuits. The changes in the overall drivetrain efficiency and cost due to power
converter are neglected.
The algorithm of the proposed PMSG drivetrains evaluation is demonstrated by the flowchart in Figure 3. From the conceptual design

perspective, the gearbox affects both the input torque and speed of the generator. The latter are among the critical parameters in design of
generator so that the size of generator is directly proportional to these parameters. In each iteration of the proposed drivetrain optimization
approach, the gear ratio is fixed by the outer loop. Therefore, the optimization problem of each drivetrain technology is broken into two decoupled
problems of gearbox and generator optimizations. As a result, for each drivetrain topology, two internal component-level optimization problems
are solved. The first problem looks for the optimized design of the generator. The generator optimization problem is designed to ensure the
minimization of cost of active material while maximizing the generator torque density. The second problem is a cost (weight) optimization of the
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(A) (B) (C)

FIGURE 2 Topology of generator and gearbox in this study. HSPMSG, high-speed permanent-magnet synchronous generator; MSPMSG,
medium-speed permanent-magnet synchronous generator; PMSG, permanent-magnet synchronous generator [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 3 Proposed drivetrain optimization approach

multistage gearbox. Drivetrain performance-based and reliability-oriented constraints are imposed to the component-level optimization problems
to ensure the feasibility of the generator and gearbox proposed designs and a fair comparison between the under consideration drivetrain
technologies. Finally, the designed drivetrain systems are compared with respect to total weight, cost, size, efficiency, and dynamic responses.

3.2.1 Generator optimization
As discussed in Section 2, PMSG is the dominant technology for high-power offshore wind turbines. Some motivations are as follows:

1. Armature reaction is smaller in a permanent-magnet generator with surface-mounted magnets than in electrically excited generators, due
to a larger air gap;
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2. Losses of the field winding in electrically excited generators cause lower efficiency in these generators compared with permanent-magnet
generators;

3. Besides reducing losses, the permanent-magnet generators lead to a lighter design. For the same power and frequency, compared with an
electrically excited generator, a permanent-magnet generator can be realized with a smaller diameter, which is really helpful for design of
high-power direct-drive generators for wind turbines26; and

4. It is believed that permanent-magnet generators are more reliable than electrically excited generators. One reason is that excitation circuits,
the associated power electronics semiconductor devices, and the commutation rings and brushes cause a high portion of failures and
downtimes in electrically excited generators, while they are not needed for permanent-magnet generators. The possible faults regarding the
application of magnets, including magnets demagnetization and detachment can, to a great extent, be avoided by a proper design approach.

A three-phase radial flux, inner rotor, surface-mounted, slotted machine with laminated stator/rotor cores and distributed winding is the
reference generator technology studied in this section. Reluctance torque, which is an important source of torque pulsations, is negligible in
surface-mounted PMSGs. Low weight, simple design, and low-armature reaction are some other benefits of surface-mounted technologies.
Different objective functions with different sets of optimization variables are suggested in the literature for optimized design of PMSGs. Li

et al27 suggests the cost of the active material, Dubois et al28 recommends the ratio of the cost of active material to torque density, and Røkke
et al11 proposes the cost of the active materials including the housing and the cost of the energy lost in the machine over its lifetime to be used
to optimize the PMSG design.
In the continued part, an analytical design based on the minimization of the ratio of cost of active material to torque density is used to find the

optimized design of the generator in DDPMSG, MSPMSG, and HSPMSG technologies. The latter ensures the minimum cost while maximizing the
electromagnetic (developed) torque density and utilization of the generator weight. The proposed analytical model represents the cost function
and the design constraints as a function of five geometrical variables. The design procedure for the three under consideration generators is the
same, but the parameters and constraints are adapted based on the operating voltage and speed.
The cost function C of the generator optimization problem is defined as

Cgenerator(x) = arg min
x

(
costactive(x)

Td(x)

)
, (1a)

costactive(x) = costfe(x) + costcu(x) + costpm(x), (1b)

Td(x) =
TN
V(x)

, (1c)

where x is a vector that represents the optimization variables. costactive is the cost of active materials in generator construction in Euro. The
cost of active materials consists of the cost of iron used in rotor and stator yokes and stator teeth, copper of the stator windings, and the
surface-mounted permanent magnets. costfe is the total cost of iron, costcu is the cost of copper, and costmagnet is the cost of magnet material. TN is
the nominal torque in kN.m, and V is the generator active volume in m3. Td is the generator torque density in kN.m∕m3. The variables in Equation
(1) are defined by

x = [x1, x2, x3, x4, x5]T = [Ds, Ls, bs, hs, hm]T , (2a)

costcu = ccumcu, (2b)

costpm = cpmmpm, (2c)

costfe = cfemfe, (2d)

V = 𝜋
D2
so

4
Le, (2e)

where the five optimization variables Ds, Ls, bs, hs, and hm are the air gap diameter, active length of generator, slot width, slot height, and
magnet height, respectively. cfe, mfe, ccu, mcu, cpm, and mpm are the specific costs and total weights of core, copper, and magnet, respectively. The
design of surface-mounted PMSG deals with the determination of a high number of variables related to the generator geometry and operation.
In the proposed optimized design approach, it was observed that all the generator design variables can be either defined as a function of the
five geometrical optimization variables, or considered constant, or can change in optimization problem outer loops. The latter helped to turn a
nonlinear and strongly nonconvex problem to a convex problem to be able to find a global optimizer. The other generator design variables, which
are not assumed as a optimization variable, are classified into three different groups: first, those that can be written as a function of the five
optimization variables, such as flux densities in air gap and teeth; second, the design variables that are assumed constant, for example, air gap
thickness, which is fixed at the minimum value regarding the mechanical construction considerations of large permanent-magnet generators, and
maximum flux densities in rotor and stator yokes; third, those variables that are updated/changed in outer loops to find their optimal values, for
example, magnetic pole embrace

(
bm
𝜏p

)
and number of slots per pole and phase (q), but in each internal optimization take constant values. The
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definition ofmcu in terms of the five optimization variables (x1, … , x5) is given in Equation (3a). The role of winding overhang, the slot wedge, and
the insulation thickness is considered in the model. The weight of copper is proportional to the length and the cross section of the winding. The
length is dependent on the generator length, the pole pitch, and the overhang, which is proportional to the voltage. The definition ofmpm in terms
of the optimization variables is given in Equation (3b). bm𝜏p in this equation models the ratio of the pole surface that is covered by the magnet
material to the all pole surface, which could take different values by using an optimization outer loop. The definition of the three components
of mfe, which respectively model the iron used for stator teeth, stator yoke, and the rotor core in terms of the optimization variables, is given in
Equation (3c). The other variables in this equation are either constant or change by using external optimization loops. V in Equation (3d) is the
overall volume of the generator, which is a function of generator equivalent length Le and the stator outer diameter Dso. The generator equivalent
length is a function of core length and air gap. The stator outer diameter is also a function of Ds, hs, and stator yoke height hsy . In Equation (3d), V
is written in terms of the optimization variables.
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The definition of the variables used in the the above equations is given in Table 6. For more details on the design variables and their
dependencies with the defined optimization variables, readers are referred to Grauers et al.26 The results of the described optimization problem
provide the detailed geometry, material consumption, cost, and the operational criteria such as efficiency, decoupled generator losses, power
factor, flux densities, electrical and thermal loadings, induced and terminal voltages, and torque oscillations. The generator optimization problem
including the objective function and the constraints is highly nonlinear. Because the resultant is a constrained nonlinear multivariable nonconvex
problem in terms of the optimization variables, convex programming tools cannot be useful. Because the constraints are of a high number
and mostly nonlinear, duality theories and associated dual problems add to the complexity of optimization. Problem reduction, using linear
optimization,11 and application of heuristic approaches, for example, genetic algorithm27 are some alternatives suggested in the literature. Our
observations show that the aforedescribed disciplined nonconvex problem shows a convex shape in a multidimensional graphical illustration of
the objective function and constraints in the predefined range of optimization variables so that the problem is convex on a portion of its domain
that is the feasible region regarding the constraints. Therefore, a global optimizer for this optimization problem could be found. MATLAB fmincon
numerical optimization solver using sequential quadratic programming (SQP) algorithm is used to find the globally optimized design.
The objective function C is optimized subject to a wide range of specific electrical loading, magnetic loading, insulation and mechanical forces

mitigation requirements, current density, armature thermal loading, power factor, and efficiency-based constraints to ensure a feasible design
for the three generators. The carter factor is modelled in terms of the design variables in the optimization problems. The generators are assumed
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Generator Specifications DDPMSG MSPMSG HSPMSG
Technical specification
Number of poles p 200 12 4
Rated output power Pe (Mw) 10.003 10.004 10.000
Rated input torque TN (MN.m) 10.689 0.202 0.065
Rated rotational speed nr (rpm) 9.6 480 1497.6
Rated RMS line voltage VL (kV) 3.471 10.438 10.452
Rated generator output frequency f (Hz) 16 48 49.92
Efficiency 𝜂 (%) 93.09 98.41 98.34
Specific electric loading A (A/mm) 109.99 107.72 106.41
Armature current density Js (A∕mm2) 4.66 5.02 4.99
Armature thermal load (A2∕mm3) 512.24 540.98 531.07
Cogging torque (N.m) 958.54 0.23 0.01
Maximum air-gap flux density B̂𝛿 (T) 0.46 0.52 0.49
Maximum magnet flux density B̂m (T) 0.48 0.58 0.64
Maximum statorteeth flux density B̂t (T) 0.95 1.43 1.36
Maximum statoryoke flux density B̂sy (T) 1.10 1.11 1.07
Maximum rotoryoke flux density B̂ry (T) 1.10 1.11 1.10
Total loss (kw) 742.52 161.55 168.87
Dimension specification
Air gap diameter Ds (m) 10.622 2.547 1.743
Active length Ls (m) 1.498 0.512 0.391
Slot width bs (mm) 27.5 11.5 11.2
Slot height hs (mm) 86.9 62.8 65.8
Stator yoke height hsy (mm) 27.30 148.65 333.05
Rotor yoke height hry (mm) 48.25 167.65 361.25
Magnet width bm (mm) 140.72 552.61 1082.83
Magnet height hm (mm) 21 19.7 38.9
number of slots Q 600 432 288
Number of slots per pole & phase q 1 12 24
Mechanical air-gap height 𝛿 (mm) 10 2 2
Polepitch 𝜏p (mm) 166.85 666.67 1368.70

continues.

TABLE 6 Generator optimization results

to be equipped with integrated water cooling, which helps to increase the limits of the electrical loading constraint. The winding insulation
class N with an average temperature rise of 130◦ C for the rated operation and the maximum hot-spot temperature 200◦ C is considered for
the design limits and power loss calculations. No restriction regarding generator frame sizes is imposed to the problem. It is assumed that the
generators outputs are connected to infinite bus. In a real case, the outputs are connected to a converter as an external circuit. The converter's
dedicated controller controls the phase angle and amplitude of armature output current to attain higher power factors, maximizing the generator
output active power. The generators are all designed for an induced voltage less than the rated terminal voltage, which helps to minimize the
permanent-magnet material consumption and weight of generator and to reduce the generator core losses. The optimized design based on
the proposed analytical model is performed by MATLAB and validated using ANSYS-RMxprt software to ensure that the generators can stably
deliver the desired output power and voltage.
The generator structure weight consists of cooling system, beams, cylinder, shaft, and bearings. Different models for the weight is suggested

in the literature.26 In Hartviksen,29 the generator structure weight is estimated with a sum of cylinder and beams weights. Because the beams
weight is proportional to the generator diameter and the cylinder weight has a relation with the multiplication of the diameter and length, the
following experimental equation is used to estimate the weight of structure compared with a known structure weight of a similar generator with
the same range of power:

mstr =
1
2
m0

str

((
Dso

D0
so

)2

+
Ls
Ls0

)
, (4)

wherem0
str , D

0
so, and Ls

0 are the weight, outer diameter, and length of the reference generator. The data of reference generator, which is a 10-MW
DDPMSG, are obtained from Polinder et al.30

3.2.2 Gearbox optimization
In this section, the objective function is minimization of the cost of active material in gearbox by optimizing the stage gear ratios. The gearbox
cost function for a typical three-stage configuration is defined by

Cgearbox(u) = arg min
(
costgear(u)

)
, (5a)
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TABLE 6 continued Generator Specifications DDPMSG MSPMSG HSPMSG
Wedge height hw (mm) 3 2 2
Stator outer diameter Dso (m) 10.857 2.973 2.544
Rotor inner diameter Dri (m) 10.464 2.1677 0.9384
Equivalent core length Le (m) 1.518 0.516 0.395
Slot pitch 𝜏s (mm) 55.62 18.52 19.01
Winding specification
Winding layers 2 2 2
Winding type Full pitch Full pitch Full pitch
Parallel branches 1 1 1
Conductors per slot 2 2 2
Winding connection star star star
Number of winding turns N 600 432 288
Insulation thickness hi , mm/kv 1 1 1
Material properties
Magnet density 𝜌pm (kg∕m3) 7400 7400 7400
Relative permeability of magnet 𝜇pm 1.1 1.1 1.1
Magnet residual flux density Br 1.23 1.23 1.23
Magnet specific cost cpm (Euro/kg) 80 80 80
Core density 𝜌fe (kg∕m3) 7650 7650 7650
Relative permeability B-H curve B-H curve B-H curve
Core specific cost cfe (Euro/kg) 16 16 16
Copper density 𝜌cu (kg∕m3) 8900 8900 8900
Copper specific cost ccu (Euro/kg) 27 27 27
Design parameters
Core stacking factor kfe 0.97 0.97 0.97
Magnetic pole embrace ( bm

𝜏p
) 0.85 0.85 0.85

Weight and cost specification
Armature copper weightMcu (ton) 12.077 2.109 2.211
Permanent magnet weightMM (ton) 6.552 0.494 0.487
Armature core weightMfe (ton) 27.777 5.824 7.206
Rotor core weightMfe (ton) 9.984 4.085 3.703
Total active material weightMActive (ton) 56.390 12.513 13.608
Approximated structure weightMstructure (ton) 267.85 52.52 39.79
Total weightMtot (ton) 324.24 65.03 53.40
Total active material cost cActive (MEuro) 1.45 0.25 0.27
Total raw material cost ctotal (MEuro) 5.74 1.09 0.91

Abbreviations: DPMSG, direct-drive permanent-magnet synchronous genera-
tor; HSPMSG, high-speed permanent-magnet synchronous generator; MSPMSG,
medium-speed permanent-magnet synchronous generator.

costgear(u) = coststage1(u) + coststage2(u) + coststage3(u), (5b)

where u is vector of the optimization variables. costgear is total raw material cost of the gears of gearbox stages in Euro. The variables in Equation
(5) are described as

u = [u1, u2, u3]T , (6a)

costplanetarystage = cgearmplanetary
gear , (6b)

costparallelstage = cgearmparallel
gear , (6c)

where cgear is the unit cost of the gears material and mplanetary
gear and mparallel

gear represent the weights of planetary and parallel stages, respectively,
which is defined as the function of optimization variables using the model described in Nejad et al31 as

mplanetary
gear (u) =

2𝜌feQS

k
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where QS and QP are the input torques to the sun and pinion for planetary and parallel stages, respectively. u is the gear ratio, B is number
of planets of the planetary stage, and kr is a ring scaling factor of the planetary stage. k is the intensity of tooth loads factor. The overall active
material weight for a sample three-stage gearbox with two planetary and one parallel stages is calculated as
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k
1
u1

⎛⎜⎜⎜⎝
1
B
+ 1

B
(

u1
2
− 1

) +
(u1
2

− 1
)
+
(u1
2

− 1
)2

+ kr
(u1 − 1)2

B
+ kr

(u1 − 1)2

B
(

u1
2
− 1

)⎞⎟⎟⎟⎠
+
2𝜌feQ0

k
1

u1u2

⎛⎜⎜⎜⎝
1
B
+ 1

B
(

u2
2
− 1

) +
(u2
2

− 1
)
+
(u2
2

− 1
)2

+ kr
(u2 − 1)2

B
+ kr

(u2 − 1)2

B
(

u2
2
− 1

)⎞⎟⎟⎟⎠
+
2𝜌feQ0

k
1

u1u2u3

(
1 + 1

u3
+ u3 + u23

)
.

(8)

Equation (8) is obtained by the sum of the weights of two planetary stages and one parallel stage as described in Equation (7). The input torque
applied on the sun/pinion of each gearbox stage is replaced in the weight function of the stage by applying the gear ratio of the previous stages
on the main shaft torqueQ0. To derive Equation (8), it is important to notice the sun/pinion is the output gear of the planetary/parallel gear stage.
The above described optimization problem is solved subject to constraints related to the gear ratio of each stage and the overall gear ratio.

The outputs of the problem are the optimized gear ratios, weight, and cost. The resultant is a constrained nonlinear multivariable nonconvex
optimization problem. Because the aforedescribed disciplined nonconvex problem shows a convex behavior in multidimensional graphical
illustration of the objective function and constraints in the defined range of optimization variables, it is possible to find the global optimizer.
MATLAB fmincon numerical optimization solver is used to find the global optimizer.
The replacement of the third parallel stage in MSPMSG drivetrain with a planetary stage in HSPMSG helps to reach higher gear ratios and

reduce weight and size with compact design features of planetary gears. The disadvantages of planetary gearboxes are their complexity and
sensitivity to manufacturing errors and elastic deformations in the shafts, bearings, and gearbox cage so that a planetary gearbox performs
the best only if equal load sharing between planets is achieved.32 The optimized three-planetary stages gearbox for HSPMSG drivetrain and
two-planetary and one-parallel stage gearbox for MSPMSG drivetrain based on the explained model and the proposed optimization approach
are evaluated as the case studies in Section 4. The gearboxes optimized designs are validated using the KISSsoft gear design software, and the
overall geometry, weight, cost, and efficiency are compared for the different topologies.

3.2.3 The first torsional natural frequency of drivetrain
To ensure that the different designed drivetrain technologies execute a safe operation without any danger of resonance due to external/internal
excitations, the first torsional natural frequency of three under consideration drivetrain systems is studied. The first torsional frequency is
calculated by using a simplified two-mass model. The gearbox is modelled with the gear ratio and the stiffness of the connecting links to the
rotor and generator are modelled, but the moment of inertia and stiffness of the gearbox are neglected. The moment of inertia of the gearbox is
negligible compared with the moment of inertia of the generator so that it does not have any considerable impact on the first drivetrain torsional
mode. The first torsional frequency by using a two-mass model is calculated by33

ftor1 = 1
2𝜋

√
keq

Jr + 𝛼2Jgen
𝛼2JrJgen

, keq =
𝛼2krkgen

kr + 𝛼2kgen
, (9)

where keq is the equivalent shaft stiffness in the rotor side, Jr and Jgen are the moment of inertia of rotor and generator, kr and kgen are the shaft
stiffness of rotor and generator, and 𝛼 is inverse of the gear ratio.
The first torsional natural frequency of drivetrain of the three under consideration topologies obtained by the above model is validated by

using a three-mass model in Simpack software, which models the moment inertia of the gearbox to see how it can influence the first mode.

4 NUMERICAL SIMULATIONS

4.1 Optimized generator specification

The results of the three optimized generator designs based on DDPMSG, MSPMSG, and HSPMSG using the proposed analytical approach are
listed in Table 6. The three optimized designed generators are validated by ANSYS-RMxprt. The terminal voltage and power-angle characteristics
of the designed generators, which show that the three generators can stably deliver the designed power with the target voltage, are shown in
Figure 4. The power angle characteristic shows the relation between the power output of the generator Pe and the power angle 𝛿. The power
angle is the angle between the generator induced voltage at the air gap and the terminal voltage. When the input mechanical power increases,
the power angle increases to counterbalance the input power by the increase of the generated electrical power, where there is a 𝛿 = 𝜋∕2 rad
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FIGURE 4 Characteristic curves of the
designed generators. DDPMSG,
direct-drive permanent-magnet
synchronous generator; HSPMSG,
high-speed permanent-magnet
synchronous generator; MSPMSG,
medium-speed permanent-magnet
synchronous generator [Colour figure
can be viewed at wileyonlinelibrary.com] (A) (B)

limit that any exceedance causes a loss of synchronism and instability. The curve demonstrated in Figure 4A is the power-angle characteristic
obtained from the validated model in ANSYS-RMxprt software and shows that the three designed generators are all able to deliver the designed
10 MW power but at different power angles. The designed points on the power-angle characteristic of the generators are the optimal operation
by the consideration of efficiency and power factor in the optimization problem under a rated operation. The operating point in the three designs
also has a safe distance from the power angle limit 𝛿 = 𝜋∕2 rad. Although the designed generators can give higher power especially in DDPMSG,
it will not result in a desirable operation regarding a much lower efficiency. The frequency converter can also influence on the power factor
and subsequently the power angle. The generator terminal voltage is also an important constraint in the optimized design problem so that the
designed generators must be able to deliver the rated power at the rated voltage level, which the generator is designed for. Figure 4B shows one
cycle of the terminal line voltage (VLine =

√
3VPhase) of the three designed generators validated by ANSYS-RMxprt.

As it can be seen in Table 6, a transition from the low-speed to high-speed generator helps to save weight by reduction of diameter and length
of the generator although the required stator and rotor yokes height increases. For higher speed generators, the reduction of the number of
poles still decreases the diameter and length of machine; however, the rise in the stator and rotor yokes height exceeds the amount of weight
saved by the reduced diameter and length. Consequently, the weight of active material in HSPMSG is increased, but the total weight including
the weight of structure is still less than MSPMSG technology. Considerable reduction of weight and raw material cost in the generators designed
for higher operational speeds and improved efficiency and torque oscillations are observed based on the simulation results.
The efficiency of generator in the optimized analytical design approach is considered as a constraint so that the design solution has to fulfill

the minimum requirements regarding the power loss and efficiency. For this purpose, in the design code, the components of generator power
loss consisting of winding loss, rotor and stator cores losses (hysteresis and eddy current losses), magnet losses, additional losses (stray losses),
and friction and windage losses are modelled at rated load operation. The optimized design is then validated by the ANSYS-RMxprt analytical
design software to ensure that the designed generator can supply the designed power at the specified voltage. This software makes it possible to
check a wide range of parameters related to the generator operation including but not limited to flux densities in different places, electric loading,
thermal loading, induced and terminal voltage, power factor, total harmonic distortion, power losses, and efficiency. The values of efficiency
given in the paper are the verified results obtained by ANSYS. It is worth noting that maintaining the same efficiency for the low-speed generator
needs more increase in volume compared with higher speed generators. The latter makes high-efficiency DDPMSG technology for high-power
applications infeasible or inefficient. The voltage and frequency for the design of DDPMSG are selected less than the two other generators, to
help the minimum weight and cost design. The design voltages are selected so that the output voltage of converter place in a standard voltage
level based on the standards.34,35 Regarding the reduced rotational speed in DDPMSG and the direct relationship between the induced voltage
and speed, it is not efficient to design the direct-drive generator with the same voltage level used for medium-speed and high-speed generators
design. The relative root mean square (RMS) value of the fundamental component of the induced voltage is given by27

Er =
√
2kw𝜔sNph

Ds

2
LeB1𝛿 , (10)

where kw is thewinding factor,𝜔s is the rotational speed in rad∕s, and B1𝛿 is the RMS value of the fundamental component of the air gap flux density.
Therefore, the increase of induced voltage means the rise in the number of turns (more winding weight), the length of the machine (more core
weight), and the air gap flux density (more magnet weight). The latter increases the weight and cost of design. A power transformer in the wind
turbine is used to adjust the converter output voltage to the voltage at point of common coupling (PCC) so that the reduced voltage of DDPMSG
and consequently the reduced converter output voltage does not cause any problem if the voltage is selected among the standard voltages.
The design for a reduced output frequency also helps to reduce the number of poles and consequently the diameter and weight of generator.

The latter is possible, because the power converter can adjust the output frequency if the frequency is in the converter operating range.
Therefore, the design of DDPMSG for a lower voltage level and frequency is practical and results in the minimumweight design of the direct-drive
generator. The other two machines, that is, MSPMSG and HSPMSG are designed for the same standard voltage level. Similar loading conditions
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TABLE 7 Gearbox optimization results

Gearbox Specifications MSPMSG HSPMSG
Technical specification
Type Two planetaries and one parallel Three planetaries Three planetaries
Overall gear ratio 1:50 1:50 1:156
Rated power (MW) 10 10 10
Rated input shaft speed n (rpm) 9.6 9.6 9.6
Rated input shaft torque Q (MN.m) 9.947 9.947 9.947
Efficiency 𝜂 (%) 97.3 97.3 98.1
Gear specification of the first stage
Gear type Planetary Planetary Planetary
Gear ratio 1:3.524 1:3.231 1:4.333
Number of planets 5 5 5
Normal module 32 45 28
Normal pressure angle (degree) 23.3 27.1 24.6
Helix angle (degree) 0 0 0
Center distance a (m) 0.917 1.140 1.027
Sun gear facewidth b1 (m) 0.533 0.316 0.568
Planets facewidth b2 (m) 0.514 0.297 0.552
Ring gear facewidth b3 (m) 0.533 0.316 0.568
Number of teeth, sun 33 31 34
Number of teeth, planet 23 17 37
Number of teeth, ring 82 69 111
Profile shift coefficient, sun 0.217 0.664 0.446
Profile shift coefficient, planet 0.493 0.907 0.866
Profile shift coefficient, ring 0.249 0.312 0.555
Weight mS1

gear (ton) 17.53 15.01 28.11
Efficiency 𝜂 (%) 99 98.9 99.4
Gear specification of the second stage
Gear type Planetary Planetary Planetary
Gear ratio 1:4.804 1:3.4560 1:6
Number of planets 3 3 3
Normal module 25 28 25
Normal pressure angle (degree) 24.3 23.7 23.4
Helix angle (degree) 0 0 0
Center distance a (m) 0.696 0.819 0.704

continues.

are considered for design of the three generators to reach a fair comparison between them. Mechanical losses including friction and windage are
neglected.

4.2 Optimized gearbox specification

The optimized medium-speed and high-speed gearboxes specifications including the geometrical and technical data of the stages, respectively
for 10-MW MSPMSG and HSPMSG wind turbine drivetrain systems using the analytical model described in Section 3 are specified in Table 7.
The results validated using KISSsoft software show that even though the multistage gearbox for the HSPMSG drivetrain is designed for a higher
gear ratio, it can still slightly reduce the total weight and improve the efficiency of the gearbox. The change in the weight scaling factor applied to
model the structure weight of the two different gearboxes can slightly affect the results about the gearbox weight. As it can be seen, a transition
from medium-speed to high-speed gearbox can help to slightly improve the efficiency and weight. To provide a fair comparison, because there
was no reference found, which prohibits the utilization of three planetary stages instead of two planetary and one parallel stages to realize a
medium-speed gearbox, the optimized results of another medium-speed topology based on three planetary stages is added to Table 7.
The values of gearbox efficiency are the validated values calculated by KISSsoft after the implementation of the optimized model in the

software environment. KISSsoft is an analytical tool that calculates the power loss and heat dissipation of each gear stage according to the
ISO/TR 14179 standard. The software analytical efficiency calculations are elaborated by Langhart et al.36

4.3 Comparison between different PMSG-based drivetrain technologies

The overall drivetrain weight, cost, and efficiency for DDPMSG, MSPMSG, and HSPMSG are summarized in Table 8 and graphically compared in
Figures 5A to 5C. As it can be seen, moving from the direct-drive technology towards the medium-speed, the drive train weight, rawmaterial cost,
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TABLE 7 continued.

Gearbox Specifications MSPMSG HSPMSG
Sun gear facewidth b1 (m) 0.466 0.331 0.415
Planets facewidth b2 (m) 0.450 0.316 0.401
Ring gear facewidth b3 (m) 0.466 0.331 0.415
Number of teeth, sun 23 34 19
Number of teeth, planet 31 23 36
Number of teeth, ring 88 83 95
Profile shift coefficient, sun 0.176 0.283 0.430
Profile shift coefficient, planet 0.754 0.535 0.285
Profile shift coefficient, ring -0.157 -0.137 0.772
Weight mS2

gear (ton) 9.06 6.74 9.26
Efficiency 𝜂 (%) 99.2 99.2 99.3
Gear specification of the third stage
Gear type Parallel Planetary Planetary
Gear ratio 1:2.95 1:4.4775 1:6
Number of planets … 3 3
Normal module 40 18 14
Normal pressure angle (degree) 20 22.7 23.3
Helix angle (degree) 0 0 0
Center distance a (m) 1.177 0.495 0.394
Sun/pinion facewidth b1 (m) 0.622 0.223 0.201
Planets/gear facewidth b2 (m) 0.599 0.212 0.195
Ring facewidth b3 (m) … 0.223 0.201
Number of teeth, sun /pinion 15 25 19
Number of teeth, planet/gear 44 29 36
Number of teeth, ring … 86 95
Profile shift coefficient, sun/pinion 0.377 0.092 0.225
Profile shift coefficient, planet /gear -0.451 0.441 0.471
Profile shift coefficient, ring … 0.405 0.595
Weight mS3

gear (ton) 12.28 2.04 1.43
Efficiency 𝜂 (%) 99.1 99.2 99.4
Design parameters
Intensity of tooth loads factor 4 × 106 4 × 106 4 × 106

Ring scaling factor 0.4 0.4 0.4
Housing, bearings & lubrication scale factor 0.2 0.2 0.2
Material properties
Material Case carburized steel Case carburized steel Case carburized steel
Density (kg∕m3) 7850 7850 7850
Specific cost cgear (Euro/kg) 16 16 16
Weight and cost specification
Total gears weight (ton) 38.87 23.79 38.80
Moment of inertia (Mkg.m2) 1.24 0.25 0.36
Total weight (ton) 46.64 28.55 46.56
Total raw material cost (MEuro) 0.75 0.46 0.74

Abbreviations: DPMSG, direct-drive permanent-magnet synchronous generator; HSPMSG, high-speed
permanent-magnet synchronous generator.

efficiency and electromagnetic torque oscillations are significantly improved. A transition from the medium-speed to the high-speed generator
still helps to improve all the aforementioned properties.
To reduce fatigue damage and noise and comply with standard limits, a suppression to the permissible level 2% for electromagnetic torque

oscillations is required.37 Torque oscillation in surface-mounted PMSGs mainly comes from two sources38,39:

1. Cogging effect due to the variable permeance of the air gap and
2. Distortion of sinusoidal distribution of air gap flux density due to saturation, current ripple resulting from pulse width modulation (PWM),

and low power quality of the grid.

Cogging torque resulting from cogging effect is an important component of torque oscillations in PMSGs, which can be improved by the
proper design. As it can be seen in Table 8, the designed generators fulfill the torque oscillation requirements. However, the ratio of the cogging
to the average torque reduces by the increase of gear ratio. The fundamental cogging frequency for the PMSG with integer-slot windings and

MOGHADAM AND NEJAD 1557



TABLE 8 Drivetrain optimization results

Drivetrain Technology DDPMSG MSPMSG HSPMSG
Gearbox configuration No gearbox Planetary-planetary-parallel Three planetaries Three planetaries
Generator weight (ton) 324.24 65.03 65.03 53.40
Generator cost (MEuro) 5.74 1.09 1.09 0.91
Gearbox weight (ton) 0 46.64 28.55 46.56
Gearbox cost (MEuro) 0 0.75 0.46 0.74
Total weight (ton) 324.24 111.67 93.58 99.96
Total cost (MEuro) 5.74 1.84 1.55 1.66
Electromagnetic torque oscillation (%) 0.00897 0.00011 0.00011 0.00001
Rated efficiency (%) 93.09 95.75 95.75 96.47

Abbreviations: DPMSG, direct-drive permanent-magnet synchronous generator; HSPMSG, high-speed permanent-magnet
synchronous generator; MSPMSG, medium-speed permanent-magnet synchronous generator.

(A) (B)

(D)(C)

FIGURE 5 Comparison between
different drivetrain technologies:
DDPMSG, MSPMSG and HSPMSG.
DPMSG, direct-drive permanent-magnet
synchronous generator; HSPMSG,
high-speed permanent-magnet
synchronous generator; MSPMSG,
medium-speed permanent-magnet
synchronous generator [Colour figure
can be viewed at wileyonlinelibrary.com]

surface-mounted magnets is calculated by40

fcog = Q2fin
p
, (11)

where Q is number of slots, fin is generator input frequency, and p is number of poles. It can be seen that the cogging torque frequency depends
on the input speed, but in rated operation, the cogging torque frequencies for DDPMSG, MSPMSG, and HSPMSG are 0.96, 57, and 3600 Hz,
respectively. The higher cogging torque frequency of higher speed generators reduces the probability of coincidence on the natural frequencies
of the drivetrain main bearings and the generator bearings' inner ring, outer ring, and rolling elements (see the associated failure modes in Table 4).
Regarding the higher shaft first torsional natural frequency in DDPMSG, it is doubted that the cogging frequency can coincide this frequency.
The type of main bearings in the wind turbines are mostly spherical roller bearings. These bearings have different defect frequencies due to
out-of-round rotating, roller irregularity, and outer and inner race irregularities. For the under consideration 10-MW turbine, the defect frequency
of these modes can start from a fraction of hertz and rise up to few hertz. The cogging torque in DDPMSG can cause fatigue damage to bearing
components due to the possibility of coincidence with main bearing defect frequencies. For higher speed generators in MSPMSG and HSPMSG
technologies, it is also possible that cogging torque coincides the gears mesh frequencies, which can affect the gear teeth fatigue life. However,
in the designed medium-speed and high-speed gearboxes, the mesh frequencies of generator side gear stage are 120 and 474 Hz, respectively,
which keep a safe distance from the rated fundamental cogging torque frequencies. The presence of gearbox results in a longer transmission
path between the external excitation source initiated from the rotor (aerodynamic torque and forces) and the generator side (electromagnetic
torque and forces), which are transmitted to the generator and rotor side components, respectively, which can reduce the amplitude of drivetrain
external excitations. The latter can affect the probability of failure of generator and rotor side components (eg, main bearings) due to those
external excitations. The increased defect frequencies of the generator bearings due to the rise in the rotational speed naturally immunizes these
components against the loads applied on the drivetrain by rotor as a result of synergistic impacts of wind, waves, and structural motions, which all
appear with a low frequency content. The latter shows some potentials to improve the reliability of main bearings and generator in the drivetrain,
although the appearance of gearbox as a new serial component has a negative impact on the reliability of drivetrain. Therefore, it is challenging
to compare the overall reliability of the under consideration drivetrain systems. In the continued part, the possibility of resonance by using the
three designed drivetrain systems is investigated.
There is a coupling between gearbox and generator in the geared wind turbine drivetrain systems used for reducing torsional vibration and

accommodating misalignment. The coupling between generator and gearbox could suppress the high-frequency excitations initiated by the
generator due to distortion of air gap flux in order not to be transmitted to the rest of the drivetrain. Those frequencies happen mostly in
harmonics of generator output frequency. The cogging frequency in MSPMSG and HSPMSG has a high-frequency nature and is isolated by the
coupling from the rest of the drivetrain although there is not any possibility for this frequency to coincide with the first torsional frequency
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TABLE 9 The first torsional
natural frequency of drivetrain,
and the excitation sources

Drivetrain Technology DDPMSG MSPMSG HSPMSG
Generator moment of inertia Jgen (kg.m2) 456965.65 6286.71 1888.30
First torsional natural frequency -by two mass model (Hz) 11.66 2.01 1.20
First torsional natural frequency -by three mass model in Simpack (Hz) 11.66 1.93 1.19
1P rotational frequency (Hz) 0-0.16 0-0.16 0-0.16
3P rotational frequency (Hz) 0-0.48 0-0.48 0-0.48
Wind (Hz) 0-0.02 0-0.02 0-0.02
Wave (Hz) 0.05-0.2 0.05-0.2 0.05-0.2
Electromagnetic torque oscillations (Hz) 0-10000 0-10000 0-10000
Gear mesh frequency-first harmonic at rated speed (Hz) … 18-120 23-474
Bearing defect frequency-first harmonic at rated speed (Hz) 0.16-8 0.16-170 0.16-500

Abbreviations: DPMSG, direct-drive permanent-magnet synchronous generator; HSPMSG, high-speed
permanent-magnet synchronous generator;MSPMSG,medium-speed permanent-magnet synchronous generator.

due to the high-frequency nature of cogging torque in geared drivetrain technologies. In DDPMSG, there is normally no mechanical torsional
vibration isolator in the drivetrain system. As a result, the generator torsional vibrations including low frequency (due to cogging torque) and
higher frequencies (due to saturation, power converter switching, and power grid) transmit to the rotor side of the drivetrain. The latter can
influence on the drivetrain lifetime specially in higher powers with smaller values of the first drivetrain torsional frequency, generator cogging
torque frequency, and generator output frequency.
Active vibration dampers are another drivetrain torsional vibration damping mechanism, which are used to mitigate the impact of the significant

torsional vibrations on the drivetrain due to aerodynamic torque oscillations (usually, the frequencies that are considered to be damped by active
dampers are the first drivetrain torsional mode and first blade in plane mode) by compensation of them in the generator electromagnetic torque
set point. These dampers are generally band-pass filters, which are tuned around some prespecified frequencies. If these mechanical oscillations
do not get compensated in the generator torque, the consequent electric power oscillations not only reduces the power quality but also can
interact with power system modes and cause resonances with the electric circuits frequencies, which can cause high voltages and currents and
damage the electric components. Instead of these compensations on torque through active dampers, some turbines use passive parallel band-stop
filters in the frequency converter system to filter the frequencies of the aerodynamic torque oscillations from the output electric power. To our
best knowledge, the active dampers do not influence on the torsional vibrations initiated by generator. In direct-drive technologies, due to the
lack of coupling, there is no mechanism to suppress the transmission of generator vibrations to the rotor side. In 10-MW DDPMSG, the cogging
frequency can coincide with the defect frequencies of the main bearings and there is no mechanism reported in the literature of direct-drive
drivetrain systems to isolate this low frequency range excitations that are initiated from the generator side.

4.4 The first torsional natural frequency of drivetrain and resonance analysis

ANSYS-Maxwell moment of inertia calculation package is used to obtain a good estimation of the generator moment of inertia for the designed
generators. The first torsional frequency of designed DDPMSG, MSPMSG, and HSPMSG drivetrains is presented in Table 9 and graphically
illustrated in Figure 5D. The rotor and tower flexibilities are neglected in the calculation of the first torsional frequencies.
The excitations that influence on the drivetrain operation come from different sources, for example, turbine rotational motion,

motions induced by structural resonances, wind- and wave-induced motions, the electromagnetic torque oscillation resulted by cogging
torque/saturation/converter system/power grid, and the drivetrain internal excitations due to the gears mesh frequencies and the bearings defect
frequencies. For the drivetrain system, the most unfavorable operating condition happens when the rotor rotational frequency (1P) coincides the
drivetrain first torsional frequency. The other source of excitation that can affect the rotor torque comes from the tower shadow effect, which
occurs with blade passing frequency 3P. The tower bending (TB) frequency excited by the 1P or 3P rotational frequencies is another source of
excitation in a spar floating platform.41 An excited TB natural frequency causes motions that induce a moment component on the rotor torque.
Wave is another excitation source in offshore wind turbines so that waves at sea have significant energy at periods of 5 to 20 seconds. An
example of wave impacts is nacelle side-side motion developed by sway and rolling motions, which has a low frequency inherent. The natural
periods of wind excitations also change from a fraction of a minute for turbulent fluctuations to some hours due to diurnal effects. The impacts of
the generator cogging torque on the drivetrain components was discussed earlier. The power grid and converter system are the other excitation
sources that influence on the generator electromagnetic torque and consequently the moment on the shaft. The latter can have different reasons,
for example, grid voltage drops, swells and harmonics, and the harmonics in the current resulted by the PWM frequency converter,42 which
happen with higher frequencies potentially starting from the first or the higher order harmonics of np

120
up to a few thousands of hertz depending

on the grid power quality, converter topology, the modulation technique, and switching frequency.43n is the generator rotational speed. The
internal excitations due to any excited bearing frequencies (main bearings, gearbox, and generator bearings) or gear mesh frequencies of the
gearbox stages can work as an impact that could excite the system natural frequencies and the defect frequencies of the other components.
The excitation sources with the same frequencies can cause more complicated impacts. Combined impacts of different excitations with the same
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EC 1 2 3 4
Uw (m/s) 7 9 11 15
Hs (m) 2.5 3.5 3.5 3.5
Tp (s) 6.5 7.5 7.5 11.5

TABLE 10 Environmental conditions for drivetrain analysis

FIGURE 6 Rotor torque frequency
spectrum analysis of 10-MW spar
floating offshore wind turbine in
different environmental conditions and
associated resonance diagram. DPMSG,
direct-drive permanent-magnet
synchronous generator; HSPMSG,
high-speed permanent-magnet
synchronous generator; MSPMSG,
medium-speed permanent-magnet
synchronous generator [Colour figure
can be viewed at wileyonlinelibrary.com]

frequencies can result in a coupled effect by producing other frequencies described as beating effect in Thomson.44 An overview of the excitation
sources for 10-MW spar floating wind turbine is presented in Table 9.
In order to determine which loads can excite the first torsional natural frequency of drivetrain, an effective approach could be to study the

drivetrain response by using a frequency-domain analysis. For this purpose, the rotor torque data of the DTU 10MW reference wind turbine with
a spar floating platform obtained from SIMA global simulation software is used, and the impacts on the drivetrain are studied using a decoupled
analysis. Decoupled analysis approach is explained in detail in Nejad et al.45 This model is very useful to study the consequences of the drivetrain
torsional excitations induced by aerodynamic loads and structural motions. The specification of the spar floating platform used in the global
simulations is given by Hegseth et al.41 To study the impact of wind and wave, four different environmental conditions are simulated as listed
in Table 10. For different wind speeds Uw within the operational range of the turbine, the most probable values of significant wave height Hs

and peak period Tp are selected for the global simulations. In order to analyze how the different loads influence on the response, the frequency
spectrum of rotor torque for the different operating conditions is shown in Figure 6. The frequency spectrum of the signal in frequencies lower
than 1 Hz is selected and shown because the most significant energy of the rotor torque was observed in this range. The possible resonances
due to external excitations for the three optimally designed drivetrain systems are demonstrated by the Campbell diagram in Figure 6.
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The torque components induced by tower shadow, TB, wind, andwave are depicted in the figure. As it can be seen, the wave- andwind-induced
components are very low frequency so that they cannot excite the torsional modes of any of the three under consideration drivetrain systems.
The other excitations with considerable energy (including 1P, TB, 3P, and 6P) happen at the frequencies less than 1 Hz so that none of the
designed DDPMSG, MSPMSG, and HSPMSG drivetrain technologies are affected by aerodynamic loads and structural excitations. A larger
distance between the drivetrain natural frequency and the aerodynamic loads is an advantage of lower speed generator technologies, where
DDPMSG outperforms the other drivetrain systems. On the other side, for the drivetrain with higher first torsional frequency, it would be more
susceptible to excitations with generator torsional vibration frequencies, especially in the direct drive technology in which there is no coupling
between the generator and rotor to suppress the generator electromagnetic torque vibrations. In lower speed generator technologies, in order to
reduce the generator size, the number of poles is reduced. Consequently, the generator output frequency is reduced. For instance, the generator
output frequency of the DDPMSG design in the paper is 16 Hz. The generator reduced output frequency and simultaneously increased first
torsional frequency (eg, 11.66 Hz for the designed DDPMSG), which is a drawback of drivetrain technologies based on lower speed generators.
During operations at speeds lower than the rated value, it is quite possible that the frequency of the generator-induced voltage coincides with the
first natural frequency, which is not a recommended operation. Operations at this speed or any transition over it can cause large vibrations in the
system. The nontorsional excitation sources , for example, bearings and gears, have also a potential to induce torque vibrations at bearing defect
frequencies and gear mesh frequencies, respectively. The higher the value of the first torsional frequency, the more the possibility of coincidence
with those frequencies. For example, in DDPMSG, it is possible that the second harmonic of main bearings roller irregularity frequency coincides
with the first torsional frequency. From this perspective, higher speed generators could exhibit a higher performance. Therefore, with respect to
dynamic response and resonance possibility, MSPMSG seems to be a better compromise.

5 DISCUSSIONS AND CONCLUDING REMARKS

The optimized analytical 10-MW drivetrain designs for three different PMSG-based drivetrain topologies, that is, DDPMSG, MSPMSG, and
HSPMSG, were explained and compared, and the feasibility of application in spar floating offshore wind turbines was studied. The results showed
that utilization of gearbox can improve both the economics and operations of the wind turbine in 10-MW floating offshore wind turbines based
on the following proven reasons:

1. It helps to reduce the weight of the drivetrain system,
2. It reduces the raw material cost of the drivetrain,
3. It can result in a better dynamic performance and reduce the possibility of resonance in the drivetrain due to the coincidence of the

excitation frequencies (initiated by aerodynamic torque and electromagnetic torque) with the first drivetrain torsional frequency and the
individual components defect frequencies,

4. Higher speed generator technologies in MSPMSG and HSPMSG drivetrain systems help to improve the overall drivetrain efficiency.

By considering the interactions between the drivetrain components, it was discussed how amedium-speed gearbox can improve some drivetrain
failure modes concerning with the generator and the main bearings. However, new failure modes due to the presence of gearbox will also appear
in the geared drivetrain systems. Regarding the lack of any operational data at this power range, the weakness of simulation tools in modelling
of such complex dynamical system, and insufficient knowledge on loads in floating applications, it is challenging to compare the reliability of
different drivetrain technologies. Future work will be devoted on investigating the optimal gear ratio for the PMSG drivetrain for 10-MWturbine
and comparing the expected lifetime of different PMSG drivetrain systems by a thorough reliability analysis for floating offshore applications.
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Abstract. A method based on torsional vibration measurements for a system-level condition
monitoring of the drivetrain system is developed in this paper. The latter is tested by using a
10MW wind turbine drivetrain simulation model, and experimentally validated by the drivetrain
operational data obtained from a 1.75MW turbine. The method relies on the estimation of
the drivetrain torsional natural frequencies by using the torsional responses residual function
and subsequent monitoring of the variations in the eigenfrequencies and normal modes. In
other words, an abnormal deviation from the reference values of these dynamic parameters
can be translated into a meaningful interpretation on the propagation of a specific fault in the
driveline. Local sensitivity analysis is employed to establish a relationship between different
types of drivetrain faults and the system dynamic properties.

1 Introduction
Multi-megawatt offshore wind turbines are considered as a solution for the large-scale realization
of renewable power generations. Offshore wind industry still suffers from longer downtime, high
cost for repair and replacement of this system and higher risk of loss of turbine. The latter is due
to the larger components and the difficulty to access the system in offshore environments, and a
wider range of excitations due to the synergistic impacts of waves, currents and wind turbulences
which call for innovative approaches to have a better understanding about the system dynamics
and excitations. The focus of this research is proposing a system-level drivetrain condition
monitoring (CM) solution by estimation and monitoring of the system dynamic properties. The
latter is performed by developing a numerical model of the drivetrain as a dynamic system
based on its measured torsional response and the subsequent estimation of torsional frequencies.
The motivation is to reduce operational expenditure (OPEX) and subsequently levelized cost of
energy (LCOE) to make offshore wind power competitive with land-based wind turbines.

Variations in the drivetrain can be monitored by tracking the changes in the modal parameters
(resonance frequencies, damping ratios, and mode shapes) of the dominant modes of this system
[1]. Operational modal analysis (OMA) approaches are proposed for characterization of the
dynamic behavior (modal parameters) of wind turbine drivetrain in the recent literature by using
the translational vibration measurements [1], which generally suffer from a high possibility that
harmonics be misinterpreted as the eigenfrequencies [1, 2]. Drivetrain is a complex dynamical
system with different sources of external excitations and components defect frequencies,and the
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OMA techniques are still not matured enough for such a system. The latter has made OMA
technique less-efficient for condition-based maintenance.

The possibility of estimating the drivetrain torsional natural frequencies by using the angular
velocity residual function and the subsequent application for health monitoring of the drivetrain,
blades and tower is discussed in this paper. Natural frequencies appear on torsional response (e.g.
angular velocity) due to the impulsive behavior of wind which can act as a physical hammer which
excites the system torsional frequencies. In addition, some wind and wave induced structural
motions such as excited tower bending and blade in plane modes can act as torsional excitation
sources and induce some torsional vibrations on the drivetrain torsional response. The latter
makes the angular velocity measurements also applicable for health monitoring of tower and
blades. The drivetrain system torsional response and the natural frequencies are proposed in
the literature for detecting faults initiated by torsional sources. Patel et al. [3] proposes the
use of angular displacement to support the lateral response to recognise the rubbing faults
in the drivetrain, so that the excited torsional frequency and the amplitude of response in
the natural frequency and the side bands are utilized to characterize the fault. Feng et al. [4]
proposes the use of the measurements of torque instead of transverse vibration signals to diagnose
planetary gearbox local/distributed faults, because they are free from the amplitude modulation
effect caused by time variant vibration transfer paths, thus they have simpler spectral structure
than transverse signals. Lebold et al. [5] suggests monitoring the characteristic changes in
torsional natural frequencies, and claims that those changes are associated with the shaft crack
propagation. Kia et al. [6] proposes the estimated electromagnetic torque of the electrical
machine as a noninvasive torsional measurement in the drivetrain to monitor the torsional stress
on the components including shaft, bearings, and gearbox, and the method is used to detect
a gear failure. The electromagnetic torque estimation is commonly used in electrical drives to
control the electrical machine, and implementation of the method does not need any additional
sensor. Not only the drivetrain faults, but also rotor and tower excited modes can cause a
torsional oscillation observable on the drivetrain torsional response [7, 8]. The amplitude of
blade edgewise and tower bending natural frequencies can provide insights about resonances
in these components. The monitoring of the variations of these components frequencies is
also useful for some other purposes such as ice detection in blades, and health monitoring of
blades (detect root cracks within turbine blades) and tower. The idea of using angular velocity
measurements for the drivetrain fault detection is originally proposed by Nejad et al. [9]. The
input data is provided from the encoders on the drivetrain used for the turbine control, and
is normally in access in both the turbine and the farm levels. Therefore, any algorithm based
on those measurements can simply be integrated in either turbine or farm control to support
the online health monitoring of the drivetrain. Moghadam et al. [8] experimentally tests the
potential of using the encoder measurements to detect different faults initiated by the different
excitation sources, compared to a conventional method based on accelerometers.

In the proposed drivetrain condition monitoring approach of this paper, it is assumed that faults
in the driveline (e.g. shaft cracks, unbalance and looseness) reveal themselves by variations
in the system stiffness and moment of inertia. Therefore by monitoring the consequences of
variations of drivetrain parameters (i.e. stiffness and moment of inertia matrices) in change of
the drivetrain dynamic properties (i.e. natural frequencies, mode shapes and damping matrix),
it is possible to monitor the progress of faults. For this purpose, a sensitivity analysis helps
to realize what are the most influential parameters on the variability of the drivetrain dynamic
properties. The main contributions of this work are:

(i) Estimation of the wind turbine drivetrain torsional natural frequencies by using the system
torsional responses,

(ii) Estimation of the drivetrain damping in the torsional natural frequencies,

(iii) Proposing a method for driveline health monitoring without any additional sensor, based
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on monitoring the variations in the estimated drivetrain dynamic properties.

2 Methodology
2.1 Torsional natural frequency estimation theory
The torsional response of equivalent one-degree-of-freedom rotational system in the non-
dimensional form can be expressed by

θ =
τ0
kt√

(1 − ( ω
ωn

)2)2 + (2ζt( ω
ωn

))2
, (1)

where θ is the angular position and τ0 is the amplitude of the excitation momentum. For this
case, ωn is the natural torsional frequency of the system. kt is the torsional stiffness of the
shaft, and ζt is the torsional damping ratio. An amplified frequency in the drivetrain torsional
response can be due to a significant excitation amplitude or coincidence of excitation frequency
with natural frequencies.

Natural frequencies appear on torsional responses e.g. angular velocity measurements due to
impulsive behavior of wind which excites those frequencies. An initial velocity applied on a
system as described by Thomson et al.[10] can play a role as an impact which is able to excite
the system torsional frequencies. In the wind turbine, the ceaseless variations of wind results in
continual variations in angular velocity which is physically similar to an initial velocity applied
to the system. Though these variations in speed and subsequently torque are of a very low
frequency and slow dynamics, but it introduces considerable energy in different frequencies
including the characteristic frequencies of the system. Due to the existence of damping in a
physical system, the measured natural frequencies from the torsional response are the damped
frequencies. Our observations show that the angular velocity measurements can help to measure
the drivetrain and the blade edgewise natural frequencies. By filtering the shafts revolution
frequencies, components defect frequencies and excitations (very low frequency due to wind, low
frequency due to wave tower shadow effect, and high frequency due to generator), the drivetrain
torsional natural frequencies, and some torsional induced motions due to excited edgewise rotor
blade and tower bending modes are acquired. Based on a primary knowledge on the torsional
frequencies for each power range, it is possible to separate the observed natural frequencies for
drivetrain, blades and tower. The variations in the natural frequencies and normal modes can
be used as criteria for the severity of some sorts of faults in the drivetrain. To estimate the
damped natural frequencies, angular velocity residual/error function is proposed. The input of
this method is provided by two encoders located at the high- and low-speed shafts of drivetrain,
and subsequently the residual function is constructed based on the subtraction of these two
signals. Some drivetrains are only equipped with one angular velocity measurement on the
shaft, so that the implementation of the method might require an additional moderate sampling
frequency encoder to provide the sufficient inputs. The angular velocity residual function eω

tot
from the high-speed side is expressed by

eω
tot = ωHS − a1a2a3ωLS , where ωHS and ωLS are the rotational speed in rad/s obtained from

the high- and low-speed encoders, respectively. a1, a2 and a3 are the inverse of gear ratios of the
gearbox stages. The error function main feature is cancellation of the impacts of the excitations
which are transferred to the drivetrain from the housing, from the resultant torsional response.
Angular displacement and acceleration are the other torsional responses of the drivetrain system
which could theoretically be used similar to angular velocity to obtain the system torsional
parameters. For this purpose, similar to eω

tot, the angular displacement error function eθ
tot and

the angular acceleration error function eα
tot are defined by

eθ
tot = θHS − a1a2a3θLS , eα

tot = αHS − a1a2a3αLS .

In particular, angular acceleration is the torsional response which has a direct relation with
the applied load, and contains useful information on how the applied torque interacts with the
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system. The frequency domain analytics Fourier transform and power spectral density (PSD)
are used for analysis of the defined torsional response error functions. The Fourier series of eω

tot,
eα

tot and eθ
tot are defined by

eω
tot(Ω) =

∑∞
n=−∞ CneiknΩ, eα

tot(Ω) =
∑∞

n=−∞ Cn(ikn)eiknΩ, eθ
tot(Ω) =

∑∞
n=−∞ Cn(ikn)−1eiknΩ

Differentiation and integration are linear operations that are distributive over addition. As it
can be seen, in eα

tot compared to eω
tot, the amplitude of the frequency components higher than

1 Hz is magnified with the gain kn, and the frequencies lower than 1 Hz are weakened with the
same proportion. In eθ

tot compared to eω
tot, the amplitude of the frequency components lower

than 1 Hz is magnified with the gain k−1
n , and the frequencies higher than 1 Hz are weakened

with the same proportion.

The 1st natural frequency of the drivetrain systems of the same technology decreases as the rated
power increases. However, even for 10 MW wind turbine which is the highest commercially
available and even for the high-speed technologies which have lower first natural frequencies,
the first torsional frequency is higher than 1 Hz [11]. Therefore, the angular acceleration
error functions theoretically outperforms the other two approaches in highlighting the torsional
frequencies. The other benefit is weakening the frequencies lower than 1 Hz which appear in the
drivetrain torsional response mostly due to wave and wind turbulence and does not contain any
information on the natural frequencies. However, an additional derivation operation is required
to attain acceleration from the velocity measurements which increases the computational cost
of this method.

To evaluate the observability of natural frequencies on the torsional response error functions and
the subsequent application for drivetrain condition monitoring, a simplified model of drivetrain
is useful. The 1st and 2nd undamped natural frequencies (nonrigid modes) based on a simplified
three-mass spring and three degrees of freedom (DOF) torsional model of a geared drivetrain is
calculated by

ω1
n =

√√√√ kLS

2Jrot
+

kLS + kHS

2Jgear
+

kHS

2Jgen
−

√
(
−kLS

2Jrot
− kLS − kHS

2Jgear
+

kHS

2Jgen
)2 +

kLSkHS

J2
gear

, (2a)

ω2
n =

√√√√ kLS

2Jrot
+

kLS + kHS

2Jgear
+

kHS

2Jgen
+

√
(
−kLS

2Jrot
− kLS − kHS

2Jgear
+

kHS

2Jgen
)2 +

kLSkHS

J2
gear

, (2b)

where ω1
n and ω2

n are the 1st and 2nd natural frequencies, kLS and kHS are the torsional stiffness
of low- and high-speed shafts, and Jrot, Jgear and Jgen are the moment of inertia of rotor, gearbox
and generator, respectively.

2.1.1 Simulation based validation For the simulation studies, DTU 10 MW reference wind
turbine is selected. In order to evaluate if the input torque is able to excite the drivetrain
natural frequencies and subsequently to study the possibility of observing those frequencies in the
different drivetrain torsional responses, an effective approach is involving decoupled simulation
technique [12] and engaging frequency-domain data analytics. For this purpose, the rotor torque
data of 10 MW turbine with a spar floating platform obtained from SIMA global simulation
software is used, and the impacts on the drivetrain is studied using a decoupled analysis. The
operating condition for this simulation is close to the rated operation with an average wind speed
Uw = 11 m/s, significant wave height Hs = 3.5 m and peak period Tp = 7.5 s. The natural
frequencies of the under consideration drivetrain is calculated by using a 3-DOF torsional model
and eq. (2), and validated by Simpack multi-body simulation software. In this torsional model,
rotor, gearbox and generator are modelled with equivalent moment of inertia, and the low-
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and high-speed shafts are each modelled with a constant torsional stiffness. The generator and
gearbox specifications are used from the optimized medium-speed 10 MW drivetrain system
proposed in [11]. The parameters of this model are listed in Table 1. The natural frequencies of
this model are 1.9 Hz and 73.9 Hz. The torsional responses of rotor and generator shafts are
obtained from the Simpack simulated model to investigate possibility of observing the natural
frequencies from the angular velocity, acceleration and displacement error functions.

Table 1: Model specification

Parameter Value
Equivalent rotor moment of inertia Jrot (kg.m2) 800, 000, 000
Equivalent gearbox moment of inertia Jgear (kg.m2) 1, 239, 300
Equivalent generator moment of inertia Jgen (kg.m2) 15, 716, 775
Equivalent low-speed shaft torsional stiffness Kgear

rot (N.m/rad) 2, 452, 936, 425
Equivalent high-speed shaft torsional stiffness Kgen

gear (N.m/rad) 245, 293, 642, 500

2.1.2 Experimental validation The operational data from Vestas V66-1.750MW turbine is
used for the experimental study. To test the method, an additional encoder is installed on
the low-speed shaft. In PSD of the angular velocity error function of the operational data, in
addition to the natural frequencies, some other frequency components are also expected to be
observed. However, by a prior knowledge about the defect frequencies and the other torsional
excitation sources, and by subsequently filtering those frequencies, it is possible to distinguish
the natural frequencies. The benefits with measuring the natural frequencies by this noninvasive
method are the low implementation cost, and the possibility of obtaining the precise values of
natural frequencies by including the system nonlinearities, and translational impacts on the
rotation transferred through the bed-plate and torque arm.

2.2 Estimation of damping in the drivetrain
As discussed earlier, the natural frequencies measured by the approach proposed in Section 2.1
are the damped natural frequencies ωd which have the relation ωi

d =
√

(1 − (ζi)2)ωi
n with the

undamped frequency ωn, with ζi the damping coefficient (ζi = ci/ci
c) for the ith mode. c and

cc are actual and critical dampings. More precisely, the estimated natural frequencies are the
extreme values of the response. The response extreme values from the simplified model in eq.
(2.1), will occur at ωi

peak =
√

(1 − 2(ζi)2)ωi
n. ζi takes different values in different operating

speeds. For two different operating speeds, for each frequency mode, damping in the system
natural frequency of the two operations is related to the measured natural frequencies by eq.
(3a)

ωi,t1,ω1
peak

ωi,t2,ω2
peak

=

√
1 − (ζi,t1,ω1)2

1 − (ζi,t2,ω2)2 , (3a)
θi,t1,ω1

ωpeak

θi,t2,ω2
ωpeak

=
τ t1

0
τ t2

0

ζi,t2,ω2

ζi,t1,ω1

√
1 − (ζi,t2,ω2)2√
1 − (ζi,t1,ω1)2

, (3b) (3)

with ωi,t1,ω1
peak the drivetrain eigenfrequency estimated during operation in the time period t1

and the turbine speed ω1. ωi,t2,ω2
peak is the same parameter estimated during the time period t2

and the speed ω2. According to eq. (1), there is a relationship as shown in eq.(3b) between
the amplitude of response and damping ratio at the measured natural frequencies for the two
different operations. θi,t1,ω1

ωpeak is the response amplitude in the ith frequency mode in the operating
point

[
t1
ω1

]
, and θi,t2,ω2

ωpeak is the same parameter for the operating condition
[

t2
ω2

]
. To derive eq.

(3b), it is assumed that the two operating points are close enough so that the stiffness and
moment of inertia stay constant. As a result, the undamped natural frequency does not change.
By using eqs (3a) and (3b), the absolute values of the damping coefficient of the system in the
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natural frequency in different operating conditions can be estimated. The latter can be used
to monitor damping in different operating speeds and helps to track the variations of damping
over the system lifetime, which provides the input for retuning active dampers and helps to
improve the system dynamic response. It is worth noting that the estimated damping by this
methods also includes the effects of the rotor aerodynamic damping and active electric damping
introduced by the generator control. Therefore, the resultant of damping of shafts, components,
coupling and active dampers in the system natural frequencies can be observed which gives
a good feedback for drivetrain design and also the operator for calibration of active damper
parameters.

As it is shown in Section 2.3, the 1st and 2nd modes are affected to a great extent by the torsional
stiffness of the low- and high-speed shafts, respectively. The damping of the first and second
modes is also mostly dominated by the damping introduced by low- and high-speed shafts,
respectively. Therefore, the estimated damping coefficients can be used to estimate the actual
damping of the related shafts in the reduced order model of drivetrain.

The different damping behaviors in the system natural frequency compared to the harmonics in
the torsional response is the criterion suggested for validating the natural frequencies estimated
by the proposed method in Section 2.1. Based on eq. (1), damping is more significantly reducing
the amplitude of response in the natural frequency compared to the harmonics, which helps
to distinguish the natural frequency from the other harmonics. In other words, the ratio of
amplitude of response at natural frequency in two different operating speeds is higher/lower
(depended on if the speed drops or rises) than this ratio at harmonics.

2.3 Sensitivity analysis
A shaft crack results in reduction of the torsional stiffness of the shaft [13]. A change in the
stiffness of the shafts also influences on the drivetrain system frequency modes. Therefore, by
obtaining the mathematical relation between the stiffness of different shafts and the system
natural frequencies, it is possible to monitor their conditions by monitoring variations in
the natural frequencies. The other parameter which can influence on the drivetrain natural
frequencies is the moment of inertia of the drivetrain components. Variations in the moment of
inertia matrix represents the other category of faults in the driveline with the unbalance and
looseness as the foremost. This category of faults are characterized by the increase of moment of
inertia due to an additional force that is generated in those conditions and based on the parallel
axis theorem. The mathematical relation between the drivetrain torsional natural frequencies
and the moment of inertia of components can help to detect and localize these faults.

The variations in stiffness and moment of inertia can result in similar natural frequency variation
patterns. Therefore, to distinguish between variations in the natural frequencies because of
variations in the shafts’ stiffness with those due to variations in moment of inertia matrix (source
of fault), determining the correlation between the system parameters and the normalized mode
shapes can provide a useful direction to find the source of fault. To check how the variations in
stiffness and moment of inertia influence on the variability of system natural torsional frequencies
and mode shapes, a sensitivity analysis is performed. There are two classes of sensitivity analysis
methods, namely local and global sensitivity analysis. Morio et al.[14] has reported the same kind
of results by using these two method for simple models. Local sensitivity determines how a small
perturbation near an input parameter value influences the value of the output. In this Section, in
order to find the parameters with the greatest impact on the drivetrain dynamic characteristics
local sensitivity analysis is employed due to two main reasons. First, the motivation of this
work is detecting faults in early stages for predictive maintenance purposes so that variations
in the drivetrain system parameters happen with a slight change around the set point values.
Second, local sensitivity analysis derives a closed form expression for the sensitivity value which
makes the result more reliable and easier to implement. Local sensitivity is defined as the partial
derivative of the output function with respect to the input parameters [15] as
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SLoc
i,j = δyi

δxj
, yi ∈ {y1, ..., yp} and xj ∈ {x1, ..., xq}, where yi is the ith output and xj is the

jth input. To neutralize the impact of large/small inputs and small/large outputs, the local
sensitivity can be normalized by the nominal values of inputs and outputs by

SNorm
i,j =

xref
j

yref
i

δyi
δxj

, with xref
j and yref

i as the nominal values of xj and yi. For the 3-DOF
torsional model described in Section 2.1, the input and output vectors for sensitivity analysis
are x = {kLS, kHS, Jrot, Jgear, Jgen} and y = {f tor

1 , f tor
2 }. By applying normalized local

sensitivity theory on eq. (2) we will have

Snorm
1,1 =

kLS

4

( 1
Jgear

+ 1
Jrot

)A− kHS
J2

gear√
A2+ kLS kHS

J2
gear

+ 1
Jgear

+ 1
Jrot

−
√

A2 + kLSkHS

J2
gear

+ B
, Snorm

2,1 =
kLS

4

( 1
Jgear

−
( 1

Jgear
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Jrot
)A− kHS

J2
gear√

A2+ kLS kHS
J2

gear

+ 1
Jrot

)

√
A2 + kLSkHS

J2
gear

+ B
,

(4a)

Snorm
1,2 =

kHS
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1
Jgen

−
( 1

Jgear
+ 1

Jrot
)A+ kLS

J2
gear√

A2+ kLS kHS
J2
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+ 1
Jgear

−
√

A2 + kLSkHS

J2
gear

+ B
, Snorm

2,2 =
kHS

4
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+ 1
Jgear

)A+ kLS
J2

gear√
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J2
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Jgen
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√
A2 + kLSkHS

J2
gear

+ B
,

(4b)

Snorm
1,3 = −Jrot

4

kLS

J2
rot
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J2
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J2
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Snorm
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J2
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√
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where A = kHS
2Jgen

− kLS
2Jrot

+ kHS−kLS
2Jgear

and B = kHS
2Jgen

+ kLS
2Jrot

+ kHS+kLS
2Jgear

.

A schematic figure representing the proposed driveline condition monitoring method is illustrated
in Fig. 1. EN1 and EN2 in this figure are the angular velocity measurement sensors placed
on the low- and high-speed shafts, respectively. The algorithm which summarizes the proposed
approach is depicted in Fig. 2. ϕ1,m and ϕ2,m are the normal modes related to the 1st and
2nd natural frequencies, respectively. m varies from 1 up to the degree of the model. τ and
τϕm are the low-limit threshold natural frequency and normal mode for normal operations. It
is worth noting that the natural frequencies estimated and subsequently used in the condition
monitoring algorithm are the damped natural frequencies which are directly estimated from the
operational measurements of system torsional response. In order to eliminate the influence of
different damping values as a result of different turbine operational speeds, the estimated natural
frequencies and the associated thresholds are engaged in the proposed algorithm based on the
operational speed.

3 Results
3.1 Simulation results
The PSD spectrum of angular velocity error function obtained from 10 MW drivetrain model
in Simpack and its capability in highlighting the torsional natural frequencies is shown in Fig.
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Figure 1: Schematic of the proposed condition monitoring method.
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Figure 2: Flowchart of the proposed algorithm for driveline condition monitoring.

3. In this figure, the performance of angular velocity error function in extracting the 1st and
2nd torsional natural frequencies of the drivetrain is compared with angular displacement and
angular acceleration error functions. As it can be seen, acceleration error function outperforms
in revealing the higher frequency modes (the 2nd mode). The higher modes have usually a lower
impact on the response, which impedes disclosure of those frequencies. The PSD spectrum of
input torque obtained from the global simulation and applied on the Simpack drivetrain model
is shown in Fig. 3a. This input contains the majority of frequency components and can excite
the drivetrain natural frequencies. In this simulation study, the model is undamped. Therefore,
the estimated frequencies are the undamped frequencies. As discussed in Section 2.2, for a
damped system, the estimated frequencies are the peak frequencies which can be translated to
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Figure 3: Simulation results based on 10 MW floating wind turbine model.

the undamped natural frequencies by using the estimated damping coefficients from the theory
elaborated in the same Section. ωn can also be approximated with ωpeak if ζ << 1 which may
not be an unrealistic assumption for multi-megawatt wind turbine drivetrain systems.

3.2 Experimental results
The PSD spectrum of angular velocity error function of the Vestas drivetrain operational data
for a rated operation is shown in Fig. 4, which shows the observability of both the drivetrain and
blade natural frequencies. The results are validated by comparing with the 1st drivetrain and
1st blade edgewise natural frequencies of another turbine with the same drivetrain technology
and a similar power range reported in [16]. The performance of angular velocity error function is
compared with angular displacement and acceleration error functions. As it can be seen, angular
acceleration shows a slightly higher performance in amplification and extraction of characteristic
frequencies of higher values.

A comparison between the angular velocity error function PSD in two different operating speeds
is shown in Fig. 4d. As it can be seen, the higher damping coefficient in lower speeds results in
a lower damped natural frequency as discussed in Section 2.2. Furthermore, at the drivetrain
natural frequency, the amplitude reacts more significantly to the variation in damping. In other
words, the amplitude of response at the natural frequency reduces more compared with other
harmonics, for a lower rotor speed which corresponds to a higher damping.

3.3 Sensitivity analysis results
The results of the normalized local sensitivity analyses with natural frequencies (f tor

1 , f tor
2 ) and

normal modes (φ1, φ2) as the outputs and shaft stiffnesses (KLS, KHS) as the inputs are shown
in Table 2. The reported numbers show the normalized sensitivity values and also the variations
of outputs (in %) for the input parameters changed by ±5% of their rated values. As it can be
seen, there is a direct relationship between the 1st frequency and KLS, and the 2nd frequency
and KHS. Therefore, variations in the natural frequencies can be translated into the variations
in the shaft stiffness and subsequently the defects in the drivetrain shafts. The influence of the
shafts defect (stiffness variation) on amplitude of oscillation due to the 1st mode is negligible.
However, the stiffness variation results in variations in the amplitude of oscillation in rotor due
to the 2nd mode.

The results of the sensitivity analyses with natural frequencies and normal modes as the outputs
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Figure 4: Experimental results based on 1.75 MW Vestas turbine operational data.

Table 2: Sensitivity of natural frequencies, amplitude of oscillation due to the 1st mode, and
amplitude of oscillation due to the 2nd mode to torsional stiffness.

Sensitivity
Variable

KLS(±5%) KHS(±5%) KLS and KHS (±5%)

f tor
1 0.50(±2.48%) 0.00(±0.02%) 0.50(±2.50%)

f tor
2 0.00(±0.02%) 0.50(±2.48%) 0.50(±2.50%)

φrot
1 0.00(±0.02%) 0.00(∓0.02%) 0.00(0.00%)

φgear
1 0.00(∓0.02%) 0.00(±0.02%) 0.00(0.00%)

φgen
1 0.00(±0.02%) 0.00(∓0.02%) 0.00(0.00%)

φrot
2 0.99(±4.96%) −0.99(∓4.97%) 0.00(0.00%)

φgear
2 0.00(0.00%) 0.00(0.00%) 0.00(0.00%)

φgen
2 −0.01(∓0.05%) 0.01(±0.05%) 0.00(0.00%)

and moment of inertia (Jrot, Jgear, Jgen) as the inputs are shown in Table 3. As it can be seen,
there is an inverse relationship between the 1st frequency and Jgen, and the 2nd frequency and
Jgear, so that the reduction of natural frequencies can be due to a rise in the moment of inertia.
To distinguish between the drop in natural frequencies due to variation in stiffness and moment
of inertia, the results should be interpreted together with monitoring the variations of normal
modes. The simultaneous drop of the 1st frequency and the amplitude of oscillation at rotor
due to the 2nd mode represents a problem in low-speed shaft. The drop of the 2nd frequency
and the simultaneous rise in amplitude of oscillation at rotor due to the 2nd mode discloses the
problems in high-speed shaft. The drop of the 1st frequency, the simultaneous rise in amplitude
of oscillation at rotor due to the 1st mode and drop in amplitude of oscillation at generator
due to the 2nd mode reveal unbalances in generator side. The drop of the 2nd frequency and a
simultaneous rise in amplitude of oscillation at both rotor and generator due to the 2nd mode
can be used as the criteria to detect an unbalance in gearbox. However, unbalance in rotor
represents it self mainly by variations in normal modes with minor influence on the natural
frequencies,so that a simultaneous drop in amplitude of oscillation at rotor due to 1st and 2nd

modes are indicators of rotor unbalance.

4 Conclusions
The potentials of using drivetrain torsional responses for estimation of the drivetrain torsional
natural frequencies and heath monitoring of the driveline was discussed, and evaluated by
both experimental and simulation studies. Local sensitivity analysis was engaged to find the
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Table 3: Sensitivity of natural frequencies, amplitude of oscillation due to the 1st mode, and
amplitude of oscillation due to the 2nd mode to moment of inertia.

Sensitivity
Variable

Jrot(±5%) Jgear(±5%) Jgen(±5%) Jrot(±5%) Jgear(±5%) Jrot(±5%) Jrot(±5%)

Jgear(±5%) Jgen(±5%) Jgen(±5%) Jgear(±5%)
Jgen(±5%)

f tor
1 −0.01(∓0.05%) −0.03(∓0.17%) −0.45(∓2.25%) −0.40(∓0.22%) −0.49(∓2.44%) −0.46(∓2.32%) −0.50(∓2.50%)

f tor
2 0.00(0.00%) −0.45(∓2.25%) −0.04(∓0.18%) −0.45(∓2.25%) −0.49(∓2.44%) −0.04(∓0.18%) −0.49(∓2.44%)

φrot
1 −1.00(∓5.01%) 0.07(±0.35%) 0.93(±4.63%) −0.93(∓4.66%) 1.00(±4.98%) −0.07(∓0.37%) 0.00(∓0.02%)

φgear
1 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%)

φgen
1 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%) 0.00(0.00%)

φrot
2 −1.00(∓5.01%) 0.89(±4.47%) 0.08(±0.39%) −0.10(∓0.52%) 0.97(±4.85%) −0.92(∓4.62%) −0.03(∓0.14%)

φgear
2 0.00(0.00%) −0.01(∓0.03%) 0.01(±0.03%) −0.01(∓0.03%) 0.00(0.00%) 0.01(±0.03%) 0.00(0.00%)

φgen
2 0.00(0.00%) 0.96(±4.82%) −1.00(∓4.98%) 0.96(±4.82%) −0.03(∓0.15%) −1.00(∓4.98%) −0.03(∓0.15%)

mathematical relation between the variations in dynamic properties of the system and variations
in drivetrain parameters. In order to detect and localize the driveline faults, one should look
into the variations in the system natural frequencies and the amplitude of oscillation due to
the frequency modes. Future work will be focused on applying the proposed approach on more
detailed models of the drivetrain to cover more diversity of faults in the driveline, and using the
technique for prognosis of the driveline faults in various drivetrain technologies.
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Abstract

This paper provides an analytical proof and the theoretical development of the idea of using
the torsional vibration measurements for a system-level condition monitoring of the drivetrain
system. The developed drivetrain condition monitoring approach based on torsional measure-
ments error function is tested by using a 10MW geared wind turbine drivetrain simulation
model embedded on a floating platform, and experimentally validated by the drivetrain opera-
tional measurements obtained from a 1.75MW turbine. The method relies on modal estimation
of the drivetrain system by using the torsional measurements and subsequent monitoring of the
variations in the system eigenfrequencies and normal modes. In the proposed condition mon-
itoring approach, it is shown that any abnormal deviation from the reference values of the
drivetrain system dynamic properties can be translated into the progression of a specific fault
in the system. In order to extract the condition monitoring features, local sensitivity analysis
is engaged to establish a relationship between different categories of drivetrain faults with the
system dynamic properties and the amplitude of torsional response, which helps with both to
identify the state of the progressive faults and to localize them. Sensitivity analysis is also
employed along with the estimated torsional modes for estimation of damping coefficients from
the amplitude of response at the natural frequencies and their subsequent use for estimation
of undamped natural frequencies which are later used in the proposed condition monitoring
approach.

Keywords: drivetrain system, torsional measurements, modal estimation, fault detection,
sensitivity analysis, floating wind turbines

1. Introduction

Both predictive and condition-based maintenances are proposed in the literature as potential
game changers and measures which could be taken to flatten the gap between OPEX in offshore
and land-based wind turbines aimed at realizing the EU 2050 plan by reduction of downtime
and subsequently levelized cost of energy (LCOE) of offshore wind [1]. The motivation of this
research is reducing the costly operation and maintenance of offshore turbines - more specifically
the drivetrain system of floating offshore wind turbines - and improving the risk of investment by
using condition-based maintenance and a subsequent reduction in downtime as one of the most
influential consequences of drivetrain failures. The latter is investigated based on developing
the methods which can use only the existing sensors, database, communication network and
can be implemented for both online and offline monitoring purposes. The condition monitoring
system is in addition to the performance monitoring, and the concept behind is monitoring
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of the conditions of the turbine systems with the highest risk of loss of turbine availability
considering both likelihood and consequence of failures, because monitoring the condition of
all systems may be economically and technologically infeasible. According to the study by
Pfaffel et al. [2] which provides a cautious comparison on reliability characteristics of both
onshore and offshore wind turbines, drivetrain system which in general includes all rotating
components in power conversion system i.e. hub, rotor, main bearings, gearbox, generator and
power converter accounts for 57% of turbine total failures and 65% of turbine total downtime.
These numbers are expected to be higher in floating offshore turbines. The latter is due to more
costly marine operations specially in deep waters, the larger and more expensive components,
and a wider range of excitation sources due to the synergistic impacts of waves, currents and
wind turbulences which call for innovative approaches to achieve a better understanding about
the system dynamics and excitation sources. The focus of this research is proposing a system-
level drivetrain condition monitoring (CM) solution by the drivetrain modal estimation and
a subsequent monitoring of abnormal variations of system modes. This goal is performed by
developing a numerical model of the drivetrain as a dynamic system based on its measured
torsional response and the subsequent estimation of the drivetrain torsional modes. In contrast
with the other systems (e.g. bridges and buildings), the dynamic properties of the drivetrain
do not experience a significant change over normal operations. The latter can be used to
monitor any abnormality caused by faults. Therefore, variations in the drivetrain can be
monitored by tracking the changes in the modal parameters (resonance frequencies, damping
ratios, and normal modes(both amplitude and phase)) of the dominant modes of this system
[3]. Estimation of mechanical systems dynamical characteristics is mainly based on operational
modal analysis (OMA) which is challenging for drivetrain as a complex dynamical system. The
latter is mainly based on translational vibration measurements [4], and the reported results in
the literature show the high possibility of harmonics to be mistaken with the eigenfrequencies
[3; 5]. Drivetrain is a complex rotational system with different sources of external excitation
and components defect frequencies. The uncertainties in the estimated modes have made OMA
technique less-efficient for condition-based maintenance.

The current condition monitoring approaches of the wind turbine drivetrain are based on one
or a combination of five categories of techniques, namely vibration analysis [6], electrical sig-
nature (current and power signals) [7], acoustic emissions analysis [8], thermography [9] and
temperature analysis [10], and analysis of oil particles [11]. Today, vibration analysis is mainly
based on system translational responses obtained by accelerometers (e.g. see [12]) with a mi-
nor attention to torsional measurements. The only commercially available drivetrain condition
monitoring based on torsional measurements is associated with the measurement of torque as
the system applied load [13]. The latter is not widely used due to the matter of cost, technolog-
ical limitations related to operating speed and torque ranges and shafts dimensions, intrusive
nature of the torque measurement techniques, and also a lack of a standardized approach and
the immature and insufficient knowledge to analyze and extract features from the torsional
measurements.

Frequency response function (FRF) is a common tool which is used for modal estimation by the
estimation of a system transfer function. However, the complexity of the drivetrain system and
inadequacy of models in considering the internal dynamics and interactions between systems,
nonlinear and synergistic impacts of different excitation sources, uncertainties in estimation
of loads are some reasons which cause inexplicable harmonics and limit the application of
FRF for the estimation of drivetrain dynamic properties. In this work, the modal estimation
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and fault detection are based on the system torsional responses. An anterior estimation of
the drivetrain loads can provide more options to the proposed algorithm. The possibility of
observing drivetrain torsional natural frequencies in the torsional response is reported in [14]
for different applications such as jet engine high-pressure disk, a hydro station turbine and a
coal-fired power plant. The possibility of observing blade natural frequencies in drivetrain shaft
torsional response and the potentials for condition monitoring of the blades is also reported
in [14; 15]. Suominen et al. [16] has reported the visibility of ship propulsion system natural
frequencies in the torque measurements of the propulsion shaft due to the propeller blade
contact with ice. However, these reports are based on observations on experimental studies
and are not reliant on an analytical torsional model of the drivetrain systems.

The drivetrain system torsional response and the natural frequencies are proposed in the lit-
erature for detecting faults initiated by torsional sources. Patel et al. [17] proposes the use
of angular displacement to support the lateral response to recognise the rubbing faults in the
drivetrain, so that the excited torsional frequency and the amplitude of response in the natural
frequency and the side bands are utilized to characterize the fault. Feng et al. [18] proposes the
use of the measurements of torque instead of transverse vibration signals to diagnose planetary
gearbox local/distributed faults, because they are free from the amplitude modulation effect
caused by time variant vibration transfer paths, thus they have simpler spectral content than
transverse signals. Lebold et al. [19] suggests monitoring the characteristic changes in torsional
natural frequencies, and claims that those changes are associated with the shaft crack propa-
gation. Kia et al. [20] proposes the estimated electromagnetic torque of the electrical machine
as a noninvasive torsional measurement in the drivetrain to monitor the torsional stress on
the components including shaft, bearings, and gearbox, and the method is used to detect a
gear failure. The electromagnetic torque estimation is commonly used in electrical drives to
control the electrical machine, and implementation of the method does not need any additional
sensor. Not only the drivetrain faults, but also rotor and tower excited modes may result in
frequency components in the drivetrain torsional response [21]. The amplitude of response at
blade edgewise and tower bending natural frequencies can provide insights about resonances
in these components. The monitoring of the variations of these components frequencies is also
useful for some other purposes such as ice detection in blades, and health monitoring of blades
(detect root cracks within turbine blades) and tower. The idea of using angular velocity mea-
surements for the wind turbine drivetrain fault detection was originally proposed by Nejad et
al. [22]. The input data is provided by the encoders installed on the drivetrain for the turbine
control purposes. The latter is normally accessible in both turbine and farm levels, which helps
to realize condition monitoring by means of supervisory control and data acquisition (SCADA)
system available measurements. Therefore, any algorithm based on those measurements can
be integrated into either turbine or farm control to support the online condition monitoring of
the drivetrain. Moghadam et al. [15] has experimentally evaluated the possibility of detecting
some categories of faults in early stages by a direct utilization of torsional response, and the
results of the study are compared to a conventional method based on translational vibrations
obtained by accelerometers. The authors demonstrated how torsional measurements can com-
plement the conventional approaches by providing insights on the excitation sources which are
significantly influencing on the drivetrain lifetime which is useful as both a design feedback and
earlier stage fault detection.

Even though the torsional response cannot directly be used for monitoring of some sort of faults,
it contains the drivetrain system-level dynamic properties which can provide a near real-time
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modal estimation of system. From this perspective, torsional measurements are indirectly used
for the drivetrain system condition monitoring purposes. For this purpose, these measurements
are first used to estimate the dynamic properties of the drivetrain as a rotational system. These
properties are only related to the system physical parameters and not the loading or specific
operational condition, so that they can be used in the second step to monitor the variations
in the drivetrain, which can be translated into a fault in case of passing a prespecified level.
Moghadam et al. [23] has started an analytical approach to turn torsional measurements into
meaningful features for fault detection purposes by specification of the analytical relationship
between the system natural frequency variations and faults, and a subsequent potential for
detection of system faults. The current work is dedicated to the theoretical development and
simulation/experimental validation of the idea originally proposed by [23] for the modal esti-
mation of the drivetrain by using torsional measurements, and a subsequent use of this idea to
develop a method for the drivetrain system-level condition monitoring. The influence of shaft
crack propagation on the torsional natural frequency was discovered by [14; 24]. However, those
studies lack an analytical model which describes the variations in order to establish a meaning-
ful feature for monitoring the condition of crack. For this feature to be used as a criterion as a
shaft cracking monitoring technique, a sufficient model should be provided to be able to relate
the variations to the state of the fault. In addition, there are other categories of system-level
faults which can also influence drivetrain torsional modes which are not considered in earlier
studies.

The condition monitoring of the drivetrain at system level by using the estimated torsional
natural frequencies, the normal modes, the amplitude of response in the natural frequencies
and the damping of the system at natural frequencies in different operations is discussed in this
paper. For this purpose, online operational measurements of the drivetrain different torsional
responses including the angular velocity residual function and filtered angular velocity are
employed. Drivetrain faults at system level can influence the drivetrain model parameters, so
that they can be categorized into the faults that change the torsional stiffness most (e.g. crack
in the shafts and bearing wear specially in gearbox), and faults that change mostly the inertia of
the drivetrain (changes in mass balance/distrinution which can be due to e.g. loss of mass, wear
and unbalance; and also change in the axis of rotation which can be due to e.g. misalignment
and looseness). Regarding the relation of inertia with the square of the center of mass distance
from the center of rotation, the faults which variate the center of rotation demonstrate more
significant influence on the inertia and thus are more influential on the torsional dynamic
properties. Among the faults that influence the inertia of the bodies in drivetrain equivalent
model, there are some types which have more considerable impact on the boundary conditions
between rotating and stationary elements and thus influence more drivetrain lateral responses
than the torsional response (e.g. looseness (pedestal, shaft and bearings, coupling), [25]).
The latter influences significantly lateral stiffness parameters and the lateral responses of the
drivetrain, so that the detection of those faults by using the lateral response and monitoring
the variations of system lateral properties could be a practical approach. Even though these
faults can cause a small variation of the torsional parameters, the impact may not be significant
enough for fault detection purposes. For example, a pedestal looseness may cause increased
rubbing which leads to a nonlinear small increase of torsional stiffness.

By specification of the parameter in the equivalent reduced order model which will be sig-
nificantly influenced by a fault, it is possible to look for the expected consequences of the
associated variations of the parameter as a result of fault on the system dynamic properties,
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as the condition monitoring indicators. The first category of faults, which are detectable by
the proposed CM approach, influence the torsional stiffness. Cracks in the drivetrain shafts
are one of the most influential faults in this category. The initial cracks occur due to material
imperfections and temperature variations in the parts of main shaft with severe stress concen-
tration, which can grow worse under large alternating loads due to wind turbulence. To detect
the shaft cracks of different relative depths, an approach based on nonlinear output FRF is
proposed by [26] and experimentally tested on a simple double-disk rotor system, where the
linear displacements and the bending moments are the under consideration responses but the
torsional vibrations are neglected. In shaft crack faults, variation in stiffness is influenced by
the crack depth and the shape of the crack front. The latter makes the detection of different
types of cracks quite challenging so that a detection method suitable for one type of crack
cannot be generalized to the other types. This fault does not take place as frequently as shaft
unbalance or misalignment but the consequences are very high, so that the detection in very
early stages is of a high importance. If shaft cracks are not detected in early stages, the later
stages of this category of faults may cause severe damage of the shaft and the occurrence of
considerable secondary faults with high risk of injuries for the plant personnel. As discussed
by Chatterton et al. [27], crack detection by using translational/axial vibrations obtained from
accelerometers is challenging due to the influence of the dynamic effects caused by different
components and their consequent induced vibrations. The interpretation of the data in these
methods is also dependent on a deep understanding of the type of crack, its physical properties
and the specific operational conditions so that the realization of an online monitoring may not
be possible. The frequency and time domains analysis of accelerometers is the conventional
approach to detect increased vibrations in the component-level in higher stages of a progressive
fault (e.g. gear tooth and rolling element bearing fatigue issues). The second category of faults
detectable by the proposed approach influence the inertia of the components in the equivalent
model. In this group, misalignment and unbalance are significantly more common than the
other faults. Unbalance in the rotor blades is one of the most influential and prevalent faults
which can be due to different reasons e.g. excessive weight following a blade repair, icing, water
penetration through cracks and loose material moving inside the blades. The latter causes loss
in the power production. The reason for placing an emphasis on the rotor unbalance is that
the highest unbalance in the drivetrain arises from the component with the highest moment of
inertia which is the rotor assembly in the wind turbine drivetrain. The mass unbalance also
causes additional loads on the entire structure and specially the drivetrain components so that
it results in a periodic torsional (in earlier stages) and transversal (in later stages) oscillations in
the wind turbine’s drivetrain. It directly increases the wear of the blade on the drivetrain bear-
ings and gears by generating asymmetrical loads. The rotor mass unbalance can be measured
by monitoring its consequent variations in the drivetrain dynamic properties. As a prognostic
measure, the unbalance mass can be estimated and if the detected unbalance exceeds a limit,
the rotor blades should be balanced with a balancing device.

Condition monitoring is mostly designed in component level, which is helping when the fault is
propagated to the individual components and causes physical changes in the component level.
However, the root cause of a wide range of faults are system-level issues such as unbalance,
misalignment, looseness and shaft cracks. In the proposed drivetrain CM approach of this
paper, it is assumed that system-level drivetrain faults (e.g. shaft cracks and unbalance) can
reveal themselves by variations in the system stiffness and moment of inertia. Therefore, by
monitoring the consequences of variations of drivetrain parameters (i.e. stiffness and moment
of inertia matrices) in change of the drivetrain dynamic properties (i.e. natural frequencies,
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mode shapes and damping coefficients), it is possible to monitor the progress of faults. For
this purpose, an analytical model of the drivetrain which represents the relationship between
the system parameters and dynamic properties and a subsequent sensitivity analysis helps to
realize what are the most influential system parameters/faults which can variate the drivetrain
dynamic properties. In the feature selection algorithm, the torsional dynamical model of the
drivetrain and the local sensitivity analysis are engaged. The algorithm is designed to an extent
that could offer robust, fast and accurate online monitoring.

The main focus of this work are on geared drivetrain systems used for wind turbines. Based on
the theoretical studies in this research work, a 3-DOF equivalent torsional model of the geared
drivetrain is sufficient for detection of the drivetrain faults at a system-level, because system-
level faults represent themselves mainly by changing the torsional stiffness and the moment
of inertia parameters of the 3-DOF equivalent model. In the first step of the work, the pro-
posed modal estimation approach by using the torsional measurements is presented, which is
proved in the general case for a n-DOF torsional model of the drivetrain, followed by a detailed
parametric proof based on 3-DOF model. As the second step of this research, the analytical
relationship between the 3-DOF equivalent model parameters and drivetrain dynamic proper-
ties is established, which helps to identify the drivetrain system condition/state-of-operation by
monitoring the variations in the drivetrain dynamic properties (undamped natural frequencies
and normal modes) which can be estimated from the operational measurements by using the
proposed modal estimation approach or the other approaches proposed by the literature. The
other reason for sticking to 3-DOF model, is that the closed form parametric expressions of the
drivetrain dynamic properties as a function of equivalent model parameters can be obtained
for this simplified model. Those expressions are the required inputs for the proposed fault
detection approach based on monitoring the variations of the drivetrain dynamic properties.
Those expressions provide quantifiable fault detection features, which are implementable in
microcontrollers and can be integrated with turbine fully automated control and monitoring
systems. By the increase of the order of equivalent model, more dynamic properties (higher
natural frequencies which are not seen by 3-DOF model) can be employed, which can support
a more detailed fault detection in the drivetrain. However, it is a little challenging for currently
available modal estimation approaches to observe higher modes which appear with a low am-
plitude in the frequency-domain response. In other words, the real conditions for the modal
estimation problem is restrictive, so that the higher eigenfrequencies of the drivetrain system,
which are excited by the input torque with a low energy, may not be observable.

The proposed method in this paper can detect stiffness or inertia related faults by monitoring
the consequences of faults on online estimated modes and amplitude of response. The method
is computationally inexpensive since it relies on only few data samples and a moderate data
resolution and sampling frequency. On this basis, the main contributions of this work are:

1. Analytical proof of a drivetrain modal estimation approach by using torsional measure-
ments,

2. Introducing an analytical approach for estimation of damping coefficients of the system
modes by analyzing the amplitude of torsional response error function at the natural
frequencies,

3. Theoretical development and simulation/experimental validation of a drivetrain system-
level fault diagnosis approach based on estimated modal parameters, and comparison
with other methods in the literature.
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The paper is organized as follows: Modal estimation by using torsional measurements is ana-
lytically elaborated in Section 2. An analytical approach for drivetrain condition monitoring
by using torsional response and the estimated modes is proposed and discussed in details in
Section 3. The proposed drivetrain modal estimation and condition monitoring approach are
validated and compared with the approaches in the literature through simulation/experimental
studies in Section 4. The paper is concluded in Section 5.

2. Modal estimation by using torsional measurements

2.1. Torsional natural frequency estimation theory

Drivetrain is often modelled as one-degree-of-freedom (1-DOF) rotational system in global
dynamic response tools. The forced torsional vibration response of the equivalent 1-DOF
damped rotational model of drivetrain influenced by the random excitation τ(t) in frequency
domain and non-dimensional form can be expressed by

|θ(Ω)| =
|τ(Ω)|
kt√

(1− ( Ω
Ωn

)2)2 + (2ζωt (
Ω
Ωn

))2
, (1)

where θ(Ω) and τ(Ω) are the Fourier transforms of angular position and the excitation torque,
respectively. Ωn is the undamped torsional natural frequency of the system, kt is the torsional
stiffness of the shaft, and ζt is the torsional damping coefficient of the mode Ωn at the operating
speed ω. As it can be seen, an amplified frequency in the drivetrain torsional response can be
due to a significant excitation amplitude or the vicinity of excitation frequency with natural
frequencies.

Natural frequencies appear in torsional responses e.g. angular velocity measurements due to
impulsive behavior of wind which excites those frequencies. An initial velocity applied on a
system as described by Thomson et al.[28] can play a role as an impact which is able to excite
the system torsional frequencies. In the wind turbine, the ceaseless variations of wind results in
continual variations in angular velocity which is physically similar to an initial velocity applied
to the system. Even though these variations in speed and subsequently torque happen in very
low frequency, they can introduce considerable energy in different frequencies including the
characteristic frequencies of the system. Due to the existence of damping in a real system,
the measured natural frequencies from the torsional response are the damped frequencies. By
filtering the shafts revolution frequencies, components defect frequencies and excitations (very
low frequency due to wind, low frequency due to wave tower shadow effect, and high frequency
due to generator), the drivetrain torsional natural frequencies, and some torsional induced
motions due to excited edgewise rotor blade and tower bending modes are acquired. Based
on a primary knowledge on the torsional frequencies for each power range, it is possible to
separate the observed natural frequencies for drivetrain, blades and tower. The variations in
the natural frequencies and normal modes can be used as criteria to identify some sorts of faults
in the drivetrain. To estimate the damped natural frequencies, angular velocity residual/error
function is proposed. The input of this method is provided by two encoders located at the
high- and low-speed shafts of drivetrain, and subsequently the residual function is constructed
based on the subtraction of these two signals. Some drivetrain systems are only equipped with
one angular velocity measurement on the shaft, so that the implementation of the method may
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require an additional moderate resolution encoder to provide the sufficient inputs. The angular
velocity residual function eωtot from the high-speed side is expressed by

eωtot = ωHS − a1a2a3ωLS, (2)

where ωHS and ωLS are the rotational speed in rad/s obtained from the high- and low-speed en-
coders, respectively. a1, a2 and a3 are the inverse of gear ratios of the gearbox stages. The error
function main feature is cancellation of the impacts of the excitations which are transferred to
the drivetrain from the housing, from the resultant torsional response. Angular displacement
and acceleration are the other torsional responses of the drivetrain system which could theoret-
ically be used similar to angular velocity to obtain the system torsional parameters. For this
purpose, similar to eωtot, the angular position error function eθtot and the angular acceleration
error function eαtot are defined by

eθtot = θHS − a1a2a3θLS, eαtot = αHS − a1a2a3αLS. (3)

In particular, angular acceleration is the torsional response which has a direct relation with
the applied, and contains useful information on how the applied torque interacts with the sys-
tem. If acceleration or displacement is used for evaluation, the assessment criteria tends to
vary with frequency, because the relation between them and velocity is proportional to fre-
quency. The Fourier series of eωtot, eαtot and eθtot are defined by eωtot(Ω) =

∑∞
n=−∞ Cne

iknΩ,
eαtot(Ω) =

∑∞
n=−∞ Cn(ikn)e

iknΩ, eθtot(Ω) =
∑∞

n=−∞ Cn(ikn)
−1eiknΩ. Differentiation and integra-

tion are linear operations that are distributive over addition. As it can be seen, in eαtot compared
to eωtot, the amplitude of the frequency components higher than 1Hz is magnified with the gain
kn, and the frequencies lower than 1Hz are weakened with the same proportion. In eθtot com-
pared to eωtot, the amplitude of the frequency components lower than 1Hz is magnified with the
gain k−1

n , and the frequencies higher than 1Hz are weakened with the same proportion. The
1st natural frequency of the drivetrain systems of the same technology decreases as the rated
power increases. However, even for 10MW wind turbine which is the biggest commercially
available and even for the high-speed technologies which have lower first natural frequencies,
the 1st torsional frequency is higher than 1Hz [31]. Therefore, the angular acceleration error
function is theoretically slightly better than the other two approaches in highlighting the tor-
sional frequencies. The other benefit is weakening the frequencies lower than 1Hz which appear
in the drivetrain torsional response mostly due to wind turbulence and structural motions, but
do not contain any information on the drivetrain natural frequencies. However, an additional
derivation operation is required to attain acceleration from the velocity measurements which
increases the computational cost of this method.

A limitation with aforedescribed approach is the dependency on two encoders, because in several
turbines there is only one encoder available located in the low speed shaft. As discussed earlier,
one of the significant features of the error function is cancellation of the influences of structural
motions from the torsional response. The latter results in a clean signal which is able to
highlight the system characteristic frequencies. Those motions are mainly influenced by wind,
wave and structural resonances, and natural frequencies of structural motions and low frequency
interactions between rotor, tower and support structure and have a low frequency content.
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Therefore, the filtered angular velocity of low speed shaft has some potentials in highlighting
the drivetrain torsional frequencies. The filtered signal X(ΩHP ) is extracted by

X(Ω) = a1a2a3ωLS(Ω), X(ΩHP ) = X(Ω)H(ΩHP ), (4)

where H(ΩHP ) is the transfer function of the high-pass filter applied to the low speed shaft
encoder signal to attenuate the low frequency noises resulted wind induced low frequency mo-
tions. The performance of filtered angular velocity of low speed shaft in highlighting the
torsional frequencies compared to the different torsional response error functions is tested with
both simulation and operational measurements as reported in Section .

In order to capture better the drivetrain dynamics at system level for the subsequent use for
drivetrain fault diagnosis at system level while minimizing the computational complexity of
the model, 3-DOF torsional model is offered and the performance of the model is evaluated
throughout the paper. For this purpose, to evaluate the observability of natural frequencies on
the torsional response error functions and the subsequent application for drivetrain condition
monitoring, a 3-DOF torsional model of the damped drivetrain is engaged. The 1st and 2nd

undamped natural frequencies (nonrigid modes) based on 3-DOF lumped-mass-spring model
of a geared drivetrain can be calculated by the equations reported in Appendix A. The eigen-
vectors of the damped drivetrain model take complex values. By assuming damping equal to
zero, the normal modes take real values which show the relative angular motion of the different
inertias in the model. The closed form of two normal modes related to the two non-rigid modes
of the under consideration drivetrain model which are scaled to unity length are reported in
Appendix A.

Both undamped frequencies and normal modes are unique for the system so that any deviation
of the parameters can indicate variations in the drivetrain system which can be used for fault
detection. The continued discussion is dedicated on an analytical proof of the idea of observing
natural frequencies from the torsional response. The theory is first presented for the general
form of response obtained from the general n-DOF torsional drivetrain model. Then the possi-
bility of observing torsional modes in amplitude of angular velocity error function based on a
3-DOF model is mathematically proven to be used in the proposed model-based fault detection
approach.

Theorem 1. Torsional natural frequencies belong to the set of extreme points of the torsional
response in the frequency domain.

Proof. The general form of the discrete multi-DOF torsional model of drivetrain with n degrees
of freedom in the time domain is defined by

Jθ̈ +Cθ̇ +Kθ = T (t), (5)

where J, C and K are the moment of inertia, damping and stiffness matrices with the size
n × n. θ and T are the response and load vectors with the size n × 1, where each element
of these two vectors represent a time series data. The representation in frequency domain by
using the frequency variable S and Laplace transform will be
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[JS2 +CS +K]n×n[Θ(S)]n×1 = T (S)n×1. (6)

By replacing the characteristic equation JS2+CS+K with M, the frequency domain response
Θ(S) will be

Θ(S) =
adj(M)

det(M)
T (S), (7)

where adj(M) is the adjugate of M which is a polynomial function with the matrix variable M.
det(M) is the determinant of the system characteristic equation. As it can be seen, the roots of
the det(M) are the extreme points of response Θ(S). However, the roots of the determinant of
characteristic equation of a system are the system’s eigenfrequencies. Therefore, the torsional
natural frequencies of the system belong to the set of extreme points of the response. In the
undamped system (C = 0), the roots will be pure imaginary which represent the undamped
natural frequencies Ωi

n. In the general damped system, the roots are the damped natural
frequencies Ωi

d with the following relation with the undamped frequencies

Ωi
d = ζ iΩi

n + jΩi
n

√
1− (ζ i)2 i ∈ 1, .., n. (8)

The torsional natural frequencies in both cases of damped or undamped system based on the
provided proof which refers to the general form of damped system are the extreme points of
the response frequency domain function.

Thus, we complete the proof of Theorem 1.

The other extreme points of Θ(S) are due to the load dynamics, the system unmodelled internal
dynamics and the interactions between these two. As discussed earlier, in order to pick out the
natural frequencies, other harmonics which also demonstrate themselves as other extreme points
in response must be filtered. For this purpose, the response error function is engaged which
is able to filter the influences of the loads transferred to the drivetrain through the structure,
which is very useful specially in offshore wind turbines equipped with floating support structures
which can induce a wider range of harmonics in the drivetrain response.

The typical signal for frequency domain fault detection study is the amplitude of response. In
the following part, the possibility of using the Theorem 1 results for the amplitude of torsional
response and more specifically the amplitude of angular velocity error function is investigated.
For this purpose, the general 3-DOF damped torsional model of the geared drivetrain system
is selected, and the possibility of observing natural frequencies in the amplitude of angular
velocity error function in the frequency domain is analytically evaluated.

The amplitude of angular positions at the different places of the drivetrain based on the equiv-
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alent 3-DOF torsional model of drivetrain transferred to the rotor side are as

|θr(Ω)| =

√√√√√√
{
(−Ω4JgrJgn + Ω2(cLcH +

√
G)− kLkH)2 + Ω2(Ω2

√
E −D)2

}
|Tr(Ω)|2 +

{
(−Ω2cLcH + kLkH)2 + Ω2D2

}
|Tg(Ω)|2

Ω4
(
Ω4JrJgrJgn − Ω2I + kLkH(Jr + Jgr + Jgn)

)2

+ Ω6
(
Ω2(Jr

√
E + cLJgrJgn)−D(Jr + Jgr + Jgn)

)2 ,

(9a)

|θgr(Ω)| =

√√√√√√
{
(−Ω2(cLcH + kLJgn) + kLkH)2 + Ω2(Ω2cLJgn −D)2

}
|Tr(Ω)|2 +

{
(Ω2(cLcH + kHJr)− kHkL)2 + Ω2(Ω2cHJr −D)2

}
|Tg(Ω)|2

Ω4
(
Ω4JrJgrJgn − Ω2I + kLkH(Jr + Jgr + Jgn)

)2

+ Ω6
(
Ω2(Jr

√
E + cLJgrJgn)−D(Jr + Jgr + Jgn)

)2 ,

(9b)

|θgn(Ω)| =

√√√√√√
{
(−Ω2cLcH + kLkH)2 + Ω2D2

}
|Tr(Ω)|2 +

{
(−Ω4JrJgr + Ω2(cLcH +

√
H)− kLkH)2 + Ω2(Ω2

√
F −D)2

}
|Tg(Ω)|2

Ω4
(
Ω4JrJgrJgn − Ω2I + kLkH(Jr + Jgr + Jgn)

)2

+ Ω6
(
Ω2(Jr

√
E + cLJgrJgn)−D(Jr + Jgr + Jgn)

)2 ,

(9c)

where

D = cLkH + cHkL, E = (cLJgn + cHJgr + cHJgn)
2, F = (cLJr + cLJgr + cHJr)

2, G = (JgrkH +

JgnkL+JgnkH)2, H = (JrkL+JrkH +JgrkL)
2 and I = cLcHJr + cLcHJgr + cLcHJgn+JrJgrkH +

JrJgnkL + JrJgnkH + JgrJgnkL.

θr(Ω), θgr(Ω) and θgn(Ω) are the angular positions at rotor, gearbox and generator, respectively.
cL and cH are the actual damping of low- and high-speed shafts.

The amplitude of angular velocity error function in the general form by using the Laplace
operator S can be defined as a function of angular positions as follows

|eωtot(S)| = |S(θr(S)− θgn(S))|. (10)

By replacing the angular positions in eq. (10), the result will be

|eωtot(S)| =
√

(A2
1|S|6 + A2

2|S|4 + A2
3|S|2)|Tr(S)|2 + (A2

4|S|6 + A2
5|S|4 + A2

6|S|2)|Tg(S)|2
A2

7|S|8 + A2
8|S|6 + A2

9|S|4 + A2
10|S|2 + A2

11

, (11)

where

A1 = JgrJgn, A2 = cLJgn + cHJgr + cHJgn, A3 = JgrkH + JgnkL + JgnkH , A4 = JrJgr,
A5 = cLJr + cLJgr + cHJr, A6 = JrkL + JrkH + JgrkL, A7 = JrJgrJgn, A8 = cLJrJgn +
cHJrJgr + cLJgrJgn + cHJrJgn, A9 = cLcHJr + cLcHJgr + cLcHJgn + JrJgrkH + JrJgnkL +
JrJgnkH + JgrJgnkL, A10 = cLJrkH + cHJrkL + cLJgrkH + cHJgrkL + cLJgnkH + cHJgnkL,
A11 = JrkLkH + JgrkLkH + JgnkLkH .

The denominator of angular velocity error function eωtot(S) based on the described model finds
the form as
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D(eωtot(S)) = (A7S
4 + A8S

3 + A9S
2 + A10S + A11)S

2. (12)

The roots of the above function are the poles of eωtot(S) which belong to the set of extreme
points of the response. By replacing S = jΩ for the equivalent undamped system, D(eωtot(Ω))
will find the form of a complex equation. To find the roots of the resulted complex equation,
the absolute value of this equation is set to be zero which turns to the following polynomial
equation

(A7Ω
6 − A9Ω

4 + A11Ω
2)2 + (A10Ω

3 − A8Ω
5)2 = 0. (13)

The above equation can be reduced to a polynomial of the order of four by the change of
variable γ = Ω2 and eliminating the rigid modes (Ω = 0), which makes it possible to find the
closed form solutions of the response poles. The resulted equation is

A2
7γ

4 + (A2
8 − 2A7A9)γ

3 + (A2
9 + 2A7A11 − 2A8A10)γ

2 + (A2
10 − 2A9A11)γ + A2

11 = 0. (14)

By assuming damping equal to zero, and considering the positiveness of γ, the two acceptable
answers are obtained. The results give four values for Ω which belong to the extreme points of
response. The results are two pairs of imaginary poles which the absolute value of each pair
coincides with one of the system torsional eigenfrequencies described by eq. (A.1).

The results can be extended to the damped system so that also in the damped system the
poles of the response coincide with the eigenfrequencies of the system, where the poles take
the complex form S = σ + jωd = ζΩn + jΩn

√
1− (ζ)2. However, the absolute value of the

poles will still be |S| = Ωn. By replacing Ωn from eq. (A.1) instead of |S| in eq. (11), the
amplitude of response at the two natural frequencies in the general case of a damped system
has the relationship with the system parameters and loads as

|eωtot(Ωtor
1 )| =

√
|Tg(ω1)|2

√
FA+H + J2

r J
2
grA

2
√
A+ |Tr(ω1)|2

√
EA+G+ J2

grJ
2
gnA

2
√
A

4

√
A2I2 + (Jr

√
E + cLJgrJgn)2A3 +D2(Jr + Jgr + Jgn)2A+ k2Lk

2
H(Jr + Jgr + Jgn)2 + J2

r J
2
grJ

2
gnA

4
,

(15a)

|eωtot(Ωtor
2 )| =

√
|Tg(ω2)|2

√
FB +H + J2

r J
2
grB

2
√
B + |Tr(ω2)|2

√
EB +G+ J2

grJ
2
gnB

2
√
B

4

√
B2I2 +B3(Jr

√
E + cLJgrJgn)2 + k2Lk

2
H(Jr + Jgr + Jgn)2 +D2(Jr + Jgr + Jgn)2B + J2

r J
2
grJ

2
gnB

4
,

(15b)

The frequency domain angular velocity error function of a theoretically undamped system under
excitation at natural frequencies is unbounded. Therefore, performing a sensitivity analysis to
find the relation between the variations of the amplitude of response at natural frequencies
and the variations of system parameters which can represent the system faults is not possible.
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However, a physical system in practice has damping. The response of a damped system at
natural frequencies is bounded due to the influence of damping in the system. Therefore,
monitoring the variations of the amplitude of response in the natural frequencies can be related
to variations of the system parameters and faults. In the continued part, the possibility of
using the amplitude of response of a damped system at natural frequencies for monitoring the
variations in the system is discussed. The results of this study can also be used for estimation
of damping in the system.

As it can be seen from eq. (15), in difference with the equations for the system natural frequen-
cies and mode shapes, the amplitude of response at the first and second natural frequencies
is proportional to not only the system parameters but also the loads. The latter limits the
application of amplitude of response as a fault precursor. However, it can be used as a criterion
to evaluate the results obtained by the proposed fault detection algorithm, so that it provides
inputs for drivetrain condition monitoring based on monitoring the variations of amplitude of
response at the natural frequencies in terms of variations in the system parameters by sensitiv-
ity analysis which is elaborated in Section 3. The results of analysis of amplitude of response
also provides necessary inputs for the estimation of damping in the system.

By using the simplified model in eq. (1), the peak frequencies of the amplitude of response have
the relation Ωpeak = Ωn

√
1− 2ζ2 with the associated undamped frequency. This result can be

extended to the higher order systems and higher order natural frequencies. Our analytical
study on the extreme points of the amplitude of response in higher order models shows that
these points are highly nonlinear and complicated functions of system parameters which make
the utilization of these equations computationally expensive. However, these points can be
related to the undamped natural frequencies by using the damping coefficients as

Ωi
peak = Ωi

n

√
1− 2ζ2i . (16)

The two following equations can be used to estimate the damping coefficients of different modes
at different operating speeds, by using the peak frequencies and the amplitude of response at
those frequencies, as follows:

Ωi,t1
peak

Ωi,t2
peak

=

√
1− 2ζ2i,t1
1− 2ζ2i,t2

, (17a)

|eωtot(Ωi,t1
peak)|

|eωtot(Ωi,t2
peak)|

= f(Tr, Tg, cL, cH , kL, kH , Jr, Jgr, Jgn), (17b)

where ζi,t is the damping coefficient related to the mode i and operation t. |eωtot(Ωpeak)| is
the amplitude of response at the peak frequency. Both the peak frequency and amplitude of
response at peak frequency are estimated from the frequency domain response based on the
theory elaborated earlier in this Section. The eq. (17b) is long and nonlinear with dependency to
all the system parameters and loads so that relating the variations in the amplitude of response
to variations in damping coefficient seems to be a challenging task. The theory related to the
employment of sensitivity analysis for relating the ratio of amplitude of response to the ratio of
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damping coefficients from eq. (17) and the implementation of this approach will be discussed
in the continued Sections. From the peak frequency and the approximated damping coefficient,
the undamped frequency can be estimated by using eq. (16).

3. Drivetrain condition monitoring by using torsional measurements

The estimation of system modes by using the angular velocity error function was elaborated
in Section 2. As discussed earlier, the estimated modes and the amplitude of response at
those frequencies can be related to the system parameters and faults. In order to establish
this relationship to be used in the proposed fault detection approach, sensitivity analysis is
employed.

3.1. Sensitivity analysis

This part is aimed to obtain the closed form mathematical relationships between the drive-
train dynamic properties and amplitude of response with the drivetrain reduced-order model
parameters through a sensitivity analysis for a subsequent use in the proposed fault diagnosis
algorithm. Similar to in Section 2, the general 3-DOF damped torsional model of drivetrain is
selected for the analytical studies in this Section.

As discussed earlier, faults like crack in shafts and rotor, coupling damage, or damage in gearbox
are examples of potential faults which can change the drivetrain stiffness. For example, a shaft
crack results in reduction of the torsional stiffness of the shaft [29]. A change in the stiffness
influences the drivetrain system frequency modes. Therefore, by obtaining the mathematical
relationship between the stiffness of different shafts and the system modes, it is possible to
monitor their conditions by monitoring the variations in the system natural frequencies and
normal modes. The other parameter which can influence the drivetrain torsional modes is the
moment of inertia of the drivetrain components. Variations in the moment of inertia matrix
represents the other category of faults in the driveline with the unbalance and loss of mass as the
foremost. For example, unbalance faults are characterized by the increase of moment of inertia
due to an additional force that is generated during those conditions based on the parallel axis
theorem. The mathematical relationship between the drivetrain torsional natural frequencies
and the moment of inertia of components can help to identify these faults. The variations in
stiffness and inertia can result in similar natural frequency variation patterns. Therefore, to
distinguish between variations in the natural frequencies because of variations in the shafts’
stiffness with those due to variations in moment of inertia matrix (source of fault), determining
the correlation between the system parameters and the normalized mode shapes can provide a
useful direction to find the source of fault. The correlation between the amplitude of response
at the system natural frequencies can also be useful in two ways: first, to estimate the damping
coefficients and subsequently the undamped natural frequencies from the estimated natural
frequencies; second, to confirm or repeal the results obtained about the system faults taken
based on the analysis of natural frequencies and normal modes.

In order to achieve the above described purposes, two different sets of sensitivity analyses are
performed in this Section. First, a sensitivity analysis on torsional frequencies and normal
modes of the equivalent undamped system to extract drivetrain system-level condition mon-
itoring features. Second, a sensitivity analysis on the amplitude of response at the natural
frequencies primarily to estimate the damping coefficient and subsequently the undamped nat-
ural frequencies which are required for the first analysis, and then to support the condition
monitoring features obtained in the first sensitivity analysis.
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Figure 1: Proposed algorithm for driveline condition monitoring by using torsional measurements and estimated
modes.
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In order to check how the variations in stiffness and moment of inertia influence the system
torsional natural frequencies and mode shapes, a sensitivity analysis is performed. There are
two classes of sensitivity analysis methods, namely local and global sensitivity analysis. Morio
et al.[30] has reported the same kind of results by using these two method for simple models.
Local sensitivity determines how a small perturbation near an input parameter value influences
the value of the output. In this Section, in order to find the parameters with the greatest
impact on the drivetrain dynamic characteristics, local sensitivity analysis is employed due to
two main reasons. First, the motivation of this work is detecting faults in early stages for
predictive maintenance purposes so that variations in the drivetrain system parameters happen
with a slight change around the set point values. Second, local sensitivity analysis derives a
closed form expression for the sensitivity value which makes the result more reliable and easier
to implement. Local sensitivity is defined as the partial derivative of the output function with
respect to the input parameters [32] as

SLoc
k,l =

δyk
δxl

, yk ∈ {y1, ..., yp} and xl ∈ {x1, ..., xq}, (18)

where yk is the kth output and xl is the lth input. To neutralize the impact of large/small
inputs and small/large outputs, the local sensitivity can be normalized by the nominal values
of inputs and outputs by

SNorm
k,l =

xref
l

yrefk

δyk
δxl

, (19)

with xref
l and yrefk as the nominal values of xl and yk. For the 3-DOF torsional model described

in Section 2.1, the input and output vectors for sensitivity analysis are

x = {kL, kH , Jr, Jgr, Jgn, cL, cH , Tr, Tg}, (20a)

y = {Ωtor
1 , Ωtor

2 , ΨΩ1
rot, Ψ

Ω2
rot, Ψ

Ω1
gear, Ψ

Ω2
gear, Ψ

Ω1
gen, Ψ

Ω2
gen, |eωtot(Ωtor

1 )|, |eωtot(Ωtor
2 )|}. (20b)

The closed form of equations after applying normalized local sensitivity theory on eqs. (A.1)
and (A.2) are shown in Appendix B and Appendix C. A positive value in this analysis
stands for a direct relationship between the input parameter and output, whereas a negative
value represents that the parameter and output are inversely correlated. The normalized local
sensitivity analysis can take different values. If the absolute value is equal to 1, it means
that the relative variation in input parameter is equally transmitted to the output, whereas
the absolute value higher than 1 shows that the relative variation is magnified in the output.
However, the absolute value lower than 1 represents that the relative variations of the input is
shrunk in the output.

In the second study, in order to find the parameters/variables which have the highest con-
tribution in variations of the amplitude of response at the response peak frequencies, a local
sensitivity analysis is performed. For this purpose, two methods are proposed. First, the peak
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frequencies are approximated with the associated natural frequency and subsequently the eq.
(15) is used. The closed form equations which specify the correlation between the angular
velocity error function amplitude at the natural frequencies with the system parameters and
loads are derived by performing local sensitivity analysis as shown in Appendix D. This ap-
proximation can be improved by using the approximated damping coefficients and updating
the eq. (15) by using the eq. 16. Another approach which is based on numerical calculations
and is also used later in the simulation studies for comparison purposes is to numerically find
the peak frequencies of the the response in the eq. (11) and finding the sensitivity of the re-
sponse equations to the parameters after replacing the numerically calculated frequencies in the
response function. The precision in estimation of the damping coefficient by the two proposed
methods compared to the approximation proposed in [23] is presented in simulation studies. In
order to attain the accuracy of these methods, the results are compared to the exact values of
the coefficients based on the model parameters.

The following procedure summarizes the modal estimation approach:

1. The torsional response error function (or interchangeably the low-pass filtered signal of a
single torsional response) is generated. The response can be angular velocity/acceleration.

2. The resultant signal is preprocessed so that the defect frequencies of the components
and structural motions-induced harmonics are filtered. The result will give the damped
torsional natural frequencies of the drivetrain system.

3. The measured natural frequency is validated by the analysis of variations of amplitude of
response in the suspicious frequencies at different operating speeds. In simple words, the
variation of the amplitude of response in the system natural frequency (damped natural
frequencies) due to the variation of damping coefficient is more significant compared to
the variation of the amplitude of response in the harmonics. The variation of damping
coefficient is due to the consistent variations in the operating speed in wind turbine
drivetrains.

4. Damping at the natural frequency depends on the operating speed. The damping coef-
ficient at two ensuing operations in two different speeds can be estimated by applying
the theory developed in this Section and modeled by eq. 17, based on monitoring the
variations of the natural frequency and amplitude of response between the two operations.

5. By using the estimated damped natural frequencies from torsional response and the es-
timated damping coefficient from the analysis of amplitude of response, the undamped
natural frequencies are obtained, which provide inputs for the fault detection approach
based on monitoring the variations of system dynamic properties.

The algorithm which summarizes the proposed drivetrain modal estimation and the ensuing
condition monitoring approach is illustrated by the flowchart in Fig. 1. ΨΩ1

m and ΨΩ2
m are the

normal modes related to the 1st and 2nd natural frequencies, respectively. m varies from 1 up
to the degree of the model, which accounts for the different bodies in the equivalent reduced
order model. τ tor

Ω and τΨm are the low-limit threshold natural frequency and normal mode
related to normal operations.
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3.2. Test cases

3.2.1. Simulation based validation

For the simulation studies, DTU 10MW reference wind turbine is selected. In order to evaluate
if the input torque is able to excite the drivetrain natural frequencies and subsequently to study
the possibility of observing those frequencies in the different drivetrain torsional responses, an
effective approach is involving decoupled simulation technique. For this purpose, the rotor
torque data of a detailed model of 10MW turbine with a spar floating platform obtained from
SIMA global simulation software [33] is used, and the impacts on the drivetrain is studied by
using a decoupled analysis.

The decoupled simulation approach consists of two separated phases. In the first phase, global
simulation analyses are performed under different environmental conditions. In the global
simulation, the blades and hub assembly, the structural module including the flexible multi-
body systems for tower and platform and the nacelle are modelled. This model is coping with
combined aerodynamic and hydrodynamic loading by using numerical and probabilistic models
of wind, waves and current in the global simulation software to capture the integrated effect of
the loads and the wind turbine control system on the turbine model. The results of the global
analysis in this study are the loads transmitted to the drivetrain by the rotor specified by the
time series of the resultant moment on the rotor. The second phase of decoupled analysis is
that the offline global simulation results will then be applied as inputs on the drivetrain model
in Simpack multi-body simulation (MBS) software [34] to calculate and analyse the drivetrain
components local dynamic responses for modal estimation and fault detection purposes. The
drivetrain model in the second phase of decoupled simulation utilizes the components reduced
order models. As a complementary step, the post processing of local responses provides useful
information for the drivetrain secondary studies. Without loss of generality, a geared drivetrain
technology is selected for the simulation studies. However, the 3-DOF reference model can also
be used for direct-drive technology fault detection based on the proposed approach, where
regarding the considerable mass of main shaft, it should be modelled as a separate mass to
improve the model accuracy, and then a similar approach can be engaged.

The operating condition for the global simulation is close to the rated operation with an average
wind speed Uw = 11m/s, significant wave height Hs = 3.5m and peak period Tp = 7.5s. In
the under consideration 3-DOF torsional model of the geared drivetrain, rotor, gearbox and
generator are modelled with equivalent moment of inertia, and the low- and high-speed shafts
are each modelled with constant torsional stiffnesses. The generator and gearbox specifications
are used from the optimized 10MW medium-speed drivetrain system proposed in [31]. The
parameters of this model are listed in the Table 1. The undamped natural frequencies of this
model calculated by eq. (A.1), and validated by Simpack are 1.9Hz and 73.9Hz. The actual
damping of the low- and high-speed shafts are also assumed to be 5% and 10% of the low-
speed shaft stiffness, respectively. The torsional responses of rotor and generator shafts are
obtained from the MBS model to investigate possibility of observing the natural frequencies
from the angular velocity, acceleration and displacement error functions. The proposed methods
for estimation of damping coefficients in different operating speeds are tested on the damped
model of under consideration 10MW geared drivetrain. The possibility of detecting different
stages of system-level inertia and stiffness related faults from the torsional response obtained
from the 10MW MBS model are investigated by using the proposed algorithm.

In order to capture the system dynamic properties in the proposed approach and to get sta-
tistically comparable results, the time interval of each block of data should be large enough to
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capture the lowest natural frequency. The sampling frequency should be high enough to capture
the higher frequency modes which are of significance, and on the other side is limited to the
SCADA sampling frequency in case of implementation in the farm level. Since the realization
of the method is based on the 1st and 2nd nonrigid modes, for observing these two modes,
the required length of data block is only a fraction of one second and the required sampling
frequency is around 400Hz for 10MW medium-speed drivetrain technology.

Table 1: 10MW medium-speed drivetrain 3-DOF model specification

Parameter Value
Equivalent rotor moment of inertia Jr (kg.m

2) 800, 000, 000
Equivalent gearbox moment of inertia Jgr (kg.m

2) 1, 239, 300
Equivalent generator moment of inertia Jgn (kg.m2) 15, 716, 775
Equivalent low-speed shaft torsional stiffness kL (N.m/rad) 2, 452, 936, 425
Equivalent high-speed shaft torsional stiffness kH (N.m/rad) 245, 293, 642, 500

3.2.2. Experimental validation

The operational data from Vestas V66-1.750MW turbine is used for the experimental study.
To test the method, an additional encoder is installed on the low-speed shaft. The topology
of the drivetrain is shown in Fig. 2. As it can be seen, the two encoders EN1 and EN2 are
the torsional measurement sensors placed on the low- and high-speed shafts, respectively. AC1
and AC2 are the accelerometers placed on the two main bearings to measure the lateral vibra-
tions for comparison of the proposed method based on torsional vibrations with conventional
approaches in the literature which are mainly based on translational vibrations. The data sets
include the drivetrain operations under different operating speeds in both normal and faulty
cases.

In PSD of the angular velocity error function of the operational data, in addition to the natural
frequencies, some other frequency components are also expected to be observed. However, by
a prior knowledge about the defect frequencies and the other torsional excitation sources, and
by subsequently filtering those frequencies, it is possible to distinguish the natural frequencies.
The benefits with measuring the natural frequencies by this noninvasive method are the low
implementation cost, and the possibility of obtaining the precise values of natural frequencies
by including the system nonlinearities, and translational impacts on the rotation transferred
through the bed-plate and torque arm.

Figure 2: Vestas V66-1.750MW drivetrain topology, and vibration sensors placement.

4. Simulation/experimental studies

4.1. Sensitivity analysis results

The results of the normalized local sensitivity analyses with natural frequencies (Ωtor
1 ,Ωtor

2 ) and
normal modes (φ1, φ2) as the outputs and shaft stiffnesses (kL, kH) as the inputs with variation
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of only one model parameter at a time are shown in the Table 2. The interpretation of the local
sensitivity analysis values is disclosed in Section 3.1. The reported numbers show the normalized
sensitivity values which are calculated based on 10MW drivetrain model parameters. The
values of the table in bold designate the absolute sensitivity values higher than 0.01, which
is used as the criterion that the associated parameter and output are correlated. The values
which are not highlighted designate the absolute sensitivity values lower than 0.01 representing
a negligible sensitivity, so that the associated parameter and output are uncorrelated. As it can
be seen, there is a direct relationship between the 1st frequency and kL, and the 2nd frequency
and kH . Therefore, variations in the natural frequencies can be translated into the variations
in the shaft stiffness and subsequently the defects in the drivetrain shafts. The influence
of the shafts defect (stiffness variation) on the normal mode of the 1st natural frequency is
negligible. However, the stiffness variation results in variations in the normal mode element of
the 2nd natural frequency related to rotor. The results of the sensitivity analyses with natural
frequencies and normal modes as the outputs and moment of inertia (Jr, Jgr, Jgn) as the inputs
(variation of only one model parameter at a time) are shown in the Table 2. As it can be
seen, there is an inverse relationship between the 1st frequency and Jgn, and the 2nd frequency
and Jgr, so that the reduction of natural frequencies can be due to a rise in the moment of
inertia. To distinguish between the drop in natural frequencies due to variation in stiffness and
moment of inertia, the results should be interpreted together with monitoring the variations of
normal modes. The simultaneous drop of the 1st frequency and the normal mode element of
the 2nd frequency related to rotor represents an abnormality in low-speed shaft. The drop of
the 2nd frequency and the simultaneous rise in the normal mode element of the 2nd frequency
related to rotor discloses the problems in high-speed shaft. The drop of the 1st frequency, the
simultaneous rise in the normal mode element of the 1st frequency related to rotor and drop
in the normal mode element of the 2nd frequency related to generator reveal unbalances in
generator side. The drop of the 2nd frequency and a simultaneous rise in the normal mode
elements of the 2nd frequency related to both generator and rotor can be used as the criteria
to detect an unbalance in gearbox.

As discussed earlier in Section 3, another criterion which can be used in parallel to ascertain
the validity of the above guideline is monitoring the variations of the amplitude of response at
the natural frequencies based on the sensitivity analysis values reported in the Table 3 which
will be discussed later in this Section. This criterion in difference with the criteria established
in the above guideline needs an anterior estimation of the system loads. However, a good
estimation of both the rotor and generator torques is available in wind turbine application.
The rotor torque is estimated by using the blade aerodynamic equations and the input wind.
The generator torque is estimated from the generator voltage and current measurements.

Sensitivity of the amplitude of frequency spectrum of angular velocity error function at the 1st

mode to system parameters and loads are summarized in the Table 3. The 2nd column is related
to the first method based on the approximation of peak frequencies with the associated natural
frequencies, calculating the response equation at those frequencies, deriving the sensitivity
equations of the resulted functions in terms of parameters, then updating the response based
on the approximated damping coefficients and repeating the sequence to improve the accuracy
of estimation. The results reported of the first method are obtained by only a single iteration.
The use of this method based on the approximation of Ωpeak with Ωn which is more accurate if
ζ << 1. However, the accuracy can be improved as explained by the correction which can be
applied on the eq. (15) based on the estimated damping coefficients. The 3rd column of this
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Table 2: Sensitivity of natural frequencies and normal modes to variations of model parameter (stiffness and
inertia).

Sensitivity
Variable

kL kH Jr Jgr Jgn

Ωtor
1 0.50 0.00 −0.01 -0.03 -0.45

Ωtor
2 0.00 0.50 0.00 -0.45 -0.04

φrot
1 0.00 0.00 -1.00 0.07 0.93

φgear
1 0.00 0.00 0.00 0.00 0.00

φgen
1 0.00 0.00 0.00 0.00 0.00

φrot
2 0.99 -0.99 -1.00 0.89 0.08

φgear
2 0.00 0.00 0.00 −0.01 0.01

φgen
2 −0.01 0.01 0.00 0.96 -1.00

Table 3: Sensitivity of amplitude of response at 1st and 2nd modes to system parameters and loads.

Variable
Sensitivity

Method 1 (1st mode) Method 2 (1st mode) Method 1 (2nd mode)

Jr 0.02 0.02 0.01
Jgr -0.02 −0.01 0.21
Jgn -0.21 -0.10 -0.47
kL -0.21 -0.34 0.00
kH 0.00 0.00 -0.25
cL -0.08 -0.07 0.00
cH 0.00 0.00 −0.01
Tr −0.01 −0.01 −0.01
Tg 0.51 0.51 0.51

table is related to the second method based on the numerical calculation of peak frequencies,
deriving the response equation in those frequencies and finding the sensitivity of the resulted
equations to the parameters and loads variations. The sensitivity of the amplitude of frequency
spectrum of angular velocity error function at the 2nd mode to system parameters and loads
are also listed in the 4th column of the same table.

As it can be seen from the Table 3, variation in amplitude of response at the 1st mode is mainly
dominated by generator torque, generator inertia, low-speed shaft stiffness and damping. The
amplitude ratio at the 1st mode for two different operations is directly influenced by load and
inversely influenced by damping. Knowing that the system parameters are constant, by a prior
knowledge about the load, variations in damping can be estimated. To estimate the damping
coefficients from the amplitude of response based on the sensitivity analysis results, three
different cases can be assumed for the simulations. All these cases are based on monitoring the
variations of the response amplitude at the natural frequencies between two different operating
points t1 and t2.

Case 1: The two operating points are close, so that the system parameters and load stay
constant.

In this case, the variation in the amplitude ratio directly reflects the variation in the actual
damping ratio which varies due to the variation of the operating speed. Those variations are
correlated proportional with the numbers calculated by the sensitivity analysis. From this
relationship, the variation in the damping coefficient is estimated. By using this information
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Table 4: Estimation of damping coefficient at the 1st mode for Case 1: loads do not change between the two
operating points.

Operation ω (rad/s) Ω1
peak (rad/s) |eωtot(Ω1

peak)| ζ (reference model) ζ (method 1) ζ (method 2) ζ (method in [23])

ω1 0.9 8.67 0.159 0.21 0.20 0.16 0.48
ω2 0.7 8.46 0.156 0.26 0.25 0.22 0.49

Table 5: Estimation of damping coefficient at the 1st mode for Case 2: loads change between the two operating
points.

Operation ω (rad/s) Ω1
peak (rad/s) |eωtot(Ω1

peak)| ζ (reference model) ζ (method 1) ζ (method 2) ζ (method in [23])

ω1 0.9 8.67 0.159 0.21 0.21 0.18 0.27
ω2 0.7 8.46 0.171 0.26 0.25 0.23 0.31

along with eq. (17a), the two dampings of the two operations are estimated. It is worth
noting that in Case 1, since the system parameters and subsequently the critical dampings are
constant, the actual damping ratio is equal to the ratio of the damping coefficients between the
two operations. The estimated values of damping coefficients at the 1st mode in two different
operating speeds which meet the conditions of Case 1, by using the two proposed methods
which described in Section 3.1 compared to the approximation proposed in [23] are listed in the
Table 4. The comparison of the three methods of estimating damping coefficients shows that
the method 1 even based on one iteration outperforms the two other damping approximation
approaches by demonstrating a much lower relative error.

Case 2: The load varies between the two operations but the system parameters stay con-
stant.

In this case, the loads and dampings vary while the other system parameters are constrained
to be constant. With an access to the estimated load it is still possible similar to in Case 1
to measure the variation in damping coefficients by using the local sensitivity analysis results
and by relating the variation in response amplitude to the variation in load and damping,
based on the proportions calculated by the sensitivity analysis. From this relationship, the
variation in the damping coefficient and subsequently the two dampings of the two operations
are estimated similar to in Case 1. The estimated values of damping coefficients at the 1st

mode in two different operating speeds which meet the conditions of Case 2, by using the two
methods proposed in Section 3.1 are listed in the Table 5. It is assumed that during the second
operating speed/condition, both the rotor and generator loads have been increased by 20% so

that T
ω2
r

T
ω1
r

=
T

ω2
g

T
ω1
g

= 1.2. Similar to in Case 1, the comparison of the three methods of estimating

damping coefficients shows that the method 1 even with one iteration outperforms the two
other damping approximation approaches.

Case 3: Both the load and parameters are changing.

In this case, the estimation of damping variation from the response is challenging because it
needs a good estimation not only from the load but also the other system parameters. In
this case, the amplitude of response may not give enough information to estimate the damp-
ing coefficients based on that, because the updated values for the system parameters may be
unknown. However, assuming that the load can be estimated, the result of this study can be
used to authenticate the conclusions made about the system faults from the analysis of natural
frequencies and normal modes variations.

A similar set of sensitivity analysis is performed for the second mode which shows the sensitivity
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of amplitude of response at the second natural frequency more significantly to the high-speed
shaft stiffness, generator torque, and the moment of inertia of gearbox and generator with no
considerable sensitivity to the damping at the second mode. Based on this study,the amplitude
of response at the second frequency is not significantly influenced by the value of the dampings
so that the amplitude of response is not recommended as a good criterion for estimation of
damping coefficient of the second mode. Some other functions of the amplitude of response
of different operations may offer less sensitivity to parameters variation which are more useful
when the information on the system is low, which are not discussed in here. Another potential of
monitoring the variations of amplitude of response at the estimated torsional natural frequencies
is for estimation of the loads. In other words, for the same operational speed and system
parameters, the natural frequencies and dampings will stay the same and variations of the
amplitude of response at system torsional natural frequencies is directly connected to variations
in generator torque which can be used for monitoring the variations of the torque. The latter
is also not discussed more in this work.

The extracted features obtained by the sensitivity study for detecting the drivetrain faults are
evaluated by both the MBS simulation model and the real operational data in the continued
parts.

4.2. Simulation-base validation of proposed modal estimation and condition monitoring ap-
proach

The simulation-base validations relies on the data obtained from the multi-body simulation
model of 10MW medium-speed PMSG drivetrain system in Simpack.

4.2.1. Estimation of natural frequencies from torsional measurements

The PSD spectrum of angular velocity error function obtained from 10MW drivetrain model
and its capability in highlighting the torsional natural frequencies is shown in figures 3b-3d. In
these three figures, the performance of angular velocity error function in extracting the 1st and
2nd torsional natural frequencies of the drivetrain is compared with angular displacement and
angular acceleration error functions. As it can be seen, acceleration error function outperforms
in revealing the higher frequency modes (the 2nd mode). The higher modes have usually a lower
impact on the response, which impedes disclosure of those frequencies. The PSD spectrum of
the input torque applied on the drivetrain MBS model is shown in Fig. 3a. This torque which
is obtained from the global simulation contains the majority of frequency components and can
excite the drivetrain natural frequencies.

4.2.2. Diagnosis of drivetrain faults

The drivetrain faults at system-level vary the equivalent torsional model parameters, so that
by monitoring the consequences of these variations on the drivetrain dynamic properties and
amplitude of response at the natural frequencies these faults can be detected. For simulation
purposes, the faults are simulated independently so that the correlations between the under
consideration faults are neglected.

As discussed earlier, detection of stiffness changing related faults is possible in the proposed
approach by monitoring the consequences of these faults on the drivetrain torsional modes based
on the results of sensitivity analysis. As an example of stiffness-related faults, the growth of
crack in the shaft causes the torsional stiffness of the shaft to decrease and this change will
be reflected in the driveline torsional natural frequencies. The variations of the shafts stiffness
from 5% are considered as the start of fatigue crack in the shaft. The latter is equivalent with
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Figure 3: Simulation results based on 10MW floating wind turbine model. (a) PSD of τ rotor. (b) PSD of eveltot .
(c) PSD of eacctot . (d) PSD of edistot . (e) Fault in low-speed shaft. (f) Fault in high-speed shaft. (g) Fault in
generator. (h) Fault in gearbox. (i) Fault in rotor.

variation in the modal parameters as the fault precursors in the proposed condition monitoring
detection algorithm. In order to simulate the shaft crack growth in the low- and high-speed
shafts, the torsional stiffness of these two shafts in the Simpack model is reduced in four steps
from 5 to 50%. The subsequent changes in the undamped natural frequencies and normal
modes are listed and shown in the Tables 6 and 7. As it can be seen from these tables,
the simulation results agree with the results obtained from the analytical sensitivity analysis
of natural frequencies and normal modes reported in the Table 2. Since the fault detection
features are obtained from the variations of the physical model, the threshold for these features
is accordingly specified based on the sensitivity analysis employed on a specific drivetrain.

The reduction of the 1st natural frequency due to a crack in low-speed shaft is illustrated in Fig.
3e. In addition, as it can be seen from this figure, for the two operations with the same loading
conditions, that one of them is the normal system and the other one is the system with a crack
in the low-speed shaft, the amplitude of response at the 1st natural frequency is higher in the
system with the cracked shaft compared to the normal system, which agrees with the results of
the analytical sensitivity analysis of the amplitude of response as reported in the Table 3. The
influence of crack in high-speed shaft and the consequence in drop of the 2nd natural frequency
is shown in Fig. 3f. As it can also be seen in this figure, a crack in the high-speed shaft causes
an increase in the amplitude of response at the 2nd natural frequency, which agrees with the
sensitivity results related to the amplitude of response at the 2nd mode as mentioned in the
Table 3. For scaling and demonstration purposes, figures 3e and 3f are normalized with the
normal system results.

The detection of inertia changing related faults is also possible by monitoring the consequences
of these faults on the drivetrain torsional modes based on the performed sensitivity analysis
results. As an example of inertia-related faults, unbalance in the rotor, gearbox or generator
shafts results in an increase in the equivalent inertia of the component in the model. Dependent
on the severity of unbalance the variation in inertia will be different. A slight unbalance can
cause a very slight change in the inertia and subsequently a slight change in the modes which
makes the detection challenging by the proposed approach. In here, in order to simulate the
severe unbalance faults, the inertia of the associated component is increased in three steps from
5 to 20%. The subsequent changes in the drivetrain modes are listed and shown in the Tables
8- 10. The simulation results agree with the sensitivity analysis results presented in the Table
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2.

The reduction of 1st and 2nd natural frequency due to increase of inertia of generator and gearbox
as a result of unbalance faults in generator and gearbox are respectively shown in figures 3g
and 3h. The influence of increase of rotor inertia, which can model the rotor unbalance fault,
on the simultaneous reduction of 1st and 2nd normal modes in rotor position is also shown in
Fig. 3i. All these three figures are normalized with the normal system results.

Table 6: Low-speed shaft fault cases.

Fault case kL
knL

Ωtor
1

Ωtor,n
1

Ωtor
2

Ωtor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 0.95 0.975 1.000 1.000 0.950 1.000 1.000 1.000 1.000
LC2 0.85 0.923 0.999 1.000 0.851 1.001 1.000 1.000 1.001
LC3 0.7 0.838 0.999 1.000 0.000 1.003 1.000 1.000 1.003
LC4 0.5 0.709 0.998 1.000 0.000 1.005 1.000 1.000 1.005

Table 7: High-speed shaft fault cases.

Fault case kH
knH

Ωtor
1

Ωtor,n
1

Ωtor
2

Ωtor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 0.95 1.000 0.975 1.000 1.052 1.000 1.000 1.000 1.000
LC2 0.85 0.999 0.923 1.000 1.175 0.998 1.000 1.000 0.998
LC3 0.7 0.998 0.838 1.000 1.423 0.996 1.000 1.000 0.996
LC4 0.5 0.996 0.710 0.993 1.983 0.991 1.000 1.000 0.991

Table 8: Inertia related fault cases (rotor).

Fault case Jr
Jn
r

Ωtor
1

Ωtor,n
1

Ωtor
2

Ωtor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 1.05 1.000 1.000 0.952 0.952 1.000 1.000 1.000 1.000
LC2 1.10 0.999 1.000 0.909 0.909 1.000 1.000 1.000 1.000
LC3 1.20 0.998 1.000 0.833 0.833 1.000 1.000 1.000 1.000

4.3. Experimental validation of proposed modal estimation and condition monitoring approach

The experimental validations are based on the operational data obtained from the drivetrain
system of a 1.75MW Vestas wind turbine.

4.3.1. Estimation of natural frequencies

The PSD spectrum of angular velocity error function of the Vestas drivetrain operational data
for a rated operation is compared with angular displacement and acceleration error functions
as shown in figures 4a-4c, which shows the observability of both the drivetrain and blade
natural frequencies. The results are validated by comparing with the 1st drivetrain and 1st

blade edgewise natural frequencies of another turbine with the same drivetrain technology and
a similar power range reported in [35]. The performance of angular velocity error function
is compared with angular displacement and acceleration error functions. As it can be seen,
angular acceleration shows a slightly higher performance in amplification and extraction of
characteristic frequencies of higher values. A comparison between the angular velocity error
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Table 9: Inertia related fault cases (gearbox).

Fault case Jgr
Jn
gr

Ωtor
1

Ωtor,n
1

Ωtor
2

Ωtor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 1.05 0.998 0.978 1.004 1.046 1.000 1.000 1.000 1.050
LC2 1.10 0.997 0.957 1.007 1.092 1.000 1.000 1.000 1.100
LC3 1.20 0.993 0.919 1.015 1.183 1.000 1.000 1.000 1.200

Table 10: Inertia related fault cases (generator).

Fault case Jgn
Jn
gn

Ωtor
1

Ωtor,n
1

Ωtor
2

Ωtor,n
2

Ψ
Ω1
rot

Ψ
Ω1,n
rot

Ψ
Ω2
rot

Ψ
Ω2,n
rot

Ψ
Ω1
gear

Ψ
Ω1,n
gear

Ψ
Ω2
gear

Ψ
Ω2,n
gear

Ψ
Ω1
gen

Ψ
Ω1,n
gen

Ψ
Ω2
gen

Ψ
Ω2,n
gen

LC0 1 1 1 1 1 1 1 1 1
LC1 1.05 0.978 0.998 1.046 1.003 1.000 1.000 1.000 0.952
LC2 1.10 0.958 0.997 1.093 1.007 1.000 1.000 1.000 0.909
LC3 1.20 0.920 0.994 1.186 1.012 1.000 1.000 1.000 0.833

function PSD in two different operating speeds is shown in Fig. 4d. As it can be seen, the
higher damping coefficient in lower speeds has resulted in a lower damped natural frequency.
Furthermore, at the drivetrain natural frequency, the amplitude reacts more significantly to
the variation in damping. In other words, the amplitude of response at the natural frequency
reduces more compared with other harmonics, for a lower rotor speed which corresponds to a
higher damping. The filtered low-speed shaft angular velocity measurement is shown in Fig.
4e. The chosen filter is a first order high-pass butterworth filter with the cutoff frequency 1Hz.
As it can be seen, the filtered signal shows some degree of competence with the angular velocity
error function in extracting the torsional properties of the system i.e. the drivetrain and the
blade in plane natural frequencies.

4.3.2. Diagnosis of the drivetrain fault

Our observation on extensive operational measurements of the drivetrain system of the under
consideration turbine shows that for the same turbine rotational speed the natural frequencies
do not change under normal operations. The Fig. 4f shows the deviation of 1st natural frequency
which is apparently due to a low-speed shaft fatigue crack. Therefore, the method is able to
detect the shaft cracks in the early stages of progression. As it can be seen, the reduction of the
natural frequency at the same operational speed is observed due to a reduction in the low-speed
shaft stiffness as a consequence of fault in the low-speed shaft. The frequency spectra presented
in literature for detection of shaft crack are usually unreliable as other types of faults can also
generate a similar frequency pattern. More advanced frequency domain approaches call for the
coupled analysis of the crack vibrations consequences in all bending, longitudinal and torsion
which is both expensive to implement and dependent on the load and excitation frequencies.
The cracked shaft can represent a periodic reduction in the shaft stiffness due to nonlinear ef-
fects such as breathing of the crack. Dependent on the type of crack the variation of the stiffness
of the different directions of lateral, axial and torsional could be different, because the stiffness
change is dependent on the direction of bending moment at the crack cross-section. Due to the
coupling phenomena that exists in a cracked rotor, i.e. bending–torsion, longitudinal–torsion,
the variations of longitudinal or bending stiffness parameters, which have relationship with
type and depth of crack, also influence the torsional stiffness in later stages. Therefore, the
assumptions for modelling of a crack with constant torsional stiffness asymmetry does not seem
to be unrealistic. However, the proposed method has a potential to be adjusted based on more
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Figure 4: Experimental results based on 1.75MW Vestas turbine operational data. (a) PSD of eωtot. (b) PSD
of eαtot. (c) PSD of eθtot. (d) PSD of eωtot in two different operations. (e) Comparison of X(ΩHP ) and eωtot(Ω)
performances. (f) Fault in low-speed shaft: influence on 1st mode. (g) Fault in low-speed shaft: FFT of
accelerometers. (h) Fault in low-speed shaft: phase difference.
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complex models of stiffness variation in terms of crack properties. The performance of the pro-
posed fault detection feature based on monitoring natural frequency variations from torsional
measurements in detection of low-speed shaft faults is compared with three conventional meth-
ods in literature based on accelerometers measurements. First, the frequency domain indicator
based on observing twice the running frequency component and the subharmonic resonance
[27; 36]; second, the variable phase difference between the time domain measurements of the
accelerometers placed on the two sides of shaft at the shaft rotational frequency component;
third, the r.m.s of time domain acceleration based on standard ISO 10816-21. The frequency
spectra of the two accelerometers placed on the two main bearings which support the main
shaft are shown in Fig. 4g. In this figure, the under consideration turbine has been working
with the nominal rotational speed which is 0.33Hz in the low-speed side. As it can be seen,
the main revolution frequency, the double frequency and the subharmonics do not show a sig-
nificant amplitude in the response. The insufficiency of frequency domain analysis in different
operating speeds in detecting shaft faults in the general rotor system is also reported in [26].
The other drawback with frequency domain analysis based on our observations is that due to
the low frequency content of the low-speed shaft faults, they can be mistaken with a wide range
of excitation frequencies due to environmental and structural motions induced vibrations which
happen in the low frequency range. The latter is the reason that the second method which is
the crack detection criterion based on the analysis of phase difference between the acceleration
measurements of the two sides of low-speed shaft is also not helpful. The Fig. 4h shows the
synchronized time domain acceleration measurements of AC1 and AC2 which are band-pass
filtered around the low-speed shaft rotational frequency. As it can be seen, the figure does not
represent any variation in the phase difference between these two signals. Monitoring of the
variations of the phase difference of the frequency component 0.33Hz is not guaranteed due
to the influence of the other frequency components which appear in response in this frequency
range. As it can be seen in the Table 11, the described abnormality cannot also be detected by
the third method which is the conventional time domain approach based on the evaluation of
the r.m.s value of the time series data of the translational vibrations.

Table 11: Acceleration r.m.s compared with the warning limits brought in standard ISO 10816-21.

Comparison
Sensor

AC1 AC2

Measured r.m.s (m/s2) 0.01 0.01
Standard r.m.s threshold (m/s2) 0.3 0.3

5. Conclusions

A condition monitoring approach bottomed on the coordination of a data-driven approach
for estimation of drivetrain dynamic properties based on signal processing of the torsional
measurements, and the analytical/physical model of drivetrain to extract the fault detection
features was presented. It was shown that only a reduced order 3-DOF model is enough to
detect different categories of drivetrain faults at system level.

The drivetrain modal estimation approach by using torsional measurements was analytically
explained and then validated by using both simulation and experimental studies, so that the
observability of natural frequencies and the estimation of damping coefficients for the different
natural frequencies and operating speeds were demonstrated by different investigated case stud-
ies. The estimated modes were later supporting the proposed drivetrain condition monitoring
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approach which works based on monitoring the variations of the system dynamic properties
and amplitude of response at the drivetrain torsional frequencies. The drivetrain system fault
detection features were extracted by sensitivity analysis and were tested by both 10MW driv-
etrain simulated model in Simpack software and 1.75MW Vestas operational turbine. The
results were showing that the progression state of different categories of drivetrain faults at
system level are observable in an early stage by the method developed based on 3-DOF equiv-
alent torsional model of the drivetrain, only by tracking the faults consequent variations in the
drivetrain dynamic properties.

The results demonstrate the potentials of torsional measurements for both drivetrain modal
estimation and system-level fault detection. The future work will be devoted to the application
of higher DOF torsional models as more detailed equivalent models of the drivetrain, which can
capture real-time variations in mesh stiffness and inertia of individual gears and intermediate
shafts, which can help to detect faults in those subcomponents by taking into account the
components internal dynamics.
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Appendix A. 3-DOF equivalent model dynamic properties as a function of model
parameters

The two undamped natural frequencies (nonrigid modes) based on 3-DOF lumped-mass-spring
model of a geared drivetrain, as functions of model parameters, can be calculated by

Ωtor
1 =

√√√√ kL
2Jr

+
kL + kH
2Jgr

+
kH
2Jgn

−
√
(
−kL
2Jr

− kL − kH
2Jgr

+
kH
2Jgn

)2 +
kLkH
J2
gr

, (A.1a)

Ωtor
2 =

√√√√ kL
2Jr

+
kL + kH
2Jgr

+
kH
2Jgn

+

√
(
−kL
2Jr

− kL − kH
2Jgr

+
kH
2Jgn

)2 +
kLkH
J2
gr

, (A.1b)

where Ωtor
1 and Ωtor

2 are the 1st and 2nd natural frequencies, kL and kH are the torsional stiffness
of low- and high-speed shafts, and Jr, Jgr and Jgn are the moment of inertia of rotor, gearbox
and generator, respectively.

The two normal modes related to the two non-rigid modes of the under consideration drivetrain
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model, as functions of model parameters, which are scaled to unity length are

ΨΩ1
rot =

√
k2L

k2
H

(kH−JgnA)2
+

k2
L

(kL−JrA)2
+1)

kL − JrA
, ΨΩ2

rot =

√
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kL − JrB
, (A.2a)
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ΨΩ1
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where

A = −
√
( kH
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− kL
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+ kH−kL
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+ kH
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.

ΨΩ1
rot, Ψ

Ω1
gear and ΨΩ1

gen are normal modes at rotor, gearbox and generator due to the 1st mode.

ΨΩ2
rot, Ψ

Ω2
gear and ΨΩ2

gen are the same parameters for the 2nd mode.

Appendix B. Sensitivity of natural frequencies to the system parameters

The equations describing the sensitivity of natural frequencies to the system parameters are
summarized as follows. For this case, there are two natural frequencies and five parameters
which results in ten different sensitivity functions.
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Appendix C. Sensitivity of normal modes to the system parameters

The sensitivity of normal modes to parameters variations can be defined for each element
of eigenvector associated to each eigenfrequency. Therefore, for the under consideration 3-
DOF model with two nonrigid modes, and five parameters of system, thirty different sensitivity
functions are derived. For instance, the sensitivity of the eigenvector element related to gearbox,
due to the 1st and 2nd modes, to variations in system parameters are brought as follows:

32



Snorm
5,1 =

−KL(
2KL(KL−JrA+KL(Jr(

2( 1
2Jgr

+ 1
2Jr

)P−KH
J2
gr

2Q
+ 1

2Jgr
+ 1

2Jr
)−1))

(KL−JrA)3
+

2JgnK2
H(

2( 1
2Jgr

+ 1
2Jr

)P−KH
J2
gr

2Q
+ 1

2Jgr
+ 1

2Jr
)

(KH−JgnA)3
)

2(
K2

H
(KH−JgnA)2

+
K2

L
(KL−JrA)2

+ 1)

(C.1)

Snorm
5,2 =

−KH(
2KH(KH−JgnA+KH(Jgn(

1
2Jgn

−
2( 1

2Jgn
+ 1

2Jgr
)P+

KL
J2
gr

2Q
+ 1

2Jgr
)−1))

(KH−JgnA)3
+

2JrK2
L(

1
2Jgn

−
2( 1

2Jgn
+ 1

2Jgr
)P+

KL
J2
gr

2Q
+ 1

2Jgr
)

(KL−JrA)3
)

2(
K2

H
(KH−JgnA)2

+
K2

L
(KL−JrA)2

+ 1)

(C.2)

Snorm
5,3 =

−Jr(
2K2

L(A−Jr(
KL
2J2

r
+

KLP

2J2
rQ

))

(KL−JrA)3
−

2JgnK2
H(

KL
2J2

r
+

KLP

2J2
rQ

)

(KH−JgnA)3
)

2(
K2

H
(KH−JgnA)2

+
K2

L
(KL−JrA)2

+ 1)
(C.3)

Snorm
5,4 =

−Jgr(
2JgnK2

H(

2KHKL
J3
gr

+
(KH−KL)P

J2
gr

2Q
−KH+KL

2J2
gr

)

(KH−JgnA)3
+

2JrK2
L(

2KHKL
J3
gr

+
(KH−KL)P

J2
gr

2Q
−KH+KL

2J2
gr

)

(KL−JrA)3
)

2(
K2

H
(KH−JgnA)2

+
K2

L
(KL−JrA)2

+ 1)
(C.4)

Snorm
5,5 =

−Jgn(
2K2

H(A−Jgn(
KH
2J2

gn
− KHP

2J2
gnQ

))

(KH−JgnA)3
−

2JrK2
L(

KH
2J2

gn
− KHP

2J2
gnQ

)

(KL−JrA)3
)

2(
K2

H
(KH−JgnA)2

+
K2

L
(KL−JrA)2

+ 1)
(C.5)

Snorm
6,1 =

−KL(
2KL(KL−JrB+KL(Jr(

1
2Jgr

−
2( 1

2Jgr
+ 1

2Jr
)P−KH

J2
gr

2Q
+ 1

2Jr
)−1))

(KL−JrB)3
+

2JgnK2
H( 1

2Jgr
−

2( 1
2Jgr

+ 1
2Jr

)P−KH
J2
gr

2Q
+ 1

2Jr
)

(KH−JgnB)3
)

2(
K2

H
(KH−JgnB)2

+
K2

L
(KL−JrB)2

+ 1)

(C.6)

Snorm
6,2 =

−KH(
2KH(KH−JgnB+(KH(Jgn(

2( 1
2Jgn

+ 1
2Jgr

)P+
KL
J2
gr

2Q
+ 1

2Jgn
+ 1

2Jgr
)−1)))

(KH−JgnB)3
+

2JrK2
L(

2( 1
2Jgn

+ 1
2Jgr

)P+
KL
J2
gr

2Q
+ 1

2Jgn
+ 1

2Jgr
)

(KL−JrB)3
)

2(
K2

H
(KH−JgnB)2

+
K2

L
(KL−JrB)2

+ 1)

(C.7)

Snorm
6,3 =

−Jr(
2K2

L(B−Jr(
KL
2J2

r
−KLP

2J2
rQ

))

(KL−JrB)3
−

2JgnK2
H(

KL
2J2

r
−KLP

2J2
rQ

)

(KH−JgnB)3
)

2(
K2

H
(KH−JgnB)2

+
K2

L
(KL−JrB)2

+ 1)
(C.8)

Snorm
6,4 =

Jgr(
2JgnK2

H(

2KHKL
J3
gr

+
(KH−KL)P

J2
gr

2Q
+

KH+KL
2J2

gr
)

(KH−JgnB)3
+

2JrK2
L(

2KHKL
J3
gr

+
(KH−KL)P

J2
gr

2Q
+

KH+KL
2J2

gr
)

(KL−JrB)3
)

2(
K2

H
(KH−JgnB)2

+
K2

L
(KL−JrB)2

+ 1)
(C.9)

33



Snorm
6,5 =

−Jgn(
2K2

H(B−Jgn(
KH
2J2

gn
+

KHP

2J2
gnQ

))

(KH−JgnB)3
−

2JrK2
L(

KH
2J2

gn
+

KHP

2J2
gnQ

)

(KL−JrB)3
)

2(
K2

H
(KH−JgnB)2

+
K2

L
(KL−JrB)2

+ 1)
(C.10)

where
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Appendix D. Sensitivity of amplitude of response at the natural frequencies to
the system parameters and loads

The sensitivity of amplitude of response at the natural frequencies to system parameters and
loads can be defined for the two natural frequencies with respect to the seven system parameters
and the two input/output loads which results in eighteen different cases. In the following, the
closed form equations of the sensitivity analysis associated to 1st and 2nd torsional frequencies
with respect to both the input and output loads are shown:
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A B S T R A C T

This paper presents a digital twin (DT) condition monitoring approach for drivetrains on floating

offshore wind turbines. digital twin in this context consists of torsional dynamic model, online mea-

surements and fatigue damage estimation which is used for remaining useful life (RUL) estimation.

At first methods for system parameter estimation are presented. The digital twin model provides suf-

ficient inputs for the load observers designed in specific points of the drivetrain to estimate the online

load and subsequently stress in the different components. The estimated real-time stress values feed

the degradation model of the components. The stochastic degradation model proposed for estima-

tion of real-time fatigue damage in the components is based on a proven model-base approach which

is tested under different drivetrain operations, namely normal, faulty and overload conditions. The

uncertainties in model, measurements and material properties are addressed, and confidence interval

for the estimations is provided by a detailed analysis on the signal behavior and using Monte Carlo

simulations. A test case, using 10𝑀𝑊 drivetrain, has been demonstrated.

1. Introduction
In order to realize EU’s goal of climate neutrality by 2050, the EU strategy is that 22% of electricity demand in Europe

(300𝐺𝑊 ∕1361𝐺𝑊 = 0.22) should be generated by offshore wind by 2050, [1] and [2]. A recent report confirms the

feasibility of this plan by showing that the levelized cost of energy (LCOE) of both onshore and offshore wind power

has dropped considerably in 2019, so that they along with solar photovoltaic (PV) power have been the cheapest form of

power generation in Europe, where yet there is a big gap between offshore and onshore [3] wind LCOE. The results of an

investigation performed by Beiter et al. [4] emphasizes on the operating expenditures (OPEX) as the main contributor to

this gap, so that OPEX in bottom-fixed offshore wind turbines is based on another study [5] in average twice higher than

the land-based turbines. There are yet very limited experiences with floating wind turbines (FWT) to estimate the actual

OPEX. The motivation of this research is increasing the wind turbine availability by performing predictive maintenance of

the drivetrain system and the subsequent reduction of unexpected maintenance and expensive offshore transport/operation

cost through digital twin (DT) monitoring and subsequent dynamic optimization of the turbine overhaul plan and scheduled

maintenance intervals. Predictive maintenance accounts for the components of the system with the highest risk of loss of

turbine availability. Power train system including rotor, main bearings, gearbox, generator and power converter accounts

for 57% of turbine total failures and 65% of turbine total downtime [6]. The drivetrain system in this study comprises rotor,

gearbox, generator, main and high-speed shafts, and main bearings, which together cause the majority of the total turbine

downtime. The overall consequences are expected to be higher in offshore and more specifically FWT which apply to higher

power ranges, contain larger components and are encountered with wider range of excitation sources. The real-time lifetime

monitoring of the critical drivetrain component for large FWT is expected to happen in near future [7].

According to the classification provided by Rausand et al. [8], predictive maintenance is a subcategory of condition-base

maintenance, which is based on assessment of remaining useful lifetime (RUL). The latter can be implemented for the turbine

critical components to set alarms based on the severity and deviation from the nominal lifetime to inform the operator to

take proper actions. The action can be integrated with the scheduled clock-base maintenance for further investigations. The

other possibility is to integrate the predictive maintenance outcomes to the farm-level decision making support to set the

operating point of units based on the turbines condition. Dependent on the risk, the action can also be integrated to the

protection system. DT models are proposed in the recent literature for both predictive and condition-base maintenance in

different application domains, e.g. in aerospace and aviation, oil& gas structures and marine transports industries. The

computationally fast equivalent models of the system components which update themselves based on the operational data
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facilitate the real-time inexpensive and even automated lifetime monitoring of the critical system components. These models

are expected to be able to properly capture the physical variations in system.

As discussed earlier, the nominal capacity of wind turbines and subsequently the rating and size of drivetrain components

is growing rapidly. The largest operational offshore wind turbine is currently 14𝑀𝑊 . FWT drivetrains are exposed to

the synergistic impacts of wind, wave, currents, structural motions-induced forces, power grid and their interactions with

the drivetrain internal dynamics. In order to deal with those complexities and for making offshore wind power a more

cost-effective solution by improving the turbine availability, utilization of DT models for monitoring the lifetime of the

drivetrain critical components which cause the highest risk in loss of turbine is emphasized. DT is a proven technology

used by Siemens Gamesa for prediction of drivetrain loads and subsequently improving the drivetrain design in 11𝑀𝑊
offshore wind turbine technology manufactured by this company [9]. DT modelling is proposed in the industrial revolution

Industry 4.0 [10] as the core of development process which can offer unlimited possibilities beyond the design process. The

possibility of online estimation of loads enables another potential application domain for DT models which is for monitoring

of the drivetrain components residual life, where DT is proposed for real-time estimation of the stress in different components

of the drivetrain, which can provide sufficient input for probabilistic physic-based/data-driven approaches for estimation of

RUL or probability of failure (PoF) of the individual components and system.

The focus of this research is proposing a drivetrain RUL prediction solution by the estimation of drivetrain equivalent real-

time DT model parameters and a subsequent monitoring of variations of stress concentration in different components of the

drivetrain, and employing the estimated stress values in probabilistic degradation models which can indicate the fatigue dam-

age in the components. DT in the predictive maintenance context means the combination of model, online measurements and

RUL model as defined and suggested by [11]. A starting point in realization of DT modelling for fault prognosis/diagnosis

purposes is to specify the critical failure modes of the drivetrain system components and then to identify the related fail-

ure criteria/feature by analyzing one or a combination of different categories of measurements, namely vibration analysis,

electrical signature (current and power signals), acoustic emissions analysis, thermography and temperature analysis, and

analysis of oil particles. Those measurements can also be used for indirect estimation of the loads from the load effects (vi-

bration, temperature, pressure, etc.) which can later be used by failure functions and degradation models. Nejad et al. [12]

discloses a vulnerability map for the drivetrain gearbox which sorts the drivetrain components from the highest to lowest

PoF, and discusses about the critical failure modes of each component. Sethuraman et al. [13] reports the critical failure

modes of the main bearings, whereas Liu et al. [14] investigates the critical failure modes of the generator.

In general, degradation models comprise two components, namely failure parameter estimation and RUL units. The failure

parameter can be directly measured by physical sensors or estimated by employment of either data-driven or physic-based

observers. Data-driven approaches depend on analysis of historical data and application of artificial intelligence in dif-

ferent operational and environmental condition and estimation of a parameter which is directly related to the components

lifetime heuristically and by analysis of the patterns observed based on the available data. More specifically, the artificial

intelligence techniques preform regression or correlation analysis with respect to the data of a sensor network and look out

for similarities, variations and deviations from a pattern in the dataset over the time. It is usually difficult to rely on the

results obtained from analyzing limited datasets, and not easy to extend the results to different operating conditions and

applications. However, physic-based approaches are based on the system physical rules of flow of energy in the components

and the resulted vibrations and temperature as the responses. Finding an efficient way to address complex dynamics and

transients, and various sources of uncertainties of the real problems by physical models is sometimes challenging. However,

owe to advances in analytical models and stochastic modelling techniques, improved and reliable physical models are the

preferred choice for engineering applications. Adjustability and adaptability of model complexity based on the application,

independency of results of historical data and confortability in defining meaningful thresholds are the other motivations for

sticking to physical models.

There are different approaches to realize DT models:

In the first approach, high fidelity physical models which are able to represent the full dynamics with respect to the under

consideration failure mode are created. Then the order of model is reduced to maintain the same results while the compu-

tational speed is improved. The reduced models are preferred to be implementable in microcontrollers and integrated with

turbine fully automated control and monitoring systems, where the operational measurements are also available. This model

is then supported by the operational measurements aimed to estimate the equivalent real-time load which degrades the com-

ponent with respect to the under consideration failure mode. The latter then plays the role as the input for failure functions

which can be a function of different failure modes of different components, and then model-based reliability analysis which

is able to capture the degradation and predict the RUL of a component or system by comparing the estimated stress and the

resistance of the components material due to the specified failure modes. Pedersen et al. [15] applies a similar approach

to predict RUL in offshore platform structures, where DT is a finite element model (FEM) which is updated by the online

estimation of modal parameters obtained by operational modal analysis (OMA). FEMs are computationally expensive mod-
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els. The latter makes these models not to be considered as a feasible solution for drivetrain condition monitoring which is

a complex system with a wide range of components. On the other side, drivetrain is a rotational system with a wide range

of components and defects and excitation frequencies, which cause OMA not to be the most efficient tool for estimation of

drivetrain dynamic properties. In this work, DT is considered as an analytical model which its complexity can be adjusted

based on the objectives of the model. The latter can reduce the computational complexity of DT model and facilitate the

implementation in real-time. For the modal estimation, the approach based on analysis of the torsional response proposed

by Moghadam et al. [16] is employed.

In the second approach, signal processing approaches including machine learning techniques (e.g. neural networks and

statistical learning approaches) are leveraged to extract the features which are able to capture the dynamics of various

failures. In this category, which is pointed with signal denoising and feature selection, RUL models are more based on

empirical models and mostly limited to historical data and based on the available observations of the system operation, so

that for a new system with limited observations in different operational conditions these methods might be impractical. As an

instance of this category, Herp et al. [17] uses a date-driven approach based on artificial neural networks (ANN) to estimate

response (in this case, bearing temperature form the turbine operational measurements). The residual life monitoring is

based on estimation and monitoring the variations of the statistical properties of the distribution fitting the PoF based on the

defined empirical hazard function. RUL is then empirically estimated based on the specified feature space and the defined

failure function supported by different categories of machine learning approaches, namely statistical learning and recurrent

neural networks. Statistical models are used for defining the RUL function and optimization problem, and neural networks

are employed for solving the optimization problem.

All these approaches are based on linking computation models with stochastic models. The resultant is able to relate the

variations in the computation model to the expected value of degradation and fatigue damage, and the PoF of the system

components [18]. If the stress time series is available, physic-base reliability approaches can be engaged to estimate RUL,

where stochastic models and signal processing techniques (mainly based on statistical learning and neural networks) can be

engaged to address uncertainties in the degradation model [19]. For the case of RUL estimation based on the feature space

and penalization of the deviation from the distribution of the feature space defined for the normal operation, for instance,

statistical learning approaches based on Bayesian method [20], particle filtering [21] and likelihood function [17] are used in

the literature for estimation of RUL of the wind turbine drivetrain components. Different classes of neural networks are also

proposed in the literature to support both the feature extraction and the probabilistic models proposed for RUL estimation,

[17] and [22].

This paper is based on a proven physic-base approach for degradation estimation, which is supported by statistical approaches

and stochastic models to address uncertainties to improve the accuracy. This method which relies on real-time measure-

ments, is computationally fast and can apply to different dirvetrain components and is not restricted by the operational

conditions.

The main purpose of this work is the proof of concept for the proposed DT model for residual life monitoring of the drivetrain

components. The input measurements come from the high fidelity models. The validation of the estimated model parameters

is performed by comparing the estimated parameters with the actual values. The RUL model is based on the proven physical

rules of stress concentration and degradation of the components material. As discussed earlier, DT models rely on real-time

operational measurements to update themselves. Due to the limited historical data of FWTs and the test facilities for high

power applications, the validation is limited to simulation studies, so that experimental validation of the proposed DT model

is looked as future work. In here, decoupled simulation technique is engaged. Where the turbine data is obtained from

10𝑀𝑊 spar global simulation model. The offline measurements then feed the drivetrain multi-body simulation (MBS)

model in simpack software, and the real-time response time series are used for estimation of DT parameters. The input

torque is applied to the model once from the global simulation outcome. Since in a real case, the input torque is not among

the accessible measurements, In another simulation, applied input torque is estimated from the accessible turbine and blade

parameters. The error in estimation of DT parameters by using the exact torque and estimated torque will be calculated.

The proposed method combines high fidelity models to generate the torsional response, reduced order models (ROM) to

represent as the DT of the system, signal processing approaches to estimate ROM parameters, and stochastic frameworks

to address uncertainties in the proposed DT model. High fidelity models are use to estimate the drivetrain loads from the

global simulations, and then to calculate the drivetrain response in the different bodies. The degradation model works based

on the updated DT parameters and online response measurements. The sources of uncertainty in the proposed DT model

mainly arise from the load estimation approach, and the estimation of fatigue damage by relying on the material properties

obtained from the S-N curve, which are sufficiently addressed by using statistical approaches and stochastic models based

on Kalman filtering and Monte Carlo simulations, respectively.

Johansen et al. [11] performs a preliminary study about the capacity of different simulation models with different levels

of complexity to play the role as drivetrain DT model for condition monitoring purposes. The criterion emphasized in
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that study is to achieve the same dynamic response by the equivalent model compared to the response from actual system.

The literature of drivetrain fault diagnosis is based on monitoring the performance of the individual components by using

the variations in physical parameters e.g. temperature and pressure. The latter is supported by the condition monitoring

systems based on three-axial measurements of acceleration in the different positions of the drivetrain to support the earlier

stage component-level fault detection in the drivetrain [23]. However, drivetrain is a rotary system with torsional responses.

In order to monitor the operation of drivetrain in system level, e.g. for detecting the faults in the drive line in early stage, the

possibility of using drivetrain torsional response is discussed in the recent literature, [16] and [24]. A drivetrain torsional

ROM identified based on the operational torsional measurements, can support fault diagnosis in the drivetrain, since the

drivetrain faults in the system-level show themselves by variations in ROM parameters (stiffness and moment of inertia)

and dynamic properties (torsional natural frequencies and normal modes), so that the threshold can be defined based on the

deviation from the reference values of these parameter estimated based on the system normal operations.

This paper is aimed at estimation of the drivetrain ROM parameters by using the torsional measurements. The model will

then be integrated with the real-time drivetrain measurements in a DT platform for updating the ROM parameters and

dynamic properties. The drivetrain real-time ROM estimated/identified from the torsional measurements can be used for

two purposes: First, for fault diagnosis and condition-base maintenance based on torsional response (see e.g. [16] and

[24]). In a direct way, by having access to the real-time values of system parameters, it is possible to define different fault

states of the different classes of progressive faults in terms of variations in the ROM parameters. Since these parameters

are directly representing the physical nature of the system and components, defining the threshold for different fault states

is straightforward. In an indirect way, the proposed algorithm helps to access a full knowledge on the real-time values of

drivetrain dynamic properties. The deviation from the dynamic properties can be used by the method proposed by [37]

to detect the drivetrain faults. The parameters of ROM are gradually updated based on the new data blocks, which help

to attain the updated values of dynamic properties. Second, for monitoring the drivetrain components residual life and

predictive maintenance, which is emphasized in this work. The uncertainties in the torsional response, load and DT model

parameters are taken into account, and the states/unnoisy response are estimated by using Kalman filter, where the output

provides the sufficient inputs for the designed load observers. As the following step, the load in different parts of this system

can be estimated by using the updated DT model parameters and designed load observers. The load observers are designed

by using the analytical model of the system and the ROM parameters fed by the operational measurements. The required

input for the proposed method are the torsional measurements including response and drivetrain applied loads. The torsional

response can be provided by encoders or strain gauges. It is assumed that the different types of torsional response can be

interchangeably used by performing derivation and integration operations. The main loads applied on the drivetrain are

the aerodynamic and generator torques. A good estimation of the generator torque is available due to the generator control

purposes. However, the measurement of aerodynamic torque is conventionally unavailable, but a good estimation can be

attained by using the available measurements. The error in estimation of ROM parameters in both cases of using the actual

value and the estimated value of aerodynamic torques as the input for the system identification approach is reported.

Based on the theoretical study in [16] and [37], a 3-DOF torsional model of the drivetrain is sufficient for detection of the

drivetrain system level faults. System-level faults are categorized into the faults which change the torsional stiffness the

most (e.g. crack in the shafts and bearing wear specially in gearbox), and faults which influence mostly the inertia of the

drivetrain bodies (changes in mass balance/distribution which can be due to e.g. loss of mass, wear and unbalance; and also

change in the axis of rotation which can be due to e.g. misalignment and looseness), which all can be observed by using

3-DOF ROM. This model is also the reference model for the degradation studies in the system-level as will be discussed

further. This model is used in this work for estimation of degradation in the drivetrain components. As the test case for the

proposed algorithm in this work, the estimated system parameters along with the angular velocity measurements are used

to design two observers for estimation of load in main- and high-speed shafts. The estimated torques will be then applied

as inputs to the shaft degradation models which are able to estimate the accumulated damage in the drivetrain shafts. The

shafts are the components that can directly contribute in the turbine downtime. They can also indirectly contribute by

causing the expedited degradation of the other drivetrain components [25]. Motivations for detection of shaft faults for

different applications e.g. ship propulsion and wind turbine drivetrain is discussed in the literature, (see e.g. [26] and [27]),

which is possible to arise from various conditions such as inappropriate use, stress concentration and unanticipated loading

conditions, improper prior fabrication, improper or inadequate design, inadequate maintenance or a combination of them,

all of which reduce the fatigue strength of the shaft [28]. Shaft carries all the load and is a core mechanical component

in the drivetrain, especially for FWTs which are encountered with high turbulent wind and larger variations of drivetrain

loads. In direct-drive technologies the main shaft is considered as a more critical component. A detailed investigation on

the wind turbine main shaft failure modes, failure rate, consequences, and economic justifications for monitoring the main

shaft lifetime are discussed in [26]. The consequences of shaft failures are usually high. Damaged shafts can also cause

excessive vibrations in the other turbine-generator components, so that monitoring of their operation is important. In the

literature, shaft fatigue damage due to different failure modes is discussed. Rauert et al. [30] focuses on fretting-fatigue-

damage which is described by the product of the frictional shear stress and tangential tensile stress. Zhang et al. [29]
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presents the fracture analysis of the wind turbine main shaft. That study considers torsion, transverse moment and axial

force, and estimates equivalent stress. All these studies agree on shear stress as the main role player in the shaft degradation

while the bending stress can exacerbate the damage. Based on those studies, the critical step for the shaft fatigue damage

estimation is monitoring the shear stress concentration. The main shaft is generally supported by two main bearings in high

power drivetrain technologies. The main shaft is designed to meet the requirements of deflections and rigidity [31]. In the

detailed design, the main shaft model includes a rotational shaft transmitting the torsional torque due to the rotor main torque

component and a fixed shaft supporting the bending moment due to the shaft weight [32]. The equivalent stress can then be

estimated by applying the von Mises theory. Safety factors are selected and applied according to the specific material type

in EN10083 standard [33]. The same procedure is followed, so that the fatigue damage due to cyclic torsional-bending load

is focused in estimations of shaft residual life in this study.

An innovative drivetrain health monitoring approach based on estimation of residual life of the components is proposed by

using the torsional measurements and digital twin modeling. Drivetrain model identification by using torsional measure-

ments, and application of the real-time estimated DT model for estimation of load and residual life of the components is the

main goal of this work. The method is designed in the general form for n-DOF torsional model of the drivetrain, and then

developed by using 3-DOF torsional model as the drivetrain DT for monitoring the residual life of main and high-speed

shafts. An algorithm is proposed for the model identification, which receives the torsional response and the estimated rotor

and generator torques, and estimates the drivetrain ROM parameters and dynamic properties. The proposed method is com-

putationally fast, and can be implemented in the farm level. The method can be adjusted based on higher DOF models to

monitor the lifetime of different drivetrain components. For demonstration purposes, the algorithm is designed and tested

for monitoring the lifetime of shafts in the drivetrain system. This approach is in particular useful for operators with limited

knowledge of the drivetrain dynamic parameters, as we propose a method for model estimation first - in other words the

approach is not limited to have all the drivetrain design data. On this basis, the main contributions of this work are:

1. Proposing a computationally fast digital twin model of the drivetrain system based on the torsional measurements,

aimed at monitoring the residual life of the components, and defining the estimation error margin by using stochastic

models,

2. Proposing a robust estimator for online estimation of digital twin model parameters,

3. Proposing a stochastic physic-base degradation model for estimation of RUL in the drivetrain main shaft by using

the online estimated ROM, real-time operational measurements, designed load observer and equivalent stress estima-

tion approach, and taking into consideration the various sources of uncertainty by using statistical approaches and a

stochastic modelling.

The rest of paper is organized as follows: In Section II, the drivetrain DT model and the online estimation of ROM parameters

by using the torsional response and aerodynamic torque observer is discussed. Then, in the rest of this Section, the design

of real-time load observers for the drivetrain components by using DT model and operational measurements, the estimation

of equivalent stress and then the degradation model is explained. The proposed DT model estimation approach and its

application for monitoring of drivetrain components residual life is evaluated by the simulation studies in Section III. The

work is closed with the final remarks in Section IV.

2. Methodology
2.1. Global simulation and drivetrain loads
DTU 10𝑀𝑊 reference wind turbine [34] with a spar floating support substructure is selected for this study. The wind

turbine specification and the overall characteristics of the floating platform is obtained from [34] and [35]. This model

is able to capture the global dynamics of spar FWT from the interactions with the environmental loads. The drivetrain

system is a medium-speed permanent magnet synchronous generator technology based on the gearbox and generator design

specifications reported by Moghadam et al. [36]. The decoupled simulation approach is used for the drivetrain studies in

this work, which consists of two steps. In the first step, global simulation analysis for different environmental conditions is

performed. In the global simulation, the blades and hub assembly, the structural module including the flexible multi-body

systems for tower and platform including the floating support substructure and the nacelle are modelled. This model is coping

with combined aerodynamic and hydrodynamic loading by using numerical and probabilistic models of wind, waves and

current in the global simulation software to capture the integrated effect of the loads and the wind turbine control system

on the turbine components. The results of the global simulation are the load effects on different parts of turbine, which

contain the information about the interactions between the turbine subsystems. The latter includes the loads transmitted

to the drivetrain by the rotor and structure specified by the time series of the resultant moments and forces on the rotor,

tower top accelerations and other responses of interest. The second step of the decoupled analysis is that the calculated rotor

aerodynamic torque and other responses of interest estimated from global simulation are applied as the input to an offline
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drivetrain model in mechanical/electrical machinery simulation software to calculate and analyse the drivetrain components

local dynamic responses. Then the drivetrain local load effects are obtained for further post processing aimed at health

monitoring of the drivetrain system based on monitoring the critical components residual life. The wind model in the global

simulations is turbulent based on Kaimal distribution. The turbulence intensity at hub height 𝐼 (−) is assumed to be 0.14.

The wave is modelled stochastic by two parameters, namely significant wave height𝐻𝑠 (𝑚) and peak period 𝑇𝑝 (𝑠) in global

analysis.

2.2. Estimation of the drivetrain model parameters and dynamic properties
The proposed algorithm for estimation of the drivetrain equivalent ROM and dynamic properties is summarized by the

flowchart illustrated in Fig. 1. In the following, the different components of the algorithm are described.

� �

� �

�

�

� �

�

Figure 1: Proposed algorithm for estimation of drivetrain equivalent model parameters.
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2.2.1. Drivetrain modal estimation
The free vibration time-domain torsional response of n-DOF damped rotational system in terms of the system dynamic

properties can be represented by

𝜽(𝑡) =
𝑛∑
𝑖=1

𝒂𝑖𝑒−𝜻
𝑖𝝎𝑖𝑡𝚿𝑖 sin(𝝎𝐝

𝑖𝑡 + 𝝓𝑖), (1)

where 𝜽 is a vector representing response in different DOFs. The amplitude coefficients 𝒂𝑖 and phase shifts𝝓𝑖 are determined

by the initial conditions of angular displacements and velocities. The complex mode shape vectors 𝜳 𝑖, the undamped natural

frequencies 𝝎𝑖, and the damping coefficients 𝜻 𝑖 are all representing the dynamic properties of the system which all are

functions of physical parameters of the system and not the loading or initial conditions. The damped natural frequencies

𝝎𝒅
𝑖 can also be related to the undamped frequencies by using the damping coefficients as

𝝎𝐝
𝑖 = 𝝎𝑖

√
1 − (𝜻 𝑖)2. (2)

As mentioned earlier, the drivetrain dynamic properties can each be represented as a function of system parameters. In

[37], the closed form equations of the reference 3-DOF model dynamic properties as a function of model parameters are

derived. By this method, it is possible to achieve a full dynamic characterization of the drivetrain system by specification of

natural frequencies, mode shapes and damping in the system. By estimation of the model parameters by using the torsional

measurements and the theory developed in the continued parts of this section, it is possible to access a full knowledge on

the system dynamic properties, which can be used as input for the drivetrain system fault detection method proposed by

[16] and [37]. Among the dynamic properties, the natural frequencies can also be directly estimated by using the torsional

response [16], which are later used as inputs for the proposed system identification approach.

The torsional response residual function between the inertias 𝑗𝑙 and 𝑗𝑚 from the point 𝑙 is defined as [37]

𝒆𝛀
𝒍,𝒎

(𝑡) ≜ 𝛀𝒍(𝑡) − 𝑢𝑙,𝑚𝛀𝒎(𝑡), for 𝑙 𝑎𝑛𝑑 𝑚 ∈ {1,… , 𝑛}, (3)

with 𝜴 as the time series of angular velocity, and 𝑢𝑙,𝑚 as the relative gear ratio between 𝑗𝑙 and 𝑗𝑚 to make them in the same

coordinate. Gear ratio 𝑢𝑙,𝑚 as per definition is
𝑁𝑙
𝑁𝑚

, where 𝑁𝑙 and 𝑁𝑚 are the speeds at 𝑙𝑡ℎ and 𝑚𝑡ℎ inertias. The analytical

proof of estimation of natural frequencies from the frequency spectrum of 𝑒𝛺
𝑙,𝑚

is provided by [37].

2.2.2. Estimation of moment of inertia matrix
As the first step, the general damped n-DOF torsional dynamical model of drivetrain is constructed. The summation of the

moments on each inertia in the lumped parameter model yields 𝑛 equations of the form

𝑗𝑖�̈�𝑖(𝑡) + 𝐶𝑖
(
�̇�𝑖(𝑡) − �̇�𝑖−1(𝑡)

)
− 𝐶𝑖+1

(
�̇�𝑖+1(𝑡) − �̇�𝑖(𝑡)

)
+ 𝑘𝑖(𝜽𝑖(𝑡) − 𝜽𝑖−1(𝑡)) − 𝑘𝑖+1(𝜽𝑖+1(𝑡) − 𝜽𝑖(𝑡)) = 𝑇𝑖(𝑡) for 𝑖 = (1,… , 𝑛)

(4)

where 𝜽𝑖 is the angular displacement at 𝑖𝑡ℎ body. 𝑗𝑖 is the inertia of 𝑖𝑡ℎ body. 𝑘𝑖 is the equivalent stiffness between (𝑖 − 1)𝑡ℎ
and 𝑖𝑡ℎ bodies. 𝑘𝑖+1 is the equivalent stiffness between 𝑖𝑡ℎ and (𝑖 + 1)𝑡ℎ bodies. 𝑇𝑖 is the external excitation applied to the

𝑖𝑡ℎ body. In the matrix form, these set of equations can be written as

𝐉�̈� (𝒕)+ 𝐂�̇� (𝒕)+𝐊𝜣 (𝒕)=𝐓(𝑡). (5)

where 𝐉, 𝐂 and𝐊 are the moment of inertia, damping and stiffness matrices with the size 𝑛 × 𝑛. 𝜣 and 𝑻 are the response and

load vectors with the size 𝑛 × 1, where each element of these two vectors represents a time series data. This model alongside

the torsional measurements provide the inputs for the drivetrain model parameter estimation approach. The optimization

variables are 𝐉, 𝐂 and 𝐊 matrices which are the drivetrain equivalent lumped model parameters. The sparsity of the matrix

variables 𝐉, 𝐂 and 𝐊 are specified based on the drivetrain topology and is imposed to the optimization problem. Assuming

that the load and response time series are known, the parameter estimation turns to the minimization of the 𝐿2-norm of

error. The error function is defined by

𝑬 (𝑡) ≜ �̂��̈� (𝑡)+ �̂��̇� (𝑡)+ �̂�𝜣 (𝑡)−𝐓(t). (6)

The least square estimator is defined by

�̂�
𝐋𝐒
, �̂�

𝐋𝐒
, �̂�

𝐋𝐒
∈ arg min{‖𝑬‖𝟐}

𝐉,𝐊,𝐂 ≥ 𝟎
𝐉𝑙,𝑚 ∈ 𝑺𝐉

𝐊𝑙,𝑚 ∈ 𝑺𝐊

𝐂𝑙,𝑚 ∈ 𝑺𝐂

, (7)
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where 𝑺𝐉, 𝑺𝐊 and 𝑺𝐂 are the sparsity sets of matrices 𝐉, 𝐊 and 𝐂. The matrix 𝐉 is diagonal. 𝐊 and 𝐂 are non-diagonal

symmetric matrices, but are not full rank. The latter causes computational difficulty for the above quadratic matrix opti-

mization problem, so that it may result in the divergence of the numerical solver. To be more specific, these terms can

introduce larger perturbations into the calculations than its numerically stable counterpart; this can lead to larger errors in

the final computed solution. In order to remove the coupling between the equations due to the 𝐊 and 𝐂 terms, to cope

with the round-off error which arises from the ill-condition terms of model, and to reduce the computational complexity by

reduction of the number of variables, the equivalent scalar optimization problem is constructed by the sum of the dynamic

equations (4) of each inertia, which leads to the elimination of stiffness and damping from the resultant scalar equation. The

latter leads to the following error function in terms of the inertia variables 𝑗𝑖 as the model scalar variables and torsional

measurements time-series as input, with rotor as the reference of the rotary coordinate.

𝒆 (𝑡) = 𝑗1�̇�1 (𝑡) +⋯ + 𝑢1,𝑖𝑗𝑖�̇�𝑖 (𝑡) +⋯ + 𝑢1,𝑛𝑗𝑛�̇�𝑛 (𝑡)− 𝑇𝑟 (𝑡)− 𝑢1,𝑛𝑇 𝑔𝑛 (𝑡) , (8)

where �̇�𝑖 is the time series of angular acceleration and 𝑗𝑖 is the moment of inertia of the 𝑖𝑡ℎ DOF. 𝑻𝒓 and 𝑻𝒈𝒏 are the time

series of the rotor and generator torques, respectively. The response used in this equation is the angular acceleration which

can be obtained by applying a derivation operation on the angular velocity measurements, or the second derivation on the

angular displacement measurements. The sign of 𝑢1,𝑖 is determined based on the direction of rotation of 𝑗𝑖. Since the real-

time values of response is known, the inertia parameters can be estimated by minimizing the square error between the model

and measurements. The average of the squares of the errors — that is, the average squared difference between the estimated

values as the model outputs and the actual value as the sensor measurements is defined as least squares produces best linear

unbiased estimators of the coefficients in a linear regression model. Therefore, a least-square-error (LSE) function is defined

to minimize the error between the dual optimization problem and input operational measurements. The latter leads to the

following quadratic scalar optimization problem as

�̂�
LS

= arg min{‖𝒆‖𝟐}
𝒋 ≥ 0

. (9)

This estimator is robust to the measurement noises, and can provide a good approximation even with less than 𝑛 input

data samples (underdetermined case). For the case of more than 𝑛 samples (overdetermined case), this estimator helps to

obtain more accurate estimation than solving the linear equations, when the input measurements are subject to independent

and identically distributed (IID) Gaussian noise. In other words, the total LS technique is able to correct the system with

minimum perturbation [38]. The above convex multi-variate scalar optimization problem is numerically solved by Matlab

CVX and the global optimizer 𝒋𝐿𝑆 = {𝑗1, . . . , 𝑗𝑛} is estimated. Since this 𝐿2-norm regression optimization problem is in a

quadratic convex form, the results which are the estimated values of the drivetrain ROM inertia parameters are the global

optimizers of the problem.

The maximum likelihood estimator (MLE) defined by the following maximization problem can also be used, which is

mathematically equivalent to the LSE problem defined by eq. (9), for the special case of Gaussian noise.

�̂�
𝑀𝐿

= 𝐿(𝒆(1), ..., 𝒆(𝑡); 𝑗1, ..., 𝑗𝑛, 𝜎2) = arg max{ 1
(2𝜋)𝑡∕2𝜎𝑡

𝑒𝑥𝑝( −1
2𝜎2

‖𝒆‖2)} ≡ arg min{‖𝒆‖2} (10)

where 𝜎 is the standard deviation of the Gaussian distribution fitting the noise. To use MLE to estimate those parameters,

the method is restricted to the assumption that the form of the distribution of the random noise defined by the error function

𝐞(𝑡) is known, so that the likelihood function can be obtained. Based on the extensive simulations, the error calculated from

the torsional measurements in the under consideration application shows a near Gaussian distribution. Therefore, both LSE

and MLE estimators lead to the similar set of results.

2.2.3. Estimation of stiffness matrix
Afterwards, the stiffness parameters of the model are estimated by using the estimated inertias and the drivetrain resonance

frequencies estimated from the torsional measurements in the previous steps. The undamped torsional frequencies of the

system are the nonlinear function of inertia and stiffness as

𝝎𝑖 (𝑓𝑜𝑟 𝑖 = 1,… , 𝑛) =
√
𝑒𝑖𝑔(−𝐉−1𝐊). (11)

By using the estimated natural frequencies obtained from the modal estimation approach together with the estimated inertia

matrix 𝐉 from the LSE optimization problem, the stiffness matrix 𝐊 is the root of 𝒈𝑖 which is defined by the following

nonlinear equation as

𝒈𝑖 = 𝝎𝑖
2 − 𝑒𝑖𝑔(−𝐉−1𝐊), (𝑓𝑜𝑟 𝑖 = 1,… , 𝑛). (12)
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In general, there is not a unique matrix 𝐊 from the above equation for the known set of eigenvalues 𝝀𝒊 = {𝜔1
2,… , 𝜔𝑛

2} of

the matrix −𝐉−1𝐊. However, by imposing the sparsity and symmetricity to matrix 𝐊 from the lumped model, it is possible

to calculate the unique matrix 𝐊 numerically by using Matlab fsolve solver. The latter also helps to reduce commutation

cost of this matrix algebraic equation by reducing the number of variables from 𝑛2 to 𝑛. The matrix 𝐉−1𝐊 is not symmetric

in the general case which may give the sense that there are multiple answers for 𝐊 from this equation. However the fact that

−𝐉−1𝐊 always has positive eigenvalues (it is positive definite), brings us to the believe that this matrix is a small perturbation

of a symmetric matrix with positive eigenvalues. Small perturbation keeps the eigenvalues positive [39].

The usual condition for the estimation problem is more restrictive. In other words, it is possible that only some of the

eigenfrequencies of the drivetrain system can be estimated by employing the aforedescribed modal estimation approach,

especially the higher eigenfrequencies which are excited with a lower energy of the input torque. In this case, the matrix 𝐊
can still be estimated by using the following optimization problem in terms of the first 𝑖 eigenfrequencies as defined by the

following least square error estimator:

�̂�
LS

= arg min{‖‖𝝀𝑖 − 𝑒𝑖𝑔(𝚲, 𝑖)‖‖𝟐}
𝚲 ∈ 𝛬

, (13)

with 𝚲 is the variable of this problem which is a function of the unknown variable 𝐊 as 𝚲 = −𝐉−1𝐊. Also �̂�
𝐿𝑆

is the set

of nonzero elements of matrix 𝐊 which are estimated by the above nonlinear matrix optimization problem. The sign of the

elements of 𝒌 are forced in the optimization problem. 𝝀𝑖 is the set of 𝑖 (i ∈ {1,… , n}) smallest magnitude eigenvalues which

are known from the modal estimation, 𝝀𝑖 = {𝜔1
2,… , 𝜔𝑖

2}. 𝑒𝑖𝑔(𝚲, 𝑖) is the set of 𝑖 (i ∈ {1,… , n}) smallest magnitude

eigenvalues defined in terms of matrix 𝐉 and the unknown matrix 𝐊. The feasible set Λ is also defined by

Λ = {𝚲 ∶ 𝚲 ∈ ℝ𝑛×n, 𝐊 ≥ 𝟎, 𝚲𝑙,𝑚 = 0, ∀ 𝚲𝑙,𝑚 ∈ 𝑺𝚲}, (14)

where 𝑺𝚲 is the sparsity set of matrix 𝚲. The positive definiteness and sparsity of 𝚲 are the nonlinear constraints which are

imposed to this problem. For the set of positive semidefinite matrices, this problem is convex and the solution is the global

optimizer. However, 𝚲 is not symmetric in general so that the definition of the problem is nonconvex for the numerical

solvers and convex optimization tools are not able to numerically solve the problem. For this purpose, Matlab fmincon

solver as a powerful tool for the general class of nonlinear nonconvex problems is used.

The estimation of undamped natural frequencies and damping coefficients from the torsional measurements is discussed in

the algorithm proposed by [16]. For the system with n-DOF, the system has 𝑛 − 1 nonrigid torsional modes. The latter

leads to 𝑛 − 1 nonlinear equations which are the undamped natural frequencies as nonlinear functions of equivalent model

inertia and stiffness links. These set of nonlinear equations are numerically solved, and 𝑛 equivalent stiffness seen by each

body are estimated. The estimated values of stiffness parameters of the main diagonal of the matrix, by considering both the

natural frequencies and inertia parameters estimation errors. When the degree of the model increases, it is not easy to access

the closed form of these 𝑛 nonlinear equations, so that one may decide to solve the equations numerically in matrix form.

The increase of the degree of model increases the algorithm computationally more expensive but can provide more detailed

DT model for condition monitoring of the different drivetrain subcomponents. As discussed earlier, 3-DOF model can be

used for the drivetrain system-level faults. This model can also be used for lifetime monitoring of the drivetrain main and

high-speed shafts. The estimation of 3-DOF model parameters and dynamic properties by this approach needs an additional

torsional measurement installed on the gearbox input or output shafts. fault prognosis e.g. for shaft crack may be performed

by using more detailed models (e.g. finite element models) able to better model the stress concentration in the crack side

in the nonuniform shape of shafts. In order to compromise between the complexity and accuracy in this application and

for providing a rough estimation of RUL by using a method implementable by turbine on-board automation system, 3-

DOF model is proposed. The summary of the proposed algorithm adjusted for estimation of 3-DOF model parameters and

dynamic properties from the torsional measurements is presented by Fig. 1. In this case, the nonlinear matrix equation

represented by eq. (13) is reduced to the two nonlinear scalar equations for the two nonrigid modes as [37]

𝐹1(kL, kH) = 𝜔1 −

√√√√ kL
2Jr

+
kL + kH
2Jgr

+
kH
2Jgn

−

√
(
−kL
2Jr

−
kL − kH
2Jgr

+
kH
2Jgn

)2 +
kLkH
J2gr

, (15a)

𝐹2(kL, kH) = 𝜔2 −

√√√√ kL
2Jr

+
kL + kH
2Jgr

+
kH
2Jgn

+

√
(
−kL
2Jr

−
kL − kH
2Jgr

+
kH
2Jgn

)2 +
kLkH
J2gr

. (15b)

By solving these two nonlinear equations, the values of 𝑘𝐿 and 𝑘𝐻 which are respectively the stiffness of main and high-

speed shafts are estimated. For all 𝑘𝐿, 𝑘𝐻 ∈ 𝑅+, there is a unique solution for the above set of nonlinear equations which
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Figure 2: Estimation of aerodynamic torque from the turbine measurements and airfoil characteristics.

make it easy to numerically solve the equations. In case of access to the preliminary values of the parameters, these two

equations can be approximated with the affine functions by using the two first Taylor series terms

𝐹1(kL, kH) ≈ 𝐹1(kL
∗, kH

∗) + (kL − kL
∗)𝐹1kL(kL

∗, kH
∗) + (kH − kH

∗)𝐹1kH(kL
∗, kH

∗), (16a)

𝐹2(kL, kH) ≈ 𝐹2(kL
∗, kH

∗) + (kL − kL
∗)𝐹2kL(kL

∗, kH
∗) + (kH − kH

∗)𝐹2kH(kL
∗, kH

∗). (16b)

Note that 𝐹kL and 𝐹kH are the partial derivatives of 𝐹 with respect to 𝑘𝐿 and 𝑘𝐻 , which their values should be updated

based on the new values of natural frequencies and inertia parameters.

2.2.4. Inputs of the proposed parameter estimation approach
The input data can be classified into two categories: first, the torsional response time series of the bodies, which are obtained

from the drivetrain MBS model in Simpack. Second, the drivetrain loads consisting of the generator and rotor torques time

series. The generator torque is a measurement available in the turbine for the generator control purposes. The generator

torque is estimated from the generator electrical measurements, and available in turbine main control unit. The generator

reference torque is calculated from the following equation

𝑇 ∗
𝑔𝑛 =

𝑃 ∗

Ω𝑔𝑛
, (17)

where 𝑃 ∗ is the reference power and𝛺𝑔𝑛 is the generator speed. 𝑇 ∗
𝑔𝑛 is then used for the design of generator internal current

control loop by using the equation

𝑖𝑞
∗ =

2𝑇 ∗
𝑔𝑛

3Ω𝑔𝑛𝑝𝜙𝑓
. (18)

where 𝑖𝑞
∗ is the reference q-axis current in rotating dq frame, used for the generator current control loop. 𝑝 is the number of

poles pairs, and 𝜙𝑓 is the flux linkage. The resulted electromagnetic torque on the shaft is calculated by using the measured

current 𝑖𝑞 as

𝑇𝑔𝑛 =
3
2
𝑝𝜙𝑓 𝑖𝑞. (19)

The aerodynamic torque applied to the drivetrain MBS model in Simpack is obtained from the global simulations. This

torque is considered as the the applied torque on the drivetrain model. However, in the real case the real value of applied

aerodynamic torque is not available, but a estimation can be available by using the turbine operational measurements and

general information of the airfoil. The estimated torque is applied as the input to the drivetrain model identification approach.

The algorithm for aerodynamic torque estimation approach is illustrated by flowchart shown in Fig. 2.

About the practicality issues of implementing this idea in current turbines, Supervisory Control and Data Acquisition

(SCADA) existing system contains the encoder measurements, but implementation of the method needs higher resolu-

tion angular velocity measurements than what is available today from SCADA. SCADA data contains generator torque that

is calculated from voltage and electric current. A good estimation of the rotor torque can also be available by using the

available turbine measurements from SCADA.
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2.2.5. Estimation error and confidence interval
The computational complexity of the proposed approach is proportional to the length 𝑡 of the data block. In order to check

the estimation accuracy versus the number of samples, the relative estimation error of each estimated parameter should

be monitored versus different lengths of input data. To mitigate the influence of uncertainty in the input measurements

in the estimated error, the crude Monte Carlo simulation is employed. The concept behind this is to make the calculated

estimation error independent of the uncertainty in the input data. The model estimated parameter 𝑦 is a random variable.

Zero overlapping is allowed for the input data blocks which help to be able to assume that the estimated parameters are

statistically independent. For the case that the data is captured during the similar operational conditions with respect to

the operational speed, the response and subsequently the estimated parameters can be assumed to be identically distributed.

Therefore, such rules in setting the test condition, will help to make the realistic assumption that 𝑦 is IID. These conditions

help to attain the confidence interval for the estimation error by using the results of IID central limit theorem (CLT). If

𝜀1, ..., 𝜀𝑟 ∈ 𝑅 are the errors in estimation of 𝑦 based on 𝑟 different blocks of input data each with the length 𝑡, with 𝛽%
confidence, the estimation error locates in the interval [40]

{𝜀𝑡𝑟}𝑦 ∈ [�̂�𝑙 − 𝜙−1(1 − 𝛽∕2)
𝑠√
𝑟

�̂�𝑙 + 𝜙−1(1 − 𝛽∕2)
𝑠√
𝑟
], (20)

where {𝜀𝑡𝑟}𝑦 is the average error associated with parameter 𝑦 calculated based on 𝑡 samples of data and 𝑟 blocks of data. 𝜇

and 𝑠 are the average and standard deviation of 𝜀𝑖, 𝑓𝑜𝑟 𝑖 = (1, ..., 𝑟). Therefore to achieve a specific level of estimation

error 𝜀
𝑡
𝑟 with a specific confidence 𝛽%, the number of data blocks can be analytically acquired. The size of each block can

also influence on the covariance, so that the larger the block of data, the easier to attain a specific accuracy.

Finally by using the estimated parameters, the eigenvectors associated to each natural frequency can be estimated. The

results are the drivetrain ROM parameters and dynamic properties. The DT model parameters and the drivetrain dynamic

properties are updated over the time by using the online measurements, to be used for fault diagnosis and prognosis purposes.

The estimated drivetrain dynamic properties supported with the model parameters can be used for drivetrain fault diagnosis

algorithm as discussed in [37], where the estimated DT model is used first to suuport modal estimation, and then to establish

analytical features and threshold for fault detection by establishing the relationship between the dynamic properties and

physical variations/faults in system. In this paper, the estimated DT model is used to provide inputs for the proposed

drivetrain lifetime monitoring approach. Therefore, the estimated model feeds the load observers designed for estimation

of load in main and high-speed shafts as elaborated in the following.

2.3. Drivetrain remaining useful lifetime monitoring
The possibility of estimation of load in the different drivetrain components depends of the model complexity and its capacity

in representing the internal dynamics. By using the 3-DOF model it is possible to estimate the real-time loading and

equivalent stress on the drivetrain main and high-speed shafts, which helps to estimate the residual life of these shafts

by physic-base estimation of fatigue damage. Stiffness-related faults and more specifically shaft cracks are among the

prevalent and influential system-level faults (see [19]) which are selected in this study, and predictive maintenance algorithm

is developed accordingly. The procedure used for online estimation of stress and the shafts degradation by using the model

estimated in Section 2.2 is summarized in Fig. 3, which is described in the following.

2.3.1. Estimation of load and stress
The estimation of load and stress in the drivetrain components is based on real-time operational data and the online estimated

ROM model to design the load observers. Then the load observers are used to calculate stress and subsequently damage.

Dependent on the degree of the DT model, the algorithm can be adjusted for lifetime monitoring of different components

of the drivetrain. The algorithm shown is based on 3-DOF DT model and is able to estimate the online load in the main

and high-speed shafts and measures RUL based on the loading on the shafts. As can be seen, two torque observers are

designed to estimate the main and high-speed shafts torques by using the torsional measurements and updated values of

torsional stiffness parameters from the DT model. By using the estimated loads by the observers, the maximum equivalent

stress throughout the two shafts is calculated. The latter provides sufficient inputs for estimation of the fatigue damage and

residual life of the two shafts.

In order to account for the statistical uncertainties due to both the measurements noise and estimation error of model param-

eters, the torsional measurements as the inputs of the load observers are estimated by using Kalman filtering. This technique

is used to preprocess the input torsional response applied to the degradation model, by cancellation of background noises

and the model uncertainties. The assumed linear state-space model as the input numerical model applied to the Kalman

filter is obtained by applying the generalized coordinate approach as

�̇� = 𝐀𝐱 + 𝐁𝐮 + 𝐰, (𝑆𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) (21a)

𝐳 = 𝐇𝐱 + 𝐯, (𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) (21b)
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Figure 3: Estimation of drivetrain components RUL by using DT model, torsional measurements and stress-life method.

𝐱 =
[
�̇�

𝜽

]
, 𝐀 =

[
𝟎 𝐈

−𝐉−1𝐊 −𝐉−1𝐂

] [
�̇�

𝜽

]
, 𝐁 =

[
𝟎
𝐉−1

]
, (21c)

where 𝐱 and 𝐳 represent states and measurements, respectively. 𝐀, 𝐁 and 𝐇 are describing the expected relation between

the measurements, states, and inputs. 𝐇 is the identity matrix. 𝐰 and 𝐯 are Gaussian, uncorrelated noise sources, which

correspond to the uncertainty on the model and measurements, respectively. The desired result is an improved estimate of

the system state vector 𝐱 by realization of discrete Kalman filter. At each discretized time step 𝑘, the following procedure is

performed to estimate the torsional response by considering the uncertainties in the model and input measurements.

𝐱(𝑘) = 𝐀𝐱(𝑘 − 1) + 𝐁𝐮(𝑘 − 1), 𝐏(𝑘) = 𝐀𝐏(𝑘 − 1)𝐀′ +𝐐 (22)

where 𝐱(𝑘) and 𝐏(𝑘) are the state vector and its covariance matrix at 𝑘, respectively. 𝐀′ is the transpose of matrix𝐀. Then the

Kalman gain is calculated, and subsequently, the estimated states are corrected by the following equations and the calculated

Kalman gain factors 𝐆 as

𝐆 = 𝐏𝐇′(𝐇𝐏𝐇′ + 𝐑)−1, 𝐱 = 𝐱 +𝐆(𝐳 −𝐇𝐱), 𝐏 = 𝐏 −𝐆𝐇𝐏. (23)

In the above equations, 𝐐 is the covariance of process noise, and 𝐑 is the covariance of measurements noise. The Kalman

filtering operation is summarized in Fig. 3. The measurement and process noises are both modeled by Gaussian distributions.

The eq. 23 is used to calculate the proper value of Kalman filter gain which is then used to attain the improved estimation

of the angular displacements by considering the system uncertainties.

The next step is the design of load observers for the main and high-speed shafts. The torsional moment on the low- and

high-speed shafts is estimated based on the following equations

TLSS = kLS(𝜃r − 𝜃gr) + cLS(Ωr − Ωgr), (24a)
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THSS = kHS(𝜃gr − 𝜃gn) + cHS(Ωgr − Ωgn), (24b)

where 𝑇𝐿𝑆𝑆 and 𝑇𝐻𝑆𝑆 are the equivalent torque on the low- and high-speed shafts, respectively. 𝜃𝑟, Ω𝑟
, 𝜃𝑔𝑟, Ω𝑔𝑟

, 𝜃𝑔𝑛 and

Ω
𝑔𝑛

are the angular displacement and velocity on rotor, gearbox and generator, respectively. Therefore, the implementation

of the above torque observers need an additional torsional measurement installed on the drivetrain system. However, the

approximated values can be provided by approximating the torsional response of gear in eq. 24a and eq. 24b respectively

with the scaled torsional response of generator and scaled torsional response of rotor. The estimated loads are used as the

input to estimate the stress on the shafts. The employed stochastic model-base approach for online estimation of the expected

value of the residual life is based on estimation of fatigue damage due to shear/torsional stress which plays the main role in

the fatigue failure of the shafts in wind turbines and bending stress due to the shaft weight. In other words, deformation and

fracture from simultaneous influence of shear and bending stress is emphasized, which is based on crack blunting and crack

propagation on a plane of maximum shear stress on the shaft [28]. The shear stress of the shaft can be calculated by

𝜏 = 𝑇 𝑐
𝐽
, (25)

where 𝑇 is the torsional moment which is estimated in real-time by eq. 24, 𝑐 is the radial distance from the shaft center line,

and 𝐽 is the polar moment of inertia around the shaft axis defined by

𝐽 = 𝜋
2
(𝑑4𝑜 − 𝑑

4
𝑖 ), (26)

where 𝑑𝑖 and 𝑑𝑜 are respectively the inner and outer radius of the shaft. Therefore, the maximum shear stress happens on

the outer surface of the shaft. Due to the large mass of main shaft especially in high-power applications, the bending stress

can also take a significant value which can be calculated by

𝜎 = 𝑀𝑐
𝐽
, (27)

where 𝑀 is the bending moment of the shaft due to the shaft weight. By using a distributed mass model, the maximum

bending moment happens in the center point of the shaft on the surface area, as can be calculated by

𝑀𝑚𝑎𝑥 = 𝑊𝐿
2

8
, (28)

where 𝑊 is the mass per unit length of the shaft, and 𝐿 is the length of the shaft. Therefore, the maximum bending and

shear stresses happen simultaneously on the surface in the middle of the shaft as

𝜏max
LSS = 2

𝜋

dLSSo (kLS(𝜃r − 𝜃gr) + cLS(Ωr − Ωgr))

(dLSSo )4 − (dLSSi )4
, (29a)

𝜏max
HSS = 2

𝜋

dHSSo (kHS(𝜃gr − 𝜃gn) + cHS(Ωgr − Ωgn))

(dHSSo )4 − (dHSSi )4
, (29b)

𝜎max =
WL2do

4𝜋(d4o − d4i )
. (29c)

The equivalent stress is calculated by applying von Mises theory. The equivalent stress due to the combined bending and

torsion is maximum in the middle of the shaft on the surface. Von Mises stress under combined bending and torsion loading

is calculated by [43]

𝜎𝑑 =
√
𝜎2𝑚𝑎𝑥 + 3𝜏2𝑚𝑎𝑥, (30)

where 𝜎𝑑 is von Mises stress, and 𝜏𝑚𝑎𝑥 and 𝜎𝑚𝑎𝑥 are the maximum torsional and bending stresses, respectively.

2.3.2. Classification of stress signal for estimation of average damage
Statistical analysis of damage consists of two main steps: First, classification of the sources of uncertainty and a proper way

of modelling to address them in the degradation model. Second, analyzing the stress signal type and the specific properties

of that type of signal, which helps to determine confidence interval for average and variance of damage. Based on eq. (29),

for determining the stress signal properties, one should look into the torsional response signal. In order to evaluate the type
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of torsional response signal, the spectral moments of the signal and the bandwidth parameters are evaluated. The spectral

moments 𝜆𝑚 of the autospectral density function 𝑆 both in discrete-frequency horizon are defined as

𝜆m =
N∕2∑
j=0

(jmS(j), (31a)

S(j) =
2(𝜎d(j)𝜎d(j)∗

N
, j = (0, ..., N

2
), (31b)

where 𝑆 is the power spectral density of stress signal 𝜎𝑑 . The bandwidth parameters 𝛼1 and 𝛼2 have a critical role to specify

the type of signal 𝜎𝑑 , which are defined by

𝛼1 =
𝜆1√
𝜆0𝜆2

, 𝛼2 =
𝜆2√
𝜆0𝜆4

. (32)

For a strictly narrow-band/harmonic signal, these two metrics tend to 1. However, for a strictly broad-band/independent

signal, they tend to 0. Even though the drivetrain torsional response may seem as a narrow-band signal with the rotor

revolution frequency as the characteristic frequency, our extensive observations on both simulation and operational data

show that the two metrics tend to zero under different turbine operating conditions.

In the literature, the drivetain vibration responses are considered as both stationary and non-stationary signals [44]. The

possibility of fitting different distributions to the drivetrain response is investigated by researchers. Ghane et al.[45] proposes

t-distribution as the best fit for the transnational vibration measurements captured from drivetrain. It is a common practice

to model the drivetrain loads and responses as Rayleigh, Weibull and the generalized gamma distributions with reference

to the distribution of mean wind speed. For data-driven fault detection of wind turbine drivetrain system, it is common to

assume the operational vibration measurements as a stationary Gaussian process at each mean wind speed, which means

each sensor measurement follows a Gaussian distribution [46]. Our observations on the drivetrain system torsional response

show that the data at each operating condition follows a Gaussian distribution or in other words is identically distributed. The

parameters of the distribution tend to vary as the operational speed changes. Therefore, in different operating zones/ranges

of input wind speed, it can be assumed that the response follows a Gaussian distribution which its parameters vary in

transition between different zones. The method can use an additional input from the operational speed to accordingly select

the relevant parameters of the associated distribution. Based on this explanation, the torsional response is assumed to be

IID. The metric 𝛼2 is more commonly used. From mathematical perspectives, this metric for a stationary signal is equal

to the cross correlation between the signal and its second derivative, which is 1 for a narrow-band and 0 for a broad-band

signal. As discussed earlier, torsional response for each operating speed shows a stationary Gaussian behavior. Stress as a

linear function of response shows the same pattern as expected. For a particular case of stationary-Gaussian process (our

case), the metric 𝛼2 is equivalent to the irregularity factor, 𝐼𝐹 , defined as

𝐼𝐹 =
𝑠2
̇𝜎𝑑

𝑠𝜎𝑑 𝑠𝜎𝑑
, (33)

where 𝑠𝑋 , 𝑠�̇� and 𝑠�̈� are the standard deviations of the signal and its first and second derivatives.

The response is IID and so does the stress signal as a linear function of torsional response. For such a signal, it is possible to

apply crude Monte Carlo to obtain CLT-based approximate confidence interval [40] for the fatigue damage as is discussed

in the next part. For some applications which the stress signal demonstrates narrow-band properties, the expected value and

variance of damage can be estimated by using the theory explained by [19].

2.3.3. Degradation model for residual life estimation
The estimation of fatigue damage and residual life of the shaft is performed by using stress-life method. Even though the

stress life method is not the most accurate approach, this method is able to represent high-cycle applications adequately. The

criterion for high-cycle fatigue is 𝑁 > 103 over the component lifetime, which is the case for a wide range of applications

e.g. wind turbines and ship propulsion systems. The estimated online time series of maximum stress feeds the time-domain

cycle counting approach based on rainflow approach. Therefore, the rainflow cycle counting and Goodman rule are used

to calculate the effective stress and the number of cycles at each stress level. Then damage is estimated in real-time and

the shaft RUL is calculated. For this purpose, Miner’s rule is used to calculate the accumulated damage and subsequently

residual life of the drivetrain components.

The degradation model for the main shaft is elaborated in the following. The number of stress cycles at different stress levels

is counted by using the time-domain rainflow cycle counting approach [48]. Cycle counting is especially important for the
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broad-band stress signal to distinguish small cycles which are interruptions of larger ones. Rainflow method has shown

proven performance in time domain analysis of stress signal to count the stress cycles. The outputs are the amplitude stress

levels 𝜎𝑠 , and the number of stress cycles at 𝜎𝑠 𝑓𝑜𝑟 𝑠 = (1,… , 𝑆). In order to consider the influence of nonzero mean

stress level, Goodman rule is employed to calculate the effective stress (the equivalent zero mean alternating stress) by the

equation [49]

𝜎𝑒𝑠 =
𝜎𝑠

1 − 𝜎𝑚
𝜎𝑢

, ∀ s ∈ {1,… , 𝑆}, (34)

where 𝜎𝑚 and 𝜎𝑢 are the mean stress and material yield strength, respectively. The accumulated damage for the data block

t with S different stress levels 𝜎𝑒𝑠 (𝑠 ∈ {1,… , 𝑆}) is calculated by using Miner’s rule as

𝑑𝑡 =
𝑆∑
𝑠=1

𝑛𝑠
𝑁𝑠
, (35)

where 𝑛𝑠 is the number of cycles at the stress level 𝜎𝑒𝑠 and 𝑁𝑠 is the number of cycles to yield at stress level 𝜎𝑒𝑠 , where the

relationship is defined by S-N curve characteristic as

𝜎𝑒𝑠 = 𝑎(2𝑁𝑠)
𝑏. (36)

The absolute total online accumulated damage can then be calculated by

𝐷 =
𝑇 𝑖𝑚𝑒∑
𝑡=1
𝑑𝑡, (37)

where 𝑇 𝑖𝑚𝑒 stands for the last data block which represents the current time. Note that 𝑑𝑡 represents the "short-term"

damage, since is related to only a specific environmental condition. However, damage𝐷 characterizes the long-term damage

provided having measurements form all possible environmental conditions [41]. The described method can also be used

for estimation of relative damage between different operational periods over the time, to give an insight on variations in

degradation between different operational periods. It can also be used to estimate the relative damage between the different

drivetrain components at the time, to give the operator a sense about the most vulnerable parts of the system at different

operational periods.

The described deterministic approach does not necessarily provide precise results. Stochastic models which can adequately

address the uncertainties in the aforedescribed stress-life degradation estimation approach can be used in conjunction with

the above described deterministic model-base approach to improve the accuracy. According to eq. (35), the two sources of

uncertainty are evolved out of the stress calculation and the material property captured by S-N curve. To address the stress

calculation uncertainty, a significant part of uncertainty arises from the estimation of load. In order to account for uncer-

tainties in load estimation approach, the influence of measurement noise and uncertainties in estimated model parameters

were mitigated by employing Kalman filtering. However, the other significant source of uncertainty arises from stress life

method and the procedure employed to obtain S-N curve parameters 𝑎 and 𝑏 which represent the best-fitting estimates of

experimental fatigue data [42]. In this work, the statistical uncertainty in fatigue calculation due to material uncertainties

accounted for by assuming the damage at each stress level as a random variable. In other words, in order to estimate damage

for the 𝑡𝑡ℎ data block of the stress timeseries, 𝑑𝑡, the damage is calculated by assuming the S-N curve parameters 𝑎 and 𝑏 as

random variables, so that for each stress level 𝜎𝑖, the number of cycles to failure are estimated by randomly selecting 𝑎 and

𝑏 in the intervals ±5% of their nominal values.

Benasciutti et al. [50] suggests closed form approximations for the expected value of damage for both Gaussian narrow-

band and broad-band processes. In this research, for the case that stress time series are IID, which is a practical assumption

based on the observations and measurements of the under consideration test case and the analysis of stress signal spectral

moments in Section 2.3.2, in order to obtain confidence interval for average damage, Monte Carlo simulation is employed

and the results of IID CLT are applied, [47] and [40]. The above procedure for stochastic estimation of fatigue damage is

repeated 𝑘 different times with the same data block to realize 𝑘 different cases of 𝑑𝑡
𝑖
∈ {𝑑𝑡

1
, ..., 𝑑𝑡

𝑘
} to attain the confidence

interval for the average damage. As a result, with the confidence 95%, the average damage is placed in the following interval

[𝜇dt − 1.96sdt ∕
√
(k) 𝜇dt + 1.96sdt ∕

√
(k)], (38a)

𝜇dt =
1
k

k∑
i=1

dti , (38b)
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Table 1
Environmental conditions for drivetrain analysis

Environmental condition EC1 EC2 EC3

𝑈𝑤 (𝑚∕𝑠) 7 9 11
𝐻𝑠 (𝑚) 2.5 3.5 3.5
𝑇𝑝 (𝑠) 6.5 7.5 7.5

(a) 𝑇𝑎 vs. time (b) 𝑇𝑔 vs. time

Figure 4: Drivetrain model input loads. (a) Aerodynamic torque. (b) Generator torque.

sdt =

√√√√ 1
k − 1

k∑
i=1

(dti − 𝜇dt )
2, (38c)

where the value of 𝑘 is selected to realize an interval ±5% around the mean value of 𝑑𝑡
𝑖
. 𝜇𝑑𝑡 and 𝑠𝑑𝑡 are the average and

variance estimates.

3. Simulation studies
3.1. Test case
In this Section, the methodology developed for lifetime monitoring of the drivetrain components is simulated and tested for

the main shaft of the drivetrain system of DTU 10MW turbine. The shafts dimensions and weight are taken based on the

work performed by Wang et al. [51]. The shafts material properties are obtained from [32]. Environmental conditions for

the global simulations are summarized in the Table 1. The system identification algorithm is tested for different operational

conditions, namely below rated, rated and over rated conditions.

3.2. DT model estimation
3.2.1. Estimation of the drivetrain model loads
The loads applied to the model are the aerodynamic and generator torques. A comparison between the actual and estimated

aerodynamic torque is shown in Fig. 4a. The actual torque is assumed to be the torque obtained from the global simulations,

and the estimated torque is the value estimated by using the turbine online measurements as explained in Section 2.2.4. The

applied generator torque is also shown in Fig. 4b. For demonstration purposes, the generator torque is up-scaled by applying

the gear ratio.

3.2.2. Parameter estimation by using torsional measurements
Here, the possibility of using the proposed algorithm for identifying the model parameters of 3-DOF torsional DT by using

the real-time torsional measurements is investigated. This model will then be used for monitoring the variations in stiffness

and subsequently feed the load observers designed in the drivetrain shafts. The actual values of the drivetrain 3-DOF model

parameters and the estimated nonrigid natural frequencies by using the angular velocity error function are reported in [16].

The validation criterion for the estimated model parameters is the relative error percentage to be less than 5%.

In order to identify this model, five parameters, namely 𝐽𝑟, 𝐽𝑔𝑟, 𝐽𝑔𝑛, 𝑘𝐿 and 𝑘𝐻 which are respectively the equivalent rotor

inertia, gearbox inertia, generator inertia, main shaft stiffness and high-speed shaft stiffness should be specified. The error

of these parameters estimation versus the number of response samples (2, 3, 5, 7, 10, 100, 1000) for the three different

drivetrain operational conditions (EC1, EC2 and EC3) by using both the actual input torque and the estimated torque is

investigated in here. The procedure explained in Section 2.2.5 is followed to provide an analytical criterion/margin of the
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error for the proposed parameter estimation approach. With respect to the fact that the error time series at each test case

meets the conditions of IID CLT, in order to attain a reliable value of error in each test case, the number of data blocks for

each test case is selected to ensure that with the confidence 99%, the error places in the interval �̂�𝑙 ± 2.58
𝑠√
𝑙
. Therefore, the

reported estimated parameters and the associated errors are the most expected values with the specified confidence interval.

For the case of fewer number of samples, the variance of errors is higher, which need higher number of data blocks to realize

the specified confidence level. In order to realize the confidence 99% at the interval ±5% around the average estimate of

error, the minimum required number of data blocks at each test can be calculated by 𝑙 > 2662.56( 𝑠
�̂�
)2.

The Fig. 5 shows the estimated parameters versus the estimation error. As it can be seen, the error is less than 1% when

the number of algorithm input samples are more than 5. By increase of the number of samples, the error tends to zero. In

addition, the method is not sensitive to the turbine operational conditions, and demonstrates a similar performance under

different environmental conditions. By reduction of the number of input measurements samples from 1000 to 10, the

computational time reduces by about 70%. When the number of variables (the order of ROM) increases, the improvements

in the computation time by reduction of the number of samples will be more significant. The use of 10 samples with

the sampling frequency 300𝐻𝑧, leads to the estimation of parameters in only fraction of a second, which shows that the

algorithm can be executed in real-time.

The Fig. 6 illustrates more realistic values for estimation error vs. number of samples, by using the estimated torque instead

of the actual torque as the input of parameters estimation approach. The latter is to address the uncertainty in the input

torque for the proposed system identification algorithm. The estimated torque is calculated in real-time by an aerodynamic

torque observer based on the turbine and blades online information by using the theory explained in Section 2. The values

of error shown in Fig. 6 are again the expected values of error. As it can be seen, for the case of using the estimated torque,

the method needs more input data to maintain the 5% threshold set for the estimation error. The reason is that in case of

few samples, the LS estimator is more sensitive to the error of torque estimation of the individual samples. The error tends

mostly to reduce by increase of the input samples.

The Fig. 7 estimation of drivetrain parameters in monitoring the variations of the model parameters which can model five

different categories of faults, namely main shaft stiffness, high-speed shaft stiffness, rotor inertia, gear inertia and generator

inertia sensitive faults. In Fig. 7a, the main shaft stiffness is reduced by 20%, in Fig. 7c, the generator shaft stiffness is

reduced by 20%, in Fig. 7e, the rotor inertia is increased by 10%, in Fig. 7g, the gearbox inertia is increased by 10%, and

in Fig. 7i, the generator inertia is increased by 10%. These simulation cases are designed to evaluate the capability of the

proposed algorithm in tracking the variations of the system parameters which are representing different system-level fault

cases. Variations in each equivalent model parameter can represent a specific class of the drivetrain faults. It shows that the

proposed DT model parameter estimation algorithm can track/measure the variations in system perfectly. Our observations

also show that the algorithm is also not sensitive to the sampling frequency. However, the sufficient sampling frequency will

ensure the observability of higher frequency modes as the input of model estimation approach to be able to realize higher

DOF models.

3.3. Estimation of stress and damage
3.3.1. Shaft material S-N curve
According to EN10083 [33], the S-N curve of 42CrMo4 which is commonly used as the main shaft material, with the

specified finite-life region consisting of low-cycle and high-cycle fatigue regions, is shown in Fig. 8. The infinite-life region

of the shaft is characterized by 1011 number of cycles [28].

3.3.2. Estimation of main shaft load and stress in normal operations
The time series of the estimated main shaft load and the equivalent von Mises stress by using the proposed algorithm, for

200 seconds of normal operations, are shown in the figures 9 and 10. Figures 9a and 10a are the actual values of load and

stress on the main shaft. Figures 9b and 10b are the load and stress when the actual value of aerodynamic torque is applied

as input to the DT algorithm. Figures 9d and 10d are the errors calculated for this case. As it can be seen, the estimation

error is negligible when the exact value of aerodynamic torque is available.

Figures 9c and 10c are for when the aerodynamic torque applied as input to the DT algorithm is not available, but the

estimated value of real-time aerodynamic torque is calculated and applied to DT model. Figures 9e and 10e are the errors

calculated for this case. As it can be seen, even though the error increases, it is still less than the 5% threshold considered

for the relative error for the DT model estimations in the work.

3.3.3. Estimation of load and stress in overload condition
The overload is modeled with 20% increase in the drivetrain torque. The time series of the estimated main shaft load and

the equivalent stress by using the proposed algorithm, are shown in the figures 9 and 10.
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Figures 9a and 10a are the actual values of load and stress on the main shaft. Figures 9b and 10b are the load and stress

when the actual value of aerodynamic torque is applied as input to the DT algorithm. Figures 9d and 10d are the errors

calculated for this case. As it can be seen, the estimation error is negligible when the exact value of aerodynamic torque

is available. Figures 9c and 10c are the aerodynamic torque applied as input to the DT algorithm is not available, but the

estimated value of real-time aerodynamic torque is calculated and applied to DT model. Figures 9e and 10e are the errors

calculated for this case. As it can be seen, the proposed DT error in estimation of both load and stress in overload conditions

is lower than normal and faulty operations.
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Figure 5: Estimated ROM model parameters, by using the actual aerodynamic torque. (a) 𝑘𝐿 . (b) 𝑘𝐿 relative error. (c) 𝑘𝐻 .
(d) 𝑘𝐻 relative error. (e) 𝐽𝑟. (f) 𝐽𝑟 relative error. (g) 𝐽𝑔𝑟. (h) 𝐽𝑔𝑟 relative error. (i) 𝐽𝑔𝑛. (j) 𝐽𝑔𝑛 relative error.

Table 2
Expected value of main shaft accumulated damage for different test scenarios for 3600𝑠𝑒𝑐 of operation.

Test scenario Actual damage Estimated damage𝟏 Estimated damage𝟐
Normal operation 1.8𝑒−7 1.8𝑒−7 1.8𝑒−7
Overload (20%) 1.1𝑒−5 1.1𝑒−5 1.1𝑒−5
Fault (10%) 8.3𝑒−7 8.3𝑒−7 8.3𝑒−7
Overload and fault 3.4𝑒−5 3.4𝑒−5 3.3𝑒−5

3.3.4. Estimation of load and stress in main shaft fault condition
The early stage fault in the main shaft is modeled with 10% reduction in the shaft stiffness. The time series of the estimated

main shaft load and the equivalent stress by using the proposed algorithm, are shown in the figures 9 and 10.

Figures 9a and 10a are the actual values of load and stress on the main shaft. Figures 9b and 10b are the load and stress

when the actual value of aerodynamic torque is applied as input to the DT algorithm. Figures 9d and 10d are the errors

calculated for this case. As it can be seen, the estimation error is negligible when the exact value of aerodynamic torque

is available. Figures 9c and 10c are the aerodynamic torque applied as input to the DT algorithm is not available, but the

estimated value of real-time aerodynamic torque is calculated and applied to DT model. Figures 9e and 10e are the errors

calculated for this case. The estimation error in case of main shaft fault shows a higher value compared to both the normal

operation and overload condition.

3.3.5. Estimation of damage in different operational conditions
In order to address the material uncertainty in damage calculations, for each stress data block, 𝑘 different pairs of the two

coefficients of S-N curve are randomly generated in an interval ±5% around their nominal values. Then the confidence

interval for the damage 𝑑𝑡 can be provided by assuming that the 𝑘 different cases of 𝑑𝑡 are IID. These 𝑘 cases are generated

from 𝑘 independent cases, and our observations show a Gaussian pattern as the number of samples increases, which shows

the consistency of the results of IID central limit theorem for 𝑑𝑡
𝑖
, 𝑓𝑜𝑟 𝑖 ∈ (1, ..., 𝑘). The average real-time accumulated

damage by using the proposed DT approach for different operating conditions, namely normal operation, overload, main

shaft fault and the combination of overload and shaft fault is listed in the Table 2. The early stage fault in the main shaft is

modeled by 10% reduction of the main shaft stiffness. The overload is modeled by 20% increase of the drivetrain torque.

Actual damage is the accumulated damage when the actual value of drivetrain parameters and input loads are accessed.

Estimated damage𝟏 is the damage estimated by using the proposed DT model and the actual value of drivetrain input loads.

Estimated damage𝟐 is the damage estimated when the DT model and estimated values of drivetrain input loads are used.

As it can be seen, the estimated damage by the proposed approach in all the different test scenarios matches with the actual

damage, with an exception for the test case which represents a combination of fault and overload, where the proposed

approach slightly underestimates the damage. The real-time estimation of the accumulated damage 𝐷 of the main shaft for

one hour operation during the drivetrain overload is shown in the Fig. 11.

It should be noted that this work does not mean that the faults in the main shaft are the most prevalent faults in the wind

turbine drivetrain systems, though it can contribute to a wide range of other secondary faults. The main purpose of focusing

on the main shaft in the simulation studies is the proof of concept for the possibility of using an innovative RUL monitoring

approach based on torsional vibration measurements for monitoring the residual life of the drivetrain components by using
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(a) Estimated main shaft stiffness vs. 𝐸𝐶𝑖 (b) Error in estimated main shaft stiffness

(c) Estimated high-speed shaft stiffness vs. 𝐸𝐶𝑖 (d) Error in estimated high-speed shaft stiffness

(e) Estimated rotor inertia vs. 𝐸𝐶𝑖 (f) Error in estimated rotor inertia vs. 𝐸𝐶𝑖

(g) Estimated gearbox inertia vs. 𝐸𝐶𝑖 (h) Error in estimated gearbox inertia vs. 𝐸𝐶𝑖

(i) Estimated generator inertia vs. 𝐸𝐶𝑖 (j) Error in estimated generator inertia vs. 𝐸𝐶𝑖

Figure 6: Estimated ROM parameters, by using the estimated aerodynamic torque. (a) 𝑘𝐿 . (b) 𝑘𝐿 relative error. (c) 𝑘𝐻 . (d)
𝑘𝐻 relative error. (e) 𝐽𝑟. (f) 𝐽𝑟 relative error. (g) 𝐽𝑔𝑟. (h) 𝐽𝑔𝑟 relative error. (i) 𝐽𝑔𝑛. (j) 𝐽𝑔𝑛 relative error.
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Figure 7: Estimated ROM model parameters in different fault scenarios (Test condition: 𝐸𝐶2). (a) 𝑘𝐿 . (b) 𝑘𝐿 relative error.
(c) 𝑘𝐻 . (d) 𝑘𝐻 relative error. (e) 𝐽𝑟. (f) 𝐽𝑟 relative error. (g) 𝐽𝑔𝑟. (h) 𝐽𝑔𝑟 relative error. (i) 𝐽𝑔𝑛. (j) 𝐽𝑔𝑛 relative error.
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Figure 8: Main shaft steel S-N curve.

a simple model. For other components, e.g. the gears and bearings of the gearbox, it is still possible to use the proposed

approach but by using more detailed torsional models, and probably a combination of torsional and translational models

which is considered as the future work.

4. Conclusion
This work provided a basis for the development of preventive maintenance in FWT drivetrain systems based on monitoring

the residual life of the components, by means of digital twin and employment of a stochastic physic-base model for determin-

ing the drivetrain components RUL. As a critical part of DT, a toolbox was proposed which receives the drivetrain torsional

response and estimated input loads, and calculates the system dynamic properties (torsional natural frequencies, damping

and mode shapes) and the equivalent torsional dynamic model parameters (torsional stiffnesses and moment of inertias).

The application of this model in estimation of the drivetrain components residual life in real-time, and more specifically the

RUL of the drivetrain main shaft was demonstrated. In order to evaluate the proposed DT approach, it was shown that by

using only more than 10 data samples with the sampling frequency 300𝐻𝑧 for the real-time measurements, the estimation

error of DT model parameters and the estimated values of load and stress in the drivetrain components in all simulation

cases, namely normal operations, fault on the main shaft and overload is always less than 5 percent.

The application of higher DOF torsional models as more detailed DT models which can capture real-time variations in

mesh stiffness and inertia of individual gears and intermediate shafts, which can help to estimate the real-time load of the

individual subcomponents by taking into account the components internal dynamics, and subsequently to calculate stress

and fatigue damage due to different failure modes for a wide range of drivetrain subcomponents is looked as the future

work.
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Figure 10: Real-time equivalent equivalent von Mises stress on the main shaft. (a) Actual stress, (b) Estimated stress in
case of using actual aerodynamic torque, (c) Estimated stress in case of using estimated aerodynamic torque, (d) Stress
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