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Abstract. This paper proposes an innovative approach to retrofit existing hydropower plants 

with suitable upper and lower reservoirs into pumped storage. The conventional methods are 

both comprehensive and expensive, mainly due to the increased risk of cavitation during 

pumping operation. In an existing facility, the installed runner is already sufficiently 

submerged to avoid unfortunate cavitation, but replacing the runner with a reversible pump-

turbine demands an even further increase of the static pressure at the low-pressure side of the 

turbine. An alternative to the traditional method is discussed in this research by introducing the 

concept of a booster pump installed in the draft tube. Increasing the pressure at the inlet of the 

pump-turbine during pumping could eliminate the risk of cavitation and enable operation of a 

pumped storage plant without submerging the runner further. This conceptual paper discusses 

the motive for developing pumped storage and presents two uses for the proposed booster 

pump; eliminating cavitation and correcting for some of the necessary lifting head of the 

pump-turbine. The project is a part of the Norwegian Research Centre for Hydropower 

Technology, HydroCen. 

1.  Introduction 

Recent years, efforts to reduce the greenhouse gas emissions have led to a massive development in 

renewable energy around the world. According to the Paris agreement, all Parties to the United 

Nations Framework Convention on Climate Change (UNFCCC) are committed to work out national 

climate actions to keep the global temperature increase below 2°C, and continue the effort to limit the 

increase to 1.5°C [1]. In accordance with the agreement, EU has decided that renewable energy should 

constitute at least 32.5 % of the total energy within EU border by 2030 [2]. The development of 

renewable energy is getting increasingly profitable, as the costs associated with solar and wind 

technology are falling for each year.  

However, while Europe experiences a tremendous growth in renewable development, the demand 

for energy storage capacity to balance the grid is increasing. Although the battery prices are decreasing 

and their storage capacity is improving for each year, the capacity offered by pumped-storage 

hydropower is still superior, and the only large-scale renewable alternative in the immediate future.  

Various power companies and research institutions have stepped up the effort to map the potential 

of pumped storage. According to the International Renewable Energy Agency (IRENA)[3], pumped 

storage accounts for 161 GW of today’s global storage capacity and estimates that this number has to 

at least double by 2050 in order to follow the development of variable renewable energy. The eStorage 

project, supported by the European Commission, has prepared a report compiling the pumped storage 

potential by assessing the available water reservoir pairs in EU, Norway and Switzerland, concluding 
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that the total realizable potential constitutes around 33 % of the theoretical potential of 6924 GWh [4]. 

The individual findings are summarized in Figure 1. 

 

 

Figure 1: Theoretical and realizable potential of pumped storage in EU, Norway and Switzerland. 

Graph obtained from eStorage_D4.2: Overview of potential locations for new variable speed PSP in 
Europe [4]. 

 

A similar mapping of available reservoir pairs has been carried out by The Norwegian Water 

Resources and Energy Directorate (NVE), with the purpose of retrofitting existing hydropower plants 

into pumped storage in Norway[5]. Transforming hydropower plants with existing upper and lower 

reservoirs into pumped storage is less extensive than projecting entirely new pumped storage plants, as 

waterways, construction roads and power station are already established. However, the investment 

costs associated with such transformation are still assumed to be extremely high. 

1.1.  Scope and limitations   

This paper introduces a concept removing the risk of cavitation in the hydraulic machinery when 

transforming existing hydropower plants into pumped storage. The scope includes an examination of 

the concept, some technical considerations regarding usage, design and installation, and an indication 

of possible economic benefits. It is necessary to emphasize that the concept is still within an initial 

stage and that no financial analysis has been carried out to evaluate its profitability. Still, the objective 

of the ongoing research is to provide a technical solution that is cost-wise competitive to other 

alternatives.  

The review mainly concentrates on the turbine and the associated arrangement. The scope excludes 

possible necessary modifications of water tunnels, environmental and geological considerations and 

other elements affected by reversed and changed operational pattern. Alternative methods to transform 

conventional power plants into pumped storage have not been examined.  

2.  Presentation of concept 

2.1.  Background 

It is a known problem that cavitation poses a major challenge to hydraulic machines, and it is even 

more severe and damaging in pumping units compared to ordinary turbines, given the unfavorable in-

flow conditions on the suction side during pumping operation. Cavitation is highly undesirable given 

its ability to damage the runner and is therefore prevented by submerging the turbine arrangement to 

increase the static pressure in the draft tube. In existing power plants, the turbine is positioned 

sufficiently low relative to the tailwater level to avoid exposure to cavitation. If the turbine is replaced 
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by a reversible pump-turbine (RPT) to give pump storage capabilities, different fluid pressures will be 

present during turbine and pump operation. Typical hydraulic grade lines (HGL) for both operational 

modes are illustrated by the dashed lines in Figure 2. Frictional losses in the waterways and changed 

premises for cavitation of the unit result in a low-pressure zone at the pump-turbine inlet during 

pumping, as seen by the HGL. Additional submergence of the RPT will obviously increase the static 

pressure, but such submersion will demand comprehensive civil works for tunnel excavation and 

relocation of the power station. The required civil work will involve substantial costs and lost income 

due to operational downtime. Allowing for pumping in existing facilities will therefore demand a lift 

of the HGL to prevent cavitation from occurring. 

 

Figure 2: HGL for turbine and pump operation. 

2.2.  Proposed booster pump solution 

Installation of a booster pump in the draft tube is proposed as an alternative to the traditional runner 

submergence. Booster pumps are characterized as pumping units aiding to lift the pressure of a 

system, typically to improve the required net positive suction head (NPSH) [6]. In this particular case, 

the booster pump will boost the pressure at the RPT inlet in pumping mode to lift the available HGL 

of the system. As the induced pressure from the booster pump also affects the overall pump 

characteristics of the serial connected pumping units, the booster pump can be utilized to handle some 

of the required lifting head of the pump-turbine. The following sub-sections discuss how a booster 

pump affects the hydraulic grade lines and the corresponding required lifting head of a system, and 

how it in practice can handle two problems related to turbine retrofit. 

2.3.  Booster pump compensating for submergence 

In order to compensate for the required submergence, the booster pump must be able to provide a head 

that lifts the hydraulic grade line sufficiently, as shown in Figure 3. The figure illustrates a fluid head 

slowly decreasing from the lower reservoir towards the pump-turbine, marked by a red dashed line. At 

the position of the booster pump, it experiences a sudden lift before entering the draft tube and pump-

turbine. As distinct from Figure 2, it is now possible for the pump-turbine to operate in an adequate 

pressure zone. The decreasing pressure corresponds to the head losses in the waterways, which are 

losses due to friction, change of flow pattern, flow mixing etc in the tunnels, and the booster pump and 

the pump-turbine must overcome these losses to ensure a sufficient HGL over the whole system.  

The risk of cavitation can be evaluated by means of the 𝑁𝑃𝑆𝐻, defined as the difference between 

the absolute pressure and local vapor pressure downstream the turbine. The following equation, 

derived from the energy equation ([7], [8]), estimates the necessary submergence of the runner, i.e. the 

required difference between the lower reservoir and the runner: 

Area exposed to cavitation 

Pump-turbine 

HGL turbine 

 HGL pump 
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Figure 3: HGL of a pumped storage plant where a booster pump compensates for submergence. 

 

 𝐻𝑠 ≤ ℎ𝑏 − ℎ𝑣𝑎 − 𝑁𝑃𝑆𝐻𝑅  [𝑚]. (1) 

 

ℎ𝑏 denotes the barometric pressure, ℎ𝑣𝑎 the vapor pressure and 𝑁𝑃𝑆𝐻𝑅 the required NPSH, which is 

dependent on the inlet velocities in pumping mode of operation and the circumferential speed of the 

turbine. The booster pump must be dimensioned for a pressure head managing both the change in 

submergence ∆𝐻𝑠 and the tailrace head losses to be able to handle the cavitation issues of the RPT in 

reversed mode.  

2.4.  Booster pump enabling a new RPT design 

A further utilization of the booster pump concept regards the possibility of maintaining most of the 

existing turbine arrangement. In general, a new pump-turbine for retrofitting purposes demands a 

larger outlet diameter than the original turbine to achieve a higher lifting head, and the associated 

components, such as the guide vanes, draft tube and spiral casing, must be replaced to fit the new 

dimensions and to handle the changed pressure conditions during pumping. This involves demolishing 

large parts of the existing power station, extensive civil works and costs hardly justifying a booster 

pump solution only assuring cavitation free operation of the RPT.  

Instead of increasing the diameter of the RPT, the additional required head could be handled by the 

proposed booster pump. The booster pump must then be able compensate for the head losses in the 

whole system (Figure 4), in practice assuring a significant part of the overall required lifting head. 

Alternatively, the rotational speed of the RPT can be increased to obtain a higher lifting head. This 

will obviously require a new or modified generator. 

Allowing a new RPT design to, more or less, fit into the existing turbine arrangement enables new 

design considerations for pumped storage plants. The pump-turbine can maintain the original turbine 

inlet height, inlet and outlet diameters, and the remaining turbine arrangement can be retained with 

some modifications. Moreover, as the pump-turbine now may be designed with a pump net head close 

to the original turbine net head, the pump-turbine will be able to operate more advantageous in turbine 

mode. This is due to the fact that pump-turbines generally are dimensioned for a higher head than what 

the turbine runs at to overcome the friction losses in pumping mode of operation, resulting in a poorer 

turbine efficiency. Instead of operating outside its optimal operational area, the turbine can, with the 

proposed booster pump modifications, operate around the intended head, increasing the performance 

of the turbine. On the other side, some drop in the overall pump efficiency is inevitable 

Booster pump 

Pump-turbine 

HGL turbine 
HGL pump 
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Figure 4: HGL of a pumped storage plant where the booster pump overcomes the frictional losses in 

the waterways. 

 

when including the booster pump efficiency. Still, a booster pump correcting for the necessary pump-

turbine head can potentially be a cost-effective alternative to a larger turbine and the associated 

arrangement. It is therefore a highly interesting concept for further evaluation. 

3.  Conceptual layout 

The following section discusses a proposed layout of the booster pump and presents some of the 

previous work on the topic carried out at the Norwegian University of Science and Technology 

(NTNU). As the author’s research is ongoing, design details are not definite, but an axial counter-

rotating booster pump configuration is thought to hold certain advantages given its ability cancel out 

the rotating flow leaving the pump and be positioned directly into the tunnel, as sketched in Figure 5.  

 

Figure 5: Proposed booster pump configuration. 

 

A tool for designing counter-rotating pumps for booster pump purposes by means of the lifting line 

theory has previously been developed[9], but the final performance of the proposed design is not very 

promising for the intended usage, even though it was concluded that the overall efficiency of the 

system is fairly good. Given that the developed tool is based on thruster theory, the applied technique 

is not necessary completely transferable for pumping theory and it is therefore interesting to continue 

the search for a satisfactory counter-rotating design to obtain a favorable in-flow for the pump-turbine. 

Booster pump 

Pump-turbine 

HGL turbine 
HGL pump 

Draft tube gate 

Booster pump 

Draft tube 

Pump-turbine 

Surge shaft 
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On the other side, a booster pump adding rotation to the flow could in fact benefit the pump-turbine 

to some extent. Theoretically, a pre-rotation induced at the pump-turbine inlet should contribute to an 

increased lifting head of the unit. Pre-rotation induced by a booster pump has also been 

investigated[10], but the research concluded that the potential benefits are almost insignificant as no 

increase in efficiency is achieved. Pre-rotation during off-design operation will most likely complicate 

the performance of the RPT, as it is unlikely that a rotating flow bent by the draft tube will be able to 

create a fairly uniform inflow at the RPT over the whole operational range.  

Other pump alternatives, such as semi-axial pumps and water jet pumps with stationary guide 

vanes, have also been considered. However, practical integration of such pumps is more challenging, 

as their space-requiring arrangements limit possible pump locations. Higher velocities might also be 

unfavorable with regards to cavitation. Still, such arrangements are not entirely excluded for further 

evaluation, but in the initial stage of the booster pump development it is interesting to investigate 

which possibilities an axial counter-rotating configuration may offer. A single stage axial pump with 

stationary guide vanes will most likely not provide the necessary head contribution with a sufficient 

hydraulic efficiency. 

One of the main challenges with the proposed solution, is ensuring a stable operation of the pumps 

in series over the entire operational range. Previously 1-D simulations of a booster pump interacting 

with a RPT has shown a promising cooperation between the pumps with regards to both steady-state 

and transient operation[11]. Suter characteristics curves were implemented into a method of 

characteristics model to investigate the cooperation between two pumps in a potential Norwegian 

retrofit project, resulting in a system quickly achieving steady state and handling disturbances forced 

on the system. Similar results were achieved with a dynamic pump model, which has a higher level of 

accuracy compared to Suter curves. On the other side, 1-D simulations cannot handle the actual flow 

patterns and pressure gradients present. Also, the proposed model includes several considerable 

simplifications and is not giving a just picture of the pump stability. It is, however, an interesting 

starting point for a more complex analysis of the pump stability.     

With two different sized pumps operating in series, some caution must be carried out with regards 

to the design of the pumps, as the two individual pump curves are added together to a common curve. 

If the pumps are dimensioned for two different operational ranges, there will be flow rates only one of 

the pumps can handle. The characteristics of the booster pump and the RPT should cover the same 

range, producing a new pump characteristic similar to the illustrated pump curve in Figure 6.  

 

 

Figure 6: Potential pump curve of booster pump and RPT operating in series. 

System curves 

Booster pump 

Pump-turbine 

Combined pump curve 

Q 

H 

Operational range 
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4.  Discussion and further work 

With the increasing need for electrical energy storage, pumped storage will play an important role 

worldwide in the years to come. Pumped storage offers a unique solution for the future power grid, 

given its storage capacity and its ability to respond rapidly between the different modes of operation. 

The entry of renewable energy will gradually replace parts of the coal-fired industry, which today are 

indispensable for grid stabilization. Coal-fired power plants are unfortunately slowly regulated and are 

therefore mostly continuously operated. Re-adjustment of the industry demands a replacement of the 

non-renewables and pumped storage must constitute a part of the solution. Investments in wind and 

solar power are becoming more and more profitable, but there is no corresponding profitability for 

new pumped storage projects, postponing the necessary development. Thus, it is essential to consider 

other methods to carry out an expansion of the pumped storage industry.  

The economic aspects of developing pumped storage plants have, among others, been examined by 

Iberdrola Renewals, who concludes that reusing existing facilities give the lowest capital expenditures, 

CAPEX[12]. Still, there are several technical challenges complicating a profitable investment, 

including limiting the costs related to civil works and ensure a new pump-turbine managing the entire 

head range without being exposed to cavitation. The proposed booster pump configuration can 

possibly be a solution to some of the challenges and enable a further reduction in the assumed 

CAPEX. As the method does not require excavation of new tunnels and relocation of the turbine 

position, the need for civil works is heavily reduced. A possible re-use of the existing generator and 

parts of the turbine arrangement decreases the CAPEX further. Obviously, additional construction 

work is required for the booster pump installation and its accompanying supplement, for the time 

being representing a technical and cost-wise uncertainty to the concept.  

Considering the remark about the required pump-turbine performance, the proposed solution could 

be capable of handling the entire head range, given that the available head range is sufficiently low 

and that the booster pump provides the required head. Higher head ranges could be manageable if 

unfavorable operation on the outer operational areas is accepted.  

The various technical possibilities related to the booster pump solution depend on the possible 

pump performance. Cavitation of the pump itself will be a problem if dimensioned for an unfavorable 

large head. Also, given that axial pumps are most efficient for lower heads, high efficiencies might not 

be attainable for higher heads. The formerly discussed counter-rotating solution will, however, enable 

a pressure rise divided on two steps, enabling a more efficient machine.  

Other design solutions of the booster pump are naturally possible, but initially, the proposed layout 

is considered best suited with regards to usage and position during both modes of operation. 

Immediately, the alternative of bypassing parts of the incoming flow to boost the pressure close to the 

pump-turbine inlet might appear as a possible way of preventing cavitation. However, such 

configuration has been examined and will not have the desired effect as this will only induce a 

negative flow in the main pipe. A complete review of this alternative is found in Appendix A.  

 

A short summary of the potential booster pump benefits is listed below:    

• The booster pump can prevent cavitation of the pump-turbine. 

• It enables a more optimal pump-turbine design for turbine operation. 

• It enables reuse of the original turbine arrangement. 

• Reduces civil works costs. 

• Reduces the overall operational downtime of the hydropower plant during the construction 

phase. 

Accordingly, possible challenges and uncertainties of the proposed solution: 

• The booster pump, generator and associated arrangement represent unknown costs, and the 

technology is highly immature.  

• It could be difficult to accomplish an RPT design that fits into the existing arrangement with 

only minor changes to accompanying parts.   
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• Losses are likely to occur in the original parts during pump mode of operation, as most 

turbines are designed to accelerate the flow in the opposite direction. Without a proper pump 

diffusor, less energy will be converted into pressure energy. 
• Avoiding cavitation of the booster pump and provide the required pressure head with an 

acceptable efficiency could be difficult to achieve and is highly dependent on the available 

submergence. The booster pump configuration will not suit all potential retrofit locations. 

• Operating the booster pump and pump-turbine over the whole range and simultaneously have 

an acceptable efficiency, stability between the units and no exposure to cavitation can be 

difficult to achieve. 

 

It is so far difficult to state to which extent the booster pump can be integrated in existing power 

plants. Given the tight optimization gap, the proposed method will most likely not be applicable for all 

potential locations. An individual analysis must be conducted to evaluate to which extent such 

arrangement is realistic and how the associated parts are affected. The ongoing research aims to 

uncover some of the listed uncertainties and investigate if the proposed concept can represent an 

efficient and technical feasible alternative to conventional methods. The current research stage 

involves design and simulation of a booster pump and a pump-turbine for a potential power plant to 

examine their interaction, performances and cavitation characteristics during pumping, where the final 

objective is to provide a technical proof of concept. 

Appendix A 

The alternative of pressurizing a bypass flow close to the pump-turbine inlet is evaluated by a 

simplified system, illustrated in Figure A1: 

 

Figure A1: Bypassing pressure close to pump-turbine. 

 

Flow is pumped from a lower reservoir to a higher reservoir by a pump providing a lifting height 𝐻𝑝. 

A second pump, 𝐻𝑃𝑢𝑏, pressurizes a bypass flow close to the inlet of the first to reduce the risk of 

cavitation. Applying the Energy equation (Bernoulli with losses) from the lower surface to the bypass 

inlet (position 0), gives the following expression: 

 
𝑃0

𝜌𝑔
= 𝑧𝐿 − 𝑧0 −

(
𝑄
𝐴)

2

2𝑔
− ℎ𝐿 

 

 

(A.1) 

 

The pressure 𝑃0 at position 0 is then defined by the difference in elevation between L and 0, the 

𝑧𝐿 

𝑧0 

𝑃0 

𝐻𝑃𝑢𝑏 

𝑧1 = 𝑧0 

𝑧𝑈 

𝐻𝑃 

𝑃1 
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velocity (V=Q/A) and the head loss ℎ𝐿 at the given distance. Similarly, the pressure 𝑃1 at position 1 

can be defined by applying the Energy equation between 1 and the upper reservoir: 

 

 
𝑃1

𝜌𝑔
= 𝑧𝑈 − 𝑧1 −

(
𝑄
𝐴
)
2

2𝑔
− 𝐻𝑃 + ℎ𝐿 

 
 

(A.2) 

Thus, the pressure 𝑃1 depends on the difference in elevation between U and 1, the velocity, the 

contribution from the main pump and the head loss at the given distance. From this, it can be 

concluded that the boundary conditions at the inlet and the outlet of the parallel pipes, 0 and 1, are not 

defined by the conditions within the pipes, only by other parts of the system. Therefore, at a given 

discharge, all operations within the parallel branches will only cause internal energy conversions. 

Applying the Energy equation between 0 and 1 at the upper branch, ub, gives the following 

expression: 

 𝑃0

𝜌𝑔
−

𝑃1

𝜌𝑔
= ℎ𝐿𝑢𝑏 − 𝐻𝑃𝑢𝑏 

 

(A.3) 

 

The elevations, 𝑧0 and 𝑧1, are assumed identical. Further, the head losses, ℎ𝐿𝑢𝑏, are described by the 

Darcy-Weisbach equation: 

 
𝑃0

𝜌𝑔
−

𝑃1

𝜌𝑔
=

[
 
 
 
𝑓𝑢𝑏

𝐿𝑢𝑏

𝐷𝑢𝑏

(
𝑄𝑢𝑏
𝐴𝑢𝑏

)
2

2𝑔
]
 
 
 
− 𝐻𝑃𝑢𝑏 

 
 

(A.4) 

 

Where 𝑓𝑢𝑏 denotes the friction factor in the pipe. The discharge is assumed to always flow in the same 

direction. Likewise, for the lower branch, lb, the equation becomes: 

 

 𝑃0

𝜌𝑔
−

𝑃1

𝜌𝑔
= ℎ𝐿𝑙𝑏 

 

(A.5) 

 

Applying the same head loss conditions for the lower branch as for the upper, (A.5) becomes:  

 

 
𝑃0

𝜌𝑔
−

𝑃1

𝜌𝑔
= 𝑠𝑖𝑔𝑛(𝑄𝑙𝑏)

[
 
 
 
𝑓𝑙𝑏

𝐿𝑙𝑏

𝐷𝑙𝑏

(
𝑄𝑙𝑏
𝐴𝑙𝑏

)
2

2𝑔
]
 
 
 
 

 
 

(A.6) 

 

𝑠𝑖𝑔𝑛(𝑄𝑙𝑏) ensures that the expression changes sign if the flow reverses. Combining (A.4) and (A.6), 

gives the following expression for the aiding pump in the upper branch: 

 

 

𝐻𝑃𝑢𝑏 =

[
 
 
 
𝑓𝑢𝑏

𝐿𝑢𝑏

𝐷𝑢𝑏

(
𝑄𝑢𝑏
𝐴𝑢𝑏

)
2

2𝑔
]
 
 
 
−  𝑠𝑖𝑔𝑛(𝑄𝑙𝑏)

[
 
 
 
𝑓𝑙𝑏

𝐿𝑙𝑏

𝐷𝑙𝑏

(
𝑄𝑙𝑏
𝐴𝑙𝑏

)
2

2𝑔
]
 
 
 
 

 
 

(A.7) 

 

From this consideration, the lifting height of the pump is only covering the head losses in the two 

branches. Further, assuming that the pipe branches are identical and that the combination of the flow 

in each of the branches must equal the discharge in the system, the expression becomes: 

 
𝐻𝑃𝑢𝑏 = 𝑓

𝐿

2𝑔𝐴2𝐷
((𝑄 − 𝑄𝑙𝑏)

2 − 𝑠𝑖𝑔𝑛(𝑄𝑙𝑏)(𝑄𝑙𝑏)
2) 

 

(A.8) 
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If there is no pump in the upper branch, 𝐻𝑃𝑢𝑏 = 0: 

 

 𝑄 = 𝑄𝑙𝑏 ± 𝑄𝑙𝑏 (A.9) 

Giving: 

 

𝑄𝑙𝑏 = 𝑄𝑢𝑏 = {

𝑄

2

0

 

 

(A.10) 

which is the precise solution of a flow in parallel operation where both pipes are identical. If the flow 

𝑄𝑙𝑏 in the lower branch is zero in Equation (A.8), all flow must go through the upper pipe and the 

pump must supply the needed head loss corresponding to the full system flow 𝑄. Increasing the lifting 

head additionally will only require that the flow in the lower branch becomes negative. Thus, 

attempting to pump in the upper branch will only initiate a flow going in a hydraulic short-circuit 

through the parallel pipes. Including a valve in the lower branch to prevent a reversed flow will of 

course force all flow to go through the upper branch. However, this causes a serial pumping situation 

with a pump positioned very close to the main unit with unfavorable cavitation conditions. The 

proposed serial pumping is therefore evaluated as a better option for avoiding cavitation of both units. 
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