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Abstract

The increasing network traffic demands, stemming from an ever increasing number
of devices connected to the network, have gradually accentuated the limits of current
Internet networks, also known as Internet ossification, and innovation or further devel-
opment has become almost impossible. One important cause of this limitation is the
ubiquitous deployment of middleboxes (or network functions) that hamper the network
capability to be flexible, scalable and innovative to an extent that new and specialized
services cannot be easily introduced in the network.

Network virtualization promises to overcome the current ossified state of Internet
network and is anticipated to revolutionize the design and operation of today’s network
infrastructures. Network Function Virtualization (NFV) is acknowledged as a crucial
enabler of this transformation which promises to develop a more flexible, agile, and
programmable networking paradigm that will help reduce both CAPEX and OPEX costs,
and time to introduce new services. Inspired by the success of server virtualization and
cloud computing, top major telecom providers conceived the NFV paradigm for enabling
a major transformation of modern telecommunication networks, such as 5G.

NFV provides the ability to execute virtual instances of networking devices on top
of a common physical network substrate. It utilizes virtualization technology to reduce
dependency on underlying hardware by moving data processing tasks from proprietary
hardware middleboxes to virtualized entities that can run on commodity hardware. NFV
simplifies network infrastructure by exploiting standardized and commodity hardware
for both compute and networking; introducing the benefits of agility, flexibility, and
scalability of data centers to network infrastructures. Together with Service Function
Chaining, it enables the replacement of traditional network hardware appliances by soft-
warized Virtualized Network Function (VNF)s chains. However, this major transfor-
mation brings additional challenges and one is them is the ability to ensure high avail-
ability, as an important dependability attribute, of carrier-grade services provided by
NFV-enabled networks. This challenge is further exacerbated by the extreme availabil-
ity demands that 5G use cases demand, i.e., 99.999% or higher availability figures. This
thesis work targets this challenge by addressing the problem of how to assess and quan-
tify the availability of NFV-supported network services, and how to provision highly
available NFV services by means of fault-tolerant mechanisms.
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First, this thesis contributes with the design and evaluation of a set of stochastic avail-
ability models that can abstract the functional behavior of the system components that
are involved in the provisioning of NFV services. The models represent the virtualized
network functions, the underlying hardware infrastructure, the chaining of several VNFs,
and their management and orchestration (MANO) plane. Moreover, distinct models im-
plement different fault-tolerance mechanisms, enhanced with specific recovery strate-
gies, allowing to estimate the behavior of the availability metric for each redundancy
configuration. The analysis result shows that VNF software can be a critical element
and sufficient redundancy needs to be allocated if carrier-grade availability figures are
to be expected. Moreover, a less robust MANO can significantly degrade the service
availability but on the contrary, a highly redundant MANO does not bring additional
benefits.

Second, network flexibility, as one of the main benefits introduced by the adoption of
the NFV networking paradigm, regards the capability to deploy on-the-fly and run VNFs
anywhere in the network substrate. Thus, service function chains, i.e., an order set of
functions, can be composed of VNFs which in turn can be distributed in the network.
Therefore, it is required that traffic flows are to be steered through all the VNFs that
make up a specific function chain. As a result, the availability evaluation and assessment
of an end-to-end network service shall involve also networking elements that are not
necessarily part of the NFV infrastructure but vital to the VNF interconnection, such
as routers, switches and network links. These elements are often disregarded in the
related literature and this thesis develops a methodology for modeling and quantifying
the availability of end-to-end network services by integrating all the engaged elements.
Moreover, the models also integrate a Software-defined Networking (SDN) approach,
as an NFV complementary technology. Extensive sensitivity analysis helped to identify
availability bottlenecks for both traditional and SDN-integrated NFV network services.
Results show that IP routers can represent a threatening availability bottleneck despite
VNFs are enriched with redundancy.

Another aspect that is covered in this work is the provisioning of redundant resources
for guaranteeing service availability demands under different system constraints such as
limited resource capacity, heterogeneous equipment, or service request requirements. In
addition to the adequate redundancy level, ensuring that service availability demands are
met requires also the knowledge of a set of policies that ultimately decide where, how
many, and what type of redundant function instances shall be allocated in the network
infrastructure. This is referred to as the availability-aware NFV resource allocation prob-
lem and this work formulates it as an Integer Linear Programming (ILP) optimization
problem aiming at minimizing resource utilization while still satisfying service avail-
ability and performance requirements. Two distinct ILP problems are developed, namely
AllOne and AllAny, which optimally place redundant functions and perform routing of
traffic flows. Given the NP-hard nature of the problem, although the two formulations
give optimal solutions, they do not scale well for large problem instances. To address
this limitation, this work also proposes a scalable heuristic algorithm which can pro-
vide near-optimal solution in polynomial time also for large problem instances. The
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algorithm, coined CoShare, decides the required number of backup instances, and effi-
ciently places them by avoiding the simultaneous unavailability of working and backup
service chains, which can happen due to network structural dependencies. In addition,
CoShare exploits a shared reservation principle, in which instance capacity is shared
among multiple flows for redundancy purpose. The numeric evaluation shows that the
algorithm can achieve better resource efficiency, i.e., lower additional amount of redun-
dant resources, compared to previous literature while at the same time satisfy flow’s
availability demands.

To summarize, this thesis contributes with models that enable the assessment and
evaluation of the availability of end-to-end NFV-supported network services, performs
extensive analysis aiming at identifying critical components and advisable redundancy
configurations, and proposes a set of algorithms that efficiently provide and orchestrate
network resources by allocating redundant functions aiming at fulfilling availability de-
mands of service requests in NFV-enabled networks.
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Chapter 1
Introduction

1.1 Thesis Outline
The format of the present thesis is a collection of articles, which is in line with NTNU
rules for the doctoral degree, and its content is divided into two main parts:

– Part I: Summary

– Part II: Included Articles

Part I presents a comprehensive summary of the thesis. It consists of the following
chapters:

– The Introduction chapter (Chapter 1) illustrates the motivation for the research
work and the focus of this thesis. In addition, it highlights the research questions
and objectives together with the applied research methodology.

– The Background chapter (Chapter 2) gives the essential background for under-
standing the research scope and the contributions of the thesis. It also introduces
the availability modeling approach and the context of availability-aware resource
provisioning in NFV-enabled networks.

– The Related Work chapter (Chapter 3) reviews the state-of-the-art literature and
works related to the challenges and problems that the thesis contributions tackle.
Such challenges, which are tightly coupled with the research objectives of the
thesis, are listed in the remainder of this chapter.

– The Contributions and Concluding Remarks chapter (Chapter 4) presents the pa-
per contributions obtained during the PhD investigation period and summarizes
the concluding remarks followed by suggestion for future work.

Part II consists of 6 papers, which represent the contribution of the thesis work,
where 5 are published and 1 is currently submitted for peer-reviewed publication.

In addition to the first two parts, there is also Part III which illustrates a brief sum-
mary of secondary publications that are not included as contribution to this thesis.
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1.2 Motivation and Focus
Today’s communication networks include a plethora of network appliances, also called
middleboxes, for providing different kinds of network functions in relation to security,
performance, and/or other specialized policies within a network infrastructure [1]–[3].
Examples of such middleboxes include firewalls, Intrusion Detection Systems (IDSs),
Network Address Translators (NATs), and Load Balancers (LBs). The number of em-
ployed middleboxes in modern communication networks is almost as high as the number
of standard router devices [2], [4]. Although middleboxes have become an integral part
of communication network infrastructures, they are typically expensive both in terms
of investment and operation [4], i.e., Capital Expenditure (CAPEX) and Operational
Expenditure (OPEX). Moreover, they are usually closed systems with little or no pos-
sibilities to enable innovation. Each middlebox typically performs a narrow specialized
function and is designed for a particular choice of hardware platform, which makes it
difficult and challenging for network operators to introduce and deploy new services.
Frequently, network operators are obliged to purchase new hardware or consider new
vendors in case they need to extend network capability or add new functionality to an
existing middlebox. This may require changes in the deployment strategy, assessment
of new hardware, and may lead to an increase of cost and time required to introduce new
services.

Another limitation of the traditional deployment of middleboxes arises from special-
ized network services that require traffic steering among several middleboxes. It is com-
mon that traffic flows may be required to go through a chain of network functions (i.e.,
middleboxes) like a firewall, an IDS, and finally through a proxy [5]. This mechanism is
referred to as service function chaining (SFC) and the Internet Engineering Task Force
(IETF) specifies it as “the definition and instantiation of an ordered set of service func-
tions and subsequent steering of traffic through them” [6]. In current network settings,
traffic flow routes are manually set up for some desired sequence of middleboxes [5],
which can be cumbersome and error-prone in large scale infrastructures. In addition,
middleboxes are deployed in fixed positions which limits traffic routing paths from an
efficient utilization of the available network resources, hence making the middleboxes
potential bottlenecks in the network.

A fast-emerging and prominent solution that promises to alleviate these limitations
is Network Function Virtualization (NFV) [7], [8]. In late 2012, under the common
efforts of seven of the leading Telecommunication Companies (telecoms), the Euro-
pean Telecommunications Standards Institute (ETSI) established an industry specifi-
cation group for defining and developing NFV. The basic idea was that by exploiting
server virtualization, a technology that makes the fortune of cloud-computing, NFV per-
forms the decoupling of the network appliance software from purpose-built hardware
and runs it in virtualized environments, which can be deployed on a range of industry
standard server hardware, otherwise called commercial-off-the-shelf (COTS) servers.
This way, virtualizing network functions (VNFs) offers many benefits such as reduced
equipment costs, through consolidation and exploitation of COTS hardware, and intro-
duces greater flexibility in deploying and operating network functions. The deployment
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of VNFs allows sharing of physical resources across many services and customer bases.
VNFs can be created on-the-fly and dynamically chained together to provide service
chains for innovative and more advanced services. Additionally, VNFs can be deployed
anywhere on the network and an operator can optimize the location of VNFs, so that
network resources are efficiently utilized and service level agreements (SLA) [9] can
still be satisfied. As a result, NFV can help, among others, increase flexibility in the
provisioning of network services, simplify network management, increase scalability,
and reduce CAPEX and OPEX costs, together with the reduced time to introduce new
services. However, the "softwarization" of hardware-specific middleboxes poses several
challenges and service dependability – as the ability to deliver service that can justifiably
be trusted [10], represents a major concern that can undermine the success of NFV adop-
tion [11]–[14]. For the widespread adoption of NFV, it is important that service providers
can guarantee at least the same level of dependability compared to traditional specialized
hardware-based appliances, which have, through years of development, grown to mature
and dependable technologies.

Dependability is often announced as a unifying term integrating attributes like avail-
ability, reliability, safety, integrity, and maintainability [10], [15]. Alternatively, it is
also defined as the ability to avoid service failures that are more frequent and more se-
vere than acceptable. Although there is no unique definition of dependability, it is com-
monly agreed that it consists of the above set of attributes, which are subject to different
threats, i.e., faults, errors, and failures, and can exploit various means for achieving the
attributes [10], [15], [16]. Some of these attributes are quantitative (e.g., availability and
reliability) while some are qualitative (e.g., safety). The importance of one dependabil-
ity attribute over another depends on the application under consideration. Focusing on
communication networks and the services provided by them, the availability attribute is
of utmost importance. The International Telecommunication Union (ITU) framework
for service level agreements (SLA) identifies service availability as the most important
dependability attribute for end users, which has to be clearly defined in an SLA [17],
[18]. In addition, it is more common that end-users are mostly interested in a running
service, i.e. available, when they want to make use of it. Moreover, availability is a
common attribute to the different network performance concepts such as dependability,
security, survivability, and fault-tolerance [16].

There are several concerns that make availability a critical design factor in NFV. An
important concern raises from the fact that legacy network appliances, enriched with
built-in fault management mechanisms that reach “5-nines” standards, are replaced by
COTS data-center hardware whose failure intensities are potentially higher than tradi-
tional purpose-built hardware [12], [13], [19]. Also, software code developed for imple-
menting virtualized network functions is still at their infancy and may be less robust and
more error-prone [13]. In addition, utilizing a virtualization layer comes at the cost of
increased system dynamics caused by the introduction of virtual resources and the lack
of direct control over the underlying physical hardware [20]. The benefit of efficient
resource utilization relies on services sharing a common physical infrastructure and thus
any eventual abnormal execution of applications, e.g., resource overload, may lead to
availability issues for third party services [11]. Moreover, low-level failures, i.e., storage
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or compute components, affect services not only regarding the respective layer, but also
services that have been deployed above them [14]. Furthermore, in an NFV deployment,
the virtualisation layer, which is realized through a virtual machine monitor (VMM)
(also called hypervisor) [21], introduces an additional failure source. The hypervisor
itself may be prone to software failures, which may affect a large part of the software
infrastructure [22], [23].

In addition to the challenges associated with the technological shift, also the level of
availability expectation of NFV-empowered services exacerbates the challenge of man-
agement and provisioning of highly available NFV services. A multitude of NFV en-
visioned use cases, which are expected to revolutionize the telecom industry, involve
carrier-grade services that require their network being "always on" (i.e., 5-nines) [13],
[24]. Also the imminent 5G cellular system, for which NFV represents an essential en-
abling technology [25], [26], envisions very demanding usage scenarios such as Ultra
Reliable and Low Latency Communications (URLLC). Services like e-health applica-
tions, autonomous driving, or tactile Internet expect that the underlying infrastructure,
e.g., the one supported by NFV, is able to provide even beyond 5-nines availability,
being translated into less than 5 minutes of downtime per year. Ensuring such highly-
demanding availability levels for NFV-based services is extremely difficult also because
most virtualized data centers are designed to offer virtualized instances, which can usu-
ally achieve up to 99.9% uptime (three 9s) [27], [28], hence limiting the capability to
provide highly available virtualized networked services.

The high expectation, in addition to the foreseen challenges of a complex infras-
tructure that relies on virtualization, software, and hardware resources that are not yet
mature enough, makes availability a serious factor that may endanger the NFV trans-
formation. To this end, ETSI has provided several guidelines with regard to availability
and reliability requirements, models, and capabilities for end-to-end NFV-enabled ser-
vices [11], [29], [30]. However, the included reliability and availability models, and their
estimations, are derived from simple and basic models, which do not capture the failure
and recovery process dynamics, and the inter-dependencies between the different com-
ponents involved in the end-to-end service delivery such as VNFs, virtualization layers,
compute, storage, and internetworking infrastructure (e.g., routers, links, switches), see
for example [29]. Consequently, it becomes important to evaluate and quantify the avail-
ability of NFV-enabled services through more realistic models that are able to capture the
system behavior and include all the involved service elements. Assessing dependability
attributes will help identify critical elements within the NFV architecture and provide
useful feedback to service providers on how to deploy, operate, and manage network
services and the underlying infrastructure, for providing robust and highly dependable
services. Therefore, for NFV-based services, the availability has to be considered all
the way from the physical layer up to the virtualization and service layer, and resilience
mechanisms need to be integrated into the software and service provisioning design.

Fault-tolerance is the basic resilience principle that helps systems achieve high avail-
ability even in the presence of faults and it is commonly accomplished by using extra
resources in addition to those necessary for the system to provide its services. These
extra resources are called redundancy and are used to protect a system from failures of
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primary resources [10]. In [29], ETSI introduces the required mechanisms for support-
ing and enabling resilience management and assurance. Through model-driven analysis,
an operator can estimate and assess availability figures that services can achieve under
specific redundancy levels such as single, double redundancy and so forth. However, an
operator also needs to plan for availability by orchestrating NFV resources such that the
allocation of redundant units provides effective protection against failures, service avail-
ability demands are fulfilled, network resources are efficiently utilized, and business
profit is maximized. In general, an NFV resource allocation is a challenging problem
that involves a set of decisions on where to place, how much to allocate, and how to
concatenate VNF instances such that system constraints are optimized [8], [31]. The al-
location of redundant resources is a resource allocation problem with a particular focus
on the satisfaction of service availability requirements [32]–[35].

From a resiliency perspective, the basic methods highlighted in [29] emphasize that
VNF placement constraints should adhere to anti-affinity rules, which specify the place-
ment constraints with respect to common failure modes in the hosting infrastructure.
Anti-affinity rules form the basic mechanisms for enforcing placement of redundant
units such that redundancy is effective against failures. However, while such rules are
key placement constraints from the resiliency point of view, there are other important
constraints that are required in the placement decisions, including, without limitation,
node resource capacity constraints, performance related constraints, and other service
optimization constraints, e.g., path routing through a predefined sequence of VNFs [8].
In addition, it is not sufficient that redundant instances are placed at separate hosting ma-
chines as correlated failures that impact both primary and redundant function may arise
due to network structural dependencies [13], [36], [37]. Moreover, redundancy can be
costly, especially when high availability levels are demanded, and unless planned care-
fully it may significantly limit the network resource efficiency. Therefore, smart resource
allocation decisions are necessary for optimizing the benefits that NFV embrace.

Accordingly, the overarching theme of this work is the availability of NFV-driven
network services, which is defined as the probability that the service will be provided
when needed [10]. In particular, the focus of the thesis is on the methods and tools to
abstract, estimate, and analyze availability of end-to-end NFV-driven services for identi-
fying dependability flaws, effective redundant mechanisms, and critical system elements
that pose threats to service resilience. Furthermore, the thesis research focus is further
extended on the orchestration of redundant NFV resources such that the provisioning
of highly available services can be achieved by allocating resources in an efficient and
scalable way.

1.3 Research Questions and Objectives

Research Questions
Although network operators monitor service properties after deployment, traditionally,
they also employ models to estimate properties such as performance or availability [38]–
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[40]. Availability modeling is a widely used technique for evaluating and analyzing ser-
vice availability of computing and communication systems [39], [40]. It is common that
system designers use availability modeling for performance prediction since the early
stages of system lifecycle [39], [41]. The nature of the system under analysis drives the
choice of the modeling formalism but also vice versa — the formalism may limit the
level of details that can be included in the abstracted system model [40]. The design of
detailed availability models requires to identify the most significant failure modes con-
cerning the system components, which are involved in the delivery of services. Once
these modes have been identified, the interplay between the elements and their inher-
ent dependencies needs to be factored in the overall availability model. Moreover, the
choice of appropriate modeling techniques, which allow to mirror realistic dynamics of
failure and repair processes, may play a significant role. Accordingly, this poses the first
research question (RQ):

RQ1 - How to design analytic models that allow to characterize in detail and assess the
availability of NFV-based services?

A key improvement of NFV-enabled networks is the flexibility to deploy and run
virtualized network functions potentially anywhere in the network. This advantage al-
lows an operator to instantiate VNFs and optimally distribute them in distinct parts of
the network. For example, an IDS needs to be placed behind a firewall on the edge of the
network. However, from the service availability perspective, this distributed deployment
imposes connectivity requirements such that an end-to-end service can be deemed avail-
able. The service is available only if in addition to the VNFs also the network devices
interconnecting the VNFs are available. Thus, the evaluation of the service availabil-
ity should regard also these elements and the next goal is to ensure that the models,
which are used to represent the behavior of the overall NFV service, will incorporate
all the elements involved in the service delivery. As highlighted by ETSI [29], a correct
evaluation of the availability of end-to-end services needs to take into account also the
connectivity requirements, which are imposed by the network interconnecting the geo-
distributed VNFs composing a service chain. Correspondingly, it comes naturally to ask:

RQ2 - How to define availability models that feature connectivity requirements among
the involved elements providing and supporting end-to-end NFV services?

Analytic availability models are valuable tools to quantify and predict the avail-
ability of NFV-driven services. They can enable a modeler to construct various set-
tings that simulate practical fault-tolerant configurations, in the form of redundant re-
sources, which can be further assessed and compared. However, an operator needs to
know not only the most suitable fault-tolerant setups but also how to provision these
redundant resources in the network such that target service availability values can be
achieved. Allocating redundant resources requires knowledge about the optimal place-
ment of the resources in the network substrate and their assignment to service requests
such that availability, performance, and other optimization constraints are satisfied. In
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addition, from an operator’s perspective, it is also required that redundancy allocation
approaches present key important features such as scalability and resources-efficiency.
Consequently, it becomes imperative to question the following:

RQ3 - How to construct optimal (or near-optimal) redundancy allocation schemes that
are scalable, cost-efficient, and provide adequate protection against failures?

Research Objectives
Modeling complex systems can be cumbersome and tedious. Nevertheless, it is impor-
tant that the model design is sufficiently able to capture the main system features and
behavior, which influence measures of interest. For example, the combinatorial models
presented in [29] conceptualize the service at a high level and are useful tools to estimate
service availability. However, they cannot be used for evaluating system outputs related
to failure and repair process dynamics of service components such as VNFs, links, or
networking devices because they do not capture the interaction and dependencies among
them [40], [42]. As a result, more powerful models are needed to evaluate and assess ser-
vice availability. To this end, one of the objectives of this thesis is to develop availability
models of end-to-end NFV-supported services by employing an abstract representation,
which is able to exhibit also system (and component) dynamics in terms of failure and
repair processes, capture dependencies among components, and characterize various re-
dundancy mechanisms such that also carrier-grade availability can be achieved (OB1).

An end-to-end NFV-enabled service, where both ends are customers, is a composi-
tion of several functional blocks, which are connected in series or parallel, to construct
a network service chain [29]. These functional blocks include not only the VNFs and
the supporting infrastructure (e.g., virtualized hardware) but also networking and inter-
working equipment. This is particularly important since a key characteristic of NFV-
enabled networks is the ability to flexibly and dynamically deploy VNFs anywhere in
the network, and an operator can interconnect them for realizing specialized network
services in the form of service chains [20]. However, from an availability perspective,
this flexibility imposes connectivity requirements among elements since the service will
be available only if all the functional elements are available. Therefore, the availability
of a network service has to be estimated based on the availability of all these func-
tional blocks. Although several research efforts have performed model-based quantita-
tive evaluation of NFV service availability, both prior and while this thesis work was
being developed (see for example [43]–[45]), none of them has considered the effects
of the underlying physical network and its intrinsic topological dependencies emerging
from the network connectivity requirements. To address this gap, another objective of
this work is to propose a comprehensive methodology to characterize the availability of
end-to-end NFV-deployed services, which integrates all the service functional elements
(OB2).

In general, a model-based evaluation process consists of two phases: a modeling
phase and a solution phase. The ultimate goal of the modeling process is to facilitate a
detailed evaluation of the system availability characteristics. This is achieved by solving
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the model through appropriate analytic or simulative approaches to compute measures
of interest. Solving the model will enable the users to carry out assessment and analysis
of the most influential factors/components, study tradeoffs for redundancy alternatives,
identify availability bottlenecks, and understand the impact that parameter uncertainties
have on the system output. Accomplishing this phase serves as the next objective of this
thesis (OB3).

While model-based analysis can help a user identify, among others, adequate redun-
dancy levels for reaching target availabilities, the provisioning of highly available NFV
services requires also that the operator carry out a set of tasks in which redundant re-
sources are optimally allocated to the virtualized functions composing the services [46]–
[49]. In particular, various studies have shown that simply deploying primary instances
for network services, i.e., primary VNFs, is not enough for satisfying stringent avail-
ability demands [50], [51]. The allocation of redundant resources, also called backup
resources, is a variant of the NFV resource allocation problem with an emphasis on
guaranteeing service availability demands. It is typically formulated as a Integer Lin-
ear Programming (ILP) mathematical optimization problem, which consists of a set of
decisions that ultimately define the placement of backups within the network substrate,
how the backup instances are chained together, and the traffic route steering. In addition
to these decisions, there are other system constraints that influence the decision making
including, without limitation, node resource capacity constraints, performance related
constraints (e.g., latency), and other service optimization constraints [8], [31]. Hence-
forth, an operator needs to adopt schemes that optimally place and assign VNF backup
instances while satisfying service availability and performance requirements. To this
end, an additional goal of this thesis work is to develop optimized redundancy allocation
strategies that enable highly available NFV-based network services (OB4).

The NFV resource allocation problem, and its availability-aware variant, is widely
acknowledged as a challenging and not trivial problem. Moreover, many studies consider
it as closely related to the well-known NP-hard virtual network embedding problem
(see for example [31], [52] and references therein). As a result, also the NFV redun-
dancy allocation problem is NP-hard [50], [53], [54]. Although an optimized scheme
provides an optimal solution, given the nature of the problem, its applicability is limited
to small-scale problem instances. If the problem scale increases, e.g., a higher number
of service requests or a larger network topology, the computation efforts becomes un-
sustainable. A common workaround to this limitation is to propose ad-hoc heuristics,
which are able to scale well to medium- and large-problem instances and at the same
time obtain near-optimal solutions.

An important drawback of redundancy is that it can be costly in terms of additional
resources [50], [55]. This can be particularly critical in case services require high avail-
ability, e.g., 5-nines or 6-nines, as more additional resources are required to satisfy such
demands. This may result in a resource exhaustion situation and thus inhibit the net-
work ability to accommodate new flows. Henceforth, unless carefully planned, redun-
dancy may come at an increased cost and resource allocation schemes should be able
to achieve a balance between multiple objectives that can also be in conflict with each
other. To tackle this challenge, the final objective of this thesis is to propose a heuristic
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algorithm that performs near-optimal, scalable, and resource-efficient NFV redundancy
allocation (OB5).

To summarize, in order to answer to the research questions, the contributions pre-
sented in this thesis have been directed towards multiple goals in regard to constructing
availability models, assessing the availability of end-to-end NFV-enabled services, and
proposing and evaluating optimized, resource-efficient, and scalable redundancy alloca-
tion strategies for supporting high-availability levels. The objectives of this thesis can
be outlined as follows:

OB1 - Design availability models that characterize failure dynamics of involved service
elements and incorporate different failure mitigation mechanisms (Paper A, Paper
B, and Paper C);

OB2 - Develop a comprehensive availability mode that takes into account not only NFV
system elements but also network connectivity requirements imposed by NFV de-
ployment schemes (Paper D);

OB3 - Perform quantitative model-driven assessment and analysis of the service avail-
ability aiming at identifying critical failure parameters, service elements, and re-
dundancy techniques for ensuring highly available services (Paper A, Paper B,
Paper C, and Paper D);

OB4 - Design and formulate optimized redundancy allocation schemes for enabling high-
availability levels for NFV-based services (Paper E);

OB5 - Propose a novel approach for VNF redundant placement and allocation of service
chains, which is both scalable and resource efficient (Paper F);

1.4 Research Methodology
This section briefly describes the research methodology adopted to achieve the research
goals previously described. It follows the well-established scientific research process [56],
and Figure 1.1 outlines the logical view.

The research effort started with a general research scope definition which subse-
quently was narrowed down through many discussions with my supervisors and col-
leagues having expertise in the technological area. This was followed by a literature
review of the NFV architecture and the associated dependability challenges. In partic-
ular, this step was capital in understanding the background and the related literature,
as well as identifying open challenges and defining the research questions. Following
that, the system model and underlying working hypothesis are defined. In particular,
the working hypothesis (or assumptions) eased the system model definition by provid-
ing helping simplifications yet, without loss of generality. Subsequently, the research
process is divided into two separate tracks, consisting of the design of the availability
models and the mathematical optimization/heuristic models, in regard to the objectives
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FIGURE 1.1: Research Methodology.

of model-based availability evaluation and the optimized redundancy allocation prob-
lems. Afterwards, targeted experiments, aiming at retrieving metrics of interest, are
carried out and solved via either simulations or exact solvers like CPLEX. Then, result
analysis is performed and in many ways this step helped both refine and tune the system
models and experiments, respectively, by providing useful feedback. Finally, produced
outcomes are reported in the form of contributions presented in this thesis.
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Chapter 2
Background

In this Chapter, the background of the present thesis is introduced, and the related study
literature is reviewed. First, the NFV architecture and the associated dependability re-
quirements and challenges are introduced. Then, the basic principles of service depend-
ability and the different methods for modeling dependability attributes are presented.
Additionally, the NFV resource allocation problem and the availability-aware variant
are illustrated. Finally, the related works in the research area are reviewed together with
discussion about open challenges identified from the revision of the current state of art.

2.1 NFV Architecture
Today’s modern networks are composed of diverse network functions deployed in spe-
cialized proprietary hardware, commonly called network appliances or middleboxes.
These network appliances perform important network functionalities and despite they
represent a vital part in today’s networks, they are associated with several problems that
can be identified, among others, in reduced flexibility, high operational and capital ex-
penditure, and highly demanding innovation procedures [4].

Network Function Virtualization is an emerging solution that promises to alleviate
the numerous disadvantages brought by traditional network appliances. NFV aims to
radically transform the way network operators architect, operate, and manage networks
by leveraging server virtualization technology for consolidating network appliances onto
standard high volume servers, switches, and storage equipment, which can be deployed
in datacenters, network nodes, or end user promises. NFV envisions the implementation
of network functions as software running in virtualized environments, which is decou-
pled from the underlying hardware and can be instantiated in different locations without
the need for installation of new vendor equipment.

Applying NFV brings many benefits to network operators hence, contributing to a
radical change in telecommunications industry. Some of the foreseen benefits include
lower capital expenditures, by eliminating the need to purchase costly specialized net-
work appliances, reduced operating costs as through a centralization of the network man-
agement a reduction of staff time to maintain networks is foreseen, and greater flexibility
and scalability since it will require much less time and work to add new capabilities in
the network [57].
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The NFV concept, conceived in late 2012, started as an international collaboration
among some of the leading Telecom organizations with the intention of accelerating the
development and adoption of agile, open, and interoperable solutions for the telecom-
munication landscape, primarly based on high volume industry standard servers [7]. Its
conception triggered an industry movement where more that 300 companies, evolved
into the ETSI NFV Industry Specification Group (ISG), are leading a large-scale inno-
vation in the telecommunication domain. From member’s feedback, field-trial experi-
ences, and proof of concepts, the ETSI NFV ISG has published more that 100 publi-
cations specifying and recommending standardized guidelines and requirements for the
NFV ecosystem.

NFV envisages the implementation of network functions (NFs) as software-based
entities that run over a virtualized infrastructure constituted by compute, storage, and
networking resources. Figure 2.1 depicts the high-level NFV reference architecture,
which consists of three main working domains [20]: the NFV Infrastructure (NFVI), the
VNFs, and the NFV Management and Orchestration (MANO).

NFV Infrastructure (NFVI)
The NFVI is the set of hardware and software resources that constitute the environment
where VNFs are executed. The physical resources include high volume industry standard
equipment providing computing, storage, and network hardware resources.

Virtual resources are abstracted counterpart of computing, storage, and network re-
sources. This abstraction is achieved using a virtualization layer, which decouples the
virtual resources from the underlying physical resources. Typical virtualization tech-
nologies, where VNF can be executed, can be based on a hypervisor or containerized



2.1. NFV Architecture 15

Hardware

Host Operating SystemHypervisor

Hypervisor

Hardware

Operating System

Hardware

Virtual 
Machine

Operating 
System

VNF

Virtual 
Machine

Operating 
System

VNF
Virtual 

Machine

Guest
Operating 

System

VNF

Virtual 
Machine

Guest
Operating 

System

VNF

Container

VNF
Container

VNF

Container engine

Bare metal-hypervisor Hosted-hypervisor Linux Container

FIGURE 2.2: Most common virtualization technologies.

infrastructure. Figure 2.2 depicts these two most common virtualization technologies,
i.e., virtual machines (through either bare metal- or hosted-hypervisor virtualization)
and containers [58]. A hypervisor is a software allowing the emulation of hardware
resources. The emulated resources, referred to as virtual resources, abstract physical re-
sources and enable running different operating systems on top of common shared hard-
ware resources. This way, the hypervisor enables the operation of multiple machines
(virtual) within the same hosting computer. Each machine is associated with virtual re-
sources, i.e., virtual CPU, memory, disc, and represents a "closed" environment where
applications, e.g., VNFs, can be deployed and operated. It is possible to differentiate
two types of hypervisors, Type 1 hypervisor running directly on hardware (hence also
called bare metal) not requiring an operating system and Type 2 hypervisor running on
the operating system of the host machine. Differently, container-based virtualization uti-
lized the kernel features to create isolated environments, a.k.a. containers, for processes.
Container virtualization does not emulate an entire computer rather create environments
where software can directly communicate with the host kernel for utilizing hardware
resources [58].

Virtual Network Functions (VNFs)
A virtual network function is the software implementation of a network function, e.g.,
firewall or deep packet inspection, which can be deployed in virtual resources such as
virtual machines (VMs) or containers. A VNF can be decomposed into smaller func-
tional modules for scalability, reusability, and/or faster response, or multiple VNFs can
be composed together to reduce management and VNF traffic steering complexity. De-
composing a VNF is the process whereby a higher-level VNF is split into a set of lower-
level VNFs. A single VNF may be deployed into a single VM or it may be composed of
multiple components and thus it can be deployed over multiple VMs [20].
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NFV Management and Orchestration (NFV MANO)
The NFV Management and Orchestration (NFV MANO) is responsible for the orches-
tration and life-cycle management of the physical and software resources supporting the
virtualized infrastructure, and the life-cycle management of VNFs providing the network
service.

The NFV MANO entity, in the remainder referred to as simply the MANO, com-
prises three separate functional blocks, namely NFV Orchestrator (NFVO), VNF Man-
ager (VNFM), and Virtualized Infrastructure Manager (VIM). The NFVO is the orches-
trator of the architecture and is responsible for operations such as on-boarding, instan-
tiation, or termination of network services and the orchestration of their corresponding
resources. The VNFM is responsible for VNF lifecycle management including typical
operations like VNF instantiation, update, query, scaling, or termination. Multiple VNF
Managers may be deployed; a VNF Manager may be deployed for each VNF, or a VNF
Manager may serve multiple VNFs. The VIM comprises the functionalities that are used
to control and manage the interaction of a VNF with computing, storage, and network
resources under its authority, as well as their virtualisation.
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NFV Network Services
The constituent blocks of the NFV architecture interact with each other to provide end-
to-end network services. An end-to-end network service can be described by a Forward-
ing Graph of interconnected NFs and end points [59]. Figure 2.3 shows a graphical
representation of a VNF Forwarding Graph (VNF-FG), which defines the composition
of VNFs providing an NFV-enabled service, and their relative sequence for traffic to tra-
verse. This is similar to the definition that the Internet Engineering Task Force specifies
as an SFC - "the definition and instantiation of an ordered set of service functions and
subsequent steering of traffic through them" [6].

In the NFV context, both nomenclatures refer to the same thing, hence hereafter we
will refer to an SFC as the composition of an ordered set of VNFs providing a network
service. Thus, the deployment and delivery of an end-to-end service, illustrated in Fig-
ure 2.4, where both end points are customers of the NFV architecture, comprises several
network functions, which are mutually connected in parallel or in series, to construct a
network service graph in the form of an SFC. The service is implemented and operated
through an interaction of the SFC, realizing the service, and the MANO, which acts as
the manager of the service life-cycle.

2.2 Dependability Concepts
This section introduces a brief revisit of basic definitions, threats, and means for achiev-
ing dependable systems. The revision content is mainly based on notions and definitions
taken from [10], [15]. In addition, the most widely used dependability modeling tech-
niques and their relative capability, such that the concepts and relations from this work
can be easily identified, are introduced.

System dependability is the defined as "the ability to deliver a service that can justi-
fiably be trusted". This definition highlights the requirement of justifying the trust to be
placed upon a system. An alternative definition, which imposes the criteria of whether a
system is dependable, is "the ability to avoid service failures that are more frequent and
more severe than is acceptable". Generally, it is referred to dependability as an umbrella
term that integrates concepts including: threats to, attributes of, and means by which de-
pendability is accomplished. Figure 2.5 shows the relation between these concepts in the
diagram known as the dependability tree. In the following sections, they are introduced
in more detail.

Dependability Attributes
Five principal attributes can be used for characterizing the dependability of a system:
availability, reliability, safety, integrity, and maintainability [10]. Later, security, as a
composite of integrity, availability, and confidentiality, was integrated with the other
dependability attributes for establishing a dependable and secure computing taxonomy.
One of the most well-known attribute is system availability, which refers to the ability of
a system to deliver services at a given instant of time or within a specific time interval.
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Another important concept is reliability and it refers to the ability of a system to provide
uninterrupted service. The third concept, safety, expresses the ability of a system to pro-
vide service without experiencing catastrophic failures. Integrity refers to the omission
of improper system alterations. Finally, the maintainability is the ability of a system to
undergo modifications and repairs.

The extent to which a system retains dependability attributes is to be considered in
a probabilistic sense and not in an absolute, deterministic sense. Due to the unavoid-
able threats, which will be introduced in the following section, a system is never to be
regarded as absolutely available, reliable, and so forth.

The importance of any of the attributes over another may be subject to the appli-
cation service that is under consideration. Availability is typically the most common
attribute for assessing dependability of communication networks [60]–[62]. This is be-
cause end-users are mostly interested in service readiness, i.e., being able to use the
service whenever they want [63]. Moreover, availability is the most common attribute
specified in SLAs for services provided by communication networks [17], [18]. This
is also true for web-based services provided through virtualized infrastructures such as
cloud computing [27], [28], where an important service level objective is the defini-
tion of the monthly uptime percentage, i.e., monthly service availability. These remarks
serve as motivation for this work to focus on the service availability as a primary and
noteworthy dependability attribute.

For quantifying system availability, some measures have to be introduced. Uptime
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refers to the time period during which the service is correctly delivered. It is commonly
quantified in terms of the Mean Up Time (MUT), which defines the mean interval of
time from the moment the service is restored after a failure until the next service fail-
ure. Similarly, the Mean Down Time (MDT) measures the mean time duration from
the instant a failure is experience until the service is restored. Usually, it is important
to guarantee service availability in the long time range, hence one is more interested in
the steady-state availability A, i.e., asymptotic availability. Such a metric quantifies the
probability that the service can be correctly accessed at some point in the future and is
defined as [62]:

A =
MUT

MUT +MDT

Inversely, the probability that the service is not correctly delivered at some point in
the future defines the asymptotic unavailability U , thus yielding U = 1−A. In addition,
if one is interested on the availability on a specific time interval τ , the interval availability
(A(τ)) is defined as the fraction of time in which the service is correctly delivered within
the given interval. Note that some literature uses different but completely equivalent
terms where MUT is referred as Mean Time To Failure (MTTF) and MDT refers to
Mean Time To Repair (MTTR) [40]. Accordingly, the steady-state availability can be
expressed as:

A =
MTTF

MTTF +MTTR

where MTTF defines the average duration of time from the moment a service request
is received, given that the service was up at that time, until the first service failure is
experienced and MTTR defines the average time it takes for the service to be repaired.

Threats to Dependability
There are three impairments to dependability: faults, errors, and failures [10], [63]. Ac-
cording to the definitions, there is an intrinsic relationship between these dependability
threats, shown in Figure 2.6, known as "chain of threats".

Faults are the "adjudged or hypothesized cause of an error". They can be physical
defects, electromagnetic shocks, flaws in software, etc. A fault is active when it causes
an error otherwise it is dormant. A dormant fault may be triggered within the system,
leading to an active fault, which may in turn be observable as an error.

An error is "the part of the total state of the system that may lead to its subsequent
service failure". It is important to note that not all errors will eventually lead to a service
failure. Therefore, an error can be regarded as the deviation from system correctness,
which by reaching the service interface leads to a service failure.

A failure is defined as "the event that occurs when the delivered service deviates
from correct service" and the period of incorrect service delivery is defined as the service
outage.
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The arrows in the chain relate the causality between faults, errors, and failures, in-
dicating that faults cause errors, which in turn cause failures. Such relationship should
be interpreted generically and may be recursive if a system is part of another system: a
failure in one system may cause a fault in another system, which in turn may cause an
error and subsequently a failure. In the scope of this thesis, the contributions are mainly
focused on failures and service outages rather than the sources of the lack of depend-
ability, i.e., faults and errors. This is because the focus of this work is on the transition
from a correct to incorrect service delivery rather than on the modeling of the fault, er-
ror, failure chain. Moreover, please note that in the following, the word failure will be
mostly used for identifying both system failure and the specific causality type leading to
the service outage.

Dependability Means
Faults are the source of dependability threats, hence the means to attain dependability
focus on preventing, tolerating, removing, and forecasting faults [10].

Fault prevention is a part of a general development strategy aiming at avoiding the
introduction of faults during the design and development phase. Prevention of develop-
ment faults can be done both on the software level, e.g. using strong-type programming
languages or modularization, and on the hardware level, e.g. by shielding the system
from external threats.

Fault tolerance aims at delivering the specified service despite the existence and ac-
tivation of fault within the system. The objective of fault tolerance is, as definition
indicates, to tolerate faults but avoid service failures. With fault tolerance, an error is al-
lowed to occur, but is prevented from causing a failure. The basic principle of achieving
fault tolerance is the use of extra resources, in addition to those necessary for the system
to deliver a service. Employing extra resources to attain fault tolerance is widely know
as redundancy. Redundancy can be realized in many forms including: i) hardware, e.g.,
employing spare or parallel components, ii) software, e.g., enhancing the software with
fault handling capabilities, iii) information, e.g., implementing error-correcting codes
(FEC - Forward Error Control codes), or iv) time, e.g., enabling retransmission of erro-
neous/corrupted data packets.

With fault removal, the objective is to clear away faults both during the development
phase and during the operational life of a system. Removing faults during the devel-
opment phase of a system life-cycle consists of three steps: verification, diagnosis, and
correction. Verification is the process of validating whether the system complies to given
specifications. In case the verification results negative, a diagnoses of the fault(s) that
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prevented the verification conditions from being fulfilled is carried out, and then the nec-
essary corrections are implemented. After correction, the verification process should be
repeated for validation that fault removal had no undesired consequences. Fault removal
during the operational life is generally considered as corrective or preventive mainte-
nance. Corrective maintenance is aimed at removing faults that have produced one or
more errors and have been reported, while preventive maintenance is aimed to uncover
and remove faults before they might lead to errors during normal operation.

Fault forecasting consists in performing an evaluation of the system behavior with re-
spect to fault occurrence or activation. The evaluation can be a qualitative assessment by
ranking the component failure modes that might lead to a system failure or a quantitative,
i.e., probabilistic, evaluation aiming at analyzing the extent to which some of depend-
ability attributes (measures) are satisfied. Fault forecasting is essentially modeling the
behavior of system components and their interactions and processing the model(s) to
obtain values of dependability measures.

2.3 Dependability Modeling
Dependability modeling is a common way engineers have used to quantify and evaluate
system dependability [38], [39]. Methods to evaluate the dependability of a certain sys-
tem are fundamental during all stages of the system lifecycle. Availability and reliability
are key quantitative dependability measures of technical systems and the assessment and
evaluation methods of these measures can be divided into two main categories: data-
driven or model-driven methods [40]. The former are suitable methods for quantifying
and evaluating system components or subsystems but, for large systems, the latter are
more preferable [39], [40].

Solving model-driven methodologies can be through either discrete-event simulation
or analytic-numeric techniques. However, the choice of the applied solution may depend
on the application, and in general, it is advised that a reasonable combination of both
techniques should be employed for solving large and complex system models [39],
[40].

There are three main model-driven methodologies used to asses dependability mea-
sures: non state-space models (sometimes called combinatorial or static models), state-
space models (otherwise called dynamic models), and multi-level models (often referred
to as hierarchical models). A brief illustration of these three types, which is primarily
based on [39] and [40], is given in the following.

Non state-space models include Reliability Block Diagrams (RBD), Fault-trees (FT),
and Reliability Graphs (RG). These models allow a relatively quick quantification of
measures because they have a simple and intuitive graphical representation [41]. RBDs
and FTs are typically used to represent the logical structure of a system, with respect to
how availability or reliability of system components impacts the overall system avail-
ability.

RBDs are graphical structures with a start and end dummy nodes, which are inter-
connected through blocks representing the system components. At any instant of time,
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the existence of a path between the two dummy nodes reflects an operational system,
otherwise the system is considered failed.

Fault-trees are acyclic graphs with nodes that are logic gates (e.g., AND, OR) and
external nodes (leaves) that represent system components. The edges transmit the failure
information from the leaf nodes (components) and if a component has failed, a TRUE
logic value is transmitted; otherwise, a FALSE is transmitted. At any instant of time, the
logic value at the root node determines the status of the system, i.e., operational or failed.
RBDs and FTs have been extensively used in reliability and availability modeling, see
for example [64]–[66].

RGs have been commonly used to quantify and estimate network dependability mea-
sures [67]. Their graphical representation is an acyclic graph consisting of nodes and
edges, where edges represent system components that can fail or the relationship be-
tween components. The existence of at least one path from a source node to a destination
node represents a reliable/available network (system). On the one hand, the main dif-
ference between RBDs/FTs and reliability graphs is that failure parameters (e.g., proba-
bilities, rates, or functions) are assigned to edges, and not to nodes. On the other hand,
under certain conditions, the three models can be used interchangeably since it is pos-
sible to derive one model from another. For example, FTs without repeated events (or
shared nodes) are equivalent to RBDs [42]. Both RBDs and FTs are subsets of reliability
graphs, which are in turn subset of fault trees with repeated events.

Despite their advantages, non state-space models rely on strong assumptions, which
may induce in pitfalls when quantifying measures of interest. All the three models heav-
ily rely on statistical independence among system components. For example, if the
system is composed of different subsystems, each of the subsystems is repaired inde-
pendently. This assumption is translated into having dedicated repairman for each indi-
vidual subsystem, which in realistic scenarios is not common. In addition, such models
assume that the system and recovery actions behave as intended, i.e. perfect repair, and
they lack the required flexibility for characterizing the dynamic nature of systems where
sequences of events influence the occurrence of other events. This is why they are some-
times called static models.

State-space models are suitable models for representing complex interactions and
behaviors within a system. When specific assumptions are made, state-space models
are also suitable methods for modeling large and complex systems, especially when
regarding specific behaviors with repetition throughout the large system. There exist
a variety of state-space models used in the literature. They can be simple Markov-
based models like discrete/continuous-time Markov chains (D/CTMC) or semi-Markov
Processes. When a reward function is associated with the chain, for the evaluation of a
certain metric, they are known as Markov reward models (MRM). Other representatives
of state-space models, which are more human intuitive, include Petri-net (PN)-based
models like stochastic-Petri nets (SPN) and generalized-SPN (GSPN). When a reward
rate is associated with the net, it is called a stochastic reward net (SRN). An additional
variant of stochastic PNs are stochastic activity networks (SANs), which are based on
activity networks and this kind of the extension is similar to how stochastic Petri nets are
constructed from (classical) Petri nets.
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For large and complex systems, the number of system states can grow extremely
large. This is called the largeness problem for Markov-based models. One widely used
way to limit the state space growth is by using hierarchical models, which help the
designer avoid the largeness problem [68], [69]. Hierarchical models are multi-level
models where higher levels are frequently non-state space models and lower levels are
typically state-space models, which are more suitable for capturing individual complex
behavior. The upper levels of a hierarchical model can be for instance, RG for network
modeling, FT or RBD for structured modeling of individual systems, whereas in the
lower level, state-space models such as CTMC or SAN can be used to capture complex
dynamic behaviors of subsystems or individual components.

From a modeling capability perspective, Malhotra et al. [42] classifies the RBDs and
FTs without repeated events as the least powerful models among the non-state-space
models in terms of modeling conciseness and system representation. RGs are more
powerful than RDBs and FTs without repeated events but less powerful than FTs with
repeated events. State-space models like SPNs, CTMC, and SRN offer similar modeling
power, which is higher than non-state-space type of models in that they provide the
modeler with the ability to capture component dependencies, common mode failures,
and shared repair facilities.

2.3.1 Stochastic Activity Networks
Stochastic activity networks are a probabilistic extension of activity networks, similar
to how stochastic Petri nets are developed based on classical (un-timed) Petri nets [70].
SANs offer several advantages due to the small size of their descriptions, and their vi-
sual interpretation clarity allows the designer to focus more on the system being mod-
eled rather than on error-prone and tedious manual constructions of lower-level Markov-
based models.

In this thesis work, SAN modeling formalism, i.e., a formal language for express-
ing models, is used on Paper A, B, C, and D for constructing availability models of
NFV-based service components, and their inter-dependencies, by abstracting and char-
acterizing their failure and repair dynamics. The availability models are designed and
solved using a well-referenced software tool called Möbius [71], which is introduced in
more detail in the following sub-section.

Before introducing the formal definition of stochastic activity network let us first
define activity networks. Such definitions are taken from [70], [72], [73].

An activity network (AN) is a mathematical modeling language in the form of a
bipartite directed graph. Formally, an AN is a generalized version of Petri nets consisting
of the following modeling elements [72]:

- Places, which are similar to Petri nets, contain a certain number of tokens that in
turn represent the marking of the place. The set of all place markings in the model
represent the state of the modeled system.

- Activities, which can be either instantaneous or timed, define actions that take a
certain amount of time to complete. Each type of activity is associated with a
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non-zero integral number of cases, which defines a possible action taken upon the
completion of the activity.

- Input gates, each of which accepts a finite set of input arcs and one single output.
Each input is associated to an n-ary enabling predicate and n-ary computable input
function over the set of natural numbers. The input function is defined for all
values for which the enabling predicate is true.

- Output gates, each of which has a finite set of outputs and one input. Each output
is associated with an n-ary computable function on the set of natural numbers,
called output function.

Timed activities represent the actions of the system being modeled whose durations
influence the systems’s ability to perform. Instantaneous activities resemble system ac-
tivities that, relative to the performance metric being measured, are completed in a neg-
ligible amount of time. Activity cases model the uncertainty about the enabled activity
to complete. Both timed and instantaneous activities can have case probabilities, which
can be marking dependent and their sum should equal one. The definition of an activity
network is as follows:

Definition 1 – An activity network (AN) is defined as an eight-tuple [72]

AN = (P,A, I, O, γ, τ, ι, o) (2.1)

where P is a finite set of places, A is a finite set of activities, I is a finite set of input
gates, and O is a finite set of output gates. Furthermore, γ : A→ N+ specifies the num-
ber of cases for each activity, and τ : A → {Timed, Instantaneous} defines the activity
type. The network structure is defined via the functions ι : I → A, which maps the input
gates to activities and o : O → {(a, c)|a ∈ A ∧ c ∈ {1, 2, ..., γ(a)}}, which maps the
output gates to cases of activities.

The behavior of an activity network is a characterization of possible completions of
activities, selection of cases, and changes in markings. If S is a set of places such that
S ⊆ P , a marking of S is a mapping µ : S → N. An activity a ∈ A may complete
in a marking µ if i) a is enabled in µ and ii) if a is timed, there is no instantaneous
activities enabled in µ. A marking µ is considered stable if no instantaneous activities
are enabled in µ. The set of reachable markings of network AN in the initial marking
µ0 is the set of markings R(AN, µ0) where R(AN, µ0) = {µ|µ0

*−→ µ}. As a result,
the set of stable reachable markings of the activity network AN in an initial marking
µ0 is the set SR(AN, µ0) ⊆ R(AN, µ0) of reachable markings of AN from µ0 that are
stable. Moreover, an activity network AN in a marking µ0 is stabilizing if, for every
µ ∈ SR(AN, µ0), the set S(µ) is finite.

Based on these premises, we now present the definition of the stochastic extension
of activity networks, as given in [73].
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FIGURE 2.7: An example of a stochastic activity network.

Given an activity network, which is stabilizing in a given initial marking µ0, a
stochastic activity network is formed by adjoining functions C, F , and G to an activ-
ity network. Function C specifies the probability distribution of case selections, F the
probability distribution of activity delay times andG defines the set of reactivation mark-
ings for each possible marking.

Definition 2 – A stochastic activity network (SAN) is defined as an five-tuple [73]

SAN = (AN, µ0, C, F,G) (2.2)

where AN is an activity network, µ0 is the initial marking and is a stable marking in
which AN is stabilizing. C is the case distribution assignment of functions to activities
such that for any activity a, Ca : MIP (a)∪OP (a) × {1, ..., γa} → [0, 1]. F is the activ-
ity distribution function assignment. It assigns a continuous function to timed activities
such that for any timed activity a, Fa :MP ×R→ [0, 1]. Moreover, for any stable mark-
ing µ ∈MP and timed activity a that is enabled in µ, Fa(µ, ·) is a continuous probability
distribution function called the activity time distribution function of a in µ. G represents
the reactivation function assignment, which assigns functions to timed timed activities
such that for any timed activity a, Ga : MP → ℘(MP ) where ℘(Mp) denotes the power
set of MP . Finally, for nay stable marking µ ∈ MP and timed activity a that is enabled
in µ, Ga(µ, ·) is a set of markings called the reactivation markings of a in µ.

A graphical representation of the network is typically the preferred way of resem-
bling the system not only because using the tuple formulation is quite cumbersome and
error-prone also for small networks, but it also provides a compact visualization and
greater insight into the network behavior [73]. Figure 2.7 illustrates a simple SAN model
of a server system. Places are graphically represented as circles, which may contain a
certain number of tokens that in turn represent the marking of the place. The set of all
place markings in the model represent the state of the modeled system. Activities are
actions that take a certain amount of time to complete. They impact the system perfor-
mance and can be timed, represented as thick vertical lines, or instantaneous, which are
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depicted as thin vertical lines. A timed activity may be characterized by a deterministic
duration or can have a distribution function associated with its duration. In addition,
activities can have distribution case probabilities, which are graphically represented as
small circles on the right of the activities. Upon completion, an activity fires and enables
token movements from places connected by outgoing arcs to places connected by incom-
ing arcs. This way a system state update occurs and tokens are moved from one place
to another by redefining the places markings. Input and output gates define marking
changes that occur when an activity completes. Different from output gates, the input
gates are also able to control the enabling of activity completion, i.e., firing.

As mere illustration, in Figure 2.7, the place Servers UP contains two tokens, which
abstract the presence of two servers being operational. This state represents the initial
marking of the system. The input gate models the enabling of the timed activity Server
failure and defines the token movement; move a token from the place Servers UP to the
place Server to hard repair with probability p or move the same token to place Server
to soft repair with probability 1-p. For each of the cases there is a specific recovery
procedure, modeled by either an instantaneous activity, which may for example resemble
a fast software restart, or a timed activity modeling a software fix through a specific
distribution. When completed, the activities fire a token present in their respective places
and place it in Servers UP indicating that the failed server has been recovered.

2.3.2 Möbius tool
Since their conception, SANs have served as the basis for different modeling tools in-
cluding METASAN [74], UltraSAN [75], and Möbius [76]. In particular, the Möbius
software tool has grown into a major research project, which has been supported, among
others, by Motorola and DARPA agency grants. The project is currently developed and
maintained by the Performability Engineering Research Group (PERFORM) at the Uni-
versity of Illinois at Urbana-Champaign, USA.

Möbius software offers a powerful and flexible modeling framework to specify mod-
els by using a variety of modeling formalisms. Although the original version was de-
signed for SAN-based modeling, it now includes, among others, formalisms like fault-
trees, Performance Evaluation Process Algebra (PEPA) [77], and Adversary View Secu-
rity Evaluation (ADVISE) [78]. This evolution was primarily built on the belief that no
formalism fits all in terms of being the best for building and solving models across many
system and application domains.

Model Construction

Constructing a model is a process consisting of several steps where each step involves
a specific framework component. Figure 2.8 highlights the framework components and
illustrates the bottom-up procedure of model construction within the framework.

The first step is to use some formalism for generating a model, also called atomic
model, made up of state variables (e.g., places in SANs), actions (transitions in SANs)
and properties. The atomic models can be constructed with ADVISE [78], Bucket and
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FIGURE 2.8: Möbius architecture components (source [79]).

Balls [80], Fault trees, PEPA [77] or SAN formalim. Once an atomic model is con-
structed, the next step is to define some measures of interest using reward specifications
in regard to performance, dependability and/or performability [81]. This step defines
a reward model that enhances the atomic model with reward variables. Subsequently,
in case the atomic model is expected to be part of a larger model, it can be composed
with other models. This can be achieved by leveraging composition formalisms such
as Replicate/Join and graph composition in which system symmetries and state lumping
techniques can be exploited. The next step is to execute a solver to compute a solution
of the model. This step generates a solved model and the mechanism that calculates
the solution to reward variables can be exact, approximate, or statistical. The computed
solution is called a result, and since the reward variables are random variables, the result
is expressed as some characteristics of a random variable, e.g., mean, variance, or distri-
bution of the reward variable. The result may also include solution information such as
error levels, confidence intervals, or stopping criterion. If the result is intended as an in-
termediate step toward the final desired measure, it may capture the interaction between
multiple reward models that form together a connected model. This is a useful tech-
nique of modeling using decomposition approaches, such as those used in [82], where
the model of interest is a set of reward models with dependencies expressed through
intermediate results.

Model Composition

A special feature of Möbius is the ability to construct composed models from previously
defined ones. Such models can be atomic models or other composed models. This way,
a modeler may exploit a hierarchical approach, by constructing submodels as specific
units and then linking them together in a well-defined manner to construct a model of
a system. The composition method makes use of two approaches; i) the action-sharing
approach in which submodels are composed through superposition of a subset of their
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FIGURE 2.9: A Replicate and Join composition model of a virtualized
network service (Paper A).

actions and ii) the state-sharing approach, which links submodels together by identifying
sets of state variables. For example, it is possible to compose two SAN models by caus-
ing them to hold a particular place in common. This allows for interaction between the
submodels since both can read from and write to the identified state variable. This form
of state sharing is known as equivalence sharing since both submodels have the same
relationship to the shared state variable. The two supported composition formalisms that
use equvalence sharing are Replicate/Join and graph composition. To illustrate, Figure
2.9 depicts the Replicate/Join composed formalism utilized in Paper A for constructing
a hierarchical model of an NFV-enabled network service. This way, system symmetries
can be evidenced and exploited by reducing and compacting the model abstraction. For
example, the left-hand side model is build on multiple levels, each of which joins sep-
arate elements, i.e., submodels, up to the higher level that represents the whole VNF
element. The Replicate node, i.e., SFC, replicates the VNF model to the number of
VNFs that compose the considered service chain.

Model Solution

Once the system is modeled, it needs to be solved for computing the various measures
of interest, e.g., system availability. The Möbius tool supports two classes of solution
techniques: discrete event simulation, and state-based analytic/numerical techniques.
While the choice of solver may be subject to several factors, the simulation solver can
be used for all models present in the tool, whereas only models that have exponentially
distributed and deterministic delays may be solved through analytic solvers. In addition,
simulation is a more suitable solution technique also for models that generate arbitrar-
ily large state space compared to numerical solvers, which are limited to models that
have finite, small state-space. In case models generate large state space, the solution
runtime of analytic solvers can easily become unsustainable and this represents a serious
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limitation compared to simulation solvers [83]. Such premises served as motivation for
adopting simulation-based solvers for the availability models proposed in papers A, B,
C, and D.

Sensitivity Analysis

During the model construction phase in Möbius, global variables can be used to parametrize
model characteristics. For example, failure and repair intensities of components can be
defined as global variables which are not assigned a specific value until the models are
ready to be solved. Assigning values to global variables forms an experiment and these
variables can be used to construct specific experiments which can be grouped together
and form a study of some measures of interest, e.g., availability or performance. The
most sophisticated study in the Möbius tool is based on a design of experiments (DOE)
which generates a set of experiments and then analyzes the reward variable solution to
determine how the chosen global variable(s) impact the reward variables. This is re-
ferred to as sensitivity analysis in which factors that mostly influence the model output
measures are determined. This is an important step in model development as it does not
only provide the means to carry out model validation but also helps determine: i) which
parameters deserve additional research effort for reinforcing the knowledge base; ii)
which input parameters are insignificant and can be neglected; iii) which inputs mostly
contribute to output variability; iv) what consequences result from input variability. As a
result, model-based dependability studies frequently apply sensitivity analysis to assess
the effect of changes on system measures of interest.

In general, there are two kinds of sensitivity analysis: non-parametric and parametric
sensitivity analysis. The former studies the system output variations as a result of system
structure modifications, like removal or addition of a given model component [84]. The
latter, and most relevant for the scope of this thesis work, performs the study of output
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variations due to a change in the input parameters [85], [86]. In particular, parametric
methods that are widely used in dependability studies can be classified into the group of
methods that operate on one variable at a time [86]–[89]. One fundamental technique is
the differential sensitivity, also called direct sensitivity in which partial derivatives with
respect to each input parameter are calculated; however, although this technique is com-
putationally efficient, the effort required in solving partial derivatives of complex models
can be quite intensive [90]. Moreover, this method is only valid for small perturbations
of parameter values and the partial derivatives need to be calculated for each change of
the baseline parameters.

An alternative method is to repeatedly vary one parameter at a time while holding
the other input parameters fixed and observe the output variability. This method, also
called discrete sensitivity analysis, is one of the most common approaches because of its
simplified application and also the majority of related work studies adopt this technique
for analyzing dependability of NFV-based services (refer to the related work presented in
Section 3.1). Similarly, this thesis contributions, included in Paper A, B, C, and D, apply
discrete sensitivity analysis aiming at assessing system availability, identifying critical
factors, and evaluating fault-tolerant mechanisms. Specifically, model input parameters
are evaluated at their mean value and then varied within specific bounds that represent
parameter uncertainties. Subsequently, models are solved and results are analyzed by
observing the impact on service availability caused by perturbation of input parameters.
As mere illustration, Figure 2.10 depicts a sensitivity analysis regarding the impact that
variations of one order of magnitude of failure and repair parameters have on the NFV-
MANO availability. Such analysis helps identify critical parameters that mostly impact
system availability, either positively or negatively, and the extent of their impact.

2.4 NFV Resource Allocation
The NFV architecture, seen in Figure 2.1, is composed of an interaction of various com-
ponents for providing, managing, and orchestrating network services. An excellent tech-
nique for composing specialized end-to-end network services is by means of service
function chaining. A service function chain defines an ordered set of VNF types through
which traffic is steered through, e.g., a firewall chained with a deep packet inspector, an
encryption element, and a data monitoring tool. This becomes particularly advantages
in NFV because the flexibility introduced by virtualization allows operators to dynami-
cally deploy and orchestrate service chains, unlike traditional chain composition that is
constrained by the fixed position of the middleboxes. For achieving the NFV expected
benefits, several challenges have to be addressed and one important challenge regards
the resource allocation to service function chains for satisfying strict performance and/or
dependability requirements [8], [31], [34].

The allocation of NFV resources to service function chains involves a set of decision
making at both the network-level (VNF placement on the NFVI) and the flow-level (flow
routing) [8], [46], [91]. In particular, the authors of [8], [46] emphasize that in order to
achieve the economies of scale expected from NFV, there is a need for efficient resource
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allocation algorithms, which are capable of determining the optimal places where VNFs
are to be deployed, i.e., which of the computing nodes will host which VNF type, the
chaining of the VNFs for providing effective SFC, depending on the type of VNFs that
services request, and an efficient allocation of physical resources to every VNF, based
on their demanded capacity.

On the network infrastructure level, the decisions include: i) deciding the optimal
number of VNFs to deploy in the network infrastructure and ii) the optimal location, i.e.,
computing node, at which each VNF shall be placed. The set of flow-level decisions
regards iii) the optimal selection (or assignment) of the VNFs that will form the service
chain as requested by traffic flows and iv) finding the optimal routing paths among the
VNFs composing the chain. In addition, NFV allocation decisions have to be deter-
mined considering also the limited amount of resources that the network infrastructures
have. The amount of bandwidth, computing capacity, storage, and memory impose con-
straints that should not be violated and at the same time the resources should be used
efficiently. The allocation decisions have to be made taking into consideration such con-
straints while fulfilling service performance and dependability requirements.

Although seemingly separated, the placement and flow-routing problems are tightly
coupled and inter-dependent. This is because traffic flows shall be assigned to VNF
instances, which in turn are instantiated during the placement task. Therefore, a com-
plete solution to the resource allocation problem should stem from addressing the joint
problem of accomplishing all four decisions. The joint problem can be formulated as a
mathematical optimization problem with one or more specific objectives that may rep-
resent some operator’s goals such as: i) maximizing remaining network resources, ii)
minimizing network power consumption, iii) minimizing service latency, and/or iv) min-
imizing CAPEX and OPEX costs. In addition, the optimization problem will be subject
to some design constraints such as computing node capacity, end-to-end service delay,
VNF assignment for composing the correct SFC request, and so forth.

Regarding the nature of the optimization problem, many studies ([31], [46], [52],
[92]–[94]) regard the problem as closely related to the well-known virtual network em-
bedding (VNE) problem [95]. In particular, [31] regards the VNF placement problem,
coined VNF forward graph embedding (VNF-FGE), as a generalization of the VNE
problem. Differently, [96] regard the joint VNF placement and routing problem as
closer to a facility location problem [97] rather than a generalization of a classical VNE.
The authors argue that a holistic covering of all VNF operations can not be adequately
represented by classical VNE. Nevertheless, both lines of argument agree that the joint
placement and routing of VNFs differs from the classical VNE in several aspects includ-
ing: i) VNF ordering constraints are aspects that cannot be easily represented in a VNE,
and ii) VNF resource demands are dynamic, whereas in VNE they are mostly static.
Moreover, there is a common agreement that the NFV resource allocation problem for-
mulation has to be directly tailored to the NFV environment, with all it’s peculiarities,
and that the problem itself is an NP-hard problem [31], [96]. Therefore, the optimiza-
tion problem may become intractable and solution runtimes can quickly increase for
large instances of the problem, hence creating scalability issues.

The two tasks can be addressed either in a coordinated or uncoordinated fashion [31].
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Coordinated approaches try to jointly address both tasks in a way that one task’s result is
achieved with the aim of optimizing the next task. In contrast, an uncoordinated fashion
simply uses the output of one task as the input of another without any coordination
among them for obtaining a better solution. Generally, there are three ways to solve the
overall problem: i) providing an exact solution, derived from an optimization problem,
which is typically expressed as an ILP-based mathematical model [91], [92], [96], [98],
ii) proposing heuristic algorithms that provide a ’good enough’ solution [91], [94], since
the execution time of the ILP models may easily become excessive for large instances
of the problem, or iii) making use of metaheuristic algorithms such as genetic, tabu
search, or simulated annealing algorithms, which aim at finding near-optimal solutions
in a reasonable running time [99]–[101]. For the broad nature of the various objectives
and the related problem constraints, the reader may refer to works [8], [31], [52] and the
references therein.

Redundancy Allocation in NFV
NFV-based networks are expected to enable a multitude of telecommunication services
that require high-availability levels [24]. Availability is threatened by failures, which
are unavoidable events that operators need to account for when planning, designing, and
operating the network infrastructure and the services running on top. A common way
to deal with failures is providing fault-tolerance by leveraging redundancy. Employing
redundancy involves the allocation of spare resources to compensate for failures of pri-
mary ones. Several studies have shown that given the resiliency challenges that NFV
faces, simply allocating primary network function instances is not sufficient for satis-
fying the demanding availability levels of carrier-grade services [50], [51]. Therefore,
allocating redundant instances, often called backup units, in addition to primary network
functions becomes mandatory for guaranteeing high-availability figures.

The redundancy allocation problem, also known as the availability (reliability)-aware
VNF deployment, is a resource allocation problem where the availability of the SFC
requests needs to be factored in the problem formulation. It consists of the optimal
placement of redundant VNFs into the network substrate and the optimal assignment
of backup functions to network traffic flows that demand specific service chains, i.e.,
backup chain composition. The objective goal(s) can be varied and depend on the op-
erator’s needs. One objective can be maximizing the availability of the service chains
subject to cost constraints or minimizing the number of deployed resources while meet-
ing service availability demands [11]. However, there are certain important factors that
need to be taken into account when performing NF redundancy allocation. In order to
be effective, redundancy allocation schemes need to regard single points of failure that
may affect both primary and backup instances. There may be service outages due to
correlated failures as a result of topological dependencies, hence affecting both primary
and backup instances at the same time. For example, in a data center network, a top-of-
the-rack switch failure will impact the connectivity of all the servers placed on the rack.
Therefore, if not carefully planned, correlated failures/service outages may hinder the
effects of redundancy. An effective redundancy allocation deployment should deal with
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such dependencies. One important drawback of redundancy is that it may be costly in
terms of engaged resources. If not properly designed, the number of required backup in-
stances may become unsustainable, especially when high-availability levels are required
[34], [50], [55]. In addition, NFV networks make an extensive use of commodity servers,
which may have diverse availability levels and capacities [102], [103], and service re-
quests may have diverse availability requirements [11]. Therefore, the decision of how
many backup instances to instantiate, where to place them, and which backup instance to
use for each NF type, so that network resources are efficiently utilized and service avail-
ability demands are satisfied, is not trivial. A resource efficient and effective redundancy
allocation scheme needs to incorporate the aforementioned aspects and at the same time
be scalable and feature low time complexity.

In the related work section, a more detailed description concerning availability-aware
resource allocation contributions will be provided since they fall within the scope of this
work.
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Chapter 3
Related Work

In this chaper, the current state-of-the-art literature related to the thesis objectives (intro-
duced in Section 1.2) is revised. First, the related work regarding availability modeling
and assessment of NFV-based services is introduced. Then, the main trends related to
problem definition and proposed algorithms for computing availability-aware resource
allocation in NFV are described. Additionally, open issues identified from the published
literature and addressed by this thesis are summarized in the last part of this chapter.

3.1 Availability Modeling of NFV-based Services
The "softwarization" of hardware network appliances carries many benefits but at the
same time brings additional challenges spanning from performance to resource alloca-
tion, service resiliency, security and privacy, and energy efficiency [8], [12]. One of the
key aspects that can determine the success of its adoption is represented by the service
availability [7], [11]–[14]. Indeed, the readiness for correct service delivery, i.e., avail-
ability, [10], is not only a user expectation, but often a regulatory requirement. In par-
ticular, traditional carrier-grade services provided by telco operators are services which
are characterized by 5-nines availability; hence the transition to NFV-based carrier-grade
services needs to be characterized by at least the same level of availability.

In regard to NFV availability modeling, there has been an increasing interest in
proposing and investigating new models that characterize and quantify service avail-
ability. Gonzalez et. al [43] propose a stochastic activity networks model for assessing
the steady-state availability of a virtual Evolved Packet Core (vEPC) supported by NFV.
The authors analyze the system availability as a composition of several submodels con-
stituting the vEPC (i.e., Serving Gateway (S-GW), Packet Data Network (PDN) Gateway
(P-GW), Mobility Management Entity (MME)) together with a particular model repre-
senting catastrophic failures, i.e., multiple VNF failures due to natural disasters. They
investigate relevant factors impacting the overall availability and highlight the need for
adequate redundancy in order to cover individual failures and that catastrophic failures
are a dominant source of system availability reduction. However, they assume the same
SAN model for the different VNF submodels and same steady-state availability for soft-
ware, hardware and hypervisor components, despite this not being a realistic case. In ad-
dition, their findings are related to the delivery of network functions and as the authors
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state, the availability of end users’ services needs to include the data center network
topology integration.

A two-level hierarchical availability model of a network service in NFV architectures
proposed in [104] aggregates RBDs on the higher level and SRNs on the lower level.
Leveraging this hierarchical model, the authors evaluate the steady-state availability and
perform a sensitivity analysis to determine the most critical parameters influencing the
network service availability. Similarly, in [44], they extend the analysis by including the
VIM functionality, as the entity responsible for the management of the network service
resources, into the RBD. Their main findings indicate that a relatively small increment
of hypervisor or VNF software failure intensity has a marginal effect on the service
availability. In addition, they identify the most appropriate redundancy configuration in
terms of additional replicas for providing fine-nines availability. The same authors model
and assess the availability of an NFV-oriented IP multimedia subsystem (IMS) in [105].
Exploiting the same modeling technique, consisting of a hierarchical model composed of
RBD and SRN, they assess the availability of the IMS and perform a sensitivity analysis
on failure and repair rate of some of the IMS components. In addition, they identify
the best k-out-of-n redundancy configuration for each elements of the IMS such that
a five-nine availability is reached. Very similar to [105], in [106], the same authors
assess the availability of a containerized IMS. The work performs a sensitivity analysis
on failure and repair rate of some of the IMS components and identifies the best k-out-
of-n redundancy configuration for each of the elements of the IMS such that a five-nine
availability is reached.

In [45], the authors leverage universal generating functions (UGF) to evaluate system
availability of a virtualized SFC. In particular, they extend the UGF formalism to a mul-
tidimentional version, which is capable of handling multiple performance figures. The
work considers a multi-tenant SFC where the VNFs that compose the SFC are shared
among multiple tenants. The availability model adopts parallel redundancy for each
VNF and the the authors solve an optimization problem for a virtualized IMS case study
by finding the best redundancy configuration, which satisfies 5-nines availability and at
the same time provides the required processing capacity. In addition, a sensitivity anal-
ysis determines the range of failure and repair nominal values’ variation that the best
configuration can still handle.

A hierarchical model based on stochastic petri nets and RDBs is proposed for the
availability analysis of a generic SFC in [107]. The model incorporates software re-
juvenation mechanisms and VM live migration services. The work analyzes different
deployment scenarios aiming at evaluating the steady-state availability for each of the
scenarios. However, the analysis is limited to the availability evaluation of the system
and lacks insights into the failure and repair dynamics of single system components and
their relative impact on the overall availability.

Surprisingly, despite the importance and criticality that the MANO system has on
the service orchestration and in particular on the fault management [30], [108], [109],
there is very limited work that investigate resiliency of the MANO components. In [43]
the model includes the MANO, as a central entity in the service life-cycle management,
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but the relative model is rather simple and does not reflect current state-of-art implemen-
tations. In addition, the authors do not analyze the impact or effects that the MANO has
on the service availability.

Soenen et. al [110] propose tunable and scalable mechanisms that make use of a
shared state to allow the recovery of the various MANO components after they experi-
ence a failure event. In addition, they consider both centralized and distributed MANO
deployed through a microservice-based architecture. Using a cost function they were
able to find a trade-off between availability and fault recovery timing on the one hand
and bandwidth and compute power on the other hand. While their suggested mechanism
offers some important insights regarding the trade-off that operators need to choose in
fulfilling service objectives, there are still several challenges that need to be addressed
as specified by [30], where the most important is the MANO with no single point of
failure. It is not clear how the different microservices have been deployed in a physi-
cal infrastructure since the author consider only redundancy on an instance level. Thus,
more refined fault tolerance methods are needed, where both software and hardware
redundancy levels are considered.

3.2 Availability-aware Resource Allocation in NFV
Planning for high availability involves the orchestration of NFV resources by allocating
redundant resources to cope with unavoidable failures of the primary ones. Both the re-
search community [8], [31] as well as standardization bodies [11] recognize that service
availability, and in particular the service orchestration for achieving highly-available
NFV services, represent an important challenge that needs to be addressed, such that
a successful NFV adoption can embrace its potential benefits. As a result, there has
been a continuous effort to investigate and propose efficient, scalable, and optimized
algorithms addressing NFV resource allocation challenges while satisfying highly de-
manding availability needs. As presented earlier, the allocation of redundant resources
in NFV encompasses two distinct, but entangled, problems which are the placement of
redundant virtual instances running network functions and the service chain composition
(or flow routing) that determines the traffic routing of service requests through specific
functions composing an end-to-end service. Both problems can be considered as ex-
tended versions of two NP-hard problems [31]: the virtual network embedding [95],
[111] and the location-routing problems [112].

On the one hand, several studies formulate the problems as optimization models
with specific objective functions and introduce ad-hoc heuristics for near optimal solu-
tions [33], [35], [48], [50], [53], [54], [103], [113]–[118]. On the other hand, due to
the problem complexity and the associated drawbacks such as high execution times for
large problem instances, other studies simply propose heuristic or meta-heuristic algo-
rithms [32], [34], [55], [102], [119], [120].

Fan et al. [32] present a heuristic algorithm that aims at minimizing the employed
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physical resources for hosting network functions while satisfying reliability require-
ments. The authors propose a joint protection mechanism where a single instance pro-
tects two primary instances by reserving resources equal to the sum of the primary ones,
and compare it with dedicated and shared protection where in the former, the same
amount of resources allocated for the primary is used for the backup and in the latter, the
amount of resources for the backup is the maximum among the two primary instances
being protected. However, the study addresses only the chain composition problem and
does not regard the backup placement. The same authors extend their contribution in [50]
by proposing an optimized ILP model for minimizing the amount of backup resources.
Nevertheless, only VM failures are considered and important factors in the VNF place-
ment such as hosting node and link availabilities are ignored. In a later work [116],
they propose a framework for minimizing resource usage while providing SFC avail-
ability demands. The main idea is to incrementally add backups to the VMs that mostly
improve the SFC availability until the availability request is met. Nonetheless, in both
works [50], [116], only on-site redundancies are allocated and the algorithms disregard,
as the authors themselves highlight, the impact that events such as correlated failures
may have within a data center. In order to guarantee carrier-grade service availability, it
is important to also have backups distributed geographically [11], [13].

An investigation on the suitability of various data-center topologies for resilient de-
ployments of service chains is carried out by Herker et al. in [119]. They consider
both switch-centric, i.e. two or three-tier, and fat-tree topology, as well as server-centric
architectures such as BCube and DCell [121], [122]. A heuristic algorithm that performs
VNF placement and backup routing, which is based on a constraint-based shortest path
algorithm, is proposed. It embeds backup chains through an iterative process until the
chain availability is fulfilled. However, the analysis considers only hardware failures
affecting servers and switches, and does not regard VNF instance failures. In addition,
the problem setup assumes a heterogeneous system with devices having the same avail-
ability, which is different from real deployments where computing and network devices
can have diverse availability figures.

Reference [33] addresses the redundancy allocation problem by constructing three
different ILP models for the VNF placement and service chaining with resiliency pro-
tection against single node/link, single link, and single node failures. The ILP models
have as objective function the minimization of the number of VNF nodes while satisfy-
ing latency constraints and achieving resiliency according to these different scenarios.
The evaluation shows that providing protection against the considered scenarios comes
with at least twice the amount of resources in terms of the number of nodes being de-
ployed into the network. The same authors extend the investigation in [48]. They use
the same core models and investigate the change of the objective function from minimiz-
ing the number of nodes to load balancing among link bandwidths. However, for both
references, the models only place the VNFs without verifying that availability require-
ments are met with the assignment of the backup chains. Thus, these approaches do not
actually guarantee the fulfillment of the availability requirement of user requests.

In [113], the reliability-aware service chaining deployment is formulated through an
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ILP problem, dubbed REACH. The key idea of the algorithm is similar to the one pro-
posed in [32] and [50], where repeatedly, the least available VNF of a service chain is
provided with backup until the chain reliability demand is satisfied. The same authors
address the reliable provisioning of carrier-grade service chains with resource sharing
in [49]. An ILP model and customized heuristics, with the objective of guaranteeing
carrier-grade reliability while taking into consideration the sharing of adjacent VNFs,
are presented. The approach is similar to the one adopted in [32] where for the purpose
of protecting two adjacent instances the maximum amount of resources among them is
allocated in a single node. Nonetheless, the achieved service reliability is calculated con-
sidering only physical node reliability and does not regard VNF instances and network
elements present in the primary and backup paths, i.e., forwarding nodes and links.

Differently to [32], [50] and [113], the authors of [55] optimize the design of [32]
and propose a method that exploits a cost-aware importance measure to select the set
of VNFs, which need to be backed up for enhancing the overall service reliability. On
similar lines, the work in [118] proposes an algorithm for reliability-guaranteed VNF
redundancy allocation that is based on a criticality importance measure (CIM). The al-
location scheme exploits CIM for finding the best suited VNFs to protect and factors
in the computational costs so that the output results in a cost-efficient and reliability-
guaranteed VNF placement. In [102], VNF redundancy is allocated with the objective
of reducing resource consumption while assuming heterogeneous VNF resource require-
ments. However, similar to [113], also the investigation of [55] and [102] is limited
to three-nines SFC availability requests, which is far below the high expectations that
carrier-grade services have.

A Mixed Integer Programming (MIP) for ensuring high availability when placing
VNFs is formulated in [35]. The developed MIP model works only for small problem
instances; hence the authors propose two heuristic approaches; a heuristic solution based
on bin-packing and a meta-heuristic algorithm consisting in a variable neighborhood
search. An extension of this work is carried out in [54] by proposing a flexible VNF
placement, which enables VNF protection only if needed, and the redundant VNF can
also be shared among multiple active instances. Although shared protection cannot be
integrated in the MIP model due to increased model complexity, the authors propose
a methodology for obtaining lower and upper bounds of the availability under shared
protection. However, the investigations are performed on rather limited-scale networks,
i.e., three NFVI PoPs containing up to 28 servers in total. Moreover, although the authors
present a possible extension of the shared protection to cope with common cause failures,
i.e., correlated, they do not investigate the impact that such failures have. Finally, both
works perform only VNF placement and do not address the service chain composition
problem.

Certainly, unless carefully planned, redundancy can come at a high cost in terms of
employed resources. As in traditional IP/MPLS networks [123]–[125], several of the
related works consider the sharing of resources in order to confine the amount of ad-
ditional resources to be deployed for protection against failures [32], [49], [54], [115].
Common to these works is the assumption that only one service request, i.e., single-
tenancy is served as the backup instance protects two adjacent instances of the same
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service chain. A multi-tenancy approach is proposed in [53]. It allows the sharing of
backup resources by multiple service requests and the analysis shows that it outper-
forms the single-tenancy approaches. Nonetheless, this approach is constrained by the
placement of backup chains onto the same computing node, thus limiting the resource
efficiency as backup chains are prevented from utilizing different hosting nodes and, in
addition, the same node represents a single point of failure for the whole backup chain.

3.3 Open Challenges
From the background and the presented state of the art, the following open challenges
regarding NFV service availability modeling and availability-aware resource allocation
are identified. These challenges can be considered as “gaps” in the current literature,
which this thesis aims to address, and they are also reflected in the research objectives in
terms of aspects that shall be factored in the objective achievement.

CH1: Exhaustive Failure Modes and Element Inter-dependencies

Network services provided with the support of NFV infrastructure comprise a set
of elements which are involved in the service delivery. As a result, an end-to-end
service is subject to different types of failures that may affect any of the elements
involved in the service delivery. Still, the current literature contributions are rather
limited in the kinds of system elements and the inter-dependencies between them.
A comprehensive availability model of NFV-supported services should include
and take into account the failure and repair processes of the involved elements on
both hardware and software levels. In particular, the inter-dependencies of these
elements need to be fine-grained/reflected. To illustrate, consider a failure of the
physical hardware, which will impact all software elements running on top of it.
The hardware repair does not bring the system up and running unless software
elements are rebooted/restarted. This last operation is often omitted in the cur-
rent literature. A crash of the operating system (OS) does bring down the VNF
software yet, the reboot of the OS is not enough for the system to be considered
operational unless the VNF software is restarted too. In addition, the failure of the
OS should not influence the status of the underlying hardware since the latter may
fail independently on whether the OS is running or not. Such inter-dependencies
are often omitted in the availability models that the current state-of-art presents,
see for example [43], [45], [104], [107].

CH2: NFV-MANO System Availability Assessment

Ensuring the resiliency of an NFV service from its instantiation throughout its
operation requires adequate management of the entire network service. The NFV
MANO, being a logically-centralized entity that maintains a global view of the net-
work, is responsible for the correct orchestration and management of end-to-end
services and for ensuring service availability adherence to terms specified in SLAs
[30]. In particular, tasks like VNF re-instantiation/re-creation, VNF scaling, VNF
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migration, or failure detection and containment are core operations that are trig-
gered by MANO components for ensuring the expected NFV service availability.
In addition, any misoperation or logical/physical faults in the MANO components
may jeopardize and severely impact the provisioning of network services [108].
Despite the importance and criticality that the MANO system has on the service
continuity, most of the related work focuses on the data plane availability and dis-
regards the control plane. The only related work that models the availability of
the MANO [43] relies on a very simple model, which does not fully represent cur-
rently developed standard-compliant frameworks like [126], [127]. Moreover, the
investigation lacks a thorough analysis of MANO availability and the factors that
mostly impact it. Consequently, it is pivotal to investigate and identify these fac-
tors through a proper evaluation of MANO availability by exploiting more realistic
models derived from standardized implementations.

CH3: Network-aware Modeling

In its specification regarding end-to-end reliability [29], ETSI emphasizes that a
correct availability evaluation should incorporate all the service elements and com-
ponents involved in the end-to-end delivery. The supporting infrastructure, both
computing and transport network, and the inter-dependencies with the software
providing the service, i.e., VNFs, are required to be taken into account when es-
timating the service availability. As presented in the related work section, several
previous works have quantified the availability of NFV-oriented services, either in
“general” terms or by selecting specific NFV service use cases [43]–[45], [104],
[106], [107]. Nevertheless, none of these works has performed a comprehensive
assessment of an end-to-end NFV service availability since they lack key service
elements like physical network links and forwarding/routing devices, which are
essential networking elements inter-connecting VNFs composing a service chain.
As highlighted also by Gonzalez et. al [43], predicting the availability of end user
services requires the incorporation of both datacenter and transport network, i.e.,
the network that interconnects the datacenters since VNFs can be geo-distributed.
Henceforth, integrating the network and the component dependencies in the avail-
ability model remains a fundamental endeavor for a detailed end-to-end service
availability assessment.

CH4: Network Topology Dependencies Impact

The availability-aware NFV resource allocation problem regards the optimal place-
ment of redundant VNFs into the network substrate and the optimal assignment
of backup functions to network traffic flows that demand specific service chains.
While redundancy is the “de-facto” technique for achieving high availability, in
order to be effective, the allocation schemes need to regard single points of failure
that may simultaneously affect both primary and backup service chains. In [29]
ETSI recommends anti-affinity placement policies, i.e., deployment of primary
and backup VNFs into separate computing nodes so that they will not experi-
ence a simultaneous failure. However, applying such rules may not be enough
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because the operator needs to ensure that a failure of a primary VNF will not im-
pact its respective backup VNFs (and vice versa) and both should not be subject
to a common failure or outage mode. For example, in a data center network, a
top-of-the-rack switch failure will impact the connectivity of all the servers placed
on the rack, hence placing them into separate servers but in the same rack may not
be sufficient. In particular, for cases where high-availability levels are demanded
which in turn may require more than one backup instance, the failure of a primary
resource should not impact any of the relative backup instances. Several of the
related works, see for example [32], [34], [55], [102], [113], consider the deploy-
ment of primary and backup VNFs into different nodes, yet they do not check any
topological dependencies that may affect both primary and backup chains. There-
fore, unless carefully designed, such correlation may undermine the benefits of
redundancy and an effective redundancy allocation deployment should be aware
of such dependencies.

CH5: Efficient Resource Utilization

An important limitation of redundancy is that it may be costly in terms of re-
source utilization. If not accurately planned, the number of required backup in-
stances may grow up to an unsustainable level, i.e., more than twice the required
resources for primary allocation [33], [34]. This can be further exacerbated when
high-availability levels are required [50], [55]. As a result, this may lead to a lim-
itation of the network capability to accommodate new flows and thus restrict the
operator’s acceptance of new incoming service requests. To this end, it becomes
essential to design and plan redundancy allocation in a cost-efficient manner such
that resource utilization can be maximally achieved. A common way to achieve
this is by sharing redundant resources among network functions, similar to what
traditional IP/MPLS-based networks have been doing [123]–[125]. The work in
[32] exploits a joint protection mechanism that protects two adjacent VNFs, of
the same service chain, by allocating a common VNF that is shared among the
two as a backup. Differently, in [53] a multi-tenancy concepts is exploited where
multiple service chain requests, i.e., multi-tenancy, may use the same VNF for
backup purposes. Yet, both approaches perform backup sharing of one VNF in-
stance with dedicated capacity being the sum of the capacities of the respective
primary resources. The resource overbuild, as one important figure of merit for
resource efficiency, which expresses the amount of extra resources needed for pro-
viding protection as a percentage of the required amount without protection [124],
would equal 100% in case only one backup is required. Therefore, designing and
adopting approaches that achieve lower resource overbuild figures would provide
significant benefits to network operators both in terms of employed resources and
increased capacity in accommodating new requests.
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Chapter 4
Contributions and Concluding Remarks

In this section, a summary of the contributions that this thesis advances, followed by
concluding remarks, are presented. The paper contributions and how they relate to re-
search questions, objectives, and identified open challenges, are discussed in Section
4.1. Then, the summary of each of the included papers is presented in Section 4.2. Sec-
tion 4.3 concludes the thesis by outlining the main remarks and Section 4.4 discusses
suggestions for future work.

4.1 Summary of Contributions
The author of the present thesis wrote and contributed to 6 publications in conference
proceedings and journals, out of which 5 are already published and 1 is currently submit-
ted for peer reviewing. Table 4.1 presents a list of the publications included in the thesis
and the order in which the included papers are listed is not necessarily chronological but
rather related to the research objectives.

The contribution of the thesis aims at providing an answer to the research questions,
and at filling the gap related to the open challenges. The research objectives, presented
in Section 1.3 and pursued in order to answer the research questions, are tightly coupled
with the open challenges identified in Section 3.3, since the challenges are considered as
important aspects that shall be taken into consideration for achieving specific objectives.

Figure 4.1 presents the progression and the mapping of the research effort to the
research questions, and the relationship between the research questions, research ob-
jectives, and the open challenges. The figure also highlights the core contribution of
the papers and how the different papers relate to each other. To better illustrate the re-
lationship, let’s consider the first research question RQ1. In order to design analytic
models that allow to characterize in detail and assess the availability of NFV-based ser-
vices (RQ1), there is a need to develop availability models that allow to describe detailed
failure dynamics of the involved service elements (OB1) and accomplish a quantitative
assessment and analysis of the service availability for identifying availability bottlenecks
(OB3). These research objectives are addressed considering important aspects such
as characterizing significant failure modes and integrating element inter-dependencies
(CH1), and including the assessment of the NFV-MANO system availability (CH2).
Following the same illustration, Papers A, B, and C answer to the first research question
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TABLE 4.1: List of publications included in the thesis.

Paper Title — Authors — Conference/Journal

Paper A Modeling and Evaluating NFV-Enabled Network Services under Different
Availability Modes
Besmir Tola, Gianfranco Nencioni, Bjarne E. Helvik, and Yuming Jiang
IEEE Proceeding of 15th International Conference on the Design of Reliable
Communication Networks (DRCN), Coimbra, Portugal, 2019, pp. 1-5.

Paper B On the Resilience of the NFV-MANO: An Availability Model of a Cloud-native
Architecture
Besmir Tola, Yuming Jiang, and Bjarne E. Helvik
IEEE Proceeding of 16th International Conference on the Design of Reliable
Communication Networks (DRCN), Milano, Italy, 2020, pp. 1-7.

Paper C Model-Driven Availability Assessment of the NFV-MANO with
Software Rejuvenation
Besmir Tola, Yuming Jiang, and Bjarne E. Helvik
IEEE Transactions on Network and Service Management, 2021
Early Access - doi: 10.1109/TNSM.2021.3090208

Paper D Network-Aware Availability Modeling of an End-to-End NFV-Enabled Service
Besmir Tola, Gianfranco Nencioni, and Bjarne E. Helvik
IEEE Transactions on Network and Service Management, vol. 16, no. 4,
pp. 1389-1403, Dec. 2019.
doi: 10.1109/TNSM.2019.2948725

Paper E Towards Carrier-Grade Service Provisioning in NFV
Yordanos T. Woldeyohannes, Besmir Tola, and Yuming Jiang
IEEE Proceeding of 15th International Conference on the Design of Reliable
Communication Networks (DRCN), Coimbra, Portugal, 2019, pp. 130-137.

Paper F CoShare: An Efficient Approach for Redundancy Allocation in NFV
Yordanos T. Woldeyohannes, Besmir Tola, Yuming Jiang, and K.K. Ramakrishnan
Submitted to IEEE/ACM Transactions on Networking

by proposing SAN-based availability models that incorporate the failure dynamics of all
the NFV elements involved in the service provisioning, i.e., computing infrastructure,
supporting OS, virtualization software, VNFs, and the NFV-MANO, and also assess the
system availability with the aim to identify critical NFV elements and suitable fault-
tolerant mechanisms that allow to achieve high-availability levels. Similarly, challenge
CH3 serves as an essential dimension for performing end-to-end NFV-enabled service
availability modeling and assessment, i.e., achieving objective OB2 and OB3 which in
turn will provide an answer to the second research question. Such objectives are ac-
complished by the contributions of Paper D. In the same line, challenges CH4 and CH5
represent critical design factors for enabling scalable, cost-efficient, and effective NFV
redundancy allocation, i.e., research objective OB5. In the remainder of this section, the
distinct contributions of each of the included papers are described.

In this thesis work, six major contributions are made. First, the availability of a ser-
vice function chain provided through an NFV infrastructure is modeled and evaluated
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Paper A

Paper B

Paper D

Paper E

Paper F

Dependability modeling and analysis of NFV-based services

Availability modeling of end-to-end NFV-driven services

Presents a hierarchical model to assess and quantify the
availability of NFV service chains under different redundancy
configurations. The models are analyzed through discrete-
event simulations (DES).

Proposes NFV-MANO availability models that include multiple
software failure modes and abstract various deployment
setups, which are inspired by current standard-compliant
containerized implementations, enriched with different
redundancy configurations.

Introduces end-to-end service availability model by extending
the service chain model to integrate network connectivity
requirements. The model exploits minimal-cut sets and DES
analysis to identify the main critical service elements, and their
components, that mostly impact service availability.

Develops optimized mathematical models for redundancy
allocation of VNFs for two different setups. The models exploit
a dependency measure that identifies node’s structural
correlation and optimally places VNFs under availability,
resource capacity, and performance constraints.

Resource-efficient and scalable NFV redundancy allocation

Extends the work in Paper D by proposing scalable and
resource-efficient heuristics that carry out placement and
service request assignment. Taking advantage of shared
reservation, the service requests share redundancy resources
both on the service and instance level achieving higher
resource efficiency.

Analysis and planning of highly 
available NFV services.

Availability modelling and 
analysis of NFV-based services

Minor relation Major relation

RQ2 - How to define availability 
models that feature also connectivity 
requirements among all the involved 
elements providing end-to-end NFV 

services?

RQ3 - How to construct optimal (or 
near-optimal) redundancy allocation 

schemes that are scalable, cost-
efficient, and provide adequate 

protection against failures?

Research Questions

Paper C

Expands the models of Paper B by incorporating software
rejuvenation mechanisms, as proactive maintenance, aiming at
enduring software aging effects, and proposes an additional
model of distributed NFV-MANO deployments.

RQ1 - How to design analytic 
models that allow to characterize in 
detail and assess the availability of 

NFV-based services?

OB2

CH3

OB1

OB3

CH1

CH2

OB4

OB5

CH4

CH5

Shenim pse kam vene 
OB te parat: There is an 
objective, and then there 
are some challenges 
when you ask the 
question

OB3

Research Objective Open Challenge

FIGURE 4.1: Outline of paper contributions and their mapping to research
questions, objectives, and open challenges.

in Paper A. The considered service chain is assumed to incorporate different redun-
dancy configurations, called availability modes, which are portrayed through distinct
models featuring diverse recovery mechanisms. The models are defined using a two-
level hierarchical approach. On the low level, the individual behavior of the NFV ele-
ments are abstracted using Stochastic Activity Networks and such models are composed
through a Replicate and Join formalism, which represents the high level. The service
chain model includes several VNFs, composing the service chain, and the MANO, as
the central entity responsible for the service lifecycle operation. The distinct models,
mirroring the availability modes, are designed using Möbius software tool [71] and sub-
sequently solved through a discrete-event simulator, which is integrated in the tool. An
extensive sensitivity analysis is performed for identifying the main critical failure and
repair parameters. Moreover, insightful observations are made by comparing the differ-
ent redundancy setups aiming at identifying the most suitable configuration for different
availability levels.
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The MANO model presented in Paper A abstracts a hypervisor-based virtualized
MANO and the investigation focus is more on the impact that the MANO operational sta-
tus has on the service availability rather than on the failure dynamics of the MANO itself.
Inspired by several current open-source MANO development projects (e.g., OSM [126],
OpenBaton [127]), Paper B makes the second contribution. It proposes an availability
model for a cloud-native MANO implementation, i.e., containerized deployment, and
performs an extended investigation on the failure and repair dynamics, sensitivity anal-
ysis, and steady-state availability assessment for different containerized deployments of
the MANO. A special highlight is the impact of software-aging effects on the availability
and the relationship that software aging has with software aging-induced failures. The
research is further extended in Paper C by modeling a more realistic software aging be-
havior and the effect that software-aging error accumulation has on the software failure
intensity. The paper also investigates additional deployment options for component-
wise MANO software and distributed MANO implementations. The different models,
abstracting various MANO deployments, combine software rejuvenation mechanisms to
withstand software-aging effects. Moreover, a fault-injection based experimental cam-
paign is performed on a real-life MANO deployment aiming at retrieving a number of
realistic recovery parameters. Sensitivity analysis allows us to identify optimal rejuve-
nation policies for achieving maximal steady-state availability and investigate the impact
that software-aging intensity has on the system availability. This refined MANO avail-
ability model and the additional models, abstracting various deployment options together
with the relative analysis, represent the core of the third contribution provided by this
research work.

The models proposed in Paper A, B, and C provide important observations regarding
dependability bottlenecks of NFV-based services and suggest how to overcome them
by providing adequate protection against failures. However, they are not detailed in
regard to portraying end-to-end NFV-enabled services because they lack key network
components that realize the interconnection and composition of service chains in a dis-
tributed infrastructure, such as NFV networks. To address this issue, the fourth con-
tribution of this thesis work is made in Paper D. It consists of an availability model
that incorporates connectivity requirements among NFV and network elements. The
model relies on a two-level approach. On the low level, SAN-based dynamic models
abstract both NFV and interconnecting devices. The high level, i.e., structural model,
exploits mincut analysis to derive end-to-end service availability by including both data
and control/management plane availability. An extensive numerical analysis identifies
critical components and their relative failure/repair parameters, which can degrade or
enhance the end-to-end service availability the most. Moreover, the models also include
the integration of an SDN-enabled network architecture, where in addition to network-
ing devices, i.e., SDN-enabled switches, the presence of an SDN controller contributes
to additional connectivity requirements. The resultant analysis provides useful insight
on the vulnerability of both traditional and SDN-based NFV networks by identifying
availability bottlenecks and adequate redundancy levels for achieving highly available
NFV services.

Model-based availability prediction and analysis can aid an operator on deciding an
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efficient redundancy strategy, yet, redundant resources need to be provisioned in the net-
work infrastructure such that the traffic flows can be properly processed and served. Re-
source provisioning (or allocation) in NFV consists in a set of decisions that an operator
needs to perform for establishing, among others, the right amount of resources and where
in the network these resources shall be deployed such that availability and performance
requirements that services demand are to be satisfied. In particular, availability-aware
resource allocation strategies, which decide where and how many VNF instances are
needed to be deployed, will determine the level of availability that services can achieve.
Concerning this, Paper E provides the fifth contribution, which consists of the devel-
opment of mathematical models for allocating redundant resources in NFV networks
aiming at minimizing resource consumption while satisfying, among others, flow avail-
ability demands. In particular, two different ILP-based models are proposed. They are
referred to as AllOne and AllAny, and their main distinction lies on the fact that in the
former model, redundant VNFs, composing the backup service chain, are allowed to
be hosted on only one backup node, whereas the AllAny model allows the allocation of
backup resources in multiple backup nodes. Both models feature an algorithm that en-
ables the quantification of the structural dependency among network nodes as a result of
the network topology. This algorithm is exploited in the placement decisions such that
correlated failures or outages, due to the inherent topology structure, are avoided. Both
model performances in terms of resource utilization, cost-efficiency, and additional de-
lay due to path stretch are evaluated. However, due to the complex nature of the problem
(refer to Section 2.4), while the models are well suited for small- to medium-scale prob-
lem instances, they become intractable for large instances. To cope with this problem,
Paper F extends the work in Paper E by proposing ad-hoc heuristics that offer better al-
gorithmic scalability. The heuristic algorithm, namely CoShare, places backup instances
and assigns them to service requests, i.e., flows, with the focus on avoiding simultane-
ous failures of both primary and backup chains, which can be due to network structural
dependencies, while ensuring that service chain availability is satisfied. Moreover, the
paper exploits a flow-level resource sharing mechanism, which contributes with higher
resource efficiency, compared to previous related investigations, by achieving signifi-
cantly lower resource overbuild, i.e., less than 100%. This constitutes the sixth, and
final, contribution of this thesis work.

Five of the included papers have been subject to international peer-reviewing in well
established publication venues. Papers A, B and E are published in conference pro-
ceedings, while Papers C and D are published in IEEE transactions journals. Paper F is
currently submitted for review in the IEEE/ACM Transactions on Networking journal.

In the following, a summary of the included publications is presented along with the
main findings.

4.2 Summary of the Papers
This section presents a summary of the Papers included in the contributions of the thesis
and lists supplementary publications that are not included as contributions in the thesis.
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The paper summaries are introduced in the same order as illustrated in Figure 4.1.

PAPER A: Modeling and Evaluating NFV-Enabled Network Services under Different
Availability Modes
Besmir Tola, Gianfranco Nencioni, Bjarne E. Helvik, and Yuming Jiang
IEEE Proceeding of 15th International Conference on the Design of Reliable Communi-
cation Networks (DRCN), Coimbra, Portugal, 2019, pp. 1-5.

Paper Summary

Modeling techniques are convenient tools that may help to quantify and analyze
system availability, in particular when technical systems are large and complex [40].
A hierarchically-composed availability model for NFV-enabled service function chains
and the MANO system is proposed in this paper. The model is constructed using a
combination of state-space and hierarchical models, and features various failure modes,
including hardware, operating system, hypervisor layer, VNF, and MANO software.
Specifically, Stochastic Activity Networks are used to characterize failure dynamics of
the components and their related repair mechanisms. The relationship and dependencies
among individual service components are modeled through a state-sharing Replicate and
Join formalism. Moreover, three distinct models, referred to as availability modes, which
exploit different recovery mechanisms, namely Standard Availability, Cold Protection,
and Hot Protection, are designed. A single VNF is assumed to be deployed as a load-
sharing cluster where several VNF units, composing the cluster, are needed to satisfy a
certain load demand and the SFC is assumed to be composed of three VNFs. A single
VNF is considered to be operational if at least N out of K (with K > N ) units are
working. On top of load-sharing, we consider the different availability modes where M
redundant units provide protection to the load-sharing cluster. As a result, by tuning the
K, N and M parameters we investigate different redundancy configurations and their
achievable steady-state availability. In a similar fashion, the MANO is implemented as
a load-sharing cluster within each of the availability modes.

The models are solved through discrete-event simulations, and sensitivity analysis
is carried out for each of the availability mode. The numerical analysis led to interest-
ing observations regarding the most critical failure and repair parameters that can im-
pact service availability and helped identifying the most appropriate redundancy setup
that achieves 5-nines availability. Specifically, service availability is more vulnerable to
VNF software failure intensity compared to the less susceptible hardware or operating
system failures. Moreover, a small resource overprovisioning on the VNF cluster, i.e.,
one additional VNF unit, achieves an increase of up to three orders of magnitude of the
service availability. On the contrary, even for a higher MANO overprovisioning, the
service availability gain is not significant.

PAPER B: On the Resilience of the NFV-MANO: An Availability Model of a Cloud-
native Architecture
Besmir Tola, Yuming Jiang, and Bjarne E. Helvik
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IEEE Proceeding of 16th International Conference on the Design of Reliable Communi-
cation Networks (DRCN), Milano, Italy, 2020, pp. 1-7.

Paper Summary

Failures on the MANO could affect the functionality of all the network and poten-
tially impact the service delivery by inducing severe outages, which sometimes might be
hard to deal with [108], [128]. It is thus important to identify dependability bottlenecks
and ensure a highly dependable management and orchestration system.

Paper B takes a model-driven approach to perform a quantitative assessment of
the steady-state availability of a containerized MANO. The work proposes a SAN-
based availability model, inspired by open-source ETSI-compliant architectures adopt-
ing cloud-native designs, and performs a sensitivity analysis aiming at identifying the
factors that mostly impact system availability. The model incorporates different fail-
ure modes and relative repair mechanisms on both software and hardware level of the
MANO framework. In particular, the model integrates aging and non-aging related soft-
ware failures and investigates their impact on the overall MANO availability. The basic
model, which mirrors default deployments, is further expanded to portray more advances
container deployments that combine different redundant configurations on the host or
software level.

The numeric analysis indicates that adopting containerized technologies with stan-
dard deployments having both single and multiple software replicas deployed into a
single physical node is not sufficient for achieving “5-nines” availability. The analy-
sis also indicates that non-aging-related software failures and software repair intensity
stand out as key important failure and repair parameters, respectively. When clustering
mechanisms such as Docker swarm mode with distinct worker and manager nodes are
adopted, we observed that the MANO availability is further increased and the critical pa-
rameters become less significant when multiple MANO container replicas are engaged.
Software aging may have a considerable impact on the availability and the related failure
rate impact magnitude depends on the time it takes for the software to age. The shorter
the time it takes to experience aging symptoms the higher will be the impact induced by
aging-caused software failures.

PAPER C: Model-Driven Availability Assessment of the NFV-MANO with Software
Rejuvenation
Besmir Tola, Yuming Jiang, and Bjarne E. Helvik
IEEE Transactions on Network and Service Management, 2021
Early Access - doi: 10.1109/TNSM.2021.3090208.

Paper Summary

This paper further expands the investigation of Paper B in several directions. First, it
proposes a modified software aging model that resembles a more realistic aging behavior.
The model proposed in Paper B can be considered as a “one-shot” model representing
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a failure rate increase due to software aging once a certain aging threshold is exceeded.
However, this representation slightly deviates from a realistic behavior where failure in-
tensity follows a gradual growth as the number of accumulated aging errors increases.
The new MANO model, proposed in this paper, mirrors the effects on the software fail-
ure intensity due to the software aging phenomenon by simulating a continuous increase
of the failure intensity, which is directly proportional to the amount of accumulated
aging errors. In addition, the proposed model also includes a proactive software main-
tenance mechanism, commonly referred to as software rejuvenation, aiming at relieving
the effects of the manifestation of the software aging phenomenon. Moreover, experi-
mental trials on a real MANO testbed allows to retrieve empirical recovery parameters
regarding a number of system elements. Finally, in addition to the readjusted models of
Paper B, the work proposes two other models for portraying distributed MANO deploy-
ments, featuring redundancy configurations on both hardware and software levels, and a
software component-wise MANO model.

The numerical results underline that non-aging-related software failures and software
repair rates stand out as main detrimental parameters. However, adopting clustering
mechanisms, which provide redundancy on both hardware and software system compo-
nents, alleviates the impact of such critical parameters and increases the system avail-
ability. In addition, software aging can have a significant impact on the MANO avail-
ability and highly utilized software can benefit from optimized rejuvenation scheduling
policies by achieving up to 61% uptime increase. Moreover, the analysis of the MANO
software with distinct components, i.e., component-wise MANO, shows that modeling
of the MANO software as a single component yields a representative analysis of the sys-
tems steady state availability.

PAPER D: Network-Aware Availability Modeling of an End-to-End NFV-Enabled Ser-
vice
Besmir Tola, Gianfranco Nencioni, and Bjarne E. Helvik
IEEE Transactions on Network and Service Management, vol. 16, no. 4, pp. 1389-1403,
Dec. 2019.

Paper Summary

The models proposed in Papers A-C provide insights into failure and recovery dy-
namics of NFV-enabled services, and the system that manages and orchestrates the ser-
vices. However, the delivery of end-to-end NFV-enabled services involves also network
devices, such as routers and physical links, that assist the interconnection of NFV el-
ements, and an exhaustive availability assessment of end-to-end NFV services should
also include such elements [11], [29].

Paper D proposes an availability model that compensates the lack of regard of net-
work elements in the previous models, and integrates the connectivity requirements that
the interconnection of NFV elements imposes such that an end-to-end NFV service avail-
ability assessment can be performed. The modeling approach has two levels; i) the struc-
tural model of the network topology and ii) the dynamic models of NFV-based service



4.2. Summary of the Papers 51

elements. The first level exploits structural analysis based on minimal-cut sets [129] and
the second level consists of SAN-based dynamic models of each of the network and NFV
elements. The structural analysis allows the definition of connectivity requirements and
helps determine the most critical elements involved in the end-to-end service delivery.
The analysis defines minimal-cut sets of elements that are required to be operational
such that the end-to-end service can be considered available. The dynamic models char-
acterize and quantify the steady-state availability of each of the involved elements and
the end-to-end service availability is evaluated by merging the two levels. The inclusion-
exclusion principle, which is a probabilistic technique to obtain the elements in a union
of finite sets, is used to merge the two levels and define the end-to-end service availabil-
ity. Moreover, the work also investigates the impact that the integration of NFV with a
Software-Defined Networking-enabled network can have in terms of service vulnerabil-
ity to failures of SDN elements. i.e., the SDN controller and SDN-enabled switches.

An extensive numerical evaluation sheds light on the impact that service elements,
element’s components, and single or double element redundancy have on the end-to-end
service availability. Observations highlight that in case of traditional networks, the ser-
vice availability is mostly negatively impacted by the availability of IP routers and VNFs,
and this kind of impact can be as large as two orders of magnitude. Making use of more
robust IP routers brings significant benefits only when this is accompanied with redun-
dant NFV elements and this allows achieving values of 5-nines availability. Compared
to a traditional network, an SDN-integrated solution degrades the service availability
because of the introduction of additional connectivity requirements, i.e., SDN switches
in the end-to-end path are required to have a working path with their SDN controller.
In particular, the SDN controller is the most critical elements that can even hinder the
advantages of redundant NFV elements. From an element’s component perspective, the
service availability is significantly impacted by the degrading of router hardware and
operational and management (O&M) software failure intensities.

PAPER E: Towards Carrier-Grade Service Provisioning in NFV
Yordanos T. Woldeyohannes, Besmir Tola, and Yuming Jiang
IEEE Proceeding of 15th International Conference on the Design of Reliable Communi-
cation Networks (DRCN), Coimbra, Portugal, 2019, pp. 130-137.

Paper Summary

One of the main benefits of NFV is the flexibility to deploy VNFs across differ-
ent computing infrastructures and to be able to migrate them when network demand
changes. The choice of where to place VNFs, how much resources to allocate, and how
to steer traffic through them is regarded as the NFV resource allocation problem [31]
and when a particular emphasis is put on ensuring a certain availability level, it is com-
monly referred to as the redundancy allocation problem or availability-aware resource
allocation.

Paper E proposes optimized algorithms for allocating redundant resources, other-
wise called backup, to NFV service requests such that service availability requirements
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can be met. The problem is formulated as a mathematical multi-objective optimization
problem aiming at minimizing the total number of VNF backup instances, minimizing
the number of backup hosting nodes, and minimizing the backup chain path delay. The
said objectives are subject to various system constraints including service availability,
resource capacity, service flow routing, and function statefulness. Specifically, two op-
timization models are considered where the first model assumes that all the services of
a chain are backed-up using the same hosting node, i.e., All-One model, and the second
model assumes that all of the functions of a given service chain request can be hosted
into separate backup nodes, i.e., All-Any model.

It is common that for simplicity, network failures are often assumed to happen in-
dependently. Nonetheless, several studies recognize that correlated failures are non-
negligible events that can have significant effects on the network functionality [37],
[130]. A novel contribution of this paper, compared to related work, is the proposal
of an algorithm that identifies nodes that are inherently correlated due to the network
topology structure. For each node, the algorithm identifies a set of nodes whose oper-
ational status is affected by the failure of a primary node, i.e., nodes hosting primary
functions, and these nodes are to not be considered as candidate backup nodes in the re-
dundancy placement decision of the services running in the primary one. This way, the
algorithm is exploited in the placement decision in order to avoid simultaneous failure
or outage of both working and backup chains.

The performance analysis outlines the benefits that structural correlation analysis
brings in terms of the ability of flows to achieve higher availability compared to dis-
regarding structural correlation. Moreover, the evaluation investigates the trade-off be-
tween cost and system performance and highlights that for the considered setup and
carrier-grade availability targets, employing more reliable servers is advantageous only
if their related cost is at most twice as less reliable ones. Otherwise, the total expenditure
will exceed the cost of using only less reliable, but more economic, servers for reaching
the same availability target.

PAPER F: CoShare: An Efficient Approach for Redundancy Allocation in NFV
Yordanos T. Woldeyohannes, Besmir Tola, and Yuming Jiang
Submitted to IEEE/ACM Transactions on Networking. A preliminary version is avail-
able on arXiv: https://arxiv.org/pdf/2008.13453.pdf

Paper Summary

The optimization problem formulated in Paper E finds an optimal placement of VNFs
in the network substrate and assigns service requests to the correct service chains, i.e.,
performs flow routing. However, the problem complexity is NP-hard, hence limiting
the algorithmic applicability to being intractable for large-scale problem instances. As a
result, the optimization model does not scale well for large instances and in particular,
the execution time for finding an optimal solution becomes unsustainable.

Paper F tackles the problem-scalability drawback by proposing customized heuristics
that assemble the subtleties of the optimized problem. Specifically, the approach, named

https://arxiv.org/pdf/2008.13453.pdf
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CoShare, considers the various fundamental aspects of the original problem, including
the network structural dependency, the heterogeneity of nodes and NF instances, and
service availability requirements, and does scale well even for large system setups. A
distinctive feature of the heuristic algorithm is the introduction of a novel idea, referred
to as NF shared reservation, for achieving higher efficiency in regard to resource utiliza-
tion. The idea is based on the consideration that flows requiring service chains, which are
composed of VNFs that in turn are deployed into non structurally correlated nodes, can
share common reserved capacity for fault-tolerance purpose. This is because the failure
of one node will not impact the other and thus, the common shared capacity can be used
to provide redundancy protection for the instance hosted in the failed node. Therefore,
the capacity shared among non-structurally correlated flows shall suffice because they
will unlikely fail simultaneously. In addition, for comparison, CoShare considers also
the case where dedicated reserved capacity is allocated for backup instances.

A number of experiments, characterizing different system setups, provide insights
regarding the performance of the algorithm when compared to the optimized project.
Moreover, simulated experiments concerning the performance of shared reservation in
terms of resource overbuild, i.e., the ratio of the amount of backup resources over the
amount of primary resources, and flow acceptance ratio are also carried out. The exper-
imental results show that CoShare with shared reservation requires less resource over-
build compared to both dedicated reservation version of CoShare and the optimized
project. In particular, for the experimented networks, this results in almost halving of
the necessary number of backup instances compared to the other two approaches while
still satisfying the service availability demands. In addition, while solving the opti-
mized problem takes more than 12 minutes in a standard Intel R© multi-core workstation,
CoShare generates the solution in less than 1 second. A closer inspection of the perfor-
mance of CoShare with shared reservation compared to the dedicated version highlights
the advantages of the former also for situations where highly demanding services are ex-
pected to be executed in the network. Specifically, for 700 flows, all demanding 5-nines
availability, shared reservation results in 93% overbuild compared to 178% achieved by
dedicated reservation. Furthermore, shared reservation achieves a higher acceptance
ratio, i.e., the ratio of the number of accommodated over the total number of service
requests, compared to the dedicated case, 100% and 59%, respectively.

Secondary papers were also published while working on the doctoral thesis. Since
their relevance to this thesis is marginal, only references and abstracts are included in
Part III, and Table 4.2 lists the publications.

4.3 Conclusions
Modern society is becoming more and more reliant on the services provided by telecom-
munication networks. The global pandemic situation, and its lockdown consequences,
have accentuated even more the network dependency as a result of everyday life ac-
tivities like working or leisure being performed through connected services. With the
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TABLE 4.2: List of supplementary publications not included in the thesis.

Paper Title — Authors — Conference/Journal

Paper G Failure Process Characteristics of Cloud-enabled Services
Besmir Tola, Yuming Jiang, and Bjarne E. Helvik
Proceeding of the 9th Workshop on Resilient Networks Design and Modeling
(RNDM), Alghero, Italy, 2017, pp. 1-7.

Paper H On Monolithic and Microservice Deployment of Network Functions
Sachin Sharma, Navdeep Uniyal, Besmir Tola, and Yuming Jiang
Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft),
Paris, France, pp. 387-395.

Paper I Keeping Connected When the Mobile Social Network Goes Offline
Øystein Sigholt, Besmir Tola, Yuming Jiang
International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), Barcelona, Spain, 2019, pp. 59-64.

increase in importance and usage of communication services, the end-user’s expecta-
tions are also growing, not only with respect to data rate capabilities but also in regard
to the level of dependability offered by the services. The forthcoming 5G mobile net-
works are anticipated to meet extreme user’s expectations by offering a whole new level
of highly performing and dependable services. At the core of 5G networks lies the
successful adoption of the NFV paradigm, which brings into play the desired network
programmability, flexibility, scalability, and economies of scale. NFV alters the rigid
deployment of traditional network appliances by separating the software implementing
the network function from the underlying hardware. This is achieved through the ex-
ploitation of server virtualization technologies, which enable the execution of network
functionalities in virtualized environments. However, a successful adoption of NFV is
tightly coupled with several challenges and service availability plays a crucial role. With
more and more end users taking for granted network and service continuity, ensuring
highly available NFV-based services becomes of paramount importance for embracing
the promising benefits of NFV.

The target of this thesis work is at modeling, analyzing and providing highly avail-
able NFV-based services. To achieve this objective, this work has focused on three main
aspects: i) modeling and quantifying the availability of service function chains provided
through NFV infrastructures, ii) integrating network connectivity requirements into the
availability model for evaluating end-to-end NFV-based services, and iii) propose solu-
tions with fault-tolerance capabilities by allocating redundant resources to NFV services.
The different aspects have been tackled by proposing various solutions, which are sum-
marized as follows:

• A two-level hirearchical model is proposed to quantitatively assess the availability
of NFV-supported services. On the low level, the model consist of SAN-based
dynamic models that abstract the failure and repair dynamics of the NFV elements
such as VNFs, virtualization layer, supporting software, hardware infrastructure,
and the MANO framework. On the high level, the model exploits a Replicate
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and Join formalism to compose network service chains. Based on the model,
the service chain availability analysis is exemplified for three distinct recovery
strategies and results show that carefully selecting the recovery strategy not only
enhances the service availability but also reduces the impact that failure and repair
parameter variations have on the availability.

• Given the central role of the MANO in the NFV architecture for ensuring, among
others, correct service delivery, resource and fault management and configuration,
it is crucial to employ a robust MANO framework. Inspired by current cloud-
native MANO software implementations, this research work proposes a model
to predict and analyze the availability of a hypothetical containerized MANO sys-
tem. The model serves as basis for abstracting different redundancy configurations
and MANO deployments that can be actualized in line with current container-
ized deployment practices. Moreover, the model features software rejuvenation
mechanisms for mitigating software aging effects. The sensitivity analysis sheds
light into the most critical availability bottlenecks and suggests suitable protection
mechanisms that can help improve MANO availability.

• One important facet of NFV architectures is the ability to deploy, operate, and
migrate network functions on-the-fly and anywhere in the network. Such net-
work flexibility implies that VNFs can be distributed onto the network and the
composition of specialized service chains requires traffic steering into specific ge-
ographically distributed VNFs that compose end-to-end services. From an avail-
ability evaluation perspective, it is required that all the service elements, which
process and carry traffic, ought to be operational so that the service can be deemed
available. This condition imposes connectivity requirements among the elements
such that an accurate availability estimation can be performed. This work pro-
poses an approach for modeling and assessing service availability by integrating
connectivity requirements among NFV and network elements like VNFs, MANO,
routers/switches, and network links. The approach consists of a two-level model
where on the lower level, SAN-based models characterize failure and repair dy-
namics for each singular element and on the higher level, the structural model,
which is based on min-cut analysis, imposes connectivity requirements. The
steady-state availability of the end-to-end service is retrieved by merging the two
models through the inclusion-exclusion principle.

• Model-driven availability assessment can be an excellent tool for quantifying ser-
vice availability, and its associated threats, yet, a network operator needs also
to decide how to provision highly available services by allocating redundant re-
sources to cope with failures of primary ones. To this end, the operator needs
to perform some decision making in regard to where and how many redundant
instances are required to be allocated in the network for satisfying traffic flow’s
availability requirements while still optimizing other system objectives such as
cost minimization, maximizing resource efficiency and so forth. This thesis con-
tribution proposes a set of both optimization models (ILP-based) and customized
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heuristic strategies that implement redundancy allocation for NFV services. In
particular, the heuristic scheme is scalable enough for executing large problem in-
stances in polynomial time and achieves better resource efficiency compared to
related literature by exploiting a network function sharing mechanism.

4.4 Future Work
To finish Part I of this work, some future research directions are presented in this section.

First, model-driven research is based on data inputs that are fed to the model and
metrics of interest are retrieved by solving it. Although the parameter values utilized
in this work are retrieved from previous literature that investigates systems of similar
nature and complexity, it would be extremely interesting to analyze real data from NFV
production systems. This would not only help refine and validate the model parameters,
but would also allow the characterization of failure and repair processes of real NFV
network elements. Unfortunately, NFV deployments are still at its infancy for many of
the major operators. In addition, it is difficult to retrieve failure data from real systems,
as network operators and providers are, understandably, reluctant to release this type of
information.

Another interesting direction to explore would be to characterize and assess NFV-
enabled services provided through the interaction of multi-domain and multi-provider
networks. For example, 5G networks are expected to provide tailored services through
a concept called network slicing that will span across multiple network domains and
involve multiple providers. A core issue of network slicing is the isolation of slices,
which can seriously impact their dependability attributes [131]. The domain integration
points could represent potential dependability bottlenecks. Hence, it would be worthy
to explore the main threats and mitigation techniques that would allow achieving highly
robust network slices.

Furthermore, a worth exploring aspect could be the integration of machine learning
techniques into the resource allocation problem. The problem addressed in this work
implicitly assumes that service requests are apriori known to the service provider. How-
ever, there could be scenarios where service request can rapidly evolve and being able
to predict or estimate service demands can allow an operator to rapidly adapt resource
allocation decisions.

Finally, another interesting course for future work would be implementing and test-
ing the redundancy allocation heuristic scheme in a real NFV infrastructure. For ex-
ample, the Placement Optimization engine [132], integrated with the OSM framework,
could be enhanced with availability figures of computing nodes and used to determine
an optimized VNF redundancy placement. This way, the performance of the proposed
algorithms can be validated in a realistic scenario.
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Abstract—Network and Telecom operators are continuously
embracing the adoption of Network Function Virtualization
(NFV) as a means to provide more agile, flexible and cost-
efficient services. Many telecommunication services need to
possess carrier-grade quality of service; therefore, future NFV-
enabled telecom services should present high levels of availabil-
ity. In this paper, we present a composed availability model
of NFV-enabled network services under different availability
modes, namely Standard Availability, Cold Protection, and Hot
Protection. We model and analyze the availability of NFV-enabled
network services for each of the availability modes aiming at
finding the best redundancy configuration to ensure carrier-grade
quality. Through discrete-event simulation analysis we are able
to identify the most suitable redundancy configuration for each
of the availability modes.

Index Terms—NFV, Service Function Chaining, Availability
Modes, Cold Protection, Hot Protection.

I. INTRODUCTION

Network Function Virtualization (NFV) is expected to
change the way operators provide their services by entailing
greater network programmability, dynamic service delivery,
and service automation. Through decoupling network func-
tions into software and hardware, NFV aims at replacing
legacy network functions with virtualized instances, called
Virtual Network Functions (VNFs) [1], running as software
into commodity servers. By linking together many VNFs, NFV
provides the ability to define specialized services as an ordered
set of network functions (e.g., firewalls, intrusion protection
etc.), commonly referred to as Service Function Chain (SFC).

The VNFs are network function software implementations
running over an NFV infrastructure (NFVI), which provides,
through a virtualisation layer commonly referred to as Virtual
Machine Monitor (VMM) or hypervisor, the virtual resources
needed to support the execution of VNFs. The management
and orchestration of resources and services is performed
by the NFV-Management and Orchestration (NFV-MANO),
which represents a logically central entity in charge of service
lifecycle operations. The NFV-MANO is composed of three
main components: Virtual Infrastructure Manager (VIM), VNF
Manager (VNFM), and NFV Orchestrator (NFVO).

The transition to NFV deployments introduces additional
resilience challenges which may threaten the benefits that NFV
architectures embrace [2]. In addition, NFV-enabled telecom-
munication services are expected to fulfill very strict carrier-
grade availability requirements, i.e., five-nines or more [3]. As
a result, NFV resilience challenges have drained significant

attention from both academia and industry research. To this
end, ETSI has provided several guidelines regarding reliability
concepts and requirements [4] (and the references within).

Server virtualization represents the core enabling technology
for NFV. The authors of [5] paved the way of availability
modelling involving virtualized systems with multiple failure
modes. Using fault-tree analysis and continuous-time Markov
chains (CTMC), they perform a sensitivity analysis for the
system performability, i.e., performance and reliability, and ex-
tend the analysis for different scalability considerations in [6],
[7]. Zhang et al. [8] and Dantas et al. [9] use a combination of
CTMC and Reliability Block Diagram (RBD) approaches to
represent and evaluate the dependability of virtualized systems
and cloud computing infrastructure, respectively.

An availability model of a virtualized Evolved Packet Core
is presented in [10]. Using Stochastic Activity Networks
(SANs), the authors assess the system availability in case of
multiple and catastrophic failure events since similar events
may seriously impact the system availability. In [11], the
authors propose a two-level model and evaluate the availability
of an SFC deployed in an NFV architecture. By merging RBDs
and Stochastic Reward Nets (SRNs) they perform a sensitivity
analysis to identify critical parameters. Similarly, in [12], they
extend the analysis by including the VIM functionality.

In this paper, we propose an availability model which dis-
tinctively to the previous works considers multiple availability
modes featuring different fault recovery mechanisms. The
considered availability modes include Standard Availability
(SA), Cold Protection (CP), and Hot Protection (HP), where
each mode can be suitable for different service-level availabil-
ity requirements. Furthermore, we investigate the impact of
redundancy configuration and protection schemes on ensuring
a carrier-grade level of service dependability. The availability
model is implemented by using two formalisms: i) Repli-
cate/Join, a state sharing composition model that captures
the dependencies among components, and ii) the Stochastic
Activity Networks (SAN), suitable for describing the failure
dynamics of the individual components.

The paper is structured as follows. Section II illustrates
the proposed service availability model. Section III presents
the salient features of the different availability modes. The
SAN models of the individual components are presented in
Section IV. Numerical results of the simulation analysis for
each of the availability modes are presented in Section V.

2019 15th International Conference on the Design of Reliable Communication Networks (DRCN)

978-1-5386-8461-0/19/$31.00 ©2019 IEEE 1



NS

SFC

VNF

MANO

Host

MANO
Host

Hardware VMM

VNF
Software

VM

MANO
OS

MANO
Software

MANO
Hardware

Join Replicate Submodel

MANOSFC

VNF

vC

Fig. 1. Network Service SAN model using Replicate/Join formalism.

Finally, Section VI concludes the paper by highlighting the
most important insights.

II. AVAILABILITY MODEL

In this section, the composed model used to evaluate service
availability is presented. The model is implemented through a
Replicate/Join formalism by using the Möbius software tool
[13]. The formalism enables the modeler to compose a model
in the form of a tree, where each leaf node represents a system
submodel and each non-leaf node can be a Join or Replicate
node. A Join node is a state-sharing node used to compose
two or more submodels, whereas a Replicate node is used to
compose submodel replicas.

The delivery of an NFV-enabled network service results
from the interaction of the SFC (as an ordered sequence
of VNFs composing the service) and the MANO (which
deploys, instantiates and manages the service lifecycle). While
it is argued that a MANO failure shall not affect existing
VNFs [14], as specified in [4] and highlighted by the authors
of [15], the MANO actually plays a critical role in ensuring the
VNF’s resiliency. Aligned with [15], we consider the service
is available when both SFC and MANO are available.

Fig. 1 depicts the composed service model. We assume a
VNF is deployed through a hypervisor-based virtualization
running directly on hardware, i.e., bare-metal virtualisation.
In addition, we assume a Virtual Machine (VM) is dedicated
to a single VNF. Therefore, the model is composed of the
Host subsystem which symbolizes an NFVI server consisting
of the computing, storage and network hardware resources.
This level joins two submodels representing the Hardware
and VMM components. The intermediate level represents the
virtual Container (vC) providing the virtualized environment
where a VNF is executed by joining the VM submodel with
the Host level. Lastly, the VNF level joins the vC and the VNF
software submodels.

A high-level architecture of a widely referenced solution,
namely Open Baton [16], is used as a reference for the
MANO model. A common deployment involves a commodity
server running its own OS, e.g., Linux-based kernel OS, and
the installation of the various MANO software component’s
packages, e.g., NFVO, VNFM etc. For simplicity, we consider
the MANO software as a single component where the failure
of any of its software packages causes a failure of the MANO

functionality. Therefore, on the Host level, the MANO model
is composed by joining the MANO Hardware with the MANO
OS. On the higher level, the MANO software is joined with
the MANO Host node. When any of the elements fails, the
MANO becomes unavailable.

The SFC consists of an ordered sequence of VNFs. There-
fore by replicating the same VNF non-leaf node, through the
SFC replicate node, we obtain a representative model of a
SFC where the number of replicas indicate the number of
VNFs composing the chain. The SFC, being a replicate node,
allows state-sharing among the different replicas. We assume
that each replica, i.e., VNF, fails independently. Thus, by
not sharing any state among the VNFs, we simulate such
independence. By joining the SFC and the MANO subsystems,
i.e., the top join node, the model represents a series configura-
tion where each subsystem (MANO, VNF1, VNF2,..., VNFO)
needs to be working in order for the service to be available.

From a modeling perspective, there are similarities among
the submodels composing the VNF model and the MANO
model. Specifically, the same submodel, with related failure
and repair parameters, is used to describe the failure dynamics
of both the VNF and the MANO software components. The
same submodel is used for the VNF and MANO hardware
components, and so is the submodel used for the VNF VMM
and MANO OS components.

Each component’s behavior dynamics are captured through
a specific SAN submodel which we introduce in more detail
in Section IV.

III. AVAILABILITY MODES

The VNF availability modes we investigate are Standard
Availability (SA), Cold Protection (CP) and Hot Protection
(HP). The former one is regarded as a baseline mode since it
features the simplest recovery procedure. Whereas, the later
ones, driven from typical implementations using virtualization
technologies (see for example [17]), embody more sophisti-
cated recovery strategies.

In this paper, we consider that each VNF composing the
SFC is deployed as a load-sharing cluster where several VNF
units, making up the cluster, are needed to satisfy a certain load
demand. The VNF is considered to be operational if at least
N out of the K units are working. Therefore, the cluster itself
is able to provide protection for up to K − N simultaneous
failures. On top of load-sharing we consider an additional
level of protection through our availability modes where M
redundant units provide protection to the load-sharing cluster.
As a result, by tuning the K, N and M parameters we
investigate different redundancy configurations.

Similarly, for the MANO is implemented as a load-sharing
cluster where R defines the number of MANO units and the
MANO is operational if at least S out of the R units are up.

A. Standard Availability (SA)

The SA mode represents a case where a VNF does not
rely on any redundancy mechanism. Failures on the different
levels, which are discussed in Section II and shown in Fig. 1,
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are detected through heartbeat mechanisms. Once a failure on
the host level is detected, the recovery process requires the
summoning of an operator to execute a manual replacing or
repairing of the failed component. Whereas, in case a failure
on a software level is detected, i.e., VMM, VM or VNF
software, the recovery follows a two-step procedure. At first,
an automatic restart/reboot of the failed component is triggered
by the MANO and only if the component restart/reboot does
not recover the service, a hard repair, i.e., patch fixing or
software updating, is performed.

B. Cold Protection (CP)

The CP mode consists of a solution where the aim is
to minimize the downtime caused by a failure on the host
level.The CP mode leverages multiple hosts configured as a
cluster. Specifically, for a primary host, there is a secondary
host ready to takeover the VMs affected by a primary-host
failure. A primary host sees the secondary one by exchanging
heartbeat messages. In case of failures within the host level,
i.e., hardware or VMM, the CP mode features an automatic
restart of the affected VMs, activated by the MANO, by
performing a similar to “live migration” procedure, on the
secondary host. In case the failure is experienced within the
VM/VNF software level, the MANO restarts the affected
VM on the same host. Similar to the SA mode, in case a
VM/VNF software restart does not successfully recover the
service, a hard repair is executed. Note that the redundancy is
provided only on the host level and the redundancy restoration
is performed by either replacing/repairing the failed hardware
component or by performing a soft repair followed by an
eventual hard repair of the VMM in case the former does
not restore the redundancy.

C. Hot Protection (HP)

Hypervisor-based Fault Tolerance represents a powerful
technology promising continuous service availability [17].
Similarly to this solution, in the HP-mode implementation
a VM, i.e., primary VM, is protected by creating and syn-
chronizing a secondary VM, that is identical and continuously
available in a different host. The secondary VM is ready to
take over in the event of a failure caused in the host level, i.e,
hardware and VMM, VM or VNF application level. In this
mode, the failure detection uses a combination of heartbeat
messages and logging traffic to monitor the status of the
primary VM. In case the logging traffic and/or heartbeat miss
or exceed a specific timeout interval (order of seconds), a
failure is detected. Once the failure is detected, an automatic
and seamless failover to the secondary VM is performed.
The redundancy restoration is carried out similarly to failure
recovery in SA. When the hardware fails, a manual repair is
preformed. In case the VMM, VM or the VNF software fails,
the same two-step procedure of SA and CP is performed.

Driven by the fact that HP provides a VM fault-tolerant
solution that promises service continuity, we consider in the
remaining that the MANO adopts only the HP mode.

Fig. 2. Hardware SAN availability models.

Fig. 3. VMM SAN availability models.

IV. SAN SUBMODELS

In this section, the SAN models of the elements, composing
the service, for each of the availability modes are illustrated. A
SAN model is composed of places, activities, input gates, and
output gates primitives. Through activity firings and following
specific distributions, tokens are moved among places resulting
in system state changes. Input and output gates enable and
control activity firings.

The availability modes differ from each other only on the
recovery mechanisms. In particular, the HP mode includes
all the SAN primitives utilized in the SA and CP modes.
Therefore, due to space limitations we illustrate only the HP
mode since the two others may be induced from the HP mode.
Note that the MANO submodels are identical to the VNF
submodels as specified at the end of Section II hence, we
avoid illustrating.

A. Hardware Submodel

The hardware SAN availability model is depicted in Fig. 2.
The model comprises the following shared places, i.e., states
shared among the different hardware, VMM, VM and VNF
software submodels:
• VNF DW indicate the number of failed VNF units;
• Host DW represents the number of hosts that are down;
• MANO DW represents the status of the MANO. In case

more than R−S tokens are present, the MANO is down;
• S VNF is populated with M tokens and represents the

secondary VNF redundant units ready to takeover the
service from the failed VNFs;

In addition, the following output gates enable token marking
movements for the shared places:
• IG1 enables the failover operation activity. Only in case

there are less than R− S tokens in MANO DW, i.e., the
MANO cluster is operational, the failover is performed;

• OG1/OG2, when the hw fail/hw rep timed activity is
completed, the output gate increases/decreases with 1
token the places Host DW and VNF DW;
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Fig. 4. VM SAN availability model.

The following places define the component operational status:
• hw OK corresponds to the fully working state of the

hardware components and is initialized with K tokens;
• hw failed is populated with 1 token in case a hardware

component fails, 0 otherwise;
• hw DW represents the detection of a hardware failure;
• hw under rep represents the number of hardware com-

ponents undergoing a repair process;
• cov failed defines the state where the failover procedure

fails and a manual coverage is required;
The places are connected by mean of the following negative
exponentially distributed (n.e.d.) timed activities:
• hw fail and hw rep represent the hardware failure and

repair events with rates λhw and µhw, respectively;
• fail det represents the failure detection with rate µdet;
• failover represents the HP failover event with rate µfo.

Since the failover is an automatic procedure, the MANO
triggers the recovery procedure. There are two cases, with
probability Cfo the failover is successful and 1 token is
moved into hw under rep and another token is fetched
from S VNF and is moved into hw OK. Whereas, with
probability 1 − Cfo the failover procedure fails and 1
token is placed into hw under rep and the previous one
fetched from spare units is put into cov failed;

• S hw fail represent the hardware failure event of the
redundant host with rate λhw. The redundant host pro-
vides resources to other services as well; therefore, they
experience hardware failures similarly to the primary;

• man cov represents the intervention of an operator per-
forming a manual coverage with rate µcov;

B. VMM Submodel

Fig. 3 illustrates the VMM SAN availability submodel.
Compared to the Hardware model, the difference lies on
the redundancy restoration identified by the vmm recv timed
activity. With probability Cres, a VMM restart recovers the
service and with probability 1 − Cres the VMM undergoes
a manual fixing. Due to space constraints, we omit further
description.

C. VM and VNF Submodels

Fig. 4 illustrates the VM submodel. Although apparently
similar to the VMM, the submodel slightly differs on the fact
that the VM submodel is an element of a higher level, i.e.,
vC. Thus, VMs can fail only if their underlying hosts have
not failed. To this end, IG2 enables a VM failure only if the

TABLE I
MODEL PARAMETERS USED IN THE EVALUATION.

Parameter Time Description [mean time to]

1/λhw = 6.5 months next hardware failure
1/µhw = 1 hour hardware repair
1/µfo = 5 secs VM failover
1/µdet = 5 secs failure detection
Cfo = 0.95 VM failover coverage factor
1/µmig = 1 minute VM migrate
Cmig = 0.95 VM migrate coverage factor
1/λvmm = 4 months next VMM failure
1/µvmm = 1 hour VMM fix
1/µvmmres = 30 secs VMM reset
1/λvm = 2 months next VM failure
1/µvm = 1 hour VM hard fix
1/µvmres = 30 secs VM reset
1/λsw = 2 weeks next VNF software failure
1/µsw = 1 hour VNF software fix
1/µswres = 15 secs VNF software restart
Cres = 0.8 restart coverage factor
1/µ∆ = 30 minutes summon an operator
1/λMsw = 1 month next MANO software failure
1/µMsw = 1 hour mean time to MANO software fix
1/µMSWres = 15 secs MANO software restart
1/λOS = 1 month next OS failure
1/µOS = 1 hour OS fix
1/µOSres = 1 minute OS reboot
1/µcov = 30 minutes manual coverage
O = 3 # VNFs composing the SFC

number of tokens in VNF DW are less than K. Similarly, the
VNF software submodel belongs to the higher level and the
relative SAN model is identical to the VM model.

V. NUMERICAL EVALUATION

In this section we evaluate the different VNF cluster con-
figurations for each of the availability modes. We compute
the steady-state service availability for the composed model
using discrete-time simulations implemented in Möbius with
95% confidence interval for a one year time simulation. The
set of numerical values regarding failure, repair intensities and
coverage probabilities, retrieved from previous literature [6],
[7], [11], [12], are presented in Table I.

Cluster overprovisioning is an excellent means for providing
high level of protection, i.e., providing extra units to cope with
multiple simultaneous failures. For this purpose, we define the
VNF load-sharing cluster overprovisioning-ratio as γ = K−N

N .
We assume that each VNF cluster is composed of K = 4 units
and vary N so that γ is increased from 0 to 0.25 and 0.5. The
same definition and assumption apply to the MANO cluster
as well with γM = R−S

S and R = 4.
Table II illustrates the service availability with varying

number of redundant units M , overprovisioning-ratio γ and
recovery coverage factors for the modes that make use of
redundancy, i.e., CP and HP. We observe that for an increasing
M there is an almost negligible availability increase irrespec-
tive of the availability mode. On the other hand, an increase
of the overprovisioning-ratio is associated with up to three
orders of magnitude of availability increase hence, suggesting
that it is much more beneficial to scale-out a cluster than to
provide the same unit(s) in the form of redundant backups.
Furthermore, we notice that the HP mode is more sensitive
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TABLE II
AVAILABILITY FOR DIFFERENT VNF REDUNDANCY CONFIGURATIONS

AND RECOVERY COVERAGE FACTOR.

Cold Protection Hot Protection

γ M Cmig = 0.8 Cmig = 0.99 Cfo = 0.8 Cfo = 0.99

1 99.25% 99.30% 99.59% 99.96%
0 2 99.26% 99.31% 99.60% 99.98%

3 99.27% 99.45% 99.61% 99.99%

1 99.9964% 99.9970% 99.9981% 99.99971%
0.25 2 99.9967% 99.9976% 99.9992% 99.99992%

3 99.9968% 99.9985% 99.9994% 99.99997%

For all the results γM = 0.25.

TABLE III
EFFECTS OF VNF CLUSTER OVERPROVISIONING ON SERVICE

AVAILABILITY FOR DIFFERENT FAILURE INTENSITIES.

Failure Standard Cold Hot
Intensities γ Availability Protection Protection

0 98.9% 99.30% 99.88%
λref 0.25 99.994% 99.997% 99.9997%

0.5 99.999941% 99.99997% 99.999993%

0 90.35% 93.18% 97.59%
10 · λref 0.25 99.47% 99.71% 99.80%

0.5 99.91% 99.98% 99.99%

For all the results M = 1 and γM = 0.25.

to coverage factor variations compared to the CP mode. In-
creasing the robustness of the failover mechanism, i.e., higher
coverage, may generate up to one order of magnitude higher
availability. The explanation lies within the mode itself since
the CP mode exploits a VM migration only for hardware and
VMM failure events, whereas the HP mode fully exploits the
failover procedure for all kinds of failures.

Table III shows the service availability for each mode when
the provisioning ratio is varied. Two cases are considered,
one with failure intensities taken from Table I, denoted with
λref , and the case where failure intensities are 10 · λref . We
notice that in the former case, only the HP mode achieves
a carrier-grade quality (5 nines) when each VNF cluster is
overprovisioned with one additional VNF unit. By providing
two extra units as the means for protection, all the modes
achieve more than 5 nines. On the other hand, for higher failure
intensities, none of the modes reaches 5 nines availability.

With respect to the MANO provisioning ratio, Table IV
illustrates the results when varying γM . We observe that the
availability is augmented by one nine when the provision-
ing ratio is increased from 0 to 0.25, but remains almost
unchanged when the ratio becomes higher. Therefore, while
overprovisioning of the MANO cluster provides protection to
the service, a high overprovisioning does not gain accordingly
on the service availability.

VI. CONCLUDING REMARKS

In this paper, an availability model based on SAN compo-
sition has been proposed. The model is flexible and can be
extended to incorporate even more failure types on both hard-
ware (memory, disk, CPU) and VNF (VNF components) level.
A sensitivity analysis aiming at identifying the configuration

TABLE IV
EFFECTS OF MANO CLUSTER OVERPROVISIONING ON SERVICE

AVAILABILITY.

Standard Cold Hot
γM Availability Protection Protection

0 99.97% 99.97% 99.98%
0.25 99.99425% 99.9970% 99.999731%
0.5 99.99428% 99.9971% 99.999732%

For all the results M = 1 and γ = 0.25.

that achieves the so-called “fine-nines” availability has been
carried out. Three different protection mechanisms have been
investigated and the outcomes show that service availability is
sensitive to a correct dimensioning of the VNF and MANO
clusters. Increasing the VNF cluster size by one unit coincides
with an increase of up to three orders of magnitude of the
service availability but a high MANO overprovisioning does
not bring a substantial advantage. Moreover, when a Hot
Protection mode is configured, the failover robustness, i.e.,
higher coverage factor, can be exploited to achieve up to one
order of magnitude availability boost.
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Abstract—With Network Function Virtualization (NFV), the
management and orchestration of network services require a
new set of functionalities to be added on top of legacy models of
operation. Due to the introduction of the virtualization layer and
the decoupling of the network functions and their running infras-
tructure, the operation models need to include new elements like
virtual network functions (VNFs) and a new set of relationships
between them and the NFV Infrastructure (NFVI). The NFV
Management and Orchestration (MANO) framework plays the
key role in managing and orchestrating the NFV infrastructure,
network services and the associated VNFs. Failures of the MANO
hinders the network ability to react to new service requests
or events related to the normal lifecycle operation of network
services. Thus, it becomes extremely important to ensure a high
level of availability for the MANO architecture. The goal of
this work is to model, analyze, and evaluate the impact that
different failure modes have on the MANO availability. A model
based on Stochastic Activity Networks (SANs), derived from
current standard-compliant microservice-based implementations,
is proposed as a case study. The case study is used to quan-
titatively evaluate the steady-state availability and identify the
most important parameters influencing the system availability
for different deployment configurations.

Index Terms—NFV-MANO, OSM, Availability, SAN models,
Docker.

I. INTRODUCTION

Network Functions Virtualization (NFV) is expected to
bring significant changes in today’s network architectures. By
decoupling the network function software from the underlying
hardware infrastructure, hence, allowing the software to run
on commodity hardware, it provides the necessary flexibility
to enable agile, cost-efficient, and on-demand service delivery
combined with automated management.

The European Telecommunications Standards Institute
(ETSI) defines the NFV-Management and Orchestration (NFV-
MANO) framework [1], in the following referred to as simply
MANO, as a set of three main functional blocks: the NFV Or-
chestrator (NFVO), the VNF Manager (VNFM), and the Virtu-
alized Infrastructure Manager (VIM). The NFVO orchestrates
all the functionality on the service level including operations
like on-board, instantiate, scale, or terminate network services.
The VNFM is responsible for the lifecycle management (e.g.
instantiation, scaling, and healing) of one or more virtual

network function (VNF) instances. It receives management
(e.g. deploy, scale, and terminate) instructions for VNFs from
the NFVO, which it executes through its interface with the
VNFs. The third major component, the VIM, manages the
physical infrastructure (NFVI) where the VNFs are executed.

Operating-system-level virtualization technologies, com-
monly referred to as containers (e.g., Docker [2] or LXD [3])
have enabled a shift in the way applications are deployed
going from a monolithic to a microservice-based, i.e., cloud-
native, architecture. The later empowers the development,
deployment, and operation of large and complex applications
as a set of independent smaller and lighter components (i.e.,
microservices) where each component provides a specific
service, and communicates through well-defined lightweight
mechanisms. This way, service provisioning becomes more
flexible, agile, and reliable [4]. Driven by such benefits,
several open source MANO projects leverage a micro-service
architecture in deploying and operating MANO components
through lightweight containers [5]–[7].

Network operators demand that some of their NFV-based
services ensure a carrier grade quality of service [8], i.e.
highly reliable and trustworthy. However, service outages,
induced by various component failures, are inevitable events
that service operators need to deal with. To this end, an
automated management and orchestration system embracing
resiliency aspects is mandatory for conducting correct counter-
actions to such events. Failures on the management and
orchestration level could jeopardize the functionality of all
the network and potentially impact the service delivery by
inducing severe outages, which sometimes might be hard to
deal with [9], [10]. It is thus of an utmost importance to ensure
that a logically centralized control and orchestration system is
highly dependable and able to ensure service continuity [11].
To this end, ETSI has streamlined several guidelines and
requirements of the management and orchestration resiliency
capabilities [12].

The objective of this paper is to model and quantitatively
analyze MANO steady-state availability when deployed on
container-based technologies for various deployment options.
To this end, we present an NFV-MANO availability model,



derived from current ETSI-compliant architectures, based on
Stochastic Activity Networks (SANs) and perform a quantita-
tive availability assessment aiming at finding the factors mostly
impacting system availability. In the model, we incorporate
various failure modes on both hardware and software level of
the MANO framework. A sensitivity analysis helps us identify
the most critical components of the system in terms of relative
impact on the system steady-state availability. Moreover, we
examine several ways of deploying the software stack aiming
at providing higher availability, inspired by current MANO
implementations adopting cloud-native practices.

The paper structure is organized as follows. Section II
presents the related work and highlights the key contributions.
The MANO architecture used to provide the basis of the model
is illustrated in Section III. The case study availability model
is presented in Section IV. In Section V, we show the results
of the analysis and conclude the paper by highlighting the
most important insights in Section VI.

II. RELATED WORK

Even though the MANO may have a huge impact on the
NFV-enabled network service performance [9], [10], a study
of its failure dynamics and overall availability analysis is still
missing in the literature. Almost all related work focus on
network service availability modeling and quantification. They
either focus on specific use cases like virtualized-EPC [13] and
virtualized-IMS [14], or model and analyze generic network
services provided through NFV-based networks [15], [16]
without considering the impact of the MANO on the overall
service performance. By aggregating non-state space (Reli-
ability Block diagrams) and state-space models (Stochastic
Reward Nets) they quantify and give insights on the service
availability and propose appropriate redundancy configurations
aiming at providing 5-nines availability.

In a more recent study [17], a composed availability model
of an NFV service, based on SANs, is proposed. Each VNF,
composing the network service, is considered as a load-
sharing cluster and the authors propose separate models for
various redundancy mechanisms called Availability Modes
and investigate the impact that a faulty orchestrator has on
the service availability. Differently, in this paper we propose
availability models derived from current micro-service based
implementations, i.e., containerized, and provide insights on
the most critical parameters affecting the availability for dif-
ferent deployment options.

Availability models of containerized systems for different
configurations have been proposed in [18]. The authors pro-
pose and compare various container deployments and through
both analytic and simulation results they investigate k-out-of-
N availability and the system sensitivity to failure parameters.
In [19], the same authors present a software tool, called Con-
tAv, for the evaluation of containerized systems’ availability.
Through the use of both non-state and state-space models
designed by the authors, the tool assess the system availability
for different configurations and allows a system architect to
easily parametrize and perform sensitivity analysis.

In [20], even though not related to availability modeling,
the authors propose centralized and distributed mechanisms
for a providing a reliable and fault-tolerant microservice-
based MANO. The mechanisms exploit load balancing and
state sharing and include some tunnable parameters which can
help an operator optimise the trade-offs between reliability
and the associated costs in terms of resource usage. The
proposed setup allows the definition of a cost function which
can help the operator determine the best configuration among
the centralized and distributed mechanisms.

Compared to the related studies our contribution aims at
filling the current gap regarding the availability assessment of a
critical element of the NFV architecture. We model and assess
a hypothetical MANO system inspired by the current trend of
adopting cloud-native software development and maintenance
embraced by several architectures. In addition, we investigate
various containerized deployment options aiming at achieving
high availability levels and identify critical failure parameters
impacting the MANO availability.

III. CASE STUDY

An ETSI-compliant MANO should adhere to the specifi-
cations streamlined by ETSI and include the main functional
blocks which should interact with each other through well-
defined reference points and provide an end-to-end network
service orchestration. In this paper we extrapolate the de-
ployment options of OSM [5], a well-established architecture
hosted by ETSI and led by a large community including
both operators and research institutions [5]. OSM is closely
aligned with NFV specifications and consists in a production-
quality and VIM-independent software stack. Seven releases
have been distributed up to now. Release 6 (Release 0 has had
a relatively short lifetime) is currently the latest release and
includes different installation procedures where the MANO
components can be deployed as dockerized instances [2] into
a hypervisor-based virtualized environment, a public hosting
infrastructure, or directly into a proprietary commodity hard-
ware. The latter represents the most common way of deploying
and running the OSM stack. It represents the most advanced
release including among others network service and slicing
capabilities, enhanced user interface, and a lighter orchestrator.

The default installation deploys 13 docker containers run-
ning in a Docker swarm mode with each component having
one single replica. Docker swarm mode is a native feature of
Docker for managing and orchestrating a cluster of Docker
engines called swarm. It entails several cluster management
characteristics like: i) decentralized configuration of cluster
nodes at runtime, ii) automatic scaling, iii) automatic cluster
state reconciliation, and iv) integrated load balancing. A swarm
is a cluster of Docker nodes, running in a swarm mode, and
they act as managers, who manage the swarm membership and
delegate tasks, and workers which run swarm services.

A Docker node can be a manager, worker, or both. A
swarm may consist in only one node which by default will
act as a manger and worker at the same time, but it cannot
be only a worker without a manager. We refer to this as the



Manager configuration. In case the cluster is composed of
worker and manager nodes, we refer to it as Manager-Worker
configuration.

One of the key features of a swam is the automatic cluster
state reconciliation. This is very important in terms of fault
management policies. In case one of the services of the
cluster is down, the swarm state changes and the manager
immediately respawns the failed container/containers on other
available node and the service stack becomes healthy again.

IV. AVAILABILITY MODEL

A SAN is a modeling formalism with which detailed perfor-
mance, dependability, or performability models can be imple-
mented in a comprehensive manner [21]. SANs are stochastic
extentions of Petri Nets consisting of four primitives: places,
activities, input gates, and output gates. Places are graphically
represented as circles and contain a certain number of tokens
which represent the marking of the place. Activities are actions
that take a certain amount of time to fire and move tokens from
one place to another. Input and output gates define marking
changes that occur when an activity completes. Different from
output gates, the input gates are also able to control the
enabling of activity completion, i.e., firing.

In the following, we illustrate the proposed models repre-
senting the different MANO configurations.

A. Manager Configuration

Past studies classify software faults into two main cate-
gories, Bohrbugs and Mangelbugs [22]. Bohrbugs, otherwise
called deterministic, are typically easily reproducible since
they tend to manifest themselves consistently under the same
conditions. They often may lead to a software crash or process
hanging and the bugs need to be identified and resolved.
Mandelbugs are bugs whose activation and error propagation
are complex. As a result, it is quite hard to reproduce and their
manifestation is transient in nature. They are usually caused by
timing and synchronization issues resulting in race conditions.
A retry operation or software restart may resolve the issue.
There is a further subtype of Mandelbugs that is related to
an aspect know as software aging. Software aging is a well-
know issue which characterizes the software failure rate due to
phenomena like the increase of software execution period [23].
It has been shown that the increase of process runtime is a
common cause to the increase of software failure rate and the
system performance may degrade over time. Typical faults in
IT systems caused by aging effects include resource leakages,
numerical error, or data corruption accumulation. Therefore,
the failure might occur as a result of the increase of system
uptime. Common methods of recovering from such failures
rejuvenation techniques consisting of restart and/or reboots
procedures [24].

On the software level, for the scope of our investigation,
we differentiate between two types of software failures, non-
aging related failures and aging related failures. The former
set aims at representing both Bohrbugs and non-aging Man-
gelbugs where the majority of these failures can be recovered

Fig. 1: SAN availability model of the MANO deployed in a Manager
configuration.

through a manual intervention for software repair and the latter
represents the failures due to aging effects where the majority
of these failure are recovered by a software restart/reboot.

Fig. 1 illustrates the SAN model of the Manager configura-
tion. It consists of the deployment of the MANO containerized
software into one physical node which acts as both manger and
worker for the service tasks. The model includes the MANO
software, Docker daemon, OS, and hardware components and
their relative places sw, D, OS, and HW are initialized with
1 token each, indicating a fully working system. Similar to
previous works (see related work [13]–[16]), it is assumed
that all the timed activities follow a negative exponential
distribution unless otherwise specified.

The aging effect is represented through a specific timed
activity sw ag with rate λswag which defines the time it takes
for the software to age, i.e., the average time that the software
accumulates errors that might lead to an aging-related failure.
The timed activities sw ag f and sw nag f represent the
aging and non-aging related software failure events with rates
λsw−failag and λsw−failnag , respectively. For both events, we
differentiate between two types of software failures based on
their recovery process. To this end, we make use of case
probabilities associated to the timed activities where Cnag

defines the probability that a non-aging related failure event is
recovered with a software restart. With probability 1−Cnag the
failure recovery requires a manual intervention for executing a
software repair. Similarly, Cag defines the probability that an
aging related failure is recovered with a software restart and
with 1− Cag the recovery requires a software repair.

Once a software failure is experienced, a token is placed in
either sw p failed or sw t failed defining the recovery pro-
cess the software will undergo. heartbeat and catch-exception
represents the detection of the failures and are defined with de-



terministic times µh and µc. sw rep and restart represents the
repair (including any eventual reboot or upgrade of software)
and restart events of the software with rate µswrep

and µswres
.

On the docker engine level, i.e., daemon, D f and D reload
represents the failure and recovery events of the daemon with
rates λD and µDr

, respectively. The recovery entails a daemon
reload where with probability CD a daemon reload recovers
the failure and with 1−CD a hard repair is needed. The later
is defined through the activity D rep with rate µDrep

. Once the
daemon is repaired, an additional reload is performed to fully
recover it. Similarly to the daemon, the operating system level
is modeled with the same dynamics having specific failure and
repair parameters which we introduce in Section V. On the
hardware level, HW f and HW replace represents the failure
and recovery events of the hardware with rates λHW and
µHWrep

, respectively. The place HW spare indicates the spare
hardware equipment used to replace the failed hardware and
is initialized with 1 token.

Finally, the following output gates define the token marking
movements among places: OG1/OG3/OG5 manage the failure
events of the daemon, OS, and hardware levels, respectively.
When their related timed activities fire, connected to their
incoming arcs, the output gate places 1 token in the respective
failed position and sets to zero the upper-level places. This is
because a failure of the physical hardware will cause a failure
of the OS which in turn impacts the operational state of the
daemon and MANO software as well; OG2/OG4/OG6 places
1 token in their relative working place, i.e., D/OS/HW, and
the relative upper-level places to which they are connected by
outgoing arcs. For example, a recovery from a daemon failure
brings the daemon in the up state but requires a restart of the
MANO software for a fully working MANO.

B. Manager-Worker Configuration

The Manager-Worker swarm configuration consists of two
separate nodes forming a cluster where the OSM stack is
deployed on the worker node and the Manager node per-
forms the control and scheduling of tasks. Fig. 2 depicts the
Manager-Worker SAN model. To distinguish the models of
the two entities, we make use of a suffix M for all the places
and activities regarding the manager part. The system is fully
working if there is a token in either of the sw, sw aged, or
sw M places.

On the worker node, the MANO software component is
similar to the Manager configuration except for the recovery
phase where once a failure is detected, the containers run-
ning the software are respawned, through the timed activities
respawn or respawn1, in the manager node. We distinguish two
cases: when a software repair is needed, the token is moved
from p det of the worker node to p det M of the manager.
In the other case, the token is moved from t det to sw M
indicating that a respawn, i.e., container restart, is sufficient
to recover the system. However, for both cases, we consider
the eventuality of a respawn process that fails. To this end,
we consider two case probabilities associated with the timed
activities. With probability Crespawn, the container respawn

Fig. 2: SAN availability model of the MANO deployed in a
Worker-Manager configuration.

is successful and 1 − Crespawn it fails. In the latter, there is
a need for a manual coverage, represented by manual cov,
and the token is placed back in place sw. In order for the
respawn to instantiate, the hosting manager node needs to
be operational and this is controlled by the enabling gates
IG1/IG2 which enable the respawn only if the daemon, OS
and hardware of the manager are working, i.e., their respective
places D M, OS M, and HW M contain each 1 token. In
addition, differently to the Manager setup, once the daemon
fails, there is just the recovery of the daemon since the MANO
software is immediately respawned in the manager node. The
rest of the model is similar to the Manager configuration,
hence we omit further illustrating.

On the manager node, once a token is deposited in sw M,
the system is again operational. While the software is running
in this node, we assume that it is subject to only non-aging
software failures. This is because swarm mode best practices
suggest that the worker node should be the dedicated node
for handling task requests in a ’normal’ condition. Therefore,
we limit the hosting of the MANO software to the manager
node only for the period the worker node is failed. To this
end, the input gate IG3 enabled a respawn of the software
containers from the manager node to the worker node once
the worker node is up and running again and ready to
accommodate the containers. As a result, the manager node
will host the containers for a relatively short time compared
to the software aging time, hence making the assumption of
only non-aging failure events while the software is running
on the manager node a reasonable assumption. The rest of
the manager components, i.e., daemon, OS, and hardware are
similar to the Manager configuration.

C. Replicated Configuration

One of the most advantageous swarm features is automatic
scaling and integrated load balancing. In case MANO utiliza-
tion gets close to its resource limits, an operator can easily



TABLE I: Availability model parameters.
Intensity Time Description [Mean time to]
λ−1
swag = 1 week MANO software aging
λ−1
sw−failag

= 3 days next MANO software failure after aging

λ−1
sw−failnag

= 2 month next MANO non-aging software failure

µ−1
swrep = 1 hour MANO software repair
µ−1
swres = 30 seconds MANO software restart
µ−1
h = 10 seconds heartbeat*
µ−10
c = 1 millisecond catch exception*
λ−1
D = 4 months next daemon failure
µ−1
Drep

= 1 hour daemon repair

µ−1
Dr

= 15 seconds daemon reload
λ−1
OS = 4 months next OS failure
µ−1
OSrep

= 1 hour OS repair

µ−1
OSr

= 5 minutes OS reboot
λ−1
HW = 6 months next hardware failure
µ−1
HWrep

= 4 hours hardware repair

µ−1
HWreplace

= 1 hour hardware replace

µ−1
respawn = 1 minute respawn MANO software containers
Cnag = 0.3 prob. for non-aging transient failures
Cag = 0.7 prob. for aging transient failures
CD = 0.9 daemon reload coverage factor
COS = 0.9 OS reboot coverage factor
Crespawn = 0.9 respawn coverage factor
Nspare = 1 Number of spare hardware

*Deterministic time

spin up additional replicas of the containers and the swarm
integrated load balancer will manage the task scheduling with-
out any additional configuration required from the operator.
Spinning up additional replicas can bring advantages both
in terms of performance and availability. To this end, we
consider the case where multiple MANO instances are running
in both Manager and Manager-Worker setups and the system
is considered availability if at least one replica is working.

For modeling the replicated configuration, it is sufficient
setting the number of tokens in the sw place equal to the
number of replicas for both Manager and Manager-Worker
configurations. This way, the models resemble a setup where
multiple containers, for each of the MANO components, are
launched and run in the same OS and physical hardware.

V. NUMERICAL ANALYSIS

In this section we present the sensitivity analysis of the
steady-state availability for both configurations and failure
impact on the overall unavailability. The presented models are
defined in the Möbius software tool [25] and the numerical
analysis is performed using discrete-event simulations, inte-
grated in the tool, with 95% confidence interval and 0.05 width
of relative confidence interval.

A. Manager configuration: Sensitivity Analysis

We performed a sensitivity analysis to determine which of
the parameters have the highest impact on the steady-state
availability of the Manager configuration. The SAN model
parameters are retrieved from previous literature [17]–[19] and
are illustrated in Table I. They represent the reference values
and given these parameters, the achieved MANO availability is
presented in Table II, together with its component availabilities
where the latter are derived from individual dynamics, i.e.,
not influenced by underlying component failures. It can be

TABLE II: Steady-state availability of Manager Configuration.
MANO MANO Sw Daemon OS Hardware

Availability 0.99751 0.99787 0.99964 0.99967 0.99975
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Fig. 3: Sensitivity analysis for the Manager configuration.

seen that the software part is the most fragile component.
For computing a sensitivity analysis, the parameters regarding
failure and recovery events were increased and reduced by one
order of magnitude, i.e., ×10 and ×10−1, from their reference
values. The availability sensitivity to these parameters, sepa-
rated into failure and recovery events, is presented in Fig. 3.

From a failure events perspective, the most important pa-
rameter is software non-aging failure rate followed by hard-
ware, software aging, and software aging failure rates. Among
these, it is the latter that brings the highest improvement on the
steady-state availability when there is an order of magnitude
reduction of the relative intensities. On the contrary, for the
same level of parameter reduction, software repair rate has the
highest impact by reducing the system availability from 0.997
to almost 0.988 followed by the hardware replace rate. At the
same time, the highest improvement is achieved for a software
repair rate increase reaching 0.9993.

Beside the failure and repair parameters, the probability
factors that define the types of software failures which may
have an important influence on the overall availability. The
choice of the reference values is driven by common assump-
tions that non-aging failures, i.e., deterministic failures, often
lead to system crashes and debugging processes can improve
software robustness by identifying and resolving the bug.
Hence, choosing a CNAG = 0.3 means that the majority of
such failures require a software repair. The opposite is valid for
aging-related failures which more often may lead to transient
failures that can be resolved by simply restarting the software.
To this end, we explore a range of these factors and their
impact on the availability.

Fig. 4 presents the MANO availability for the different
combinations. We notice that for the same level of reduction,
the aging factor achieves a much higher availability improve-
ment compared to the non-aging factor. This indicates that the
system can benefit more from the transient nature of aging
related bugs than those of deterministic failures, otherwise
called Bohrbugs.

1) Failure Impact: It is expected that on average around
52 failures per year will contribute to a total duration of
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21.7 hours of unavailability. The contribution of different
failure types, in terms of their frequency and the impact
on the system downtime, is presented in Fig. 5. It can be
observed that software failures are the predominant events,
accounting for almost 84% of all the failures. In particular,
we notice that despite software aging failures represent almost
60% of the overall failures, they lead to only 27.5% of the
MANO downtime. On the other hand, non-aging software
related failures consists of the 16% of the total failure but
contribute to almost 58% of the total downtime. In addition,
hardware failures represent around 4% of all the failures and
they contribute to more than 10% of the system downtime.

2) Software aging impact: In the sensitivity analysis we
noticed that aging failure rate may have a considerable impact
on the availability of the MANO. However, software aging rate
and aging failure rate are very unpredictable parameters since
they depend on several factor that may be out of developer’s
control such as software utilization rate, i.e., system load,
operating infrastructure and software implementation. We ex-
plore a wide range of software aging parameters, varying the
aging rate between 1 day and 2 weeks and the aging failure
rate between 12 hours and 1 week. The MANO availability
for different combinations of the parameters is presented in
Fig. 6. It can be seen that the impact of the aging failure rates
depends greatly on the rate of aging. When the time it takes
the software to age is short, i.e, lower than 3 days, the aging
failures have a much higher impact on the availability.

B. Manager-Worker Configuration: Sensitivity Analysis

The deployment of the MANO stack in a Manager-Worker
configuration entails an automatic respawn of the containers
in the manager node in case the MANO experiences a failure.
This setup is suitable for recovering system outages due to
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external components like the daemon engine, OS, or hardware
failures of the hosting node, i.e., worker node. However, such
procedure is triggered only if the manager is capable, i.e.,
fully working, of hosting the containers running the software
components. Therefore, the respawn procedure is constrained
by the operational state of the manager node. Fig. 7 depicts the
sensitivity analysis of some of the critical parameters in this
setup. First, we notice that applying this configuration, i.e, by
joining another node into the swarm, the MANO availability
is increased from 0.99751 of the Manager case to 0.99916 for
the reference parameters (refer to Table I). Second, we observe
that software repair and manual coverage rate, i.e., the mean
time to manually recover a failed respawn procedure, may have
a tremendous impact in deteriorating the system availability
where for the latter despite the successful respawn factor is
set to 0.9. Moreover, we evidence that the external failures
on the worker node (hardware, OS, and daemon) have a much
higher impact than those of the manager node parameters. This
is due to the policy that a respawn of the containers from the
manger to worker is done as soon as the worker node is ready
to re-host the containers, i.e, it is recovered from failures which
triggered a respawn to the manager in the first place.

C. Replicated Configuration

Fig. 8 illustrates the gains in terms of system availabil-
ity due to the introduction of additional replicas. For both
cases, there is a relatively restricted gain which is due to
the constraints posed by external components availabilities
since all the replicas are still running on the same physical
node. However, engaging multiple replicas brings additional
benefits in terms of the reduction of the impact of critical
parameters as highlighted by the dotted lines in both Fig. 3
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and Fig. 7, representing the cases with 4 replicas for the most
impactful parameters in the Manager and Manager-Worker
configurations. We notice that for both configurations, the
largest reduction is achieved on software repair rate followed
by the non-aging failure rates when the related reference pa-
rameters are degraded by one order of magnitude. In addition,
a significant reduction is achieved for the impact the manual
coverage rate has on the Manager-Worker setup.

One solution to the limited gain when multiple replicas are
applied can be Docker Universal Control Plane (UPC) for
enterprises which envisions a complex architecture that max-
imally leverages docker swarm scalability for achieving high
availability [26]. It consists of a docker swarm with multiple
manager and worker nodes instantiated into separated physical
nodes. This solution promises much higher availability levels
than those anticipated in our study and could represent a
viable solution for network operators deploying and managing
a cloud-native MANO. We leave the investigation of this
solution for future work.

VI. CONCLUSION

In this paper, we present an availability model for a cloud-
native NFV-MANO architecture from which we analyze and
quantify its steady-state availability. We have included the
most typical failure modes and evaluated their impact through
sensitivity analysis for different containerized deployments.
The proposed model, based on Stochastic Activity Networks
(SANs), captures both failure and recovery dynamics involving
containerized applications and the effects of software aging.
The investigation has shown that adopting containerized tech-
nologies with standard deployments having both single and
multiple replicas deployed into a single physical node is not
sufficient for achieving “5-nines” availability. The sensitivity
analysis also revealed that non-aging-related software failures
and software repair stand out as key important failure and
repair parameters, respectively. When clustering mechanisms
such as Docker swarm mode with separated worker and
manager nodes are adopted, we observed that the MANO
availability is further increased and the above parameters
become less critical when multiple MANO container replicas
are engaged. Software aging may have a considerable impact
on the availability and we showed the relationship between
aging effects and failures related to it. As future work we
will consider modeling and analysis of more complex swarm
deployment options similar to those designed for Docker
Enterprise solutions.
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Model-Driven Availability Assessment of the
NFV-MANO with Software Rejuvenation

Besmir Tola, Yuming Jiang, and Bjarne E. Helvik

Abstract—Network Function Virtualization enables network
operators to modernize their networks with greater elasticity,
network programmability, and scalability. Exploiting these ad-
vantages requires new and specialized designs for management,
automation, and orchestration systems which are capable of
reliably operating and handling new elements such as virtual
functions, virtualized infrastructures, and a whole new set of
relationships among them. Operations such as resource alloca-
tion, instantiation, monitoring, scaling, or termination of virtual
functions are key lifecycle operations that NFV management
and orchestration (NFV-MANO) frameworks need to correctly
perform. Failures of the NFV-MANO prevent the network
ability to respond to new service requests or events related
to the normal lifecycle operation of network services. Thus, it
is important to ensure robustness and high availability of the
MANO framework. This paper adopts a model-driven approach
to predict the availability of the NFV-MANO and assess the
impact that different failure modes have. We propose different
models, based on Stochastic Activity Networks (SANs), which
abstract various MANO deployment configurations, inspired
by current containerized open-source MANO implementations.
Moreover, we integrate software rejuvenation and investigate the
trade-off between its associated overhead and system availability
increase. An extensive experimental campaign with fault-injection
techniques on a real-life MANO implementation allows to derive
a number of realistic recovery parameters. The case studies
are used to quantitatively evaluate the steady-state availability
and identify the most important parameters influencing system
availability for the different deployment configurations.

Index Terms—NFV-MANO, Availability, Software aging, Soft-
ware rejuvenation, SAN models, Containers.

I. INTRODUCTION

NETWORK Function Virtualization (NFV) empowers an
innovative transformation of today’s network architec-

tures. At the core of the paradigm lies the separation of the
network functions from the underlying hardware platforms.
Network-based services can be realized through virtualized
software entities, commonly referred to as Virtualized Network
Functions (VNFs), which can be executed in general purpose
hardware rather than requiring specialized purpose-built plat-
forms. They can embody network functions such as Routers
(vRouter), Firewalls (vFW), and Load Balancers (vLB) [1],
and can be chained together to provide advanced full-scale
network services [2], [3].

As defined by the European Telecommunications Standards
Institute (ETSI), the standard high-level architecture of NFV
incorporates three main blocks that are the NFV infrastructure
(NFVI), the VNFs, and a logically centralized Management
and Orchestration (MANO) entity [4]. The NFVI provides a
virtualization environment for the deployment and execution
of VNFs, including virtual compute, storage and networking

NFV Orchestrator (NFVO)
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Catalogue
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(VNFM)

Virtualized Infrastructure 
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NFV-MANO

Fig. 1. The NFV-MANO high-level framework (adapted from [4]).

resources. VNFs are software implementations of network
functions which should be able to interact with other VNFs for
providing composed network services. The MANO performs
life-cycle management of VNFs and NFs, and the orchestration
of infrastructure resources supporting their execution.

Removing the dependency between the network function
software and the hardware infrastructure is expected to bring
a variety of advantages in how networks are operated and
managed [5], [6]. Nonetheless, it also brings additional im-
plications on the network management systems that need to
be extended beyond traditional FCAPS (Fault, Configuration,
Accounting, Performance, Security) management services in
order to provide life-cycle management of a new set of
entities such as the VNFs, network services (NSs), and the
virtualized infrastructure [7]. In addition, the operators need
to ensure that service lifecycle is adequately orchestrated and
managed such that service needs and requirements are met. To
this aim, ETSI has defined a specific NFV-Management and
Orchestration (NFV-MANO) framework [4], in the remainder
simply referred to as MANO. Fig. 1 presents the high-level
architectural view of the MANO framework which consists of
the following functional blocks:

NFV Orchestrator (NFVO): It is the primary responsible for
the orchestration and management of the NFV infrastructure
(NFVI) resources across multiple virtualized infrastructure
managers (VIMs) and the lifecycle of the network services
including operations like on-boarding, instantiating, scaling,
or terminating network services. It also interacts with the
operation and business support system (OSS/BSS), through
which customers/operators perform service operations includ-
ing instantiating, updating, or terminating a service.

VNF Manager (VNFM): It is the block in charge of the
configuration and lifecycle management of one or more VNFs.
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The VNFM receives from the NFVO management instructions
for VNFs (e.g. deploy, configure, and terminate) and executes
them through its interfaces with the VNFs. The NFVO and
VNFM jointly work to ensure that the network services and
their corresponding VNFs meet the service quality require-
ments (e.g. reliability, latency or throughput).

Virtualized Infrastructure Manager (VIM): It manages and
orchestrates the physical resources, i.e., compute, storage, and
networking, upon which the VNFs are executed.

In addition to the three main blocks, a set of catalogs
represent the repositories of on-boarded NS, VNF packages
and the relative instances. Moreover, another repository holds
information regarding available/consumed NFVI resources, as
abstracted by the VIM.

An important end-user expectation is the high-availability
level that NFV-enabled services will deliver. This is because
several of the envisioned NFV service use cases fall into the
telecom domain in which carrier-grade quality of service is a
strict requirement, i.e., 5-nines availability [8], [9]. Moreover,
NFV is foreseen to be a main pillar of future 5-th generation
(5G) networks where stringent delay and availability demands
(5-nines or more, i.e., less than 5 minutes of yearly down-
time) are expected [10]. However, ensuring high-availability
levels can be an arduous challenge that network operators
need to cope with since service outages, induced by various
component failures, are inevitable events. High availability
is typically achieved by providing fault-tolerance capabilities
through the allocation of redundant elements [11] over which
the system switches upon the failure of primary components.
To this end, a robust management and orchestration system
featuring resiliency facets is mandatory for conducting correct
and timely counter-actions to such events [12], [13]. Moreover,
failures of the MANO itself could jeopardize the overall
functionality of the network and potentially impact the service
delivery by causing severe outages, which sometimes may
be hard to deal with [14], [15]. It is thus of an utmost
importance to ensure that a logically-centralized management
and orchestration system is highly dependable and able to
ensure service continuity [8]. To highlight the importance of a
dependable MANO system, ETSI has published guidelines and
requirements regarding the MANO resiliency capabilities [16].

Cloud-native application engineering is a consolidated ap-
proach in designing, building, and running applications that
can fully exploit cloud computing benefits. An important
pattern of cloud-native applications is that they are composed
of microservices where each of these small services can
operate independently of each other, provide a specific ser-
vice, and communicate through well-defined mechanisms [17].
Moreover, cloud-native applications are packaged as a set of
lightweight containers (e.g., Docker [18] or LXC [19]) aiming
at providing context isolation, highly accessible, scalable and
portable virtual environments. This way, service provisioning
becomes more flexible, agile, and reliable [20]. Driven by such
benefits, there is an increasing trend in adopting cloud-native
design patterns also for virtualized network functions through
deploying and running networking code as containerized soft-
ware [21]–[23]. This trend has been embraced also by some of
the most prominent open-source MANO projects which lever-

age a microservice architecture in deploying and operating
MANO components through lightweight containers [24]–[26].

In this paper, we take a model-driven approach for predict-
ing the availability of container-based MANO implementa-
tions and evaluating the impact that variations of critical failure
and repair parameters have on the overall system availability.
We adopt Stochastic Activity Networks (SANs) modeling
formalism and perform a quantitative assessment of various
deployment configurations enriched with fault-tolerance on
both software and hosting infrastructure. An extensive sen-
sitivity analysis allows us to localize bottleneck parameters
for each of the deployment setups. The main contributions of
this article introduce:

(i). Modeling abstractions for containerized MANO imple-
mentations, integrated with software rejuvenation and
deployed in different redundant configurations, which
are inspired by practices adopting cloud-native designs.

(ii). An experimental campaign on a containerized MANO
platform aiming at retrieving realistic system recovery
parameters.

(iii). A characterization of failure dynamics and an extensive
sensitivity analysis targeting dependability metrics for
both centralized and distributed MANO deployments.

(iv). Computational results that characterize failure dynamics,
and sensitivity analysis that identifies critical parameters
and rejuvenation policies for maximizing the steady-
state availability (SSA).

The remainder is organized as follows. Section II presents
the related work and highlights the key novelties. Section III
presents the case study MANO architecture and the mapping
of the components to the ETSI framework. The different
deployment configurations that considered in this study are
illustrated in Section IV. Section V introduces the software
aging phenomenon and the mechanisms to cope with its re-
lated effects. The availability models resembling the different
configurations are presented in Section VI. In Section VIII,
we show the results of the analysis and conclude the paper by
highlighting the most important insights in Section IX.

II. RELATED WORK

NFV dependability is an important challenge and a signifi-
cant research effort has been put on addressing this challenge.
ETSI has promulgated various NFV specifications in regard to
requirements, capabilities, and models for assessing reliability,
availability, and service continuity [8], [16], [27], [28].

Most of the model-based studies evaluating NFV availability
focus on network service availability modeling and quantifica-
tion without considering the potential impact that the MANO
may have on the end-to-end service availability. These studies
either focus on specific NFV use cases such as virtualization
of the evolved packet core (EPC) system [29] and the virtual-
ization of the IP multimedia subsystem (IMS) [30], or model
and analyze generic network services provided through NFV-
enabled infrastructures [31], [32], without regarding the effect
that a faulty MANO may have on the overall service avail-
ability. However, as emphasized by ETSI, the MANO plays a
crucial role in fault management [16] and it may have a huge
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impact on the NFV-enabled network service performance [14],
[15]. As a result, a study of its failure dynamics and availability
analysis can be an important contribution for predicting and
identifying MANO availability bottlenecks.

In [29], the authors present an availability model of a
virtualized EPC by using stochastic activity networks. The
study assesses the system availability through discrete-event
simulation and identifies the most relevant criteria to account
for by service providers in order to meet a certain availability
level. The proposed model includes also the MANO system
but no analysis is performed.

A two-level hierarchical availability model of a network
service in NFV architectures has been proposed in [31].
By aggregating non-state space (Reliability Block diagrams)
and state-space models (Stochastic Reward Nets), the au-
thors quantify the SSA and perform a sensitivity analysis
to determine the most critical parameters influencing the
network service availability. Similarly, in [32], they extend
such analysis by including the VIM functionality, as the entity
responsible for the management of the physical infrastructure
resources, into the reliability block diagram (RBD). Their
main findings indicate that a relatively small increment of
hypervisor or VNF software failure intensity has a marginal
effect on the service availability. In addition, they identify
the most appropriate redundancy configuration in terms of
additional replicas for providing fine-nines availability. The
same authors model and assess the availability of an NFV-
oriented IP multimedia subsystem (IMS) [30]. Exploiting the
same modeling techniques, they assess the availability of a
containerized IMS and perform a sensitivity analysis on failure
and repair rate of some of the IMS components. In addition,
they identify the best k-out-of-n redundancy configuration for
each IMS element such that a five-nine availability is reached.

In [33], the authors propose a hierarchical availability model
of an NFV service by adopting stochastic activity networks.
Each VNF, composing the network service, is considered as a
load-sharing cluster and specific separate models abstracting
different redundancy mechanisms, called Availability Modes,
are constructed. The study performs a sensitivity analysis on
various critical parameters and also investigates the impact that
a faulty orchestrator has on the service availability. Differently,
in this paper we focus on the MANO system rather than the
NFV-service and propose availability models derived from
current microservice based implementations. Moreover, our
study provides insights on the most critical parameters specifi-
cally affecting the MANO availability for different deployment
options and under software proactive maintenance.

Even though different from a model-based investigation, the
authors of [34] propose centralized and distributed mecha-
nisms for providing a reliable and fault-tolerant microservice-
based MANO. The mechanisms exploit load balancing and
state sharing and include some tunnable parameters which can
help an operator optimise the trade-offs between reliability
and the associated costs in terms of resource usage. The
proposed setup allows the definition of a cost function which
can help the operator determine the best configuration among
the centralized and distributed MANO deployments.

One of the first studies to carry out an availability assess-

ment of containerized systems is [35]. The authors propose
availability models for different configurations and compare
various container deployments. Through both analytic and
simulation computational results they investigate the k-out-
of-N redundancy configuration and evaluate the availability
sensitivity to different failure parameters. In [36], the same
authors present the development of a software tool called
ContAv which can perform the evaluation of containerized
systems’ availability. Through the use of both non-state and
state-space models, designed by the authors, the tool assesses
the system availability for different configurations and allows a
system architect to easily parametrize and perform sensitivity
analysis. However, both works assume that container restarts
are sufficient for recovering the containerized application. This
can be an oversimplified assumption since the application
source code, built in the container image, can also be subject
to failures which require a software fix or patch [37]–[39].
Moreover, the work disregards the hardware infrastructure
which can also be a dependability bottleneck despite the
container instances are provided with instance redundancy.
The models presented in our work relax these assumptions.
In addition, we investigate also the impact that both aging and
non-aging related bugs have on the system availability, where
software rejuvenation is considered as a countermeasure.

Built on our previous attempt to characterize failure and
recovery behavior of the MANO system [40], the present
work extends the investigation in several aspects. One is more
truthful modeling abstractions for MANO implementations.
Another is a model for distributed MANO deployments which
encompasses redundancy on both software and hosting in-
frastructure. In addition, a component-wise MANO model is
introduced. In all these, the impact of software proactive main-
tenance, in the form of software rejuvenation, is particularly
factored in. Moreover, we exploit fault-injection techniques
and perform experimental trials on a realistic testbed based
on which some key model parameters are retrieved for use in
numerical analysis.

III. CASE STUDY

There are currently several open-source MANO framework
implementations, such as OSM [24], SONATA [26], and
ONAP [41]. To restrain the nonconforming development of
MANO architectures with incompatible APIs, ETSI has pro-
vided several guidelines of the different MANO architectural
options [6], [42], which are currently widely accepted within
the sector. Despite the various options, an ETSI-compliant
architecture should adhere to the streamlined specifications
and include the main functional blocks, which should provide
an end-to-end network service management and orchestration.

In this paper we extrapolate the deployment options of
OSM, a well-established architecture supported by ETSI and
led by a large community of network operators and research
institutions [24]. OSM claims to be closely aligned with
ETSI NFV information models and consists in a production-
quality and VIM-independent software stack. Eight releases
have been distributed up to now and Release 8 is currently
the latest release. It includes different installation methods
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where the MANO components can be deployed as dockerized
instances [18] into a hypervisor-based virtualized environment,
a public hosting infrastructure, or directly into a proprietary
commodity hardware. The latter represents a common way of
deploying and running the OSM stack.

Fig. 2 illustrates the architectural view of OSM with the
specific names of the stack components. The LCM module
stands for Lifecycle Manager and plays the role of the NFVO
in the ETSI MANO framework. The VCA assumes the role
of the VNFM and exploits a Juju controller [43], deployed in
a Linux Container (LXC) [19], for performing the VNFs con-
figuration and management. The VIM, despite being formally
part of the MANO framework, is typically bundled with the
NFVI and thus is not present in the OSM stack. However,
the interaction with the VIM is realized through a specific
driver called resource orchestrator (RO). Note that this is also
common for other MANO implementations, see for example
OpenBaton [25] and Tacker [44]. A set of additional inte-
grated components enable VNF placement, policy, fault and
performance management. Specifically, the PLA component
explores an optimization engine which defines the placement
of VNFs into the available NFVI infrastructure, e.g., subject to
resource constraints, cost, and utilization. The MON module
performs monitoring by collecting VNF metrics from the VIM
and VCA, storing them in a time-series database (TSDB), and
reporting alarms related to these metrics. Policy management
is accomplished by the POL component and regards tasks
such as configuring auto-scaling groups for VNFs, listening for
MON alarms, and reporting scaling/alarm messages to LCM
when scaling/alarm conditions are met. In addition, there is
also a set of common services such as data stores, authentica-
tion, and monitoring tools which are used by other components
for accomplishing their tasks. For example, Prometheus [45]
realizes the TSDB which is used to scrap and store time-series
data related to VNF metrics collected by the MON module.
Finally, the communication among the different components is
executed through a unified distributed Apache Kafka message
bus for asynchronous communication [46]. Apache Kafka is
a fault-tolerant message queuing system that uses a publish-
subscribe model for streaming messages like a data pipeline.

Typical operations that a standard-compliant MANO is
expected to perform fall into five major categories [6]: i) VNF
package-related operations such as on-boarding, enabling,
disabling, updating, querying, and deleting VNF packages; ii)
VNF-related operations such as feasibility check, instantiation,

scaling (both expansion and contraction), terminating, and
fault management; iii) NS descriptor (NSD) operations such
as on-boarding, disabling, enabling, updating, querying, and
deleting NSDs; iv) NS-related operations such as instantiation,
scaling (scale-in and scale-out), updating, and terminating
NSs; and v) VNF forwarding graph (FG), i.e., VNF chaining,
lifecycle operations such as creating, updating, querying, and
deleting VNF FGs.

Executing the aforementioned operations requires the coop-
eration of multiple functional blocks of the MANO framework.
For example, the VNF scaling operations envision the coordi-
nation and exchange of control flows among the NFVO, the
VNFM, and also the VIM [6]. This is also reflected in the
OSM architecture since similar operations involve interaction
of several components. As a mere example, the automated
VNF scaling procedure relies on alarms, raised from VNF and
VIM collected metrics, that trigger a scaling process for which
also the MON, POL and TSDB components interact with the
LCM, Juju and RO modules. Henceforth, from a dependability
perspective, ensuring the complete functionality of the MANO
requires that all components are able to provide their services.
As a result, it is reasonable to assume the OSM software as
a single entity since the failure of even a single component
will prevent the system from providing its agreed function(s).
This assumption is (to a certain extent) also validated in the
experiments reported in Section VII and used in the analysis
in Section VIII.

IV. DEPLOYMENT CONFIGURATIONS

In this section we illustrate the different deployment cases
which are the focus of this study.

A. Docker Swarm deployment

Docker is a widely used container technology and an
application running on Docker is constituted by a container
manager (also called engine or daemon), which manages im-
ages, volumes, networks, and container instances. A container
instance is build from a container image which is typically
stored in an image repository. It is common that for a given
image, several container instances are spawned, forming a
cluster, for purposes like load balancing, high-availability or
scalability.

The OSM Docker swarm installation deploys 14 docker
containers running in swarm mode with each component
having one single replica. Docker swarm mode is a native
feature of Docker for managing and orchestrating a cluster of
Docker engines forming a so called swarm. It entails several
cluster management characteristics such as: i) decentralized
configuration of cluster nodes at runtime, ii) automatic scaling,
iii) automatic cluster state reconciliation, and iv) integrated
load balancing. A swarm is a cluster of Docker nodes which
can act as managers, who manage the swarm membership and
delegate tasks, and workers which run swarm services.

A Docker node can be a manager, worker, or both. A service
is the definition of the tasks that shall be executed by the
swarm through either standalone managers or worker nodes.
When defining a service, the optimal state of it is defined
by specifying features like number of replicas, network and
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Fig. 3. Illustration of Manager (left) and Manager-Worker (right) deployment
configurations and experimental testbed.

storage resources attached to it, and the ports the service
exposes etc. It is the responsibility of the Docker manager
to maintain the swarm state in case one of the worker nodes
becomes unavailable by re-scheduling its tasks to other nodes.

A swarm may consist in only one node, which by default
will simultaneously act as a manger and worker, but it cannot
be only a worker without a manager. We refer to this setup
as the Manager configuration. To be noted that this kind of
deployment does not provide sufficient protection in terms of
faulty physical host and supporting software like the operating
system. Therefore, though not specifically recommended by
the OSM community, we consider the case where an additional
node joins the swarm for acting as a manager node and the
service workload is only processed in the worker node. This
is also a Docker recommendation in case a limited number
of physical hosts is available [47]. In this case, the swarm
cluster is composed of worker and manager nodes and we
refer to it as Manager-Worker configuration. Fig. 3 depicts
the key differences between the two deployment options.

One of the key features of a swam is the automatic cluster
state reconciliation. This is an important feature in terms of
fault management policies. In case one of the services of the
cluster is down, the swarm state changes and the manager
immediately respawns the failed container/containers on other
available nodes (e.g., in the Manager node in a Manager-
Worker setup) and the service stack becomes healthy again.
Moreover, also in case events such as daemon, OS, and
hardware failures are experienced on the worker node, all
containers are respawned in the other node and the service
is recovered.

B. Kubernetes deployment

Kubernetes, also known as K8s, is a container orchestration
platform, alternative to Docker swam, created by Google and
currently being managed by the Cloud Native Computing
Foundation [48]. It was created with orchestration in mind
and is supported by a much greater community compared to
Docker swarm. In Release 8, OSM has evolved into supporting
Kubernetes both as the infrastructure to run OSM as well as the
infrastructure to deploy Kubernetes-based network functions.

Kubernetes is specifically designed for managing clusters of
containerized applications. A K8s cluster consists of a set of
worker machines, called nodes, and a container orchestration
layer, called control plane. A worker node hosts the pods,
which are the set of running applications executing the work-
load, and the control plane manages the worker nodes and
the pods running in them. The control plane includes four
components; the frontend K8s API server kube-apiserver,
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Fig. 4. Illustration of a highly available Multi-master cluster deployment.

the key-value data store etcd, kube-controller-manager pro-
cess(es), and the task scheduler. Particularly important is the
etdc system which is a strongly consistent and distributed key-
value store for reliably storing data in a distributed system. It
uses Raft consensus algorithm [49] for leader election and for
ensuring that cluster internal state is consistently replicated
among the members. For an # members cluster, the quorum,
i.e., majority, is lost when more than (# − 1)/2 members fail.
For more details on how the Raft protocol operates, the reader
may refer to [49].

A recent OSM feature is the ability to deploy OSM in a
K8s highly-available (HA) cluster. In this deployment option,
the OSM pods, i.e., OSM software stack components, are
replicated into three distinct virtual machines running in the
same physical hosts. In addition, also the control plane, called
Master, is deployed in a separate machine and runs in the
same host. This configuration aims at providing fault toler-
ance by actively running three OSM pods in a load-sharing
configuration. In case any of the pods fails, the master will
reschedule incoming requests on the remaining ones. However,
fault tolerance is only on the OSM software level since the
physical host is a single point of failure. Moreover, the failure
of the the single Master would destabilize the cluster state and
it would prevent the system from accepting and processing
incoming requests although the pods would still be up and
running.

To overcome this limitation, and driven by Kubernetes
recommendations for deploying highly available clusters [50],
we consider another topology, called Multi-master cluster,
where worker and master nodes are distributed in multiple
physical hosting nodes. The cluster is composed of three OSM
pods which are deployed in separate physical hosts and there
are also three Masters, forming the cluster control plane, with
each of them also running in a separate physical node. Fig.
4 illustrates this K8s-inspired cluster topology. Each of the
three Masters, hosts an etcd member and they together form
an etcd cluster that enables maintaining a strongly consistent
internal state and ensures that the lost of one of the members,
i.e., Masters, can be tolerated. Note that only the Masters
participate in the etcd cluster. This way, the failure of one
single Master would not compromise the quorum and the
cluster would still be able to elect a leader for managing the
overall cluster.
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V. SOFTWARE AGING AND REJUVENATION

Past studies of software engineering classify software faults
into two main categories, Bohrbugs and Mandelbugs [37].
Bohrbugs, otherwise called deterministic, are software faults
that typically can be easily reproduced since they tend to
manifest themselves consistently under the same conditions.
They often may lead to a software crash or process hanging
and the bugs need to be identified and resolved. It is possible
that accurate test and validation efforts can identify and correct
this kind of bugs. Mandelbugs are bugs whose activation
and error propagation are more complex in nature. They are
difficult to isolate and as a result, they are hard to reproduce.
Their manifestation is transient in nature and are usually
caused by timing and synchronization issues resulting in race
conditions. A retry operation or software restart may often
resolve the issue [51].

Software aging is a well-known phenomenon associated
with software systems [52]. The general characteristic of
software aging is the fact that as the software execution time
period increases, the associated failure intensity also increases.
A successive activation of relative aging-related software faults
causes software errors, which have not yet caused a software
failure, to accumulate in the internal system state. It is due to
this accumulation that aging-related errors may propagate to a
system failure. This system state is also called the erroneous or
failure probable state. It has been shown that all aging-related
bugs are Mandelbugs [37], [52], hence further classifying
Mandelbugs into two categories; aging-related and non-aging
related Mandelbugs. Typical faults in IT software systems
caused by aging effects include resource leakages, numerical
errors, or data corruption accumulation.

The time to aging-related failure defines the time period
from the moment of the software startup time to the obser-
vation of an aging-related failure. Its probability distribution
is mostly influenced by the running lifetime period and the
software workload quantity. The aging effect is not reversible
without an external interventions and a proactive fault man-
agement method to deal with software aging is software
rejuvenation. The rejuvenation aim is to clean up the internal
system state and thus prevent the occurrence of more severe
failures. Common methods of rejuvenation techniques consist
of a system restart and/or reboot procedure [38]. Any rejuve-
nation will typically incur to some overhead, i.e., downtime
due to safe restarts, but the goal is to prevent more severe
crash failures that may be difficult to recover. As a result, an
important problem is to optimize the rejuvenation schedule.
Analytic-based models have been widely adopted to find the
optimal tradeoff for a variety of software systems including
virtualized servers [53]–[55], service function chains [56],
and software-defined controllers [39], [57]. Common to all
these efforts is the adoption of Petri-net based formalisms and
the characterization of aging dynamics with the objective of
identifying the optimal rejuvenation schedule such that the
system SSA is maximized.

In similar lines, the scope of this work is not limited to char-
acterizing MANO software-dependability dynamics impacted
by the aging phenomenon but also assesses non-aging related

faults’ impact on the SSA. Henceforth, on the software level,
we consider both aging and non-aging related Mandelbugs,
while assuming that correct testing and validation has removed
the Bohrbugs prior to deployment.

VI. AVAILABILITY MODELS

A SAN is a modeling formalism with which detailed perfor-
mance, dependability, or performability models can be imple-
mented in a comprehensive manner [58]. SANs are stochastic
extentions of Petri Nets consisting of four primitives: places,
activities, input gates, and output gates. Places are graphically
represented as circles and contain a certain number of tokens
which represent the marking of the place. The marking of
each place in the model represents the state of the system.
Activities are actions that take a certain amount of time to fire
and move tokens from one place to another. They impact the
system performance and can be timed (thick vertical lines)
or instantaneous (thin vertical lines). A timed activity has
a distribution function associated with its duration and can
have distribution case probabilities used to model uncertainty
associated with activity completion. The case probabilities
are graphically represented as small circles on the right of
the activities. Upon completion, an activity fires and enables
token movements from places connected by incoming arcs to
places connected by outgoing arcs. This way a system state
update occurs and tokens are moved from one place to another
by redefining the places’ markings. Input and output gates
define marking changes that occur when an activity completes.
Different from output gates, the input gates are also able to
control the enabling of activity completion, i.e., firing. All the
models are constructed using the Möbius software tool [59].

In the following, we illustrate the proposed abstraction
models for the different MANO configurations.

A. Manager Configuration

Fig. 5 illustrates the SAN model of the Manager configura-
tion. It abstracts the deployment of the MANO containerized
software into one physical node, which acts as both manager
and worker for the service tasks. Note that in the figure,
we have treated the software deployment of both worker
and manager together for illustration simplicity. Making the
“manager” part more explicitly can be done similarly as
in Fig. 6 for the Manger-Worker configuration. The model
includes the MANO software (i.e., all MANO components),
Docker daemon, OS, and hardware layers, and a similarly
structured model may also apply to other containerized system.
The places D, OS, and HW are initialized with 1 token each,
indicating working Docker daemon, OS, and hardware com-
ponents, respectively. The place sw is an extended place and
allows the representation of structures or arrays. Specifically,
we consider the tokens in sw to be a structure containing two
fields, one representing the operational units, initialized
with one token, and the other one representing the potential
number of software aging-related faults, initialized with
# tokens. Similarly to previous works (see [29]–[32]), it
is assumed that all the timed activities follow a negative
exponential distribution unless otherwise specified.
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Fig. 5. SAN availability model of the Manager MANO configuration with
software rejuvenation.

In [40] and some other studies (see for example [39],
[57], [60]), software aging is modeled with a “one-shot”
representation where a token is fired, following a certain
distribution, from an up place to an error-prone place and the
same token can be subject to a consequent firing due to a
software aging-related failure. Nevertheless, this representation
fails to capture the very essence of software aging, which
is the continuous accumulation of software aging errors and
the consequent increase of the failure rate. In this paper, we
adjust this drawback by representing a more realistic aging
behavior. Specifically, aging is represented through a timed
activity sw_aging, with rate _swag . The firing of sw_aging is
enabled by the input gate IG3, which verifies that the system is
operational, i.e., there is one token in the sw field operational

units, and there is at least one token in the field software
aging-related faults. For every sw_aging firing, there is a
token removal from the # tokens, present in aging-related

faults, and placed in sw_aged, which in turn represents the
error-prone state. This way, the model allows the accumulation
of aging errors in sw_aged and the sw_aging_failure, which
represents the aging failure event, is directly proportional to
the number of accumulated tokens in sw_aged. This way,
the more accumulated aging errors, the higher is the failure
intensity due to aging.

For the non aging-related Mandelbugs, the timed activity
sw_nonaging_failure represents the non-aging related software
failure event with rate _sw−failnag . When sw_nonaging_failure
fires, the token representing the operational unit is removed
from the place sw indicating that a MANO software failure
has been experienced and the system is in a failed state.

For both software failure events, we differentiate between

two types of failures based on their recovery process. We
make use of case probabilities associated to the timed activities
where �nag defines the probability that a non-aging related
failure event is recovered with a software restart and with
probability 1 − �nag, the failure recovery requires a manual
intervention for executing a software repair. Similarly, �ag
defines the probability that an aging related failure is recovered
with a software restart and with 1−�ag with a software repair.

Once a software failure is experienced, a token is placed
in either sw_p_failed or sw_t_failed, which define the re-
covery process that the software will undergo. heartbeat and
catch-exception symbolize the detection of failures and are
defined with deterministic times `ℎ and `2 . sw_rep and
restart represent the repair (including any eventual reboot
or upgrade of software) and restart events of the software
with rate `swrep and `swres , respectively. On the docker engine
level, i.e., daemon, D_failure and D_restart model the failure
and recovery events of the daemon with rates _D and `Dr ,
respectively. The recovery entails a daemon restart where with
probability �D a daemon restart recovers the failure and with
1−�D a hard repair is needed. The latter is defined through the
activity D_rep with rate `Drep . Once the daemon is repaired,
an additional restart is performed to fully recover it. Similarly
to the daemon, the operating system level is modeled with the
same dynamics having specific failure and repair parameters
which we introduce in Section VIII. On the hardware level,
HW_failure and HW_replace represent the failure and recovery
with rates _HW and `HWrep , respectively. The place HW_spare
indicates the spare hardware equipment used to replace the
failed hardware and is initialized with 1 token.

A novel contribution compared to our earlier work [40] is
the adoption of software rejuvenation, as a proactive software
maintenance mechanism. We apply a time-based rejuvenation
where in specific time intervals, called rejuvenation intervals,
the system undergoes a graceful software restart. To model
this mechanism, we introduce a model (Fig. 10(a)) that defines
the rejuvenation scheduling, and an additional timed activity
rejuvenate models the time it takes the system to restart.
More specifically, the place Clock_rej holds one token and
the deterministic time activity Schedule_rej, which defines
the rejuvenation interval, upon firing moves the token from
Clock_rej to Trigger_rej, where the latter represents the state
that the rejuvenation can be triggered. This movement is
enabled by the IG_rej port which verifies that the system
is operational, there is at least one token in sw_aged, and
there is one token in Trigger_rej. If these conditions are
satisfied, the rejuvenation is performed and rejuvenate fires
a token. At the same time, IG_clean removes all the accu-
mulated tokens in sw_aged by setting them to zero and sets
the operational units field in sw to zero, indicating that
the system is undergoing a downtime due to rejuvenation.
The Schedule_rej and rejuvenate activities are defined with
deterministic times `(2ℎ43 and `A4 9 , respectively. Once the
rejuvenation is completed, the token is moved from Trigger_rej
and placed into Clock_rej by the firing of the instantaneous
activity Reset_clock, and the output gate $�8 resets the sw
fields operational units and aging-related faults equal
to one and # tokens, respectively. The output gate $�7
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Fig. 6. SAN availability model of the MANO deployed in a Manager-Worker
configuration.

operates similarly to $�8 except that in this case the system
has gone through a software recovery procedure. Note that
rejuvenation can be performed only when it is scheduled to
happen and the system is operational.

Finally, the following output gates define the token marking
movements among lower-level places: OG1/OG3/OG5 manage
the failure events of the daemon, OS, and hardware levels,
respectively. When their related timed activities fire, connected
to their incoming arcs, the output gate places one token in
the respective failed position and sets to zero the upper-level
places. This is because a failure of the physical hardware
will cause a failure of the OS which in turn impacts the
operational state of the daemon and MANO software as well;
OG2/OG4/OG6 places 1 token in their relative working place,
i.e., D/OS/HW, and the relative upper-level places to which
they are connected by outgoing arcs. For example, a recovery
from a daemon failure brings the daemon in the up state but
requires a restart of the MANO software for a fully working
system. The system is fully operational when the operational

units field of sw place holds one token.

B. Manager-Worker Configuration

The Manager-Worker configuration consists of two separate
nodes forming a cluster and the OSM stack is deployed on the
worker node, with the latter being responsible for workload
processing. Fig. 6 depicts the Manager-Worker SAN model.
To distinguish the models of the two entities, we add a suffix
_M for all the places and activities regarding the manager part.
The system is fully working if there is a token in either of the
sw, sw_aged, or sw_M places.

On the worker node, the MANO software component is
similar to the Manager configuration except for the recovery
phase where once a failure is detected, the containers run-
ning the software are respawned, through the timed activity

respawn, in the manager node. We distinguish two cases: when
a software repair is needed, the token is moved from p_det
of the worker node to p_det_M of the manager. In the other
case, the token is moved from t_det to sw_M indicating that
a respawn, i.e., container restart, is sufficient to recover the
system. However, for both cases, we consider the eventuality
of a respawn process that fails. To this end, we consider two
case probabilities associated with the timed activities. With
probability �respawn, the container respawn is successful and
1 −�respawn it fails. In the latter, there is a need for a manual
coverage, represented by manual_cov, and the token is placed
back in place sw. In order for the respawn to instantiate,
the hosting manager node needs to be operational and this
is controlled by the enabling gates IG1/IG2 which enable
the respawn only if the daemon, OS and hardware of the
manager are working, i.e., their respective places D_M, OS_M,
and HW_M contain each 1 token. In addition, differently
to the Manager setup, once the daemon fails, there is just
the recovery of the daemon since the MANO software is
immediately respawned in the manager node. The rest of the
model is similar to the Manager configuration and due to
space limitations we use colored bars with component names
to indicate the relative parts of the model and omit illustrating.

On the manager node, once a token is deposited in sw_M,
the system is again operational. While the software is running
in this node, we assume that it is subject to only non-aging
software related failures. This is because swarm mode best
practices suggest that the worker node should be the dedicated
node for handling task requests in a ’normal’ condition.
Therefore, we limit the hosting of the MANO software to
the manager node only for the period the worker node is
failed. To this end, the input gate IG6 enables a respawn of
the software containers from the manager node to the worker
node once the worker node is up and running again and ready
to accommodate the containers. As a result, the manager node
will host the containers for a relatively short time compared to
the software aging time, hence making the assumption of only
non-aging failure events on the manager node a reasonable
assumption. The rest of the manager components, i.e., daemon,
OS, and hardware are similar to the Manager configuration
which for lack of space have been represented through colored
bars, hence we omit further illustrating.

C. Multi-master Cluster Configuration

For abstracting the Multi-master cluster system, we exploit
a Rep/Join model composition formalism which is integrated
in Möbius. The formalism exploits system symmetries and
generates lumped state spaces which are smaller compared to
systems that do not exploit symmetries. This is particularly
useful for large systems whose model nets generate complex
stochastic processes [61]. The formalism enables the compo-
sition of a model in the form of a tree, where each leaf node
represents a system submodel and each non-leaf node can
be a Join or Replicate node. A Join node is a state-sharing
node used to compose two or more submodels, whereas a
Replicate node is used to compose a model consisting of a
number of identical submodel replicas and can also enable
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Fig. 7. SAN availability model of the MANO deployed in the Multi-master
cluster with software rejuvenation.

state-sharing among its replicated submodels. The replicated
submodels behave independently of each other and the root
node represents the complete cluster model.

The Multi-master cluster we consider is not part of a
deployment option or an enhancement feature of OSM and
is primarily driven by Kubernetes recommendations for the
deployment of ’truly’ highly available clusters [50]. For the
scope of our investigation, we make some reasonable assump-
tions that limit the system complexity, yet do not impact
system performance, as they can be deployment options that
an operator can arbitrarily choose. First, we assume that
the cluster components fail independently. This can be a
reasonable assumption in case components are geographically
distributed; therefore, minimizing the likelihood that events
can simultaneously affect two or more nodes. In addition, we
assume that the load balancer is failure free and uniformly
distributes the workload among nodes (refer to Fig. 4). More-
over, we also consider that the OSM pods are not deployed
in virtual machines but directly on standard hardware running
an operating system. We also assume that each worker node
of the cluster runs a Docker runtime engine, i.e. daemon.

The cluster is modeled through the Rep/Join formalism by
replicating three times both the Master, i.e., control plane, and
the Worker submodels, as illustrated in Fig. 7(a).

The Worker submodel is similar to the Manager config-
uration model except for the presence of two shared places
called Worker_down and Master_down. These two places are
also present in the Master submodel and are used to keep
track of the availability of Workers and Masters for the overall
composed model, i.e., the Multi-master cluster. Every time a
Worker or Master fails, a token is placed in the respective
place and removed when they are recovered.

The Master submodel, illustrated in Fig. 7(b), is similar
to the previous configurations on the hardware, OS, and
Docker daemon levels. On the software level, we consider
failure events that can affect either singularly the Master
nodes or the overall cluster. Several studies have shown
that distributed applications experience a variety of issues
due to their distributed implementation. Some of the most
typical issues that can cause cluster-wide failures concern state
inconsistencies, leader election, defective fault management, or
scalability issues [39], [62]–[64]. We account for these failure
modes by assuming that each of the Master replicas may
experience software failures (e.g., failures of the API server,
scheduler, or etcd members) causing a single replica failure,
cluster-wide crash, or cluster state inconsistencies. We use
state distributions to characterize these events with probability
�master, �crash, and 1−�master−�crash, respectively. The Master
software fails with rate _Master (transition master_failure), and
this event is enabled through the input gate IG1 only if less
than three Masters are down, i.e. less than three tokens in
the shared place Master_down. In case a cluster-wide crash
or state inconsistency is observed, the respective output gates
OG_crash and OG_state place three tokens in Master_down.
On the recovery of such failures, the gate OG_cluster removes
three tokens from Master_down and places them in Master_sw
to indicate that a cluster-wide failure has been recovered.

The overall Multi-master cluster is considered unavailable
when three tokens are present in place Worker_down and more
than one token is present in place Master_down. Note that
also other failure/recovery events on the other components
(daemon, OS, and hardware) for both submodels place/remove
one token in Master_down or Worker_down depending on the
submodel.

D. Component-wise MANO Model

The approach taken so far in this paper is to consider the
MANO software as a single component on the software level.
On the one hand, decomposing the MANO software model
into specific components would allow characterizing the vari-
ous components in a finer grain in regard to their failure/repair
dynamics. This can be of particular interest for cases where
some software components are developed, tested, and validated
by ’external’ developing teams which may follow different
practices, as is the case of the Juju VCA component which
is developed and maintained by Canonical rather than the
OSM community. Nevertheless, abstracting realistic MANO
solutions is still subject to the actual architecture since the
various solutions significantly differ in terms of architecture
and implementations [65]. To illustrate, modeling the OSM
software would require abstracting 14 software components,
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and even more for ONAP because it comprises 20 functional
modules [65]. As a result, it is hard to employ a generalized
model which is capable of a fine grain modeling of realistic
implementations.

On the other hand, at a high level, all solutions should
adhere to the ETSI standards, where the three main functional
blocks, i.e, NFVO, VNFM, and VIM, must be part of a
compliant architecture. This requirement can be reflected in a
functionality-wise generalized model. This modeling approach
could be suitable in cases where failure/repair dynamics of
individual components differ significantly, though the lack of
detailed studies in this matter, and ultimately failure and repair
parameters of individual components, may discourage the
pursue of this modeling approach. In the rest of this section,
such a component-wise modeling attempt is introduced. In
the next section, we also introduce experimental trials to
retrieve key parameters regarding recovery times of individual
components which can be used for a preliminary investigation.

Fig. 8 depicts the adopted model of a high-level MANO
with separate components. In particular, the model includes
separate NFVO, VNFM, and VIM software elements, de-
ployed in the same hosting node, and their relative rejuvenation
policies. The same software layer model utilized in the Man-
ager configuration is used to abstract each of the components
and due to lack of space they are represented through colored
bars instead of SAN primitives. The three components are
assumed to fail independently and the failure of just one of
them would lead to an unavailable MANO. This assumption is
according to the expectations of an ETSI-standardized NFV-
MANO system as all main functional blocks are expected to be
fully operational in order to be able to orchestrate and manage
NFV services [16]. Due to the lack of failure data regarding
MANO solutions, let alone single software components, we
assume that each of the components is characterized by similar
failure times which together exemplify the total intensity of
the MANO software adopted in the other models. Regarding
the repair process, we retrieved individual recovery parameters
through experimental trials on the OSM solution by injecting
faults on the software level targeting individual components,
i.e., LCM, Juju VCA, and RO. On the Docker daemon,
OS, and hardware level, the same submodels utilized in the
Manager configuration are also used here, and the failure of
any of these levels demands a restart of each of the MANO
components once the level is restored such that the system can
be deemed operational.

The rejuvenation process is separate for each of the three
components and is subject to the individual utilization and
software aging rates. For example, an operator could reduce
the rejuvenation frequency for less utilized components and
vice-versa. However, for simplicity, and also due to lack of
knowledge regarding individual failure characteristics, we as-
sume that the same rejuvenation process governs the individual
rejuvenation policies. This can also be beneficial since a fully
synchronized rejuvenation process will lead to the minimum
downtime overhead introduced by rejuvenation. In addition,
the rejuvenation duration is equal to the highest amount of
time required to restart the single components. The model is
solved by feeding the individual recovery times of the LCM,
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Fig. 8. SAN availability model of the MANO with separate software
components.

Juju VCA, and RO components, while maintaining the total
failure intensities. We compare the two approaches in terms
of SSA and perform a sensitivity analysis on the impact that
variations of the rejuvenation interval, software aging, and
software-aging induced failures have on the SSA.

VII. EXPERIMENTAL TESTBED

Model-driven availability assessment relies on model pa-
rameters regarding failure and repair processes. However, the
lack of failure and repair data is a common issue for novel
technologies and projects. To partially tackle this issue, we
performed an experimental campaign aiming at retrieving
realistic recovery times of the system components by adopting
fault-injection techniques. Our testbed consists of hardware
and software technologies that are commonly used in cloud
computing infrastructures in which the OSM software stack
is deployed from scratch. Specifically, OSM Release 8 is
deployed in swarm mode option, i.e., with Docker swarm
orchestrator, into a Linux-based operating system (server ver-
sion with kernel 5.15) with Docker engine (version 20.10.5)
running on a 56-core Intel® Xeon® @ 1.70GHz machine with
128GB RAM, two 10-Gbps and two 1-Gbps Intel Ethernet
NICs, and four 1-TB SATA hard drives. In this deployment
option, the single machine will act as both manager and worker
node, i.e., Manager deployment.

In order to perform measurements of the Manager-Worker
deployment in case the worker node experiences failure on
the host level, namely respawn times, we join to the OSM
swarm deployment another host machine by using the standard
docker swarm join command. The latter node is equipped
with the same software and hardware technologies of the
previous one and acts as a worker node. The host machines
are connected to each other by their 10-Gbps NICs through
a 5-Gbps Ethernet network switch and the OSM swarm is
deployed in the worker node. Fig. 3 depicts the testbed adopted
for the experimental campaign. This way, we emulate the two
Docker swarm deployments and the testbeds are ready for fault
injections on the different system components.

Starting with the Manager deployment, we inject the fol-
lowing fault types:
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Software faults: responsible for software crashes and process
hanging of the OSM software layer. Such faults can be
varied in terms of manifestation nature including time and
synchronization issues resulting in race conditions, resource
leakage due to software aging errors, and error handling
faults [37], [51]. Several of these software faults are also
reported in the Bugzilla bug tracker platform utilized by the
OSM community [66]. To emulate the occurrence of these
faults, we forcefully terminate each of the OSM containers,
and measure the time it takes for the stack to return in a
running state. Precisely, we kill all containers of the stack and
continuously (every second) interrogate each of the tasks, i.e.,
containers, until they reach a running state (the .CurrentState

of the task). The interval between the time the fault is injected
and the time the last task is running defines the overall time
that will parametrize the mean time to perform an OSM
software restart (i.e., the `restart activity on the model).

Docker engine faults: similarly to OSM containers, also
the Docker engine can be subject to software faults. [67]
reports faults affecting the Docker engine caused by software
aging phenomenon. This component is particularly critical
as a failure of the daemon causes the simultaneous failure
of all running containers, networks, and mounted volumes.
We mirror the fault on this layer by abruptly halting the
container management process, i.e., dockerd process, and
record the time it takes to restart, i.e., be running again. The
measurements will define the rate of the D_restart activity.

Operating system faults: also the operating system is af-
fected by software faults and several studies present recurring
faults including OS exceptions, error codes, OS panics, or
hangs [68]–[70]. Needless to say, the failure of the OS results
in the termination of all the software layers running on top.
To mimic this type of faults we force an immediate OS
reboot without terminating any process or unmounting any
file systems, i.e., hard reboot. The experiment executes the
reboot command and records the time the command is issued.
Upon system boot, we retrieve the time it takes for the kernel
to reach the default runlevel (5 in the machines) and compute
the time difference. The assessment will determine the mean
time to perform an OS reboot, defined as `OSr in the models.

Swarm node faults: these are faults that trigger a respawn of
the containers in another node in case events such as daemon,
OS, and hardware failures are experienced on the node that
hosts the swarm services. We emulate this kind of faults by
using standard docker commands that drain the availability of
the node to host the containers and this triggers the automatic
re-instantiation of the whole stack into another node. Specif-
ically, we run docker node update --availability drain

<NODE-ID> on the Worker node, which disables the Worker
ability to host swarm tasks, and measure the time it takes for
all containers to reach a running state in the Manager node.

The considered form of injection is focused on failure
modes as effect of faults occurring in the components that can
affect the system. Although from a terminology viewpoint, this
form of injection in some cases is referred to as error/failure
injection, it is also common to refer to this form as fault
injection since failures of a component can be regarded as
faults from the perspective of the system that incorporates the

component [71].
We performed 50 controlled experiments for each fault type,

resulting in 200 experiments in total. For each fault type, we
develop ad-hoc shell scripts that inject the fault, trigger the
recovery and measure the recovery time, wait for a reasonable
amount of time such that the targeted system reaches a stable
state, and re-run the fault injection. It is worth noting that
we consider these kinds of faults as events that cause a
soft failure of the targeted system for which a restart/reboot
of the system is sufficient to recover it. In addition, we
also performed 50 fault-injection trials individually on three
software components; the LCM module, the Juju VCA, and
the RO component. These individual mean recovery times are
used in the assessment of the Component-wise model.

While running the experimental trials, we made several
observations. At first, through an inspection of each of the
containers, using docker inspect command, we observe that,
while each of the containers is created within seconds from
the fault injection time, the times for them to reach a running
state significantly differ from each other. Some tasks reach a
running state within a few seconds, e.g., the Database and the
AUTH components, while others require a few tens of seconds,
e.g., the RO, POL, and TSDB. Other components require even
a few minutes to reach a running state, hence clearly showing
a significant difference compared to recovery times reported
in studies regarding containerized applications (i.e., recovery
within hundreds of milliseconds) [35], [36].

Secondly, we observe a consistent behavior when inspecting
the faults that cause a restart of the whole OSM stack, e.g.,
Docker engine faults. The LCM and the MON containers are
always the last to reach a running state, with LCM reaching the
desired state before MON. Although they are started multiple
times, they fail to reach a running state until the rest of the
components are running. Such observation is different when
the single components of LCM, RO, and Juju are restarted
individually. The times in these cases are smaller, refer to
Table I, and consequently lead to an intuition that there should
be some software dependencies among the components such
that only when other containers are running, and consequently
exposing services, others may reach a running state. However
we are not able to identify the level of dependency for each
of the running containers without a detailed knowledge of the
software architectural design. This observation further sup-
ports the consideration that treating the OSM stack as a single
entity may be more reasonable than treating its individual
elements separately. Finally, during the Swarm node fault-
injection measurements we observed that upon the node avail-
ability draining, all the containers were quickly respawned in
the other node except Grafana and Prometheus. This behavior
led to swarm instability, and hence we applied a workaround
by quickly rolling back the node availability so that these two
components can be restarted in the same node. This is likely
due to some dependency among these components and the
host node where they are initially launched. Clearly this does
not represent the considered scenario, i.e., Manager-Worker,
but we assume that their respawn times are similar, although
respawned in the same node. We measured the respawn times
similarly to the Manager case by adopting the workaround.
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The mean recovery times described above, together with the
relative standard deviation, are reported in Table I. We notice
that some of the components such as the Juju, the RO and
the Docker daemon have a rather fair stability in their mean
time to recover since they present a limited spread of time
values. As expected, the restart of the OSM software on both
the same or another node, i.e, Swarm node faults, presents
very similar values. This is because the services are managed
by the swarm and spawning containers in another node, with
the same processing capability, involves the same process, i.e.,
the docker engine spins up the same tasks using the already
pulled container images.

VIII. NUMERICAL ANALYSIS

In this section, we present a numerical (evaluation) study.
The proposed models are defined in the Möbius software
tool [59] and they are solved using discrete-event simulation,
integrated in the tool, with 99% confidence interval and
10−5 width of relative confidence interval. The SAN model
parameters are in part retrieved from previous literature [39],
[57], in part from experimental measurements, and the rest are
estimated guesses based on our empirical experience. They
are illustrated in Table I, and they represent the baseline
parameters.

A. Sensitivity Analysis

Given the baseline parameters, the achieved MANO avail-
ability for every model is presented in Table II, together
with the relative availability when an optimized rejuvenation
policy is applied. We observe that for all deployments there
is a meaningful improvement in terms of downtime reduction
when an optimal rejuvenation policy is applied. The gain is
more pronounced for the Manager-Worker and Multi-master
case studies, achieving a 39% and 61% of downtime reduction
relative to the system downtime without rejuvenation.

The sensitivity analysis is performed by varying failure and
recovery parameters with one order of magnitude, i.e., ×10
and ×10−1, from their baseline values, and retrieving the SSA
in case no rejuvenation is employed. The sensitivity to these
parameters, for all the case studies, separated into failure and
recovery events, is presented in Fig. 9. We have adopted a
modified logarithmic scale on the availability axis in order to
obtain a better visualization of the high availability numbers.

For the Manager case, the most impactful failure parameters
are software non-aging failure rate followed by hardware,
software aging, and software aging failure rate. In particular,
reducing the software non-aging related failure rate decreases
the availability to 0.9913. Among these failure parameters,
software aging rate brings the highest improvement on the
SSA, reaching 0.9984. Concerning recovery parameters, soft-
ware repair, followed by the hardware replace rate, has the
highest impact on the system availability by reducing it from
0.99723 to almost 0.989. At the same time, the highest
improvement, reaching 0.99932, is achieved for a software
repair rate increase, i.e. lower software repair time.

The same analysis for the Manager-Worker deployment
reports a considerable reduction of the critical parameters.

TABLE I
AVAILABILITY MODEL PARAMETERS

(�FROM EXPERIMENTS, ‡FROM LITERATURE [39], [57]).

Intensity Time Description [Mean time to]

_−1
swag = 1 week MANO software aging‡

_−1
sw−failag

= 3 days next MANO software failure after aging‡

_−1
sw−failnag

= 1 month next MANO non-aging software failure‡

`−1
swrep = 1 hour MANO software repair‡

`−1
swres = 185 (±15.6) seconds MANO software restart (OSM stack)�
`−1

NFVOres
= 32 (±3.1) seconds NFVO container restart (LCM)�

`−1
VNFMres

= 8.5 (±0.6) seconds VNFM container restart (Juju VCA)�

`−1
VIMres

= 19.5 (±0.7) seconds VIM driver container restart (RO)�

`−1
ℎ

= 10 seconds heartbeat*‡

`−10
2 = 1 millisecond catch exception*‡
_−1

D = 4 months next daemon failure‡

`−1
Drep

= 1 hour daemon repair‡

`−1
Dr

= 30 (±1.8) seconds Docker daemon restart�

_−1
OS = 4 months next OS failure‡

`−1
OSrep

= 1 hour OS repair‡

`−1
OSr

= 249 (±21.4) seconds OS reboot�

_−1
HW = 6 months next hardware failure‡

`−1
HWrep

= 24 hours hardware repair‡

`−1
HWreplace

= 1 hour hardware replace‡

`−1
rej = 3 minutes rejuvenation duration�

�nag = 0.3 prob. for non-aging transient failures‡
�ag = 0.7 prob. for aging transient failures‡
�D = 0.9 daemon restart coverage factor‡
�OS = 0.9 OS reboot coverage factor‡
#spare = 1 Number of spare hardware‡
# = 60 Number of potential software aging faults‡

`−1
respawn = 189 (±21.6) seconds respawn MANO software containers�

`−1
cov = 1 hour manual coverage
�respawn = 0.9 respawn coverage factor‡

_−1
Master = 4 months next master failure
`−1

master = 5 minutes recover master failure
`−1

cluster = 15 minutes recover cluster crash
`−1

incons = 3 minutes recover state inconsistencies‡
�master = 0.55 probability of Master software failure‡
�crash = 0.05 probability of cluster-wide crash‡

*Deterministic time

TABLE II
STEADY-STATE AVAILABILITY OF THE DIFFERENT MODELS WITHOUT AND

WITH OPTIMAL REJUVENATION POLICY.

Manager Manager-Worker Multi-master Component-wise
MANO w/o rej. 0.99723 0.99871 0.999782 0.99723
MANO opt. rej. 0.99762 0.999215 0.999915 0.99794

Downtime reduction 14% 39% 61% 25%

Besides the overall availability gain introduced by the fault-
tolerance on the host level (refer to Section VI-B), the negative
impacts of both software non-aging failure rate and software
repair rate are markedly reduced compared to the Manager
case. To illustrate, for the Manager case, a ten-fold increase
of software non-aging related failure rate decreases the SSA
from 0.99723 to 0.99143, which corresponds to an increase
of 50.84 hours of yearly downtime (from 24.28 to 75.12).
For the same parameter reduction, the Manager-Worker SSA
is reduced from 0.99871 to 0.99526 corresponding to a 30.76
hours of additional yearly downtime. However, there is a more
evident impact of parameters related to the physical host. We
notice that an increase of either the OS or daemon failure rate
has a more pronounced effect on availability reduction. This is
because more frequent failures of the Manager OS or Docker
daemon would prevent the Manager from hosting the MANO
software in case a failure is observed on the Worker side.
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Fig. 9. Sensitivity analysis for the different MANO deployments without
rejuvenation.

Moreover, a higher respawn rate (`respawn) can considerably
improve the SSA up to 0.99937.

The Multi-master configuration increases further the system
availability, reaching 0.999782. However, the same critical
parameters identified in previous case studies continue to
be critical. In particular, similarly to the Manager-Worker
setup, deterioration of host level failure intensities has a non-
negligible impact. This is because such failures influence
more the availability of the Master nodes compared to the
Worker nodes due to the fact that failure of more than one
Master limits the overall cluster availability, as opposed to

the Worker nodes where failure of all the three replicas is
needed to cause a service outage. On the other hand, a ten-
fold improvement, whether failure rate reduction or recovery
rate increase, brings more substantial benefits in the SSA. For
several failure and recovery parameters, SSA values exceed
four nines availability, i.e., less than 52 minutes of yearly
downtime. Observing individual Master parameters, we notice
that the recovery times of events that can cause a cluster-
wide failure such as `cluster and `incons greatly impact the
system SSA. In particular, a ten-fold change of the time
to recover cluster failures can affect the SSA significantly.
This is because recovering a cluster crash requires a larger
amount of time compared to the events that cause inconsistent
states. On the other hand, a ten-fold reduction in `8=2>=B also
causes a comparable reduction which can be explained by
the higher frequency that such events occur. These findings
confirm past model-based assessments of distributed control-
plane implementations which report the impact of cluster-wide
failures [39].

B. Software Rejuvenation Impact

It is obvious that applying frequent rejuvenation does pre-
vent the accumulation of aging errors, yet a frequent main-
tenance may lead to useless downtime caused by software
restart. In order to fully profit from rejuvenation, an operator
needs to find a balance between the deliberate downtime
and the avoiding of more severe outages due to the error
accumulation. Therefore, an operator should determine the
optimal policy for scheduling the rejuvenation process.

The impact of different rejuvenation policies, i.e., `Sched and
`rej, for all the cases under study are illustrated in Fig. 10 and
Table III summarizes the optimal values. We use the same
modified logarithmic scale to better illustrate the computed
results. As expected, and common to all models, the results
show that that enabling a shorter rejuvenation duration, brings
significant benefits in availability. This is more evident when
early rejuvenation schedules are applied.

TABLE III
STEADY-STATE AVAILABILITY WITH OPTIMAL REJUVENATION POLICY

WHEN VARYING REJUVENATION DURATION.

Rejuvenation Availability [Optimal rejuvenation interval in hrs]
duration Manager Manager-Worker Multi-master Component-wise

30 secs 0.99795 [36] 0.999678 [36] 0.9999362 [48] 0.99794 [48]
1 min 0.99785 [72] 0.999428 [48] 0.9999320 [60] 0.99772 [72]
3 mins 0.99762 [132] 0.999215 [96] 0.999915 [72] 0.99715 [180]
5 mins 0.99737 [168] 0.999144 [108] 0.999894 [84] 0.99705 [180]

Concerning the Manager scenario for baseline parameters,
i.e., a rejuvenation duration of 3 minutes, the maximum
achievable availability is 0.99762 with an optimal rejuvenation
interval of 132 hours. In case the software maintenance lasts
longer, i.e., 5 minutes, the optimal rejuvenation trigger time
is 168 hours, yet the availability gain is almost negligible
compared to the non rejuvenated case. A similar trend is
observed for the Manager-Worker implementation. The maxi-
mum availability that can be achieved with baseline parameters
is 0.999215 for a maintenance interval of 96 hours, i.e., a safe
software restart every four days.
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Fig. 10. Impact of rejuvenation policies on system availability for the different
MANO deployments and for a varying rejuvenation duration.

In the Multi-master case, the overall availabilities are
much higher and the maximum availability is achieved with
a software restart every two days reaching 0.999915 with
baseline parameters. Different to the other models, for short
rejuvenation intervals, the difference between the rejuvenation
durations (`rej) is less pronounced. This is because Multi-
master entails a load-sharing cluster composed of three repli-
cas of the MANO software which provides adequate protection
even in cases where rejuvenation duration takes longer, i.e.,

TABLE IV
STEADY-STATE AVAILABILITY WITH OPTIMAL REJUVENATION POLICY

WHEN VARYING SOFTWARE AGING RATE.

Mean time to Availability [Optimal rejuvenation interval in hrs]
software aging Manager Manager-Worker Multi-master Component-wise

1 day 0.99665 [24] 0.99840 [36] 0.999626 [48] 0.99670 [36]
3 days 0.99743 [36] 0.99890 [48] 0.999816 [60] 0.99753 [36]
7 days 0.99762 [132] 0.999215 [96] 0.999915 [72] 0.99795 [132]
10 days 0.99791 [144] 0.999439 [108] 0.999956 [84] 0.99815 [156]

longer downtime of one replica due to rejuvenation.
The results of the Component-wise model analysis show

system performances that are much like the Manager model
where for the baseline parameters the maximum achievable
SSA differ at most 3.2 · 10−4 compared to the Manager rep-
resentation (0.99762 vs. 0.99794). Note that the rejuvenation
schedules of the individual components are fully synchronized
and the baseline duration equals 32 seconds, which is the high-
est amount of time required to restart the single components,
i.e., LCM.

C. Software Aging Impact

Software aging is an unpredictable parameter since it de-
pends on several factors that may be out of developer’s control
such as software utilization rate, i.e., system load, operational
profile and infrastructure, or software implementation. How-
ever, it has been shown that under high system workload, the
software aging rate tends to increase, hence more aging errors
are accumulated [67], [72], [73]. Consequently, the aging-
related failure intensity increases.

We carry out a numerical analysis for a varying rejuvenation
interval and assuming four software aging intensities repre-
senting high, medium, moderate, and low software utilization
rates, i.e., 1, 3, 7 and 10 days mean time to software aging
intensity. Fig. 11 illustrates the results for all the models.
In addition, Table IV highlights the maximum availability
figures for each of the deployments. Results reveal that for
low to moderate software utilization, i.e., 7-10 days, the
availability figures are closer compared to medium-high uti-
lization. Such tendency is more evident as the rejuvenation
interval decreases. Moreover, the difference between medium
and high utilization is decreased when more fault-tolerance is
introduced in the system, i.e., comparing the different MANO
deployments. Again, the Component-wise system represen-
tation exhibits results almost identical to the Manager. For
baseline parameters, the maximum SSA difference between
the two models is within 3.3 · 10−4 (0.99762 vs. 0.99795).
Finally, for each of the case studies, the highest uptime gain is
achieved for high software utilization indicating that a system
under high workload can benefit more from rejuvenation.

The sensitivity analysis revealed that aging failure rate
may have a considerable impact on the availability of the
MANO. We explore a range of software aging parameters
by varying the aging rate and the aging failure rate between
1 and 10 days. Fig. 12 depicts the MANO availability for
different parameter combinations, for each of the studied
cases. In the Manager deployment case, it can be seen that
the impact of the aging failure rates greatly depends on the
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Fig. 11. System availability when varying rejuvenation interval and software
aging rate.

rate of aging. For a short software aging time (_−1
SWag

), i.e,
lower than 7 days, an increase of the aging-related failure
rate, i.e., lower time for software failure due to aging, can
have a significant impact on the MANO availability. On the
contrary, for a low to moderate software utilization, i.e., high
times for the software to age, variations of the aging-related
failure rates have a much lower impact. A similar trend, yet
much less marked, is observed also for the Manager-Worker
deployment. This tendency becomes negligible for the Multi-
master deployment, therefore supporting the previous finding
that adequate protection is needed on both host and software
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Fig. 12. Impact of software aging vs. aging-related failure.

levels for neutralizing variations of critical parameters such as
software aging and aging-induced failure rates.

Regarding the Component-wise model, Fig. 12(d) shows the
sensitivity analysis for single components having three times
lower failure intensities on the component’s level compared
to (such that the overall failure intensity of treating them
together is the same as) the single MANO software model,
i.e., Manager. Also for this analysis, the results show a trend
very similar to the Manager model. The SSA of both models
differs at most 5.05 ·10−4. Moreover, increments or reductions
of software aging parameters produce very much alike impacts
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for both models. Such observations, together with the previous
insights, show that modeling of the MANO software as a
single component yields a reasonable representative analysis
of the system’s steady state availability.

D. Threats to Validity

A possible limitation of this study concerns the precision
in our numerical investigation. This is due to the accuracy
of baseline parameters, which is, in general, common to
many model-based studies. Although the majority of model
parameters have been retrieved from related studies, we ac-
knowledge that the choice of parameters may skew the analytic
results. In particular, due to a lack of publicly available data
regarding failure and recovery dynamics of MANO systems,
we have made reasonable assumptions, based on studies re-
garding software of similar complexity. To lift this limitation
a bit, we have performed experimental trials on a realistic
MANO deployment aiming at retrieving recovery parameters’
values of MANO software. Nevertheless, the very scope of
the sensitivity analysis is to shed light onto the uncertainty
related to these parameters, and two-orders of magnitude
variation range is, in our opinion, sufficient to capture to
a wide extent the uncertainties. An additional threat to the
validity of our results is related to some assumptions regarding
deployment configurations. In the Multi-master deployment,
we assume that the load balancer is failure free. This is not the
case for realistic deployments. However, from a deployment
perspective, a service operator can limit the impact of this
threat by using external load balancers which can provide a
sufficient level of reliability. In addition, we also assume that
while being hosted in the Manager node, regardless of the
type of fault affecting the Worker node, the MANO software
is only subject to non-aging related failures. While this does
not reflect a realistic behavior, it is reasonable for those events
that require a relatively short time to recover compared to the
software aging rate. Overall, the goal of this work is to propose
a methodology and model abstractions for assessing MANO
implementations which can be used by system operators that
have access to empirical data and can extract parameter values
for use in the models.

IX. CONCLUSION

This paper presents four comprehensive availability models
for a containerized NFV-MANO architecture encompassing
various redundancy configurations. The models incorporate
diverse failure modes and the corresponding recovery behav-
iors, regarding both hardware and software components. The
models also include software aging effects and software reju-
venation, as proactive maintenance, aiming at mitigating aging
effects. We performed an experimental campaign on real-life
MANO system aiming at retrieving realistic system recovery
parameters. We carried out an exhaustive sensitivity analysis
from which we assess and quantify the steady-state availability
and identified the impact that critical parameters have. The
investigation showed that non-aging-related software failures
and software repair rates stand out as key deteriorating failure

and repair parameters, respectively. However, employing clus-
tering mechanisms such as Kubernetes with redundancy on
both host and software levels further boosts the NFV-MANO
availability. Moreover, software aging can have a considerable
impact on the MANO availability and we observed that a
correct tuning of the rejuvenation policy can be beneficial
and is particularly well-suited in cases where a high software
utilization is experienced.
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Abstract—Network Function Virtualization (NFV) represents
a key shift in nowadays network service provisioning by entailing
higher flexibility, elasticity, and programmability of network
services. Dependability is one of the main aspects that need to
be investigated and tackled in order to profitably use NFV in
the future. The main objective of this paper is to propose a com-
prehensive approach to estimate the end-to-end NFV-deployed
service availability and present a quantitative assessment of the
network factors that affect the availability of the service provided
by an NFV architecture. To achieve this goal, we adopted a
two-level availability model where i) the low level considers the
network topology structure and NFV connectivity requirements
through the definition of the system structure function based on
minimal-cut sets and ii) the higher level examines dynamics and
failure modes of network and NFV elements through stochastic
activity networks. By using the proposed model, we have carried
out an extensive sensitivity analysis to identify the impact on
the service availability of the different service elements involved
in the delivery, and their deployment across the network. The
results highlight the significant impact that network nodes have
on the end-to-end network service. Less robust network nodes
may reduce the availability of an NFV-enabled service by more
than one order of magnitude even though NFV elements like
VNFs or MANO are provided with redundancy. Moreover, the
results show that adopting an SDN-integrated network degrades
the service availability and increases the vulnerability of the
network service to SDN controllers unless adequately protected.

Index Terms—NFV, Software-defined Networking, Service
Function Chaining, Availability Modeling, SAN Models.

I. INTRODUCTION

NETWORK Function Virtualisation (NFV) has drained
significant attention from the research community due

to its promising benefits in network manageability, cost effi-
ciency, and reduced time to market of new and more special-
ized network services. Through the use of virtualization and
paradigms like cloud computing, it decouples network function
software from expensive purpose-built hardware and runs them
as software deployed on Commercial Off-The-Shelf (COTS)
hardware [1]. As such, NFV provides the necessary flexibility
to enable agile, cost-effective, and on-demand service delivery
model in conjunction with automated management.

According to the European Telecommunications Standards
Institute (ETSI) [1], the high-level NFV architectural frame-
work consists of three main blocks which include: i) Vir-
tualised Network Functions (VNFs), ii) NFV Infrastructure
(NFVI) and iii) NFV Management and Orchestration (MANO)
block. The latter comprises the NFV Orchestrator (NFVO),
VNF Manager (VNFM) and Virtualised Infrastructure Man-
ager (VIM) where the communication among the functional
blocks is enabled through well-defined reference points.

The VNF is the software implementation of a network
function and it is executed on the NFVI, which encompasses a
set of diverse physical resources and their virtualization soft-
ware. The NFVI may be distributed on geographically distinct
locations, called NFVI Point of Presences (NFVI-PoPs), and
the related resources (e.g. compute, storage and network) are
managed and controlled by one or more VIMs. The VNFM
is the entity responsible for the lifecycle management (e.g.
instantiation, scaling, termination, healing , and monitoring) of
one or more VNF instances. Moreover, the NFVO is in charge
of the orchestration and management of NFVI resources across
multiple VIMs and the lifecycle management of network
services. The NFVO and VNFM work jointly to ensure that
the network services and their corresponding VNFs meet
the service quality requirements specified in a Service Level
Agreement (SLA), e.g., throughput, latency and reliability [2].

In order to be fully beneficial, the success of NFV is tightly
coupled with several challenges that need to be addressed,
where service dependability, as the ability to deliver a service
that can justifiably be trusted [3], represents a major con-
cern [4], [5], [6]. In addition, the upcoming 5G cellular system,
for which NFV represents an essential enabling technology [4],
envisions very demanding usage scenarios like Ultra Reliable
and Low Latency Communications (URLLC). A URLLC
service expects that the underlying infrastructure is able to
provide more than fine-nines availability being translated into
less than 5 minutes of downtime per year. Therefore, it
becomes important to assess and quantify the dependability
of NFV-enabled services.

Evaluation of system dependability (reliability, availability,
etc.) is commonly achieved through analytic and numerical
methods [7]. In its specification regarding end-to-end relia-
bility [2], ETSI provides several guidelines for modeling and
estimating NFV service reliability and availability. They stress
out that a correct reliability/availability estimation should
incorporate all the service elements and components involved
in the end-to-end delivery. The supporting infrastructure, both
computing and transport network, and the inter-dependencies
with the software providing the service, i.e., VNFs, are re-
quired to be taken into account when estimating the reliability
or availability of the service. On the other hand, they present
rather simple models consisting of series and/or parallel
combinations of reliability block diagrams, hence, failing to
capture failure/repair dynamics of service elements and their
constituent components.

A number of previous works have quantified the avail-
ability of NFV-oriented services, either in "general" terms
or by selecting specific NFV service use cases [8], [9],
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[10]. Nevertheless, none of these works have performed an
exhaustive assessment of NFV service availability since they
lack key service elements like physical network links or
forwarding/routing devices which are essential networking
elements inter-connecting VNFs composing a service chain.
Thus, as emphasized by ETSI as well, we found that incorpo-
rating the network and the topological dependencies remains
a preliminary endeavor for a correct and complete end-to-end
NFV service dependability assessment. This served as primary
motivation for our contribution in this paper. In addition,
NFV and Software-defined networking (SDN) are increasingly
becoming co-dependent since the later brings the necessary
flexibility in managing network resources for composing net-
work functions into higher-level services [11]. Therefore, it
is important to assess the network service dependability also
for SDN-integrated NFV-based services. This further motivates
our investigation and research contribution.

Availability, as the probability that service will be provided
when needed, is regarded as the most important dependability
attribute in networks [12]. As specified in [12], service avail-
ability is considered of major importance to end users and
it has to be defined in a clear and concise way in the SLA.
Thus, in this work we focus on the availability of end-to-end
NFV-enabled services. To this end, the objective of this paper
is to provide an approach for a more accurate prediction of
the availability of NFV-based services than the current state
of the art by both taking into account the structural properties
of the underlying physical network, computing and storage
infrastructure, and the dynamic behavior of network elements
and functions.

In this paper, we present a two-level availability model
where i) the lower level consists of the structural analysis
based on minimal-cut sets which are derived by the network
connectivity requirements for ensuring an end-to-end network
service, and ii) the higher level is composed of the availability
models, based on stochastic activity network (SAN), of the
network and NFV elements that are needed to provide an
NFV-based service. The two levels are merged by applying
the inclusion-exclusion principle. Moreover, we perform a
quantitative assessment and sensitivity analysis from which
we are able to identify the main critical parameters in the
deployment of the NFV elements that influence the overall
service robustness. By identifying such parameters, we gain
insights that could be exploited for designing and operating an
NFV-based network service such that high-grade availability
requirements are to be met.

The remainder of the paper is organized as follows. In Sec-
tion II, we discuss the relevant studies regarding NFV depend-
ability. Section III introduces the service elements composing
an end-to-end NFV-based service and the related dependability
challenges. In Section IV, a representative network topology is
introduced together with a set of VNF, NFVI-PoP, and MANO
configuration cases. The objective of this is twofold, to give
a reference for the discussion of structural modelling in the
next section and to serve as a basis for the numerical studies at
the end of the paper. As indicated, in Section V, the two-level
model used to evaluate the end-to-end service availability is
presented. Discussion of the numerical results of the sensitivity

analysis in regard to the most critical parameters is presented
in Section VI. Finally, Section VII summarises the paper by
highlighting the most important conclusions.

II. RELATED WORK

There are several methodologies that dependability studies
have used to develop analytic models for quantifying system
dependability. A thorough introduction may be found in [7].
For a better understanding of the different techniques utilized
in the related work, we briefly summarize the most common
methodologies.

Analytic dependability models typically fall into three cate-
gories: i) Non-state-space models, ii) State-space models, and
iii) Hierarchical models.

Typical non-state-space models include Reliability Block
Diagrams (RBD), Fault-trees (FT), and Reliability Graphs
(RG). RBDs and FTs are used to represent the logical structure
of a system, with respect to how availability of system
components impacts the overall system availability.

State-space models are used to model complex interactions
and behaviors within a system. A variety of state-space
modeling techniques have been used in previous works. They
span from Markov-based models like discrete/continuous-time
Markov chains (D/CTMC) to semi-Markov Processes. When a
reward function is associated with the chain, for the evaluation
of a certain metric, they are known as Markov reward models
(MRM). Other representatives of state-space models, which
are more human intuitive, include Petri-net (PN)-based models
like stochastic-Petri nets (SPN) and generalized-SPN (GSPN).
When a reward rate is associated with the net, it is a stochastic
reward net (SRN). An additional of PNs are stochastic activity
networks (SANs).

Hierarchical models are multi-level models where higher
levels are frequently non-state space models and lower levels
are typically state-space models which are more suitable for
capturing individual complex behavior. A common feature
of multi-level models, which makes them more useful in
comparison to state space models, is the limitation of state-
space explosion when dealing with large and complex systems.

Server virtualization represents a key enabling technology
in NFV [13]. The authors of [14], [15] laid the groundwork
of availability modeling involving virtualized systems. They
use a two-level hierarchical model, composed of CTMC and
FT, to represent and compare virtualized and non-virtualized
server systems. Through a parametic sensitivity analysis, they
were able to identify the parameters deserving more attention
for improving the availability and the capacity oriented avail-
ability, i.e., performability, of the system. However, due to the
nature of CTMCs, complex systems may have to deal with a
state space explosion which represents an important drawback.
Kim et al. [16] exploits Stochastic Reward Nets, an extension
of Petri nets, to overcome this drawback. They extend the
work in [14] by proposing a scalable model which is able
to incorporate more failure and recovery behaviors involved
in virtualized server systems, and include features like virtual
machine live migrations and high availability.

Surprisingly, only a few works propose and quantitatively
assess an NFV-based network service availability.
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In [8], the authors present an availability model of a
virtualized Evolved Packet Core, as an NFV use case, by using
SANs. They assess the system availability through discrete-
event simulation and identify the most relevant criteria to
account for by service providers in order to meet a certain
availability level. In addition, they model events like catas-
trophic failures as such events may represent a serious threat
to the overall system availability.

A two-level hierarchical availability model of a network
service in NFV architectures has been proposed in [17]. By
aggregating RBDs (higher level) and SRNs (lower level), they
evaluate the steady-state availability and perform a sensitivity
analysis to determine the most critical parameters influencing
the network service availability. Similarly, in [18], they extend
such analysis by including the VIM functionality, as the entity
responsible for the management of the network service, into
the RBD. Their main findings indicate that a relatively small
increment of hypervisor or VNF software failure intensity
has a marginal effect on the service availability. In addition,
they identify the most appropriate redundancy configuration in
terms of additional replicas for providing fine-nines availabil-
ity. The same authors model and assess the availability of an
NFV-oriented IP multimedia subsystem (IMS) [9]. Exploiting
the same modeling technique, consisting of a hierarchical
model composed of RBD and SRN, they assess the availability
of a containerized IMS and perform a sensitivity analysis
on failure and repair rate of some of the IMS components.
In addition, they identify the best k-out-of-n redundancy
configuration for each elements of the IMS such that a five-
nine availability is reached.

In a more recent study [10], a composed availability model
of an NFV service, based on SANs, is proposed. Each VNF,
composing the network service, is considered as a load-sharing
cluster and the authors propose separate models for various
redundancy mechanisms called Availability Modes. Through
a sensitivity analysis, they investigate the effects of cluster
provisioning and recovery strategies for each mode aiming
at finding the most appropriate configuration providing the
highest level of service availability.

The contribution of this work compared to the related stud-
ies differs in several points that aim at filling the current gap
when estimating end-to-end NFV-based service availability.
None of the previous works has considered the effects of
the underlying physical network and its intrinsic topolog-
ical dependencies emerging from the network connectivity
requirements. In addition, the related works provide insights
regarding a limited set of failure parameters associated with
NFV elements and do not consider the impact of the failure
dynamics of networking devices on the service availability.
Instead, in this proposed approach, the network structural
analysis allows evaluating the impact of the network connec-
tivity in provisioning a highly dependable network service.
Moreover, the dynamic models of the NFV-based service
elements permit to identify the critical failure parameters,
within the network and NFV elements, that impact the end-to-
end service availability. Furthermore, this contribution can be
seen by service operators as a starting point for developing a
decision support tool in designing and operating fault tolerance

Fig. 1. Delivery of an end-to-end NFV-based service.

and redundancy strategies to fulfill the resilience requirements
of carrier-grade services. To the best of our knowledge, this
approach is the first model to incorporate the impact of the
transport network in an NFV-oriented service.

III. DEPENDABILITY OF AN NFV-BASED SERVICE

In NFV, a network service can be visualized architecturally
as a forwarding graph of (virtual and physical) network func-
tions supported and interconnected by the underlying network
infrastructure. According to ETSI [1], a VNF Forwarding
Graph (VNF-FG) defines the composition of VNFs, providing
an NFV-enabled service and their relative sequence for traffic
to traverse. Similarly, the Internet Engineering Task Force
(IETF) specifies a Service Function Chaining (SFC) as "the
definition and instantiation of an ordered set of service func-
tions and subsequent steering of traffic through them" [19]. In
the NFV context, both nomenclatures refer to the same thing,
hence, hereafter we will refer to an SFC as the composition of
an ordered set of VNFs providing a service. Thus, the delivery
of an end-to-end service, illustrated in Figure 1, where both
end points are customers of the NFV architecture, comprises
several network functions, which are mutually connected in
parallel or in series, to construct a network service graph in
the form of a SFC. The service is implemented and operated
through an interaction of the SFC, realizing the service, and
the MANO, which acts as the manager of the service lifecycle.

The underlying network contributes to the behavior of
the higher-level service which in turn can be regarded as
a combination of the behavior of its constituent functional
elements [1]. Thus, the delivery of a network service needs
to be estimated based on the following functional elements:
• ingress and egress end points;
• physical and virtual network functions that constitute the

SFC between the end points;
• supporting infrastructure (e.g., compute and storage

nodes) that runs the VNFs;
• networking devices that allow the interconnection of the

network functions.
From a dependability perspective, a network service could

be potentially threatened by the failure of any of these ele-
ments. The transition to NFV deployments introduces addi-
tional challenges that service providers need to account for.
As identified by ETSI [20], a typical challenge resides in
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(a) Reference SFC.

(b) Reference NFV deployment.

Fig. 2. Network topology and NFV service deployment.

the dependency among VNFs, the virtualization layer, and
the hardware infrastructure. By decoupling the software from
hardware, the VNFs are not aware of the underlying hard-
ware. Henceforth, a failure on the physical infrastructure may
cause a service outage in case several VNFs share the same
hardware, as opposed to physical network functions where the
hardware is dedicated to a specific function. In addition, the
virtualization layer introduces an additional failure source. The
hypervisor itself may be prone to software failures which may
affect a large part of the software infrastructure. Moreover, the
NFVI will rely on extensive use of commercial off-the-shelf
(COTS) servers which are usually more error-prone compared
to specialized hardware implementing legacy network func-
tions [5]. As a result, dependability may potentially represent
a key threat to the success of NFV architectures and ETSI
has streamlined specific reports in regard to reliability models,
capabilities, and requirements [2], [20], [21].

IV. NETWORK TOPOLOGY AND CASE STUDIES

The reference SFC that will be considered in our assessment
is depicted in Figure 2(a) and is composed of three VNFs.
The SFC will be deployed in a real world-wide backbone
network [22] which is composed of 28 nodes and 40 links, as
illustrated in Figure 2(b). Note that only the network topology
had been adopted from a real backbone network and the NFV
deployment together with its relative redundancy configuration
will be subject of investigation.

The location of the end points 1 and 2 will be fixed in all the
evaluations, whereas the location and the redundancy of the
NFV elements (VNF, NFVI-PoP, MANO) will change during
the evaluations. Initially, the scenario where all the three VNFs
are deployed into the same NFVI-PoP, referred to as the
Reference case, is considered. In this scenario, both NFVI-
PoP and MANO are placed in the edge part of the network.
Afterward, the cases where the VNFs are deployed into two
and three separate NFVI-PoPs (denoted 2 NFVI-PoPs and 3
NFVI-PoPs, respectively), placed in the edge, are investigated.

Note the representation of NFVI-PoPs and VNFs. The
NFVI-PoP represents a physical entity and includes the phys-
ical resources and the software for managing the resources.

The VNF represents the virtual resources and the software
function that is using the resources. One or multiple VNFs are
running on a NFVI-PoP. Given this assumption, the arrowed
lines that connect the VNFs to the NFVI-PoP are virtual
connections which we assume to be fault-free. Therefore,
they are not considered as links in the structural analysis. In
addition, we regard the SFC availability from the network
operator’s customer interface. Hence, we consider the end
points and their connecting links outside the scope of the
NFV-service availability evaluation. Lastly, we do not optimize
the placement of NFVI-PoPs or VNFs across the network,
since such problems fall outside the scope of this paper and
regard challenges associated with resource allocation where
service availability can be treated as an objective function or
constraint, as investigated in works like [23], [24] and the
references therein. Nonetheless, to acquire further insights, in
addition to the Reference case, we evaluate the service unavail-
ability even when the NFV elements are directly connected
to the network nodes having a higher betweenness centrality,
i.e., the core nodes of the backbone network. We refer to this
deployment as the Core case and present the results of both
redundant and non-redundant configurations in the numerical
evaluation (Section VI-F).

Moreover, an integration with Software-Defined Networking
(SDN) can be also considered. SDN consists in the separation
of the control and data planes and the logical centralisation of
the control plane in the SDN controller. In this case, several
deployment strategies can be considered. As identified by
[11], there are several use cases for SDN integration with
NFV. Some of the Proof of Concepts (PoCs) regard the SDN
controller merged within the VIM functionality as part of the
MANO entity, whereas others consider the SDN controller as
part of the NFVI or as a virtualised entity similar to a VNF.
In this paper, we assume that the SDN functionality is part of
the VIM entity but their location placement are geographically
separated, as would the case when the NFV-based service
provider and the network operator are two distinct entities.

Furthermore, a redundant deployment can be considered in
order to provide a resilient service. In this case, the MANO,
which is a logically-centralized entity, can be physically split
or duplicated in different geographical areas. The VNFs, which
are logical entities running on geographically-distributed com-
puting centers, can be split or duplicated in the same (local)
computing center or in other (remote) computing centers.
Similarly, when an SDN-integrated architecture is considered,
the SDN controller can be duplicated into separate locations
in order to provide redundancy.

Figure 3 depicts the case study when a redundant deploy-
ment is considered. When only the MANO is redundant, the
Reference deployment is considered but the dash-dot MANO
element represents the MANO redundant unit which is denoted
as MANO redundant. Similarly, in case the VNFs (and the
NFVI-PoPs) are the only elements having redundant units they
are denoted as VNF redundant. In case all the NFV elements
are redundant, the deployment, denoted as All redundant,
represent the case of fully redundant NFV service. When an
SDN-integrated network is assumed, the SC node denotes the
SDN controller and the relative dash-dot element represent the
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Fig. 3. SDN-integrated NFV redundant deployment.

redundant unit.

V. NFV-BASED SERVICE AVAILABILITY MODELLING

In this section, we introduce the two-level model used to
evaluate the availability of an NFV-based network service.
Specifically, we regard the availability in terms of the steady-
state availability, hereafter simply referred to as availability.
The modeling approach consists of two levels:
• Structural model of the network topology and NFV

deployment;
• Dynamic models of NFV-based service elements.
The two-level approach seeks to depict a large-scale NFV

infrastructure that is deployed on top of network and comput-
ing infrastructures. The structural model assesses the network
connectivity required to deliver an end-to-end NFV-based
service by means of an SFC where the VNFs are running on
computing centers distributed on the network infrastructure.
For the structural model, reliability block diagram, fault trees,
or structure functions expressed as minimal-cut or -path sets
can be used (see Section V-A). The dynamic models char-
acterize the potential failure causes of the elements needed
to deliver an end-to-end NFV-based service. For the dynamic
models, Markov model, Stochastic Petri nets, or extensions of
the later can be used (see Section V-B).

In the following subsections, we introduce our approach
through the case studies presented in Section IV which include
the reference SFC that constitutes the NFV-based service.
First, we present the connectivity requirements for providing
an end-to-end NFV-enabled service and based on them the
structure functions for each case study and minimal-cut sets
are computed. Second, we introduce simple SAN models that
characterize the failure dynamic behavior of the network and
NFV elements. Finally, we show how to combine the two
levels and evaluate the end-to-end service availability.

A. Structural Model

Structural models are an attractive technique for performing
system dependability assessment [25]. Key dependability prop-
erties can be extracted from the structure function. Consider
a system with n subsystems. Each subsystem can have two
possible states: working and failed. As a result, the state of
each i subsystem is given by a binary variable xi , where xi = 1

Fig. 4. Showcase for the structural analysis.

if the subsystem is working and xi = 0 if the subsystem is
failed. Hence, the state vector of the overall system is:

x = (x1, x2, ..., xn)
and the system operational mode can be described by the
following binary function:

Φ(x) = Φ(x1, x2, ..., xn)
which is defined as the structure function and corresponds to a
logical Boolean function that expresses the system mode, i.e.,
working or not. As a boolean function, it can be represented
in one of the two canonical forms, the Minimal sum-of-
products form (Ist-canonical form) or Minimal product-of-
sums form (IInd-canonical form). From these forms, we can
extract dependability properties namely path and cut sets.
The definition of the connectivity requirements will determine
the most critical elements involved in an end-to-end network
service and by means of the structural analysis, either based
on minimal-path sets or minimal-cut sets [25], we are able to
identify such elements. In this paper, we make use of minimal-
cut sets and the following definitions apply:

Definition 1 (Cut set): A set of structure components that
by failing ensures that the structure is failed.

Definition 2 (Minimal-cut set): A cut set of a structure that
cannot be reduced without loosing status as a cut set.

Definition 3 (Structure function): Each max-term of the
structure function expressed in a minimal product-of-sum form
corresponds to a minimal-cut set.

To better illustrate, Figure 4 depicts a small system structure
with five network nodes and a chain of two VNFs deployed
in one NFVI-PoP. For simplicity, let us assume that the links
connecting the network nodes do not fail. Let us consider
a working service as a "flow" moving from endpoint 1,
receive service from the VNFs, to endpoint 2. Note that the
requirement of the flow being able to receive service from
the VNFs defines a specific connectivity requirement that
will influence the structure function. If the system has failed,
the flow is prevented from being served and reaching the
destination. The system is considered to be working if there
exists a set of functioning components that permits the flow
to be served by the VNFs and reach the destination.

From Definition 1, the cut sets of the structure are all
the possible combinations of the components such that their
simultaneous failure ensures that the system is in a failed state.
Such cut sets are {V NF1}, {V NF2}, {NFVI-PoP}, {l3−PoP},
{3}, {1,2}, {4,5}, {1,3,5}, {2,3,4}, {1, l3−PoP,4}, {1,2,V NF1},
etc. Applying Definition 2, we can identify those sets that are
strictly required to fail, i.e., minimal, such that the system
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is failed. The statement “cannot be reduced” implies that if
we remove one or more components from a minimal cut set,
the set is no longer a cut set. Henceforth, the minimal-cut
sets are only {l3−PoP}, {V NF1}, {V NF2}, {NFVI-PoP},
{3}, {1,2}, {4,5} and the structure function, in the form of
minimal product-of-sums, is defined as:

Φ(x) = xVNF1 ·xVNF2 ·xNFVI−PoP ·xl3−PoP ·x3 ·(x1+x2)·(x4+x5)

which aligns with Definition 3. In other words, the structure
function identifies those system elements that being unavail-
able cause a system unavailability.

The adoption of an NFV architecture will change the way
network services are provisioned compared to legacy networks
by including more flexibility, automation, and agile orchestra-
tion. The key features of the new service delivery paradigm
are the following: "centralisation" of the control logic into the
MANO; "remotisation" of the network functions; "sharing"
of the computing resource; geographical "distribution" of the
computing centers. These features lead to an increase in the
network connectivity requirements for provisioning a network
service that can be summarized as follows:
• MANO – end points connectivity: The end point must be

able to connect with the MANO in order to trigger the
service provisioning.

• MANO – VNF connectivity: The MANO must be able to
connect with the VNFs composing the SFC in order to
orchestrate and manage the lifecycle of the VNFs.

• SFC connectivity: The ordered connectivity of the VNFs
(and the end points) composing the SFC must be assured.

The first two connectivity requirements are related to the
control plane in NFV and concern the necessary requirements
of service request acceptance and management and orchestra-
tion of VNFs. Whereas, the last requirement regards the data
plane layer and the correct service composition.

In case an SDN integrated network is considered, further
connectivity requirements need to be included.
• MANO – SDN controller connectivity

The peer-to-peer communication between the MANO and
the SDN controller must be guaranteed in order to allow
the request of the network resources for composing the
SFC.

• SDN controller – network nodes connectivity
The SDN controller must be able to connect with the net-
work nodes that compose the paths among the elements
in the SFC.

Furthermore, for a redundant deployment, the above con-
nectivity requirements need to be modified accordingly, e.g.,
the requirement can be relaxed by ensuring the connectivity
to at least one of the redundant elements.

For all the examined NFV deployments, their connectivity
requirements are very important in establishing, through the
structure function, the most critical elements in the delivery of
a network service. For example, the requirement of ensuring an
ordered connectivity of the VNFs, i.e., the SFC, is reflected in
the structure function by imposing this condition when finding
all the paths that include an ordered sequence of the VNFs.
Accordingly, for each NFV deployment, this requirement will

be embedded into the structure function from which we
derive the relative minimal-cut sets. For further details on the
structure function analysis, the reader may refer to [7], [25].

B. Dynamic Models

The second part of the two-level model consists of the
dynamic models of network and NFV elements. To establish
these models, Stochastic Activity Network (SAN) formalism
is used. This enables detailed performance, dependability,
or performability models to be defined in a comprehensive
manner [26].

SANs are stochastic extentions of Petri Nets consisting
of four primitives: places, activities, input gates, and output
gates. Places are graphically represented as circles and contain
a certain number of tokens which represent the marking of
the place. The set of all place markings represent the state of
the modeled system. Activities are action that take a certain
amount of time to complete. They impact the system perfor-
mance and can be timed (thick vertical lines) or instantaneous
(thin vertical lines). A timed activity has a distribution function
associated with its duration and can have distribution case
probabilities used to model uncertainty associated with activity
completion. The case probabilities are graphically represented
as small circles on the right of the activities. Upon completion,
an activity fires and enables token movements from places
connected by incoming arcs to places connected by outgoing
arcs. This way a system state update occurs and tokens are
moved from one place to another by redefining the places
markings. Input and output gates define marking changes
that occur when an activity completes. Different from output
gates, the input gates are also able to control the enabling of
activity completion, i.e., firing. The models presented below
are defined in the Möbius software tool [27].

Dynamic models are defined for the following elements:
• Network elements:

– Connecting links;
– IP router (traditional network case);
– SDN switch (SDN case);
– SDN controller (SDN case);

• NFV elements:
– NFVI-PoP;
– VNF;
– MANO.

It is an objective that these models should be simple, yet
sufficient. More complex and comprehensive models can be
realized, but in this paper, we preferred to use models that
enable us to apprehend the essential features of the system and
emphasize the necessary details of the elements while keeping
the complexity low since our focus is to evaluate the impact
of networking on NFV-based service provisioning.

SAN models of network elements (for both SDN and
traditional network) have been already proposed [28] and we
will use the same models.

The NFVI comprises several geographical locations, and
the transport network providing connectivity between these
locations is considered as part of the whole infrastructure. A
specific geographic location is where an NFVI-PoP (e.g., a
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Fig. 5. SAN model of an NFVI-PoP.

data center) is located and where a number of NFVI-Nodes
reside. NFVI-Nodes are a group of physical devices that
provide the necessary (computing, storage, and networking)
resources needed by the VNF execution environment. Without
any loss of generality and to keep a low complexity, we will
consider NFVI-PoP and NFVI-Node as a single entity.

In modeling the VNF system, the choice of the virtual-
ization technology used, i.e., hypervisor- or container-based,
can determine the model. We believe that from a depend-
ability perspective, the hypervisor-based technology represents
a more advantageous choice due to, among others, stronger
isolation between virtual and the physical machine or a higher
fault detection coverage compared to containers, as shown by
studies like [29]. Hence, in our model we assume a hypervisor-
based technology and from a VNF perspective and depending
on the deployment strategy, the VNF itself may have different
failure sources. For example, when two or more VNFs are
deployed in a single NFVI-PoP, the failure of the physical
or hypervisor level represent a common cause failure for the
different VNFs deployed on the same node. As such, we
split the failure causes of the VNFs into those related to
the underlying infrastructure which may represent a common
failure mode for several VNFs, i.e., NFVI-PoP, and those
representing the failure of the VNF itself which include the
Virtual Machine (VM) and the VNF software.

1) NFVI-PoP: The SAN model of the NFVI-PoP is de-
picted in Figure 5. In the model we focus on the two
main components that constitute the NFVI-Node which may
cause a failure on the physical level, i.e., hardware and the
Virtualisation-layer software infrastructure, otherwise called
Virtual Machine Manager (VMM) or hypervisor. The model
is composed of the following places:
• NFVI_OK corresponds to the fully working state of the

system and is initialized with 1 token;
• HW_failed is populated with one token in case a failure

of hardware level (memory, disk, I/O, storage etc.) is
experienced, 0 otherwise;

• HW_under_rep represents the state where the failed hard-
ware undergoes a repair process;

• Spare_HW represents the redundant hardware infrastruc-
ture ready to take over in case a hardware failure is
experienced and it is initialised with one token;

• cov_failed represents the state where the hardware
failover is unsuccessful and thus, manual intervention is
required to bring the hardware up;

Fig. 6. SAN model of a VNF.

• VMM_failed represents the state when the virtualization
software is failed.

• VMM_under_rep represents the state where the VMM
undergoes a hard repair process, i.e., applying a fix/patch
or software update;

Similarly to many related work and studies performing
availability modeling and analysis, see for example [8], [9],
[17], [18], we assume that timed activities follow an expo-
nential distribution. The places in the model are connected by
means of the following timed activities:

• HW_fail and HW_repair represent the hardware failure
and recovery events with rates λHW and µHW, respec-
tively;

• Spare_HW_fail represents the redundant hardware failure
event with rate λHW;

• HW_recv represents the hardware failover event with rate
and µHWfo . There are two cases, with probability Cfo
the failover procedure is successful where one token,
fetched from Spare_HW, is moved to NFVI_OK and
another one is placed in HW_under_repair in order to
repair the failed hardware unit. Whereas with probability
1 − Cfo the failover is unsuccessful and one token is
placed in HW_under_repair and another is moved back
to HW_failed for a new failover procedure;

• man_cov represents a manual coverage intervention ex-
ecuting a hard recovery, with rate µcov, when an unsuc-
cessful hardware failover is experienced;

• VMM_recv represents the recovery process of the virtual-
ization software with rate µVMMr . It consists in a simple
software reboot process and there are two cases, with
probability Cvmm a simple reboot successfully recovers
the failure and with probability 1 − Cvmm the reboot is
not successful therefore a hard repair is needed. In both
cases, a token is moved from VMM_failed to NFVI_OK
or VMM_under_rep, respectively.

• VMM_fail and VMM_rep represent the failure and hard
repair process of the visualization software with rate
λVMM and µVMM, accordingly.

2) VNF: Figure 6 illustrates the SAN model of a VNF.
The model considers failures on the VM and VNF software
components. Once a VM failure is evidenced, the recovery
undergoes a simple restart where with probability CVM the
restart successfully recovers the failure and with probability
1 − CVM a hard repair (patching or fixing) is needed. If the
VM restart is successful, the system undergoes a VNF software
restart (SW_res) to fully recover. Similarly, if a VNF software
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Fig. 7. SAN model of a MANO.

is experienced, with probability CSW the VNF software restart
successfully recovers the failure and with probability 1−CVM
a software fixing is needed (SW_rep).

The model is composed of the following places:

• VNF_OK represents the fully working state of the system
and is initialized with one token;

• VM_failed and SW_failed correspond to the states in
which the VM or VNF software are failed. They are
populated with one token in case a failure is experienced,
0 otherwise;

• VM_under_rep and SW_under_rep represent the states
where the VM and VNF software undergoes a hard repair
process, accordingly.

• SW_under_res corresponds to the state in which the VNF
software undergoes a simple software restart action.

The VNF is failed if there are no tokens in VNF_OK. The
following negative exponentially distributed timed activities
connect the places of the model:

• VM_fail and VM_rep represent the VM failure and hard
repair events with rates λVM and µVM, respectively;

• SW_fail and SW_rep represents the failure and hard repair
events of the VNF software with rate λSW and µSW,
respectively.s

• VM_recv represents the recovery process of the VM with
rate µVMr . It consists in a simple VM reset process
and there are two cases, with probability Cvm a simple
reset successfully recovers the failure and with probability
1−Cvm the reset is not successful therefore a hard repair is
needed. In both cases, a token is moved from VM_failed
to SW_under_res or VM_under_rep, respectively. Note
that, in case the VM reset is successful there is a need
to perform a VNF software restart to bring the system
up. With nowadays technologies, these action times are
comparable thus the need to include a VNF software
restart becomes significant.

• SW_recv is an instantaneous activity which only models
the software simple restart coverage. With probability
Csw, a simple software restart recovers the software failure
and with 1 − Csw a hard software repair is needed.

TABLE I
MODEL PARAMETERS FOR THE NFVI-POP, VNF AND MANO WITH

THEIR RESPECTIVE NUMERICAL VALUES USED IN THE CASE STUDIES.

Intensity Time Description [Mean time to]
1/λHW = 6 months next hardware failure
1/µHW = 2 hours hardware repair
1/µHWfo = 3 minutes hardware failover
1/µcov = 30 minutes manual coverage
1/λVMM = 4 months next VMM failure
1/µVMM = 1 hour VMM hard repair
1/µVMMr = 1 minute VMM reboot
1/λVM = 3 months next VM failure
1/µVM = 1 hour VM hard repair
1/µVMr = 30 seconds VM reset
1/λOS = 2 months OS failure
1/µOS = 1 hour OS hard repair
1/µOSr = 1 min OS reboot
1/λSW = 2 weeks next VNF software failure
1/µSW = 30 minutes VNF software hard repair
1/µSWr = 15 seconds VNF software restart
1/λMSW = 1 month next MANO software failure
1/µMSW = 30 minutes MANO software hard repair
1/µMSWr = 30 seconds MANO software restart
Cfo = 0.95 failover coverage factor
CVMM = 0.9 VMM reboot coverage factor
CVM = 0.9 VM reset coverage factor
COS = 0.9 OS reboot coverage factor
CSW = 0.8 VNF software restart coverage factor
CMSW = 0.85 MANO software restart coverage factor

3) MANO: There are several differing MANO designs and
the authors of [30] review some of them. We decided to
represent a high-level architecture of a widely referenced
open source solution, namely Open Baton [31]. A common
deployment involves a high volume server running its own
Operating System (OS), e.g., Linux based kernel OS, and the
installation of the various MANO components software pack-
ages. However, for simplicity and with no loss of generality,
we consider the MANO software as a single entity where the
failure of any of its subcomponents causes a system failure.

As depicted in Figure 7, on the hardware level, the MANO
model is identical to the NFVI-PoP. On the software level, the
model is similar to the VNF model having the OS and the
MANO software components instead of the VM and the VNF
software, respectively. The MANO is considered unavailable
when there are no tokens in MANO_OK place. Due to these
similarities, a detailed description is omitted.

A set of numerical values regarding failure and repair
intensities and coverage probabilities, retrieved from previous
literature [9], [15], [16], [28], are presented in Table I. These
are hereafter referred to as baseline parameters.

C. End-to-end Service Availability by Level Merging

The remaining step is to evaluate the end-to-end service
availability by merging the structure function and minimal-cut
sets from Section V-A with the individual elements availability
computed using the SAN models in Section V-B. In particular,
since we make use of minimal-cut sets, we consider system
unavailability.

Imposing the connectivity requirements for a correct ser-
vice delivery, identified in Section V-A, and expressing the
structure function in the form of minimal product-of-sums we
obtain all the possible sets of service elements (network and
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NFV), i.e., minimal-cut sets, who’s failure will generate a
service outage. As a result, if at least one of these sets is
unavailable, the service will be unavailable. Therefore, the
service unavailability will be given by the probability of the
union of these sets. Note that the structure function does not
regard any particular routing mechanism since it considers all
the available paths satisfying the connectivity requirements.
In addition, even though the logical service chains are the
same for the different case studies, they represent different
physical topologies of the chain. Such differences are reflected
by having a distinct structure function for each of the case
studies we investigate.

In order to merge the two levels, we make use of the
inclusion-exclusion principle, which is a probabilistic tech-
nique to obtain the elements in a union of finite sets. Using
the inclusion-exclusion principle on the structure function we
can define the service unavailability as the probability of the
union of all minimal-cut sets.

UNS = P

(
n⋃
i=1

Ci

)
=

n∑
k=1
(−1)k−1

∑
0,I⊆[n], |I |=k

P

(⋂
i∈I

Ci

)

where C1,C2, ...,Cn are the minimal-cut sets and P(Ci) is the
probability of set Ci .

To compute the probability of the intersection of minimal-
cut sets we just need to know the unavailability of the
individual elements composing the minimal-cut set, since in
the structural analysis we assume that the failures of these
elements are independent. As a result, the probability of the
intersection is given by the product of the probabilities of
minimal-cut sets which in turn are given by the product of the
probabilities of the single elements belonging to the set. In our
case, such probabilities represent the elements unavailability
and we compute them by using the proposed SAN models
defined in Section V-B.

For assessing the service unavailability of each case study,
we select the minimal-cut sets with cardinality lower than five
as principal-cut sets, because the probability of the intersection
of minimal-cut sets with higher cardinality becomes negligible
in comparison to the principle-cut sets. This is because almost
all the probability mass is in the principle sets when elements
unavailabilities are relatively small, i.e., order of 10−3 or
smaller, as shown in our investigation (refer to Section VI).
In this case, P(C1) ∼ 10−3, P(C2) ∼ 10−6, P(C3) ∼ 10−9,
and so forth. Therefore, the probabilities of the intersection
of minimal-cut sets with cardinality higher than five will
have a negligible effect. In addition, also the probability of
intersection of higher cardinality minimal-cut sets with the
probability of the principle-cut sets will be much smaller than
the probability of the principle-cut sets.

Table II presents the distribution of the principal-cut sets
for each case study. Observing the first three case studies,
i.e., deploying the VNFs into different NFVI-PoPs, there is
an increase of the principal-cut sets for each cardinality when
spreading the VNF deployment into multiple NFVI-PoPs. In
addition, for the same deployments, when an SDN-integrated
network is considered, there is a further increase of the cut
sets. On the other hand, the addition of redundancy decreases

TABLE II
DISTRIBUTION OF MINIMAL-CUT SET FOR THE FIRST FOUR

CARDINALITIES OVER THE DIFFERENT NFV DEPLOYMENTS.

C1 C2 C3 C4 Sum (Total*)
Reference 5 63 16 0 84 (18,097,984)
2 NFVI-PoPs 6 74 20 0 100 (23,969,350)
3 NFVI-PoPs 7 85 24 0 116 (29,957,966)
SDN Reference 6 74 20 0 100 (19,727,900)
SDN 2 NFVI-PoPs 7 85 24 0 116 (24,947,306)
SDN 3 NFVI-PoPs 8 96 28 0 132 (30,557,922)
MANO redundant 4 45 50 161 260 (24,017,754)
VNF redundant 1 55 122 261 439 (73,600,881)
All redundant 0 35 122 414 571 (107,254,823)
SDN All redundant 0 43 122 415 580 (122,878,786)
*Over all Ci

the number of minimal-cut sets for the smaller cardinalities,
i.e., C1 and C2, and increases those with cardinality 3 and 4.
We explore the impact of this increase in more details in the
following analysis.

VI. NUMERICAL EVALUATION

In this section, we present the numerical analysis that has
been carried out to evaluate the NFV deployment across
the network for different scenarios, i.e., VNF deployment
locations, and the different levels of redundancy adopted by
the NFV elements. The goal of our analysis is to investigate the
effects of varying both elements unavailability and element’s
component failure intensities on the end-to-end NFV service,
given the various NFV deployment case studies, NFV and
network elements, and the variation of elements unavailability
and element’s component failure intensities. First, we identify
the critical elements, involved in the service delivery, that
mainly affect the end-to-end service availability. Afterward, we
delve into the element’s components aiming at identifying the
critical ones which mostly impact the service unavailability.

Möbius [27] is a powerful software tool for system modeling
and analysis as it offers formalism-independent solvers for
the system evaluation of certain measures of interest, e.g.
element unavailability. One type of solver integrated in the
tool is a Discrete-Event Simulator (DES) [32]. The simulator
allows the modeler to choose a variety of simulation execution
parameters such as type of random generator, random seed,
maximum/minimum batches, or simulation result accuracy
through confidence intervals etc. In addition, it offers high
flexibility in running multiple simulations at once which are
very useful in case a multitude of scenarios are investigated.
We use this simulator to derive the element’s unavailability by
solving the element’s SAN models presented in Section V-B.

In this study, each element’s baseline unavailability, pre-
sented in Table III, is derived through simulations of the
individual dynamic SAN models with 95% confidence interval
by utilizing the baseline parameters. As previously specified,
we have assumed that the timed activities, having mean rates
presented in Table I, follow an exponential distribution. In
fact, as soon as the repair process is extremely short compared
to the mean time between failures, their mean will dominate
the impact on the element availability and the effects of
the actual recovery distributions are marginal. We verified
this “insensitivity” by evaluating the NFV elements with
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TABLE III
ELEMENT’S BASELINE AVAILABILITY.

95% Confidence
Availability Unavailability Interval

Link 0.999911 8.89 · 10−5 +/- 1.34 · 10−5

IP Router 0.9924 7.55 · 10−3 +/- 5.06 · 10−4

SDN Switch 0.9970 2.98 · 10−3 +/- 5.33 · 10−4

SDN Controller 0.99897 1.02 · 10−3 +/- 7.57 · 10−4

VNF 0.99950 4.94 · 10−4 +/- 6.37 · 10−4

MANO 0.99983 1.68 · 10−4 +/- 3.46 · 10−5

NFVI-PoP 0.999951 4.84 · 10−5 +/- 1.85 · 10−5

deterministic recovery processes and the their unavailability
variation is almost none compared to the exponential case.

To evaluate the impact that variation of a certain element
unavailability has on the end-to-end service unavailability, we
use a scaling factor αx for x ∈ {Link, Router, MANO, NFVI-
PoP, VNF, Switch, and SDN controller}, which affects the
baseline unavailability of the elements. Simulations have been
carried out by considering a scaling factor αx that varies
within a range spanning: αx ∈ {10−i} for i = −3, ...,1.
For each simulation, we vary αx while keeping the rest of
the element’s unavailability equal to their baseline values. To
illustrate, for αx = 1 the x element unavailability equals its
baseline unavailability and when αx = 10, the unavailability
is increased by one order of magnitude, and vice-versa for
10−1,10−2,10−3. αx = 1 is what we consider the most likely
value of these parameters which are computed by solving the
relative SANs with failure and repair parameters retrieved from
previous literature (refer to Table I). However, since there is an
ongoing evolution of both hardware and software technologies,
it is important to study the effects on the sensitivity of these
parameters with the used potential range due to changes in
technology. Therefore, the scaling factor range is introduced
to capture this evolution and is intended to represent the
foreseeable changes in the near years to come.

For presenting the results, we are looking at a 4-dimensional
problem where one dimension is represented by the NFV
deployments (see Table II), another one identifies the elements
(network and NFV elements), another determines the range
of the scaling factor, and the last one expresses the end-to-
end service unavailability as a function of the previous three.
Therefore, a compact and easily comparable representation
of this is achieved by using pie-like polar plots which are
divided into different sectors representing the various de-
ployments. In each sector, the angle and radius show the
service elements and service unavailability due to element’s
unavailability/component failure intensity variation imposed
by the scaling factor, respectively.

A. Impact of element’s availability

In this subsection, the effects of varying the unavailability
of the network and VNF elements on the end-to-end network
service are investigated. In addition, we compare the unavail-
ability of an NFV-based service in the case of assuming a
fault-free network.

Figure 8 shows the end-to-end network service unavailabil-
ity when varying the scaling factor αx for the cases when the
SFC is deployed into a single, multiple or separate NFVI-PoPs,
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Fig. 8. Service unavailability of the three NFV deployments when varying
element unavailability factor αx .

and for the case when both links and IP routers are fault-free.
Note that in this case, we consider a traditional network and
not yet an SDN-integrated network. In the following, unless
otherwise specified, all the case studies refer to a traditional
network (TN).

An immediate observation is that the elements unavailability
variation produces the same trends for all the three deployment
cases. For the Reference deployment, given the baseline un-
availabilities, the service unavailability reaches 2.9 ·10−3. Any
variation of link unavailability, either decreasing or increasing,
does not significantly affect the service unavailability. On
the contrary, the router unavailability may greatly impact the
service unavailability. In particular, we observe that when the
routers become less robust, i.e., αRouter = 10, the service
unavailability increases by more than one order of magnitude.
On the other hand, when the router unavailability is reduced
even by just one order of magnitude, the service unavailability
is reduced to an extent that it approaches the fault-free network
service unavailability (1.71 · 10−3 vs. 1.69 · 10−3).

Regarding the NFV elements, the first observation we make
is that for the MANO and NFVI-PoP, a decrease of their
unavailability does not produce a noteworthy reduction of the
service unavailability. The opposite is valid for the VNF where
its unavailability reduction halves the service unavailability,
i.e., from 2.9 · 10−3 to 1.4 · 10−3. In addition, we note that
increasing the VNF unavailability by one order of magnitude,
is accompanied with five times higher service unavailability.
This can be explained by the fact that VNFs are three critical
elements where the failure of any one of them produces a
service outage. As a result, we can deduct that the VNF
may play an important role in achieving both higher or
lower service availability. Common to both network and NFV
elements, decreasing their availability further, i.e., from 10−1

to 10−3, does not bring an additional service unavailability
reduction. In summary, the IP routers and VNFs represent the
most critical network and NFV elements, respectively.
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B. Impact of number of NFVI-PoPs

Deploying the VNFs, composing the SFC, into multiple
or even separate NFVI-PoPs would definitively increase the
path carrying service flows as they need to traverse more
network elements. Accordingly, there would be an increase
in the likelihood that more element’s failures may impact
the service availability. As a result, the system will be more
vulnerable to failure events as highlighted by the increase of
the principal-cut sets, presented in Table II, when the number
of NFVI-PoPs hosting the SFC increases. Therefore, one can
expect that service availability may be significantly deterio-
rated if for any reason the VNFs need to be geographically
distributed. Surprisingly, spreading the VNFs into more or
even completely separate NFVI-PoPs is followed with a very
slight unavailability deterioration (in the order of 10−4). More
specifically, for the baseline element availabilities, employing
two and three NFVI-PoPs results in a service unavailability
of 3.17307 · 10−3 and 3.39255 · 10−3, respectively, versus
2.95355 · 10−3 of the Reference case. The same difference
is evidenced when varying the element’s availabilities. The
rationale behind is that despite the distribution of the VNFs
into separate PoPs increases the low cardinality sets, the
service availability is relatively insensitive to the VNF dis-
tribution in multiple NFVI-PoPs because in this case there is
a higher number of available paths connecting the VNFs. The
low cardinality sets are important but the high connectivity
captured by the structure function and the associated flexibility
in routing makes the placement effect insignificant. However,
the outcome represent a good input to network administrators,
as in cases an operator has to distribute the VNFs due to
specific needs like resource shortages, the service availability
will not be significantly affected. Note that there is an implicit
premise that the network elements are homogeneous, i.e., have
the same availability, and the presented outcome is also subject
to the specific setting and network topology. In case a sparser
network is considered the outcome may be otherwise.

To sum up, the splitting of the service chain into multiple
NFVI-PoPs has a small effect on the unavailability due to an
increase of the available paths connecting the splitted VNFs.

C. Impact of redundancy

In this subsection, we evaluate the impact of the redundancy
of the NFV elements. To this end, we investigate the cases
when only the MANO, the VNFs and when all the NFV
elements are redundant, respectively.

In Figure 9, we illustrate the sensitivity analysis only for
αx = {10−1,1,10}, as for lower values there is not a significant
variation. Deploying a redundant MANO decreases the service
unavailability but the decrease is not significant (order of
10−4). However, a redundant MANO provides adequate pro-
tection when the MANO unavailability increases, as opposed
to the Reference case. Since the VNFs and routers are not
protected with redundancy, an increase of their unavailability
greatly affects the service by one and two orders of magni-
tude, respectively. In case only the VNFs are provided with
redundancy, the service unavailability is further decreased
reaching 1.1 · 10−3 and it is sufficiently shielded against VNF
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when considering NFV redundant elements.
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when considering single and double redundant NFV elements.

unavailability increments. Similarly, when all NFV elements
are redundant, the service unavailability is further reduced
compared to the previous two cases reaching a value of
6.3 · 10−4. In this case, an increase of the VNF, NFVI-
PoP or MANO unavailability does not impact the service
unavailability as the redundant units provide an adequate
protection. However, their unavailability reduction gives no
effect at all.

Interestingly, the router may both greatly increase and
reduce the end-to-end unavailability. A more robust IP router
allows achieving a 7.09 · 10−6 unavailability which represents
target values expected by highly available NFV services, i.e.,
5-nines availability [2], [5]. Moreover, we evaluate the case
even when double redundancy, i.e., double VNFs, NFVI-PoPs
and MANO, is deployed. Figure 10 shows the comparison
of the sensitivity analysis for this deployment. We evidence
that the additional unavailability reduction is rather negligible
when a double redundant deployment is considered, i.e., an
order of 10−5. Curiously, very low service unavailability values
are achieved only when the network elements are fault-free.
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for varying element unavailability factor αx .

Therefore, employing double redundant NFV elements does
not produce compelling benefits unless the network elements
are ’perfect’.

To summarize, for achieving five-nines availability, in addi-
tion to replicated NFV elements, the routers resiliency needs
to be better than the nominal values used in this study.

D. Impact of SDN

When integrating an SDN network, there is an increase in
the network connectivity requirements, presented previously in
Section V-A, which is translated in an increase of the principle
minimal cut-sets (refer to Table II). By having more principal-
cut set, the SDN-integrated NFV service is expected to be
more vulnerable in terms of service unavailability.

Figure 11 shows a comparison of the traditional and SDN-
integrated network for the Reference and redundant deploy-
ments. As expected, the SDN-integrated service unavailability
is higher compared to the traditional deployment. Specifically,
for the Reference deployment, the SDN service unavailability
reaches 1.2 · 10−2 vs. 2.9 · 10−3 of the TN case. This result
is primarily due to the increased connectivity requirements
imposed by the control plane of the SDN network.

Another observation regards the impact of the network
nodes, i.e., routers or switches. For all the deployments, the
robustness of the router is more relevant for the TN case than
the switch for the SDN deployment. In the SDN case, it is
the SC that has an impact magnitude similar to the routers for
the TN case, thus representing the most crucial elements in
an SDN-integrated network. Specifically, the increase/decrease
of the scaling factor for the SC is accompanied with an
increase/decrease of almost one order of magnitude of the
service unavailability.

Surprisingly, when a redundant deployment is considered,
the baseline service unavailability is three times less than the
TN case. This result might look unexpected as it is the opposite
compared to the non-redundant deployments, however, it is
explained by the fact that the SC, being a critical component,
is provided with redundancy which further decreases the
baseline service unavailability. Nevertheless, an increasing SC

Router HW

Router O&M

VNF SW

VNF VMSwitch HW

SC O&M

VNF SW

VNF VM

Router HW

Router O&M

VNF SW

VNF VM Switch HW

SC O&M

VNF SW

VNF VM

10
- 1

10
- 2

10
- 3

10
- 4

Service Unavailability

x
=10

x
= 1

x
=10

-1

TN All

redundant

SDN

Reference

SDN All

redundant

TN

Reference
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for varying element’s component failure intensity factor βx .

unavailability may seriously degrade the service unavailability
despite it makes use of a redundant unit. As a result, adopting a
less robust SC may hinder the advantages created by the redun-
dancy. Moreover, a similar trend is observed for the switches.
An increasing switch unavailability is accompanied with more
than one order of magnitude of service availability reduction.
Differently, their unavailability reduction brings only a small
service unavailability reduction. The opposite happens with
the TN case, as a router unavailability reduction contributes
to up to two orders of magnitude service unavailability drop.
In brief, the SDN controller represents a critical element which
may deteriorate the end-to-end service availability.

E. Impact of element’s component failure intensity

In addition to the impact of the element’s unavailability,
we investigate the impact of each element components on the
overall service unavailability. To this end, we investigate the
impact of their relative failure intensities, presented in Table I.
We use a scaling factor βx for x ∈ {HW,SW,O&M,etc.},
which affects the intensities of the relative element compo-
nents, e.g., hardware, βHW, software, βSW or operation and
management (O&M) etc. Simulations have been carried out
by considering a scaling factor βx that varies within a range
spanning: βx ∈ {10−i} for i = −1,0,1. For each simulation, we
vary βx while keeping the rest of the parameters as defined in
Table I. Note that intensity variations are done one at a time.

Driven by the previous results, we present the sensitivity
analysis of only the noteworthy components of the most criti-
cal elements, i.e., IP routers, VNFs, SDN switches, and SDN
controller. Figure 12 shows the end-to-end service unavailabil-
ity when varying the scaling factor of the most relevant failure
intensities of those elements, for the TN and SDN Reference
deployments with and without redundant elements.

For the non-redundant deployments, the largest impact on
the service unavailability is due to the router and SC O&M
failure intensity increments and such impact is similar for
both TN and SDN deployments. On the other hand, when the
O&M failure intensity decreases, a much larger relative gain
is obtained by the SC compared to routers. The VNF software
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TABLE IV
DISTRIBUTION OF PRINCIPAL-CUT SETS FOR THE DIFFERENT NFV

ELEMENT PLACEMENTS AND THEIR RELATIVE SERVICE UNAVAILABILITY.

Service
C1 C2 C3 C4 Unavailability* Reduction %

Reference 5 63 16 0 2.953 · 10−3

Core 5 39 8 0 2.443 · 10−3 17.27%
SDN Reference 6 74 20 0 1.218 · 10−2

SDN Core 6 50 8 0 1.210 · 10−2 0.65%
All redundant 0 35 122 414 6.332 · 10−4

All redundant Core 0 35 73 97 6.310 · 10−4 0.34%
SDN All redundant 0 43 122 415 2.264 · 10−4

SDN All redundant Core 0 43 69 122 2.260 · 10−4 0.17%

*Calculated with the element’s baseline unavailabilities

presents a larger impact compared to the VNF VM component
and such gain is slightly more pronounced for the TN case.
This result is somehow expected since the VNF software
failure intensity is much smaller than the VM intensity, while
a reduction of the software intensity, i.e., βVNFSW = 10−1, does
not give a significant effect.

Regarding the redundant deployments, similarly to the pre-
vious outcomes, any increase on the VNF components failure
intensity is suppressed by the redundancy protection. On the
other hand, despite the SC is provided with redundancy, a
higher O&M failure intensity may considerably degrade the
service unavailability by more than one order of magnitude.
Similarly, the SDN switch hardware system may play an
important role in the overall service availability.

To summarize, for the traditional network, the hardware
and O&M systems of routers represent critical components
that may greatly impact the service availability. In an SDN
network, the SC O&M software and switch hardware may
have the largest impact on the end-to-end service availability.

F. Impact of NFV element placement

So far we have considered a presumably worst-case de-
ployment where the NFV elements are placed on the edge
of the backbone network. However, one might argue that the
placement of the NFVI-PoPs, MANO and SDN controller,
may significantly impact the service availability. To shed
light on this, we examine the case where NFV elements,
with and without redundancy, are deployed in the network
nodes having the highest betweenness centrality [33]. These
nodes are {23, ...,28} and represent the set of nodes that
have the highest number of times they appear in the shortest
path of any two other nodes. Figure 13 illustrates the TN
and SDN-enabled NFV deployments for both redundant and
non-redundant cases. A similar placement may be driven by
the need of an operator to limit the service delay and/or
the eventual additional path stretch due to the failover on
the redundant element. The same notation, representing the
previous use cases, followed by Core is used to identify the
cases where the NFV elements are placed in the core nodes.
To illustrate, Core represents the case of a traditional network
with no redundant NFV elements and VNFs are running in the
same NFVI-PoP. The MANO and the NFVI-PoP are connected
to central nodes as depicted in Figure 13 (solid contour).

Table IV presents the distribution of the principal-cut
sets for both the Reference and Core deployments together
with their respective service unavailabilities. Observing the

Fig. 13. SDN-integrated NFV deployments with NFVI-PoPs, MANO and
SDN controller placed in the nodes with the highest betweenness centrality.

principal-cut sets for the non-redundant configurations, the
Core deployments present a significant decrease in the number
of minimal-cut sets of high cardinality suggesting that the
service will be less vulnerable compared to the Reference
cases. Despite this reduction, a minor decrease is achieved
only for the TN deployment where the service unavailability
is 17% less than the Reference deployment. This is because,
given the element’s baseline availabilities, on the inclusion-
exclusion principle, the most impactful principal-cut sets, i.e.,
C1, are not changed and the contributions from the other
cardinalities are much smaller. In the SDN-enabled case, the
service reduction is almost none and this can be explained by
the fact that the SDN controller, being a crucial element, is still
present in first cardinality sets which mostly impact the service
unavailability. A similar trend is evidenced for the redundant
cases where despite the principal-cut sets are more than halved,
the service unavailability reduction is rather insignificant as a
result of the fact that the lower cardinality sets C2 remain
unchanged. In addition to the Core deployment, we examined
also the case where the MANO, PoP and SC are attached to the
same two networking nodes having the highest betweenness
centrality, i.e., nodes 23 and 24. We noticed that even in
this deployment, the availability increase is not significant.
Specifically, the unavailability is 1.208 · 10−2 vs. 1.21 · 10−2

of the SDN Core. This result is further evidence that it is the
SC which brings a significant effect on the service availability
regardless of the placement. To conclude, the placement of
the NFVI-PoPs, MANO and SDN controller has a minimal
effect on the overall service availability for the non-redundant
architecture and almost none for the redundant architecture.

VII. CONCLUDING REMARKS

A comprehensive approach for the evaluation of end-to-end
NFV-based service availability has been proposed. Through
the formalized two-level availability model, we are able to
capture both network topology structural dependencies and
failure dynamics of the individual elements involved in the
end-to-end service delivery. In addition, an extensive sensi-
tivity analysis, for several case studies including traditional
and SDN-integrated networks, aiming at identifying the main
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critical elements has been carried out. The main outcomes
include the following:
• in case a traditional network is employed, the most

impactful elements are represented by the IP routers and
VNFs composing the SFC. Adopting less robust routers
and VNFs, compared to their baseline availabilities, may
reduce the end-to-end service availability up to two
orders of magnitude. Despite a small gain is obtained for
more available routers and VNFs, adopting much more
available routers and VNFs does not gain accordingly;

• deploying the VNFs into multiple or separate NFVI-PoPs
does not significantly affect the service unavailability. In
addition, the placement of the NFVI-PoPs, MANO and
SDN controller does not reflect a remarkable impact;

• applying redundancy to NFV elements further decreases
the service unavailability and brings adequate protection
to any eventual increase of their unavailabilities. In addi-
tion, when such elements are redundant, making use of
more robust router devices allows the service to reach
target values like 5-nines availability;

• compared to a traditional network, an SDN-integrated
solution brings additional challenges reflected in lower
service availability. In an SDN network, the SDN con-
troller is the most critical element which could even
inhibit the advantages brought by the redundancy of the
NFV elements. On the other hand, adopting a redundant
SDN controller further decreases the service unavailabil-
ity compared to a traditional network with redundant NFV
elements;

• from an element’s component perspective, the service
is mostly affected by the router hardware and O&M
failure intensity variations for both redundant and non-
redundant NFV element deployments. Similarly, for an
SDN-integrated network, high intensity of SC O&M
software and switch hardware failures may significantly
degrade the service unavailability.

To summarize, deploying redundant NFV elements like VNFs,
MANO, and NFVI-PoPs contributes in lower service un-
availability but network elements like IP routers may either
severely degrade or significantly increase the overall service
availability. Therefore, if 5-nines target figures are to be ex-
pected, in addition to NFV redundant elements, more reliable
router hardware and O&M software architectures need to be
employed.
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Abstract—Network Function Virtualization (NFV) is an emerg-
ing technology that reduces cost and brings flexibility in the
provisioning of services. NFV-based networks are expected to
be able to provide carrier-grade services, which require high
availability. One of the challenges for achieving high availability
is that the commodity servers used in NFV are more error prone
than the purpose-built hardware. The “de-facto” technique for
fault tolerance is redundancy. However, unless planned carefully,
structural dependencies among network nodes could result in
correlated node unavailabilities that undermine the effect of
redundancy. In this paper, we address the challenge of devel-
oping a redundancy resource allocation scheme that takes into
account correlated unavailabilities caused by network structural
dependencies. The proposed scheme consist of two parts. In the
first part, we propose an algorithm to identify nodes that can
be highly affected by a node failure because of their network
structural dependency with this node. The algorithm analyzes
such dependencies using a recently proposed centrality measure
called dependency index. In the second part, a redundancy
resource allocation scheme that places backup network functions
on nodes considering their dependency nature and assigns the
instances to flows optimally is proposed. The results show that
not considering the network structural dependency in backup
placement may significantly affect the service availability to
flows.The results also give insights into the trade-off between
cost and performance.

I. INTRODUCTION

Middleboxes or Network Functions (NFs) are widely uti-
lized for various purposes such as improving security and
network performance. The traditional approach of having a
dedicated purpose-built hardware per NF has been shown to be
inefficient and expensive [1]. Network Function Virtualization
(NFV) alters this inflexible architecture by decoupling the
software of NFs from the hardware and run the NFs on
virtualized environment such as virtual machines (VMs) or
containers. NF instances can then be created on the fly
depending on the traffic and the network state [2]. The VMs
and containers of the NFs are usually hosted on commercial
off-the-shelf (COTS) hardware, which are comparatively less
expensive than the purpose-built hardware. A service in NFV
is typically composed of a set of NFs that are chained in some
specific order, also known as service function chaining.

Carrier-grade services such as telecommunication services
require high-level of availability reaching five-nines (99.999%)
or more [3] [4]. Achieving this level of availability in NFV
networks is challenging due to a number of reasons including:
lower dependability of COTS servers, correlated failures or
unavailabilities, and state management:

COTS availability: Legacy telecommunication networks
have achieved carrier-grade service availability by using
purpose-built hardware. In NFV, the purpose-built hardware

is replaced by COTS hardware, which is usually more error-
prone [4]. To achieve the same level of availability using
COTS, NFV needs to build the resilience into software [5].

Correlated failures / unavailabilities: Although most liter-
atures assume that failures are independent, correlated failures
or unavailabilities are often common in real systems [6],
[7]. For example, the failure of a node may result in the
unavailability of other nodes because of their structural depen-
dencies on this node [8]. The de-facto technique for boosting
availability is redundancy. However, redundancy may become
ineffective due to correlated failures or unavailabilities.

State management: A large number of NFs such as Deep
Packet Inspection (DPI) and Network Address Translator
(NAT) are stateful. Stateful NFs preserve service states, such
as, TCP connection state and the mapping between IP ad-
dresses about ongoing connections [9]. Typically, NFs need to
maintain 10-100s of state variables that are per-flow or shared
across flows [10]. Backup instances of stateful NFs need to
have updated state information to ensure successful failover
and service continuity [11], [12].

In this paper, we make a step forward towards carrier-
grade service provisioning in NFV, by proposing a novel
redundancy resource allocation scheme where two crucial
challenges are addressed. (1) One challenge is how to factor
the inherent network structural dependency among nodes into
redundancy resource allocation. (2) The other challenge is how
to efficiently place and allocate backup instances for service
chain of flows.

To tackle the first challenge, an algorithm that measures
the dependency among network nodes and identifies nodes
that have a high-level of structural correlation is proposed.
The dependency among nodes of a network is quantified by
using a centrality measure called node dependency index [13].
Here, there is an intuition, which is, a backup NF should not
be placed at a node that may also become unavailable when
the primary NF’s node fails. For the second challenge, an
optimization model that aims to efficiently place redundant
NFs and assign backup NFs to service chains of flows is
proposed. In this model, flows are assigned backup instances
following the 1 : m active-standby redundancy mode, with
which, every flow can tolerate the failure of any one of the
NF instances on the NF chain [11]. In addition, following
the intuition, redundant instances are not placed on backup
nodes that are structurally correlated with the primary nodes.
Furthermore, to efficiently utilize resources, backup NFs are
shared by flows and only the required number of instances are
created.

Most of the existing works on redundancy allocation in NFV



based networks focus on providing two-nines or three-nines
service availability [14], [15]. only a few consider carrier-grade
service availability [16], [17]. Both [16] and [17] allocate
only on-site redundancies. However, to guarantee carrier-
grade service availability it is important to also have backups
distributed geographically [4]. In addition, [17] considers only
the failure of the physical nodes while not the NF applications
and assumes that all nodes have the same availability, and [16]
focuses on the failure of VMs assuming similar availability and
failure independence between VMs.

Our proposed scheme differs from the existing works in
a number of ways. First, our scheme considers the effect of
network structural dependency. Second, it takes into account
both physical hardware failures and NF software failures with
different availability values. Third, it can be used to allocate
both on-site and off-site backups in an optimal way. Moreover,
in our proposed scheme, in addition to availability, delay
performance is also taken into consideration, such that the
delay that flows experience after failover can be kept within
the requirement of the flows.

The specific contributions in this paper include:
• An algorithm that identifies the set of nodes that have

strong structural correlation using a centrality measure
called node dependency index.

• A redundancy allocation scheme that finds the optimal
number and placement of backup nodes and NF instances
and assigns the instances to flows.

The paper is organized as follows. In Section II, the
system model is described. Section III discusses in brief
the node dependency index centrality measure. In Section
IV, the algorithm proposed for identifying the nodes that
have high-level of structural correlation is explained. The
proposed redundancy allocation scheme is presented in Section
V, followed by the results in Section VI. Finally, Section VII
presents the concluding remarks.

II. SYSTEM MODEL

The system considered is a network of nodes and links and
is represented as a graph G(N ,L), where N denotes the set
of nodes and L represents the set of links. Nodes hosting NFs
that are being utilized by the primary service chains of flows
are called primary nodes. Nodes that can be used for backup
are called backup nodes. B denotes the set of backup nodes
and P the set of primary nodes. Backup NFs are hosted on
backup nodes.

A node hosting backup instances can be a shared or ded-
icated backup node. A shared backup node is a node that is
being used both as primary and backup node. This type of
nodes reserve some resources to be used as backup while
hosting NFs that are utilized by the primary service chains.
Dedicated backup nodes are nodes that are used only to host
backup instances.

Each flow f is defined by a source and destination node
pair, which are respectively denoted as sf and df . The
service required by flow f is represented by a service chain,−→
S f = (S1

f , S
2
f . . . S

gf
f ). The service chain is an ordered series

of network functions, where S1
f is the first NF, S2

f is the second
NF needed and so on. It is assumed that a flow is already
assigned a primary service chain. The variable pf,g indicates
the primary node p that is serving flow f ’s gth service. A
backup instance of an NF of type v requires kv number of
cores and can be a backup to up to Cb

v number of flows. For
each flow f , there is an availability requirement on its service−→
S f , denoted as Af . A service

−→
S f is considered available

is either the primary or one of the backup service chains is
available.

III. STRUCTURAL DEPENDENCY MEASURES

The node dependency index DI(i|n) measures the average
level of dependency node i has on node n in connecting with
the other nodes of the network [13]. DI(i|n) is calculated from
the path dependency index DI(i→ j|n), which measures the
dependency the path between nodes i and j has on node n.
DI(i→ j|n) is defined as:

DI(i→ j|n) ≡
{
Iij − I−nij if A−nij = 1

1 if A−nij = 0,
(1)

where Iij is an information measure, which is equal to the
inverse of the shortest path distance hop counts, denoted as dij ,
between nodes i and j, i.e. Iij = 1/dij . I−nij is the information
measure between nodes i and j after the deactivation of node
n. The binary variable A−nij measures the availability: A−nij =
1 if node i can reach node j after the deactivation of node n
and zero otherwise. The node dependency index is defined as:

DI(i|n) = 1

N − 2

∑

j∈N−n/i 6=j

DI(i→ j|n). (2)

DI(i|n) measures the average dependency that node i has
on node n. DI(i|n) = 1 if node i cannot connect with the
other nodes, DI(i|n) = 0 if node i does not experience
any connectivity problem and 0 < DI(i|n) < 1, if node i
experiences connectivity problem but is still able to connect
to at least one other node, all after the failure of node n.

IV. STRUCTURALLY CORRELATED NODES

While failure independence is commonly assumed when
studying availability, recent studies have demonstrated the
existence of correlated failures and the pronounced effect of
geographical adjacency [7] [18], [19]. Nevertheless, it has
also been recognized that it is difficult to discover or predict
dependencies among failures [6], [7] [18], [19]. To tackle this
challenge, in this section, a novel approach is proposed to
identify nodes that are inherently correlated due to the network
structure. This information lays a foundation for the proposed
redundancy allocation scheme that will be detailed in Section
V.



A. Algorithm

The failure of a node may result in the unavailability of
other nodes. For example, in a data-center network, the failure
of a Top-of-Rack switch will result in the unavailability of all
the servers located in the same rack. The proposed algorithm
uses the node dependency index to measure the dependency
among nodes and identify the nodes that have high structural
correlation. From the definition of the node dependency index,
if node i has high-level of dependency on node n, the failure
of node n might result in the unavailability of node i.

Definition 1: Critical nodes of node i, denoted as C(i), are
nodes that node i is highly dependent on, where node i is said
to be highly dependent on node n if DI(i|n) is above a given
threshold tDI ,

C(i) = {n|DI(i|n) > tDI , n ∈ N}. (3)

If C(i) is empty, node i is independent of the other nodes of
the network so has no critical node. For example, in a fully
mesh network, all nodes are independent of each other as the
failure of one does not affect the connectivity of the others.

To find the set of nodes that have strong structural corre-
lation with a primary node i, some intuitive observations are
used which include:

First-level dependency

• Node i has a high probability of experiencing a correlated
failure with its critical nodes in C(i) as the failure of these
nodes might lead to the unavailability of node i. Thus,
node i should not use the nodes in C(i) as a backup.

• Node i should not also use as a backup those nodes that
depend on it highly. Since the failure of node i might
also result in the unavailability of these nodes.

In brief, a primary node i and its backup nodes should not
depend on each other. This can be regarded as the first-level
dependency among nodes.

Second-level dependency

• Node i should not use as a backup nodes that depend
heavily on its critical node. This is because if the un-
availability of node i is due to the failure of its critical
node, the other nodes that depend heavily on the critical
node might also be unavailable.

The algorithm for finding a set of nodes, B̂i, which are
structurally correlated with a primary node i is shown in
Algorithm 1. The algorithm starts by finding the critical nodes
of a primary node. The critical nodes of node i, C(i), are
inserted into the set B̂i. Then, nodes that have a high-level
of dependency on node i are included to the set B̂i (line 9).
For the second-level dependency, all the nodes that are highly
dependent on the critical nodes of node i will be included
to B̂i. The threshold, tDI , should be assigned values that are
between zero and one. If it is set to a very low value that
is close to zero, the set C(i) will include a large number of
network nodes. Therefore, it should be assigned a relatively
large or medium values such as 0.5.

Algorithm 1 Heuristic for finding structurally correlated nodes

1: G(N ,L)→ the network graph.
2: B̂i → set of nodes that are structurally correlated with

node i.
3: tDI → threshold for high dependency
4: for i ∈ N do
5: Find C(i) using tDI

6: Insert C(i) to B̂i
7: for j ∈ N /i do
8: if i ∈ C(j) then
9: Insert j to B̂i

10: if j ∈ C(i) then
11: for k ∈ N /i do
12: if j ∈ C(k) then
13: Insert k to B̂i
14: return B̂i

V. REDUNDANCY ALLOCATION SCHEME

Some of the features considered in the design of the
redundancy allocation scheme include:
• Correlated failures: To tolerate correlated failures caused

by network structural dependency, backup NFs of a flow
are not placed on nodes that are structurally correlated
with the primary nodes of the flow.

• State: Stateful NFs can have states that are per-flow
or shared across flows. Flows using the same primary
stateful NF instance will be assigned to the same backup
instance since they rely on a state shared among them.

• Delay vs utilization: To efficiently use network resources,
minimal number of backup instances are created. How-
ever, this can increase the end-to-end backup chain delay
of flows. To solve this problem, the scheme finds a
balance between minimizing the backup chain delay,
which is the delay flows will experience after failover,
and the resource utilization.

A. Formulation: All-One

The first model considered is the All-One model in which
all the services of a chain are assigned one backup that is a
1:1 active-standby mode. It is assumed that one backup node
will be used to backup all the NFs of a flow, later on this
assumption will be relaxed. The redundancy allocation is then
formulated as an Integer Linear Program (ILP).

The redundancy allocation has three main objectives: (I) to
minimize the number of backup instances created, (equation
(4)), (II) to minimize the number of backup nodes used,
(equation (5)), and (III) to minimize the backup chain delay,
(equation (6)).

minimize
∑

∀b∀v
zbv (4)

minimize
∑

∀b
qb (5)

minimize
∑

∀b∀f
(D(sf , b)i

b
f +D(b, df )i

b
f ) (6)



The weighted sum method is used to combine the three
objective functions into one by using equal unit weights. For
positive weights, the optimal solution of the single-objective
representation is also a Pareto optimal solution of the multi-
objective problem [20]. The All-One optimization model is
given us:

All-One:

min.
∑

∀b∀v
zbv +

∑

∀b
qb +

∑

∀b∀f
(D(sf , b)i

b
f +D(b, df )i

b
f ). (7)

s.t.

1− (1−
∑

∀b
ibf ∗Ab

gf∏

g=1,v=Sg
f

Av)(1−Ap
sf
) ≥ Af

,∀f : Ap
sf

< Af (8a)
∑

∀f,∀g/Sg
f=v

ybf,g ≤ Cb
v ,∀b, v (8b)

∑

∀v
zbv ∗ kv ≤ Kb ,∀b (8c)

ybf,g = 0, ,∀f, g ∈ {1..gf},∀b ∈ B̂p/p ∈ Pf (8d)

ybf,g = ybf ′,g′ ,∀f, f ′ ∈ F/pf,g = pf ′,g′ ,

Sg
f = Sg′

f ′ , T (S
g
f ) = 1,∀b, g, g′ (8e)

∑

∀b
ybf,g = 1 ,∀f : Ap

sf
< Af , g ∈ {1..gf} (8f)

∑

∀b
ibf = 1 ,∀f : Ap

sf
< Af (8g)

ybf,g ≤ zbv ,∀b, f, g ∈ {1..gf}, v = Sg
f (8h)

qb = max
v∈V

zbv ,∀b (8i)

ibf = ybf,g ,∀f, b, g ∈ {1..gf} (8j)

The constraints are classified into five group, which are
availability, capacity, correlated failure, state and assignment
constraints. Constraint (8a) belongs to the availability group
and ensures that flows’ availability requirement is fulfilled
by the primary and backup NFs assigned. Constraints (8b)
and (8c) are capacity constraints for the backup NF instances
and backup nodes respectively. For each flow, constraint (8d)
prohibits the usage of backup nodes that have high structural
correlation with the primary nodes of the flow. Constraint (8e)
is a state constraint, which makes sure that flows using the
same primary instance of a stateful NF are assigned to the
same backup instance.

The other constraints belong to the assignment group. All
the services of a flow have a backup (constraint (8f)) and
only one backup node hosts all the backup NFs of a flow
(constraint (8g)). A flow is mapped to a backup instance on
a given backup node only if the node is hosting the NF type
(Constraint (8h)). Constraint (8i) identifies backup nodes that
are hosting instances. A flow is assigned to a backup node only
if it is using backup instance hosted on the node (Constraint
(8j)).

TABLE I: Symbols used in formulation

Notation Meaning

Kb the number of cores available on backup
node b.

pf,g primary node p is used by flow f ’s gth

service.

D(p, b) the delay between nodes p and b.

Ab the probability that backup node b is avail-
able.

B̂p set of backup nodes that have high structural
correlation with node p.

kv the number of cores needed to instantiate
NF type v.

T (v) binary variable to show if NF type v is
stateful (T (v) = 1) or not (T (v) = 0).

Cb
v the maximum number of flows that an in-

stance of NF type v hosted on node b can
be a backup to.

Av the probability that the application software
of a network function of type v is available.

Af the availability requirement of flow f .

sf , df source and destination nodes of flow f
respectively.

−→
S f = (S1

f , S
2
f . . . S

gf
f ) service chain of flow f .

Ap
sf the availability of the primary service chain

of flow f .

Pf the set of primary nodes used by flow f .

Decision variables

ybf,g a binary decision variable, to indicate if
backup node b is used as a backup for flow
f ’s gth service.

zbv an integer decision variable to indicate the
number of backup instances of NF type v
hosted on backup node b.

ibf a binary variable that indicates if backup
node b is used by flow f or not.

qb a binary variable to indicate if backup node
b is hosting backup NF instances.

B. Formulation: All-Any

The “All-One” ILP model given above uses one backup
node to backup all the NFs of a flow. This constraint is relaxed
so that a flow can use one or more backup nodes. This model
will be referred as “All-Any” since all of the services of a
flow are backed up and a flow can use any number of backup
nodes. The objective function for minimizing the backup chain
delay needs to be modified as

All-Any:

minimize
∑

∀b∀f
(D(sf , b)y

b
f,1 +D(b, df )y

b
f,gf

+

gf−1∑

∀b′∈B,g=1

D(b, b
′
)ybf,g ∗ yb

′

f,g+1). (9)

Since a flow might use more than one backup node, the backup
chain delay will include the delay between the backup nodes.
All the constraints except three (8a, 8g and 8j) of the All-
One model will also be included in the All-Any model. The
three constraints will be replaced by constraints (10, 11 and
12) respectively.



1− (1−
∏

∀b
max(1− ibf , i

b
fA

b

gk∏

g=1

max(1− ybf,g, y
b
f,gAv)))

(1−Ap
sf
) ≥ Af ∀f : Ap

sf
< Af (10)

∑

∀b
ibf ≥ 1 ∀f : Ap

sf
< Af (11)

ibf = max
g

(ybf,g) ∀b,∀f : Ap
sf

< Af (12)

Constraint (10) guarantees that the availability requirement of
flows is satisfied by the primary and backup instances, which
might be hosted on different backup nodes. One or more
backup nodes are assigned to a flow (constraints (11)). A flow
is assigned a backup node provided that it is using atleast one
backup instance hosted on the node (constraint (12)). This
model is an Integer Non-linear Program (INLP) because of
the non linearity of equation (10). To decrease the complexity
of the model, the non-linear constraint is approximated by a
linear equation.

1) Linear approximation: The availability constraint is
approximated by a linear lower bound function.

Theorem 1. The probability that all E entities of a set E will
be available is lower bounded by 1−∑E

e=1 Ue, where every
entity e ∈ E fails independently with probability Ae and Ue

is the unavailability of entity e.

Proof: The probability that all the E entities will be
available (At) is a product of the availability of each of them.
That is

At =

E∏

e=1

Ae. (13)

By definition, the availability of entity e, Ae = 1−Ue, where
Ue is the unavailability of e. Thus,

At =

E∏

e=1

(1− Ue). (14)

By expanding the product,
E∏

e=1

(1− Ue) = 1−
E∑

e=1

Ue +

E−1∑

e=1

Ue ∗ Ue+1 + o(n), (15)

where o(n) represents the higher order terms. Usually, unavail-
ability U << 1 so the product and the higher order terms can
be ignored. We will then have

E∏

e=1

(1− Ue) ≥ 1−
E∑

i=1

Ue. (16)

As a result,

At ≥ 1−
E∑

e=1

Ue, (17)

which concludes the proof.
For example, if there are two entities with availability

A1 = 0.9 and A2 = 0.99, then At = 0.891. Using the linear
approximation, U1 = 0.1, U2 = 0.01, so At = 0.89. Thus, the

linear approximation is a lower bound to the actual availability
value. Applying this linear approximation, equation (10) can
be approximated by:

1− (1− (1−
∑

∀b
ibf (U

b +

gk∑

g=1

ybf,gUv)))(1−Ap
sf
)

≥ Af ,∀f : Ap
sf

< Af , (18)

where U b and Uv are the unavailabilities of backup node b and
backup NF v respectively. The lower bound approximation
is conservative so flows availability requirement will not be
violated. Equation (18) is not linear since it has a term that is
a product of two variables, ibf and ybf,g . Let variable rbf,g =

ibf ∗ ybf,g,

1− (1− (1−
∑

∀b
ibfU

b −
∑
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gk∑

g=1

rbf,gUv))(1−Ap
sf
)

≥ Af ,∀f : Ap
sf

< Af . (19)

Equation (19) is a linear equation of the variables ibf and rbf,g .
Thus, the non-linear inequality constraint in equation (10), can
be substituted by equation (19) and the constraint rbf,g = ibf ∗
ybf,g. However, since the variables ibf and ybf,g are binary, their
product can easily be linearized by substituting it with the
following linear equations,

rbf,g <= ibf

rbf,g <= ybf,g

rbf,g >= ibf + ybf,g − 1. (20)

Thus, the equivalent ILP model of the All-Any model will have
constraints (19) and (20) instead of the non-linear availability
constraint and all the other linear constraints of the All-Any
INLP model.

C. Allocating more than one backup chain

The All-One and All-Any models assign one backup for
each of the NFs of a flow’s service chain. However, to
guarantee the high availability of carrier-grade services, it
might be necessary to allocate more than one backup chain.
The following simple example is used to show case this.
Consider a flow that has two services long chain. The primary
chain of the flow is 90% available and the flow requires to
be 99.999% available. The backup nodes and NF applications
are 99% and 99.9% available respectively. Thus, after being
allocated backup instances that are hosted on the same backup
node, the flow will only be 99.88% (2’9s) available. Thus, a
second backup chain is needed to reach the required 99.999%
(5’9s) availability.

Algorithm for assigning more than one backup chain:
Backup instances are to be allocated for a set (F) of flows.
The proposed models assign one backup chain. More than
one backup chains are allocated to a flow sequentially one
after the other. That is the first backup chain is allocated and
if the availability requirement of the flow is not satisfied then



Fig. 1: GEANT network: Example of structurally correlated nodes

the second backup chain is assigned and so on. One problem
with using the models directly for assigning backup chains
sequentially is that if the availability requirement of a flow
f ∈ F cannot be satisfied by one backup chain, the models
will be infeasible. To solve this issue, for all of the flows in
the set, it is checked whether their availability requirement can
be satisfied while being assigned to the least available backup
node. If not, the availability requirement of the flow will be
downgraded to the next availability class, e.g., from 99.999%
to 99.99% or from 99.99% to 99.9%. The original availability
requirement of the flow is saved and the flow will be marked
as a flow that might need more than one backup.

Then, the first backup chain will be allocated by using the
models. The state of the network (including the placement of
backup instances and their capacity) will then be updated. If
the availability requirement of a flow is not satisfied by the first
backup chain, then the same process will be used to allocate
the second backup chain. Two variables are introduced to
transfer the state of the network between the different rounds
of backup chain allocations. These are oZb

v , the number of
backup instances of type v already created on node b, and
oCb

v , the currently available capacity of an existing instance
of type v hosted on node b. For this algorithm, in the models
zbv will be replaced by zbv + oZb

v and Cb
v will be replaced by

Cb
v + oCb

v . This is done to be able to use instances created
previously in the current round of the backup allocation.

In case it is not possible to allocate backups due to shortage
of resources, flows will be rejected. Resource shortage can
occur at any round of the backup chains assignment. For
example, when a flow is allocated a second backup chain.
In this case, the flow has already been assigned one backup
chain. However, the availability requirement of the flow is not
yet satisfied. In cases like this, the flow will be rejected and
the resources already assigned to it will be released to be used
by other flows.

VI. RESULTS

The performance of the proposed scheme is analyzed by
conducting a number of experiments. The models are solved
by using a commercial solver, CPLEX, together with Matlab
for transferring updated network state information between
different rounds. The GEANT network, Fig. 1, which is the
pan-European research and education network, is used as a
test network topology [21].
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Fig. 2: Effect of not considering structural correlation: CDF of the unavailability

Eight nodes of the network are chosen to be the
ingress/egress nodes. The ingress/egress nodes are a bottleneck
for achieving high availability since the failure of one of them
leads to service unavailability for customers using it. To avoid
this, these nodes are paired to provide “dual homing”, whereby
one node is a backup for the other and vice versa. Twenty-
two nodes of the network are assumed to be backup nodes
(in shared or dedicated mode). Each backup node has 4 CPU
cores to be used by the backup instances it hosts. The rest
of the nodes are dedicated primary nodes. The availability
of the nodes is assumed to be uniformly distributed between
0.99 − 0.999, whereas NF instances have an availability
between 0.999− 0.9999 and an NF instance can be a backup
for up to 10 flows.

Flows are assumed to require a service chain that is com-
posed of two NFs. NFs of a chain are randomly chosen out of
the set of five services, which are Firewall, DPI, IDS, Proxy,
NAT. Flows are assigned primary chains by using ClusPR
algorithm [2]. The availability requirement of a flow is selected
from the set {0.999, 0.9999, 0.99999}.

A. Structurally correlated nodes

Example of nodes that have high structural correlation,
which are identified by the proposed algorithm are highlighted
in Fig. 1. Nodes 2-4 have a high probability of experiencing a
correlated failure with node 5 due to their dependencies. This
is because, the failure of node 5 will lead to the unavailability
of these nodes as well.

1) Effect of not considering structural correlation: In this
section, a simple experiment is carried out to showcase the
effect of not considering the structural correlation among
nodes in the backup instance placement decision making. The
baseline algorithm from [16] is used to decide the number of
backup instances needed. It is assumed that the availability of
a node is 0.999 (3’9s). According to the baseline algorithm,
theoretically, one backup for each of the NFs is enough to
meet the 99.999% availability requirement of a single service
function chain containing two NFs. The primary and backup
NF host nodes of a chain are randomly chosen from the
network. When structural correlation is considered, the backup
nodes of a chain will not have strong correlation with the
primary nodes.

The availability of 100 flows is measured by conducting ten
million simulation runs. In each simulation run, the state of
each node, i.e., failed (0) or up (1), is randomly generated
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Fig. 4: “High-end” vs “Low-end”: Number of backup NF instances created and backup nodes used (a), total cost for achieving 5’9s (b), total cost for 200 flows (c).

from Bernoulli distribution using the node’s availability. The
network is then updated considering the nodes state. Finally,
the availability of the backup and primary chains is checked
by verifying the availability of the host nodes of the chain’s
NFs and the path between them. The chain is said to available
if either the primary or backup chain is available. A CDF
of the unavailability of the 100 flows is shown in Fig. 2.
When structural correlation is not considered around 10% of
the flows have low availability, 3’9s and 2’9s.

B. Resource utilization

The number of backup instances created and nodes utilized
for fulfilling the availability requirements of 200 flows for
different availability requirements are shown in Fig. 3a and
3b respectively.

When the flows have 99.9% availability requirement, 42
backup instances are created and 11 backup nodes are used
to host the instances by both All-Any and All-One models.
The availability requirement of all of the flows is able to be
fulfilled with 1:1 active-standby backup for each of the NFs
of a chain. When the availability requirement of the flows
increases to 99.99%, 49 backup instances are created by the
All-Any model and 59 by the All-One model. For some of
the flows, 1:1 active-standby was not enough to reach to the
required availability therefore, a 1:2 active-standby, where one
NF of a chain has two backup instances, is required. As a
result, more backup instances are created. When comparing
the two models, the All-One model created more instances
than the All-Any model. This is because of the All-One
model’s constraint that forces a flow to use backup instances
hosted only on the same node. For achieving 5’9s (99.999%)
availability, most of the flows need 1:2 backup protection.

C. Effect of the type of backup nodes

In this section, the effect of using highly available COTS
servers versus COTS with lower availability, referred to as
“High-end” and “Low-end” respectively is analyzed. The
“High-end” servers are assumed to be 99.9% available and
the “Low-end’ servers 99% available. The relative importance
between the cost of installation of host server hardware and
the cost of installation of the network function software license
is chosen to be 100:10 for “Low-end” servers as in [22]. For
the “High-end” servers, the cost is 200:10 if the “High-end”
servers are twice (2×) more expensive, and 300:10 if they are
3× more expensive compared to the “Low-end”.

Figure 4a and 4b show the number of backup instances
created, nodes utilized and the total cost for fulfilling 99.999%
availability requirement of different number of flows. For
the “Low-end” servers, 1:2 backup have to be applied to
reach the 5’9s requirement. Using the “High-end” servers,
the availability requirement is fulfilled with 1:1 active-standby
redundancy. Therefore, fewer backup instances are created
when using “High-end” servers. However, the “High-end”
servers are more expensive than the “Low-end” servers. The
total cost spent for fulfilling the availability requirement of
the flows depends on the relative cost of the servers. It is
more economical to use “High-end” servers if their cost is
not more than 2× the cost of the “Low-end” servers. If the
cost of installation of the “High-end” servers is 3× or more
compared to the “Low-end” servers, the total cost spent will
be more than that spent using the “Low-end” servers.

Figure 4c shows the total cost for serving 200 flows
when their availability requirement changes. The 1:1 active-
standby protection is enough for meeting the 99.9% avail-



TABLE II: Effect of including delay in the objective function

Objective Average
delay (hops)

Worst-case
delay (hops)

# Backup
instances

Without delay 4.68 12 12

With delay 0.44 2 15

ability requirement. Thus, it is economical to use the “Low-
end” servers. For both 99.99% and 99.999%, if the “High-
end” servers are 2× more expensive or less, then it is more
economical to use the “High-end” servers.

D. Effect of minimizing the backup chain delay

The backup chain delay, in terms of number of hops,
observed when the objective includes minimizing the end-to-
end delay and the amount of resources used is compared with
the case when the objective is only to minimize the resources
used (i.e., instances created and nodes utilized).

Table II shows the results of the comparison for 50 flows
that have 99.9% availability requirement. When the objective
is to minimize the resource utilization, 12 instances are cre-
ated. Compared to the primary chain, the backup chain delay
is 4.68 hops longer on average. In the worst case, a flow’s
backup chain is 12 hops longer than its primary one. When
the objective function is to minimize both the total backup
chain delay and the resource utilization, the average backup
chain delay is only 0.44 hop counts longer and the worst-
case observed delay is 2 hops longer. In this case, 15 backup
instances are created.

VII. CONCLUSION

In this paper, a redundancy resource allocation scheme
that tolerates correlated failures caused by network structural
dependency is proposed. The scheme identifies the sets of
nodes that have strong structural correlation using a novel al-
gorithm that is based on the node dependency index centrality
measure. The experimental results demonstrate that not taking
into account the structural correlation among nodes in backup
instances placement decision making considerably affects the
availability of flows. The results also give insights into the
trade-off between cost and system performance.
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Abstract—An appealing feature of Network Function Virtu-
alization (NFV) is that in an NFV-based network, a network
function (NF) instance may be placed at any node. This, on the
one hand, offers great flexibility in redundancy allocation; on
the other hand, it makes the allocation a unique and difficult
challenge. One particular highlight is that there is inherent
correlation among nodes due to the structure of the network,
implying that special care is needed. To this aim, a novel
approach, called CoShare, is proposed. Originally, its design takes
into consideration the effect of network structural dependency. In
addition, to efficiently make use of resources, CoShare proposes
the idea of shared reservation, where multiple flows may be
allowed to share the same reserved backup capacity at an NF
instance. Furthermore, CoShare factors in the heterogeneity in
nodes, NF instances and availability requirements of flows in the
design. The results from a number of experiments conducted us-
ing realistic network topologies show that CoShare is able to meet
diverse availability requirements in a resource-efficient manner,
requiring less resource overbuild than using the idea of dedicated
reservation commonly adopted for redundancy allocation in NFV.

I. INTRODUCTION

Network softwarization is transforming how networks are
designed and operated to deliver specialized / innovative ser-
vices and applications. Network Function Virtualization (NFV)
has emerged as the key driver of network softwarization,
promising, among other aspects, full network automation,
flexible service provisioning, and cost reduction [1]. NFV is
also considered as a key enabler for the new generation of
communication networks such as 5G cellular networks [2]
where carrier-grade services are demanded. However, the suc-
cessful adoption of NFV in production networks is associated
with new challenges. One of them is to ensure high availability
of services provided by an NFV-based network [3]–[5].

The “de-facto” technique for an NFV-enabled network to
achieve high availability for its services is through allocation
of redundant / backup network function (NF) resources to
compensate for the failures of primary NFs [3]. It has been
shown that merely provisioning primary NF service chains
is insufficient to meet the high-availability, carrier-grade, re-
quirements for services [6], [7]. In different virtualization
technologies considered so far, redundancy is provided in the
form of hot-standby replicas of NF instances. Typical solutions
such as VMware Fault Tolerance [8] and the more recent
NFV system-level framework [9] envision the instantiation
of a dedicated backup instance, which runs on a separate
node. However, such solutions can be resource inefficient, as
each NF requires at least two instances (one primary and one

backup). In addition, the protection is at the instance or node
level, while the services provided by NFV-based networks are
typically at the flow level in the form of network function (NF)
chains.

Recent work on meeting the service availability require-
ments at the NF chain level in NFV include [10]–[13].
However, as discussed in Sec. VII in more detail, the ex-
isting results are typically obtained under restrictive setups
or assumptions, e.g., hosting backup instances of a service
chain on the same node or having dedicated capacity reserved
for the backup instances. In addition, a unique characteristic
of NFV is that an NF instance may be hosted at any node
in the network. This appealing characteristic offers additional
flexibility in redundancy allocation in NFV, i.e., the ability to
decide where to place the backup instances, in addition to how
to assign backup instances to form backup service chains for
flows [14], [15]. However, previous work has focused mainly
on how to assign backup instances, without considering where
to place the backup instance. More importantly, the problem
of jointly considering both has not been considered.

Furthermore, a fundamental piece of information of the
network, which is its topology or structure, is not leveraged,
ignoring its potentially significant impact on redundancy al-
location in NFV. In particular, the failure of a critical node
can cause difficulty for the other nodes to reach each other
due to the structure of the network [16]. As a consequence,
such inherent dependencies, called network structural depen-
dencies [17], [18], among nodes imply that the impact of one
node’s failure on the services provided by the network may
significantly differ from that of another node’s failure.

In this paper, a novel redundancy allocation approach for
NFV-based networks, called CoShare, is proposed. The con-
tributions of CoShare are several-fold. First, CoShare explores
the flexibility offered by the unique characteristic of NFV,
assigning backup NF instances to nodes meticulously in
order to avoid the potential concurrent unavailability of the
primary and backup service chains due to correlated failures
caused by network structural dependencies. For this purpose,
the information centrality measure called node dependency
index [17], [19] is exploited to identify correlation among
nodes (Cf. Sec. III). The correlation information identified is
made use of in both backup instance placement (§ IV-B) and
assignment (§ V-A). To the best of our knowledge, CoShare
is the first redundancy allocation approach for NFV-based
networks, which explicitly considers the network structure-



caused correlation among nodes in the design.
In addition, CoShare proposes to improve resource uti-

lization efficiency by exploiting shared reservation, where
multiple service chains that are not susceptible to simultaneous
service interruption are allowed to share the same reserved
backup capacity of an NF instance. In the literature, the general
idea of sharing backup resources has long been exploited for
backup allocation to improve resource utilization in various
types of networks, e.g. MPLS, IP, and optical mesh net-
works [20]–[24]. However, there is a fundamental difference.
In traditional network settings, the locations of the backup
resources are typically fixed in the network, while in an NFV-
based network, owing to the flexibility offered by NFV, they
cannot or need not be assumed a priori. In other words,
the placement of backup NF instances can have a significant
impact on the decision of how they can be shared, making the
problem new and challenging. Moreover, CoShare takes into
account the heterogeneity in the availability requirement across
flows in allocating back up NF resources, together with the
node heterogeneity in supporting NFs, where the heterogeneity
in node and instance availability levels is also considered.

In brief, CoShare places backup NF instances and assigns
them to form backup service chains to meet diverse availability
requirements of flows by jointly considering the network
structural dependency-caused impact (Sec. III, Sec. IV-B,
Sec. V-A), the heterogeneity in nodes, instances and avail-
ability requirements (Sec. IV-B, Sec. V-A), and the efficiency
in resource utilization (Sec. V-C). The main contributions of
this paper are summarized as follows:

• A novel redundancy allocation approach for NFV, called
CoShare, is proposed, where an information centrality
measure is exploited to identify the inherent correlation
among nodes due to the structure of the network (§ III),
based on which, backup NF instances are placed (§ IV-B)
and assigned (§ V-A) to form the backup NF chains.

• The proposed heuristics of CoShare adopts a new idea,
referred to as NF shared reservation, to achieve higher
efficiency in resource utilization (§ V-C). Specifically,
under this idea, independent flows with disjoint primary
service chains are allowed to share common reserved
capacity at an NF instance for fault-tolerance purpose.

• The placement and assignment of NF instances take
into account the heterogeneity of nodes, instances, and
required service availability levels in deciding where to
place backup NF instances (§ IV-B) and how to assign
NF instances to form the backup chains (§ V-A).

The remainder is organized as follows. In Sec. II, the
system model and the redundancy allocation problem are
described. Sec. III introduces the node dependency index
and describes how to identify the network structure-caused
correlation among nodes. In Sec. IV, the idea for placement
of backup NF instances is presented. In Sec. V, the proposed
NF instance assignment scheme is explained. Sec. VI presents
the results. The related work is discussed in Sec. VII. Finally,
concluding remarks are made in Sec. VIII.

II. THE SYSTEM MODEL AND PROBLEM DEFINITION

A. The Network Model

We consider the services provided by an NFV-based net-
work, with the network represented as an undirected connected
graph G(N ,L), where N denotes the set of nodes and L the
set of links. Each flow f has a source (sf ) and a destination
(df ), and has a traffic rate denoted as λf in packets per second
(pps). The flow f is identified by the source-destination pair
(sf , df ), where sf and df are in N . We call such source
and destination nodes “end nodes” in this paper and assume
that the end nodes are not involved in hosting NF instances.
Each of the other nodes may have multiple CPU cores to host
NF instances. An NF instance can be hosted on any node in
N , which is not a source or destination of a flow, and has
enough available resources. Keeping with typical deployment
approaches [25], [26], we assume that a CPU core, if allocated,
is dedicated to a single NF instance. An NF instance may be
allocated one or more CPU cores.

The network service provided to flow f is represented by an
NF chain

−→
S f , i.e., a set of network functions (S1

f , S
2
f . . . S

gf
f )

that are performed in the specified order, where gf denotes the
service chain length. An NF instance v is assumed to require
kv number of cores and has µv processing capacity (i.e., the
amount of traffic the instance can process per unit time). An
NF instance may process multiple flows whose service chains
include that corresponding NF. It is required that

∑
f∈Fv λf ≤

µv , where Fv denotes the set of flows processed by v.
It is assumed that for each flow, its service chain has already

been allocated using an NFV resource allocation algorithm,
e.g., ClusPR [26], where, however, the availability aspect of
the service has not been taken into account. We term this
allocated service chain as the primary chain of the flow.

B. The Availability Model

The network service provided to each flow f has an
availability requirement Arf . For practical reasons, the failure
impact of the flow’s source and destination nodes is excluded.
In addition, to simplify the representation and analysis, we
focus on the impact of (hardware) node and (software) NF
instance failures on the availability, and assume that nodes
and instances fail independently. Without loss of generality,
we classify flows according to their availability requirements,
and within each class c, the availability requirement is the
same, denoted as Ac. Reflecting the typical classification of
availability requirements, as seen in the specification by the
European Telecommunication Standard Institute (ETSI) [27],
we consider three levels of service availability with regard to
NFV resiliency (unless specified otherwise).

We are interested in meeting the availability requirements
of flows through redundancy, by allocating additional NF in-
stances. More specifically, if the primary chain cannot provide
the required Arf , backup chain(s) are created to improve the
availability level of the service and meet the requirement. The
service to a flow is considered available if either the primary
or one of the backup service chains is available.



Let An denote the availability of node n, and Av the
availability of NF instance v. For the primary chain pf of
flow f , we use Apf to denote its availability. For a backup
chain b, its availability, denoted as Abf , is calculated as:

Abf =

gf∏

g=1

Av(g)
∏

n∈N b(f)

An (1)

where N b(f)(⊂ N ) denotes the set of nodes that host NF
instances of the backup chain b, and v(g) the instance on b for
the g-th NF of the service chain. The availability of the primary
chain is computed in a similar manner. If the backup chains
and the primary chain are independent, the overall service
availability Af is given by a parallel combination:

Af = 1− (1−Apf )
hf∏

i=1

(1−Abif ) (2)

where hf denotes the number of backup chains used.

C. The Redundancy Allocation Problem
For an NFV-based network, the redundancy allocation prob-

lem has three aspects to consider, which are,
• (C1) Deciding the number of backup instance for each

NF: The needed number for each NF depends on the
availability requirements of flows, the availability and
capacity characteristics of both the nodes and the NF
instances, as well as the topology of the network. When
the availability requirements are stringent while nodes
and/or NF instances have low availability values, more
than one backup chain may have to be allocated [7], [28].

• (C2) Placing the backup instances: Similarly, the place-
ment of backup instances is also influenced by the same
factors. For example, the placement of a backup instance
should not only comply to anti-affinity constraints [3] to
avoid common failure modes, but it should also take into
account the node’s resource capabilities: placing a backup
instance in a given node may happen only if the node has
sufficient resources, e.g., CPU cores.

• (C3) Assigning instances to form backup chains for
flows: This concerns the assignment of instances to each
flow to form backup service chains to meet the flow’s
availability requirement. Similar considerations apply. For
instance, a flow can be assigned backup instances only
if those instances have sufficient resource capacity to
accommodate the flow.

The three considerations discussed above are entangled, and
together with the special NFV characteristic that any node
may host instances of any NF, makes redundancy allocation in
NFV both unique and challenging. To have a better overview
of the problem and to achieve efficient resource utilization
while providing redundancy allocation, we formulate it as an
optimization problem as follows:

Given: G(N ,L)
Minimize∀(β,α) Nv(β, α), ∀v ∈ V (3)

Such that Af (β, α) ≥ Arf , ∀f

where β and α respectively denote the adopted NF backup
instance placement and assignment strategies, V is the set of
NFs involved in providing the services, Nv(β, α) denotes the
number of instances of NF v and Af (β, α) is the achieved
availability for flow f , under the strategies β and α.

For simplicity, only the topology and the availability condi-
tions / constraints are included in (3). In our earlier work [29],
a more complete version of the problem including the con-
straints can be found. In addition, an Integer Linear Program
(ILP) model has been developed in [29] to solve the problem.
However, the complexity of the problem is formidable, since
it is an NP-hard problem as implied in the formulation (see
[12], [30] for additional instances). As a consequence, when
the network is large, solving the problem optimally in limited
time is difficult. For this reason, a heuristic approach, called
CoShare, is proposed in this paper to address (C1) – (C3). The
heuristic is introduced in detail in Sec. IV and Sec. V.

It is worth highlighting that redundancy allocation for a
backup chain should try to avoid sharing risk of failures with
the primary service chain, i.e., the failure of any primary
instance or its hosting node should have minimal impact on
the backup service chain. This is crucial and is also the basis
for applying (1) and (2). However, even though the nodes and
instances may be independent as individual systems, they are
inherently correlated due to network structural dependence:
the failure of one node may cause the unreachability of
other nodes if these nodes have strong network structural
dependency with the failed node (Cf. Sec. III). A novel idea
of CoShare is to explicitly take into account the inherent
correlation due to the network topology in the redundancy
allocation problem (3).

III. IDENTIFYING CORRELATION AMONG NODES DUE TO
NETWORK STRUCTURAL DEPENDENCE

A. Network Structural Dependency Measure

The inherent structural dependencies among nodes imply
that the impact of one node’s failure on the services provided
by the network may significantly differ from the failure of
another node. To reflect this difference, several measures
have been proposed in the literature [17], [19]. For the NFV
redundancy allocation problem, a key is to choose the proper
nodes to place the backup instances. To this aim, the node
dependency index [17], [19] is adopted.

The node dependency index DI(i|n) measures the average
level of dependency that node i has on node n in connecting
to the other nodes of the network [17]. Specifically, DI(i|n)
is calculated from the path dependency index DI(i → j|n),
which measures the dependency that the path between nodes
i and j has on node n. DI(i→ j|n) is defined as

DI(i→ j|n) ≡
{
Iij − I−nij if A−nij = 1

1 if A−nij = 0,
(4)



where Iij and I−nij are the information measures between
nodes i and j before and after the deactivation of node n
[31]. Specifically, they are defined as:

Iij = 1/dij ; I−nij = 1/d−nij

with dij and d−nij denoting, respectively, the length, in terms of
hop count, of the shortest path between nodes i and j before
and after the disabling of node n [31]. The binary variable
A−nij measures the reachability of node j from node i given
that node n has failed: A−nij = 1 if node i can reach node j
after the deactivation of node n and 0 otherwise.

The node dependency index is defined as [17] 1:

DI(i|n) = 1

N − 2

∑

j∈N−n/i6=j
DI(i→ j|n). (5)

where N−n = N − {n}, i.e. the set of nodes excluding n.
It can be verified: 0 ≤ DI(i|n) ≤ 1. For the two extreme

cases, DI(i|n) = 0 tells that i does not experience connec-
tivity problem with removal of n, while DI(i|n) = 1 implies
that i is unable to connect with any of the other nodes after
n’s failure. Fundamentally, a higher DI(i|n) value indicates
higher dependence of i on n due to the network structure.

Remark: It is intuitive that a longer path with more network
elements on the path is subject more to unavailability than a
shorter path with fewer elements. This intuition motivates us
to use (4) as the basis to measure how the reachability between
two nodes depends on another node. Essentially, DI(i→ j|n)
quantifies the extent that this reachability from i to j is affected
by the failure of node n, and hence the extent that i → j
depends on n. Note that, except for (4), the other ideas of
CoShare do not rely on the specific definition of DI(i→ j|n),
and hence could be readily applicable when other definitions
for DI(i→ j|n) are preferred.

B. Network-Structurally Correlated Nodes

As discussed above, even though individual nodes may fail
independently, such a failure can affect the communication of
other nodes in the network due to the inherent network struc-
tural dependence. From the definition of the node dependency
index, i.e., (5), if node i has a higher-level dependency on
node n, the failure of node n will result in greater difficulty
for node i to reach the other nodes in the network.

We introduce C(i) as the set of critical nodes of node i
which node i highly depends on. Node i is said to highly
depend on a node n ∈ C(i), or in other words, n is critical to
i, if DI(i|n) is above a given threshold tDI :

C(i) = {n | DI(i|n) > tDI , n ∈ N−i} (6)

If C(i) is empty, it means that i is not highly dependent
on the other nodes. For example, in a full mesh network, all
nodes are structurally independent of each other as the failure
of one node does not affect the connectivity among the others.

1In [17], N−1 is used in the denominator, but since there are only N−2
choices for j ∈ N−n/i 6= j, the more intuitive N − 2 is adopted in (5).
Note that, this change does not affect the resulting ranking of nodes.

nij

k

Fig. 1: Network-structurally correlated nodes with node i

Algorithm 1 Finding network-structurally correlated nodes
Input: G(N ,L), tDI
Output: B̂i

1: Find C(i) using (6)
2: Insert C(i) to B̂i
3: for j ∈ N−i do
4: if i ∈ C(j) then
5: Insert j to B̂i
6: if j ∈ C(i) then
7: for k ∈ N−j do
8: if j ∈ C(k) then
9: Insert k to B̂i

10: return B̂i

It is worth highlighting that the network structural depen-
dence relation between two nodes, i and j, has two directions,
i.e., DI(i|j) – dependence of i on j and DI(j|i) – that of j
on i. As a consequence, to minimize the influence of network
structure-caused correlation, such that node i can be used as
a backup for node j and vice versa, we should avoid j ∈ C(i)
or i ∈ C(j). We call this the first-level dependency among
nodes. To elaborate, Fig. 1 shows an example, where nodes n
and j have first-level dependency with node i. In particular,
while n ∈ C(i) is critical to i, j is network-structurally highly
dependent on i, i.e., i ∈ C(j).

In addition, as easily seen in Fig. 1, a critical node n of
i may also be critical to another node k i.e., n ∈ C(i) and
n ∈ C(k). In this case, both nodes i and k depend on the same
node n. As a result, the failure of such a critical node, e.g.
n, may result in the unavailability of those nodes that depend
on it, e.g., i and k, hence presenting a structural correlation
that we refer to as the second-level dependency among nodes.
An implication of this is that: we should avoid using k as a
backup for node i, even though k is not in C(i).

Based on the above analysis, Algorithm 1 presents the
pseudo code of the algorithm for finding the set of nodes,
denoted as B̂i, which are network-structurally correlated with
node i. B̂i is initially empty, the algorithm starts by finding
the set of nodes based on the first-level dependency in both
directions (Lines 1-2 and Lines 3-5 respectively). Then, nodes
that have the second-level of dependency described above are
added (Lines 6-9).



IV. PLACEMENT OF BACKUP NF INSTANCES

This section focuses on estimating the needed numbers of
backup NF instances and deciding where to place them. Orig-
inally, we take network structural dependence into account.

A. Estimating Numbers of Backup NF Instances
The number of backup instances for each NF, needed to

satisfy the service availability requirements of flows, is influ-
enced by several factors, such as the availability and length of
the primary chains and the availability and capacity of the NF
instances, in addition to their availability requirements. In ad-
dition, flows with higher availability requirements might need
more than one backup chain while lower service availability
requirements may be fulfilled with only one backup chain [7],
[29], [32]. Further due to the heterogeneity in node availability,
instance availability, and service availability requirements of
flows, finding the needed numbers of backup NF instances
is not trivial. In CoShare, we use the following approach to
estimate such numbers.

Specifically, we first estimate the number of backup chains
needed to fulfill the availability requirement of flows in each
class, based on which, the number of needed backup instances
is then calculated. For the former, the estimation assumes that
each NF instance is hosted at a different node and the backup
chains and the primary chain are node disjoined. Then, the
number of needed backup chains for a flow in class c, denoted
as hc, is estimated as:

hc = min
x∈Z+

{x|1− (1− min
f∈Fc

Apf )(1− Ãbc)x ≥ Arc} (7)

with
Ãbc = ( min

n∈N b
Anmin

v∈V
Av)

g

where Fc represents the set of flows in class c, Apf the
availability of flow f provided by the primary chain, and Arc
the availability requirement for flows in class c. Ãbc may be
interpreted as the availability of a backup chain for a class c
flow, where N b ⊂ N denotes the set of nodes that have the
capacity to host backup NF instances, V the set of NFs, An
the availability of a node n, Av the availability of an instance
of NF v, g the maximum NF chain length of flows in the
availability requirement class c. Since to satisfy the required
availability more than one backup chain may be required, hc
is estimated from (7), taking into account the parallel effect
of these backup chains.

Next, the number of backup instances of each NF v, denoted
as zv , which are needed to fulfill the service availability
requirements of all related flows, is calculated as

zv =
∑

c

zv(c) (8)

where zv(c) denotes the number of backup instances of NF
v which are needed for related flows in class c and is simply
estimated from, assuming that all flows in the class require hc
number of backup chains:

zv(c) = hcd
∑
f∈Fc/v∈

−→
S f

λf

µv
e (9)

Note that, the estimation (7) has adopted conservative as-
sumptions, e.g. NFs of a chain are hosted at different nodes, to
get (7). In comparison with the literature approaches in [10]–
[13], they may instead assume instances for the same NF chain
to be hosted at the same backup node. In addition, with the
estimation (8), it can be expected that the estimated numbers of
backup instances are higher than the optimal numbers needed
to fulfill the availability requirements of flows. However, we
highlight that, the numbers from (8) are only “rough” estimates
as the starting point. By setting the objective in assigning
them to form backup chains to be maximizing the utilization
of the backup instances (cf, Sec. V), the actually used and
hence needed numbers of backup instances can be significantly
reduced (cf, Sec. VI-C1).

B. Placement of the Backup Instances

After the numbers of backup instances are estimated,
CoShare places them on nodes. The heuristic is presented
in Algorithm 2. The placement is made by performing bin-
packing [33] of the NF instances on the nodes, where the
network structural correlation among nodes, the heterogeneity
in the availability level of nodes and NF instances, and in the
availability requirements of flows, and the number of backup
instances for each NF, are particularly taken into consideration.

On the node side for bin-packing, nodes are categorized and
prioritized. Specifically, to avoid simultaneous unavailability
of the primary and backup chains, it is intuitive that the NFs of
a backup chain for a flow should avoid being hosted on those
nodes that are “critically” correlated with the nodes hosting
the primary NF chain of the flow. To this aim, based on the
structural correlation information input, B̂n, from Algorithm 1,
nodes are categorized into two sets, Q′n(c) and Q′′n(c), where
the former represents the set of nodes that are not structure-
critically correlated with the primary nodes of flows in class c,
and the latter the rest. In the placement or bin-packing, as the
intuition indicates, nodes in Q′′n(c) are considered only after
nodes in Q′n(c) have been exhausted (Lines 5 - 8).

In addition, nodes may have different availability levels,
e.g., high-end nodes having 99.9% availability or higher while
low-end nodes having 99% availability or lower. In [29],
it is shown that for the low availability requirement class,
it is more cost-efficient to use the low-end nodes. While
for the medium and high availability requirement classes,
using high-end nodes is preferable as this will lead to the
use of fewer backup instances and nodes. Considering these,
CoShare prioritizes nodes based on their availability levels.
This prioritization is translated into the sorting of nodes (Lines
3 and 4), before the bin-packing is performed.

On the instance side for bin-packing, prioritization is also
performed. Specifically, NF type that has greater number of
backup instances to be placed is given higher priority to be
placed. The underlying intuition is, the estimate (9) implies
that more flows require this NF and its backup instances
to achieve their availability requirements. Hence, giving it
priority will more likely accommodate a higher number of



Algorithm 2 CoShare’s Placement Heuristic
Definitions:
N c ← set of nodes hosting primary instances of class c flows
Q′n(c)← priority queue of structurally uncorrelated candidate backup nodes
Q′′n(c)← priority queue of the other candidate backup nodes, i.e., N−Q′n(c)

Qv(c)← priority queue of all NF types v to be placed for each class c
zv(c)← number of instances of NF type v to be placed for class c

Input: G(N ,L), B̂sn = N−B̂n complement of set B̂n (from Algorithm 1)
Output: Placement of backup instances on nodes
Initialize:
ActiveNode← null

1: Qv(c) = sort zv(c) in descending order
2: for each class c do
3: Q′n(c) =

⋂
n∈Nc B̂sn sorted based on node availability

4: Q′′n(c) = N−Q′n(c) sorted based on node availability
5: if Q′n(c) is not empty then
6: ActiveNode← top of Q′n(c)
7: else
8: ActiveNode← top of Q′′n(c)
9: while Qv(c) not empty do

10: v ← NF type from top of Qv(c) with zv(c) > 0
11: while Q′n(c) and Q′′n(c) not empty do
12: if ActiveNode has capacity then
13: Place v on the ActiveNode
14: zv(c) = zv(c)− 1
15: v ← next NF type from top of Qv(c)
16: else
17: Remove ActiveNode from Q′n(c) or Q′′n(c)
18: if Q′n(c) is not empty then
19: ActiveNode← top of Q′n(c)
20: else
21: ActiveNode← top of Q′′n(c)

flows [26]. This prioritization is reflected in sorting the NF
instances based on their numbers (Line 1).

Finally, the placement is completed by bin-packing the
backup instances onto the nodes, based on the prioritiza-
tion introduced above. Specifically the top-prioritized node
is checked for its capacity. If it has enough capacity, the
NF instance with the highest priority is placed on it. If not,
the next prioritized node is checked for possible placement
of this instance (Lines 9-21). As a highlight, a node may
have capacity to host multiple NF instances. In such a case,
CoShare diversifies the types of instances placed on the node.
The underlying intuition is that, the backup chain delay is
minimized if all its NFs are hosted on the same node, and
placing instances of different types on one node increases this
chance. This is reflected by Lines 13-15 in Algorithm 2, where
after placing a given NF type on a node, the next NF type
from queue Qv(c) is chosen to be placed on the same node
instead of another instance of the same type. This procedure
is repeated until all the instances are placed or all the backup
resources are utilized.

V. ASSIGNMENT OF NF INSTANCES TO FLOWS

The goal of redundancy allocation in NFV is to achieve
the desired availability levels for flows. To this aim, having
estimated the needed backup instances for each NF and
decided where to place them in Sec. IV, CoShare assigns NF
instances to flows to form backup chains for them so as to
meet their availability requirements, which is the focus of this
section.

A. Feasible NF Instance Set for Assignment

Note that every backup service chain of a flow must include
all the NFs ordered in the same way as the primary chain.
However, for every NF, it may have multiple instances. This
subsection is devoted to identifying a set of such instances,
called the “feasible set”, which are considered for the assign-
ment in CoShare. By feasible set, it is meant that with the
backup chain formed by any combination of related instances
in the set, the flow’s availability requirement can be met.

It is obvious that any instance without enough capacity to
accommodate the flow should not be included in the feasible
set. In addition, as discussed in Sec. III, an NF instance whose
hosting node has critical structural correlation with a node of
the primary chain (C.f. Algorithm 1) should not be included
in the feasible set either. Let ĨSg

f
, g = 1, . . . , gf denote the

resultant instance set of each NF Sgf of the flow.
Since each instance and the hosting node have implicit

availability levels, this information can be made use of to
find the feasible set. In particular, for one backup chain, the
best availability range, which can be achieved, is between
(MIN,MAX) which are calculated as

MIN = min
v(g)∈ĨSg

f
,∀g

1− (1−Apf )(1−Abf ) (10)

MAX = max
v(g)∈ĨSg

f
,∀g

1− (1−Apf )(1−Abf ) (11)

where Abf is found from (1). Note that (1) has two parts:∏gf
g=1Av(g) that is the availability resulted from the involved

instances v(g),∀g = 1, . . . , gf , and
∏|N b(f)|
b=1 Ab that is the

availability resulted from the involved hosting nodes N b(f).
When all instances v(g),∀g = 1, . . . , gf are hosted at different
nodes, Eq. (1) can be re-written as

Abf =

gf∏

g=1

Av(g)An(v(g))

where n(v(g) denotes the node hosting the instance v(g).
Intuitively, when the required availability Arf is smaller than

MIN , this implies that all possible combinations out of ĨSg
f

,
g = 1, . . . , gf , to form a backup NF chain for the flow are
able to help meet the requirement and hence the set is already
a feasible set. When MIN < Arf < MAX , it means the
required availability can be achieved by some (but not all)
combinations of instances in ĨSg

f
, g = 1, . . . , gf . In other

words, this set is not a feasible set yet, and additional effort
is needed as explained below.

CoShare uses Algorithm 3 to find the feasible set. To illus-
trate the idea, Fig. 2 shows a simple example. In the example,
the considered flow needs a service composed of two NFs,
firewall and load-balancer, and its availability requirement is
0.9999, but the primary service chain only has availability of
0.99. In the network, after excluding those instances without
enough capacity left or whose nodes are network-structurally
correlated with the primary chain nodes, there are still five
candidate instances of each NF hosted at different nodes. After



Fig. 2: Example of finding feasible instance set (Availability
requirement: 0.9999; Availability of the primary chain: 0.99)

Algorithm 3 Finding feasible set of NF instances
Definitions:
V ← set of NF instances of type v
Av+ ← Av ∗Ab, where b is the backup host node of NF v ∈ V
Output: set of feasible NF instances {IS1

f
, · · · , I

S
gf
f

}

1: Sort the instances in V in descending order of Av+

2: Find MIN from the instances that have minAv+ using Eq. (10)
3: Find MAX from the instances that have maxAv+ using Eq. (11)
4: if MIN ≥ Af

f & |N b(f)| = gf then
5: Insert the instances to the feasible set
6: else
7: while MIN < Af

f || |N b(f)| < gf do
8: if MIN ≥ Ar

f then
9: Insert the instances making minAv+ to the feasible set

10: Replace the instance with the smallest availability
11: Recalculate MIN
12: Insert the instances to the feasible set

sorting, their availability levels, AFW+ = AFW · An and
ALB+ = ALB ·An′ , taking into account both node availability
and instance availability, are shown in the figure.

Clearly, the required availability level 0.9999 is within this
(MIN,MAX). An implication is that this requirement can
be met with one backup chain. Another is that, some of the
instances should not be included in the feasible set. To this
aim, we drop the instance with the lowest availability, which
is the load balancer instance with availability of 0.9, and then
re-calculate MIN as shown in the middle part of Fig. 2
and compare it with the required availability. This process is
repeated until MIN is equal to or higher than the required
availability. All the remaining instances form the feasible set.

In the above discussion and example, the required avail-
ability level is less than MAX . If however this is not true,
it means that one backup chain is not enough to fulfill the
service availability requirement for the flow. In such cases,
we update Apf with MAX in Algorithm 3 when applying (10)
and (11), add the corresponding instances to the assignment
and remove them from the candidate lists, and consider using
an additional backup chain. This process is repeated until the
required availability can be achieved, or there are not enough
candidate instances left to form additional backup chains,
implying the availability requirement is infeasible to achieve.

B. Feasible Backup Chains

Let {IS1
f
, · · · , I

S
gf
f

} denote the feasible NF instance set,
where ISv

f
, v = 1, . . . , gf , represents the set of instances of

network function Svf in the feasible set. Then, the possible
backup chains for the flow are easily obtained as:

(IS1
f
, · · · , I

S
gf
f

) ≡ Rd(f)

∀ ISv
f
∈ ISv

f
, v = 1, . . . , gf , where ISv

f
denotes an instance

of NF Svf . It is easily verified that, the total number of such
possible backup chains is:

|IS1
f
| · · · |I

S
gf
f

|.

C. Assignment of NF Instances to Flows

In this subsection, we introduce the assignment strategy
of CoShare. In brief, for each flow f , out of the feasible
backup chains, CoShare assigns to the flow the chain that
maximizes the utilization of resources so as to minimize the
needed numbers of NF instances.

1) Backup capacity reservation: Since each flow f has an
arrival rate λf , every backup NF instance assigned to the flow
needs to also reserve λf amount of capacity to the flow. As
a consequence, it is intuitive to reserve the same amount of
resource for every backup chain as for the primary chain,
where dedicated capacity is reserved at every instance [7],
[10], [34]. We call this approach dedicated reservation. Here,
it is worth highlighting that, even in this approach, there is
sharing at the instance level, i.e., the capacity of the instance
can be shared by backup chains of multiple flows as long as
the capacity constraint allows, i.e.

∑
f∈Fv λf ≤ µv , where

Fv denotes the set of flows using this NF instance v.
However, in practice, the probability that multiple indepen-

dent failures occur at the same time is low and planning the
redundancy considering this rare occasion is costly in terms
of resource utilization [35]. Taking this into consideration,
the idea of sharing reserved backup capacity among multiple
flows has long been exploited in backup allocation to improve
resource utilization in different types of networks [21]–[24].
In CoShare, we propose to adopt the same idea to reduce
the needed numbers of backup NF instances in redundancy
allocation. We call this approach shared reservation.

Specifically, in CoShare, flows with disjoint primary service
chains, referred to as independent flows, are allowed to share
reserved capacity at a backup instance. Let Fv denote the
set of independent flows whose service chains use backup
instance v. Then, in CoShare with shared reservation, the
backup NF instance v will only need to reserve a capacity of
maxf∈Fv

λf for all these flows. In comparison, if dedicated
reservation is used, for the same set of flows Fv , the backup
instance will need to reserve a capacity of

∑
f∈Fv

λf for
them. In Fig. 3, an example illustrating the difference in
capacity allocation between shared reservation and dedicated
reservation is presented.



Fig. 3: Illustration of dedicated reservation (left) v.s. shared
reservation (right): The instance has capacity of 5. Each flow
requires capacity of 1. Flows f1 and f3 are independent.

2) The assignment heuristic: Note that for each flow, a set
of feasible backup chains, denoted as Rd(f), which together
with the primary service chain can meet the availability
requirement of the flow has been identified in the previous
subsection. Now, the challenge is how to apply the idea of
shared reservation in this special setup, i.e. to choose / assign
backup chain(s) to the flow to meet Objective (3). To this aim,
CoShare utilizes a weight-based approach:

For each chain r ∈ Rd(f), it is given a weight W p(r, f)
calculated as

W (r, f) =

gf∑

j=1

w(vrf,j) (12)

which is the summation of the weight of each instance con-
stituting r, where w(vrf,j) denotes the weight of the instance
of the j-th NF in r for flow f , vrf,j this instance, and gf the
service chain length for flow f .

In (12), the instance weight w(vrf,j) is calculated using:

w(vrf,j) =





gf , f |= fa & f |= SRvrf,j (fa), fa ∈ Dvrf,j∑
fa∈Dvr

f,j

λfa

µvr
f,j

, otherwise.

(13)
where Dv denotes the set of flows that are reserving backup
capacity at instance v, SRv(f) the set of flows that are sharing
the capacity of instance v with flow f , λf the rate of flow f ,
and µv the capacity of instance v. In addition, in (13), |= is
used to represent independence between flows.

The key idea of (13) is as follows. If flow f is independent
with flow fa, i.e. f |= fa, as well as all flows that are sharing
capacity of the instance vrf,j with flow fa, i.e., f |= SRvrf,j (fa),
then it implies that flow f can share reserved capacity with
flow fa at the instance vrf,j . In this case, the instance will be
given a weight equal to the service chain length of the flow,
i.e. gf . Otherwise, the instance is given a weight that is equal
to the current utilization level of the instance.

In CoShare, among all backup chain compositions Rd(f)
of a flow f , it is assigned with the backup chain that has the
maximum chain weight i.e., maxr∈Rd(f)W (r, f). Implied by
(13), this assignment strategy prioritizes assigning flows to
more utilized instances – an intuitive approach to minimize
the needed number of instances of each NF in Objective (3).

D. Efficiency and Scalability of CoShare

The assignment heuristic of CoShare ensures giving higher
priority to instances where shared reservation is possible

as proved in Theorem 1. Since shared reservation is more
resource efficient than dedicated reservation, it helps increase
resource efficiency in assigning backup instances to flows to
meet their availability requirements, and consequently reduce
the total needed number of backup instances.

Theorem 1. Consider two backup chain choices r and r′

(∈ Rd(f)). The other conditions are the same, but r has at
least one instance vrf,j on which the flow can share reserved
capacity with other flows, while r′ does not have. Then, r has
a larger chain weight than r′, i.e.,

W (r, f) > W (r
′
, f).

Proof: Refer to Appendix A.

The complexity of CoShare is determined by the three
involved parts, namely network structural analysis (Sec. III),
placement (Sec. IV), and assignment (Sec. V). In network
structural analysis, the computational complexity of finding the
critical node set C(n) for every node n ∈ N is O(N2) from
(6) and (5), so its complexity is O(N3). CoShare’s placement
heuristic performs a bin-packing of backup NF instances on
nodes. The complexity of the algorithm is a function of the
number of instances to be placed and the number of candidate
backup host nodes. Specifically, sorting is performed on both
the node side and the instance side, whose complexities are
O(N2) are O(z2v) respectively, where zv is the maximum
number of backup instances (8) that may be involved in the
sorting. Approximating the number of NF instances by the
number of nodes, the placement heuristic has a complexity
O(N2). The assignment of NF instances to form backup
chains for flows has a complexity of O(FNG), where G
denotes the longest service chain length. This is because, for
every flow, the worst case is to search through all the possible
chain compositions and the total number is |IS1

f
| · · · |I

S
gf
f

|
which is upper-bounded by O(NG). Thus, the complexity of
CoShare is O(N3 + N2 + FNG), which is approximately
O(FNG), under practical assumptions F ≥ N and G ≥ 2.

In brief, the complexity of CoShare can be written as a
function of the number of flows that are to be assigned backup
chains, the number of nodes / instances in the network, and
the longest length of service chains, which is summarized as:

Theorem 2. CoShare has a complexity of O(FNG), where F
is the number of flows, G the longest length of service chains
and N the number of nodes in the network.

VI. RESULTS AND DISCUSSION

This section presents results showing the performance of
the proposed redundancy allocation approach, CoShare. Recall
that, a novel idea of CoShare is to exploit network structural
correlation information in the design. Sec. VI-A is hence
devoted to showing the impact of such correlation. The re-
maining Sec. VI-B – Sec. VI-D focus on introducing the
performance of CoShare where comparisons are also included.

Specifically, a number of experiments are conducted on two
realistic ISP network topologies. In the study, if not otherwise



specified, it is assumed that each node hosts 8 CPU cores and
has 16 GB memory, of which half of the capacity i.e., 4 CPU
cores and 8 GB of memory, is used by the primary NFs and the
rest by backup NFs. The primary NFs’ placement as well as
the assignment of primary service chains to flows is conducted
by using ClusPR [26]. Every NF instance requires one CPU
core and 2GB of memory, having a total NF processing
capacity (µv) of 10Mpps. Five types of NFs are considered
(e.g., Firewall, DPI, NAT, IDS, and Proxy). The availability
requirements of flows are set according to three levels, namely
99.9% (3’9s), 99.99% (4’9s) and 99.999% (5’9s). The NF
processing capacity required by each flow f , i.e., λf , is set
to 0.5 Mpps. The length of the service chain for each flow is
assumed to vary in the range of 2 to 4. NFs and the service
types in the chain of each flow are selected randomly out of
the five NFs considered. The availability of the hosting nodes
is assumed to be uniformly distributed between 0.99− 0.999,
NF instances have an availability between 0.999 − 0.9999,
and the threshold algorithmic parameter tDI is set to 0.5 if not
otherwise specified. If a flow’s availability requirement cannot
be satisfied by the adopted redundancy allocation approach, it
is rejected. All algorithms and simulations are run on a Dell
workstation with a single Intel R© Xeon R© octa-core processor
with 2.4 GHz base frequency and 64 GB of RAM.

A. Impact of Network Structural Correlation

In this subsection, a simple experiment is carried out to
showcase the effect of not considering the network structural
correlation among nodes in the backup instance placement
decision making. The GEANT network topology [36] is used
for this experimental study. The GEANT network is a pan-
European network connecting research and education institu-
tions consisting of 44 nodes and 136 links. (For visibility, a
version with 44 nodes and 68 links is illustrated in Fig. 1.)
Only node availability impact is considered. It is assumed that
the availability of each node is 0.999 (3’9s). For each flow,
the service function chain contains two NFs, and the required
availability of the flow is 99.999%. The baseline algorithm
from [7] is used to decide the number of backup instances
needed. According to the baseline algorithm [7], theoretically,
one backup for each of the NFs is enough to meet the 99.999%
(5’9s) availability requirement.

Two backup instance placement strategies are considered.
One does not consider network structural correlation, where
the primary and backup NF host nodes of a chain are randomly
chosen in the network. Another takes the structural correlation
into consideration, where the backup host nodes are chosen
from those without critical network structural correlation with
the primary host nodes.

The availabilities of 100 flows are measured by conducting
ten million simulation runs. In each simulation run, the state
of each node, i.e., failed (0) or up (1), is randomly generated
from Bernoulli distribution using the node’s availability. The
unavailability CDF of the 100 flows is shown in Fig. 4.
As can be read from the figure, the strategy taking network
structural correlation into consideration performs significantly
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Fig. 4: Impact of Network Structural Correlation

better. Specifically, when network structural correlation is not
considered, about 10% of the flows only have availability of
3’9s or even lower, in contrast to taking it into consideration
where all flows have at least 4’9s availability. In addition,
while only 80% of flows can reach the required 5’9s in the
former, this percentage increases to 90% in the latter.

There are two implications of this experimental study. One
is that the number calculated by the baseline algorithm [7]
may not be enough to meet the availability requirements of
all flows when applied to a real network. Another is that,
the inherent network structural correlation among nodes can
have significant impact on the availabilities of the services, and
hence is a crucial factor that should be taken into consideration
for redundancy allocation.

B. Comparison with Optimal Model

In order to assess the optimality level of CoShare, its
performance is compared with an integer linear program
(ILP) approach called AllAny, which has been proposed to
solve the optimization problem (3) in [29]. The ILP model
assumes dedicated reserved capacity, i.e. dedicated reservation,
at the backup instances. The GEANT network is also used
for this analysis. Backup chains are allocated for 200 flows
whose primary chains are served by using 23 NF instances,
where every flow has a chain length of 2, and its availability
requirement is randomly set to be 3’9s, 4’9s, or 5’9s.

For the comparison, we adopt the concept of resource over-
build, which is a key figure-of-merit in assessing redundancy
capacity efficiency [37], i.e. the extra capacity needed to meet
the service availability objective as a percentage of the capacity
for the service under no redundancy. In this paper, it is defined
to be the ratio of the total number of backup NF instances
actually used to meet the availability requirement to the total
number of primary NF instances.

Fig. 5 shows the placement of the backup instances, i.e.,
the number and type of backup NF instances placed together
with their host nodes, obtained using the AllAny model and
CoShare. For CoShare, both shared reservation and dedicated
reservation are considered.

The number of backup instances for each NF which are
created by CoShare with dedicated reservation is the same
as that created by the AllAny model. In total, 23 backup
instances are created by each of the two approaches and
six backup nodes are used to host the instances, i.e., 100%
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Fig. 6: Per NF utilization of the placed backup NF instances

resource overbuild. The per NF utilization level, which is the
percentage of the NF capacity that is reserved by the flows,
is shown in Fig. 6. Since CoShare intends to maximize the
utilization of NF instances, most of the backup instances are
100% utilized in contrast to the NFs of the AllAny model.
Moreover, with CoShare using shared reservation, only 13
backup NF instances are created and five backup host nodes
are used, which results in only about 56% resource overbuild.

It is worth highlighting that in this example, the AllAny is
solved by using the LP solver, CPLEX, and hence the results
are optimal. However, even for this simple example, it took
more than a dozen minutes to find the optimal solution by
solving the model, due to the NP complexity nature of the
optimization project (3). In contrast, CoShare obtained the
results in less than one second. These showcase that CoShare
is able to get near optimal results in much less time, and
when applying shared reservation, CoShare can achieve better
resource efficiency.

C. Effect of Shared Reservation

We now consider a larger network: The Rocketfuel topology
AS 1221 with 100 nodes and 294 links [38] is adopted. With
the increased numbers of nodes and links, the computation
of the optimal results has increased too much (due to NP-
complexity) to be handled by the adopted workstation. For
this reason, CoShare with dedicated reservation, which has
similar performance as the optimal model shown in the above
example, will be used in the comparison.

1) Resource overbuild: Fig. 7a shows the number of backup
NF instances that are needed to satisfy different levels of
availability by using CoShare with shared and dedicated
reservation, where all flows require the same availability level.
The results shown are average values with 95% confidence
intervals over ten simulation runs for each availability level.
In each of the availability levels, the NF instances are created
for 700 flows having a service chain containing two NFs. In
addition, the resource overbuild for both backup allocation
strategies is illustrated in Fig. 7b. As can be observed, the
higher the availability requirement level the more the number
of backup NF instances required.

Recall that, in the placement phase, CoShare first “roughly”
estimates the number of backup chains for each availability
requirement class and accordingly the number of backup NF
instances, i.e. hc and z(c) in Sec. IV-A, which are possibly
needed. For the three availability levels [0.999, 0.9999, and
0.99999], the corresponding rough estimates are [1, 2, and
3] for hc and [70, 140, and 210] for z(c) respectively. As
discussed in Sec. IV-A, the actually used and hence needed
numbers of backup instances under CoShare can be expected
to be much lower. This is confirmed by Fig. 7a that shows the
real total numbers of used backup instances under CoShare
with dedicated reservation and shared reservation. Specifically
under CoShare with dedicated reservation, they are [68, 85,
130] for the three availability levels, which are reductions of
2.8%, 39%, and 38% from the rough estimates respectively.
Under CoShare with shared reservation, there are further
reductions of 44%, 64%, and 69%.
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Fig. 7b further compares dedicated reservation and shared
reservation using resource overbuild. As shown by the fig-
ure, to fulfill 0.99999 availability, the former requires 178%
resource overbuild, in contrast to the much reduced 93% by
the latter. Similar reduction is found also for the other two
availability levels. Overall, shared reservation enables more
efficient utilization of resources with significant decrease in
the required number of backup NF instances.

2) Flow acceptance ratio: In the above experiments, no
flow is rejected, i.e. all flows’ availability requirements can
be met with CoShare, with or without shared reservation. In
the following experiment, we consider 650 flows each with a
service chain consisting of four NFs. Similar to Fig. 7a, Fig. 8a
compares the number of backup NF instances under dedicated
and shared reservation. It also shows that less instances are
needed with shared reservation.

Additionally, Fig. 8b compares the flow acceptance ratio.
As shown by the figure, all flows can be admitted with
both shared and dedicated reservation when the availability
requirements are under the two lower levels. However, when
5’9s availability level is required, only about 60% of the flows
can be admitted with dedicated reservation, in contrast to
100% with shared reservation. This is because CoShare with
dedicated reservation requires a higher number of backup NF
instances than what can be provided by the network. If that
number would have been possible, Fig. 8a would have shown
an even higher reduction by using shared reservation. This
again implies that NF shared reservation enables more resource
efficiency which in turn maximizes the number of flows that
can be admitted to the network.
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D. Effect of the Threshold

CoShare has one algorithmic parameter, the threshold tDI ∈
(0, 1), which is used in (6) to help identify the set of critical
nodes due to network structural correlation. As can be ex-
pected from (6), a higher tDI leads to a smaller set. To have a
better overview about the effect of the threshold, experiments
have also been conducted. Figure 9 shows the number of
backup NF instances instantiated for fulfilling the availability
requirement of 0.99999 under different threshold values for the
case of Rocketfuel topology with 700 flows. For the threshold
value between 0.2 and 0.9, the same number is found. In
fact, with a closer look, it has been found that the same set
of structurally correlated nodes are resulted from (6) with a
threshold value in this range. However, when tDI ∈ (0, 1) is
too small, e.g. 0.1, it is observed that all the network nodes
are included in the set. These indicate that the performance
of CoShare is generally robust to the threshold except when a
too small value is given to it.
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Fig. 10: Effect of prioritization based on availability requirements (a) and service chain length (b) and (c).

E. Effect of Assignment Order

Note that when CoShare is applied, flows are checked one-
by-one in the step of assigning instances to form back chains
for them (C.f. Sec. V). When there are multiple flows, these
flows may be applied with CoShare at arbitrary order. In
the rest, the effects of two specific yet intuitive orders are
investigated.

In this investigation, the Rocketfuel topology is adopted.
15 sets of randomly generated 700 flows are considered. Each
set is used for one simulation run. The availability requirement
of each flow is randomly chosen among 3’9s, 4’9s and 5’9s.
CoShare with shared reservation is focused.

1) Based on availability requirement: First, we consider
the effect of ordering the assignment based on the required
availability levels. In this study, flows have the same service
chain length of two. The flows are assigned with needed
backup instance in the order of their availability requirements,
from high (5’9s) to low (3’9s) or from low to high.

Fig. 10a compares the total needed number of backup NF
instances in fulfilling the availability requirements of flows in
the 5’9s class under each simulation run using a different set
of flows. As can be seen from the figure, there is no clear
evidence about which order is better. Similar observation has
also been found for the other two classes. This implies that
prioritizing assignment based on availability requirements has
minimal effect on the performance of CoShare.

2) Based on service chain length: Next, the impact of
ordering based on the flow’s service chain length is assessed:
long to short or short to long. The experiment setup is similar
to above, but the chain length of a flow is randomly chosen
between 2 and 4.

Figs. 10b and 10c compare the number of needed backup
NF instances for the 3’9s and 5’9s classes respectively. As
can be observed from these figures, prioritizing flows that
have longer service chain length results in fewer backup NF
instances needed. An underlying reason is that, when a longer
chain flow is prioritized, due to the involvement of more
instances, the chance of finding flows that can share capacity
on some of these backup instances is higher. Nevertheless, the
difference is minimal, about 10% or less.

F. Discussion

The evaluation highlights the significant improvement that
CoShare brings in terms of resource utilization efficiency and
flow acceptance ratio. However, generalizing the results re-
quires performance evaluation in more diversified NFV setups.
We briefly present some aspects that could be further explored
as future work.

The placement decisions are subject to the underlying net-
work topology structure and its intrinsic graph characteristics
(i.e., node degree, betweeness etc.). Aggregated results on a
variety of network topologies, e.g., those present in SNDlib
[39], may provide more detailed insights about the effects
of structural correlation on the placement and performance.
Moreover, it is common that NFV-enabled network operators
provide services through well-defined service chains, typically
included in their NFV service catalogs, rather than through a
random composition of NF instances. An alternative evalu-
ation would be to consider a set of specific service chains
and characterize their availability demands and probability of
occurrence, i.e., probability of being requested. In addition,
we made some simplifying assumptions compared to a more
truthful representation of network nodes’ capacities. In realis-
tic networks, some of the nodes could be central offices with
rather limited capabilities, whereas some other nodes could be
data centers with significantly more computing resources.

VII. RELATED WORK

Guaranteeing service availability in NFV-enabled networks
represents an important challenge that needs to be addressed to
fully exploit the benefits of NFV [3], [4]. To this aim, there has
been a continuous effort in the recent literature to investigate
and propose resource efficient and scalable algorithms for
resource / redundancy allocation in NFV.

Fan et al. [10] presented an algorithm to minimize the
employed physical resources by protecting the most unreliable
NFs. On similar lines, they extended the work by proposing
methods for allocating backup resources in order to maximize
the number of accommodated service requests while meeting
heterogeneous availability demands [7]. In [32], the authors
studied the suitability of various data center architectures for
resilient NFV service deployments. Ding et al. [40] improved
the design in [10] by proposing a method to select the



most appropriate NFs to protect by exploiting a cost-aware
critical importance measure rather than the least available NFs.
However, these contributions are based on assumptions which
may significantly impact their applicability in more general
setups [28], [32]. Such assumptions include homogeneous
backup nodes, considering only the failure of NFs while
ignoring physical nodes’ failure and vice versa [10], [40], or
assuming NF instances fail independently irrespective of their
placement [7].

In [14], three ILP models are proposed for VNF placement
and service chaining. However, their aim is to protect the
service chains against different types of failure without taking
into account the specific availability requirement of each
service chain. In addition, the evaluation shows that providing
protection against the considered failure scenarios comes with
at least twice the amount of resources in terms of the number
of nodes being deployed into the network [14].

As redundancy can be costly, it is desirable to share redun-
dancy at maximum possible in NFV based networks to enable
more efficient resource utilization as having been done in tradi-
tional networks, e.g., [41], [42]. In [13], a multi-tenancy based
approach, which allows a backup NF instance to be utilized
by multiple flows, is proposed, and it is also demonstrated that
the multi-tenancy based approach outperforms single-tenancy
based approaches. However, in the approach proposed in [13],
a backup chain is constrained to only using NFs hosted on
one node, similar to [34]. In [10], aiming at minimizing the
physical resource consumption, a joint protection scheme is
proposed where the sum of resources between two adjacent
NFs are allocated for protection. In [11], shared path protection
is used to allocate backup paths that protect against single link
failures. In [12], adjacent NFs share the resources of a host
machine. In all these approaches, when a backup NF instance
is assigned to a flow, dedicated backup capacity for the flow
is reserved, same as in ChoShare with dedicated reservation.

CoShare is different from these literature works in several
aspects. First, CoShare takes into account the heterogeneity
present in terms of resources at network nodes and NF in-
stances and their availability, in contrast to [28], [32]. Second,
both node failure and NF failure as well as the impact of a
node’s failure on its hosted NFs are considered, different from
[10], [40] and [7]. Third, CoShare aims to meet flow-level
specific availability requirement, different from [14].

Forth, in terms of shared reservation, to enable resource
efficiency, CoShare allows a backup service chain being con-
structed by NF instances placed at different nodes, as opposed
to the approaches studied in [13], [34]. In addition, CoShare
also differs from [10], [12]. Specifically, the shared reser-
vation mechanism employed in CoShare provides protection
to multiple service chains that request the same NFs, rather
than protecting adjacent NFs of the same service chain in
[10], [12]. It is worth highlighting that in all the literature
approaches [10], [12], [13], [34], even though a backup NF
instance may be shared among multiple flows or tenants,
dedicated capacity is reserved for each flow / tenant, the same
as in dedicated reservation discussed in Sec. V-C. In other

words, as in CoShare’s dedicated reservation, resource sharing
in all these approaches is at the instance level. However,
CoShare’s shared reservation additionally allows the sharing
to be made at the flow or service chain level, leading to
improved efficiency in making use of resources. Moreover,
none of the previous works takes into consideration topological
dependencies among network nodes. Since such dependencies
are inherent in the network structure / topology, disregarding
them could lead to the failure of both the primary and the
backup chains at the same time, and consequently affects the
actually delivered availabilities of flows lower than expected
as shown by the example in Sec. VI-A. To this end, CoShare
not only makes another novel contribution but also sheds a
new insight for redundancy allocation in NFV.

VIII. CONCLUSION

In this paper, a novel scheme, called CoShare, is proposed
for redundancy allocation in NFV. An original and crucial idea
of CoShare is to explicitly take into account the inherent net-
work structure-caused correlation / dependence among nodes
in both redundancy placement and assignment. As a result,
CoShare is able to minimize the impact of correlated failures
due to network structural dependence on service availability.
In addition, CoShare allows shared reservation among flows,
i.e. let them share the same reserved backup capacity at an
instance, to improve resource efficiency without compromising
their availability. This forms another contribution of CoShare.
Moreover, CoShare stands out with supporting diverse flow
availability requirements under heterogeneous nodes and in-
stances in terms of both resources and availability. The experi-
mental results demonstrate that a redundancy approach without
considering network structural dependence in its design can
unfortunately fail to meet its promised availability. In addition,
when backup capacity is dedicatedly reserved for each flow
at a shared NF instance, the performance of CoShare (with
dedicated reservation) is close to that of the optimal solution,
but CoShare is scalable. Furthermore, with shared reservation,
CoShare can reduce the resource overbuild significantly, e.g.
about half or more in the Rocketfuel topology experiment.
These results indicate that CoShare is appealing for redun-
dancy allocation in NFV. They also imply the criticality and
potential of taking into account network structural dependence
in addressing the NFV redundancy allocation problem.

APPENDIX A

Proof of Theorem 1: Suppose there is one NF instance
on which flow f can share reserved capacity in the backup
chain r. Then, the chain weight will be

W p(r, f) = gf +

gf−1∑

j=1

∑
fa∈Avr

fj

λfa

µvrfj

. (14)

For the chain r′, it has no NF instance on which the flow can
share reserved capacity, i.e., flow f is not independent with



all the flows in Avr′fj
, ∀j ∈ {1 . . . gf}. Then, the chain r′ will

have a weight

W p(r
′
, f) =

gf∑

j=1

∑
fa∈A

vr
′

fj

λfa

µ
vr
′

fj

. (15)

Note that, the NF instances on all the backup chains in
Rd(f) satisfy the NF capacity constraint. Thus,

0 ≤

∑
fa∈A

vr
′

fj

λfa

µ
vr
′

fj

< 1 and, 0 ≤

∑
fa∈Avr

fj

λfa

µvrfj

< 1.

(16)
Since the service chain length gf ≥ 1 and the other conditions
are the same, we have W p(r, f) > W p(r

′
, f). When there are

more instances on r where the flow can share reserved backup
capacity, following the same derivation as above, it can be
easily verified that the weight of r will then be even higher.
This concludes the proof.
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Abstract – The design of cloud computing technologies need to guarantee high levels
of availability and for this reason there is a large interest in new fault tolerant techniques
that are able to keep the resilience of the systems at the desired level. The modeling of
these techniques require input information about the operational state of the systems that
have a stochastic nature. The aim of this paper is to provide insights into the stochastic
behavior of cloud services. By exploiting the willingness of service providers to publicly
expose failure incident information on the web, we collected and analyzed dependability
features of a large number of incident reports counting more than 10,600 incidents re-
lated to 106 services. Through the analysis of failure data information we provide some
useful insights about the Poisson nature of cloud service’s failure processes by fitting
well known models and assessing their suitability.
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Abstract – Network Function Virtualization (NFV) has recently attracted telecom op-
erators to migrate network functionalities from expensive bespoke hardware systems to
virtualized IT infrastructures where they are deployed as software components. Scala-
bility, up-gradation, fault tolerance and simplified testing are important challenges in the
field of NFV. In order to over- come these challenges, there is significant interest from
research communities to scale or decompose network functions using the monolithic and
microservice approach. In this paper, we compare the performance of both approaches
using an analytic model and implementing test-bed experiments. In addition, we calcu-
late the number of instances of monoliths or microservices in which a network function
could be scaled or decomposed in order to get the maximum or required performance.
Single and multiple CPU core scenarios are considered. Experimentation is performed
by using an open source network function, SNORT and running monoliths and microser-
vices of SNORT as Docker containers on bare metal machines. The experimental results
compare the performance of monolith and microservice approaches and are used to es-
timate the validity of the analytic model. The results also show the effectiveness of our
approach in finding the number of instances (monoliths or microservices) required to
maximize performance.
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Abstract – WiFi Direct is an embedded technology in a vast majority of smartphone
devices running the Android operating system. As a result, it represents a promising
technology that can be exploited in re-establishing connectivity among user devices in
case of cellular network outages. A technique that smart devices can use to restore con-
nectivity in situations where they are unable to connect to a cellular tower or access
point, but close enough to support device-to-device communication is presented. The
proposed technique envisions a combination of security layers that ensure authentica-
tion, confidentiality, and integrity of communications among end users. Each device is
issued a certificate by a central authentication entity at sign up and when it is unable to
connect to the server component, it will attempt to form a group with nearby devices
in the same situation over WiFi Direct. Once a WiFi Direct group has been formed,
the group owner will temporarily assume the role of the server, and each group member
and the group owner will verify each others identity and connect using mutual Transport
Layer Security (mTLS), facilitating secure communication. The approach is validated
through the implementation of a mobile social application involving several mobile de-
vices, and overheads due to the additional security features are investigated.
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