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“–I think we’ve got enough information now, don’t you?
–All we have is one "fact" you made up.

–That’s plenty. By the time we add an introduction, a few illustrations, and a
conclusion, it will look like a graduate thesis.”

– Calvin and Hobbes





Summary

Hyperspectral remote sensing is still a young field of research, but with a lot of
interest, justified by its promising ability to detect and quantify targets. Recent
developments in camera technology and single-board computers have allowed for
the appearance of extremely capable hyperspectral imaging systems, with low cost
and small footprints.
This thesis explores several topics of relevance for hyperspectral remote sensing,
always with a strong practical component. It is my intent that someone can use
this document as a guide to their journey into the world of spectral image sensing,
analysis, and understanding. The main contributions presented are:

Low-cost hyperspectral instrument design: A DIY instrument based on low-
cost components, and additive manufacturing technology is described. Such in-
struments can be valuable both as research and education tools.

Integration of remote sensing instruments on UAVs: A practical guide focus-
ing on a lightweight hyperspectral imaging payload with a push-broom imager,
GPS, and an Inertial Measurement Unit (IMU) as well as data synchronization and
acquisition systems.

Algorithms for data enhancement: First, a method for separating the effect
of shadows (de-shadowing) and other partially known lighting condition changes
from the actual targets of the analysis such as the effects of the physical, chemical
or biological properties of the ground, which are of interest. Second, a method
for fusing co-registered high spatial and low spectral resolution image data – e.g.,
RGB – with low spatial and high spectral resolution data – Hyperspectral. This is
possible by exploiting the overlap in observed phenomena by the two cameras to
create a model through least square projection.

Algorithms for understandable data compression: A novel method and soft-
ware system for rational handling of time series of multichannel measurements.
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Summary

This quantitative learning tool, the On-The-Fly Processing (OTFP), develops re-
duced-rank bilinear subspace models that summarise massive streams of multi-
variate responses, capturing the evolving covariation patterns among the many
input variables over time and space. Thereby, a considerable data compression is
possible without significant loss of useful systematic information.
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Glossary

2D/3D Two-/three-dimensional.

CubeSat A type of miniaturized satellite for space research that is made up of
multiple cubic units – known as "Us" – of 10 ×10 ×10cm size.

Detector technologies Different detector (sensor) technologies exist, appropri-
ate for different spectral ranges.
Charge-coupled device (CCD) andmore recent Complementary metal-oxide-
semiconductor (CMOS) sensors are silicon based. Their working spectral
range is mostly VIS and a small portion of NIR: 400 to 1000nm. The dif-
ference between CCD and CMOS will not be discussed here.
Indium Gallium Arsenide (InGaAs) detectors are employed in NIR spec-
troscopy, typically at 1000 to 1700nm.

Diffraction grating An optical component with a periodic structure that splits and
diffracts light into several beams travelling in different directions. Gratings
may be of the reflective or transmissive type, analogous to a mirror or lens,
respectively.

EO Earth observation is the gathering of information about the physical, chemical,
and biological systems of the planet Earth. It can be performed via remote
sensing technology and by ground-based techniques.

FWHM Full Width at Half Maximum. When applied to spectrometer resolution, is
the difference between the two wavelengths at which the radiation intensity
is equal to half of its maximum value, for a selected spectral band. In other
words, it is the width of a spectrum curve measured by each spectral channel
or band. A lower (narrower) value is associatedwith amore selective – higher
spectral resolution – system.

HSI Hyperspectral imaging (system).
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Hyper-/multispectral imaging Hyper- andmultispectral imaging capture a scene
in both spatial (position in space) and spectral (wavelength) dimensions,
where each sampled spatial position contains multiple intensity values corre-
sponding to different spectral bands. Going from multispectral to hyperspec-
tral imaging (HSI), the spectral sampling is of much higher density, enabling
the reconstruction of continuous spectra. This data of higher dimensional-
ity allows both to identify materials or objects using the spectral data and
to identify their location using the spatially resolved image plane, usually
exhibiting a 2D spatial dimensionality.

IMU Inertial measurement unit. An electronic device that measures and reports
a body’s specific force, angular rate, and sometimes the orientation of the
body, using a combination of accelerometers, gyroscopes, and sometimes
magnetometers.

Ocean colour The "colour" of the ocean is determined by the interaction of in-
cident light with substances or particles present in the water. The term is
used in the context of remote-sensing observations. Using specialised sen-
sors, such as hyperspectral cameras, one can quantify radiation emerging
from the ocean with high spectral resolution. These measurements can be
used to infer information such as phytoplankton biomass or concentrations
of other living and nonliving materials that modify the characteristics of the
incoming radiation. Monitoring the spatial and temporal variability of ocean
colour over large regions up to the scale of the global ocean has been in-
strumental in characterising the dynamics of marine ecosystems, and is a
key tool for research into how marine ecosystems respond to climate change
and anthropogenic perturbations.

Remote sensing The acquisition of information about an object or phenomenon
without making physical contact with the object and thus in contrast to on-
site observation.

RGB Red Green Blue, a term used to refer to colour images and cameras.

SNR Signal-to-noise ratio is a measure that compares the level of a desired signal
to the level of background noise.

Spectral ranges Electromagnetic radiation can be classified into different ranges,
according to the wavelength. A commonly used scheme is:
UV Ultraviolet (200 - 400nm);
VIS Visible (400 - 750nm);
NIR Near-infrared (750 - 1400nm);
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SWIR Short-wavelength infrared (1400 - 3000nm);
MWIR Mid-wavelength infrared (3000 - 8000nm);
LWIR Long-wavelength infrared (8000 - 15000nm), "thermal imaging" region

or "termal infrared".

UAV/UAS Unmanned Aerial Vehicle/System, commonly known as drone.
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Chapter 1

Introduction

In this first chapter, I will lay out a short introduction to the topics that build up the
foundation for this dissertation. With those concepts in mind, I go on to explore
the current challenges in this field and the state of the art.

1.1 Hyperspectral Remote Sensing

Let me start by breaking down the title: "Hyperspectral Remote Sensing". What is
remote sensing? What does hyperspectral mean?

1.1.1 Remote Sensing

The first term I should define is "remote sensing": to determine the bio/geo/chem-
ical properties of a material or scene without physical contact. Usually, it is con-
trasted and complemented by in-situ measurements – more precise but limited in
coverage.
Perhaps the most well-known examples of remote sensing data are aerial and satel-
lite imagery. In addition to stunning views, the systematic collection of data over
time and space allows for the monitoring of many atmospheric and ground vari-
ables. These variables give us an insight into the dynamics of phenomena trans-
forming the Earth, either of natural – e.g., biological, geological – or human origin
– e.g., political, economical.
Remote sensing is particularly interesting when compared to more localised data
acquisition techniques because it allows gathering data with such a large coverage,
one that is possible when using air- or space-borne sensing platforms. Furthermore,
remote sensing data can provide information from areas that are not accessible for
in-situ measurements.
Remote sensing data can have varying degrees of complexity and processing re-
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quired after being acquired. While some represent direct physical characteristics
measured by the sensors, e.g., reflected light intensity at 400nm by a certain area
of the ocean, others are derived attributes, e.g., chlorophyll concentration on that
same area. To help the remote sensing community better organize in terms of these
different types of data, NASA’s Earth Science Data Systems Program proposed a
system of data processing levels – see Table 1.1.

Table 1.1: Remote sensing data processing levels. Adapted from [1].

Level Description

0 Reconstructed, unprocessed instrument data at full resolution,
with communications artifacts removed.

1A Time-referenced Level 0 data, annotated with ancillary informa-
tion (appended but not applied), including radiometric and geo-
metric calibration coefficients and georeferencing parameters.

1B Level 1A data processed to sensor units (e.g., radar back-scatter
cross section, or brightness temperature).

2 Derived geophysical variables (e.g., ocean wave height, soil mois-
ture, ice concentration) at the same resolution and location as
Level 1 source data.

3 Variables mapped on uniform space-time grid scales, usually with
some completeness and consistency (e.g., missing points interpo-
lated, or complete regions mosaicked together from multiple or-
bits).

4 Model output or results from analyses of lower level data (e.g.,
variables that were not measured by the instruments but instead
are derived from these measurements).

1.1.2 Hyperspectral Imaging

Imaging spectrometers, also known as hyperspectral cameras or imagers, are some
of the instruments used in today’s remote sensing satellites, and they are designed
to measure spectral data across one or more spatial dimensions – pixels.
Information extracted from those data is invaluable for a growing number of fields.
Hyperspectral (HS) instruments provide a richness of data that enables the classi-
fication and detection of such resources through passive and nondestructive mea-
surements. Information on the distribution and abundance of natural resources is
vital for science, education, policy-making, and management alike [2]. From agri-
culture [3] to ocean observation [4], aquaculture or even city planning [5], these
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are just a few of the many areas currently using remote sensing hyperspectral data
products to help in their work.
Generally speaking, an imaging spectrometer is composed of two main elements:
• The optical dispersion or filtering component, which allows us to split the
total signal into several spectral bands.

• The electro-optical element, or sensor, which allows us to quantify each band
and represent it as a digital value.

In terms of sensor technology, the most common electro-optical elements, i.e., the
components that translate optical (light) signals into electrical (and then digital)
signals, are Charge Coupled Device (CCD) or Complementary Metal Oxide Semi-
conductor (CMOS)[6] 2D pixel arrays, much like the ones present in conventional
cameras. At each instant, it is possible to capture a 2D image, or a frame, which
depending on the technique, can contain spatial, spectral, or both kinds of infor-
mation.
The number of pixels in each frame is dependent on the size of the sensor and
of the pixels. Larger pixels collect more photons, the signal we want to measure,
leading to a higher signal-to-noise ratio (SNR). Smaller pixels, on the other hand,
allow for a higher pixel density, so more pixels in the same sensor area. The num-
ber of pixels in each frame will set the resolution of all nonscanning dimensions in
the datacube. The contents of each frame will depend on the optical elements used
to sort the spectral information. To finally generate the 3D hyperspectral datacube,
some digital postprocessing is required to "fold" the sequence of 2D frames.

1.2 The Hyperspectral Remote Sensing Panorama

1.2.1 Instrument Design

The push-broom hyperspectral technique has been used for the last three decades
[7, 8] in industrial, airborne and satellite applications [9–12].
This method records a perpendicular cross-section of any target along the track
direction. In spectroscopy, the cross-section area corresponds to the entrance slit
image as a function of wavelength, forming an image known as a spectrogram.
The arrival of electronic image sensors such as the CCD has made it possible to
stack spectrograms at high speed to form a spectral datacube as we sweep the
target. The number of reconstructed images from the datacube is only limited by
the spectral bandpass and the range of the instruments. The ability to form images
as a function of wavelength is a powerful tool in remote sensing applications like
online spectral identification or target detection and classification.
However, the push-broom technique requires line scanning of the target with high
precision. For example, on an airborne or satellite platform, the instrument needs
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to be stabilized in attitude by a 3-axis gyro to sweep the target without spatial dis-
tortions along the direction of flight. Low cost Micro Electro Mechanical Systems
(MEMS) Inertial Measurement Units (IMUs) with integrated 3-axis gyroscopes, ac-
celerometers, and magnetometers are found to be accurate enough for unmanned
aerial vehicle navigation [13] and for motorized gimbal stabilization.
Other hyperspectral techniques have emerged over the last decade, e.g., to apply
Liquid Crystal Tunable Filters (LCTFs) [14, 15], and MEMS Fabry-Perot tunable
interference filters [16] with direct imaging capability where no line scanning is
necessary. The centre wavelength of such filters is controlled electronically. A draw-
back of these techniques is the low speed of spectral sampling, which can lead to
a shift of the target position during acquisition. To minimize that effect, a precise
attitude correction is required.
Recent developments in drone technology, CMOS image sensors, gimbals based on
MEMS IMUs, and 3D printing open up new possibilities for the construction of low
cost push-broom Hyperspectral Imagers (HSI).

1.2.2 Airborne Systems

Airborne hyperspectral systems are currently used in fields such as agriculture,
environmental monitoring, or infrastructure inspection. For such applications, the
spectral range of the sensors is usually 400-1000nm, commonly referred to as VNIR
(visible and near-infrared).
Some manufacturers of hyperspectral sensors provide complete systems that can
fit in a small unmanned aerial vehicle (UAV):
• Specim’s AisaKESTREL10 [17] offers a 400-1000nm range, 2048 pixels spa-
tial resolution at <5kg total system weight;

• Resonon’s Airborne Hyperspectral Imaging System [18] can be customized
with their different cameras.When using the Pika Lmodel, the spectral range
is also 400-1000nm, with 900 spatial pixels at <1.5kg for the total system;

• Headwall’s Nano-Hyperspec sensor [19] with the same spectral range of 400-
1000nm, spatial resolution of 640 pixels and <0.52kg without lens.

The Unmanned Aerial Vehicles Laboratory (UAV-Lab) at NTNU is focused on de-
veloping small, low cost, and open-source tools while still aiming at high perfor-
mance.
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1.2.3 Data Processing and Analysis

Correcting for environmental disturbances

Outdoors imaging in general, and airborne in particular, suffer from variations in
apparent colour caused by illumination and not the reflecting object itself. While
this variation may be difficult to correct in RGB images, hyperspectral sensors offer
a wealth of redundant data that can be used to remove the effects of different light
sources.

Enhancing Hyperspectral data

Using multiple sensors with different capabilities often creates a clearer picture
of the environment when compared to a single sensor scenario. However, while
our brains are good at fusing information from different sources, some work is
required if the process is to be automated. Multivariate calibration, a term coined
in the field of chemometrics, refers to the development of models to explain the
properties of interest by combining different variables from multi-channel sensor
measurements.
Fusing images from sensors with different spectral and spatial properties to gener-
ate a single, improved data product is a known and studied problem [20, 21]. Hy-
perspectral Image Super-Resolution methods can be grouped into four categories:
Bayesian based approaches [22–28]; Tensor based approaches [29–34]; Matrix
factorization based approaches [35–50] and; Deep Learning based approaches
[51–58].
The mentioned methods assume that the images to be fused are co-located (reg-
istered). However, more recent methods drop that assumption and achieve simul-
taneous registration and super-resolution [59, 60].

Dealing with big data streams

Many modern measurement technologies generate massive amounts of data in a
very short time – e.g., continuous streams of high-dimensional data via one-step
analytical procedures1. For instance:
• Modern spectrometers can deliver hundreds of informative, high-dimension-
al spectra per second.

• Hyperspectral cameras producemultivariate spatially resolved images. In ad-
dition, when configured in a time-lapse mode, they can yield continuous
streams of high-dimensional spatiotemporal recordings.

1Contrary to unstructured data from, e.g., free text, they are systematically recorded and are
here referred to as quantitative data.
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• Industrial monitoring for condition-based maintenance, as well as the con-
trol of complex dynamic processes, requires high-dimensional inputs to be
sufficiently informative.

• Computer experiments, needed to study the behaviour of complex math-
ematical models, involve advanced workstations performing thousands of
simulations, each one possibly characterized by just as many input and out-
put properties.

Hence, a measurement revolution (recently termed data tsunami [61]) is currently
taking place in numerous fields of applied science, ranging from analytical chem-
istry and medicine to environmental surveillance, informatics, and industrial Inter-
net of Things (IoT). However, these incredibly quick advances run the risk of being
practically useless for three reasons:
• The human ability to grasp the content of interest from data remains fairly
constant, and data simplification is therefore desirable for interpretative pur-
poses. Here, one possible solution could be the removal of irrelevant descrip-
tors among the available ones. Nevertheless, for most applications their iden-
tification is not straightforward, which makes such a simplification risky and
complicated.

• IoT threatens to flood both communication channels and users’ cognitive
capacity with overwhelming torrents of repetitive, more or less redundant
data.

• Traditional computing systems are generally not capable of performing an-
alytics on constantly streaming data, typical of today’s world of multimedia
communication [62].

In a scenario like this, if it were possible to simultaneously compress and model
high-dimensional measurement series as they flow from, e.g., an analytical plat-
form and without significant loss of useful information content, their storage,
transfer, retrieval, visualization and interpretation would be radically eased.

Hyperspectral time series analysis

Hyperspectral time series and other multichannel spatiotemporal spectral mea-
surement processes give overwhelming streams of Quantitative Big Data. The raw
data are nonselective, in the sense that they are affected by many different sources
of variation – variations in sample physics (e.g. light scattering) and sample chem-
istry (composition) as well as variations in the light source and the camera (sys-
tematic errors). To identify, separate, quantify and interpret the various sources
of information in such data streams is thus a challenge. It is important to quan-
tify phenomena already known for the given type of measurements, as well as
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also discovering, quantifying, and displaying unexpected, but systematic variation
patterns in the data.

1.3 Scope of work

This thesis documents my journey through the field of hyperspectral remote sens-
ing, a journey that is by no means an extensive exploration of all there is to know
about this field.
Following this introductory chapter, I will discuss the design of a hyperspectral
camera in chapter 2, then move on to its integration with a small UAV for field
testing in chapter 3. After that, I will look into data processing methods in the
remaining chapters. Finally, in the last chapter, I bring all concepts together and
introduce the work being done at the NTNU smallSat Lab.

1.3.1 Contributions

The aforementioned chapters are adapted from publications I co-authored, which
are listed below chronologically.

Multivariate data modelling for de-shadowing of airborne hyperspectral
imaging (2017)

J. Fortuna and H. Martens, “Multivariate data modelling for de-shadowing of air-
borne hyperspectral imaging,” Journal of Spectral Imaging, vol. 6, 2017.

In which we present an extension to the Informative Converse (IC) theorem, allow-
ing for a simplified interpretation of hyperspectral images through de-shadowing.
By imposing certain assumptions on the distribution of spectral information, we
achieve an improved separation of light source variations from ground property
variations.
This researchwas first presented at the International Association for Spectral Imag-
ing (IASIM) 6th international conference in spectral imaging, in July 2016.

On-The-Fly Processing of continuous high-dimensional data streams (2017)

R. Vitale, A. Zhyrova, J. Fortuna, O. de Noord, A. Ferrer, and H. Martens, “On-The-
Fly Processing of continuous high-dimensional data streams,” Chemometrics and
Intelligent Laboratory Systems, vol. 161, 2017.

In which we present a novel method for compression and interpretation of stream-
ing data. The On-The-Fly Processing (OTFP) is based on an evolving implementa-
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tion of Principal Component Analysis (PCA) that updates, when necessary, both the
preprocessing parameters and the principal components structure (whose changes
and possible expansion can be optionally monitored in real time through intuitive
graphical displays) as data arrives.
This method was patented and is a core technology of Idletechs AS2.

Do it yourself hyperspectral imager for handheld to airborne operations
(2018)

F. Sigernes, M. Syrjäsuo, R. Storvold, J. Fortuna, M. E. Grøtte, and T. A.Johansen,
“Do it yourself hyperspectral imager for handheld to airborne operations,” Optics
Express, vol. 26, p. 6021, 2018.

In which we present a do-it-yourself recipe for the construction of small low-cost
hyperspectral push-broom imagers. Only off-the-shelf optical, mechanical, and
electronic components are used. The instruments are assembled by the use of a
3D printer.

A lightweight payload for hyperspectral remote sensing using small UAVs
(2018)

J. Fortuna and T. A. Johansen, “A lightweight payload for hyperspectral remote
sensing using small UAVs,” in 2018 9th Workshop on Hyperspectral Image and Sig-
nal Processing: Evolution in Remote Sensing (WHISPERS), 2018.

In which we describe a lightweight system for Hyperspectral sensing, recording,
and synchronizationwith navigation data. Software and hardware developedwhile
preparing this payload system were then used repeatedly on field campaigns and
as a blueprint for newer generations of airborne hyperspectral payloads.

Hyperspectral time series analysis: hyperspectral image data streams
interpreted by modelling known and unknown variations (2020)

P. Stefansson, J. Fortuna, H. Rahmati, I. Burud, T. Konevskikh, and H. Martens,
“Hyperspectral time series analysis: hyperspectral image data streams interpreted
by modelling known and unknown variations,” Data Handling in Science and Tech-
nology, 2020.

In which we experimentally demonstrate a generic way to model a stream of hy-
perspectral time series data in terms of a priori known and unknown constituent

2www.idletechs.com
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spectra, essentially enabling large dimensionality reduction of the data without
loss of information. An additional benefit of the described methodology, apart
from enabling substantial compression of the data, is that it autonomously high-
lights unidentified systematic spectral variations within the sample being studied,
which aids in further exploration and understanding of the underlying chemical
and physical processes causing variations.

Multivariate image fusion: A pipeline for hyperspectral data enhancement
(2020)

J. Fortuna, H. Martens amd T. A. Johansen, “Multivariate image fusion: A pipeline
for hyperspectral data enhancement,” Chemometrics and Intelligent Laboratory Sys-
tems, 2020.

In which we describe a pipeline for enhancing the spatial resolution of hyperspec-
tral data, by taking advantage of co-located RGB data.
Using multivariate dimensionality reduction techniques (like PCA), we find a re-
duced representation of the high spectral resolution hyperspectral (HS) data. The
high spatial resolution RGB data is then resized to the same low spatial resolution
of the HS data. When both datases are reduced to similar sizes across all dimen-
sions, we apply a regression method to find a representation of the reduced HS
data through RGB. The RGB high spatial resolution information can then travel
the reverse path of the reduced HS, providing a high spectral and spatial resolu-
tion dataset.
We provide a template for connecting functional blocks, with the aim of fusing
multivariate datasets with different resolutions. This leaves room for changing the
reduction and regression methods.

1.3.2 Other work

Cascaded line-of-sight path-following and sliding mode controllers for
fixed-wing UAVs (2015)

J. Fortuna and T. I. Fossen, “Cascaded line-of-sight path-following and slidingmode
controllers for fixed-wing UAVs,” in 2015 IEEE Conference on Control Applications
(CCA), 2015.

In which we present a uniform semiglobal exponential stability (USGES) proof
of a cascaded Line-of-Sight path-following and sliding mode control system for
fixed-wing UAVs. The paper also contains simulation results that show good per-
formance. Later, this algorithm was regularly used during flight campaigns.
It is part of the public repository of the DUNE project: https://github.com/LST
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S/dune/tree/master/src/Control/Path/LOSnSMC
Because its scope is not relevant for the topic of this thesis, this publication is not
included.

10



Chapter 2

Hyperspectral instrument design
Do it yourself hyperspectral imager for handheld to
airborne operations

This chapter describes the rapid prototype construction of small and lightweight
push-broom Hyperspectral Imagers (HSI)1. The dispersive element housings are
printed by a thermoplastic 3D printer combined with S-mount optical components
and commercial off-the-shelf camera heads. Four models with a mass less than
200g are presented with a spectral range from the visible to the near-infrared part
of the electromagnetic spectrum. The bandpass is in the range from 1.4-5nm. Three
test experiments with motorized gimbals to stabilize the attitude show that the
instruments are capable of push-broom spectral imaging from various platforms,
including airborne drone to handheld operations.

2.1 3D printing

When companies like MakerBot Industries started to mass produce 3D printers
using thermoplastics as material back in 2009, the opportunity to create 3D ob-
jects became available to the public. Together with Computer Aided Design (CAD)
software rapid prototyping of parts became possible. A number of studies have
highlighted the use of 3D printing to produce optomechanical components [63]
and spectrometers [64–66]. The latter studies did however not exploit the hyper-
spectral imaging capability.
The main constructional challenge in spectroscopy is the fact that the dispersive or

1Based on the paper "Do it yourself hyperspectral imager for handheld to airborne operations",
by Fred Sigernes, Mikko Syrjäsuo, Rune Storvold, João Fortuna, Mariusz Eivind Grøtte, and Tor Arne
Johansen, published in Optics Express Volume 26, Issue 5, 2018.
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refractive element, a grating or prism, bends the input light beam. A machine with
multiple axes of freedom is needed in manufacturing the part that holds that ele-
ment. In fact, a transmitting grating holder would require at least a 4-axes milling
machine. A 3D printing machine uses Additive Manufacturing (AM) and can eas-
ily build parts with angular or more complex surfaces compared to conventional
fabrication methods. In addition, the printing process produces parts by stacking
honeycomb layers on top of each other, which gives high strength and low mass.
The latter is a clear advantage for low mass payloads aimed at drone operations.
Figure 2.1 panel (A) shows a 3D view of a simple transmission grating holder
(Model 1). The solid modelling prior to 3D printing was carried out in Tinker-
cad™, which is an online CAD program by the company Autodesk Inc. The design
is based on a β = 19.36° wedge using a 600 lines/mm transmission grating with
the collimated input beam entering at the bottom. The optical diagram is shown
in Figure 2.2. This design’s centre output wavelength λ = 552.5 nm, parallel to
the wedge normal, follows the grating equation [67] for the first spectral order
(k = 1):

λ=
�a

k

�

. sinβ (2.1)

Where a, the groove spacing, is 1666.67nm. The grating is fixed by glue and the
collimator lens holder hole is threaded by an M12 × 0.5 tap to fit S-mount lens
holder components.
To avoid both gluing and threading, the holder can be split into two halves that
encompass the optical element. Figure 1 panel (B) shows Model 2, which is a snap-
fit or push-together design. The grating is half-way embedded into the holder. The
same applies to the collimator-slit-front-optics assembly and the detector lens. Due
to the fact that thermoplastic materials tend to shrink during 3D printing, there
is a need to scale up all parts 1-2% of their original designed size to make the
embedded components frictional snap-fit fixed.
One obvious advantage is that parts may now be replaced without risk of damage
and destruction. Nevertheless, the most brittle part is the grating, and to avoid
damaging it, the slot height is designed 0.2mm higher than the grating. A too
close fit tends to break the grating when pushing the parts together. Thin slices
of 0.2mm thick rubber bands are used at the top and bottom of the slot to secure
and fix the grating. Two straight through 45mm long machine screws of diameter
3mm hold the design together. All parts are frictional press locked and require no
glue or epoxy when assembled.

2.2 Collimator-slit-front-optics assembly
The grating is collimated using the mix and match S-mount components of the
company Edmund Optics (EO) Ltd. The basic optical parts comprise one high pre-
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Figure 2.1: A 3D view of transmission grating holders using Tinkercad™. Panel (A)
Model 1: (1) 19.36° wedge, (2) square 12.5× 12.5mm2 mount chamber for a 600
grooves/mm transmission grating, (3) 12mm diameter hole for the Collimator-
slit-front-optics assembly, and (4) cylindrical 25mm diameter detector lens holder.
Panel (B) Model 2: (1) 25×25mm2 square grating holder, (2) detector lens holder,
(3) straight through mount holes, and (4) Collimator-slit-front-optics assembly
holder.

cision slit, a collimator lens, and a front lens. This requires three thin lens holders,
one focus tube, and one locking ring. An exploded view including the detector lens
is shown in Figure 2.3. Details of each part are listed in Table 2.1.
The thin lens holders of EO are designed for 10mm diameter optical components.
The useful optical aperture is 9mm. The slit and the field lens are mounted to-
gether on one of the thin lens mounts. The slit is in contact with the flat side of the
field lens. A second thin lens mount is used for the collimator lens that illuminates
the grating. Both lens holders are mounted on an S-mount focus tube. The input
f/value to the grating is f/3.3, which requires a f/2.5 camera lens to capture all
the first spectral order (k = 1) light diffracted by the grating. The grating is larger
than required in order to only use the centre part that is not affected by frictional
damage when sliding it into its holder. The separation between the centre of the
grating and the centre of the two lenses is only 5mm. The third lens holder is used
in front of the slit to provide sufficient thread and focus distance for the front lens
and its lock nut. The f/4 front lens is the main aperture stop of the system, which
prevents field-of-view overfill of the collimator lens.
Figure 2.4 shows the assembly of the Collimator-slit-front-optics, grating and de-
tector lens embedded into one half of the holder. We used the MakerBot’s Replica-
tor 2 armed with PLA (Polylactic Acid) thermoplastics filament to print the part.
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Figure 2.2: Optical diagram: (1) front lens, (2) entrance slit, (3) field lens, (4) colli-
mator lens, (5) 600 lines/mm transmission grating, (6) detector lens, (7) exit focus
plane. Centre detector diffraction angle β = 19.36° for wavelength λ = 552.5nm
for first spectral order (k = 1).

Figure 2.3: Exploded view of Hyperspectral Imager (HSI) components: (1) front
lens, (2) lock nut, (3) air slit, (4) field lens, (5) three thin lens mounts, (6) focus
tube, (7) collimator lens, (8) transmission grating, (9) detector lens, (10) focus
spacers, and (11) C-mount lens adapter.
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Table 2.1: Technical specification of the Collimator-slit-front-optics assembly.

Item Description Part# (EO) ~Cost [USD]

1 Front lens f/4 Focal Length (FL) 16mm #83-107 50
2 M12 lock nut for µ-video lenses #64-102 10
3 Precision air slit 25 µm× 3mm #38-558 101
4 Field lens FL = 10mm #63-519 38
5 3× S-mount thin lens mounts #63-943 81
6 S-mount focus tube #63-953 49
7 Collimator lens FL = 30mm #63-523 37
8 600 grooves/mm transmission grating 25mm2 #49-580 105
9 Detector lens f/2.5 FL = 25mm #56-776 60
10 S-mount brass spacer rings #54-461 70
11 C-mount to µ-video lens adapter #53-675 25

626

Figure 2.4: Model 2 snap together transmission grating holder: (1) detector lens,
(2) 25 × 25mm2 square 600 grooves/mm transmission grating, (3) 3D printed
grating holder, and (4) Collimator-slit-front-optics assembly.
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Table 2.2: Prototypes instrumental parameters.

Instr. Sensor type Sensor size Spectral range FWHM Mass Sensor cost
[mm2] [nm] [nm] [g] [USD]

A Sony Super HAD Colour CCD 4.800× 3.600 435.8 - 733.6 1.4 106 34
B 5M pixel Colour CMOS 4.300× 3.200 434.8 - 701.3 1.4 128 280
C Monochrome CMOS 11.264× 5.986 297.5 - 1005.5 1.4 152 1300
D Monochrome CMOS 11.251× 7.032 281.8 - 966.1 5.0 168 920

Slit height magnification at the sensor focus plane is 1.28 due to the field lens in
the slit entrance plane and the spectral bandpass is FWHM= 1.4nm (Full Width at
Half Maximum). The visible part of the electromagnetic spectrum (400-700nm) il-
luminates an area in the focus plane of approximately 4.8 × 3.2mm2, which means
that a 1/3" sized image sensor can be used.

2.3 Detectors
Several prototypes have been assembled with different low-cost camera heads.
Four of them are shown in Figure 2.5. A miniature colour CCD (Charge Coupled
Device) video camera head (Turnigy 600 TVL) used by the Radio Control (RC)
community, a CamOne Infinity action camera, and two monochrome industrial
CMOS camera heads are tested out as potential detectors.
The main differences between the prototypes are the type of detectors and how
they are mounted on the grating house. Key instrumental parameters are summa-
rized in Table 2.2. The optical parts are identical, except for instrument (D) where
the slit width is increased to 75µm and the collimator lens is decreased in focal
length to 25mm. The latter is done to increase throughput and sensitivity.
The camera head of instrument (A) is snap fitted by side plates that are added
to the 3D print model. A wireless video transmitter holder is also included. For
instruments (B) and (C), 3D printed side plates are mounted to press fit the cam-
era heads. The two 45mm long bolts that go straight through the grating holder
(Model 2) are used for this purpose. A metal strip is added to the instrument (C)
to improve the design. The same technique is used on instrument (D), except that
the side plates are aluminum. The camera head is now mounted to the plates by
4 × 3mm diameter machine screws. The aluminum plates also act as a heat sink
to the camera head.

2.4 Alignment and calibration
The instrument is focused by first mounting the camera lens to the detector. Brass
spacer rings are used to obtain a fixed back focal length of 17.5mm, required for
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Figure 2.5: Assembled prototypes. Panel (A): (1) Collimator-slit-front-optics as-
sembly, (2) Model 1 grating holder with camera side holder plates embedded,
(3) Turnigy 1/3" Sony Super HAD CCD camera, and (4) wireless video transmit-
ter. Panel (B): (5) Snap together Model 2 grating holder, (6) camera side holder
plates, (7) CamOne Infinity action camera, and (8) 3-axis motorized gimbal stabi-
lizer by Feiyu Tech, Inc. (model MG). Panel (C): (9) uEye UI-3360CP-NIR-GL in-
dustrial camera head by Imaging Development Systems (IDS) GmbH, (10) metal
strip, and (11) two straight through mounting bolts with nuts. Panel (D): (12) alu-
minum side plates, (13) IMX174LL CMOS camera head by The Imaging Source,
LLC, and (14) USB 3 connector.

17



2. Hyperspectral instrument design: Do it yourself hyperspectral imager for
handheld to airborne operations

C-mount camera heads to be focused at infinity. Secondly, after mounting all parts
together, the spectral focus is achieved by tuning the S-mount focus tube. A spec-
tral line source such as a fluorescence tube illuminating a diffuse surface is used
to identify spectral lines as sharp as possible. Thirdly, the front lens is focused by
identifying sharp structures in the horizontal direction of the spectrograms, which
originate from any sharped edged target object located at infinity as seen by the
font lens.
A spectrogram of a white paper edge illuminated by an OSRAM fluorescent tube
is shown in Figure 2.6. The horizontal edge across the spectrum should be as
sharp as possible to obtain focus of the front lens. Note that the edge is sharper
at the wavelength centre of the spectrogram. This is believed to be due to chro-
matic aberrations in the collimator lens. An achromatic lens should be tested in
future designs. The spectral lines are also slightly curved and tilted ( ± 0.45nm)
due to astigmatism and a small misalignment of the slit angle, respectively. The
wavelength calibration is therefore conducted by a polynomial fit of the known
emission line peaks in the centre row spectrum of a mercury vapour tube spectro-
gram. As noted above, any misalignment of the slit and astigmatism effects will
produce errors in the order of ± 0.5nm.
It should be emphasized that the use of colour sensors is not necessary in spec-
troscopy, but the low cost and availability make them ideal for testing on proto-
types. In addition, coloured spectrograms are useful for pedagogic and demon-
strational reasons. For further processing, the spectrograms are simply converted
to grayscale by adding the response from each colour channel and scaling the net
result down to 8-bit. This is not ideal for target intensity work since we do not de-
mosaic the raw response from the Colour Filter Array (CFA) in front of the sensor
surface. Instrument (A) and (B) are as a consequence not intensity calibrated.
Instruments (C) and (D) use monochrome CMOS sensors that are also sensitive
in the Near-Infrared (NIR) region of the spectrum. However, based on our cali-
bration results, the effective or useful spectral range is only from 400 to 800nm.
These instruments are not sensitive to Ultra Violet (UV) light below 400nm due
to absorption by the glass lenses, and the second spectral order (k = 2) appears
or blends in above 800nm. The effect is visualized in Figure 2.7 in the wavelength
calibration of instrument (D).
The first-order emission lines of Mercury (Hg) at wavelength 404.7 and 435.8nm
reappear above 800nm as second-order lines. This opens the opportunity to in-
crease the readout time by cropping the useful part of each spectrogram, and
cutting out the second-order part in NIR and the nonilluminated areas in UV. The
latter could also be used to detect the background level of the sensor.
Sensitivity calibration was conducted using a standard certified irradiance tung-
sten lamp and a Lambertian screen as target [68]. The raw 8-bit count response
and source spectrum in units of mW m−2nm−1 of the screen are shown in Figure
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Figure 2.6: Spectrogram from instrument (B). Target is a white paper illuminated
by a fluorescent tube (OSRAM FQ 54W/830 HO). The emission lines of mer-
cury (Hg) at wavelengths 404.7, 435.8 and 546.1nm are marked. The doublet
at ~580nm is Sodium (Na). The upper part of the spectrogram is the white paper,
and the lower part is a light gray coloured surface (office bench).

2.7. Certification above 800nm requires an order blocking filter with cutoff wave-
lengths above 400nm. A motorized filter wheel could be installed in front of the
grating to handle this issue, but it would complicate the design, introduce moving
parts, and add mass. Another solution would be to sacrifice spectral resolution and
use a prism instead of the grating with no overlapping spectral orders.

2.5 Multi-purpose examples
The following three test applications are setup to demonstrate that the construc-
ted HSIs are capable of forming multispectral images where the target objects are
visually identified. Lessons learned are also included.

2.5.1 Octocopter drone experiment

The Octocopter was equipped with a motorized 2-axis gyro platform for the pay-
load. The gyro stabilized pitch and roll attitude angles during the flight. Note that
the yaw or heading of the payload was not stabilized. In addition to the HSI -
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Figure 2.7: Wavelength and sensitivity calibration of 3D printed Hyperspectral Im-
ager (HSI) - instrument (D). Panel (A): The spectra are sampled from the centre
horizontal row of the detector. The gain was set to zero. The blue spectrum is from
a Mercury (Hg) vapour tube supplied by Edmund Optics Ltd. (SN K60-908). The
red curve represents the spectrum of a fluorescent tube (OSRAM FQ 54W/830
HO). Each mercury emission line is marked according to wavelength and spectral
order k. The green spectrum is a 30 second exposure of a Lambertian screen (Lab-
sphere SRT-99-180) illuminated by a 1000W Tungsten lamp (ORIEL SN7-1275)
located 8.54m away from the screen. Black coloured spectrum is the irradiance of
the screen in absolute units of mW m−2 nm−1. Panel (B): The spectrogram of the
fluorescent tube.

instrument (A), a Normalized Difference Vegetation Index (NDVI) camera was in-
stalled to map the terrain and the vegetation [69]. The camera is a modified Canon
PowerShot SX260. The original CFA is replaced by a Near Infrared (NIR) sensitive
CFA by the workshop MaxMax.com - Llewellyn Data Processing (LDP LLC). The
NDVI camera stored 1/1000 second exposures on an internal memory card every
2 seconds. Each image was tagged with GPS position data. The video from the HSI
was transmitted and received by a video recorder at ground level. The exposure
time was set to 1/50 second. The live stream was 25 frames per second. The au-
tomatic gain of the camera was enabled.
The main objective of the experiment was to determine whether the drone and
the gyro together could act as a line scanning platform for the HSI instruments. A
stable attitude flight where the image in the slit entrance plane is moved parallel
along the slit height axis and perpendicular to the flight direction, should in theory
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sample the target in a linear manner without spatial disturbance.
A geo-corrected orthomosaic image constructed from the NDVI image sequence is
used to compare and detect similar spatial features obtained from the hyperspec-
tral datacube. The mosaic is visualized in Figure 2.8. Five white diffuse coloured
surfaces with a square area of 1m2 are used as ground control points for calibra-
tion of the image position. Each control point position is measured by a Differen-
tial Global Positioning System (DGPS) prior to the airborne campaign. Geolocation
and rectification were carried out by the students as part of their training.
The pilot operated the drone close to the white van seen at the parking lot to the
left in the middle of Figure 2.8. The flight pattern is shaped like a fan. Yellow boxes
mark the sampling area of the HSI. For each track, the drone was flown out into
the field in different directions in order to return with low velocity back towards
the position of the pilot. The pilot manually controlled the aircraft in altitude hold
mode. More advanced intelligent modes like automatic GPS waypoint navigation
were then not an option. The altitude ranged from 100 to 300m with ground
track speed velocities from 1.7 to 3.1m/s. Note that the weather conditions were
not optimal due to wind gusts up to 5m/s, especially at the high altitude range. As
a consequence, data from only 4 out of 25 tracks were selected for further analysis
based on stable flight performance of the drone.
The comparison between the NDVI and the HSI camera is shown in Figure 2.9.
The NDVI images are first scaled down to 30% of their original size. The HSI im-
ages are colour RGB composites. Each colour channel is constructed by stacking
the accumulated response in wavelength across a vertical sliced box of the video
frames (spectrograms). The position and width of the box define the centre wave-
length and the image bandpass, respectively. The blue, green and red channels of
the composite HSI images are centred at 470, 550, and 630nm, all with a bandpass
of 10nm. Secondly, the colour images are scaled down to match the spatial scale
of the NDVI images. The adjustment of the scale was done by visual examination
of the resulting match.
It is clear that the HSI is capable of reproducing the same features and objects
that the NDVI camera detects. The main errors are occasional horizontal stripes
associated with wind gusts and scaling in the flight direction. The latter is due to
variations in aircraft velocity and flight direction (yaw).

2.5.2 Handheld gyro stabilized experiment

The next experiment was conducted with HSI-instrument (B). The imager was
mounted on a 3-axis gimbal made by the company Feiyu Tech, model MG. The
gimbal is designed for handheld operation of Digital Single Lens Reflex (DSLR)
cameras. Integrated 3-axis accelerometers and gyroscopes feed the three brush-
less motors with attitude data (tilt, roll, and pan). The HSI was mounted on an
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Figure 2.8: Drone experiment in Skarsteindalen at Andøya, Norway on the 9th of
August 2016. Panel (A) shows the Octocopter operated by the Remotely Piloted
Aircraft (RPA) group at Andøya Space (AS). Panel (B): Hyperspectral Imager (HSI)
- instrument (A) and the NDVI (Normalized Difference Vegetation Index) camera
mounted on the 2-axis stabilized gyro platform of the drone. Background panel
(C): NDVI orthomosaic mosaic photo. Yellow numbered boxes mark sampled areas
of the HSI. The label (5) marks the upper left ground control point.
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Figure 2.9: Side by side comparison between the NDVI (Normalized Difference
Vegetation Index) camera and the Hyperspectral Imager (HSI) - Instrument (A)
from the drone experiment conducted at Skarsteindalen on the 9th of August 2016.
The bottom axis groups the 4 recorded image scenes. The HSI (colour) and the
NDVI images (pinkish scaled) are tagged at the top. The HSI RGB composites are
constructed by combining 10nm bandpass images at centre wavelengths 470nm
(blue), 550nm (green) and 630nm (red). The time of flight is at the top of each
image bar in seconds.

23



2. Hyperspectral instrument design: Do it yourself hyperspectral imager for
handheld to airborne operations

L-shaped aluminum mount bar that increased the mass with 90g. It was neces-
sary to add mass to the gimbal in order to balance all 3-axis correctly. The HSI
recorded the spectral movie on two internal 32GB memory cards installed in the
CamOne Infinity action camera head and the gimbal was powered by its own bat-
teries, making the assembled system self-contained with no auxiliary connections
or computers.
A panoramic sweep using the gimbal is shown in Figure 2.10. The target is the
houses of Longyearbyen on the 25th of September 2017. The HSI and the gimbal
were stationary mounted on the roof of The University Centre in Svalbard (UNIS)
with the yaw axis panning from East to West up the Longyearbyen valley. Nine
images were extracted from the hyperspectral datacube every 30nm from 470 to
670nm centre wavelength. All images have a bandpass of 10nm. The total sweep
took 152 seconds. The RGB composite was constructed using centre wavelengths
at 480nm (blue), 550nm (green), and 620nm (red).
As expected, the HSI produced a colour image close to visual perception for all
targets in the scenario. The images seem to be more blurry in the blue part com-
pared to the green-red part of the spectrum. The effect is mainly due to chromatic
aberration as explained in Section 2.4. Note that the images are scaled down a
factor of 3 in the vertical direction and equalized in intensity to increase contrast
and brightness by the program paint.net from dotPDN LLC.

2.5.3 Computer screen test experiment

In the last experiment, the gimbal and the HSI instrument (B) were used handheld
to sweep a computer screen displaying an image of a fruit collection. 571 spectro-
grams were recorded in 22s at a distance of 1.5m from the computer screen. The
target screen colour photo and the HSI RGB composite are shown in Figure 2.11.
Centre wavelengths at 490nm (blue), 552nm (green), and 620nm (red) were used
to construct the image. Image bandpass is 10nm for all channels. The image is re-
sized to match the target size. The vertical and horizontal scale factors are 0.22
and 1.38, respectively. The horizontal black line close to the top in the image is
due to dust on the slit.
There are two advantages of using a computer screen as a test target. First, there
is no need for an additional reference camera to document the target. Secondly,
the target is illuminated by the screen itself.
The experiment shows that the gimbal and the HSI together are capable of repro-
ducing both colour and shape of the target objects in the scene. The focus of the
HSI RGB composite is not as sharp as the test image. The size of the slit width re-
quires a downscaling in the vertical direction to obtain equal sized or square image
pixels. In addition, multicolored and non-smooth transitions are seen at the edges
of the objects. The effects are mainly due to chromatic aberration and operator
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Figure 2.10: Sample images from the 3D printed push-broom Hyperspectral Im-
ager (HSI) - instrument (B). Location is at the roof of the University Centre in
Svalbard (UNIS) on the 25th of September 2017. Vertical centre line of the images
is towards South - up the Longyearbyen valley. Each image is labeled with the cen-
tre wavelength to the right. The individual images have a bandpass of 10nm. The
bottom RGB composite is constructed by combining images at centre wavelengths
480nm (blue), 550nm (green) and 620nm (red).
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Figure 2.11: Handheld gimbal operation of the push-broom Hyperspectral Imager
(HSI) - instrument (B). Panel (A): Target computer screen image. Panel (B): HSI
RGB composite constructed by combining centre wavelength images at 490nm
(blue), 552nm (green) and 620nm (red). Bandpass is 10nm for each colour chan-
nel.

shake, respectively.
The sensitivity of the HSI prototypes has not been a limiting factor in the study.
As mentioned, higher throughput may be achieved by increasing the slit width
and decreasing the collimator focal length to 25mm. A faster front lens at f/2.8
may then be used. As a result, both the spectral and spatial resolution would be
degraded. Future studies will be conducted to optimize performance bases on the
level of target illumination and spectral calibration.

2.6 Concluding remarks

Together with off-the-shelf optical components, low-cost camera heads, and 3D
printing, it is possible to construct a push-broom hyperspectral camera with a mass
less than 200g and cost below US$700. Laboratory calibrations supplemented with
field experiments have proven the conceptual design based on visual comparison
of colour and shape with the RGB camera images recorded simultaneously, which
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is believed to be sufficient proof at this stage of the development.
The principal results obtained in this study can be summarized as follows:
1. 3D printing is a powerful tool for construction of rapid prototype parts with
sufficient accuracy for optical systems, like a transmission grating house pre-
sented in this study. The lightweight and strength of the printed thermo-
plastic material is an advantage when optimizing payload mass and size,
especially for drone operations.

2. The accessibility of mass produced low cost camera sensors developed for
the industry, the Radio Control (RC) model community and action camera
users, makes it possible to record visible and even the near infrared part of
the electromagnetic spectrum at high frame rates.

3. Line scanning or push-broom hyperspectral imaging from an airborne plat-
form or simply handheld can be done with a commercial off-the-shelf mo-
torized gyro stabilized gimbal.

4. Self-contained motorized gyro gimbals and internal camera head recording
reduce auxiliary device support requirements and complexity of field oper-
ations.

5. The push-broom hyperspectral imaging technique is revitalized.
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Chapter 3

Preparing the imager for field
tests
A lightweight payload for hyperspectral remote sensing
using small UAVs

In this chapter we describe a lightweight hyperspectral imaging payload consisting
of a push-broom imager, GPS, and IMU sensors as well as data synchronization and
acquisition systems1. The payload was developed in a modular and customizable
way, making it a flexible UAV payload for research activities.
First we present the hardware and software set up, with details on each of the
components and their interaction. Then we show the results from field tests.

3.1 System overview

The described payload, Figure 3.1a, is a highly modular system: sensors can be
added, removed, or swapped. All changes have of course an impact on the quality
of the final data product. E.g., having a lower performance, but cheaper GPS will
produce less accurate georeferencing. In this paper, we present the current version
of the payload’s set-up.
Figures 3.2 and 3.3 show the data and power flow, respectively. In dark colour are

1Based on the paper "A lightweight payload for hyperspectral remote sensing using small UAVs",
by João Fortuna and Tor Arne Johansen, presented at the 9th Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, Netherlands, 2018.
This work was supported by the Norwegian Research Council (grant nos. 223254 and 221666)
through the Centre of Autonomous Marine Operations and Systems (NTNU AMOS) at the Norwe-
gian University of Science and Technology, the MASSIVE project (grant no. 270959), as well as the
Norwegian Space Agency.
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(a) Standalone. (b) Mounted on Maritime Robotics’ hexacopter.

Figure 3.1: Prototype payload.
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Figure 3.2: Data connection diagram.
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Figure 3.3: Power distribution diagram.

data or power sources, in white the conversion or routing elements and finally in a
light colour are data storage/transmission or power consuming components. The
following sections will explain each component interaction in more detail.

3.1.1 SenTiBoard

The Sensor Timing Board provides accurate timestamps with 10ns resolution for
all sensors. This component is described in [70][71]. By using data from the IMU
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and GPS sensors and a navigation filter [72], we can generate georeferenced maps
of hyperspectral data.

3.1.2 Hyperspectral instrument

At the heart of our system is the push-broom [73] hyperspectral instrument. This
model was developed using 3D printed parts and commercial off-the-shelf (COTS)
optical components and the optics are discussed in detail in Chapter 2. By devel-
oping the system in such way that the camera can be chosen with some degree of
freedom, it allowed us to select a model with the required spectral sensitivity as
well as easy Linux integration.

Camera

The camera model used in the current version of the system is the UI-3360CP-
NIR-GL, with enhanced NIR sensitivity, produced by IDS Imaging Development
Systems GmbH [74]. This corresponds to model C, refer to Section 2.3, Figure
2.5. Raw data depth is 12bit, it provides a USB 3.0 interface for data transfer, and
an 8-pin I/O connector with flash signal, trigger and GPIO pins.

Optics

The principle used for hyperspectral imaging is a push-broom instrument. This is
achieved through the use of a slit, a dispersing element (grating), and required
focusing lenses, see Section 2.2. Because this camera was developed using COTS
components, the available slits did not allow taking advantage of the full size of
the sensor. While the sensor has 1088 pixels in the spatial axis, we can only use
580.
The spectral range of the instrument is theoretically 300-1000nm, however wave-
lengths below 400nm are blocked by the glass lenses, and in addition, frequencies
above 800nm suffer from blending with the second spectral order as previously dis-
cussed in Section 2.4. Despite these limitations we record the 350-950nm range
so we can later decouple some of these effects in post-processing.
The ground resolution is given by:

dx =
z ×w

f1
[m] (3.1)

∆x = dx + v ×∆t [m] (3.2)

∆y =
z × h
f1 × N

[m] (3.3)

Where f1 = 16mm (front lens focal distance), w = 25µm (slit width) and h =
3mm (slit height), Table 2.1. The remaining variables: N = 580 (usable pixels in
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Camera
5V
F+
F−

8 MΩ
GND
TOV SenTiBoard

Figure 3.4: Flash electrical wiring.

spatial axis) was discussed before, then z (flight altitude), v (ground speed) and
∆t (exposure time) can be changed in each flight.

Data acquisition

To enable the synchronization of the camera frames to the rest of the data, the
flash output signal is fed to the SenTiBoard. Figure 3.4 shows the wiring schem-
atic used to capture the flash signal, as recommended in the camera manual [75].
The signal in the Time of Validity (TOV) node will be high (5V) whenever the flash
is active, and low (GND) otherwise. When initializing the camera, we configure
the flash to be active for the entire duration of the exposure time. The SenTiBoard
will record the time of every falling edge (transition from 5V to GND) in TOV, thus
timestamping the end of each exposure.
Due to limitations in processing power and writing speed in the on-board com-
puter, we perform off-chip spectral binning [73] on the frames before saving to
disk. The binning operation reduces the size of the image by adding columns to-
gether. After experimenting with different settings, a value of 10× seems to allow
recording data at 30fps. Since the raw data is captured at 12bit depth, it is possible
to bin up to 16× without risking overflow when using a 16bit image container file.
The chosen binning factor results in a spectral resolution of approximately 4nm
per band. Because of the limited usable spatial and spectral ranges caused by the
optics, we read a cropped area of the sensor, that area is 1800×600 pixels. When
applying 10× spectral binning to those frames we end up with 16bit images of
180×600 pixels that should be stored.

Calibration

Our instrument was wavelength calibrated to match pixels in the spectral axis
to wavelengths. The procedure used was to point the camera to a fluorescent
light tube with known sharp emission bands [76] and capture data. Then, visually
match the peaks to those bands as seen in Figure 3.5. Finally, fit a second degree
polynomial on the pixel-wavelength pairs discovered, as mentioned in Section 5 of
[77].
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Figure 3.5: Fluorescent light spectrum.

Radiometric calibration was not performed, as we are still testing the sensor to
find optimal settings.

3.1.3 Other hardware

Navigation sensors

For high positioning accuracy, we used an RTK (Real Time Kinematic) capable GPS
module. The model selected was uBlox-NEO-M8T, assembled on a breakout board
by CSG Shop [78]. We time and log the following messages: RXM-RAWX, RXM-
SFRBX, NAV-PVT as per the instructions in [71].
The chosen IMU was the ADIS16490 3-axis gyroscope and accelerometer.
There is no heading sensor installed in this version of the payload, but heading
information can be retrieved from the UAV autopilot logs. Timing is synchronized
through GPS times both on the payload and autopilot.

On-board computer

As this system is to be used for small-scale UAV-based airborne surveys, there was
a need to have an on-board computer that can acquire and log data. We chose the
Odroid-XU4 board [79]. This board is also recommended by the camera manufac-
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turer for embedded applications.
To accommodate for the high data rate coming from the camera, we opted for a
USB 3.0 SSD disk. Initial tests with USB flash drives and µSD cards showed that
those devices were not fast enough.

Communications

In its stand-alone version, the payload includes a Wi-Fi radio for communica-
tion. During the field experiments this radio was configured as an Access Point
(hotspot), this way we could connect to it using the integrated network card on
a laptop. Data rate requirements are low, as external communication is used only
for status monitoring and acquisition control.

3.1.4 Software

One of our goals when developing this payload was to make it as easy to use
as possible. By simplifying and automatising the acquisition process, field exper-
iments can be made more efficient. We achieve this by using the LSTS Toolchain
[80], an open-source project with a suite of tools for autonomous systems that in-
clude on-board control and logging (DUNE), communication protocol (IMC) and
a graphical user interface (Neptus) for mission control and log analysis. The UAV-
Lab has contributed to and used this toolchain in the past [81], thus making it the
prime candidate for powering our system.
DUNE [82] is the software running on the on-board computer. It manages the ac-
tivation and logging of the sensor data, as well as communication with the ground
station. To support the chosen hardware, there was a need to develop two "Tasks"
(software modules) in DUNE: one for interfacing the camera and another for the
SenTiBoard.

3.2 Experimental results

OnMarch 22nd, 2018, we flew over Hopavågen, a salt water pool in the Trøndelag
region, Norway. This is an area of interest for the Department of Biology at NTNU,
who provided us with the experiment goal of mapping different types of habitats
in shallow water such as seagrass, rocks, sand, or sea urchins. In the past, this has
been performed manually.
The target to observe was underwater, and in addition, on that day the sky was very
cloudy. That resulted in nonideal conditions. Before flight, ground tests were made
to find the best settings for image capture. Table 3.1 shows the flight parameters
and sensor configuration.
The payload was mounted on a hexacopter as seen in Figure 3.1b. During the
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Table 3.1: Experiment parameters.

Parameter Value Unit

Frame rate 20 frames/s
Exposure time 49.9 (max) ms
Sensor Gain 4 -
Flight Altitude 10 m
Flight Speed 1.5 m/s

a b

c

Figure 3.6: Hyperspectral data (RGB rendering) overlaid on RGB image taken dur-
ing flight. Swath width of HSI is 1.875m.

flights an additional RGB camera was also capturing images. Data from both RGB
and HS cameras are seen in Figure 3.6. The two images were matched manually
based on timing information and ground features. Spectral data from each of the
marked points of interest can be seen in Figure 3.7.
Using the values from Table 3.1 in Equations 1-3, we get ground resolutions per
pixel of∆x ≈ 90mm (along track) and∆y ≈ 3mm (across track). Ground sampling
distance is v/ f ps = 75mm.

3.3 Future work

We are currently working on the final piece of the HS data acquisition and pre-
processing pipeline: automatic georeferencing, map generation, and GIS software
compatibility. The first step towards it is the processing of raw navigation data into
a full navigation solution [72].
Other features that should be added in the near future are the ability to change
settings more easily, detection of relevant target signatures during flight, stream-
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(c) Sand in shallow water

Figure 3.7: Mean spectrum (red solid line) and range (dotted black line) for each
point of interest.

ing of more detailed capture status, and data quality diagnostics. In addition, we
should perform accurate radiometric and geometric calibrations.
Regarding the mechanical assembly of the payload, the current solution is exper-
imental. Once we decide on a fixed set of components, we can design a custom
enclosure with minimal weight and volume, while keeping the required mechani-
cal and thermal stability.

3.4 Conclusions
Our system proved to be easy to use in the field, requiring little interaction beyond
the initial parameter setting.
Because of the grating-slit design of the push-broom camera, the amount of light
captured by the sensor is very limited, this sets some requirements on light and/or
weather conditions during experiments. Changing flight parameters or the slit
width can increase the amount of light, however that comes at the expense of
reduced area coverage, spatial and/or spectral resolution.
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Chapter 4

Correcting for environmental
disturbances
Multivariate data modelling for de-shadowing of airborne
hyperspectral imaging

Airborne hyperspectral imaging is a powerful technique for high-resolution clas-
sification of large areas of ground, applied today in fields like agriculture and en-
vironmental monitoring. Even though many classification algorithms are capable
of handling shadows without a decrease in performance, visual inspection can be
made easier if shadows are removed.
In this chapter, we present a method for separating the effect of shadows (de-
shadowing) and other partially known lighting condition changes from the effects
due to the physical, chemical or biological properties of the ground, which are of
interest1.

4.1 Introduction

Effects of shadows usually represent a multiplicative gain change in reflectance
(R) data, traditional de-shadowing techniques solve the task by finding the more
or less complex gain to compensate for it [83].
In this chapter, we present an approach that relies on the multiplicative effect
of illumination in reflectance mode, that is, additive in the apparent absorbance

1Based on the paper "Multivariate data modelling for de-shadowing of airborne hyperspectral
imaging", by João Fortuna and Harald Martens. First presented at the International Association for
Spectral Imaging (IASIM) sixth international conference in spectral imaging, held in Chamonix-
Mont-Blanc (France), July 2016. Later published in the Journal of Spectral Imaging (JSI), Volume
6, 2017, per invitation of the conference committee.
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(log10(1/R)).
The next section presents the theory behind the method, with all necessary steps.
Following that are the results of the application of the method to airborne hy-
perspectral data. The last section contains some conclusions and open discussion
topics.
The methodology presented here represents an extension of the theory of the
informative converse (IC) [84]. This theory concerns inadequate mathematical
modelling of variations in data from multichannel measurements (Q variables in
N samples), and points out how multivariate data modelling can give surprising
new insights about unexpected – and thus unmodelled – phenomena in the system
measured: it is well known that unmodelled phenomena can lead to alias ("multi-
variate bias") problems in modelled phenomena’s estimated parameters. However,
the IC theory shows that a subsequent multivariate analysis of the resulting (N×Q)
table of unmodelled residuals can give a surprisingly good characterization of some
aspects of the elements missing in the oversimplified modelling. The present chap-
ter refines the IC theory by bringing in additional knowledge about the system at
hand.
As mentioned, established approaches try to estimate changes in intensity gain to
compensate for shadows in hyperspectral image data. Let the data matrix Y (N×Q)
be a table of transformed spectra (N pixels, Q wavelength channels), obtained by
treating the multichannel spectral data in the N pixels as if they represented Q-
dimensional spectra from a spectrophotometer: reflected intensity from a scene is
observed by the camera (I). For gain control, each pixel’s measured I is element-
wise divided by I0, the reflected intensity of a white body with the same light
source, to convert I to reflectance (R). Finally, the linearized data are given by the
apparent absorbance Y = log10(1/R). Hence, to ensure that systematic variations
in I0 can be modelled additively instead of multiplicatively, we replace the cam-
era’s intensity measurements I by the apparent absorbance, Y = log10(1/R) in the
subsequent multivariate spectral modelling.

4.2 The informative converse paradox
Figure 4.1 illustrates the original IC paradox. The basic problem is illustrated in
Figure 4.1a): the measured data Y often represent the sum of two causal sources
– expected and unexpected ones – plus random errors (F). The unexpected varia-
tion sources can seriously interfere with the modelling of Y . For instance, assume
that the spectral data Y have contributions from an expected phenomenon with
spectral profile s and levels c in n pixels, plus contributions from an unexpected
phenomenon with spectral profile z and levels d in the n pixels:

Y = csᵀ + dzᵀ + F (4.1)
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4.2. The informative converse paradox

Figure 4.1: The informative converse paradox, illustrated for a linear model of the
two constituents, observed in Y (N ×Q) at Q wavelengths in N pixels; Y (n× q) is
the original notation from [84]. a) The measurements Y have both an expected
and an unexpected source contribution, in addition to random measurement er-
rors F . b) The expected and unexpected source contributions may be modelled as
csᵀ and, dzᵀ respectively. When only measurements Y and the expected source’s
known spectrum s are known, while its concentration c and unexpected concen-
tration d and spectrum z are unknown, the original IC method gives a surprisingly
good estimate of the unexpected d, but erroneous (aliased) estimates both for the
expected c and the unexpected z. (Adapted from [84] and reproduced with the
permission of the publisher).

where Y (N ×Q): hyperspectral reflectance measurements for N pixels (rows) at
Q different wavelength channels (columns), linearized as log10(1/R); csᵀ = c(N ×
1)sᵀ(1×Q): contributions from a partially known cause; dzᵀ = d(N ×1)zᵀ(1×Q):
contributions from a totally unknown; F(N ×Q): measurement and modelling er-
rors (assumed, for simplicity, to be random, normally distributed).
If the spectral data in Y are modelled inadequately Figure 4.1b) in terms of known
spectrum s only, while z is ignored, the estimate of c (e.g. ĉ = Y s(sᵀs)−1) will be
contaminated by contributions from d and thus "unnatural". The IC paradox, Fig-
ure 4.1b), is that a subsequent multivariate PCA analysis of Y− ĉ sᵀ yields estimates
of d with the correct "natural" expectancy (except for a trivial scaling factor). The
corresponding estimate of z from that PCA will be "unnatural" due to its orthogo-
nality to s .
The present chapter modifies this IC methodology by correcting the estimates of c
and z with the use of additional assumptions (such as non-negativity), extends it to
multicomponent models and applies it to hyperspectral airborne images of ground
scenes in order to separate illumination changes (e.g., shadows) from ground prop-
erties (e.g., geology, vegetation).
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In the following, we demonstrate that shadow effects and illumination changes
may be expected to give additive phenomena, allowing us to write the following
multivariate linear model:

Y = CSᵀ + DZᵀ + F (4.2)

For hyperspectral data Y each matrix takes the meaning below:
• Y (N×Q) – hyperspectral absorbance for N pixels (rows) at Q different wave-
length channels (columns), linearized as log10(1/R)

• CSᵀ = C(N × J)Sᵀ(J ×Q) – contributions from partially known causes (e.g.,
light sources)

• DZᵀ = D(N×M)Zᵀ(M×Q) – contributions from totally unknown causes (e.g.,
ground components)

• F(N ×Q) – measurement and modelling errors (assumed, for simplicity, to
be random, normally distributed)

It is, of course, possible to estimate the expected sources’ unknown concentration
parameters C(N×J) of J constituents in N pixels from their known spectra S(Q×J),
using the over-simplified linear model ignoring the unexpected variation source(s)
DZᵀ:

Y = CSᵀ + F (4.3)

But since this represents an over-simplified mathematical model of reality, it can
give serious errors in the parameters identified. In this case, the estimates of C
from S only. The purpose of the present chapter is to give good estimates of the
expected source’s pixel levels C and the unexpected sources’ contribution levels D
and spectra Z as well as residuals F in such cases.

4.3 Method
The IC modelling extension may be applied in different ways. For illustration, we
here assume that Z, the spectral properties of the main ground constituents (e.g.,
plants, rocks, water) are unknown, and so are their pixel-by-pixel level ("concen-
tration") variations D, while S, the spectra of possible lighting conditions (e.g.,
sunlight, overcast), is known, while their pixel-by-pixel level variations C are un-
known. However, the presented method also works in the converse case, when
only C is known, while their spectra S are unknown (see [84]). Likewise, the
method may be used to estimate and correct for the spectral effects of unknown
light sources, particularly if the spectral properties or the pixel-by-pixel level vari-
ations of some or all of the main ground components are known. Necessary mod-
ifications to the algorithm are trivial and will not be explained here.
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4.3. Method

4.3.1 Relating the unknowns to the known or easily estimated
parameters

We can always express the spectra Z and levels C as function of the spectra S and
levels D respectively:

Z = SA+ Z⊥S (4.4)
C = DB+C⊥D (4.5)

where A(J × M) and B(M × J) represent the coupling of unexpected spectra Z
to known spectra S and expected but unknown levels C to unexpected levels D,
respectively. The M -dimensional subspace of D is easy to estimate by IC analysis
[84]. If all elements in A (or B) are 0, Z and S (or C and D) are orthogonal, the alias
problem disappears. If not, then they represent spectral- and/or level- overlaps that
will create alias errors unless estimated and compensated for.

4.3.2 Summary model

Y = CSᵀ + DZᵀ + F (4.6)
= (DB+C⊥D)S

ᵀ + D
�

AᵀSᵀ + Zᵀ⊥S

�

+ F (4.7)
= D (B+ Aᵀ)Sᵀ +C⊥DSᵀ + DZᵀ⊥S + F (4.8)
= DHSᵀ +C⊥DSᵀ + DZᵀ⊥S + F (4.9)

where H(M × J) is the sum of the unknown ambiguity matrices in Z (w.r.t. S) and
C (w.r.t. D):

H = B+ Aᵀ (4.10)

4.3.3 Estimation methodology

In the following steps, ordinary least squares (OLS) regression is used in all esti-
mations. If different input variables (columns in Y) are known to have different
relevance or reliability, then the OLS may be replaced by weighted least squares
(WLS) or generalized least squares (GLS) in all the regressions over channels.
Likewise, if different pixels (rows in Y) need different weights, then WLS or GLS
regression may be used in all regressions over observations. Alternatives to OLS,
WLS or GLS, such as best linear unbiased predictors (BLUP) or robust statistical
estimators, may also be used.
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4.3.4 Estimation of model parameters

• S is assumed known

• D and Z⊥S are easy to estimate by the IC analysis [84]:

bC
?
= YS(SᵀS)−1 (4.11)

E(bC ?) = D + DAᵀ (4.12)
F IC = Y − bC ?Sᵀ (4.13)

E(F IC) = DZᵀ⊥S (4.14)

Singular Value Decomposition (SVD) of the IC residual F IC gives, for its q
most significant components:

[U IC , s IC , V IC] = svd (F IC , q) (4.15)

which yields estimates of the bilinear structure DZᵀ⊥S. With:

bD = U ICdiag(s IC) (4.16)
bZ⊥S = V IC (4.17)

• C⊥D is estimated by:

bC⊥D =
�

I − bD
�

bD
ᵀ
bD
�−1
bD
ᵀ�
bC
? (4.18)

4.3.5 Estimating the ambiguity matrix H

Y = DHSᵀ +C⊥DSᵀ + DZᵀ⊥S + F (4.19)
DHSᵀ = Y −C⊥DSᵀ − DZᵀ⊥S − F (4.20)

Insert estimates:

bDHS
ᵀ ≈ Y − bC⊥DSᵀ − bDbZᵀ⊥S (4.21)

Solve to estimate H:

ÒH =
�

bD
ᵀ
bD
�−1
bD
ᵀ �

Y − bC⊥DSᵀ − bDbZᵀ⊥S

�

S(SᵀS)−1 (4.22)
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4.4. Dataset

Figure 4.2: AVIRIS dataset f140530t01p00r16 with region of study marked.

4.3.6 Estimation of expected source levels C and unexpected
spectra Z

From Equations 4.4, 4.5 and 4.10:

bC = bD
�

ÒH − Aᵀ
�

+ bC⊥D (4.23)
= bDÒH + bC⊥D − bDAᵀ (4.24)

bZ = S
�

ÒH
ᵀ − Bᵀ
�

+ bZ⊥S (4.25)

= SÒH
ᵀ
+ bZ⊥S − SBᵀ (4.26)

Hence, bC (and bZ) have unknown matrices A(J×M) (and B(M×J)), which describe
how Z depends on S (how C depends on D), and that generates ambiguity w.r.t.
bD (and S). This ambiguity can only be eliminated by additional information about
C (and Z) (e.g. non-negativity, unimodality, smoothness, ICA based on entropy).

4.3.7 Estimation of spectral overlap A and level overlap B

By applying previous knowledge about C and Z such as smoothness, A and B can
be estimated by an optimizer, for instance YALMIP [85].
Since only the product DZᵀ can be estimated from Y and S, the individual matrices
D and Z need to be determined by methods such as MCR-ALS [86].

4.4 Dataset

We applied our method to data from NASA’s AVIRIS programme2[87]. AVIRIS,
the Airborne Visible InfraRed Imaging Spectrometer, is a push-broom system that
delivers calibrated images of the upwelling spectral radiance in 224 spectral bands
with wavelengths from 400 to 2500nm (VIS-NIR).
This particular scene was extracted from flight f140530t01, run ID p00r16, just
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Figure 4.3: RGB reconstruction of orig-
inal data.

Figure 4.4: Estimated spectra of known
lighting effects (S): a constant "base-
line" and a shadow signature (here esti-
mated from sunny vs shaded mountain
sides).

outside of Las Vegas, Nevada, USA. Data was collected on 30 May 2014. The full
dataset has 850 samples over 3337 lines, however, in this study we consider a 500
×500 region only, check Figures 4.2 and 4.3.

4.5 Results

Applying the method to airborne hyperspectral images yields promising results.
RGB images were generated using a weighted sum of spectral channels in the vis-
ible range, in a similar fashion to the spectral response of the human eye. For this,
we ensured the data were in reflectance mode. The weights for the weighted sum
were calculated using Gaussian curves centred on the peak wavelengths of the
cone cells in the human eye, such wavelengths are well known and easily avail-
able [88].
S was simplified to two spectra, given in Figure 4.4, the skylight spectrum was
estimated by taking the difference of spectra between pixels in the shadow and
light regions in small neighborhoods (so that the ground effects are expected to
be the same).

2At the time of development and writing of the work on which this chapter is based (2015-
2016), the instrument described in Chapter 2 was not ready or tested aboard our UAV. That is why
we did not use our own data.
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Figure 4.5: De-shadowed data, given as
RGB.

Figure 4.6: Shadow data, given as RGB.
10 principal components were used
for the estimation of the de-shadowed
data.

Figure 4.5 depicts the de-shadowed data. At first glance, it seems as if all the terrain
information was removed, like a flattened version of the original data. On the other
hand, the "shadow map" in Figure 4.6 appears to contain only terrain information
and nothing about the different constituents of the ground. Both de-shadowed and
shadow data hold valuable information, chemistry/geology and physics/topogra-
phy, respectively.
By comparing the performance of a simple k-means clustering (chosen number of
clusters = 3) on the original (Figure 4.7) and de-shadowed (Figure 4.8) data,
we can see how the effect of shadows and morphology is removed and clusters
are based on ground "chemistry". Increasing the number of clusters beyond three
revealed more interesting ground features (not shown here).

4.6 Conclusions

Theoretically, the extended IC method presented here seems able to simplify the
interpretation of hyperspectral images by better "de-shadowing": improved sep-
aration of light source variations from ground property variations. Using addi-
tional assumptions, such as spatial ground topology or other known ground or
light source features, both expected and unexpected signal sources can thus be
quantified rather completely, or at least with less alias errors, when compared to
the original IC method without such assumptions.
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Figure 4.7: Clustering in original data. Figure 4.8: Clustering in de-shadowed
data.

For instance, in the hyperspectral aerial image illustrated, the extended IC attained
good "de-shadowing" using additional assumptions about where to discover the
light source spectrum s (in this case the contrast between the sunny and shaded
sides of mountains). Some features that appear in the de-shadowed RGB repre-
sentation of the image (Figure 4.5) are not apparent in Figure 4.3. A dark patch in
the lower right area of the picture is particularly noticeable. One may hypothesize
that the information was contained in the NIR bands which was not apparent in
the original RGB reconstruction, but when removing the effects of illumination it
was made more evident.
Hence, the extended IC method resolved some of the paradox in the original IC.
We believe that the new method can simplify the human interpretation as well as
the automated quantitative use of hyperspectral imaging. Work is in progress to
improve the method’s optimization step further.
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Chapter 5

Enhancing hyperspectral data
Multivariate image fusion: A pipeline for hyperspectral
data enhancement

Hyperspectral cameras provide high spectral resolution data, but their usual low
spatial resolution, when compared to colour (RGB) instruments, is still a limita-
tion for more detailed studies. This chapter presents a simple yet powerful method
for fusing co-registered high spatial and low spectral resolution image data – e.g.,
RGB – with low spatial and high spectral resolution data – Hyperspectral1. The
proposed method exploits the overlap in observed phenomena by the two cam-
eras to create a model through least square projection. This yields two images: 1)
A high-resolution image spatially correlated with the input RGB image but with
more spectral information than just the 3 RGB bands. 2) A low-resolution image
showing the spectral information that is spatially uncorrelated with the RGB im-
age. We show the results for semi-artificial benchmark datasets and a real-world
application. Performance metrics indicate the method is well suited for data en-
hancement.

1Based on the paper "Multivariate image fusion: A pipeline for hyperspectral data enhancement",
by João Fortuna, Harald Martens and Tor Arne Johansen, published in Chemometrics and Intelligent
Laboratory Systems, Volume 205, 2020.
This work was supported by the Norwegian Research Council (grant no. 223254) through the Cen-
tre of Autonomous Marine Operations and Systems (NTNU AMOS) at the Norwegian University of
Science and Technology, the MASSIVE project (grant no. 270959), as well as the Norwegian Space
Agency.
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(a) High-resolution (500× 500px) (b) Low-resolution (100× 100px)

Figure 5.1: Example satellite images with simulated different resolutions. Sensors
have the same area but a different number of pixels (different pixel size and den-
sity). The higher number of pixels in (a) means less light (fewer photons) per pixel,
hence more noise. Photo by NASA on Unsplash [89].

5.1 Introduction

5.1.1 There is no such thing as a free lunch, or photons

Even though number of pixels is a different concept from spatial resolution, they
are tightly coupled. Say we have two monochrome focal plane array (FPA) cam-
eras, A and B, on a satellite and both image the same area on the ground, see
Figure 5.1. If A has five times the amount of pixels in both axis, then the spatial
resolution – the ability to differentiate between two close objects, or in this case
the size of one pixel on the ground – will be five times better than the one of
camera B. Here we assume all other properties of the cameras, such as optics, and
image capture to be the same and that they do not limit the resolution, i.e. the
sensor is the bottleneck.
A higher resolution has the clear benefit of allowing us to see finer details, however
increasing the number of pixels is not always possible, in particular as we increase
the number of spectral bands. To understand why the number of bands affects the
spatial resolution, we need to think of light reaching a camera as a stream of a
finite number of photons. These particles travel through the optical elements of
the camera before being distributed by the pixels in the sensor. There, they gen-
erate an electrical current which translates into digital data. Higher pixel density
means fewer photons per pixel, as we divide the same finite amount of photons
by a higher number of pixels, and fewer photons per pixel lead to a weaker signal
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(low SNR). When the signal is fainter, the noise contribution becomes apparent if
we increase the sensor gain, compare (a) and (b) in Figure 5.1. If we now try to
sort the photons into many spectral bands, they become even scarcer. We need to
compromize on the number of spatial pixels to have a usable signal.
Throughout this chapter, we will mention high and low-resolution data, we mean
both the number of pixels and the ability to resolve a smaller object in the im-
age. Higher-resolution data will have more pixels and conversely, lower resolution,
fewer pixels.
Panchromatic images contain information from a broad spectrum in a single band,
hence can more easily have a high spatial resolution. Pansharpening methods were
initially developed in the mid-1980s for air- and space-bornemultispectral imagers
with a low resolution that could be improved with high-resolution panchromatic
images. With the ever-growing availability of hyperspectral instruments, some of
those methods were adapted to hyperspectral data and others developed anew.
The literature describes several methods to achieve such sharpening [20].
Thanks to advances in sensor technology, we now have spatially high-resolution
colour cameras (Red-Green-Blue – RGB) and even some multispectral cameras
(with few, but more than 3, bands). We can use those data instead of panchro-
matic when enhancing hyperspectral data. The advantages of using colour cam-
eras are clear: Even with only three bands, we now have multivariate – as opposed
to univariate – spectral data in high spatial resolution. Suchmultivariate data gives
much better selectivity, as it adds colour information to the simple measurement
of light intensity provided by panchromatic sensors. This richness of data is rel-
evant when combining a spatially high-resolution RGB camera with a spatially
low-resolution hyperspectral camera. The higher the number of bands with high
spatial resolution, the more we can improve the spatial resolution of hyperspec-
tral data, assuming that both cameras have recorded the same spatial scene and
therefore can be correlated.
Some of the most commonly used pansharpening methods are useful when the
intended goal is to produce a high-resolution RGB image from multi-/hyperspec-
tral data, having only a high-resolution monochromatic image. However, those en-
hancements are not visible when the goal is, for example, to find high-resolution
estimated abundance maps of geological or biological resources of interest.

5.1.2 Motivation

For the past years, our research group has been working on a lightweight hyper-
spectral imaging system for Unmanned Aerial Systems (UAS), see Chapters 2 and
3. Because of weight, cost and complexity limitations, and operating conditions,
the spatial resolution has been the most limiting factor when it comes to generat-
ing high-quality data products. RGB cameras are very often already a part of the
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payload carried by such Unmanned Systems, and if not, they are a simple addition.
Taking that into consideration, trying to improve HS spatial resolution with RGB
data was the goal of the present research.

5.1.3 Contribution

In this chapter we describe a generic framework for multivariate image fusion,
building on the ideas of pansharpening while also trying to enhance the output
for further processing, instead of just visual representation. Hence, the purpose
of the present methodology is to use the high spatial resolution of the RGB mea-
surements to yield an equally high-resolution representation of the low-resolution
HS measurements. Other studies [90, 91] have pursued somewhat related strate-
gies, although, the method proposed here is to the authors’ knowledge, a new
development. It is fast, when compared to other methods in the literature [20],
and requires very little knowledge of the calibration parameters or relationship
between the two datasets to be fused, only assuming that they were spatially reg-
istered beforehand. In summary, the present method combines the input consist-
ing of a low-resolution multi-channel HSI image and a high-resolution 3-channel
RGB image of the same scene, into two output images: 1) A high-resolution multi-
channel image showing what is spatially correlated to the RGB image, and; 2)
A low-resolution multi-channel image showing what is spatially uncorrelated to
the RGB image. The following section describes each step of the method. We then
show some results of applying the method to both artificially degraded real data
and real low-resolution data. To conclude, a discussion on possible improvements
and future work.

5.2 Method - multivariate image fusion (MVIF)

In this section we present a method for fusing RGB and HS data in order to get
a data product that takes advantage of the relative strengths of both, Figure 5.2.
Such fusion is possible because HS data is in most real world applications typically
very rank deficient - the number of HS wavelength bands is much higher than
the number of statistically independent spectral variation types in the image. That
means it is possible to learn all relevant patterns of variation in HS and replicate
them through a low rank, but high spatial resolution, approximation based on RGB.
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HS Fused

RGB

Multivariate Image Fusion

High

Spectral
information

Low

Low

Spatial Resolution

High

Figure 5.2: Multivariate Image Fusion exploits the relative strengths of RGB and
Hyperspectral data.

5.2.1 Data Model

Before continuing, it is useful to write down the data model we will be working
with. We take a similar approach to Chapter 4, based on the hypothetical model:

Y = CSᵀ + DZᵀ + F (5.1)

In this model we assume that the data cubes are unfolded, so all elements are 2D
matrices.
Y is a high spectral resolution (hyperspectral, here called full-spectral) image
dataset, with high or low spatial resolution, depending on the context.
C is the RGB data. The product CSᵀ contains the known spatial pattern from the
RGB camera (C), based on initially unknown, but estimated full-spectral (Sᵀ) in-
formation.
In analogy to the previous element, DZᵀ contains spatial (D) and spectral (Zᵀ)
information, but now from phenomena that are not seen by the RGB camera. Ini-
tially unknown, (D) and spectral (Zᵀ) have to be estimated.
F will, ideally, contain only noise.
When dealing with remote sensing spectral data, it is helpful to think of the total
signal in each pixel of Y as a sum of contributions from all the phenomena that
were observed in that single pixel. These contributions have 2 properties: concen-
tration/abundance C and D and spectral signature S or Z. When we consider all
the pixels in Y , the concentrations become spatial distribution maps of each of
those phenomena. Adding all the spectral signatures – S and Z – weighted accord-
ing to their respective concentration per pixel – C and D – yields the signal in Y ,
aside from noise – F :

Y = [C , D] [S,Z]ᵀ + F (5.2)
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Even though the number of bands (spectral resolution) can be of several tens or
even hundreds, hyperspectral data is typically rank deficient, which means we can
obtain a much lower dimension representation with less noise, while still keeping
the relevant information. On the other hand, RGB data usually has a full rank of 3
in the spectral domain.When the spectral range of both instruments is overlapping,
they observe the same phenomena and we can obtain a low rank representation
of HS using RGB data.
If we use RGB data as is – with 3 bands – we are limited to a 3 dimension low rank
representation, and while this may be enough for some datasets, it will prove in-
adequate for more complex scenes. This is a limitation of using a linear projection
method as we have done here, other methods may not face this problem. Fortu-
nately, it is possible to artificially expand the number of high resolution bands by
appending the result of nonlinear operations on the original RGB data, thus in-
creasing the rank of the high resolution data. Such operations are for example:
interaction terms (product of different bands) or square terms:

CRGB = [CR,C G ,C B] (5.3)
C int = [CR ◦C G ,CR ◦C B,C G ◦C B] (5.4)
C sqr = [CR ◦CR,C G ◦C G ,C B ◦C B] (5.5)
C ex t =
�

CRGB,C int ,C sqr

�

(5.6)

If we consider CRGB – Eq. 5.3 – to be the original RGB-only data, unfolded, where
each column represents a colour channel, then we can define a matrix of first-
degree interactions, C int , and another of square terms, C sqr , respectively, by element-
wise multiplying each band by another, Eq. 5.4, or by itself, Eq. 5.5. The operator
◦ represents the element-wise multiplication, also known as Hadamard product.
When composing the C matrix to input to the algorithm, we could use C ex t if we
wanted to include interaction and square terms.
Fundamentally, the interaction and square terms do not add new information,
however, by providing these nonlinear terms to the linear algorithm, it allows it
to find nonlinear spectral variations, which are expected to exist. This is analo-
gous to how different wavelength channels have different nonlinear relations to
the chemical sample composition in NIR multichannel reflectance measurements.
These unknown but different nonlinear relations may be regarded as a special type
of unknown interference. Using the pragmatic but incorrect log(1/R) transform al-
lows linear multivariate calibration modelling, e.g., by PLSR to utilize additional
subspace dimensions spanned by the channels’ unknown differences in nonlinear-
ity, to pick up and correct for these unknown interferences, as described in [92].
For our present RGB data we do not know the detailed camera properties. In addi-
tion, the light signal is affected by the atmospheric absorbance and light scattering
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Figure 5.3: Pipeline overview diagram.

effects in the water phase that the photons have to go through, on their way from
the light source, the Sun, via the bottom object and back to the camera. We do
not know the ideal mathematical transform from chemical and physical properties
of the objects on the bottom to the RGB signal of the camera, but the transform
log(1/R) is probably too simplistic. However, by adding new "wavelength channels"
by nonlinear combinations, e.g., interactions and square terms of the original RGB
channels, the linear multivariate calibration has a better chance of finding a sub-
space that spans both the chemical and physical signal variations and their non-
linearities.
Later, when we discuss the performance of our proposed method, we show how
different combinations of nonlinear terms affect it.

5.2.2 Notation

Throughout the chapter we will use the following notation:
• Unfolded HS data cube with kH bands and low spatial resolution nh

L × nw
L —

Y L ∈ RnL×kH

• Unfolded RGB data (and appended artificially generated terms) with kL bands
and high spatial resolution nh

H × nw
H — C H ∈ RnH×kL

• Enhanced HS data with high spectral and spatial resolutions — bY H ∈ RnH×kH

Where nL = nh
L × nw

L and nH = nh
H × nw

H are respectively the total number of spatial
pixels – height (h) and width (w) – in low and high resolution data.

5.2.3 Method overview

The algorithm can be summarized in the following steps, also visible in Figure 5.3:
1. Resizing (shrinking) high-resolution RGB data to low-resolution HS size,
with image registration, to ensure that the pixels in both images represent
the same ground positions.
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2. Noise weighted modelling to estimate HS from low-resolution RGB by re-
gression over the low resolution pixels, through Regression. Lack-of-fit HS
residuals are kept for further analysis of spectral patterns not seen in RGB.

3. Estimation of HS using high-resolution RGB.

5.2.4 Resizing

As mentioned before, Y L and C H have different image dimensions, so we start by
shrinking C H for it to coincide C L. Resizing should take into account the proper-
ties of the HS instrument that resulted in such low resolution – i.e., if sampling
frequency is low but exposure time is also low, resulting in a subsampled target,
then we should resample the high resolution RGB data. If on the other hand, the
exposure time is long and the target (ground) is fully sampled/observed, but the
information is mixed/convolved due to motion blur in each pixel, then we should
apply a similar convolution to mix the RGB pixels. This way we ensure that the
ground contributions are similarly represented between the HS and RGB data.

5.2.5 Noise-balancing wavelength weights

Hyperspectral instruments have varying levels of noise for each band. The pro-
posed methodology involves least-squares based estimation of parameters in a re-
duced rank regression model. For such methods, it is important to balance the
noise level of the different wavelength channels. For the most common pushb-
room slit-grating design, the noise is generally worse as we move away from the
centre of the sensor and the operation range of the (electro-)optical components.
In VIS-NIR instruments, usually with CMOS sensors, the performance degrades
quickly for bands below 400nm and above 900nm, but even inside that range, the
noise level varies from channel to channel. Knowing how the noise varies improves
the modelling performance, by downweighing the noisy bands, we reduce the risk
of over fitting noise. We estimated the noise according to the method described in
5.A.1.

5.2.6 Regression and Estimation

Once preprocessing is done, we can proceed to the core of our method, the re-
gression step. Here we estimate S, knowing Y and C . Generically speaking, we
establish a projection model:

Y = CSᵀ + E (5.7)
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Then we can apply the previous equation to our data:

Y L = C LSᵀ + E L (5.8)
bS
ᵀ
= (CᵀLC L)

−1CᵀLY L (5.9)
bY L = C LbS

ᵀ (5.10)
E L = Y L − bY L (5.11)

The matrix bS contains the estimate of a dictionary that translates the variations in
C L into variations in Y L. Furthermore, we can now use C H with that same dictio-
nary and compute:

bY H = C HbS
ᵀ (5.12)

which gives a high spatial resolution estimation of Y .

5.2.7 Low resolution residuals analysis

When estimating bS and bY L, we are left with unmodelled low-resolution residuals –
E L. These can be analysed to give us some insight into what could not be enhanced
to a higher resolution – systematic information not captured by the model – and
estimate how much of it was random independent noise. To do that, we need to
further decompose E L, through some bilinear matrix decomposition techniques,
according to the model:

E L = DLZᵀ + F L (5.13)
DL ∈ RnL×A (5.14)

Z ∈ RkH×A (5.15)

where A is the number of factors, or components extracted.
Referring back to our overall model in Eq. 5.1, then DL and Z contain low-resolution
spatial and respective spectral information of phenomena that are not measured
by the RGB camera. F L contains unmodelled noise, in low-resolution.

Matrix decomposition

Matrix decomposition or factorization, also called unmixing in the context of spec-
tral data, is a family of methods that split a matrix into a product of other matrices.
For hyperspectral data, those resulting matrices usually correspond to some type
of spectral signatures and the respective spatial distribution and/or concentration.
A simple yet useful factorization method is Singular Value Decomposition (SVD)
[93][92]. However, a property of the resulting spectral features is that they are
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orthonormal, hence not directly representative of bio/geo/chemical spectral sig-
natures.
On the other hand, with Non-Negative Matrix Factorization (NNMF) [94], Multi-
variate Curve Resolution (MCR) [95] or Independent Component Analysis (ICA)
[96], the spectral components (loadings) are often related to the actual spectral
signatures of phenomena seen in the captured scene. This comes at the expense
of more complex computation.
Hyperspectral data is notoriously rank deficient, meaning that factorization meth-
ods will model a limited number of meaningful components and many noise com-
ponents.
For the implementation of the MVIF pipeline here described, we first use SVD to
estimate the number of non-noise components (A) in the residuals, then we can
use one of the more complex methods knowing how many components to expect.
There is not a consensus among specialists regarding which is the best method to
select the appropriate number of relevant components when using SVD [97], fur-
thermore, many of them require visual inspection of plots. We propose a solution
based on a voting system: three methods evaluate different metrics and vote on
whether a component is relevant or not. If a component gets all of the votes, it is
deemed relevant. Find more details about this method in Appendix 5.A.3.
Once we have all the votes from the 3 classifiers, we decide how many factors to
keep – A. Then it is simply a matter of running the unmixing method of our choice,
to obtain the factorization as in Equation 5.13.

E L
matrix
−−−−→
decomp
bDL,A, bZA (5.16)

bE L,A = bDL,AbZ
ᵀ
A (5.17)

F L,A = E L − bE L,A (5.18)

5.3 Datasets

Control Dataset

We used data from the HICO instrument, available at [98]. HICO (Hyperspectral
Imager for the Coastal Ocean) was a hyperspectral imager installed on the Interna-
tional Space Station (ISS) that captured data from 2009 to 2014. HICO datasets
have 87 bands (400-900nm), cross-track resolution of 500 pixels, with ground
sample distance (GSD) of 90m.
Both the RGB representation of the HS data and the reference RGB image were, for
this dataset, extracted from the HS data – the usual procedure for benchmarking

56



5.3. Datasets

Figure 5.4: HICO dataset H2011145084342 with marked region of study.

(a) RGB representation of Y H , which in this
case is also C H .

(b) RGB representation of Y L .

Figure 5.5: RGB rendering of HICO scene used during tests. The procedure de-
scribed in 5.A.2 was used to create both the high (500×500px) and low resolution
(100× 100px) images. Some colour adjustment was applied to make the images
more aesthetically pleasing.

these types of algorithms. See 5.A.2 for more details.
We used a sample of HICO data at full resolution as the high-resolution HS ref-
erence – dataset ID H2011145084342, check Figure 5.4. This data was captured
over the Strait of Dover, 25 May 2011. From this dataset we extracted a 500 ×500
region of interest, see Figure 5.5. The low resolution HS data is 100 ×100 spatial
pixels and 87 bands.

Test/Field Dataset

We also include the results of applying our method to data obtained in a field trial
with drone mounted HS and RGB cameras, see Figure 5.6. This flight was con-
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(a) High resolution RGB – C H . (b) RGB representation of low resolution
HSI – Y L – stretched to same ratio of C H .

Figure 5.6: RGB image from ZenMuse camera (1500×560px) and RGB rendering
of HS data (50× 560px) from Hopavågen tests.

ducted in Hopavågen, Norway, in March 2018. More details on the data capture
and experiment are available in Chapter 3.
In this dataset, the loss of spatial resolution was due to suboptimal flight conditions
and instrument design limitations. The across-track resolution (here seen as the
horizontal axis) is equivalent in both RGB and HS, but the along-track direction
(vertical axis) is much lower for the HS camera. In fact, for each HS pixel, there
are 30 RGB pixels.
Details about the spatial registration of the two images are outside of the scope of
this work. In broad strokes, a first coarse registration was possible due to times-
tamp synchronization between the two cameras, then fine-tuned through an image
registration method – available in MATLAB as imregister().

5.4 Results

In this section, we show and analyse the results of applying the presented method
to the two distinct datasets. In addition, we also compare the metrics for a third
benchmark dataset.
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First, we generate low resolution hyperspectral data by degrading a high resolution
hyperspectral data cube. RGB data is also extracted from the high resolution HS
data. As we have a high resolution reference, we can quantify the performance of
the algorithm using the performance metrics described in [20].
Second, we use a sample of data from aUAV field campaigns, for which this method
was conceived for. RGB comes from a separate camera. Since there is no high
resolution reference, performance can only be evaluated visually.
Finally, the benchmark dataset is just briefly analysed to compare the performance
of MVIF with that of another method from literature on the same dataset.

5.4.1 Performance metrics and benchmark dataset

As described in [20], there is a number of metrics commonly used to evaluate the
performance of enhancement methods. Those metrics are: Cross Correlation (CC),
measuring the spatial enhancement, with 1 as optimal value; Spectral Angle Map-
per (SAM), as the name suggests indicates spectral fidelity, 0 is ideal; Root Mean
Square Error (RMSE) and Erreur Relative Globale Adimensionnelle de Synthèse
(ERGAS), both global quality indices, with 0 as ideal value. In Table 5.1 we com-
pare how the values change for different choices of additional terms in C – both
C L and C H .
Table 5.2 shows the performance of MVIF in a benchmark dataset – Moffet field,
also studied in [20] – compared to the best performing method mentioned in that
publication. According to its authors, that performance is achieved in a machine
with an Intel Core i5 3230M 2.6GHz with 8GB RAM. Our method was running on
an Intel Core i7 4510U 2.0GHz with 8GB RAM, so an equivalent performance is
expected. Even though the results seem better – slightly better values for the qual-
ity indices, and an extreme time reduction – we do have to say that our method
uses an RGB reference, while the methods discussed in that publication are using
a univariate – panchromatic – high resolution reference.

Table 5.1: Performance indices of MVIF with HICO dataset. Cross Correlation (CC),
1 is ideal. Root Mean Square Error (RMSE), Erreur Relative Globale Adimension-
nelle de Synthèse (ERGAS) and Spectral Angle Mapper (SAM), 0 is ideal.

Terms in C CC RMSE ERGAS SAM (deg) Time (s)

RGB 0.823 0.081 10.339 6.888 1.751
RGB, Square 0.964 0.050 6.337 5.009 1.767
RGB, Square root 0.971 0.045 4.878 5.852 1.854
RGB, Interaction 0.970 0.043 5.485 4.686 1.849
RGB, Square, Square root 0.978 0.040 4.413 5.109 1.809
RGB, Interaction, Square, Square root 0.981 0.036 4.679 3.868 1.895
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Table 5.2: Performance comparison in Moffett field dataset. Cross Correlation
(CC), 1 is ideal. Root Mean Square Error (RMSE), Erreur Relative Globale Adi-
mensionnelle de Synthèse (ERGAS) and Spectral Angle Mapper (SAM), 0 is ideal.
Values for Bayesian Sparse method extracted from [20]. To note that Bayesian
Sparse enhanced HS data using only panchromatic high resolution data, while we
used RGB.

Method CC RMSE ERGAS SAM (deg) Time (s)

Bayesian Sparse 0.982 200.158 3.426 6.625 133.61
MVIF 0.985 164.861 3.424 5.427 0.95

5.4.2 Plots

Results shown here were obtained taking into consideration the values in Table
5.1, meaning we opted for adding interaction, square and square root terms to C
before submitting it to the regression step, as it gave the overall best performance.
In addition, we used Non-Negative Matrix Factorization (NNMF) to unmix the hy-
perspectral data cubes – Y L and bY H – and make it possible to represent in low
dimension. Again, we estimated the number of factors using the method in 5.A.3.
The plots with the spectral signatures for each component are matched in colour
with the most similar between low – Figures 5.7 and 5.9 – and high – Figures 5.8
and 5.10 – resolution for each dataset.
Notice that each of the low resolution abundance maps are enhanced to high res-
olution, leaving no trace of low spatial resolution artifacts.
In Figures 5.11 and 5.12 we show a factorization of the residuals that could not
be enhanced. Here we opted for using Independent Component Analysis (ICA),
implemented as FastICA [96], instead of NNMF since the residuals are not non-
negative. ICA gives a more interpretable factorization than SVD/PCA, while deal-
ing well with possible, or in this case likely, negative concentrations. Another rea-
son for using this method is that it is fast and can give us a clue regarding whether
there is relevant data that we overlooked, or not. If there is some indication that
we should further analyse the residuals, other methods such as MCR can also be
applied. We stress the importance of doing such complementary analysis on the
residuals. This creates awareness regarding the limitations of the method, and
even if low resolution, these are still relevant data.

5.5 Discussion

Correlation in noise for artificial datasets When RGB and low resolution HS
data are artificially generated for benchmarking, they both originate from the same
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Figure 5.7: Non-negative Matrix Factorization (NNMF) of low resolution Y L. Spa-
tial coefficients in the top row were refolded to a 2D map. The corresponding
Spectral feature – systematic radiance pattern – is shown below each map. The
components shown here can be interpreted as land based vegetation (a), some
combination of CDOM (colour dissolved organic matter) and phytoplankton (b
and d), and an albedo-like property of pixel (c) - almost flat spectrum.
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Figure 5.8: Non-negative Matrix Factorization (NNMF) of high resolution bY H . Spa-
tial coefficients in the top row were refolded to a 2D map. The corresponding
Spectral feature – systematic radiance pattern – is shown below each map. The
components shown here can be interpreted as land based vegetation (a), some
combination of CDOM (colour dissolved organic matter) and phytoplankton (b
and d), and an albedo-like property of pixel (c) - almost flat spectrum.

high resolution HS reference. Naturally, there is a concern that noise in both is cor-
related. We have tried to minimize this issue by following the convolution, blurring
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Figure 5.9: Non-negative Matrix Factorization (NNMF) of low resolution Y L. Spa-
tial coefficients in the top row were refolded to a 2D map. The corresponding
Spectral feature – systematic radiance pattern – is shown below each map. In this
dataset, raw data is not corrected for solar radiance. Component (a) is strongly
influenced by the solar spectrum, showing what looks like intensity of reflected
solar spectrum, affected both by the albedo of different materials and in-water
path length – i.e. depth , which increases from bottom to top of image, due to
ground slope – while (b) seems to pick out the darker rocks. Component (c) is
isolating the orange/yellow rock, but the spectrum indicates some influence of
chlorophyll, most likely due to the algae covering that rock. Looking at Figure 5.6
might help understand these components.

and downsample procedure used in [20], available at [99].
This is not an issue for our field trial dataset, as the data comes from two distinct
instruments.

Image registration The work here discussed focuses on the fusion of data with
different resolutions, originating from separate sensors. Here we ignore the reg-
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Figure 5.10: Non-negative Matrix Factorization (NNMF) of high resolution bY H .
Spatial coefficients in the top row were refolded to a 2D map. The corresponding
Spectral feature – systematic radiance pattern – is shown below each map. Notice
that all the low resolution artifacts and bad pixels disappear. In this dataset, raw
data is not corrected for solar radiance. Component (a) is strongly influenced by
the solar spectrum, showing what looks like intensity of reflected solar spectrum,
affected both by the albedo of different materials and in-water path length – i.e.
depth , which increases from bottom to top of image, due to ground slope – while
(b) seems to pick out the darker rocks. Component (c) is isolating the orange/yel-
low rock, but the spectrum indicates some influence of chlorophyll, most likely due
to the algae covering that rock. Looking at Figure 5.6 might help understand these
components.

istration problem, assuming data is previously aligned and matched. A future de-
velopment direction would be to integrate data matching and registration as a
preprocessing step.
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Figure 5.11: Independent Component Analysis (ICA) of low resolution residuals
E L. Spatial coefficients in the top row were refolded to a 2D map. The correspond-
ing Spectral feature – systematic radiance pattern – is shown below each map.

5.6 Conclusions

In this chapter, we describe a pipeline for enhancing the spatial resolution of HS
data, by taking advantage of co-located RGB data. The method is simple and fast,
while giving good quality results.
Furthermore, as the epithet pipeline indicates, the method is composed by a se-
quence of steps. Here we describe a possible pipeline, where we use a simple pro-
jection in the regression/estimation step, and expand the number of variables of
the RGB data in a certain way. However, the reader may find that for their applica-
tion, a nonlinear regression method and different variations of the high resolution
data could work better.
The main contribution of this research is to provide a template for connecting
functional blocks, with the aim of fusing multivariate datasets with different res-
olutions.

5.A Companion methods

5.A.1 Noise Estimation

The method for estimating the noise level per channel is very simple and intuitive,
nonetheless the results match the expected instrument performance.
In essence, we check how rough, i.e. non-smooth, each band image is. Gaussian
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Figure 5.12: Independent Component Analysis (ICA) of low resolution residuals
E L. Spatial coefficients in the top row were refolded to a 2D map. The correspond-
ing Spectral feature – systematic radiance pattern – is shown below each map.

noise will cause sharp peaks very visible when taking the second difference along
the horizontal and vertical axes. By looking at the absolute values, we get a direct
indication of how noisy a pixel is.

# Diff twice along each direction (vertical and horizontal), for each band image
diff0 = abs(diff(Y_3d, n=2, axis=0))
diff1 = abs(diff(Y_3d, n=2, axis=1))

# Flatten diff results
diff0_flat = reshape(diff0, [diff0.shape[0] * diff0.shape[1], diff0.shape[2]])
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diff1_flat = reshape(diff1, [diff1.shape[0] * diff1.shape[1], diff1.shape[2]])

To get an overall value per band we can either use the median of all values, hori-
zontal and vertical together:

# Vertical and Horizontal all together
diff = concatenate((diff0_flat, diff1_flat), axis=0)
noise = median(diff, axis=0)

Or average vertical and horizontal noise:

# Average of Vertical and Horizontal noise levels
median0 = median(diff0_flat, axis=0)
median1 = median(diff1_flat, axis=0)
noise = (median0 + median1) / 2

Once the noise level per band is known, see Figure 5.13, the inverse of that is used
as weights.

400 500 600 700 800 900
0.00

0.01

Wavelength (nm)

Noise per band

Figure 5.13: Noise level per band of low resolution HICO data.

5.A.2 Artificial data generation

Here we describe our process to generate RGB and low resolution data from a high
resolution HS reference.

RGB data

Unlike common practice, instead of picking 3 bands out of the HS data cube, we
simulate the sensitivity of an RGB sensor. RGB sensors do not have very narrow
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band-pass filters for Red-Green-Blue wavelengths, so picking one single band to
represent each channel would not give us a realistic dataset. Therefore, a weighted
sum of different bands extracted from the HS data, with the weights based on the
specification sheet of a CMOS RGB sensor, was used for each channel instead, see
Figure 5.14. This way we ensure, through sensible assumptions, that the RGB data

400 500 600 700 800 900

Wavelength (nm)

RGB Sensor sensitivity

Figure 5.14: Weights per band. Weights are designed to simulate an RGB sensor.
The black dashed line represents the NIR cut-off filter, usually present in RGB
sensors. The vertical scale is unimportant here, we merely want to show the shape
of the curves.

are realistic.

Low resolution HS data

For validation, we generated low resolution data using the same method as the
study in [20], available as MATLAB code in [99].

5.A.3 Relevant Components

When analysing the residuals before unmixing, the first step is to decompose them
through SVD. Then U (Scores), Σ (singular values), and V (Loadings) are evalu-
ated by different methods:
1. the noise level of the spatial distribution maps (U)
2. the slope of the scree plot [100] (Σ)
3. the smoothness of the spectral signatures (V)

Noise level of the spatial distributionmaps The same noise per channel routine
that was used to find the noise in the raw data is re-used, now on the refolded
distribution maps (U). Relevant components are expected to have little noise in
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Factor #1 Factor #2 Factor #3 Factor #4

Factor #20 Factor #35 Factor #50 Factor #65

Figure 5.15: Spatial Maps (Scores) of a sample of factors from the HICO dataset.
Higher factors are clearly more noisy than the lower/earlier.

the spatial domain. Note that U is not scaled with Σ, so every band has a similar
range, and the same threshold can be applied. See Figure 5.15

Slope of the scree plot This is an implementation of an autonomous scree test
[100], which is usually a visual inspection test. The scree plot will have an "el-
bow", which represents the boundary between relevant and non-relevant factors.
Through a linear fit, we find the slope of the plateau that corresponds to the noise
components, then we start checking lower numbered components until the slope
of the linear fit starts to change, indicating we have reached the elbow. See Figure
5.16.

# Maximum value is always 1,
# this way we can use same threshold values for different data
s /= s.max()
nc = len(s)

# More than half the components are usually noise in remote sensing data,
# so we start from the middle
curr_idx = nc // 2
z = polyfit(x=range(curr_idx, nc), y=s[curr_idx:], deg=1)

while curr_idx > 1:
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curr_idx -= 1
z_new = polyfit(x=range(curr_idx, nc), y=s[curr_idx:], deg=1)
fit_chg = abs(z - z_new)
# If slope changes too much from previous fit, we are past the elbow
if fit_chg[0] > threshold_fit:

break
else:

z = z_new

p = poly1d(z)
fit_p = p(range(nc))

serr_all = (s - fit_p)**2
serr_fit = serr_all[curr_idx:]

# Relevant components will have large error to fitted line (not in flat region)
vote_slope = serr_all > threshold_error

5 10
0

1

Factor#

Normalized Singular Values

Figure 5.16: Scree plot showing only the 10 first components of the low resolution
residuals from the HICO dataset. Red dashed line was fitted to the flat section.
When the dashed and solid lines diverge we have the relevant factors (marked
with filled circles).

Smoothness of the spectral signatures Even though the loadings matrix (V)
resulting from an SVD of hyperspectral images cannot be directly interpreted as
spectral signatures of natural phenomena, which are usually smooth, they are lin-
ear combinations of smooth signatures. For sufficiently high spectral resolution
sensors, which we assume a hyperspectral camera has, this means that informa-

69



5. Enhancing hyperspectral data: Multivariate image fusion: A pipeline for
hyperspectral data enhancement

tion is smooth in the spectral domain, and noise is not. A smooth spectrum will
have small variations in slope. See Figure 5.17.

# Absolute sum of diff along wavelength axis
# large values will show for rough spectra
v_diff = diff(v, n=2, axis=1)
sum_diff = sum(abs(v_diff), axis=1)

# Relevant components have smooth spectra
vote_smooth = sum_diff < threshold_smooth

Once we have all the votes from the 3 classifiers, we decide how many factors to
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Wavelength (nm)

Smooth Signatures

400 500 600 700 800 900

Wavelength (nm)

Non-smooth Signatures

Figure 5.17: Example Spectral Signatures (Loadings) split into smooth or non-
smooth according to our classifier. The high frequency variations seen in the spec-
tra on the right plot are often correlated with noise. From the HICO dataset.

keep. Figure 5.18 shows the result of such voting.

1 2 3 4 5 6 7 8 9 10
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Factor#
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Noise

Figure 5.18: Votes from each relevance classifier for the HICO dataset. Factors
with 3 votes are considered relevant. Here, 3 relevant factors should be possible
to extract from residuals.

70



Chapter 6

Dealing with big data streams
On-The-Fly Processing of continuous high-dimensional
data streams

This chapter presents a novel method and software system for rational handling of
time series of multichannel measurements1. This quantitative learning tool, the
On-The-Fly Processing (OTFP), develops reduced-rank bilinear subspace models
that summarize massive streams of multivariate responses, capturing the evolv-
ing covariation patterns among the many input variables over time and space.
Thereby, a considerable data compression can be achieved without significant loss
of useful systematic information.
The underlying OTFP methodology is relatively fast and simple: it is linear/bilin-
ear and does not require a lot of raw data or large cross-correlation matrices to be
kept in memory. Unlike conventional compression methods, the approach allows
the high-dimensional data stream to be graphically interpreted and quantitatively
utilized in its compressed state. Unlike adaptivemoving windowmethods, it allows
all past and recent time points to be reconstructed and displayed simultaneously.
This new approach is applied to four different case studies: i) multichannel Vis-
NIR spectroscopy of the Belousov-Zhabotinsky reaction, a complex, ill-understood
chemical process; ii) quality control of oranges by hyperspectral imaging; iii) envi-
ronmental monitoring by airborne hyperspectral imaging; iv) multi-sensor process
analysis in the petrochemical industry. These examples demonstrate that the OTFP
can automatically develop high-fidelity subspace data models, which simplify the
storage/transmission and interpretation of more or less continuous time series of
high-dimensional measurements – to the extent that there are covariations among

1Based on the paper "On-The-Fly Processing of continuous high-dimensional data streams", by
Raffaele Vitale, Anna Zhyrova, João Fortuna, Onno E. de Noord, Alberto Ferrer and Harald Martens,
published in Chemometrics and Intelligent Laboratory Systems, Volume 161, 2017.
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the measured variables.

6.1 Introduction

6.1.1 Data compression strategies

Data compression plays a central role in telecommunications and many other sci-
entific and technological branches of interest [101]. According to the nature and
features of the algorithmic procedure through which it is performed, it can be
defined as either lossless or lossy. Lossless methods utilize statistical distribution
properties and simple patterns in the data for compression, converting the inputs
into compressed bit series2.
Lossy compression techniques – e.g., the various dedicated versions of JPEG and
MPEG methods used for digital image, video, and sound compression – approxi-
mate the main, perceptible variations in the input data by local ad hoc patterns,
filtering out less perceptible variation types and noise. Lossy approaches are com-
monly much more efficient (in terms of compression rate) than lossless ones, like
algebraic zipping, but allow the original input to be only roughly restored. More-
over, when set to compress too much, they not only cause loss of valid information
(resulting in, e.g., image blurring or loss of high-frequency sound), but can also in-
troduce undesired decoding artefacts (e.g., visible block effects or audible errors).
Whether lossless or lossy compression methods are used, the compressed data are
represented by per se meaningless streams that cannot be directly used for quan-
titative calculations, mathematical modelling, or graphical representation.
The novelty of the developed On-The-Fly Processing (OTFP) tool is represented
by the fact that a hitherto under-utilized source of redundancy (the intercorrela-
tion usually evolving in multi-channel data streams) is mathematically modelled
to prevent significant loss of useful systematic information carried by the origi-
nal measurements. Based on the model’s automatically estimated parameters, the
data stream may be interpreted and utilized for prediction, forecasting, and fault
detection in the compressed state. The idea behind this strategy was outlined in
[102]. Here, more algorithmic details will be given and its applicability to differ-
ent types of high-dimensional data streams is demonstrated.
Conceptually, the OTFP system may be motivated by the following thought experi-
ment: assume that a space probe should be constructed and sent out to explore, for
the first time, the unknown geological properties of the hidden back side of a re-
mote planet, using a hyperspectral camera. Prior to the launch, scarce knowledge
about this planet is available to design the ideal instrument, and after the probe

2Most of the lossless compression approaches, such as standard file zipping, recodes the original
input by using shorter bit sequences for often encountered data and larger ones for rare data.
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has landed, it is too late to change anything. Which wavelengths should be chosen,
and how should the imaging data be transmitted back to Earth? Some individual
wavelengths distinguishing between already known, earthly rock types might be
included. However, possible geological surprises should also be taken into account.
Therefore, it is decided to equip the probe with a wide spectral range camera, ca-
pable of measuring, say, 1000 different wavelength channels. However, the limited
communication bandwidth then becomes a problem: the probe cannot transmit all
those measurements for every point in time and space.
What would be the best way to send spectral data back to Earth? Perhaps, could
that be automatically decided on-the-fly by the space probe’s computer itself, based
on what its camera measures? The on-board computer could be programmed to
discover, compress and transmit the essence of all the recorded images, in a contin-
uous learning-and-communicating process that never sends the same information
twice.
But how to quantify this compact spectral essence comprehensively? To under-
stand the unknown geological landscape, a reliable approximation of the spectral
profile of every pixel in every image, with as many spectral and spatial details
and as few artefacts as possible, is needed. A lossless multivariate spectral prepro-
cessing followed by a continuously developing bilinear compression/classification
model could deliver a compact summary of the sequence of hyperspectral image
data, which would yieldmaximal insight here on Earth from the limited quantity of
received data. The first three application examples described below will illustrate
this, albeit in more mundane settings.

6.1.2 Subspace compression

The OTFP is based on evolving bilinear subspace modelling. The software auto-
matically detects systematic patterns of covariation in the data and uses these to
model the data mathematically. Subspace projection and dimensionality reduction
techniques based on bilinear models, e.g., Principal Component Analysis (PCA),
constitute one of the possible ways to compress and approximate a certain set
of data, removing simultaneously both statistical redundancy and uninformative
noise. Their basic principles can be summarized as follows: let j = 1,2, . . . , J be
the number of input channels (J wavelengths of light per pixel in a hyperspectral
camera, J sensor variables monitored during a dynamic industrial process or even
J metabolites quantified in biological samples) recorded for each of n= 1,2, . . . , N
measurements performed, for instance, on N objects on a conveyor belt, at N spa-
tial locations, N time steps or N different experimental conditions. In the present-
day instrumental context, where J might be very large, the useful information car-
ried by such data structures (N×J matrices) is usually intercorrelated among vari-
ous input channels over the continuously growing set of registered measurements.
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In these circumstances, for a chosen degree of acceptable accuracy (depending on
the amount of data variance explained), it is possible to reduce the J-dimensional
space of the original descriptors to an A-dimensional subspace, onto which all the
N objects under study can be projected and represented as new points. Prima fa-
cie, as A < J , this projection can be regarded as a compression operation, whose
efficiency is related to the ratio A

J .

6.1.3 PCA bilinear structure model

The well known PCA bilinear approximation of a generic N × J matrix of observed
data, X , can be described by the following structure model:

X = 1mT + TPT + E (6.1)

where 1 (N × 1) is a vector of ones, m (J × 1) contains a typical profile, e.g. the
mean values of the J input variables in X , P (J × A) is a matrix of loadings asso-
ciated to such input variables, which determine the A basis vectors or components
of the PCA subspace, T (N × A) defines the projection coordinates or scores of all
the N considered objects (locations, time points or experimental conditions) on
this lower-dimensional space and E (N × J) represents the matrix of unmodelled
residuals, i.e. the portion of X not explained by the model at the chosen rank, A
[103].
The PCA solution may be formulated in different, equivalent ways. Here, it is as-
sumed to show the following properties:

PTP = I (6.2)

TTT = diag(λA) (6.3)

where I is an identity matrix of dimensions A× A, while the a-th element of λA
(A× 1) corresponds to the eigenvalue of the a-th PCA component.
One of the most critical points when deriving the PCA approximation of a set of
data is how to choose the A components of its subspace to prevent losing impor-
tant portions of useful information and to filter out uniquely statistical redundancy
and uninteresting noise. Some of these A dimensions may sometimes be defined
according to prior knowledge of the investigated system. For instance, the num-
ber of known chemical constituents of mixtures characterized by spectroscopic
methods might be appealed to for this purpose. However, in cases like this, also
more or less unexpected constituents and/or physical phenomena may affect the
performed measurements, generating new patterns of variation and thus new sub-
space dimensions which need to be retained for a proper data approximation and
interpretation. Therefore, at least to a certain extent, the identification of the new
basis vectors associated to these unforeseen sources of variability has to be carried
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out through a preliminary exploratory analysis of the available empirical records.
If a continuous data stream is dealt with and N rapidly grows over time, correctly
determining new possible subspace dimensions is even more complex: new, unex-
pected patterns of covariation may spring up in the information flow. Therefore,
in such situations, it becomes crucial to automatically recognize when the set of
initial basis vectors needs to be reestimated and extended, and to address this task
in a statistically valid and computationally efficient way.

6.1.4 PCA as a multivariate series expansion of the underlying data
generation mechanism

As outlined in [104–106], the bilinear PCA model can be thought of as a Tay-
lor expansion of the function f defining how the measurement descriptors are
jointly related to their common structure. For instance, for each of the J afore-
mentioned input channels, one can envision a local linear approximation of the
underlying (unknown) causal phenomena driving their evolution. Mathematical
summary modelling of such J local approximations (achieved by PCA or related
methods like Partial Least Squares Regression – PLSR – Independent Component
Analysis – ICA – or non-linear versions of these) can detect and display their main
patterns of covariation. This can unveil the underlying causality of the data gen-
eration mechanism.

6.1.5 Algorithms for PCA decomposition

The PCA approximation of a certain dataset can be efficiently attained by a variety
of algorithms, among which the most widespread and popular one is certainly Sin-
gular Value Decomposition (SVD) [107]. However, if N is very high, classical SVD
may be very demanding in terms of both CPU load and memory requirements. In
the last few years, several variants of classical SVD have been proposed for per-
forming PCA on very large matrices without entirely keeping them in the computer
memory (out-of-core) [108–112]. Out-of-core PCA can be carried out by different
procedures:
• a J ×1 cumulative sum vector and a J × J cross-product matrix may be accu-
mulated over time, combined and used for eigen-analysis of the covariance
in X , which yields the PCA loadings. That is appropriate for parallelization,
but then the scores for the past time or space samples are lost;

• if also J is very high (e.g., thousands of wavelengths in an hyperspectral cam-
eramonitoring a certain scene or process), the J×J covariancematrix cannot
be easily handled. Evolving moving-window/recursive PCA approaches may
then be used instead, working on the most recent subset of observations.
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However, that gives problems when comparing past and present records in
graphical scores plots.

In the attempt of overcoming all these limitations, the OTFP tool is here proposed.
The purpose of the OTFP is to identify systematic trends and patterns in high-
dimensional data flows, compress these and display them graphically, in addition
to automatically detect outliers – key points to be addressed when continuous
quantitative data streams are dealt with [113]. Based on what was detailed be-
fore, it represents an extension of classical bilinear PCA, specifically developed for
processing multi-channel records as soon as they are collected. It extracts patterns
of covariation between the input variables by comparing previous and new obser-
vations and thereby identifying and modelling new variation phenomena, without
needing large amounts of data or parameters to be retained in memory. Given, for
instance, a continuously growing stream of high-dimensional data, the OTFP mod-
elling system gradually develops a minimal bilinear summary model of the input
data stream. For each point in space and/or time, already established components
are quantified as spatiotemporal scores by projection of their multi-channel load-
ings. Furthermore, new, unmodelled patterns of covariation are automatically de-
tected, refined, and quantified in terms of additional spatiotemporal scores and
multi-channel loadings, then appended to the OTFP model. Hence, unlike bilinear
moving-window solutions, this dynamic model extension is executed so that the
system preserves the quantitative connection between all past and present records.
Yet it does not need to retain all past inputs or bilinear scores in memory – for long-
lasting processes the memory usage would grow prohibitively high. Besides, the
OTFP system does not require to hold and update a huge J × J covariance matrix
– for many applications that would also be of a prohibitive size. Instead, it repeat-
edly stores the necessary scores and loadings, avoiding excessive memory usage
during the process.

6.2 System overview

The present OTFP algorithm (schematically outlined in Figure 6.1) is character-
ized by three fundamental aspects: i) its self-learning and ii) adaptive nature and
iii) its stabilising modelling principles. It allows massive amounts of data collected
along time to be compressed and modelled with minimal loss of significant infor-
mation content. The algorithm is initiated with the preliminary choice of a typical
input vector, m, and the best guess of which weights to give to the different input
channels for balancing their variances, c. In addition, a set of predefined compo-
nent loadings, P, derived for instance from an initial exploratory investigation of
the system under study and representing systematic variation patterns expected to
affect the incoming data stream, may or may not be supplied. Then, various system
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Figure 6.1: Schematic representation of the OTFP algorithm: a first set of data
(black block) is input to 1) a pretreatment and 2) a PCA-based dimensionality
reduction stage. As new measurements are recorded (grey block), they can be
either 3a) exploited for the reparametrization of the compression model, if it is
found to be outdated, or 3b) just approximated by its latest version. 4) Bilinear
approximation loadings and preprocessing parameters are saved by keeping track
of how they have been initially defined and/or changed during model updating.
The time series of bilinear approximation scores are more or less continuously
stored and deleted from memory to subsequently process new input data.

parameters such as the desiredmodelling fidelity – the fraction of data variance the
OTFP model has to capture, also known as the amount of explained data variance –
need to be specified. As the multi-channel data starts to flow, it may deliver a more
or less continuous stream of individual J-dimensional input records, e.g., a set of
measurements collected by the same set of J simple channels or sensors during
the evolution of an industrial process. Alternatively, it may deliver a sequence of
input data blocks – batches – each containing Ng records (g = 1,2, . . . , G) and the
same set of J channels, e.g., Ng spectral profiles, constituted of absorbance values
measured at J wavelengths and associated to individual pixels of an hyperspectral
image. Such records are then treated by the following procedure:

1. The J-dimensional data are (optionally) submitted to a lossless preprocess-
ing, linearising the responses and balancing the variable variances to ease
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the subsequent bilinear modelling. This step is domain-specific and the way
it is executed has to be set a priori. For this reason, the best pretreatment
strategy should always be selected based on both the nature of the instru-
mental equipment and technical knowledge;

2. The preprocessed data are projected onto the subspace defined by the bi-
linear loadings, P, already established at this point in time, to estimate the
scores for the respective components;

3. The residuals left in the data after the projection on known components
are input to a bilinear (here PCA-like) modelling stage to detect new un-
known components and isolate outliers. If new components are found, they
are quantified in terms of new scores and loadings. Thus, the statistically
redundant J original variables are replaced by a smaller number (A) of prin-
cipal components (PCs). The number of such components determines the
degree of fidelity initially specified by the user. The algorithm automatically
learns to identify and quantify all the systematic types of covariation in the
data stream as it flows, while most of the random measurement errors and
individual or irrelevant outliers are removed, provided the latter do not con-
stitute a new pattern of variation. This compressed representation is suitable
for graphical interpretation and quantitative use, and from it the pretreated
data can be reconstructed at any time;

4. At regular intervals, the OTFP model may be refined and reorthogonalized
in a linear updating stage;

5. The pretreatment information associated to the different blocks is stored as
output together with the approximation model scores and loadings.

As specified before, the OTFP algorithm detects all the systematic types of covari-
ation in the data stream – be it from the flow of observed objects (expected in-
formation) or from the measuring process itself (unexpected information, anyway
needed for reliable interpretation and quantitative use of the data). Phenomena
considered irrelevant during preprocessing, as well as individual outliers discov-
ered by the OTFP algorithm, are noted and then excluded from the self-modelling
process. So is much of the random, independent measurement error, since it does
not represent a systematic pattern of covariation.
At any time, the systematic part of the data stream can be reconstructed from the
data model, e.g., for visualization. However, this reconstruction is not mandatory;
the compressed data model parameters, representing the known and/or unknown
types of systematic phenomena in the data stream, are themselves suitable for
efficient storage and transmission, human graphical interpretation and applied
quantitative usage.
These steps will now be described. For further details, the reader may contact
either the corresponding or the last author.
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6.2.1 Input

The ever-lasting raw data stream, X , divided into a sequence of blocks, X g (Ng × J ,
g = 1,2, . . . , G), is submitted to the optional preprocessing stage, which includes a
linearization and a signal-conditioning step, and then to the OTFP self-modelling.
The number of observations encompassed by these blocks can be freely set by the
user. Unless the preprocessing parameters and the OTFP centre and scaling vectors
(m and c) are established a priori, the start of the modelling process (i.e. for X1)
requires sufficient observations to enable a precise and relevant initialization of
them.

Linearization

The linearization of the input data in X g is domain-specific. For instance, non-
linearities in light spectroscopy data may be reduced by transformation of the
recorded light intensity, I , at eachwavelength, first to transmittance, T = I

I0
, where

I0 represent the blank signal, and then to absorbance, A= log 1
T , to better conform

to Beer’s law of linear chemical responses.
Another aspect of the linearization is to convert non-additive variation types (e.g.,
multiplicative light scattering in absorbance spectra, motions in RGB or hyper-
spectral videos) into additive signal contributions or preprocessing parameters.
For instance, multi-channel pretreatments such as Standard Normal Variate (SNV)
[114], Multiplicative Scatter Correction (MSC) [115, 116] and Extended Mul-
tiplicative Signal Correction (EMSC) [117] can reparametrize multiplicative ef-
fects. Two-domain IDLE modelling [102] can convert confusing motion effects
into nicely additive motion flow fields. Domain transforms, like Fast Fourier Trans-
form (FFT) and wavelet analysis can change data locally from time to frequency
domain. This more or less lossless, model-based preprocessing, may produce ad-
ditional parameters which may be highly informative and must be stored for later
data reconstruction.

Weighing the variables for better signal conditioning

In general, for an optimal data approximation, the J originally measured descrip-
tors in X g are approximately centred, e.g., by subtraction of their mean values es-
timated from the data digested up to the current step. They may then be weighed
to ensure a better balance among their variances so that:

X g,p = (X g − 1mT) ◦ 1cT (6.4)

where 1 (Ng×1) is a vector of ones,m (J×1) and c (J×1) contain the model centre
and the input weighing factors (these weighing factors could be defined as the
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inverse of the standard deviation values of the J recorded variables at the current
step), respectively, while ◦ identifies the element-wise (Hadamard) product. The
same pretreatment is applied to all consecutive data blocks until m and/or c are
readjusted as part of the model updating operation (see below).

6.2.2 Fit to already established model subspace

The linearized, centred and weighed records in X g,p are now projected onto the
already established loadings P (if they exist at the current step), according to the
linear structure model:

X g,p = T g,pPT + E g,p (6.5)

Clearly, the frequency at which such a projection step is carried out depends on
the number of observations in X g,p, that is, as aforementioned, a user-defined pa-
rameter3.

6.2.3 Bilinear model expansion

In the present implementation of the OTFP, once calculated, the residual vectors
in E g,p are examined: if they are deemed small enough to be considered uninter-
esting noise, the respective original records are simply discarded and their scores
gathered in T g,p. If this is not the case such residual vectors are introduced into a
temporary repository to check whether they represent a new systematic trend in
the data stream or not. At regular intervals or when its size or variance exceeds
a specific user-defined threshold, this temporary repository is used for the estima-
tion of a new set of loadings and scores. If their respective factors are found to
explain a sufficiently high amount of the repository variation4, these new scores
and loadings are appended to those of the already established PCs in P and T g,p,
respectively. Otherwise, if leverage analysis of the new scores points out that only
scattered objects have contributed to them, these are dismissed as incidental out-
liers, their scores are stored, and the original model is retained.
Since the size of the entire scores matrix can become very large as the information
flows, the scores are saved to the local disk at regular intervals and then deleted
from memory along with X g,p and E g,p

5.

3In the case-studies described in Section 6.4, the projection frequency was found to affect only
the computational time of the algorithmic procedure (as it increases, the number of data blocks the
OTFP has to consecutively handle becomes larger) but not its final outcomes.

4The scores for these new PCs are – implicitly – defined to be zero for all the previous observa-
tions.

5In the case-studies described in Section 6.4, the storage of the scores on the local disk proved
not to constitute a limiting step for the execution of the OTFP algorithm.
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6.2.4 Model updating

Whenever necessary (e.g., if the model is characterized by a relatively high bias),
preprocessing parameters, loadings and scores for both old and new observations
are readjusted to ensure PCA-like orthogonality and thus a more efficient com-
pression of the data. For such an updating, the OTFP does not need to recall the
whole array of scores stored on the local disk, but directly operates on two sum-
mary indices of such an array, which are kept in memory in place of it (namely its
column-wise cumulative sum vector and its cross-product matrix). The dimension-
ality of the reestimated model is automatically established according to the user’s
desired optimization criterion. Here, for simplicity, the percentage of data variance
that has to be captured is used. This allows the original information stream to be
retrieved with a predetermined reconstruction accuracy. Other criteria, based on
the statistical significance of the eigenvalues associatedwith the single components
[118, 119], may also be exploited.

6.3 Datasets

To evaluate the potential of the proposed method, 4 different sets of time series
data were compressed and modelled as detailed before and reconstructed after-
wards:
• High-speed multi-channel monitoring of a chemical reaction: 4329 multi-
channel Vis-NIR spectra were measured in-line between 400 and 1098nm
(350 wavelengths) via a NIRS 6500 spectrophotometer, equipped with a
fibre-optic bundle, during several replicates of the self-oscillating Belousov-
Zabhotinsky (B-Z) reaction [120]. The final matrix had dimensions 4329×
350. This example is intended to illustrate a new way to handle more or less
continuous, high-dimensional measurements of a complex dynamic system
not yet fully understood from a scientific point of view;

• Detailed remote characterization of a set of related, complex objects: three
245× 210-sized hyperspectral NIR images of three oranges were registered
within the near-infrared spectral range 898-1690nm (247 wavelengths) by
a XEVA-FPA-1.7-320 line-scanner camera (Xenics, Belgium). To enable their
handling, such three-way arrays need to be unfolded into a unique matrix, so
that a single pixel spectrum is contained in each one of its rows. After back-
ground removal, its dimensions were 72365×247. This example was chosen
to illustrate how non-invasive bio-spectroscopy can reveal hidden aspects of
related complex biological samples;

• Airborne environmental surveillance: an hyperspectral image was recorded
by a push-broom device installed on an Unmanned Aerial Vehicle (Drone-
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Spex, Norut AS – University Centre in Svalbard – Norwegian University of
Science and Technology, Norway [121]), flying over Faial (Azores, Portugal).
At each accumulation step, the optical sensor collected the absorbance val-
ues at 450 wavelengths in the visible light range between 420 and 640nm
for a strip of 245 pixels. A total number of 1000 consecutive snapshots were
captured, which led to a three-way array of dimensions 1000 × 245 × 450.
Moreover, in this case, it was unfolded into a 245000×450matrix. This exam-
ple is intended to show how data from a modern environmental monitoring
instrument, a drone, can be automatically compressed for efficient storage
and transmission and interpreted in the compressed state;

• Traditional industrial process analysis: 76 engineering variables, mainly in-
cluding temperatures, pressures and flow rates, were recorded at hourly in-
tervals to follow the evolution of a continuous industrial process. The com-
plete data structure had dimensions 14561×76. This example illustrates the
application of the OTFP to records measured over time by a relatively small
set of conventional sensors.

6.4 Results and discussion
The power of the OTFP approach and the quality of the initial data retrieval were
assessed in all case-studies at hand according to the following indices:
• A: number of extracted PCs;
• EVraw: percentage of explained raw data variance;
• EVp: percentage of explained preprocessed data variance;
• RMSRE: Root Mean Square Reconstruction Error defined as
È

∑N
n=1

∑J
j=1(xn, j− x̂n, j)2

NJ , where xn, j is the (n, j)-th element of X and x̂n, j refers
to its respective reconstructed value;

• tc: compression time expressed in seconds6;
• CR: compression ratio7.

EVraw, EVp and RMSRE are strictly related to the OTFP approximation accuracy
degree, while A, tc and CR can be considered measures of computational speed
and efficiency.
Calculations were executed by using Idletechs’ prototype software8 in a Matlab

6 tc is computed as the time needed to compress the entire concerned dataset.
7CR is computed as the ratio between the memory usage of the uncompressed and compressed

(preprocessing parameters, scores and loadings matrices) data structures, both saved as double
precision .mat files.

8www.idletechs.com
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Table 6.1: Vis-NIR light absorbance spectra from the B-Z reaction: values of the
compression quality indices. The number of original measured variables is re-
ported in the first column.

J A EVraw EVp RMSRE tc CR

350 10 99.93 99.61 0.0019 12.5 26.81
�

9768173 bytes
364370 bytes

�

R2012b9 environment, set up on a MacBook Pro equipped with a 2.3GHz Intel
Core i7 and 8GB, 1600MHz DDR3 RAM.

6.4.1 High-speed multi-channel monitoring of the
Belousov-Zhabotinsky reaction

Table 6.1 lists the values of the aforementioned parameters related to the Vis-
NIR data compression. The initializationmeasurements were centred andweighed
(c = 1

m+0.05) after baseline correction
10. The model centre vector, m, was updated

at regular intervals as new spectroscopic details were encountered in the process,
while the variable weighing vector, c, was kept constant for simplicity.
In order to more clearly appreciate the performance of the OTFP, 3 uncompressed
and reconstructed spectra associated to different reaction stages are displayed in
Figure 6.2. The full approximation model is sketched in Figure 6.3, in terms of fi-
nal model mean (Figure 6.3a), chosen weighing factors (Figure 6.3b), de-weighed
and scaled loadings (Figure 6.3c) and lack-of-fit residuals (Figure 6.3d). This ex-
ample has shown that the OTFP automatically discovered and quantified various
systematic variation patterns in the complex, ill understood B-Z reaction. At our
chosen fidelity fraction (relative reconstruction error variance< 0.01%, resulting in
10 PCs), only very slight differences between the original and reconstructed pro-
files are detectable to the naked eye. Had we demanded higher fidelity fractions,
more PCs would have been included. Conversely, had we demanded fewer PCs,
that would have given higher reconstruction error variance. When submitting this
high-dimensional data stream to the automatic model-based data compression,
the main patterns of systematic variability in the data were automatically found
and extracted. In this example, each high-dimensional spectrum was measured at
a single space point only. The next example will show how an overwhelming data
stream that arises when thousands of such high-dimensional spectra are measured
in parallel by a hyperspectral camera can be dealt with by the OTFP.

9The MathWorks, Inc., Natick, Massachusetts, United States
10The reported results refer to the baseline-subtracted spectra for better illustration.
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Figure 6.2: Vis-NIR light absorbance spectra from the B-Z reaction at three differ-
ent points in time: input (black solid lines) and OTFP modelled and reconstructed
(red dotted lines) spectra.

6.4.2 Detailed remote characterization of orange samples

This example concerns efficient quality control of physical objects – in this case
oranges. The individual pixel NIR spectra were submitted to a model-based pre-
treatment, MSC, to remove the undesired light scattering effects and prevent ac-
tual chemical signals, often of lesser magnitude [122], from being overlooked.
They were subsequently centred and weighed to down-scale noisy spectral regions.
Here, the model centre was continuously updated, the variable weighing factors
kept constant all over the processing and the MSC parameters additionally stored
along with all the other retained information.
As indicated in Table 6.2, the compression of the orange hyperspectral images also
yielded satisfactory outcomes. In addition to a very precise data retrieval, since
noise is partly filtered out, various imperfections, probably due to instrumental
problems, are apparently removed (see Figure 6.4).

11The mean vector closely resembles the lower-absorbance spectral profiles, due to their high
abundance in the Vis-NIR dataset.
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Figure 6.3: Vis-NIR light absorbance spectra from the B-Z reaction: representation
of the full compression model. a) Final mean vector, b) variable weighing factors
(kept constant throughout the algorithmic procedure), c) loadings profiles (di-
vided by the channel weights, c, and scaled by their respective singular values)
and d) input absorbance spectra (black solid lines) and lack-of-fit residuals (blue
dotted lines)11.

As an example of the added value the bilinear modelling offers unlike conven-
tional compression methods in terms of understanding and interpretability, the
scores distribution maps12 (or scores plots) of image #2 related to the first three
extracted PCs and their corresponding loadings profiles are displayed in Figure
6.5 along with the MSC preprocessing parameters used to correct the spectra of
the individual pixels, the corresponding root weighed Residuals Sum-of-Squares
(RSS) image (after the extraction of five PCs), the final mean vector and the vari-
able weighing factors resulting from the OTFP. PC #1 seems to reflect an overall
lighting variation on the 3D orange. The texture of the orange peel is partly cap-
tured by PC #2, along with a particular defect located on the bottom-left area of
its surface and a 3D illumination and/or penetration effect generating a gradual

12The darkness of the pixels is proportional to the value of their scores on the respective compo-
nents.
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Figure 6.4: Hyperspectral NIR images: a-c) Uncompressed and d-f) OTFP mod-
elled and reconstructed grey-scale orange image #1, #2 and #3 at 1675nm
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Figure 6.5: Hyperspectral NIR images – Modelling of orange image #2: a) base-
line variations and b) amplification variations, estimated by MSC preprocessing
and used to correct the spectra of the individual pixels, c) summary of the unmod-
elled residuals (root Residuals Sum-of-Squares, RSS, of the weighed wavelength
channels after the extraction of 5 OTFP PCs), d) PC #1, e) PC #2 and f) PC #3
grey-scale scores distribution maps, g) final wavelength mean vector and h) wave-
length weighing factors (kept constant throughout the algorithmic procedure) i)
PC #1, j) PC #2 and k) PC #3 loadings profiles (divided by the channel weights,
c, and scaled by their respective singular values). The white circle in e) highlights
a particular defect on the surface of the orange sample
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Table 6.2: Hyperspectral NIR images: values of the compression quality indices.
The number of original measured variables is reported in the first column.

J A EVraw EVp RMSRE tc CR

247 5 99.93 93.27 0.0096 43.8 33.29
( 129235545 bytes

3882254 bytes )

Table 6.3: Hyperspectral image from a push-broom camera installed on a flying
drone: values of the compression quality indices. The number of original measured
variables is reported in the first column.

J A EVraw EVp RMSRE tc CR

450 3 99.82 99.02 0.015 300.2 45.02
( 241451269 bytes

5363455 bytes )

decrease in the scores values from the border to the centre of the sample. PC #3
seems to represent a purely textural component.
This example has shown that the self-modelling process simplified the interpre-
tation and usage of the enormous amounts of data from a hyperspectral camera
recording a series of similar objects. The model parameters gave high compres-
sion as well as interesting graphical insights. The next case-study will illustrate an
even more overwhelming data stream from a continuously measuring hyperspec-
tral camera installed on a flying drone.

6.4.3 Environmental surveillance by airborne hyperspectral imaging

The high compression of the hyperspectral push-broom image is proven by both
Table 6.3 and Figures 6.6a and b. In this case, the spectrum of each pixel at each
point in time was just centred. Specifically, the model centre was continuously up-
dated, while the variable weighing factors were set to 1 and kept constant all over
the processing.
Despite the notable reduction in the memory usage, the uncompressed and recon-
structed pseudo-RGB pictures, constructed by selecting only three of the available
wavelength channels13, exhibit barely perceptible discrepancies.
It is well known that while bilinear models from orthogonal subspace estimation
methods (including PCA and the present OTFP) capture the essential variation in-
formation in data, the individual components are not intended to be meaningful

13Around 445nm, 535nm and 575nm, where the eye cones have their maximum sensitivity to
blue, green and red light, respectively.
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Figure 6.6: Hyperspectral image from a push-broom camera installed on a fly-
ing drone: a) uncompressed and b) OTFP modelled and reconstructed images in
pseudo-RGB colours, c) MCR-ALS component #1, d) MCR-ALS component #2 and
e) MCR-ALS component #3 grey-scale scores distribution maps, f) MCR-ALS com-
ponent #1, g) MCR-ALS component #2 and h) MCR-ALS component #3 loadings
profiles
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from a physicochemical perspective, due to their mutual orthogonality (see Equa-
tions 6.2 and 6.3). Relaxing these orthogonality constraints and possibly adding
other criteria, such as non-negativity in loadings and scores, may give more mean-
ingful individual component plots. For example, Figure 6.6 also includes three
different component scores distribution maps and loadings profiles (Figures 6.6c,
6.6d, 6.6e, 6.6f, 6.6g and 6.6h), obtained by a Multivariate Curve Resolution-
Alternating Least Squares (MCR-ALS) [123] transformation of the global OTFP
model. MCR-ALS is a soft bilinear-modelling technique, analogous to PCA, orig-
inally conceived for the resolution of multicomponent evolving chemical systems
into pure individual contributions, not necessarily completely uncorrelated. It is
based on an iterative sequence of optimization steps, but requires appropriate ini-
tial guesses of these contributions to achieve a reliable solution. Here, the scores
and the loadings represented in Figures 6.6c, 6.6d, 6.6e, 6.6f, 6.6g and 6.6h were
reestimated by executing MCR-ALS on the OTFP reconstructed data, appealing to
the final OTFP loadings as input.
Although MCR-ALS components #1 and #3 are seemingly dominated by the sea
foam pixels (whose corresponding signal was found to be saturated in a large spec-
tral range), three distinct patterns are visibly recognisable: the field pixels in the
first scores distribution map, the pixels surrounding the sea foam in the second
scores distribution map and those capturing several animals grazing at the centre
of the image in the third scores distribution map. Therefore, ça va sans dire, the
OTFP may be employed for preliminary image treatment before further handling
or segmentation.
Independent Component Analysis (ICA) [96, 124] or Parallel Factor Analysis
(PARAFAC) [125, 126] and extensions of these coupled with various pixel clus-
tering methods also belong to the rich flora of post-processing methods that can
be applied to bilinear models like those coming from the OTFP.
The three first illustrations have shown how broad data streams frommulti-channel
sensors can be handled by the OTFP. The last example concerns a very different
kind of data – a more or less random collection of individual, single-channel sen-
sors. Traditional process industry is often extensively equipped with temperature-
and-pressure sensors. Often, each new sensor gets its own display screen with its
own alarm limits. How can the burden for the process operators be reduced as well
as the number of false alarms? Perhaps by finding common patterns of covariation
among the many sensors?

6.4.4 Analysis of an industrial manufacturing process

This example illustrates how the OTFP may be used for more rational handling of
traditional industrial process data.
According to the quality indices reported in Table 6.4, the general performance of
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Figure 6.7: Industrial process data: Uncompressed (black solid line) and OTFP
modelled and reconstructed (red dotted line) temporal evolution of a) variable
#57 and b) variable #60

Figure 6.8: Industrial process data: a) PC #1/PC #2 scores (blue dots and red
squares refer to Normal Operating Conditions and shut-down time samples, re-
spectively) and b) loadings plots (the numbers correspond to the #IDs of the
original variables and are represented according to their respective PC #1/PC #2
loadings values)

the OTFP when applied to this rather low-dimensional stream of industrial pro-
cess data was found to be slightly worse than in the previous case-studies. This is
not unexpected, given the low number of variables under study and their widely
varying nature, and is a consequence of the fact that their correlation structure is
not so strong that just few PCs can practically summarize all their significant vari-
ation. Nevertheless, for most of them an acceptable reconstruction was achieved,
as Figure 6.7 confirms.
Besides, examining both scores and loadings can provide remarkable insights into
the process behaviour, particularly if meaning can be ascribed to the input records
– or at least to some of them – by human expert characterization. This is illustrated
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Table 6.4: Industrial process data: values of the compression quality indices. The
number of original measured variables is reported in the first column.

J A EVraw EVp RMSRE tc CR

76 13 99.47 81.33 0.464014 49.5 3.35
( 4895674 bytes

1459315 bytes )

by the scores plot in Figure 6.8a. PC #1 separates two groups of observations: blue
dots and red squares refer in fact to Normal Operating Conditions (NOC) and shut-
down time samples, respectively. As the latter present negative projection coordi-
nates on this component, they will be characterized by lower-than-average values
of all the measured variables featuring a relatively large positive PC #1 loading
(which actually assumed a nearly 0-level during shut-down periods) and vice versa
(see Figure 6.8b). On the other hand, within-cluster differences seem to be mainly
spotted by PC #2.

6.5 Comparison with classical PCA

To what extent does the OTFP mimic the corresponding traditional data modelling
strategy? The present implementation of the OTFP employs similar criteria in the
model updating stage to those of standard PCA, so it is natural to compare both
the approaches. While the OTFP needs to hold only a small part of the data in
memory at a time, traditional PCA requires all the data to be held in memory at
the same time, at least if both loadings and scores are to be assessed. The time
span of the hyperspectral drone imaging example (Figure 6.6 and Table 6.3) was
chosen short enough to allow conventional PCA to be run and its solution to be
compared to the final OTFP model.
Figure 6.9 permits to appraise the performance of the two methods for the same
dataset. Figure 6.9a shows that the mean spectrum used for model centring in PCA
is more or less identical to the model centre vector, m, gradually developed by the
OTFP. The outcomes of the two techniques are also virtually indistinguishable if
looking at the plot of the cumulative percentage of explained preprocessed data
variance (Figure 6.9b) and the variable-wise RMSRE (after the extraction of three
PCs, Figure 6.9c) as well as at the loadings profiles of PC #1 (Figure 6.9d), PC #2
(Figure 6.9e) and PC #3 (Figure 6.9f). The corresponding spatiotemporal OTFP
scores (not displayed due to the high number of data points) were also found to be
very similar to the PCA ones. Consequently, both PCA and the OTFP led to practi-

14As the original variables were characterized by different units of measurements, the reported
RMSRE value concerns the final centred and weighed data array.
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Figure 6.9: Hyperspectral image from a push-broom camera installed on a flying
drone – Classical PCA (black solid line) vs. OTFP (grey dotted line): a) Mean vec-
tors, b) cumulative percentages of explained preprocessed data variance, c) lack-
of-fit (root mean square error) for the individual variables after the extraction of 3
OTFP PCs (negligible if compared with the original signal magnitude) d) PC #1,
e) PC #2 and f) PC #3 loadings. Variable weighing factors (not shown) were set
to 1 for all the spectral wavelengths and kept constant all over the OTFP

cally identical values of the diagnostic indices listed at the beginning of Section 6.4
except for tc. The decomposition was achieved faster by PCA, which had simulta-
neous access to all the available information. On the other hand, the OTFP had to
handle it by evolving its bilinear model on-the-fly as the data flowed. Nevertheless,
the comparison highlighted that the OTFP can be considered a feasible alternative
to standard PCA, when this latter is not applicable (e.g., when the measurements
are collected in real time or the size of the analysed matrix is prohibitively large).

6.6 Discussion

The OTFP treats the incoming data one record or one batch of records at a time,
and gradually develops a compact quantitative model of this data stream from the
covariation patterns that it discovers. Still, Figure 6.9 illustrates the OTFP behaved
quite similarly – at least for the first three components – to the corresponding con-
ventional global multivariate data modelling method (in this case PCA), which
analyses all the data simultaneously. Their results are almost identical even if the
OTFP repeatedly has to make sense out of small chunks of data as they arrive.
Therefore, it has to make many temporary decisions about what to throw away as
random noise, while the global PCA has access to all data at once. On the other
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hand, this is precisely the motivation behind the development of the OTFP tool,
that is to always maintain an updated, compact summary of all the systematic
changes, which have taken place in an otherwise overwhelming, ever-lasting high-
dimensional data stream, with low computational or memory requirements.
The OTFP uses a multivariate data driven approximation model (here, PCA-like)
as a generic Taylor expansion around a chosen set point or model centre, to sum-
marize whatever known or unknown phenomena has caused the systematic co-
variation patterns in the input data stream. The OTFP data model has a linear,
additive structure and therefore gives the best approximation performance when
non-additive and/or non-linear effects in the input data have been corrected for in
the preprocessing step. Preprocessing is then helpful for reducing response curva-
ture and other types of non-linearities15. Response linearity was improved in the
first example (Figures 6.2 and 6.3) by converting the fibre-optic transflection data
to absorbance values. Patterns known to be non-interesting may be removed dur-
ing preprocessing, as illustrated by the simple baseline correction in the same case-
study. In the second example (see Figure 6.4), unknown additive baseline varia-
tions andmultiplicative amplification variations were estimated, parametrized and
removed jointly by MSC. On the other hand, when the input variables are given in
very different units, preprocessing should also scale them to balance their uncer-
tainty levels – or, if that is unknown, to balance their total variances as shown for
the industrial process data (Figures 6.7 and 6.8).
The OTFP components are mathematical basis vectors that characterize the data
stream. When plotted in combination they give useful insights into the main pat-
terns of data variation, as illustrated in Figure 6.8. But such orthogonal basis vec-
tors are not meant to be interpreted individually. Therefore, the OTFP solutionmay
be at any time readjusted for better visualization and more causal interpretation.
This was shown by the conversion of the orthogonal, PCA-like OTFP component
profiles into more graphically distinct ones by requiring non-negative scores and
loadings in an MCR-ALS-based post-processing.

6.7 Conclusions and perspectives

In the near future, a drastic increase in the collection and use of high-dimensional,
continuous measurements is expected. Rational use of such data streams requires
generic datamodelling tools that not only give good prediction and classification as
the information flow evolves, but that also reveal its essential structure for human

15In case preprocessing is not of help, complex non-linearities and system heterogeneities may
be handled by automatically splitting the data stream under study into two or more disjoint OTFP
models (in a similar way as for the well-known static Soft Independent Modelling of Class Analogy
– SIMCA – approach [127, 128]).
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interpretation and efficient compression. In this article, the On-The-Fly Processing
(OTFP) tool for the on-the-fly gradual modelling and compression of continuous
quantitative data streams was proposed. It is based on an evolving implementa-
tion of PCA that updates on-line, when necessary, both preprocessing parameters
and principal component structure (whose changes and possible expansion can
be optionally monitored in real time through intuitive graphical displays). It com-
bines the advantages of three different ways of attaining PCA or PCA-like bilinear
decompositions, while avoiding their disadvantages:
• repeated use of conventional PCA, each time bringing increasing amounts
of data into memory for simultaneous analysis, which yields bilinear models
relevant for both past and present observations, but becomes prohibitively
slow and memory-demanding for ever-lasting data streams;

• moving-window PCA, which repeatedly merges new observations with a bi-
linear subspace loading summarising past observations, ensuring that the
bilinear model is up-to-date and thus relevant for the latest observations at
any given moment, while losing relevance for older observations;

• eigen-analysis of the cumulative J×J cross-product matrix, a simple and fast
computation as long as J is not too large, which is suitable for parallelization
and out-of-core estimation of the PCA loadings with relevance also for past
observations, but without quantitative scores for them.

The OTFP discovers new systematic patterns of covariation in multi-channel data
streams, and thereby extends its current bilinear model with new dimensions in a
computationally efficient way. Over time, the observation scores are stored to disk
in packets and then deleted from memory. The model is continuously updated to
be as PCA-like as possible, but in such a way that past scores can always be recalled
and compared to present ones.
The algorithmic procedure exhibited very satisfactory performance in terms of
compression rate and time and quality of the input reconstruction, especially if
measurement series underlain by strong correlation structures (e.g., in Vis-NIR
spectra or hyperspectral images) were dealt with. On the other hand, in the in-
dustrial process example, its power was not as prominent, probably due to a lower
degree of intercorrelation in this data stream. Still, the retrieval of the temporal
evolution of the original variables was reasonably precise. This could represent an
important cross-road for manufacturing companies, whose modern information
storage systems are commonly based on univariate calculations, not taking into
account the possible interdependences among various instrumental responses, de-
stroying their essential multivariate nature and eliminating much of their mean-
ingful content [129]. Finally, the scores and loadings estimated through the PCA-
based dimensionality reduction feature distinctive interpretability properties, ex-
tremely helpful for data understanding, utilization and further exploration by
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complementary statistical approaches, such as MCR-ALS. As far as the authors are
concerned, no available compressor guarantees such a noteworthy added value.
In the near future, this strategy for continuous, automatic model development
based on multi-channel measurements, may become useful also for processing a
wider range of data stream types. For instance, the Internet-of-Things (IoT) will
result in an enormous increase in technical measurements in many fields of inter-
est like medicine, industry, or communications. Many of these IoT sensors will be
multi-channel (cameras, spectrometers, etc.). Others will be univariate, but even
these will generate multi-channel data: the time series from one single, more or
less continuous data source will lead to high-dimensional frequency spectra (spec-
trograms), after suitable domain transforms (e.g., by FFT or wavelet analysis).
Since the methodology here relies solely on linear algebra, it is expected to work
properly also within the more general BIG DATA context.
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Chapter 7

Hyperspectral time series
analysis
Hyperspectral image data streams interpreted by
modelling known and unknown variations

In this chapter, we experimentally demonstrate a generic method for compact
quantification and interpretation of multichannel spatiotemporal data ("hyper-
spectral video") in terms of known and unknown variation types1. The process of
drying a wet wood sample was characterized by a series of high-resolution hyper-
spectral images taken at 150 consecutive time steps over a period of 21 hours. Each
pixel intensity was measured at 159 wavelength channels in the vis-NIR region,
which resulted in a time series of approximately half a terabyte of raw spectral
data.
Passing the massive stream of data through a four-stage data modelling procedure
resulted in a substantially compressed 10 component bilinear model comprised
of five a priori known and five newly discovered spectral components. From this
compressed subspace model, a filtered version of the original data stream could
be reconstructed.
First, the measured intensity spectra were normalized by transformation into re-
flectance and linearized into apparent absorbance units. These absorbance spec-
tra were secondly submitted to simplified causal modelling of known phenomena
by Extended Multiplicative Signal Correction (EMSC) – to identify variations in

1Based on the paper "Hyperspectral image data streams interpreted by modelling known and
unknown variations", by Petter Stefansson, João Fortuna, Hodjat Rahmati, Ingunn Burud, Tatiana
Konevskikh and Harald Martens. Published as a chapter in the book "Hyperspectral Imaging", Data
Handling in Science and Technology, Elsevier, Volume 32, 2020. This work was partially funded by
the Norwegian Research Council in the project "WOOD/BE/BETTER" code 225345.
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the main light scattering and light absorption variation types. Thirdly, the high-
dimensional streams of lack-of-fit residual spectra from EMSC were analysed for
possible remaining systematic structures – e.g., due to unknown and hence unmod-
elled variation types – by an adaptive bilinear modelling method (ABLM). In the
final modelling stage, the dynamics of the various known and unknown physical
and chemical variations of the drying process were assessed from their temporal
developments.

7.1 Introduction

Diffuse multichannel reflectance spectroscopy in, e.g., the visible (vis) and near-
infrared (NIR) wavelength range is a fast and informative methodology for si-
multaneous measurement of a range of chemical and physical properties in com-
plex biological samples [130, 131]. However, to resolve the selectivity problems of
chemical and physical variations with similar spectral effects, multivariate calibra-
tion is required [92]. In hyperspectral imaging, where each pixel in an image is
represented by a spectrum of reflected light, the spatial distribution of these prop-
erties can be quantified in a heterogeneous sample such as a piece of wood, using
mathematical modelling and Multivariate Image Analysis (MIA) [132].
When a given sample is measured repeatedly over time by hyperspectral imag-
ing, the resulting "hyperspectral video" also provides information about temporal
developments. The multichannel spatiotemporal measurements in hyperspectral
video generate really Big Data. In this work, a piece of Scots pine was monitored
using hyperspectral imaging in the vis-NIR wavelength region for a period of 21
hours as the wood underwent desorption from a moisture saturated state to a
dry state. We use statistical data-driven models to estimate the temporal develop-
ment of properties within the wood as it dries and demonstrate how a seemingly
overwhelming stream of hyperspectral video data can be converted into relatively
simple quantitative spatiotemporal information by a combination of various prag-
matic mathematical modelling techniques.
Chemical absorption and physical scattering are the two phenomena dominat-
ing the interaction between light and complex materials like wood. Both of them
are well understood: Due to electronic or molecular resonances in chemical com-
pounds, those complex materials absorb light at a given wavelength and convert
it into heat, or emit it at other wavelengths. Changes in the degree of absorbed
light between samples are useful for the quantification of their chemical compo-
sition. Variations in the physical properties of the samples (such as the amount,
size, shape and refractive index of particles) cause variations in several light scat-
tering phenomena (angular distribution of reflected or transmitted light, effective
optical path length, specular surface reflectance, etc.); measuring these is useful
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for quantification of the samples’ physical properties.
The present work evaluates a stream of hyperspectral images representing a hy-
perspectral time series, which we analysed with respect to the common underlying
spectral variation patterns. In addition, since the wood sample is monitored over
time in a fixed position, the spatial and temporal structure of these variation pat-
terns can be studied qualitatively and quantitatively.
In theory, causal mathematical modelling of how these phenomena affect light
measurements is therefore possible: for instance, light absorption and light scat-
tering can be modelled via the complex refractive index [133]. However, such
causal modelling requires detailed information about the chemical and physical
structures of the measured samples, and this information may not be available.
Moreover, it may require a measurement set-up and/or extensive tests involving
simultaneous transmittance/reflectance measurements in an integrating sphere,
etc. For routine analysis, such quantification is usually too cumbersome, too slow,
or too expensive.
Instead, this work employs a combination of four simple mathematical approxi-
mation modelling stages:
1. Normalization and linearization of the raw data to facilitate subsequent lin-
ear modelling according to Beer-Lambert’s Law.

2. Modelling known structures: Linear additive/multiplicative model of an ex-
tended version of Beer-Lambert’s Law (Extended Multiplicative Signal Correc-
tion, EMSC [117, 134]) to quantify and extract known chemical and physical
variations.

3. Modelling unknown structures: Bilinear search for unknown and hence un-
modelled variation types in the spectral residuals after the EMSC, based
on Adaptive Bilinear Modelling (ABLM) using the On-The-Fly-Processing
(OTFP)2 tool presented in Chapter 6.

4. Temporal kineticsmodelling of the known and unknown state variables (com-
ponent time series) obtained from the EMSC and ABLM based data-models
of the hyperspectral video measurements.

The outline of the chapter is as follows: first, we describe the actual experiment
and the mathematical modelling methods employed to analyse the results. Then
we summarize the results, starting with a preliminary, overall assessment of the
complexity of the drying process, based on the reduction of weight of the wood
sample. Next, the entirety of the hyperspectral measurements are analysed with
respect to known and unknown phenomena, based on the EMSC and OTFP meth-
ods, respectively. Finally, we assess the kinetics of the EMSC and OTFP temporal
parameters.

2www.idletechs.com
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Camera
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(a) Camera rig (b) t = 0 h (c) t = 21 h

Figure 7.1: The experiment. Illustration of experimental setup used to measure
the spectral reflectance and weight of a drying wood sample (a). RGB renderings
of wood sample in wet (b) and dry (c) states.

7.2 Methods

7.2.1 The experiment

Drying of a wood sample

A wood sample of the species Scots pine (Pinus sylvestris) originating from a forest
in Hobøl, roughly 30km south of Oslo, Norway, was cut into dimensions 18 × 100
× 280mm. The sample was then placed in a drying oven where it was dried at a
temperature of 103°C for 48 hours until it was ensured, through repeated weight
measurements, that as much as possible of the water in the material had been
evaporated. The sample was then taken from the oven and immediately weighed.
Its dry weight was determined to be 245.46g. Once the sample’s dry weight was
established, the sample was submerged in water and left to soak for approximately
24 hours. After the soaking period, the sample was removed from the water and
placed on a digital scale. Its initial wet weight was 336.51g. The digital scale with
the wood sample and a Spectralon white reference were attached to a translation
stage as illustrated in Figure 7.1a.
The wood sample was artificially illuminated by two halogen spotlights positioned
on either side of a hyperspectral camera, which monitored the sample for a period
of about 21 hours. From the weight loss of the wood sample registered by the scale,
the relative moisture content could be calculated at different time points and used
for a preliminary assessment of the kinetic complexity of the drying process.
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Monitoring the drying process by hyperspectral time-lapse camera data
("hyperspectral video")

The hyperspectral push-broom camera (Specim, Oulu, Finland) captured images
with a spatial resolution of 4480×1312 pixels (pixel dimension 69.2×68.6µm2),
each characterized by 200 wavelength bands in the 392-1022nm range. Because
bands at the edge of the camera’s detection limit were found to suffer from a low
signal-to-noise ratio, the wavelength range was cropped after the signal acquisi-
tion, down to 159 bands covering the 500-1005nm region. The software control-
ling the experimental setup was programmed to automatically repeat the image
acquisition of the sample every eight minutes over a period of about 21 hours as the
sample and the setup remained completely untouched, resulting in 150 hyperspec-
tral frames of the sample at various moisture contents. The spatial resolution of
the region of interest within each frame (area excluding the white reference plate,
wood edges, etc.) was 2200×1070 pixels, resulting in a four-dimensional dataset
of size 2200×1070×159×150 (rows×columns×spectral bands×time). Altogether,
this corresponds to roughly 418GB of data when stored in double precision floating
point (fp64) format. The sample was not moved during the 21 hours, therefore the
pixels of each hyperspectral image are expected to correspond to the same loca-
tion of the sample, apart from a minor offset caused by the contraction of the wood
sample as it dries. Thus, the resulting data set can be seen as four-dimensional,
with each one-dimensional pixel spectrum being a function of both space and time
as illustrated in Figure 7.2 a).
The recorded photon count ("light intensity" I) in each of the 150×159 images has
2D spatial information about the physical and chemical structure of the wood sam-
ple; the distinction between early- and latewood growth zones (lighter and darker
regions of the wood, respectively) is clearly visible. These zones reflect seasonal
fluctuations in the growth rate of the tree during its lifetime due to variations in
temperature and precipitation, resulting in chemical and physical differences in
wood structure. This sample heterogeneity is shown in the two wood images in
Figure 7.1b and 7.1c.
To use the massive stream of high-resolution hyperspectral images to study the
physics and chemistry of the wood drying process, these measured intensity data
I were passed through several mathematical modelling stages:
1. Response linearization;
2. Semi-mechanistic multivariate modelling of known effects;
3. Data-driven multivariate modelling of the remaining unknown effects; and
finally,

4. Statistical summary and kinetic modelling of the dynamics of the known and
unknown effects.
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Figure 7.2: Overview of experimental data acquisition and modelling of hy-
perspectral video. a) Input data: (2200×1070) pixels×159 wavelength chan-
nels×150 time points. b) - i) Model what is known about input data: EMSC mod-
elling of 2-way input data for 159 wavelength channels at 353 100 000 pixels
(2200×1070×150)×159wavelengths, and spatiotemporal averaging. j) - o)Model
what is unknown: Adaptive bilinear modelling of 2-way residual data of 353 100
000 pixels×159 wavelengths.

7.2.2 Mathematical modelling stages

Weight-based assessment of the kinetic complexity of the drying process

The weight-based water saturation (satH2O (%)) in the wood sample was calcu-
lated as

satH2O(t) =
wwood(t)−wdry wood

wwood(t)
· 100 (%), t = 1,2, . . . , 150 (7.1)

Where wdry wood(= 245.46 g) represents the weight of the wood sample dried at
103°C for 48 hours and wwood(t) represents the varying wood weight during the
drying period. To assess the overall complexity of the drying process, the tempo-
ral derivative of satH2O(t) was calculated: For y(t) = satH2O(t) at time step t, its

102



7.2. Methods

temporal derivative d y(t)/d t was calculated as

d y(t)
d t

=
y(t + 1)− y(t − 1)
h(t + 1)− h(t − 1)

(7.2)

where h(t) is the actual time in hours at time step t. The derivative d y(t)/d t was
then plotted against y(t) itself, to assess the kinetics of the weight-based drying
process.
Since the drying process appeared to be quite complex, a simpler alternative was
also employed, namely, a graphical assessment of how well the weight loss dynam-
ics followed the simple first-order reaction:

d y(t)
d t

= −k · y(t) (7.3)

where k is the rate constant. Integrating this equation over time gives the following
expression in natural logarithms (ln):

ln(y(t)) = −k · t + ln(y(0)) (7.4)

Hence, a plot of ln(y(t)) vs time t (in hours) should give a straight line if the
process follows first-order kinetics. Observed deviations from a single straight line
hint towards a more complex drying process.

Hyperspectral modelling

A hyperspectral video is a 3-way data set (pixels × wavelength channels × time
points) that, in principle, could have been modelled by a tensor-algebraic 3-way
model, e.g. a PARAFAC-model [126] of the type

A= B⊗C ⊗ D + E (7.5)

where A is the 3-way video input data, B, C and D represent a low-dimensional
model with vectors in the pixel-, wavelength- and time-domains, respectively, and
E represents measurement noise.
However, the sheer amount of input data makes this N-way modelling too compu-
tation intensive. Moreover, the light scattering varies with the drying time (conf.
Figure 7.1b - 7.1c), and this is likely to involve changes in the effective optical path
length. Hence, since path length variations give non-additive effects, this purely
additive 3-way model was discarded.
Instead, the following sequence of theory- and data-driven modelling steps (Figure
7.2) were chosen here.
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Response linearization The light intensities I from the wood sample, measured
at each of the wavelengths for each of the pixels at each of the points in time (Fig-
ure 7.2a) were converted to reflectance units by R = (I − Id)/(I0 − Id), where I0
represents the intensity measured on a Spectralon white reference plate and Id is
the dark signal (image taken with the shutter closed). The reflectance data were
in turn linearized with respect to chemical response by the conventional transfor-
mation to apparent absorbance A = − log10(R). After this response normalization
and linearization of each of the > 5× 1010 individual light intensity readings, the
2D image of the apparent absorbance at each wavelength channel at each point in
time (Figure 7.2 b) is unfolded into a 1D column vector. This resulted in a virtual
3-way array of absorbance (Figure 7.2 c) with 2 354 000 pixels per image and 159
wavelengths ×150 time points.
This array was unfolded into a virtual 2-way absorbance matrix (Figure 7.2 d) of
353 100 000 pixels ×159 wavelengths, which was submitted to three more stages
of modelling:
1. Modelling the known: The 159-dimensional spectrum of each of the over
353million pixels was submitted to a semi-causal modelling of what is known
about how light interacts with matter in complex samples such as wood,
based on the Extended Multiplicative Signal Correction (EMSC) model [117,
134].
In total, five different phenomena with known spectra were modelled, in or-
der to estimate their unknown spatial and temporal distributions. The pur-
pose of this stage is to model the linearized absorbance spectra in terms of
a sum of variation types whose spectral profiles (Figure 7.2 e) are known
but actual levels in each pixel (Figure 7.2 f) is unknown. After subtracting
these five estimated effects, the residual spectra (Figure 7.2 g) should only
contain random measurement noise, if the chosen mechanistic model had
been perfect.
The chosen EMSC model spectra (Figure 7.2 e) represent three known phys-
ical and two known chemical variation patterns that are expected to affect
the apparent absorbance spectrum z i of each pixel i = 1,2, . . . , nPixels relative
to a chosen, "typical" reference pixel spectrum m (in our case chosen to be
the mean of all pixels in the image taken after 21 hours of drying), according
to the model:

z i = bi ×
�

mᵀ +∆ci,Water × sᵀWater +∆ci,WoodPigment × sᵀWoodPigment

�

+ ai × 1ᵀ + di × f ᵀ + εi

(7.6)

In this equationm, sWater, sWoodPigment,1, f , z i ,εi are column-wise vectors with
the same length as the number of wavelength channels. bi, ∆ci,Water,
∆ci,WoodPigment, ai and di are scalars. The reference spectrumm (Figure 7.3 a)
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was chosen in the modelling for estimating the effective relative path length
parameter bi, in each pixel i and it is corrected for by division. The reason
why it is important to estimate the relative optical path length is that accord-
ing to Beer-Lambert’s law, the absorbance effects of path length variations
can be very big, and are multiplicative, while e.g. chemical pigment varia-
tions can be very small and give additive absorbance effects.
This parameter, the relative optical path length, is intended as a pragmatic
measure of the "diffuse thickness" [135] of the wood sample at different
states of drying, relative to that of the dry reference sample which defined the
reference spectrum m. Popularly speaking, bi should thus show how far, on
"average", the photons travel inside the wood after hitting the wood surface
before they emerge again at the surface to be detected by the camera. The
longer a photon travels in the chemically absorbing environment, the higher
the probability is that it will be lost by chemical absorption and converted
into heat or lost by other means. This relative optical path length estimate
bi is expected to vary more or less inversely proportional to the scattering
coefficient S in sample i:bi = 1/S, but with the simplifying assumption that
S is the same at all measured wavelengths.
In order to attain robust estimates of the relative path length variations by
projection of input spectra z i on reference spectrum m, the other variation
types that also affect the input spectra must be modelled so as to avoid alias
errors:
A flat baseline 1 = [1,1, . . . , 1]ᵀ of length 159 (Figure 7.3 b), and a straight
line f with monotonically increasing values evenly spaced between −1 and
1 (Figure 7.3 c) are chosen for estimating the pixel’s spectral baseline-offset
ai and baseline slope di, respectively, again due to physical light scattering
variations, and are corrected for by subtraction.
A wood colour spectrum sWoodPigment (Figure 7.3 d) was chosen for estimat-
ing and subtracting spatially visible wood structure variations∆ci,WoodPigment.
It was defined as the average scatter-corrected difference between the ab-
sorbance spectra of early- and latewood pixels in the last of the images (the
driest state).
The absorbance spectrum of water, sWater (Figure 7.3 e) was chosen in or-
der to quantify how the concentration of water differs from the presumed
concentration of water in the reference pixel, ∆ci,Water, and subtract this ef-
fect. The water spectrum, sWater, was defined as the wavelength dependent
specific absorption coefficient of water within the 500-1005nm range (data
from [136]). Residual spectrum εi represents any variation in the input ab-
sorbance spectrum z i that is not described by this EMSC model, once the
unknown parameter values bi, ∆ci,WoodPigment, ∆ci,Water, ai, di in each pixel
i of these known spectral variation types have been estimated. To estimate
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Figure 7.3: Modelling the known: Spectral and temporal structure of the param-
eters from Extended Multiplicative Signal Correction (EMSC). Left column shows
EMSC model spectra chosen for modelling apparent absorbance; (a) Reference
spectrum m for estimating optical path length, calculated as the average spectra
of the last (driest) image in the series. (b) Constant "spectrum" for estimating
baseline offset. (c) Linear "spectrum" for estimating baseline slope. (d) Dominant
pigment spectrum sWoodPigment, defined as the average difference between early-
and latewood pixels in the last (driest) image in the series. (e) Water spectrum
sWater. Right column shows the temporal development of all EMSC parameters
(estimated at each point in time by averaging over all image pixels).
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these parameters simultaneously in a linear regression model, the products
bi×∆ci,Water and bi×∆ci,WoodPigmentwere redefined as gi,Water and hi,WoodPigment
respectively. Hence, the EMSC model is rewritten:

z i = bi ×mᵀ + gi,Water × sᵀWater + hi,WoodPigment × sᵀWoodPigment

+ ai × 1ᵀ + di × f ᵀ + εi

(7.7)

Defining the set of known model spectra:

M =
�

m, sWater, sWoodPigment,1, f
�ᵀ (7.8)

And the corresponding set of unknown parameters (pixel properties):

p i =
�

bi , gi,Water, hi,WoodPigment, ai , di

�

(7.9)

the description for each pixel i becomes a simple linear model:

z i = p i ×M + εi (7.10)

This allows the unknown parameter values in p i to be estimated by ordinary
least squares (OLS) regression of each pixel spectrum z i on M:

bp i = z i ×Mᵀ × (M ×Mᵀ)−1 (7.11)

The multivariate modelling methods used here, EMSC and OTFP, are both
based on weighted least squares. Therefore, it is important to balance the
presumed relevance of the 159 wavelength channels against their estimated
noise levels. Uncertainties in the measured signal from the hyperspectral
camera vary across different wavelengths due to e.g. the spectral response of
the camera detector. To account for this in the modelling stage, wavelengths
were weighted with a vector of weights vλ,λ= 1,2, . . . ,Λ according to their
signal-to-noise ratio (SNR) so that the signal of wavelengths associated with
greater uncertainties were down weighted, whilst signal originating from
wavelengths with low noise level were to a greater extent preserved. The SNR
of an image was approximated by dividing the average raw signal intensity
in the white reference region of an image with the average signal intensity
in the dark reference region of the same image:

SNR=
Isignal

Inoise
=

Iwhite

Idark
(7.12)

As the detector and the halogen lights used to artificially illuminate the wood
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Figure 7.4: Weight vector used to assign weights to different wavelength regions
during EMSC and OTFP. Red dotted line represents measured signal-to-noise ratio.
Dark solid line represents the smoothed curve used as weight vector v in both
EMSC and OTFP.

sample become warmer over time, slight changes in their characteristics oc-
cur which causes minor changes in the SNR between images taken at dif-
ferent points in time during an extended image acquisition period such as
21 hours. The SNR was in the present study therefore calculated for nine
different images, evenly sampled from the first to the last image of the ac-
quisition period, and then averaged into one SNR curve. The average SNR
curve was then smoothed and normalized to lie in the 0.4-0.9 range before
used as a weight vector in both EMSC and OTFP. Figure 7.4 shows the final,
smoothed, weight vector vλ together with the SNR curve.
The ordinary least squares solution therefore is replaced by a weighted least
squares (WLS) solution:

bp i = z i × V ×Mᵀ × (M × V ×Mᵀ)−1 (7.13)

where weights V = diag(vλ) balances the sum-of-squares contributions from
the different wavelength channels with respect to their relevance and noise
levels. Once the relative effective optical path length bi had been estimated
for every pixel, the chemical parameters were estimated by division:

∆ci,Water = b−1
i × gi,Water (7.14)

∆ci,WoodPigment = b−1
i × hi,WoodPigment (7.15)

Then, for each of these five EMSC model elements, the many spatiotemporal
pixel parameters were summarized in terms of spatial structure (Figure 7.2
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h), comparison of the first and the last image in the drying sequence) and
their temporal developments(Figure 7.2 i). The obtained time series were
finally analysed with respect to their kinetic properties.
To correct for the physical light scattering variations while retaining the
chemical light absorbance variations, the EMSC post-processing of the in-
put spectra is defined as

z i,corr = b−1
i × (z i − ai × 1ᵀ − di × f ᵀ) (7.16)

which corresponds to

z i,corr =∆ci,Water × sᵀWater +∆ci,WoodPigment × sᵀWoodPigment + b−1
i × εi (7.17)

The estimated residual spectrum of each pixel εi (Figure 7.2 g), is obtained
by:

εi = z i − bi ×mᵀ − gi,Water × sᵀWater − hi,WoodPigment × sᵀWoodPigment

− ai × 1ᵀ − di × f ᵀ
(7.18)

This residual spectrum is expected to contain random measurement noise
as well as possible unmodelled spectral structures remaining after the EMSC
modelling. Before the residual spectra εi were submitted to further scrutiny
to search for unknown features, they were scaled in order to remove the
non-additive effects of varying path length:

εi,scaled = b−1
i × εi (7.19)

This EMSCmodelling yielded re-scaled andweighted 159-dimensional resid-
ual spectra εi,scaled (Figure 7.2 j) for more than 353 million 159-dimensional
spectra:

Escaled =
�

εi,scaled, 1, 2, . . . , 353 100 000
�

(7.20)

2. Modelling the unknown: In order to look for unknown, and hence unmod-
elled patterns of variations in the hyperspectral video data, the residuals
Escaled were passed to the next stage in the modelling: A joint analysis to
discover, quantify and display unknown, unmodelled spectral variation pat-
terns and to separate these from the background of (presumably random)
measurement noise.
The estimated residual spectra Escaled are expected to contain not only "ran-
dom" measurement noise, but also systematic – but unknown – variation
structures. These may be due to errors in the shape of the mechanistic model
(here: normalization, linearization, linear EMSC model), errors in the em-
ployed model elements (here: estimated spectra sWater and sWoodPigment) or
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unmodelled phenomena (here: e.g. physical specular reflection from wood
surface, or chemical variation in the cellulose/lignin ratio in different parts
of the wood).
Bilinear data modelling by principal component analysis (PCA) and PCA-
like methods is useful for discovering, quantifying and graphically display-
ing non-random covariation structures in data.
For "path length"-scaled, mean-centred variables and weighted residuals the
model may thus be described as:

EABLM,scaled,weighted =
A
∑

a=1

ca × sᵀa + EABLM,final,weighted (7.21)

where the bilinear contribution from each principal component (PC) a in this
case consists of the product of the spatiotemporal scores ca and the loading
spectra s a.
Ideally, the first PCs are included in the final model because they represent
non-random covariation structures, while EABLM,final,weighted represents the re-
maining random noise.
In the present case, the number of spectra in Escaled is very high - for different
2D pixel positions at different times. To simplify the exploratory adaptive bi-
linear modelling, the On-The-Fly-Processing (OTFP) software from Idletechs
AS3 was employed, in order to be able to handle this stream of Quantita-
tive Big Data on a regular PC within a reasonable computation time. The
OTFP (Chapter 6) yields results very similar to a weighted principal com-
ponent analysis (PCA), but develops this bilinear model sequentially and
therefore allows PCA-like modelling of more or less continuous streams of
high-dimensional data such as spectra from hyperspectral imaging. The same
statistical weight vector of the wavelength channels (Figure 7.4) was used
in the OTFP as in the EMSC.
The OTFP analysis will gradually, but automatically, discover, extract and
quantify any clear systematic covariation pattern remaining in the residuals.
The components in the bilinear model consist of the product of unknown
spectral loading profiles (Figure 7.2 k) and unknown spatiotemporal score
vectors (Figure 7.2 l), and represent a succession of "unexpected patterns". In
the present case, four patterns from the residuals were found to have smooth
spectral loadings. To be conservative, a fifth principal component was also
included in the final model.
As with the spatiotemporal EMSC scores, the estimated spatiotemporal OTFP
score patterns of each of these five PCA components was refolded with re-
spect to its 2D wood picture (Figure 7.2 n) and its temporal development

3www.idletechs.com
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(Figure 7.2 o) during the drying process.
The residuals (Figure 7.2 m) left after this two-stage modelling were briefly
interpreted graphically. Since no important patterns were found, they were
summarized statistically and then discarded.

3. Temporal kinetics modelling: Each of the average temporal score vectors
from the EMSC modelling of known phenomena (Figure 7.2 i) and OTFP
modelling of unknown phenomena (Figure 7.2 o) were finally fitted to the
simplified first-order kinetic model. The purpose of this was to shed some
light on the temporal development of the hyperspectral videomeasurements,
and hopefully also on the mechanisms governing how the optical properties
of the wood sample changed during the drying process.
For each of the EMSC and OTFP components the average score was com-
puted at each of the 150 time points by averaging over all pixels at time t.
After defining the component’s score vector as y∗t , t = 1,2, . . . , 150, a linearly
transformed score vector y t = y∗t × a + b was defined so as to ensure that
y t is positive and falling gradually towards zero. The scaling factor a was
defined to ensure that one unit of change in y t corresponded to one unit
change in apparent absorbance of the input data. Offset b was then defined
so that the minimum value y150, at the end of the drying process, was 0.001
absorbance units or more. Then the temporal derivative of y t was computed
using Eq. 7.2.
The dynamic complexity of the component time series y∗t could then be as-
sessed by plotting d yt/d t vs time t: If the processes affecting component y∗t
had followed simple first-order kinetics, then the 150 data points would fall
approximately along a straight line (conf. Eq. 7.4). Hence, deviations from
the straight lines indicate more complex kinetics.

7.3 Results

7.3.1 Average moisture in the drying process

The total weight of the wood sample (wwood(t)) is shown in Figure 7.5 a) for the
drying period 0-21h, in total consisting of 150 time points. The weight-based av-
erage moisture content (satH2O(t)) in the wood sample is shown in Figure 7.5 b).
The figure shows that the wood sample has 27.09% moisture at time t = 0, and
after t = 21h of low-temperature drying, the wood sample still contains 6.20%
moisture, compared to its oven-dried state.
In order to study the overall kinetics of the drying process, the average moisture
content satH2O(t), its temporal derivative dsatH2O(t)/d t (Eq. 7.2) is plotted against
drying time (Figure 7.5 c) and against satH2O(t) itself (Figure 7.5 d). In theory, if
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Figure 7.5: a) Weight of wood sample as function of drying time (wwood(t)). b) Per-
centage of water in wood sample as function of drying time (satH2O(t)). c) Rate of
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112



7.3. Results

dsatH2O(t)/d t vs. satH2O(t) in Figure 7.5 d) had displayed a simple linear relation-
ship, this would have meant that the drying process follows simple first-order ki-
netics. But at least four different near-linear relationships at distinct drying stages
may be observed: 0-0.5h, 0.5-1.5h, 1.5-10h, and 10-21h. This indicates that the
drying of wood represents a rather complex dynamic process, where especially the
initial hour or two follow very different kinetics.
A more noise robust but also less sensitive way to study the observed dynam-
ics is illustrated by plotting the development of y = wwood (Figure 7.5 e) and
y = satH2O (Figure 7.5 f) on logarithmic scales against drying time. While a sim-
ple first-order kinetics process would have yielded a single straight line, ln(y(t))≈
−k × t + ln(y(0)), clear curvatures are observed. In Figure 7.5 f) three local ap-
proximation line segments are drawn, to illustrate the complex drying dynamics.
Hence, while the weight loss of the wood sample gives important insight into the
overall drying process, it does not expose the different mechanisms involved in the
process. Better methods are necessary in order to monitor and study the different
mechanisms leading to water evaporation in the wood sample.

7.3.2 Hyperspectral imaging input spectra

Figure 7.6 illustrates the modelling of the vis-NIR spectra in terms of the physical
and chemical phenomena expected to dominate the data, for ten typical pixels.
The top left and right subplots represent the absorbance spectra of pixels at t = 0
(i.e. very wet wood sample) and t = 21h (i.e. dry wood sample). The inserted win-
dows magnifies the wavelength region were water absorbance is seen most clearly.
As expected, the absorbance spectra of wet wood (Figure 7.6, top left) show a clear
peak in the 940-1005nm region, which the specific absorption coefficient spectrum
(Figure 7.3 e) suggests is heavily associated with water absorption. After drying
for 21 hours, it decreased, but not disappeared.
Overall, the apparent absorbance spectra seem to be dominated by brown wood
pigments showing their strongest light absorbance in the blue and green wave-
length regions (<550nm). Moreover, the shorter wavelengths in the visible re-
gion appear to have a significantly higher absorbance in a wet wood sample than
in a dry one. There are also considerable absorbance variations in the water ab-
sorbance range. This is not counterintuitive, considering that a wet piece of wood
is perceived as darker than a dry one even to the human eye, and probably repre-
sents variations in physical light scattering properties. Less intuitive, however, is
the fact that the absorbance decreases, i.e. the wood is perceived as lighter, in the
650-900nm range when saturating the sample with water. This difference in ab-
sorbance is likely an effect of different scatter properties between the two states of
the sample. Introducing water into the wood pores reduces lateral light scattering
[137], which in turn allows more light to be reflected back to the camera.
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Figure 7.6: Apparent absorbance spectra from 10 typical pixels of the wood sam-
ple in wet condition (left) at t = 0 h and dry condition (right) at t = 21 h. The
black dotted line represents the chosen reference spectrum m, which is the av-
erage of all pixels in the image taken after 21 hours of drying. Top figures show
spectra before EMSC pre-processing. Middle figures show spectra after EMSC pre-
processing. Bottom figures show unmodelled spectral residuals after the EMSC
modelling. Windows within the figures show a magnification of the 940-1005nm
region strongly associated with water absorption.

Hence, the water-related physical properties of the wood, as seen from its light
scattering properties (as well as its drying kinetics in Figure 7.5d and 7.5f) have
considerable complexity.

114



7.3. Results

7.3.3 Modelling known structures by EMSC

The purpose of the EMSC is to quantify and remove effects from the spectra that
are assumed to be understood. The middle row of curves in Figure 7.6 shows the
spectra of the same subset of pixels from the wood sample in both wet (t = 0h,
left) and dry condition (t = 21h, right) after the EMSC correction:

z i,corr =m + εi,scaled (7.22)

As can be seen in the middle row of Figure 7.6, clearly the EMSC model largely
succeeds in modelling the "known" types of spectral variations, and then removing
them, both by subtractions (baseline variations, water and wood pigment varia-
tions) and by division (optical path length variations). The EMSC-corrected spectra
z i,corr are brought together around the chosen reference spectrum m. By compar-
ing the spectra of the sample in dry and wet states in the 940-1005nm region – a
region heavily associated with water absorption – it is clear that the characteristics
of the spectra are different in the two states even after the spectral correction. In
this region, the dry sample exhibits an S-shaped absorbance while the wet version
of the same sample has a more blunt and flat absorbance spectrum. Because the
sample underwent desorption (drying) in a laboratory with a room temperature
of about 20°C, the sample will certainly still contain chemically bound water after
21 hours of drying. It is possible that the differences in absorbance characteristics
seen in the 940-1005nm range can be accredited to the different absorbance prop-
erties of free vs. chemically bound water in the wood.
For more graphical resolution, the bottom curves of Figure 7.6 shows the estimated
residual spectra εi,scaled (without reference spectrumm) for the same pixels in sam-
ple in the wet (t = 0 h) and dry (t = 21 h) condition. Because most of the residuals
are non-zero, there are undoubtedly unknown spectral phenomena taking place
within the sample which are not completely captured by the chosen EMSC model
spectra shown in Figure 7.3 (left side). The EMSC accounted for more than 99%
of the total variance in the 159 weighted wavelength channels. However, it is clear
that the residuals are not just random measurement noise. Unmodelled spectral
structures are clearly visible, in particular in the water absorbance region and at
the shortest wavelengths. Before moving on to analyse these unknown variations,
the spatiotemporal properties of the EMSC parameter estimates will be discussed.

7.3.4 Temporal development of fitted EMSC parameters

Figure 7.3 (right side) shows the temporal development of the fitted EMSC pa-
rameters associated with the EMSC model vectors (left side), averaged across all
pixels at each of the 150 points in time t = 0, . . . , 21h.
Within the first hour of drying, all modelled properties of the wood sample appear
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to change rapidly. It is important to note that the hyperspectral monitoring process
of the wood sample started immediately after the sample had been taken from a
state of full submersion in water. As a consequence of this, there was an amount of
liquid water on top of the wood during the initial period of drying, effectively form-
ing a film of water covering the wood and partially cloaking the spectral properties
of the wood itself. This probably caused the particularly complex drying behavior
at the beginning of the drying process, as also seen in Figure 7.5 d).
Figure 7.6 (bottom left) showed a lot of unmodelled water absorption at t = 0h.
It is obvious that the chosen EMSC model spectra alone do not allow an adequate
description for the spectra of wood with the highest moisture content. Since the
absorbance spectra of bound water probably overlap with the EMSC model of free
water (Figure 7.3c), so-called alias errors [84] are expected in the EMSC estimates.
For this reason, some of the initial changes seen in the modelled properties of the
sample could be misleading during the initial stages of drying, as they have large
uncertainties associated with them.
After one to two hours, the average of the multiplicative optical path length score
bi (Figure 7.3f) seems to approach the level of reference. The average additive
baseline scores ai and di (Figure 7.3g and h) likewise level off. Hence, at first
glance the different physical light scattering parameters show similar behavior.
Concerning the chemical absorbance effects, the average scores for ∆ci,WoodPigment
should ideally have been constant over time, to the extent the structure of the wood
sample itself is constant. As can be seen in subplot (e) of Figure 7.3, this is not the
case. While ∆ci,WoodPigment does not vary as much as the other EMSC model pa-
rameters, some variation is evident. This could indicate that the in situ estimated
spectrum describing the pigment differences within the wood is too crude to ade-
quately model the inhomogeneity of the wood. The origin of this is not clear, but
it could be related to the small spatial contraction expected when the wood dries.
Because less energy is required to evaporate free water within a wood sample
compared to bound water [137], the drying process of a water saturated piece
of wood happens in at least two phases. First, a rapid evaporation of free water
occurs, which is then followed by a slower evaporation of bound water. As such,
the temporal development of the average water saturation suggested by the EMSC
model in Figure 7.3j appears realistic; the curve quickly drops during the first hour,
suggesting the evaporation of free water and surface water, which is then followed
by a significantly slower drying process for the remaining 20 hours of drying.
The EMSC-based estimate of ∆ci,Water, is based on a projection on the spectrum of
free water, sWater, so it is intended to be proportional to the concentration of free
water. This behavior of the estimated free water is what might be expected if the
free water were primarily situated on or close to the wood surface. It is distinctly
different from that of the weight-based overall moisture content (Figure 7.5b),
which represents the loss of both free and bound water.
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Figure 7.7: Modelling the known: Spatial structure of EMSC parameters. 2D visu-
alization of fitted EMSC parameters in wet wood sample, i.e. t = 0 h, (upper row)
and dry wood sample, i.e. t = 21 h, (lower row) for all parameters used in the
EMSC model.

7.3.5 Spatial development of fitted EMSC parameters

Figure 7.7 shows the corresponding spatial distribution of the EMSC parameters
for two of the 150 time points: t = 0h (wet; top) and t = 21h (dry, corresponding
to the reference time point for spectrum m; bottom). In the figure, lighter colors
mean high while darker mean low values. All the EMSC parameters show clear
spatial patterns of early- vs latewood, in addition to the differences between wet
and dry wood.
In summary, the effective optical path length is lower in dry wood than in wet
wood. This is probably due to an increase in light scattering as air replaces water
in the wood pores and therefore increases the variability in the refractive index
inside the wood material. On the other hand, the absorbance baseline offset in-
creases upon drying. This may also be due to the increasing light scattering, e.g. by
increasing the angular distribution of the reflected light and thus reducing the frac-
tion of light reaching the narrow angle of the camera’s sensor. The consequence
of the path length reduction is apparently stronger than the consequence of the
increased spectral absorbance level, since the overall effect is to render dry wood
visually lighter than wet wood. A more detailed spatial comparison of early- and
latewood pixels confirms the opposite trend of these two effects of light scattering.
The slightly decreasing baseline slope indicates a slightly increased wavelength
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dependency of this absorbance baseline. The pigment concentration estimate –
∆cWoodPigment – increases slightly; this is probably due to insufficient model de-
tail. Finally, the estimate of free water concentration, ∆cWater, falls distinctly upon
drying, as expected. The EMSC modelling accounted for 98.04% of the weighted
variance.

7.3.6 Modelling unknown structures with OTFP

Each of the residual spectra remaining after the theory-driven EMSC modelling
of known phenomena, illustrated for 10 of the pixels at the bottom of Figure 7.6,
were divided by the estimates of their relative effective optical path length bi.
These more than 350 million residual spectra, accounting for 1.06% of the total
variance of the input spectra, were then submitted to the OTFP software system,
one small batch at a time.
Since the OTFP is a weighted least squares procedure that describes the stream
of incoming spectra with as few principal components as possible, the first step in
the OTFP is to multiply each residual spectrum by the same relevance-vs-reliability
weights (Figure 7.4) that were used in the EMSCmodelling. Then the bilinear PCA-
like model was gradually developed, to describe as much of the variation in the
incoming stream of residual data with as few principal components as possible.
The sequence of the five first OTFP components representing unknown, but sys-
tematic spectral structures, decreased this variance further, from 1.06% to 0.52%,
0.15%, 0.05%, 0.02% and 0.01%, respectively.

7.3.7 Spectral and temporal development of estimated OTFP
parameters

Figure 7.8 shows the results for the first five PCs, for the deweighted spectral load-
ings for the 159 wavelength channels (left), and the temporal scores, averaged
over all the pixels in each of the 150 points in time t = 0, . . . , 21 h (right). The
first four PCs display clear, smooth, loadings and scores. Even though the fifth
PC shows rather noisy loadings, its score vector is smooth. Comparing their rel-
ative sum-of-squares contributions based on weighted loadings, PCs #1 and #2
accounted for 95% and 4.8%, while PCs #3, #4 and #5 together accounted for
0.2% only. Hence, the first two PCs dominate the weighted spectral residuals.
All five OTFP PCs show very different behavior for the first hour of drying, com-
pared to the rest of the 21 hour drying period. Moreover, PCs #1, #2 and #3
show clear signatures in the water absorbance region above 900nm. PCs #2, #3,
#4 likewise show clear spectral features at the lowest wavelengths. PCs #1 and
#2 also show some structure at intermediate wavelengths.
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Figure 7.8: Modelling the unknown: Spectral and temporal structure of the pa-
rameters from adaptive bilinear modelling in the On-The-Fly-Processing (OTFP)
implementation. Left column shows the OTFP model spectra estimated for mod-
elling of apparent absorbance. De-weighted loadings for component 1-5. Right
column shows the temporal development of the ABLM parameters (estimated at
each point in time by averaging over all image pixels).
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Figure 7.9: Modelling the unknown: Spatial structure of OTFP parameters. 2D
visualization of reconstructed OTFP scores of wet the wood sample, i.e. t = 0 h,
(upper row) and dry wood sample, i.e. t = 21 h, (lower row) for the five first PCs.

7.3.8 Spatial structure of estimated OTFP parameters

Figure 7.9 shows the corresponding spatial distribution of the OTFP parameters for
two of the 150 time points: t = 0 h (wet; top) and t = 21 h (dry; bottom). Again,
in the figure, lighter colors mean high while darker mean low values. In particular,
the first, second and fifth components show spatial differences between wet and
dry wood.
For instance, PCs #1 and #2 reveal a local spatial structure at the bottom of the
wood sample that is not visible in the EMSC parameters. However, in general, the
temporal and spatial structures of the OTFP components were not as clear as for
the EMSC parameters in Figure 7.3 and 7.7.
A subsequent axis rotation from the basic, orthogonal PCA score and loading rep-
resentation of the OTFP to a simpler bilinear structure (by e.g. varimax or inde-
pendent component analysis ICA) may be expected to give an easier wood-related
interpretation. However, that is beyond the scope of the present work, which is pri-
marily intended to demonstrate how massive streams of hyperspectral video data
can be efficiently modelled in terms of known and unknown features.
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Figure 7.10: How the variation at the different wavelengths was explained by the
sequence of modelling steps: In the input data, after EMSC and after OTFP PCs
#1, #2, #3, #4 and #5. Left: Residual standard deviations, statistically weighted.
Right: Residual standard deviations, de-weighted.

7.3.9 Overall model assessment

Statistical summary

Figure 7.10 (left) shows how the standard deviation of each of the 159 wavelength
channels is reduced by the succession of modelling stages, for the weighted wave-
length channels used in the weighted least squares modelling in EMSC and OTFP.
It is clear that the EMSC modelling of known spectral phenomena (dashed green
curve) has removed a very large part of the variation. However, substantial resid-
uals remain in the visible wavelength range (610-720nm) and in two NIR ranges
(750-840nm and 870-1010nm). Interestingly, the water absorption region 920-
970nm shows clear, unmodelled spectral features.
Most of the residuals after the EMSC, including the remaining water absorption,
are accounted for by the first OTFP component. The effects of OTFP components
2, 3, 4, and 5 are hardly visible in the plot. Figure 7.10 (right) show the same
residual standard deviations after having removed the statistical weights (Figure
7.4).
For statistically optimal EMSC and OTFP modelling from a weighted least squares
perspective, the inverse of the residual standard deviation after five OTFP com-
ponents might have been used as wavelength weights. However, we have chosen
to retain the original weights as shown in Figure 7.4, in order to emphasize the
chemical relevance in the longer wavelengths (water absorption) and the shortest
wavelengths (wood pigment effects).
The following statistics summarize the weighted residual standard deviations (left,
Figure 7.10) over the 159 weighted wavelengths: The EMSC modelling of known
spectral phenomena accounted for as much as 98.94% of the total initial variance,
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leaving 1.06% unexplained. The sequence of five OTFP components represent-
ing unknown, but systematic spectral structures, decreased this further to 0.52%,
0.15%, 0.05%, 0.02% and 0.01% of the total initial variance, respectively. Hence,
in total, about 99.99% of the input variance was explained by the modelling of
both known and unknown spectral phenomena.
It should be noted that due to partial overlap between the known and unknown
spectral variation phenomena in the drying wood, alias errors are to be expected
in the EMSC scores, which may affect the subsequent OTFP modelling due to the
multiplicative (rather than purely additive) residual definition. Moreover, the es-
timated OTFP loading spectra have the unnatural property of being orthogonal to
the chosen EMSC spectra [84]. In Chapter 4 we presented a method for resolv-
ing alias problems in purely additive systems. This approach might also have been
useful here. However, that would require special attention to the non-additive es-
timation and correction for the optical path length, so that is not pursued here.

Temporal kinetics modelling

The kinetic analysis of the overall drying process (Figure 7.5) showed that the
weight-based estimates of the moisture content dynamics were rather complex.
The phase space of the moisture percentage displayed at least four types of kinet-
ics. The EMSC and OTFP models have shown that several different variation phe-
nomena affect the spectroscopic properties of the wood sample during the drying
process.
The final modelling step is an attempt at assessing the complexity of the processes
happening during the drying process of the wood sample. Each of the individual
temporal score averages from the EMSC model (Figure 7.3, right) and the OTFP
model (Figure 7.8, right) were modified and fitted to the decay model correspond-
ing to a simple first-order reaction. In each case, the fit included a rescaling, a sign
change if needed, and an offset correction, followed by a logarithmic transforma-
tion.
Figure 7.11 shows that for the first hour of drying, the simple first-order kinetic
model was not suitable. However, in the period 1-20h drying, the log transforms
for four of the five EMSC parameters as well as the first (and dominant) OTFP pa-
rameter fitted well to the linear model expected for first-order process dynamics,
with different rate constants.

Overall model summary

A time series of hyperspectral images, comprising over 350 million spectra, was
logarithmically linearized, weighted statistically and then decomposed by mathe-
matical subspace modelling into "known" and "unknown" components.
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The "known" components represented three physical light scattering effects and
two chemical absorbance effects expected to affect themeasured spectra. Together,
these five "known" components accounted for 98.94% of the variance of all statis-
tically weighted spectra, leaving 1.06% variance unexplained. Then a sequence of
"unknown" components, i.e., unexpected, but systematic variation patterns, were
discovered and extracted from the spectral residuals. The five first components re-
duced the remaining unexplained variance to 0.52%, 0.15%, 0.05%, 0.02% and
0.01% respectively. Hence, by compressing the 159wavelength channels into these
10modelled components, more than 99.98% of the variance of all absorbance data
was thereby accounted for.
Linear and bilinear modelling was used in the component estimation, and compen-
sated for by subtraction, in analogy to Beer’s law. Moreover, one of the estimated
physical components, the relative effective optical path length, was corrected for
by division, also in analogy to Lambert’s law.
The dynamics of the wood drying process was further assessed by tentatively fit-
ting each of the component averages, after a suitable linear transformation, to the
loglinear kinetic model. Some of the known and unknown components fit quite
well to this model of a first-order reaction, but with different reaction rates, while
other components displayed more complex time developments.
Compared to the initial assessment of the overall weight loss during the wood dry-
ing process, the hyperspectral video appeared to give much more detailed, quanti-
tative account of the complexwater diffusion and evaporation processes alongwith
their kinetics. It also revealed how their spatial distribution in the wood changed
from wet to dry wood.

7.4 Conclusions

By monitoring a drying wood sample, we experimentally demonstrated a generic
way in which a stream of hyperspectral time series data can be modelled in terms
of a priori known and unknown constituent spectra to enable large dimensionality
reduction of the data, essentially without any loss of information. An additional
benefit of the described methodology, apart from enabling substantial compres-
sion of the data, is that it autonomously highlights unidentified systematic spec-
tral variations within the sample being studied, which aids in further exploration
and understanding of the underlying chemical and physical processes causing the
variations. The kinetic analysis of the weight loss curve of the drying wood sample
indicated that the overall drying process was rather complex. This complexity was
addressed by resolving the hyperspectral time series data in terms of a multivari-
ate, mixed multiplicative-additive EMSC modelling, involving three known physi-
cal variation phenomena related to varying light scattering and two known chem-
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ical variation phenomena related to changing wood composition. After removal of
these known effects, the hyperspectral imaging data had clear unmodelled spec-
tral variations, particularly in images taken during the first hour of drying.
Most of these residual variations were picked up by the subsequent data-driven
OTFP modelling, which revealed two major and a couple of minor unexpected
variation patterns. Four of the known variation phenomena and one of the unex-
pected variation patterns seemed to follow relatively simple first-order kinetics.
Most notably, the effective optical path length did clearly not follow first-order ki-
netics.
The RGB images of the wood sample in Figure 7.1b and 7.1c showed the wood to
be darker and more yellow-brown when in a wet state compared to that when dry.
This corresponds well to how the drying seemed to affect the light scattering, caus-
ing several types of variations, the most dominant one being a strong reduction in
the effective optical path length.
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Chapter 8

To infinity and beyond
Hyperspectral remote sensing and the SmallSat Lab

8.1 Recapitulation
As we come to the conclusion of this thesis, it is adequate to discuss how the results
presented so far contribute to the field of hyperspectral remote sensing.

Instrument design, integration, and testing

In chapter 2, we present our work on the development of a low cost and low mass
imaging spectrometer which represents a step towards the democratization of this
field of research. Traditionally, hyperspectral instruments are expensive, barring
some research groups from using them.
The instrument we describe is affordable enough to be used in high-school level
STEM education. Nevertheless, the same design is also useful for professional op-
erations using imaging spectrometers.
Chapter 3 builds on top of the previous chapter, describing a complete payload for
hyperspectral remote sensing. This includes the instrument itself, GNSS (Global
Navigation Satellite System) receiver, INS (inertial navigation system), and a data
timing and synchronization system. Synchronized ancillary position and attitude
data is required for producing geographically accurate observations and data prod-
ucts. The complete payload was tested in several field campaigns onboard small
rotary- and fixed-wing unmanned systems. These results can be transferred to
other moving platforms, such as satellites.
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Data enhancement methods

Starting in chapter 4, we move away from hardware design, integration, and test-
ing, towards algorithm development. The first problem we focused on was the
removal of shadows (or other undesired variations) from air- and spaceborne hy-
perspectral images. An important application of (hyperspectral) remote sensing is
to monitor changes over time – days, months, or even years. To be able to monitor
changes in the target area, we need to be able to separate between changes in
illumination – such as sunlight at different times of day, shadows from terrain, or
shadows from clouds – from actual changes of interest – i.e., plant health, ocean
colour, mineral composition of the surface.
Results of previous work [84] show that if we approximate a hyperspectral obser-
vation by a linear model having contributions – spectra × concentrations – from
illumination and ground, and we have an estimate of the spectra of illumination in
the scene, we can estimate with great accuracy the spatial distribution – concentra-
tions – of ground components. Spectra of illumination (sunlight) can be estimated
using bright pixels in an image and using the difference between shaded and lit
areas in close vicinity, where we assume that the ground constitution is the same.
However, this leaves us with some ambiguity regarding the spectra of the ground
constituents and spatial distribution of illumination. Our method proposes a way
to solve that ambiguity and fully resolve both the known and unknown contri-
butions by imposing assumptions derived from domain knowledge on the spatial
variation of illumination. In adition, these results can be extended to other prob-
lems, where a component in a mixture is well known, but unknown components
need to be precisely quantified. E.g., when we need to extract the concentrations
and signatures of algae or plankton from a spaceborne hyperspectral image of an
area of the ocean, but need to decouple that signal from the well-known signature
of the water itself.
In chapter 5 we looked at another method for data enhancement, tackling a differ-
ent issue: the usual low (spatial) resolution of hyperspectral imaging when com-
pared to RGB (colour) imaging. We proposed a method for fusing co-located hy-
perspectral and RGB datasets, taking advantage of both the high spatial resolution
of RGB and the high spectral resolution of hyperspectral data. Since it is common
for remote sensing platforms to have both types of cameras, the relevance of such
type of method is clear.
In an oversimplified way, we are able to do this by reducing the spectral dimension-
ality of HS data and the spatial resolution of RGB data so that we end up with two
similarly sized datasets, in all dimensions. Since the observed target is the same, it
is fair to assume that the spatial information sensed by both instruments is almost
the same. This assumption makes it so that through a regression method, we can
find a common representation for both datasets, which in turn means we can apply
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the "inverse" of both dimensionality reductions to this common representation, to
get a new high -spatial and -spectral resolution dataset.
Furthermore, the discussed method is presented as a pipeline, a way to connect
families of submethods of dimensionality reduction and regression. This means
the results are generalizable beyond the shown examples, not only in terms of the
choice of submethods, but also in the types of data to fuse.

Interpretable data compression

Hyperspectral data is inherently large: for each spatial pixel, we can have several
hundreds of bands – wavelengths. However, as reasearch of many dimensionality
reductionmethods has shown before, the rank of hyperspectral datasets – the num-
ber of actual "information" dimensions – is much lower than the number of bands.
It is usual that the Principal Component Analysis (PCA) – a reduction method – of
a hyperspectral remote sensing dataset results in fewer than 10 components that
explain almost all (>99%) of the variance in data. Supposing the original data
had 200 bands, we would get a compression rate of about 20 to 1 – impressive!
Even though this is a lossy compression, the lost part is mostly noise, so we are
able to both compress and clean data. Another advantage of PCA-like methods is
that in its compressed form, the dataset is interpretable, usually even more easily
than in its original form.
Still, a particularity of many such methods is that they require all data at once
to generate a model. This can impose heavy requirements on computational and
memory capabilities, so heavy that it quickly becomes unfeasible to run these al-
gorithms on personal computers.
In chapter 6 we present a novel method, the On-The-Fly Processing (OTFP) tool,
a PCA-like modelling tool for streaming data. The underlying OTFP methodol-
ogy is relatively fast and simple: it is linear/bilinear and does not require a lot of
raw data or large cross-correlation matrices to be kept in memory. Additionally, it
allows the high-dimensional data stream to be graphically interpreted and quan-
titatively used in its compressed state. Unlike adaptive moving window methods,
it allows all past and recent time points to be reconstructed and displayed simul-
taneously.
The OTFP has great potential for remote sensing applications, where both data
processing and transmission are limited. By smartly reducing the amount of data
to transmit, we ensure that the most relevant data is sent and that bandwidth is
not wasted on noise or redundant data.
Towards the end, in chapter 7, we extend the results of OTFP to high-dimensional
spatiotemporal data – hyperspectral video.
First, a preprocessing step, where we linearize the spectra to facilitate further pro-
cessing with linear methods.
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Second, we extract the effects of the expected phenomena, giving us an estimation
of their distribution over space – i.e., in each frame – and time – i.e., the evolution
from frame to frame.
Then, once we remove the a priori known variation, we use the OTFP tool to model
the systematic effects left in the residuals. This model will have a reduced number
of components, each with a spectral signature – loadings – and a temporal evolu-
tion from frame to frame, for every spatial pixel – scores.
Finally, the changes over time of the scores of known and unknown effects were
modelled to find what type of dynamics they represent.
These results were shown for a sample of wood during the process of drying, start-
ing at a soaked state. However, the extrapolation to remote sensing data, in par-
ticular to satellite data of a target area collected over long periods of time is very
straightforward.

8.2 Future scope – The SmallSat Lab

Towards the end of my period at NTNU, in 2017-2018, I helped start the NTNU
SmallSat Lab1. In the following sections, I will discuss our ambitions, based on our
understanding of matters at the time. Since then, my involvement with the Small-
Sat Lab decreased, so, most likely, some of the points I mention are now outdated.
In the context of my research, the Hyperspectral SmallSat was a capstone project
of sorts, mashing together the concepts I presented over the previous chapters.
Our goal was to use a hyperspectral instrument – see Chapter 2 – as a CubeSat pay-
load, to observe and measure ocean phenomena like algal blooms, phytoplankton,
or even river plumes, off the coast of Norway.
To enhance data quality, particularly the ground resolution, we required suffi-
cient overlapping exposures. We proposed to solve this problem by having the
satellite perform an optimized slewing manoeuvre while pointing at the target
of interest – this would require accurate attitude control. We also discussed us-
ing an additional RGB camera for resolution improvement, as suggested by the
work in Chapter 5. The imaging phase would take about one minute and precede
the processing phase. The onboard computer would perform geometric, spectral,
and spatio-temporal corrections of the raw data. Furthermore, using advanced
onboard algorithms to extract relevant information – Chapter 6 – the downlink
requirements would be lowered many-fold when compared to sending raw data.
Mission design and preliminary sensitivity analysis of the HSI payload indicated
the concept as feasible for dedicated remote sensing off the coast of Norway, with
the main limiting factors being cloud cover and a short peak season during sum-
mer.

1https://www.ntnu.edu/ie/smallsat
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SmallSats could directly augment a coordinated robotic platform containing un-
manned and autonomous underwater, surface and aerial systems. Succeeding on
the first flight, we at the SmallSat Lab hoped to develop a pipeline of small satel-
lites. Future missions would continue to focus on oceanography and remote sens-
ing, providing higher spatial, temporal, and spectral resolution of a target area
than current ocean colour satellites.

8.3 A cubesat for ocean colour remote sensing

From sinks for greenhouse gases to a home for marine life, or even a source of
valuable resources, the world’s oceans role is undeniable. As such, many scien-
tists, technologists, policy-makers, and the general public understand the oceans’
importance for the well-being of those who inhabit the planet, both present and
future. The influence of the changing climate and its impact on 70% of our planet
covered by water, needs to be studied at resolutions ranging from fine-scale (mi-
crobiology) to large-scale (atmospheric phenomena such as hurricanes, the extent
of the global ice melt, harmful algal blooms, and fronts).
Traditional methods of taking measurements in the ocean are neither sustainable
nor flexible. On the one hand, ship-based measurements require extensive engi-
neering and science infrastructure and support. They also subject people to harsh
sea-faring conditions. Additionally, those methods typically result in point mea-
surements for phenomena spread over large spatial extents. On the other hand,
multi-national remote sensing capabilities require consensus-driven management,
years of development, and substantial ground support to manage the inherent
risks involved in building, flying and operating a complex spacecraft, all of which
amount to a massive investment. Both space and ocean offer hostile environments
for exploration, yet provide critical clues to our origins and continuing well-being
[138]. An alternative approach is a network of autonomous underwater vehi-
cles (AUVs), autonomous surface vehicles (ASVs), and unmanned aerial vehicles
(UAVs). This network is capable of coordinated missions, executed in concert with
conventional vehicles, buoys, and fixed sensors, as envisioned in the Autonomous
Ocean Sampling Network (AOSN) [139, 140]. Such systems enable not only a sig-
nificant reduction in costs, and increased safety, but evenmore importantly provide
substantially more and continuous information about the observed targets and fea-
tures of scientific interest. They do so by taking advantage of the complementary
and coordinated capabilities of such autonomous assets related to position, range,
endurance, mobility, sensors, and across large spatiotemporal scales for observing
oceanographic phenomena.
A variety of phenomena of oceanographic interest can be detected from space.
Most sensors are either optical or radar-based. Our work is currently focused on the
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(a) Bloom observed off the coast of
Norway on June 10, 2006.

(b) Bloom observed in the Baltic Sea
on July 11, 2010.

Figure 8.1: Phytoplankton blooms observed from space, by Envisat’s MERIS instru-
ment. Image courtesy: ESA

former, typically in the context of looking at processes with a large spatiotemporal
extent, like algal blooms. Algal blooms are a relevant case for these technologies,
as they have clear surface signatures (Figure 8.1), and some blooms generate neu-
rotoxins with a significant impact on both marine and human populations [141],
making their detection important.
A primary light-absorbing substance in the oceans is chlorophyll, which is involved
in phytoplankton photosynthesis [142]. Phytoplankton absorbs the red and blue
components of the light spectrum and reflects primarily green light. Other sub-
stances which absorb light and are composed of organic matter, are often referred
to as colour dissolved organic matter (CDOM). A push-broom hyperspectral im-
ager (HSI) operating in the visible and near-infrared (VNIR) spectrum can sweep
over the ocean surface to observe both organisms and matter in the upper water
column. From this data, the goal is to detect and characterize the spatial extent of
algal blooms [143], measure primary productivity, and other substances resulting
from aquatic activity and pollution, to support environmental monitoring, climate
research and marine resource management. Using the proposed HSI payload on
a small satellite platform (SmallSat), in concert with multiple aerial, surface, and
underwater vehicles, we propose an autonomous multiagent system for marine
observations. Figure 8.2 shows an operational view of such a system.
There are several motivations for the need of such a combined and complementary
capability:
• Traditional multipurpose Earth observation (EO) satellites operated by a-
gencies such as NASA and ESA provide excellent data covering the whole
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Figure 8.2: Main components in a multiagent marine observation system: a Cube-
Sat equiped with an HSI payload cO; an unmanned aerial vehicle (UAV) aO; an
autonomous surface vessel (ASV) sO; an autonomous underwater vehicle (AUV)
uO; and a drifting buoy bO. Lines represent sensing, while lines represent
communications.

Earth. They may have medium to high spatial resolution, but usually have
low temporal resolution – revisit times can be days to weeks – and low to
medium spectral resolution – generally multispectral rather than hyperspec-
tral [144]. We need to augment upper water column process studies where
observing large tracts of the ocean and tracking changes over space and time
requires a finer-grained revisit time – typically, this would be in the order of
hours to a day.

• Dedicated nano- and micro-satellites [145] can be operated to provide high
spatial resolution by pointing an HSI with a small field of view (FOV) to nar-
rower (but still relatively large) target areas of interest, with shorter revisit
times and potentially high spectral resolution. They may be using onboard
remote sensor data analysis to detect features of special interest while obey-
ing communication bandwidth constraints.

• Simultaneous observations from one or more UAVs with an HSI payload –
aO – and ground truth provided by in-situ platforms near and on the ocean
surface – sO, uO, bO – can then be used to accurately measure and validate
the features of interest at a much finer scale in the upper water column, and
without distortion from the atmosphere or being limited by cloud cover, see
Figure 8.2.
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• Finally, we hope to leverage the excitement of space flight, as a means to
engage young researchers towards ocean monitoring, marine robotics, and
the systematic design and build of complex systems with the need to leverage
advances in Artificial Intelligence and robotics.

The components of such an autonomous multiagent systemmust be tightly knit to-
gether by communication technology in combination with intelligent information
processing and coordinated control as well as mission planning where tasks are
dynamically allocated amongst the available assets and systems. Coordination in
such a context would involve observing the same patch of the ocean co-temporally
across diverse assets with a range of sensing techniques to piece together a com-
prehensive and cogent view.
While the use of an HSI for earth observation is not new (see [145, 146]), our fo-
cus exclusively as a tool for both oceanographic measurements and synoptic in-situ
field measurements is a novel approach with a significant potential for reducing
cost and improving data quality in oceanography. Furthermore, event-response ca-
pabilities can be finely tailored to specific events so that impact on the public is
limited, e.g., Harmful Algal Blooms (HABs).
The main focus of the SmallSat Lab work is the design of a SmallSat with a push-
broom HSI payload, its mission design, and the concept of operation as part of an
autonomous multiagent observation system. Both the HSI and SmallSat are un-
der development and several versions of the SmallSat and multiagent system are
expected to be operational during the next years.

8.3.1 Conceptual Overview

Figure 8.3 summarizes the capabilities of different agents in an autonomous ma-
rine observation system dedicated to ocean colour observations such as the one
illustrated in Figure 8.2.
The right end of the spatial scale axis defines the spatial coverage of the sensor
system, while the left end defines the smallest spatial scale that can be captured
by an ocean colour sensor on the platform. The upper end of the temporal capa-
bility defines the endurance of the platform, while the lower end illustrates the
revisit time or the fastest temporal scale that can be observed. It should be noted
that the endurance of UAVs, ASVs, and AUVs may typically be easily extended by
fast relaunch after re-fueling. Furthermore, other important dimensions exist be-
yond the temporal and spatial scale that also characterize the differences between
platforms. One important dimension is related to the maximum speed of UAVs,
ASVs, and AUVs, implying that high temporal and spatial resolutions can only be
achieved within their range.
This means that these types of vehicles will need adaptive sampling and to be
guided towards "interesting" parts of the target area where they can be expected
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Figure 8.3: Mapping of capabilities of various sensor platforms used for ocean
colour.

to make informative observations [139]. Other important dimensions are related
to weather sensitivity, payload weight limitations, and operational complexity. The
figure illustrates the complementary capabilities of the different sensor platforms
and shows the motivation for a coordinated observation system that exploits the
advantages of each platform type.
Based on Figure 8.3, the HSI SmallSat capability is differentiated from traditional
optical EO satellites (such as Sentinel 3) by having a better temporal, spectral and
spatial resolution, but within a much smaller area and shorter lifetime. A con-
stellation with multiple HSI SmallSat will extend the capability in all dimensions
compared to a single SmallSat. We also observe that an HSI SmallSat is a useful
and complementary platform to AUVs, ASVs, UAVs, and buoys/drifters in particu-
lar given the limited mobility and speed of the mentioned platforms. In particular,
the capabilities covered by SmallSat, UAV and ASV are very well aligned with the
requirements for observing phytoplankton blooms [147].
To achieve high spectral, spatial, and temporal resolution of an HSI in a SmallSat
system with low cost and low weight, our design assumes that the observation tar-
get area is limited to a small number of patches of the Earth (possibly only one),
as illustrated in Figure 8.3.
We emphasize that our system objective is not to map the entire Earth, but a tiny
fraction corresponding to our specific target area(s) of interest. This enables the
use of an imaging system with a relatively narrow FoV. With accurate attitude con-
trol and a slewing motion, the push-broom HSI will sweep over a small area. See
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Figure 8.4: Concept of operations for SmallSat:
1OWake-up and Uplink: The SmallSat will spend most of its orbit in standby, har-
vesting solar energy. When nearing the ground station gO, it wakes up, to receive
an updated mission plan – target area, cloud coverage information, observations
by other unmanned assets uO to be used for calibration, etc.
2O Preparation: The SmallSat activates attitude control, starting to point the HSI
towards the target area.
3O Start observation: The SmallSat enables the HSI and starts recording data to
onboard storage.
4O Target tracking: Accurate pointing and slewing motion control during acquisi-
tion to maximize data quality.
5O End observation and Data processing: After the target area is scanned, the
SmallSat disables the HSI. Then, it starts processing the datacube, extracting rel-
evant information to be sent to the ground.
6O Downlink and Sleep: Depending on the location of the next ground antenna aO
that can communicate with the SmallSat, it might directly downlink the results of
its tasks, or go to standby mode and wake up for communication at a later time.

Figure 8.4 for an overview of the different phases of the SmallSat orbit.

8.3.2 Scientific Objectives

The main driver for this mission is oceanography, specifically dedicated to narrow
field-of-view monitoring and mapping of ocean colour phenomena. Key science
objectives are to:
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Figure 8.5: Simplified data processing and control architecture.

• detect algal blooms and phytoplankton in both Case 1 and Case 2 waters2
and determine chl-a, -b, -c3, -c4 concentrations

• detect other discolourations of oceans such as oil spills and river plumes
• perform in-situ validation of remote sensing data with UAVs, ASVs, AUVs,
manual sampling

8.3.3 HSI Data Processing and Control Architecture

Figure 8.5 illustrates the information flow, integrated processing and control ar-
chitecture. The layers from top to bottom correspond to the SmallSat HSI payload
with onboard processing, SmallSat bus onboard task planning and control, ground
control/operations with data and model management, and payloads and control
of other assets such as UAV/AUV/USV and traditional satellite data products.
A brief description of the main functionality of the blocks in Figure 8.5 is given
below:
• The SmallSat HSI payload and its On-the-Fly-Processing (OTFP) follow a
processing chain that is similar to what is found in other small satellite sys-
tems, e.g. [148]:

– The HSI+RGB data acquisition block captures image frames, both hy-
perspectral and RGB. The hyperspectral data is composed of several
thousands of frames that build up a datacube – this is the push-broom
concept explained in previous chapters. The RGB data is orders of mag-
nitude smaller in terms of the number of frames, but should have better

2Case 1: Open clear water; Case 2: Coastal turbid waters

137



8. To infinity and beyond: Hyperspectral remote sensing and the SmallSat Lab

spatial resolution, so that it can be used for data enhancement as pre-
sented in Chapter 5. Prediction and observations of illumination (sun
position and atmospheric conditions such as clouds) can be used to op-
timize the attitude control to get the best possible data results within
the target area.

– Radiometric preprocessing transforms each pixel value into absolute
reflectance values. This involves applying calibration parameters ob-
tained from models and measurements of the atmosphere, solar radia-
tion and/or geo-referenced reference measurements near the ground.

– Spectral processing is based onmultivariate datamodelling that projects
the data onto expected and unexpected/observed spectral signatures
corresponding to the features of interest, see Chapter 6. This acts as a
smart data compression algorithm before data downlink.

• The SmallSat bus system has functions for attitude control (reaction wheels
and magnetic torquing), navigation (GPS, INS, star-tracker), communication
datalink that can be partly used by the data payload, resource/energy/power
management and resilience/redundancy/fault tolerance.

• The ground control segment includes overall mission planning and execu-
tion, data management, oceanographic model with data assimilation and
simulation capabilities, operator interfaces, etc. The overall mission man-
agement will optimize the use of available resources and assets by providing
information and tasks to each one of them. Data received from the SmallSat
and other assets will be used to update the oceanographic data model. To im-
prove this model, the incoming data will be subjected to several algorithms
such as detection of features, removal of the effects of specular reflections
in the water, shadows due to clouds, and other undesired optical features,
resolution enhancement, see Chapters 4 and 5.

• Other assets include buoys, manned and unmanned aerial/surface/under-
water vehicles with payload sensors, traditional satellite data products, and
meta-ocean services.

8.4 Final considerations

By applying techniques like OTFP (see Chapter 6), we are able to reduce the size
of data to be downloaded from remote sensing systems many-fold. Even though
this is a lossy compression, ideally, the loss of relevant data is minimal and we are
able to "shave off" noise and unwanted information.
Furthermore, by using data enhancement algorithms like de-shadowing (see Chap-
ter 4) and MVIF (see Chapter 5) we improve the quality of the models, and sub-

138



8.4. Final considerations

sequently the knowledge gained with low-cost remote sensing platforms.
A big challenge with some of these algorithms is optimizing them for embed-
ded computational systems, such as the ones that would preferably be used in
a Cubesat or a drone. Embedded systems have limited resources when compared
to personal computers where us researchers develop and test these algorithms.
Mixed-architecture systems with ARM and FPGA cores present new opportunities
for enhancing performance with strict power restrictions.

There is no doubt that we need tools to handle this data tsunami, be it from re-
mote sensing, the Internet-of-Things (IoT), or one of themany sources of enormous
amounts of data. My time at NTNU allowed me to explore just a small subset of
these tools.
However, even more importantly than the opportunity to learn specific algorithms,
it exposed me to many different data problems: from airborne hyperspectral data
to thermal camera images of a ship’s engine room, vibration data from a failing
bearing, or even zebra-fish neural activity. Most of these problems can, in the end,
be solved by using just one of the many different algorithms, so the key thing is
knowing how to transform the raw data in such a way that it will fit nicely into the
input box of your algorithm of choice. I believe that figuring out how to do this is
one of the last things machines will learn by themselves.
As someone once said, “Sometimes science is more art than science. A lot of people
don’t get that.”. "Getting it" is one of the most useful things I learned.
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