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Summary 
To be competitive in the era of industry 4.0, manufacturing firms must leverage emerging 

digitalization technologies to improve their operational efficiencies and customer value 

offerings. Digitalization technologies such as internet of things, Big-data analytics and 

machine learning present new opportunities in production management by enabling real-time 

control of operations and more frequent replanning of production to reflect the live situation 

within factories and in supply chains. These technologies can also enable intelligent data-

driven decision making, and the capturing of operator or manager decision making patterns 

and experience. With these new capabilities, manufacturing firms can improve their 

competitiveness sustainably (Iansiti and Lakhani, 2014, Strandhagen et al., 2017). 

Manufacturing managers desire clear guidelines and theory to support their digitalization 

initiatives. A key problem being witnessed is that the use-cases, benefits, and business value 

of many of these technologies are not always clear for many manufacturing firms. For 

example, machine learning could work in predicting production line breakdowns and assist 

in scheduling on-time product deliveries and maintenance activities in a process production 

company. But the same technology meanwhile offers more value in making, say, an intelligent 

product for an engine or tractor producer. highlighting 

the need for methods, tools, and conceptual frameworks that takes the contingencies of a 

value-chain into account (Oluyisola et al., 2020).  

Although it is possible to take a piecemeal approach to the digitalization of production 

systems, not using a systemic approach can lead to suboptimization and lower overall value. 

One good systematic strategy is to approach digitalization through production planning and 

control (PPC). PPC is the core production management responsibility, and it encompasses 

decision-making processes and policies about planning (estimating, routing, scheduling, and 

resource loading) and control (dispatching, expediting, inspection, evaluating, and corrective 

action) of production processes and resources to produce products that meet market needs in 

a sustainable and profitable way (Slack et al., 2013). For every manufacturing firm, these PPC 

decisions and policies are influenced by the market-, product-, and process-related attributes 

(also referred to as planning- or PPC-environment  attributes) of the firm (Jonsson and 

Mattsson, 2003). Also, extant research suggests that PPC-environment  attributes affect the 

efficacy of PPC (Jonsson and Mattsson, 2003, Hong et al., 2010).  

This study posits that in a similar manner, such PPC- attributes will be 

influential when manufacturing firms adopt digitalization in their production systems. In 

addition, some studies have shown that there is variation in the level of implementation 
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required to see benefits in production operations. For example, it has been shown that it is 

sufficient to have real-time data in some inputs such as inventory even if other inputs such as 

demand data is provided at the end of each business day (Wolfsgruber and Lichtenegger, 

2016), suggesting that there are nuances that must be tailored for each use-case, technology 

and production system. For the preceding reasons about the need for a system view and the 

potentially moderating effects of the PPC- , this PhD study takes a 

PPC perspective in investigating this topic and introduces the construct  

to describe the objective. 

Although several conceptual studies on smart manufacturing have been published, mainly 

focusing on production systems  configuration and features, very few empirical in-depth case 

studies have been reported in the literature that specifically focus on the management 

processes of such systems (Moeuf et al., 2018, Machado et al., 2020). Additionally, only a few 

of these studies address the importance of PPC in achieving the vision of smart manufacturing 

(Ren et al., 2015, Moeuf et al., 2018, Sun et al., 2020). This is a missed opportunity, as the PPC 

process is analogous to a br

element of a smart factory. For this study, smart PPC is defined as: 

the integration of emerging technologies and capabilities in the industry 4.0 framework with PPC 

processes to improve the performance of the production system by enabling real-time, data-driven 

decision-making and continuous learning with input from a more diverse range of sources.  

In addition to the absence of frameworks to guide the choice of a fitting smart PPC strategy 

and use-cases, there are also gaps of architectural designs, and about how to translate the 

system requirements and attributes to the lower level design elements  of data structures, of 

class definitions, of system entity-relationships, of matching algorithms, etc.  in a way that 

supports the development of smart PPC solutions which fit the near- and long-term 

requirements of a production system (Kusiak, 2017, Reuter et al., 2017). This is particularly 

important for smaller firms who have more restrictive research and development budgets, 

and for big firms at times of global economic crises. Consequently, to address this challenges 

and gaps in the literature, this PhD research aimed to 

identify the PPC challenges that are amenable to smart technologies, to identify the elements 

that a smart PPC system might have, and to determine what constraints the planning 

environment attributes impose on the design and development of smart PPC.  

This research aim had both theoretical and industrial components as is common in production 

management research. The research aims were then deconstructed into four targeted research 

questions (RQs) namely:  
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RQ1: What are the planning and control challenges in production systems that are amenable 

to smart PPC? 

RQ2: What are the elements of a smart PPC system? 

RQ3: What constraints do the planning environment attributes impose on the design and 

development of a smart PPC system? 

RQ4: How can the smart PPC be achieved in practice?  

The research design used to address the RQs was as follows. Because many firms were 

just beginning to try out digitalization technologies at the time this PhD started, 

preliminary field studies were carried out in three case studies to gain a general 

appreciation of the nature and scale of the industrial challenges. These sought to address 

RQ1. The preliminary findings were presented at international scientific conferences and 

were later used to develop the interview questionnaire that was used to collect data for 

RQs 1, 2, and 3 in a more structured process in a four-unit multi-case study.  

The first three RQs aim primarily to develop new theory even though they also offer 

industrial value for production managers. After the preliminary round, the three RQs 

were investigated concurrently. Cases were selected across four types of industries 

namely food, plastics, propulsion systems, and agricultural machinery. Qualitative data 

analysis methods such as pattern matching, explanation building, and addressing rival 

explanations  (Yin, 2013) were used in analysing the data and developing the theory. The 

aim in RQ4 was to take this research beyond theory by developing a practical guide that 

can be used to develop smart PPC solutions, so that they fit with the current characteristics 

and the future requirements of production systems. Because this RQ involved the 

development of an artefact, the design science methodology was used. 

The findings of this study can be summarized as follows: 

o PPC issues in process manufacturing are more amenable to digitalisation technologies 

that enhance the PPC processes. Discrete manufacturing are more amenable to smart 

product strategies.  

o The key elements of a smart PPC solution consists of IoT, data analytics, and machine 

learning. But these can be extended to plan and control other more physical  (such as 

autonomous guided vehicles) or cyber-physical production system technologies. 

o In general, the more customizable a product is, the lower the potential for smart PPC 

for its production system. And as these technologies become more mature, this rule 

will likely still hold true, although it might shift to a new frontier.  
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adoption of smart PPC. Companies in highly competitive industries, which are not 

market leaders are more likely to rush into digitalisation and in doing so, fail to achieve 

the fit that is necessary for success. 

The key contributions to theory can be summarized as follows. The findings suggest a 

relationship exists between the PPC environment attributes and the digitalization strategy. 

This establishes a basis for introducing these attributes as factors in future smart PPC research, 

although further tests are required. Furthermore, by demonstrating the use of the structural 

contingency theory for this research area, this study demonstrates how more traditional 

management theories can be applied as both the industry and academia demand more 

grounded theories to explain the digitalization phenomenon in manufacturing and more 

specifically as this applies to PPC within the smart manufacturing context. 

This study further makes several contributions to production management practice. The 

proposed conceptual model shows how a transition to smart manufacturing can be achieved 

by following a development pathway from connected, to analytic and finally to intelligent 

operations. The matrix of use-cases can provide ideas for reference starting points for 

production managers attempting digitalization.  

In addition, this study found that industry 4.0 implementations need not only integrate 

PPC 

environment . From the literature search, this study is the first to establish this link 

and provide a strategic framework which shows this relationship. Lastly, this study presents 

a five-step method for designing and developing smart PPC systems. The method emphasizes 

the influence of contextual fit in the selection of algorithms, design for scalability, and the 

flexibility of the designed system to address future demands so that the resulting PPC system 

fits with the targeted PPC- . 

The research design adopted for this study is beset by a few notable limitations, top among 

which is the small number of cases  a factor that limits the generalizability of the findings. 

Despite this sample size limitation, this PhD study manages to establish a basis for future 

research into the application of structural contingency theory in developing smart PPC for 

sustainably competitive production operations. 

Overall, this PhD contributes new knowledge to the emerging production management 

domain of smart PPC. The developed artefacts  models, framework, and method  provide 

new decision-making tools for managers who must make important strategic and operational 

decisions regarding the digitalisation of their production systems.   
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Sammendrag 
For å være konkurransedyktige i dagens "industri 4.0" æra må produsenter utnytte nye 

digitale teknologier for å sikre effektiv drift og skape god verdi for kundene. Digitale 

teknologier som tingenes internett, stordataanalyser og maskinlæring gir nye muligheter 

innen produksjonsledelse. Teknologiene muliggjør sanntidsstyring og hyppigere 

replanlegging av produksjonen slik at man kan hensynta den faktiske situasjonen i 

produksjonen og i verdikjedene. Disse teknologiene kan også muliggjøre intelligent, 

datadrevet beslutningstaking og fangst av beslutningsmønstre og erfaring fra operatører og 

ledere. Gjennom disse nye mulighetene kan produsenter styrke sin konkurranseevne på en 

bærekraftig måte (Iansiti and Lakhani, 2014, Strandhagen et al., 2017). 

Produksjonsledere ønsker å ha klare retningslinjer og teorier til å støtte seg i beslutninger 

rundt digitaliseringsinitiativer. Man ser imidlertid i mange tilfeller at fordelene og 

forretningsverdien av disse nye teknologiene ikke er helt forstått av produsenter. For 

eksempel kan maskinlæring brukes i en produksjonsbedrift til å forutsi driftsstans i 

produksjonslinjer og å støtte både produksjons- og vedlikeholdsplanlegging for å sikre at 

produkter leveres til rett tid. Samtidig kan den samme teknologien skape mer verdi i form av 

et intelligent produkt for en motor- eller en traktorprodusent. Spørsmålet om hvilke løsninger 

som passer i hvilke situasjoner er derfor aktuelt og fremhever behovet for metoder, verktøy 

og konseptuelle rammeverk som tar hensyn til omstendighetene i bedriftens verdikjede 

(Oluyisola et al., 2020). 

Selv om det er mulig å ta en stegvis tilnærming til digitalisering i produksjonssystemer, kan 

det å unnlate å bruke en systemisk tilnærming lede til en suboptimalisering og lavere 

totalverdi. En god systematisk og strategisk tilnærming til digitalisering finnes gjennom 

produksjonsplanlegging og -styring, på engelsk production planning and control (PPC). PPC 

er hovedansvaret til produksjonsledere og involverer beslutningsprosesser og prinsipper om 

planlegging (estimering, ruting, tidsplanlegging og ressursbelastning) og styring (utsendelse, 

ekspedering, inspeksjon, evaluering og korrigerende tiltak) av produksjonsprosesser og 

ressurser for å produsere produkter som oppfyller markedets behov på en bærekraftig og 

lønnsom måte (Slack et al., 2013). For alle produsenter påvirkes disse PPC-beslutningene og 

prinsippene av egenskaper ved bedriftens marked, produkter og prosesser (også omtalt som 

egenskapene ved planleggingen eller PPC-miljøet) (Jonsson and Mattsson, 2003). Tidligere 

forskning viser også at PPC-miljøets egenskaper påvirker effektiviteten av PPC ((Jonsson and 

Mattsson, 2003; Hong et al., 2010). 
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Denne studien fastslår på en lignende måte at PPC-miljøets egenskaper er viktige når 

produsenter skal ta i bruk digitalisering i sine produksjonssystemer. I tillegg viser flere studier 

at det er variasjon i hvilket implementeringsnivå som trengs for å se forbedringer i driften i 

produksjonen. For eksempel har studier vist at det er tilstrekkelig å ha sanntidsdata for noen 

faktorer, som for eksempel lagerbeholdninger, mens andre faktorer, som for eksempel 

etterspørselsdata, kun oppdateres på slutten av dagen (Wolfsgruber and Lichtenegger, 2016). 

Dette tyder på at det er nyanser som må skreddersys for hvert enkelt tilfelle, teknologi og 

produksjonssystem. Det beskrevne behovet for et systemperspektiv og de potensielt 

modererende effektene av PPC-miljøets egenskaper danner bakteppet for denne 

doktorgradsstudien  hvor et PPC-perspektiv brukes for å undersøke temaet og begrepet 

"smart PPC" introduseres for å beskrive målet. 

Selv om det er publisert flere konseptuelle studier om smart produksjon, fokuserer disse 

hovedsakelig på produksjonssystemers konfigurasjon og kjennetegn. Litteraturen rapporterer 

veldig få detaljerte empiriske casestudier med fokus på styringsprosessene i slike systemer 

(Moeuf et al., 2018, Machado et al., 2020). I tillegg er det bare noen av disse studiene som 

adresserer viktigheten av PPC for å oppnå visjonen om smart produksjon (Ren et al., 2015, 

Moeuf et al., 2018, Sun et al., 2020). Dette er en tapt mulighet siden PPC-prosessen kan 

sammenlignes med hjernen i et produksjonssystem og således er den mest kritiske faktoren 

for «smarthet» i en smart fabrikk. I denne studien er smart PPC definert som: 

integreringen av nye teknologier og muligheter i industri 4.0-rammeverket, hvor PPC-

prosesser forbedrer ytelsen til produksjonssystemet ved å muliggjøre sanntids, datadrevet 

beslutningstaking og kontinuerlig læring med input fra et større utvalg av kilder. 

I tillegg til å velge en passende smart strategi og brukercase, er det også et potensial knyttet 

til arkitektonisk design og hvordan en skal oversette systemkrav og egenskaper til lavere nivå 

av designelementer  for eksempel datastrukturer, klassedefinisjoner, relasjoner mellom 

enheter i systemet og matchende algoritmer  for å støtte utviklingen av løsninger for smart 

PPC som er tilpasset kravene i et produksjonssystem på kort og lang sikt (Kusiak, 2017, Reuter 

et al., 2017). Dette er spesielt viktig for små selskap som har begrenset budsjett til forsking og 

utvikling, og for store selskap i tider med globale økonomiske kriser. Som en konsekvens av 

dette var målet for denne doktorgradsstudien å adressere disse utfordringene og 

forskningsgapene gjennom: 

å identifisere PPC-utfordringer som er mottakelig for smarte teknologier, å identifisere 

elementene i et smart PPC-system og å fastslå hvilke egenskaper ved et planleggingsmiljø 

som innvirker på designet og utviklingen av smart PPC. 
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Forskningen hadde både teoretiske og industrielle komponenter, noe som er vanlig i 

forskningen innenfor produksjonsledelse. De overordnede forskningsmålene ble delt inn i 

fire forskningsspørsmål (RQs): 

RQ1: Hvilke planleggings- og styringsutfordringer i produksjonssystemer er mottakelige 

for smarte PPC-systemer? 

RQ2: Hva er elementene i et smart PPC-system? 

RQ3: Hvordan begrenser egenskapene ved planleggingsmiljøet design og utvikling av et 

smart PPC-system? 

RQ4: Hvordan kan smart PPC oppnås i praksis? 

Forskningsdesignet som ble brukt til å adressere forskningsspørsmålene var følgende. 

Ettersom mange bedrifter var helt i startfasen med å benytte digitale teknologier da 

doktorgradsstudien startet, ble det gjennomført innledende feltstudier gjennom tre 

casestudier for å få en generell forståelse av arten og omfanget av de industrielle 

utfordringene. Dette tok sikte på å besvare RQ1. De innledende funnene ble presentert på 

internasjonale vitenskapelige konferanser og senere brukt til å utvikle spørreskjema for 

intervjuer som ble brukt for å samle data for RQ 1, 2 og 3 i en strukturert prosess gjennom en 

casestudie med fire enheter. 

De tre første RQ-ene hadde som mål å utvikle ny teori, selv om de også har industriell verdi 

for produksjonsledere. Etter den innledende runden ble derfor de tre RQ-ene undersøkt i 

parallell. Casene ble valgt fra fire forskjellig sektorer; næringsmiddel, plast, 

fremdriftssystemer og landbruksmaskiner. Kvalitative dataanalysemetoder som 

"mønstermatching, forklaringsbygging og adressering av konkurrerende forklaringer" (Yin, 2013) ble 

brukt til dataanalyse og teoriutvikling. Målet for RQ4 var å bruke teorien for å utvikle en 

praktisk veileder som kan brukes for å utvikle løsninger for smart PPC  på en måte som tar 

hensyn til dagens karakteristika og framtidige behov i produksjonssystemet. Ettersom RQ4 

involverte utvikling av et artefakt, ble design science brukt som metodikk. 

Funnene fra denne studien kan oppsummeres som følger: 

o PPC-utfordringer i prosessproduksjon er mer mottagelige for digitaliseringsteknologier 

som forbedrer PPC-prosessene. Stykkproduksjon er mer mottakelig for smarte 

produktstrategier. 

o Nøkkelelementene i en smart PPC-løsning består av tingenes internett, dataanalyse og 

(for eksempel førerløse trucker) eller teknologier for cyber-fysiske produksjonssystemer. 
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o Generelt vil det være slik at jo mer et produkt kan skreddersys, jo lavere er potensialet for 

bruken av smart PPC i produksjonssystemet. Etter hvert som disse teknologiene modnes, 

vil denne regelen fortsatt holde, selv om den kan endres i en ny retning. 

o Graden av konkurranse i en bransje kan påvirke behovet for og bruken av smart PPC. 

Bedrifter i svært konkurranseutsatte bransjer, som ikke er markedsledere, har større 

tilbøyelighet til å forhaste seg i digitalisering og disse kan dermed risikere å ikke sørge for 

tilpasningen som er nødvendig for å lykkes. 

Hovedbidragene til teorien oppsummeres som følger. Funnene tyder på at det er en 

sammenheng mellom egenskapene i PPC-miljøet og digitaliseringsstrategien. Dette gir et 

grunnlag for å inkludere disse egenskapene som faktorer i fremtidig forskning på smart PPC, 

selv om ytterlige undersøkelser er nødvendig. Videre, ved å demonstrere bruken av 

strukturell betingelsesteori på dette forskingsområdet, viser denne studien hvordan mer 

tradisjonelle ledelsesteorier kan bli brukt. Både industrien og akademia etterspør mer 

databasert teoriutvikling for å forklare digitaliseringsfenomenet i produksjon generelt, og mer 

spesifikt hvordan dette kan brukes i PPC innenfor smart produksjon. 

Denne studien gir videre flere bidrag til praksis innenfor produksjonsledelse. Den foreslåtte 

konseptuelle modellen viser hvordan en overgang til smart produksjon kan oppnås ved å 

følge en utviklingsprosess fra tilkoblet, via analytisk og til slutt til intelligent drift. Matrisen 

av bruker-case kan gi ideer og referansepunkter for produksjonsledere som prøver ut 

digitalisering. I tillegg fant studien at implementeringer av industri 4.0 ikke bare trenger å 

integreres tilstrekkelig med en organisasjons eksisterende prosesser og systemer, men også 

med egenskapene ved bedriftens PPC-miljø. Litteratursøket viste er denne studien er den 

første som etablerer denne linken og gir et strategisk rammeverk som viser dette forholdet. 

Til slutt presenterer denne studien en fem-trinns metode for å designe og utvikle smarte PPC- 

systemer. Metoden fremhever viktigheten av kontekstuell tilpasning i valget av algoritmer, 

design for skalerbarhet og fleksibiliteten til det utviklende systemet for å adressere fremtidige 

krav slik at PPC- systemet passer med egenskapene til det gitte PPC-miljøet. 

Studiens forskningsdesign er preget av noen begrensinger og viktigst av disse er det lave 

antall case - noe som begrenser muligheten til å generalisere fra funnene. Til tross for 

svakheten ved det begrensede utvalget, etablerer studien et grunnlag for fremtidig forskning 

innen anvendelsen av strukturell betingelsesteori ved å utvikle smart PPC for bærekraftig og 

konkurransedyktig produksjon. Samlet sett bidrar denne studien med ny kunnskap til det 

framvoksende domenet av smart PPC innenfor produksjonsledelse. De utviklede resultatene 

gir ledere nye verktøy for beslutningsstøtte rundt viktige strategiske og operasjonelle 

beslutninger knyttet til digitaliseringen av sine produksjonssystem.  
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Introduction 
--- 

This chapter begins with a description of the significance of production planning and control (PPC), a 

description of the research problem and industry motivation, followed by research gaps and objective, 

and concludes with an outline of the thesis.  

--- 

1.1 The Significance of Production Planning and Control (PPC) in 

Manufacturing 

Manufacturing industries have been the source of much of the development in the developed 

world and remain vital to the long-term sustainability of their economies. Generally, a 

manufacturing enterprise is organized as a coupling of transportation, transformation, and 

storage of materials and (human, financial, and intellectual) capital to create products and 

services for final consumers (Vollmann et al., 2005). These activities are either carried out alone 

or in collaboration with partners in a supply chain who sometimes have divergent interests 

and goals. Each member of that supply chain may be situated in the same city or country or 

be globally dispersed and subject to different regulatory, political, legal, socio-economic, 

technological, and local market constraints. 

Depending on the way products are created, manufacturing enterprises are often categorized 

as being either process, discrete or semi-process. In process manufacturing, raw materials 

(often commodities such as petroleum, aluminium ores or milk) are transformed into final 

products that cannot be disassembled and are indistinguishable from one another. In discrete 

manufacturing, components are transformed into discrete products, such as shelves or cars. 

However, in practice the distinction is not always clear-cut, and most production operations 

have some elements of both types in their operations, which is why some production 

operations are referred to as semi-process manufacturing. Nevertheless, all types of 

production involve (albeit to varying degrees) the sourcing and storage of raw materials, 

transformation of those materials, work-in-process, storage of finished goods, and 

transportation to various points of consumption either directly or through a supply chain.  
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Furthermore, the various elements within the environment are in constant flux. 

Consumer demand and quality expectations are increasingly uncertain, distributors  and 

retailers  demand can be spasmodic (compounded by the bullwhip effect), supply disruptions 

are increasing due to geopolitical and regulatory disruptions, and the threat of new entrants 

using rapidly developing digitalization technologies remains critical. These and similar 

challenges place enormous demands on the management function and the processes used in 

managing these elements. These processes are together referred to as production (or 

manufacturing) planning and control (PPC) (Arnold et al., 2011). 

The use of the terms planning and control span project, production, and service operations. 

However, while there are commonalities across these three domains  that is, the goal is to 

manage resources so that the operation is delivered on time, on budget and at the stated 

quality and with the expected attributes  PPC has the distinguishing feature in that for 

production operations, it is possible to create and store value in anticipation of expected 

demand. Therefore, within production, the terms planning and control more precisely 

encompasses the set of activities 

 groups in Figure 1.1. 

 

 

Figure 1.1: A definition for production planning and control 

Scheduling concerns when to do things; loading concerns how much to do; sequencing concerns 

in what order to do things; and monitoring and control is concerned with whether or not activities 

 (Slack et al., 2013). 
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Supplementary activities involve the acquisition of information from customers on product 

needs and the provision (to customers) of information on delivery dates and product status 

(Vollmann et al., 2005). In practice, this may extend beyond the individual firm to include the 

coordination of suppliers and key customers in the so- (Jacobs et 

al., 2011). 

The idea of the extended enterprise emerged from period when economies-of-scale and 

specialized factory theories dominated the research space  a consequence of the seminal work 

on focused factories by Skinner (1974). Since then, it is less common to find a firm producing 

alone, every input needed for its final products. Nowadays, manufacturing firms collaborate 

with members of their supply chain, with the aim to produce products and services to 

customers in the required quantity and quality, and to deliver at the right time and place. 

Thus, the success of a firm relative to its competitors is no longer only dependent on its ability 

to organize its operations efficiently and effectively. Rather, it must coordinate its entire value 

chain to deliver the greatest value to the market compared to its competitors. In other words, 

the characteristics  otherwise referred to as production network or 

supply chain, as explained in Rudberg and Olhager (2003)  assumes a pivotal role in 

determining whether or not it will be competitive in the new industrial era. The firm must, 

therefore, plan and control its use of resources in sync with other members of its supply chain 

(Arnold et al., 2011).  

 

1.2 Industry Problem and Motivation 

The trend towards the digitalization of products and processes  including both production 

technology and the planning and control processes  presents a disruption to the old way of 

managing operations (Iansiti and Lakhani, 2014), and major disruptions in production 

competitiveness are expected in the coming decades (Porter and Heppelmann, 2014). 

Conventional methods for managing the PPC processes include the use of enterprise planning 

(ERP) systems, manufacturing execution system (MES) and advanced planning and 

scheduling (APS) systems. These systems have served industries for decades and are still 

commonplace as they have enabled organizations to wield greater and more effective control 

over their operations (Hanseth et al., 2001). However, they are deemed too inflexible or 

inadequate to meet the needs of current production environments (de Man and Strandhagen, 

2018, Kirikova, 2019). 

To be competitive in this new era of digitalization and the pursuit of industry 4.0, the firm, 

through its value-chain, must leverage emerging technologies to improve its planning and 



 

4 

 

control activities in the short-, medium and long-term. But as Porter and Heppelmann (2014) 

pointed out, some of the changes will be undesirable, such as how increasing information 

could potentially increase price competition. Yet, some of the changes are desirable, such as 

the development of new business models, enabled by emerging technologies such as sensors 

and machine learning, which will generate new revenues by creating additional customer 

value. 

And now, after the initial buzz in the past half-decade, production managers desire clear 

guidelines to support their digitalization initiatives. A key problem being witnessed is that 

while several technologies exist each with its expected business value, the benefits and 

prospect for methods, tools, and conceptual frameworks that takes the contingencies of a 

value-chain into account. Moreover, previous studies have shown that the production 

planning environment attributes tend to affect the efficacy of methods used to manage 

operations, and should therefore, be considered when reconfiguring value-chains and the 

underlying business models with digitalization (Jonsson and Mattsson, 2003, Hong et al., 

2010). 

In addition, while it is currently widely believed that real-time data of the PPC inputs will 

lead to better performance, for example, as argued in Strandhagen et al. (2017), this may not 

always be the case. For example, Wolfsgruber and Lichtenegger (2016), after a simulation 

study argued that it is sufficient to have real-time data in some inputs such as inventory even 

if other inputs such as demand data is provided at the end of each business day. In order 

words, the nuances of each technology must be examined if acclaimed performance 

improvements are to be achieved. One can therefore surmise that the contingent factors of 

each case, in addition to the nuances of each technology represent key issues that must be 

evaluated when introducing emerging digitalization technologies into the production system. 

The foregoing arguing presents the risk and opportunity before manufacturers. If they do not 

leverage these new technologies effectively in their production systems (especially the 

planning and control systems), and if competitors do, they may witness an erosion of their 

competitiveness. However, if they are successful, business opportunities will expand and 

contribute to sustainable contributions to economic growth, averting this risk and thus 

positioning successful firms in the vanguard of cutting-edge production performance (Dreyer 

et al., 2010).  
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1.3 Research Gaps and Objective 

The emerging challenges described in the previous section have led to a strong research 

interest in both the academia and industry, raising an important question: how will 

digitalization influence production operations? A natural question that follows is: how can 

production operations become more competitive by leveraging these technologies? In this 

research project, these questions have been investigated from an operations management 

perspective as in Rudberg and Olhager (2003), with a focus on the production planning and 

control which is the primary responsibility of production managers. 

One of the key elements in operations management research is the fit of the PPC system with 

the production system, as the level of fit often decides the efficiency, profitability, and long-

term viability of a production enterprise. PPC managers must deal with several additional 

challenges such as swings in regulatory policies, climate change and other global phenomena 

all of which appear to put the world in a state of near-perpetual turbulence. In order to deal 

with the increased complexity and new market demands, production managers continually 

attempt to improve product and process flexibility, often leading to an increase in the depth 

of bill-of-materials and greater variation in production routings (Vollmann et al., 2005). This 

causes PPC to be even more challenging and the consequence is that a significant proportion 

of production lead time is still wasted as queueing or waiting time and many orders are 

delayed or produced to early with many weeks waiting in storage (Tony Arnold et al., 2012). 

Furthermore, recent developments in digitalization systems particularly with the emergence 

of the internet-of-things  often represented by the concept of industry 4.0  highlights the 

potential to transform all stages in the product lifecycle (from design, sourcing, 

manufacturing, to distribution, consumption, and recycling). This, it has been said, can be 

achieved by enabling real-time planning and control of the factory and supply chain 

operations (Strandhagen et al., 2017, Fatorachian and Kazemi, 2020). To support real-time 

planning and control, new and more extensive data must be collected and processed from the 

production system and the supply chain (Reuter et al., 2017). But more importantly, this data 

must useable either in its raw form  something that rarely occurs  or after much data 

preprocessing (Kusiak, 2017). 

While several conceptual studies on smart manufacturing have been published, mainly 

focusing on production systems  configuration and features, very few empirical in-depth case 

studies have been reported in the literature that specifically focus on the management 

processes of such systems (Moeuf et al., 2018, Machado et al., 2020). Additionally, only a few 

of these studies address the importance of production planning and control in achieving the 
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vision of smart manufacturing (Ren et al., 2015, Moeuf et al., 2018, Sun et al., 2020). This is a 

missed opportunity, as the PPC process is analogous to a brain for the production system and 

ctory. Furthermore, addressing the issue 

from the perspective of PPC enables firms to gradually advance in a holistic manner towards 

smart and sustainable manufacturing. This will require making PPC thus the term 

smart PPC ) using these emerging technologies to address the practical challenges of PPC 

while at the same time recognizing the constraints that each production system and its 

environment place on the use of digitalization technologies.  

For this thesis, the Smart PPC construct is defined as: 

the integration of emerging technologies and capabilities in the industry 4.0 framework with PPC 

processes to improve the performance of the production system by enabling real-time, data-driven 

decision-making and continuous learning while input from a more diverse range of sources.  

If implemented successfully, smart PPC should enable the use of real-time demand and 

production system data, i.e., reduce uncertainty from forecasts. It should also allow PPC to be 

dynamic, thus using frequent updates, and be reactive to real-time data. It should also use an 

expanded set of data input sources from 

enable accurate prediction of short-term requirements and support increased flexibility. It 

should also be able to capture and use the experience of the operators and managers in the 

production system (Oluyisola et al., 2020, Bresler et al., 2020). Nevertheless, these goals have 

proved challenging to achieve in practice (Reuter et al., 2017, Oluyisola et al., 2020) and there 

are studies  ment factors 

could affect the enhancements of PPC with industry 4.0 (Bueno et al., 2020). 

Consequently, this study addresses how smart PPC can be achieved in practice, and the 

sustainability implications of such a system. If these goals can be achieved, it will lead to more 

precise planning processes, a reduction or elimination of waste, and ultimately to improved 

competitiveness. Therefore, this thesis has the following research objective:  

to identify the PPC challenges that are amenable to smart technologies, to identify the 

elements that such smart PPC should contain, and to determine what constraints the 

planning environment attributes impose on the design and development of smart 

PPC. 

In this context, design refers to the architectural design rather than a user-interface or 

graphical design. This is about the structure and elements of the smart PPC system, and about 

how to translate the system requirements and attributes to the lower level elements  of data 

structures, of class definitions, of entity-relationship diagrams, of matching appropriate 
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algorithms, etc.  in a way that supports the development of smart PPC systems that fit the 

near- and long- term requirements of a production system (Kusiak, 2017, Reuter et al., 2017). 

This is particularly important for smaller production companies who have more restrictive 

research and development budgets, and now for big industry leading companies at times of 

global economic crises. And these categories of firms are more there is no systematic, holistic 

design and development guide for the design and development of a smart PPC system. 

 

1.4 Thesis Outline 

The remaining sections of this thesis are structured as follows. The theoretical background 

highlighting the relevant extant literature for the entire study is presented in chapter 2. This 

chapter begins with brief history of PPC, then explores PPC theory, followed by a review of 

emerging digitalization technologies, design and development considerations, and the 

argument for contingency theory as an appropriate theoretical lens to view the development 

of smart PPC. Chapter 3 begins with the research questions which are formed by breaking 

down the research objective into four research questions RQ1, 2, 3 and 4. The rest of the 

chapter then details the research design adopted for this study and highlights the relevance 

of the chosen data collection methods and artefact development approaches. The artefacts 

developed include conceptual frameworks and a method for developing smart PPC.  

The study findings are presented, analyzed, and discussed in chapters 4 to 7. In chapter 4 

(addressing RQ1), a description is given of the six case companies that provided empirical 

data for this study. The cases are described according to their market (supply and demand), 

product, and process attributes and their practical PPC challenges in PPC. In Chapter 5 

(addressing RQ2), a conceptual framework for smart PPC is developed using the literature 

and the insights from the case studies. A table of use-cases is also provided. In Chapter 6 

(addressing RQ3), by using the structural contingency theory, an evaluation is made of the 

constraints imposed by the planning environment attributes on the fit of emerging 

digitalization technologies within case companies. From the insights garnered from this 

evaluation, and the literature, a smart PPC strategy matrix is then developed. Chapter 7 

(addressing RQ4) presents a method for developing smart PPC and demonstrates the use of 

this method with a case study. The final chapter (8) summarizes the findings, conclusions, 

limitations, and potential future research.  
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2 

Theoretical Background 
--- 

This chapter presents the theoretical background highlighting relevant extant literature for the entire 

study. It begins with brief history of PPC, then explores PPC theory, followed by a review of emerging 

digitalization technologies, and the argument for contingency theory as an appropriate theoretical lens 

to view the development of smart PPC. It concludes with a research framework which highlights the 

three key topics that guided this study. 

--- 

2.1 History of Modern PPC 

The history of modern planning and control can be traced to the publication of Frederick W 

 (Taylor, 1911)

came about in reaction to calls for ways to reduce industrial inefficiency at the turn of the 20th 

century (Wilson, 2016). Scientific management was later defined by Hoxie (1911) a system 

devised by industrial engineers for the purpose of serving the common interests of employers, workmen 

and society at large through the elimination of avoidable wastes, the general improvement of the 

processes and methods of production, and the just and scientific distribution of the product (Taneja 

et al., 2011). The principles espoused in the book such as standardization, task-delineation, the 

concept of piece-work, the use of scientific methods rather than the rule of thumb in reducing 

inefficiency laid the foundation for the systematic methods that evolved in the decades that 

followed (Wilson, 2016). 

Materials requirements planning (MRP) was developed in the USA in the early 1960s and was 

widely implemented during the 1970s (Browne et al., 1988). Higgins et al. (1996) suggest that 

MRP thinking has revolutionized PPC. Applications of MRP were built around a bill of 

material processor (BOMP) which converted the aggregated plan of production for a parent 

item into a discrete plan of production or purchasing for individual component items 

contained within the BOM. MRP logic can be summarized as an iteration of three consecutive 

steps (Higgins et al., 1996): netting against available inventory; calculation of planned orders; 

and bill of materials explosion to calculate gross requirements for dependent items. The main 

objective of MRP is to determine what and how much to order (both purchase orders and 
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production orders), and when. The input to this is the master production schedule (MPS). As 

the MRP calculation process makes no consideration of available capacity, a separate capacity 

requirement plan (CRP) must also be created, and this was integrated into closed-loop MRP 

system developed in the 1970s. 

In the 1980s, the three separate modules  MRP, MPS and CRP  were combined to make a 

single system, termed manufacturing resource planning (MRPII). This also included the sales 

and operations planning (SOP) function and rough-cut capacity planning (RCCP). The MRPII 

became possible to have an integrated, holistic operations system, which enabled the checking 

of operation plans vice-a-vice available resources. The system also allowed visibility into the 

financial implications of the operations and how to take corrective actions (Ptak, 2004). Much 

of the PPC system in Figure 1 is represented in the MRPII concept. Nowadays, it is common 

to find the PPC system built-in to enterprise resource planning (ERP) systems. An in addition 

to enabling planning and control with the plant, ERP systems can be extended to support the 

coordination of activities beyond the internal factory operations, and across the supply chain 

(Tarantilis et al., 2008, Oluyisola et al., 2015) 

To capture all its elements, PPC is often described using hierarchical frameworks which 

presents the various elements of the PPC process at varying levels of detail and time horizon. 

making decisions about their production systems. One notable PPC framework shown Figure 

2.1, by Vollmann et al. (2005), is the basis for most enterprise planning systems in production 

today. The framework describes the strategic (long-term), tactical (medium-term) and 

operational (short-term) stages as the common levels of planning that exists within a typical 

enterprise resource planning (ERP) system regardless of the type of industry in question. And 

while it has faced some criticism for not capturing the several feedback loops that are 

witnessed in real life production systems, it remains popular due to its comprehensiveness 

and its built-in optimization capabilities (Leitão, 2009).  

Meanwhile, other PPC frameworks such as Bonney (2000) highlight the importance of the 

feedback loops as shown in Figure 2.2. Also, these loops are more frequent and more 

important in the later tactical and operational stages of PPC. Regardless of whether the system 

in question is built on a hierarchical framework, PPC systems have become colossal systems 

which are hard to implement and maintain, and which are unwieldy and difficult to adapt to 

(Leitão, 2009, Ansari et al., 2019).  
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Figure 2.1: The PPC framework (Source: Vollmann et al. (2005)) 

 

 

 

Figure 2.2: Iterative process of PPC (Source: Bonney (2000)) 

Taking these loops into consideration, an adaptation of the three-domains framework into a 

holistic PPC framework has been proposed as depicted in Figure 2.3 below (Oluyisola et al., 

2020).  
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Figure 2.3: The PPC system domains and processes (Source: Oluyisola et al. (2020)) 

 

The strategic level takes a long-term view, aggregated view of production operations. The 

process starts with sales and operations planning (S&OP) which aims to balance overall 

demand with the available capacity. It receives demand data (volumes per product family per 

planning period) and in some cases meta data (such as forecast uncertainty) as input from 

demand management (DM) and future available aggregate capacity as input from resource 

planning (RP). The aggregated plan generated at that level is thereafter disaggregated from 

product family into individual products. Since it is aggregated and with a relatively larger 

time horizon than others, it is not often accurate. The relevant data for this stage typically 

includes demand forecast data which can be computed from historical demand data or 

estimated from experience by the sales and marketing team or some combination of the two 
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(Vollmann et al., 2005). The primary output is the master production scheduling (MPS) which 

is the purchasing and production plan at individual product level by time, typically weeks. 

Its output is the input of the detailed material planning at the tactical stage. 

At the tactical level, the MPS records are combined with bill of materials data and inventory 

release replenishment orders for materials, a process called materials requirements planning 

(MRP). Based on the production system  capabilities and manufacturing lead times thanks to 

the capacity requirements planning (CRP) process, it is possible to release detailed material 

and capacity plans with shorter time horizon (typically weekly). These plans are revised 

frequently, and the output of this stage is production plans and replenishment orders for 

materials; it is the input for the operational stage.  

Finally, at the operational level, the concern is about how to execute the production order 

using the materials and capacity plans from the MRP and CRP. The processes entail day by 

day, shift by shift detailed scheduling and coordinating of the actual manufacturing processes 

(shop floor control, SFC), and issuing purchasing schedules to the purchasing function or 

supplier systems (PSS) for the supply of materials needed to execute daily operations 

(Vollmann et al., 2005, Bonney, 2000). The documents at this level are typically purchasing 

orders at component level and work orders/job lists at work centers. This stage also involves 

the control, measure, and evaluation of the effectiveness of production operations and 

suppliers. All these processes are not without challenges, and a discussion of those challenges 

follows in the next section. 

 

2.2 PPC Challenges and the Limitations of Enterprise Planning 

Systems 

One key limitation of PPC at the strategic level is that it implicitly assumes that the effect of 

extraneous factors such as weather or industrial policy changes, global economic downturns 

and other disruptions average out from year to year. This often leads to the use  by planners 

and operators  of excessive capacity buffers and safety stock in the production system. 

Furthermore, since the data is aggregated, the quality often varies depending on how data-

driven the company is. Challenges include quality of data in the long term (as the business 

environment continues to change), frequency of update, etc. In this case, having real-time data 

does not necessarily lead to any advantage provided the data is accurate. Perhaps more 

important is the span of the d to enable various simulation 

scenarios.  



 

14 

 

Managers of production systems often must make resource planning and flexibility related 

investment decisions based mainly on uncertain forecast data (Vollmann et al., 2005). 

Therefore, the S&OP process needs to overcome variations in historical demand, uncertainties 

in demand forecasts, and unavailability of demand data. Similarly, the MPS process needs to 

handle issues related to data integrity and completeness, estimation of product-level demand, 

inventory variability leading to difficulty in estimating available-to-promise, rescheduling 

frequency periodic scheduling while events alter production system, and a lack of feedback 

on the accuracy of resource planning. 

At the tactical level, the challenges of traditional PPC include planning complexity due to data 

integrity concerns, product mix exacerbated by increasing product customization needs, 

estimation of production volumes, control principles that minimizes work-in-process 

inventory, etc. (Vollmann et al., 2005). Thus, the MRP process must deal with issues regarding 

the updatedness of bill-of-materials with respect to components and levels; inventory data 

accuracy  what is produced and exact storage location; and lot-size determination and 

revision policy. And the CRP process must handle the updatedness of process routes/charts 

and recipes; accuracy and integrity of production instructions; process variability; variability 

in resources capabilities and capacity; and continually monitor the size of buffers (Garetti and 

Taisch, 1999). Production managers deal with all these challenges using leveling and lot-sizing 

techniques within the constraints of the planning solution that the company employs. They 

must also deal with the limitation that the production planning process is run periodically 

while the demand situation is continuously changing. They must also manage the contrast 

between the objectives of long-term planning versus short-term scheduling  that is, leveling 

versus the minimization of earliness/tardiness and non-execution (Sánchez-Herrera et al., 

2019). 

As explained earlier in section 2.1, at the operational (short-term) level, the status of the 

production system is changing in real-time and the agility and precision of the PPC system in 

adapting to the changing production environment is critical. However, the reality in most 

factories is that it is challenging to track and accurately predict work-in-process inventory and 

resource status, and the system is continuously being disrupted by rush-jobs and unplanned 

machine breakdowns or large changeover and set-up times (Oluyisola et al., 2018b, 

Strandhagen et al., 2017). Specifically, the PO process is challenged by the reliability of 

supplier quality and timeliness accuracy (Oluyisola et al., 2018a). Furthermore, SFC processes 

and systems handle collection of operations data in real-time, job tracking on the shopfloor, 

resource performance tracking, and estimating and updating production schedule after rush 

jobs. Yet, a significant proportion of production lead time continues to be wasted in the form 
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of queueing or waiting time (Tony Arnold et al., 2012). Moreover, the manufacturing 

technologies are increasingly becoming sophisticated and the SFC systems are required to 

handle a disparate set of data types and sources.  

Overall, a few underlying challenges commonly affect the strategic, tactical, and operational 

levels of the PPC system. Promotions and campaigns which are becoming commonplace can 

significantly disrupt supply chains. In addition, the quality and completeness (w.r.t. the span 

or breadth) of data sources used is a common challenge affecting resource efficiency and 

demand fulfilment (Gustavsson and Wänström, 2009). These become even more important as 

systems become increasingly computerized and automated. Amongst many others, some of 

the key challenges PPC systems are currently required to manage can thus be summarized as 

follows: 

o The goals of product and process flexibility in response to new market demands leads 

to a more challenging management of material flows (Vollmann et al., 2005). 

o A significant portion of production lead time is still wasted as queueing or waiting 

time (Tony Arnold et al., 2012). 

o The depth of bill-of-materials continue to increase and there is more variation in 

production routing as product complexity increases. 

o Frequency of planning periodic while demand is continuous. 

o The objectives of planning versus scheduling i.e., leveling versus the minimization of 

earliness/tardiness and non-execution (Sánchez-Herrera et al., 2019). 

The PPC system is tasked with managing the production system with due consideration for 

challenges, and ultimately, with managing the uncertainty in production systems, either 

through methods that try to stabilize the system, common with lean approaches (Oluyisola et 

al., 2016), or through predicting and reacting effectively and speedily to events and changes-

in-state of the production system. The latter requires few or frequent rescheduling depending 

on the kind of operation and the stability of the production environment (Vieira et al., 2003). 

In achieving these goals, various scheduling logics and planning methods have been 

developed at different levels of detail and time (hierarchical systems) and at different 

domains. This diversity of topics and issues have led to different streams of research. 

One stream of research has focused on investigating the effectiveness of enterprise resource 

planning (ERP) systems for PPC in different industrial environments, e.g., in dynamic market 

environments (Tenhiälä and Helkiö, 2015), in make-to-order (MTO) production environments 

(Aslan et al., 2012, Aslan et al., 2015), in small and medium enterprises (Ahmad and Cuenca, 

2013), etc. The research within this stream has often been triggered by perceived limitations 

and inadequacies of ERP systems in supporting manufacturing planning and control 
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activities. A frequently mentioned limitation of ERP systems is that it generates unrealistic or 

infeasible production schedules due to the use of infinite capacity scheduling (Steger-Jensen 

et al., 2011, Arica and Powell, 2014). Meanwhile, these limitations of ERP systems have paved 

way for the second research stream, which concerns auxiliary planning and control systems 

such as MES and APS. Consequently, the infeasibility of production schedules generated by 

ERP systems and the inability to tightly control operations have led to some large 

manufacturers using APS systems for planning and MES for production control respectively 

(Saenz de Ugarte et al., 2009, Steger-Jensen et al., 2011). 

While MES and APS systems can address some limitations of ERP systems, these planning 

and control systems are known to also have their own limitations. The processes within these 

systems have remained simplistic and too rigid, which limits the factors that can be considered 

within production planning and control decisions. Adjustment to schedules based on real-

time or near-real-time data is infeasible and commonly avoided by production planners. It is 

-

systems, often making it difficult to adapt to changing business needs and leading many 

manufacturing managers and planners to build simpler, easier to manage, but disparate tools 

outside their PPC systems (Shaikh et al., 2011, Carvalho et al., 2014).  

Consequently, another stream of research has looked at the development of complementary 

decision support systems for addressing some of the challenges being faced by companies 

implementing ERP, APS and MES systems. Indeed, it is commonly reported that planners and 

supervisors, in many instances, tend to prefer simpler and more flexible tools and are more 

likely to avoid more complex, albeit theoretically performance-improved methods for 

addressing many of the production planning and control needs (Tenhiälä, 2011, de Man and 

Strandhagen, 2018). Therefore, while enterprise planning systems inhibited high efficiency for 

PPC processes by being unwieldy and not including additional real-time system data, flexible 

approaches have been limited in that they are often very manual, dependent on the 

availability of specific people and also not holistic (Oluyisola et al., 2020). 

 

2.3 Towards smart PPC in the era of Industry 4.0 

The temporal proximi -

enterprise systems such as the ERP, manufacturing execution system (MES), or advanced 

planning and scheduling (APS) systems. Moreover, another critical limitation of these systems 

is that deviations are common between information in these enterprise systems and the reality 

on the shop floor and across the supply chain (Schuh et al., 2014). Furthermore, these 
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enterprise systems are commonly configured to collect data from a narrow range of sources 

in the production system typically from production lines and perhaps warehouse inventories. 

However, in many production systems and value chains, several more factors influence 

performance. For example, in the food and beverages industry, the weather affects not only 

the production but also the distribution and consumption rates of numerous products. Being 

able to capture and use data from a broad range of sources presents an opportunity for better 

PPC performance in the current era. These limitations can be addressed by Industry 4.0. 

-to-end lifecycle 

stages are integrated, the production systems and internal functional units are networked 

(vertical integration), and the external value creation network is integrated (horizontal 

integration) (Stock and Seliger, 2016, Stock et al., 2018, Machado et al., 2020). This vision is 

enabled by the recent advances in technologies including cyber-physical systems, internet of 

things (IoT), big data analytics (BDA), machine learning (ML), augmented reality, cloud and 

edge computing, and additive manufacturing (Machado et al., 2020, Hermann et al., 2016b). 

Therefore, with all things connected, data generated from these integrated systems with the 

plant and across the value chain will enable real-time control (and, consequently, dynamic re-

planning and rescheduling) of the factory and supply chain (Strandhagen et al., 2017, Ivanov 

et al., 2019). IoT, BDA and ML connected to and run via the cloud can address these temporal 

proximity needs of a smart and sustainable production value chain (Iansiti and Lakhani, 2014). 

This specific collection of emerging technologies are at the cutting edge in the development 

of information systems (IS), having seen tremendous investments in research and 

development in the previous decade partially due to the significant reduction in the costs of 

computation power and data storage (Iansiti and Lakhani, 2014). The cost reductions have 

been possible due to the reducing cost of hardware and the economies-of-scale achieved in 

cloud computing (Bean and Davenport, 2019).  

Another key tenet of industry 4.0 is that production systems will be sentient and autonomous 

(Iansiti and Lakhani, 2014). This will enable the development of real-time planning and 

control of the plant and supply chain operations thereby minimizing wastes in the system as 

every product will be produced as close as possible to when it is required by a customer 

(Strandhagen et al., 2017). In addition, the ability of BDA and ML tools and technologies to 

manage data with ordinarily challenging diversity (or variety) is an opportunity. Since 

computerization of the planning process is, by itself, not new, and enterprise systems and 

spreadsheet solutions have been used for decades, many production managers find it 

challenging to step into this new way of using data and ICT (Reynolds, 2015). 
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In addition, digital technologies have the potential to improve social and environmental 

sustainability when developed into organizational capabilities (Veile et al., 2019). In a recent 

study, Dubey et al. (2019) found that BDA improves sustainability performance among Indian 

firms, consistent with previous studies. However, they also found that the primary driver for 

its adoption was its expected economic impact rather than any social or environmental benefit. 

This latter point further highlights previous findings which reveal how economics drives most 

transformational efforts including those publicized as sustainability programmes (Galpin et 

al., 2015). Meanwhile in another similar survey-based study in Brazil, Dalenogare et al. (2018) 

found that the maturity of certain digitalization technologies within the local context can lead 

to different expectations in their contributions to operational and sustainability performance. 

In their study, they found a strong positive correlation between the use of sensor technologies 

and the resulting big data with operational performance (agreeing with (Dubey et al., 2019)), 

but failed to find a significant relationship between industry 4.0 and sustainability. They also 

found, contrary to popular belief, that not all technologies are expected to lead to operational 

performance improvements. 

However, more recently, studies are beginning to reveal that numerous companies are 

struggling in their efforts to become more data-driven and attain smart operations (Bean and 

Davenport, 2019). The realities of the adoption and use of BDA, ML, cloud computing, and 

related smart technologies have been much more challenging than anticipated. From 

anecdotal evidence with industry partners, and as the extant literature shows, certain projects 

are likely to succeed while others are more likely to fail depending on the structure of the 

supply chain, the characteristics of the production system, and the products attributes. In 

terms of whether a company that applies these technologies in production operations will 

succeed or fail (Müller et al., 2018, Veile et al., 2019). Therefore, the selection and 

implementation of smart technologies towards a smart PPC system requires a consideration 

for the constraints of each technology and the characteristics of the production system. 

 

2.4 Constraints, enablers, and the Structural Contingency Theory 

From the foregoing, it is therefore evident that it is not sufficient for a manufacturing firm to 

select a technology and apply it and expect great results without due consideration for the 

intra- and inter- organizational factors that play a role in this regard (Schuh et al., 2017). Intra-

organizational factors are those that define the working principles and the control of processes 

within an organization. Examples of such factors include the production process, products 
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attributes, and human resource management systems. Inter-organizational factors, such as the 

pressures from supply chain partners and the intensity of competition in an industry, can 

better synchronization of planning efforts within the supply chain (Banker et al., 2006, Wamba 

et al., 2015). While these factors can be expected to play a role in the fit of these technologies 

with the production system, the extent and the nature of this influence is unknown. 

In a related study focused on the extended enterprise view, Ngai et al. (2008b) identified 

cultural issues, functionality requirements and legacy IT infrastructure, organizational and 

people-related challenges, technical support and training of relevant personnel as the critical 

success factors for successful ERP implementations (Ngai et al., 2008b). Koh et al. (2011) 

extended those ideas and identified barriers, drivers, and critical success factors for enterprise-

wide ERP (ERPII) implementation across supply chains. They observed that while vendors 

and suppliers tout real-time information, better decision making power, and efficiencies in 

operations as the key drivers for ERPII implementation, users and customers are more 

concerned with how ERPII can provide new simpler and shorter ways for value creation, core 

competency integration, customer demand responsiveness, and improved product 

innovation or customization. They further identified barriers such as organizational inertia, 

resistance to change by employees, cost, gap between the theory and practice of the extended 

enterprise, disparate data standards and data inaccuracy as important factors. In addition, 

organizational structure and the learning culture have also been identified as critical factors 

(Schuh et al., 2017). 

More recently, de Sousa Jabbour et al. (2018) extended the concepts related to critical success 

factors into research on how industry 4.0 can enhance environmental sustainability in 

manufacturing. They selected 11 non-technical factors including management leadership, 

strategic alignment, training and capacity building, empowerment to be innovative and 

discover new uses, national and regional differences, and organizational culture. However, 

the presence of other studies with conflicting results indicates that the influence of 

organization culture on the sustainability performance of firms implementing digitalization 

and industry 4.0 remains unclear (Dubey et al., 2019). Arguably, the influence of these internal 

and external factors varies based on the context that each production manager must consider 

when planning his/her production operations. Considering all these factors, the production 

enterprise is only likely to achieve the expected performance benefits of industry 4.0 if the 

technologies are configured and implemented in a manner that fits with the characteristics of 

its production system. Furthermore, certain industries (such as the engineering and 

equipment production industries) expect a long-term strategic benefit and are willing to 
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pursue industry 4.0 regardless of possible challenges or implementation risks (Müller et al., 

2018).  

An appropriate foundational theory for addressing these kind of research problems is the 

structural contingency theory, which argues that organizational processes must align with the 

(Sousa and Voss, 2008). The seminal work by Venkatraman (1989) 

laid a foundation the general application of contingency theory in management research. In 

that paper, the author took concept of fit (other conceptual term used for contingency theory) 

beyond general theoretical discussions and empirical explanations and operationalized it 

within strategic management research. Venkatraman (1989) further sought to address the 

many testing issues that are central to linking concepts with empirical tests  [p. 424] and in doing 

so, identified six perspectives of fit based on two dimensions: the chosen degree of specificity 

of the theoretical relationship, and whether to anchor the test of fit to an assessable criterion 

(such as effectiveness or financial performance) or to not use any such criterion.  

Along the criterion-anchoring dimension, the three criterion-specific fit forms are 

fit as mediation  while the three criterion-free fit forms are 

  with both groups listed in increasing 

order of specificity of the theoretical relationship. A recent systematic literature review of 

studies in supply chain integration by Danese et al. (2020) indicates that studies that use 

contingency theory as a supporting theory tend to adopt the fit as moderation perspective. 

While no such review has yet been carried for smart manufacturing, similarity of the smart 

PPC objective to the concept of supply chain integration suggests that inferences can be drawn 

from the Danese et al. (2020) review. The fit-as-moderation perspective, according to 

Venkatraman (1989), presumes the relationship between a predictor (for example, choice and 

use of smart technologies) and the assessable criterion (for example, improved PPC 

effectiveness) depends on a third set of relationship-influencing variables (for example, 

market or product attributes). 

In one applied example, Hicks et al. (2001) applied the structural contingency theory to 

explain the characterization of different engineer-to-order (ETO) archetypes in accordance 

with how ETO companies reorganize their internal and external supply chains to remain 

competitive in the face of changes in their production environments. Another more closely 

related example is in Wamba and Chatfield (2009), where the authors build upon an earlier 

framework by Venkatraman (1994) and other diverse extant literature to develop a 

contingency model that can be used to assess the potential value of RFID implementation 

projects within logistics and manufacturing supply chains. The developed contingency model 

used environmental upheaval; leadership, second-order organizational learning, resources 
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commitment, and organizational transformation  Furthermore, by using 

a longitudinal case study to illustrate the application of the contingency model, Wamba and 

Chatfield (2009) demonstrates the usefulness of this approach to develop and test new theory 

to guide the context-driven application of information technologies (in their case, RFID) in 

logistics and manufacturing environments. 

Drawing from the foregoing examples, this thesis takes the assumption that the success of 

relevant digitalization technologies in enhancing PPC to achieve smart PPC can similarly be 

amenable to contingency theory. In this case however, the contingent factors being test are the 

market, product, and production attributes. Regarding the technologies, some (e.g., data 

analytics) tend to have a wider application domain than others (e.g., sensors and machine 

learning). Therefore, to derive value from these technologies, several contextual (or 

contingent) factors must be considered because what works in one industry may lead to poor 

results in another  as examples of sensor-integration investigations in the plastic pipes 

production and supply chain as shown (Oluyisola et al., 2018b, Høyer et al., 2019). Similarly, 

the structural contingency theory can also be used to explain for the influence of the supply 

chain and industry context (Sousa and Voss, 2008, Hicks et al., 2001). 

 

2.5 State-of-the-art on Smart PPC Development 

The adoption of smart technologies has seen tremendous increase in recent decades due to 

increased availability and affordability of computing power (Guha and Kumar, 2018). 

Generally, there are two ways in which companies adopt a technology: either a company (or 

its leadership) is pushed by its industry peers in the form of a market trend, or a business need 

leads to a search for a technology solution (Beckman and Rosenfield, 2008). In either case, the 

 both 

production and support  and its planning environment (Bharadwaj, 2000, Buer et al., 2020). 

With the enormous hype that came with Industry 4.0, technology push has been the driver for 

most of its recent research and applications thus far. 

Within the last two decades, there has been huge interest in research exploring the use of 

smart technologies to improve the performance of production systems and these studies can 

be grouped into three categories. The first group consists of studies where smart technologies 

are used individually. For instance, there are studies on the use of radio frequency 

identification (RFID) or other IoT technologies for tracking of materials and goods within a 

production system to provide data for evaluation and optimization of material flows and 
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layouts (Lee and Özer, 2007, Ngai et al., 2008a). An example is Zhong et al. (2013) who used 

RFID in a mass-customization production environment to track and trace items on the shop 

floor, collecting real-time production data to identify and control shop floor disturbances 

through an MES. In another example, Ngai et al. (2007) report on a case study on the 

development of an RFID-based traceability system for tracing repairable items in aircraft 

maintenance operations.  

The second group are those that build upon the use IoT technology and other tracking and 

tracing technology, adding the power of cloud computing to these solutions. This addition 

typically enables the management of several thousands more IoT sensors thereby allowing for 

a more nuanced tracking of materials and resources on the shopfloor and in the wider supply-

chain. The concept of digital twin falls within this category of research and application 

especially when applied to a factory or individual machines in the factory. For example, Qu 

et al. (2016) develop a concept and system for IoT-based dynamic logistics control with cloud 

manufacturing and demonstrate their approach within a paint-production company in China 

which uses the make-to-order strategy. The solution concept offers real-time tracking and 

dynamic re-planning based on changes to the state of the system. In another example, Tao et 

al. (2018), in their conceptual study on data-driven smart production discusses the 

distribution and tracking of materials, and the integration of data from the production process 

into production plans using an example in wafer production. The paper raises several points 

that can be useful in the design of smart PPC systems (such as the integration of digital twins 

and IoT technologies such as edge gateways and edge computing) but does not address this 

explicitly. In a related study, Sun et al. (2020) propose a visual analytics approach to 

production planning, to address the need for solutions that will enable a quick response to 

sudden changes in the operations and market environment, and with the ability to handle the 

deluge of data in emerging industry 4.0 production systems.  

The third group is newly emerging, with the recent interest in advanced analytics tools and 

artificial intelligence and its derivatives/subsets  i.e., machine learning and deep learning 

(Bueno et al., 2020, Cadavid et al., 2020). The interest in using machine learning in PPC by 

itself is not entirely new. Garetti and Taisch (1999) long ago investigated the application of 

machine learning in production scheduling problems. However, as with several studies of its 

type, their approach to the use of machine learning to improve production through smart PPC 

suffers from the solution linearity problem (Cadavid et al., 2020). The solution linearity 

problem is the issue that most of these studies are linear from data cleaning, to data 

exploration, and so on until insights generation and retraining, typically carried out through 

desktop operations. However, for production scenarios where scalability and autonomous 
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system operation is desirable, these linear solutions are inadequate and will require 

continuous, often expensive human expert management to use in production, thus the need 

for a self-sustaining solution. 

These studies have raised, although indirectly, some pertinent issues as regards the design 

and development of smart PPC systems. Bueno et al. (2020) identify several gaps and 

suggestions for future research in the smart PPC research domain, a few of which are notable 

with regards to the design and development of smart PPC systems. First, (on p.15), they 

highlight a scarcity in extant literature regarding the question of fit of industry 4.0 solutions 

and the integration of PPC in different environments. This question determines whether a 

solution, even if well executed, will deliver any real and lasting value to a production 

operation. In addition, they emphasize on the need for research within development of 

intelligent decision support systems, frameworks and architectures that can advance smart 

PPC. In this regard, there is the need to determine the types of data to collect and use, the 

types of sensors to use and where in the production system to deploy them. 

 

2.6 Considerations for the Design and Development of Smart PPC 

Concerning the application of smart technologies for PPC processes, the common cases 

reported in the literature can be categorized according to whether they address the strategic 

or long-term, tactical, or medium-term, and operational or short-term scope within the PPC 

domain. The strategic use cases remain scarce in the literature (Bueno et al., 2020). This could 

be due to the immaturity of the emerging technologies to handle such broad data types and 

sources that typically feed into the strategic process, currently typified by use of managerial 

judgement who are able to also include those data sources that are difficult  but not 

impossible  to codify or assign a numerical value to. Meanwhile the tactical and operational 

PPC domains have seen increasing use of data with big data and machine learning for 

decision-making especially because of greater automation in operations processes. 

Furthermore, the distinction in the application of emerging technologies at the tactical and 

operational levels is not always clear, and use cases often overlap. Examples of use cases 

include real- (Sun et al., 2020), product quality 

control, and integrated production-maintenance scheduling (Biondi et al., 2017). 

When using machine learning, the choice of appropriate algorithms and the system features 

to be used in training models can both be critical factors on project outcomes because different 

algorithms fit or perform better depending on the use case, feat

architecture, and system architecture -Jaramillo, 2019). As 
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noted by James et al. (2013)

other method may wor

crucial to find a fitting method to fit the use-case when using ML. An overview of machine 

learning algorithms in PPC use-cases and some architecture considerations follows. 

2.6.1 Choosing an Appropriate Machine Learning Algorithm 

As there are several ML tools and algorithms in the public domain currently, it can be a 

daunting task in finding one appropriate for a PPC use case. Within each of the three general 

categories of machine learning  that is, supervised, unsupervised, and reinforcement  new 

and more efficient algorithms and hybrids are being created continually, encouraged by the 

deluge of data, geometric reduction in computing cost that cloud computing brought about 

in the last decade, and advances in algorithm development and transference across multiple 

domains (Risi and Togelius, 2020, Cadavid et al., 2020). 

Supervised learning concerns the approximation of a function based on a given set of input-

output pairs. In this learning paradigm, the learning algorithm is provided (training) data 

which provides both, input values and output values, and the algorithm approximates the 

function that relates the inputs to the outputs. The approximated function can then be used to 

predict the outputs, given a set of inputs from outside the training set. The second machine 

learning paradigm, i.e., unsupervised learning is more exploratory in nature. Unlike 

supervised learning, there is no requirement for predefined input-output relationships in the 

training data that is used in unsupervised learning. Instead, the learning algorithm explores 

the data to find patterns and structures in the dataset, revealing which data-elements can be 

used as predictors of other elements. The third paradigm, i.e., reinforcement learning involves 

the use of iterative trial-and-error logic to train an algorithm to generate responses to inputs, 

that are expected to yield the highest reward (Monostori et al., 1996). Some use cases for the 

different machine learning types are presented in the following paragraphs and a summary 

Table 2.1 below. 

Examples of supervised in the literature include Gyulai et al. (2014) who report on a case 

where supervised learning is used in optimizing the allocation of different products to two 

types of assembly lines, namely, reconfigurable and dedicated assembly lines. They use a 

random forest algorithm for predicting production costs for given order volumes and resource 

pools. In subsequent work, the authors use multivariate linear regression for predicting 

capacity requirements for future production scenarios on a flexible assembly line based on 

data from the MES (Gyulai et al., 2015). Heger et al. (2016) use Gaussian process regression 

for estimating the effect of different parameter settings on dispatching rules for scheduling. 

Examples of the use of unsupervised learning includes Pillania and Khan (2008) who applied 
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k-means cluster analysis for categorizing firms in a supply chain according to each firms 

agility. Huang et al. (2019) propose the use of deep neural network for predicting future 

bottlenecks in a flexible manufacturing system, which is a use case for unsupervised learning. 

In another example, Shiue et al. (2012) propose the use of self-organizing maps for selection 

of scheduling rules in semiconductor wafer fabrication. 

 

Table 2.1: Analytics and ML algorithms applied to PPC use cases  

 Strategic Tactical Operational 

Supervised 

[linear and non-linear 

regression, support 

vector machine, k-

nearest neighbors, linear 

discriminant analysis] 

 

Multi-scenario 

prediction of 

production costs of 

production lines (1) 

 Random forests 

 

Predicting capacity 

requirements (2)  

Multi-variate linear 

regression  

 

Dynamic selection of 

suitable dispatching rule 

(3) - Gaussian process 

regression 

Unsupervised 

[principal component 

analysis (PCA), k-

means, self-organizing 

maps] 

 

Vendor selection 

(4)  PCA; Strategic 

sourcing (5)  k-

means 

 

Prediction of future 

production 

bottlenecks (6)  

Levenberg Marquardt;  

 

Real-time shop floor 

control and selection of 

scheduling rules (7)  

Self-organizing map 

Reinforcement 

[Q-learning, Monte 

Carlo, SARSA, 

Relational] 

 

Joint pricing and 

lead-time decisions 

(8)  Q-learning 

 

Line balancing/ 

resource levelling 

under uncertain 

demand (9)  Monte 

Carlo 

 

Adaptive scheduling in 

multi-site production (10) 

 SARSA; and Real-time 

rescheduling (11)  

Relational RL 

Key: 1 - Gyulai et al. (2014); 2 - Gyulai et al. (2015); 3 - Heger et al. (2016); 4 - Petroni and Braglia (2000); 5 - Pillania and 

Khan (2008); 6 - Huang et al. (2019); 7  Shiue et al. (2012); 8 - Li et al. (2012); 9 - Tuncel et al. (2014); 10 - Aissani et al. 

(2012); 11 - Palombarini and Martínez (2012). 

Reinforcement learning, despite its huge potential for production systems, has only seen 

limited interest in PPC applications. This could be due the limitations in the early years of its 

development. For example, according to Dean et al. (1993) [p. 67], reinforcement learning as 

used conventionally creates a temporal assignment problem  in which feedbacks to the 

planning controller is intermittent and delayed. However, recent advances in the 

development of RL algorithms have addressed this, and other challenges as witnessed by 

some of the research on the topic in the last two decades. One example is the type of 

reinforcement learning called inverse reinforcement learning (IRL). According to Ng and 

Russell (2000)
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planning optimal scheduling process, and for which the reward function being optimized is 

 

Li et al. (2012) propose the use of Q-learning algorithm-based reinforcement learning for joint 

pricing and lead time decisions in a make-to-order system, where the decision problem is 

modelled as a semi-Markov decision problem. Tuncel et al. (2014) propose a Monte Carlo 

reinforcement learning algorithm for line balancing in disassembly operations under 

uncertain demand. Aissani et al. (2012) use a multi-agent based SARSA (state-action-reward-

state-action) algorithm for production and distribution scheduling in a multi-site production 

network of a clothing company. Palombarini and Martínez (2012) use relational reinforcement 

learning for real-time (re)scheduling of extrusion operations in a secondary case study, i.e., 

the problem formulation is taken from literature. Lin et al. (2019) demonstrated an adaptation 

of the deep-Q network using an edge computing framework with multiple dispatching rules 

to demonstrate improved simulation results for job shop scheduling problems compared to 

methods using singular dispatching rules. 

Despite all these developments, some important gaps remain in the smart manufacturing 

literature. One of this is how to manage data acquisition and integration, data exploration, 

and a process to continually update and retrain ML models during use. This absence of a 

 going undetected over time, 

a phenomenon known as concept drift. This is a major shortcoming of extant data analytics 

and machine learning research in general, and especially with regards to application within 

the PPC domain (Hammami et al., 2017, Cadavid et al., 2020). 

2.6.2 Data architecture considerations  

The data architecture describes the design, structure and control of the data generating and 

collection elements.  As data is the foundation for smart manufacturing and related concepts 

including smart PPC, the data architecture plays a vital role in the implementation and long-

term viability and flexibility (to adjust to change) for any such system. For convenience and 

for hierarchical analysis, data from the production system should be amenable to grouping 

according the familial associations. This can be achieved using classes and objects belonging 

to those classes, in fitting with the object-oriented architecture. The objects that are members 

both random names) which 

comprise that class. The machines can also be grouped into cla
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Furthermore, data quality played a key role in the value companies were able to derive from 

enterprise planning systems like ERP and MES systems before the emergence of smart PPC 

systems (Gustavsson and Wänström, 2009). The importance of data quality is now more 

crucial because of the data intensiveness of smart PPC systems which use data from a wide 

range of sources including from within the plant, (potentially) from other partner systems, 

(Oluyisola et al., 2020). And while current 

enterprise systems collect sales transaction data from external customers and transactions 

generated directly from operations such as materials consumption in warehouses and factory 

floor production data (Koh et al., 2011, Mantravadi et al., 2019), the capacity to derive value 

from the abundant data in real-life environments has been a challenge (Kusiak, 2017).  

Furthermore, there are different types of data available to any PPC system. Based on the 

temporal proximity of the data generation and collection processes, they can be classified as 

being either batch data, where data is collected and updated periodically, or stream data, 

where data is being generated, collected, and potentially analyzed in real-time. In production 

environments, many data processing systems implements some kind of runner using the 

Apache Beam model (Li et al., 2018) and some 

of the machines in the production lines are time-series, stream data. An example of the time-

series data snippet from an IoT device on a production machine in the JavaScript Object 

Notation (JSON) format is as shown in Figure 2.4 below. But there are also batch data which 

are seldom revised, for example the setup cost, and are input to the PPC processes. 

 

Figure 2.4: Example of the telemetry data generated by an IoT sensor on a production line 

 

2.6.3 Systems architecture considerations  

The architecture of an information system (IS) can be defined as a collection of artefacts, 

namely a definition of constituent components of the IS, a specification of the properties of 

those components, and a description of the relationship among those components and their 

interactions during operation (Goepp et al., 2006, Bass et al., 2013). The use of the term design  
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in this context generally refers to the creation of the architecture of the smart PPC system. 

Because smart PPC systems are information systems, their developers must follow similar 

principles used for design similar ISs. This design must be made early in the overall 

development process, and in a way that allows for enough detail so that it provides sufficient 

guidance for developers, while at the same time allowing some freedom for the developers to 

make decisions during the actual development stage (Bass et al., 2013).  

Within the broader Industry 4.0 research domain, generic architectural models have been 

proposed for the industry 4.0 production system and these can provide inspiration for the 

smart PPC solutions designers and architects. Common examples include the Reference 

Architecture Model for Industrie 4.0 (RAMI 4.0), the Industrial Internet Reference 

Architecture (IIRA) and the internet-of-things reference architectures (IoT RA) standard in the 

ISO/IEC 30141:2018 (Standardization, 2018). Nevertheless, these models can only serve as 

reference due to their generic nature and the fact that they do not cater for the context each 

production manager must address. 

Typically, enterprise planning systems are designed as hierarchical control systems using a 

monolithic architecture (Themistocleous et al., 2005). This means that the system is built on a 

single, large, high-powered computer hardware. Such an architecture has several benefits, not 

least its speed due to its low natural latency, its limited need to manage integrations with 

several units, and that there is only a single hardware device to be managed instead of 

potentially several. And this was important for many decades before the advent of cloud 

computing since companies had to create a physical datacenter with server hardware and all 

the attendant management requirements. But this architecture also has several shortcomings. 

For example, its limited flexibility to add new tools and functionalities. This is because add-

on functions need to be upgraded every time the main server itself received an upgrade from 

the ERP supplier who is typically a very large software vendor and whose upgrades are 

designed for general needs, and not for the specific needs of each customer. It is more costly 

to start-up, manage and run with a savings of up to 50% in terms of total cost of ownership 

(Mattison and Raj, 2012). This contrasts with the emerging smart technologies which are 

changing so fast, that there is an intrinsic need to design for flexibility and frequent changes.  

These design considerations are addressed by the modular-by-design microservices 

architecture instead of a monolithic architecture. The microservices architecture presents a 

considerable benefit for several reasons: it can scale easily, and it is highly adaptable. It has 

been reported that self-adapting and self-optimizing multi-agent distributed production 

control systems have been demonstrated to perform better during transitions when used in 

job-shop environments where hierarchical systems are too rigid to adjust to the flexibility 
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requirements of such environments (Ma et al., 2020). Thus, developers of smart PPC systems 

have a better chance at success if they employ a microservices architecture. 

Furthermore, most research on the use of ML in PPC suffer from workflow-design linearity 

in addition to being based on artificial or historic, sampled data (Cadavid et al., 2020). While 

these conditions make testing specific models for confined problems easy, they are not feasible 

in real-life industrial practice. The challenge with linear design is that to use it in practice, a 

human operator needs to administer the intelligence creation process of the system, as seem 

in reported case literature, for example, Garetti and Taisch (1999) and Brintrup et al. (2019). In 

real-life industrial scenarios however, the smart PPC system should be able to collect data, 

clean it, prepare it for analysis, retrain its models, and offer refreshed insights without human 

intervention potentially self-adjusting its control parameters (Oluyisola et al., 2020, Rojas and 

Garcia, 2020). It should address the risk of concept drift, for instance by using adaptive time 

windows (Bifet and Gavalda, 2007). This could be achieved using data processing pipelines 

and monitoring scripts connected to a version control system for managing model versioning, 

a concept referred to as MLOps  that is, machine learning operations, which is a derivation 

of DevOps for ML. 

To summarize, there are two main perspectives in the literature through which topics related 

to smart PPC have been viewed. First, in the puristic production and operations management 

perspective, ICTs are viewed as add-ons or auxiliaries that can enable or improve information 

flow but are usually considered exogenous (Slack et al., 2013). A contrasting view is that of 

information systems-centered research within the context of manufacturing, that considers 

ICTs as an integral variable and focuses on opportunities for performance improvements by 

employing ICTs  for example, Huang (2017). In the smart PPC development method 

proposed in chapter 7 of this thesis, an attempt is made at using a more balanced, multi-

disciplinary view. In the example case study in the same chapter, material flow is controlled 

and monitored with ICT-enabled information flow, thus making ICTs integral components of 

the industrial system. Smart technologies or advanced ICTs are thus viewed as intrinsic 

elements of the smart production system as opposed to being add-ons.  

 

2.7 Proposed Research Framework 

From the foregoing literature review, a research framework is presented in Figure 2.5 

highlighting the key elements from the literature that provides a foundation for the following 

chapters of this thesis. As shown in the figure, the PPC processes and the PPC environment 

variables are the foundation that smart technologies are then fused with to achieve smart PPC.  
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Figure 2.5: A preliminary research framework 

The moderating PPC environment attributes grouped into market, product and process 

categories can be further measured in terms of: 

o market attributes: demand uncertainty, customer order decoupling point (CODP), 

delivery variability, input supply uncertainty, few vs many suppliers; 

o product attributes: variety, complexity, shelf-life, electronic-intensity for function or 

control, volume-to-cost ratio, unit cost, customization, final product or input; 

o process attributes: production lead time, batch size, manual vs automated process, 

chemical vs physical process, process tolerance specificity, cost of capacity. 

The PPC processes from aggregate planning to shopfloor control are shown in Figure 2.3 and 

described in section 2.1, and the relationship between PPC environment attributes and PPC 

processes has been established. For instance, it is known that managers of production systems 

that have a lot of process uncertainty are more likely to use spreadsheets for the planning 

activities and depending on how big the company is, are likely to use MRP systems for 

inventory control (Jonsson and Mattsson, 2003). And with the advent smart manufacturing 

and the recent push towards digitalization, there is a need for more insights about the 

relationship of these attributes with smart technologies being introduced into manufacturing 

systems to make the PPC system and its constituent processes smarter. The hypothesis here 

is that PPC environment attributes moderate the fit of smart technologies with PPC processes 

towards smart PPC systems. PPC processes are used to coordinate the activities in production 

systems which have codifiable attributes and these attributes determine what kind of smart 

technology will fit with the PPC processes in a production system. Having established the 

foundation for smart PPC, and the potential practical benefits, a research design for this to 

address this budding area of research is presented in the next chapter. 
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3 

Research Design 
--- 

This chapter details the research design adopted for this study and highlights the relevance of the chosen 

data collection methods and artefact development approaches. It concludes with a discussion of steps 

taken to ensure research quality. 

--- 

At a very basic level, a PhD study aims to equip the candidate to be able to independently 

carry out research in his/her field later in his/her career (Phillips and Pugh, 2010). For these 

reasons, this PhD project was approached in a way to maximize both its practical and 

instructional value. According to Matthews and Ross (2010) learning how to do a reliable, 

valid and generalizable research through a defined methodology is a crucially important part 

of research education. However, meeting these criteria for operation management (OM) 

research can be more challenging that, say, research in the humanities or in the pure sciences.  

OM research is said to be either (a) semi-theoretical, because the aim is not to create theory, but 

to create scientific knowledge  (Handfield and Melnyk, 1998) about empirical observations, or 

(b) pragmatic, because it attempts to solve practical OM problems that operations managers 

grapple with (Meredith, 2001, Holmström et al., 2009). Both types of OM research serve their 

purpose since OM research is a field that is expected to solve practical problems and the theory 

is needed to explain the empirical evidences. Consequently, research approaches in OM have 

had to take both facets into account as explained in the following section. 

 

3.1 OM research approaches and case selection 

As a result of these requirements of OM research, seven research approaches have been 

developed or adapted (from other fields) for developing scientific knowledge within OM over 

the years, and each of these approaches have their strengths and weaknesses. They are 

surveys, case research, longitudinal field studies, action research, clinical management 

research, design science, modeling and simulation (Flynn et al., 1990, Meredith, 1998, 

Karlsson, 2009, Holmström et al., 2009). Some of the methods are better suited for empirical 

research (e.g., surveys and case research), and are common approaches for studies 
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investigating contingent factors. For exploratory research, case research, action research and 

design science provide the necessary flexibility and controls in charting a path, helping with 

the mapping of variables, and developing new artefacts within emerging research fields 

(Handfield and Melnyk, 1998). 

Consequently, since this study addresses an emerging problem area, much of the research in 

this field are still of the exploratory nature. At this early phase in its development, research 

activities will aim to discover i.e., uncover areas research and theory development; to describe 

the territory; to map the key variables and identify the critical themes, patterns and categories; 

and improve the maps by identifying the relationships between variables and an explanation of 

these relationships (Handfield and Melnyk, 1998). It has also been established that if the 

objective is to gain in-depth understanding of a phenomena, the case study approach is a 

feasible and adequate research methodology (Karlsson, 2009).  

Therefore, this study started with exploratory case studies to discover areas for research and 

then followed by case studies explored the territory identifying the challenges companies 

were having with their PPC processes and in their attempts at using digitalization to improve 

those processes. Thereafter, the study moved towards identifying the relationships between 

Cases were chosen 

across different industries to allow contrasting or attribute comparisons. The principles for 

case research in Yin (2013) guided the selection of cases and in addition, the guidelines by 

Handfield and Melnyk (1998) were used as a methodological guide throughout the project for 

data sampling, the choice of data collection methods, and subsequent data analysis.  

 

3.2 Data collection and analysis methods 

Recall from chapter 1 that the objective of this PhD study was:  

to identify the PPC challenges that are amenable to smart technologies, to identify the 

elements that such smart PPC should contain, and to determine what constraints the 

planning environment attributes impose on the design and development of smart 

PPC. 

And as noted earlier in chapter 1, achieving the objectives will require an evaluation of already 

established PPC processes and systems and how their attributes 

fully leverage new technologies. Case study research seem appropriate for this requirement 

to achieve sufficient depth. A large sample survey would have proved inadequate at this stage 

without first understanding and clearly defining the important constructs of the study 
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(Malhotra et al., 2017). But first, it was necessary to identify and itemize challenges in PPC 

observes in the cases. Due to the technical and complex nature of this subject, it is important 

to collect case data from those with day-to-day experience with the PPC processes to ensure 

reliability (Tenhiälä, 2011). Thus, the following questions was specified: 

RQ1: What are the planning and control challenges in production systems that are amenable 

to smart PPC? 

To address this research question, data was collected during visits to the case companies. A 

narrative interview approach was used to allow the production planners and managers to 

discuss their PPC challenges openly, followed by discussions about which of the itemized 

challenges are could potentially be solved digitalization technologies. This preliminary data 

was presented and published at three international conferences. This was followed by a 

formalization of research questions which premised the subsequent case data collection and 

literature review. A final data collection round was thereafter carried out using an interview 

guide. And the following questions where subsequently specified: 

RQ2: What are the elements of a smart PPC system? 

RQ3: What constraints do the planning environment attributes impose on the design and 

development of a smart PPC system? 

These two questions RQ2 and RQ3 are tightly linked. In addressing both questions, a literature 

review was necessary to establish the state of the art on the subject and to identify the gaps in 

the literature. This was necessary so that the artefacts and frameworks that may arise from 

this study can be guaranteed to not only address industry needs but to also address some of 

the documented gaps in the literature.  

Moreover, it has been shown that the process during which a PhD candidate conducts a 

literature study helps the candidate to gain authority and later, legitimacy for his/her research. 

During this process, the candidate is also able to determine if the chosen research areas are 

feasible and are of interest to the scientific community (Karlsson, 2010). The aim of the 

literature was to gain increased understanding about the coverage of the topics and issues in 

the extant literature and to verify the research gaps before proceeding to collect data and carry 

out the research work. Literature analysis can also be a key component in the development of 

theory  as in this case. Notable publication databases (CiteSeerX, ACM, AISeL, EBSCOhost, 

Emerald Insight as in Hermann et al. (2016a)) were used and these were complemented with 

Google Scholar. 

Using the findings from the literature, and from the preliminary case studies, an interview 

protocol was developed (Appendix 1) and administered in a multi-case study. The empirical 
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data was analysed using a pattern analysis to develop a framework and strategic matrix. The 

case study approach was applied as described in Yin (2009), and Voss et al. (2002). A use-case 

matrix was also generated through brainstorming with experts from the industry and senior 

OM researchers. The brainstorming sessions took place during the early phases of the project 

with supervisors to determine the project scope and approach (approximately) every two 

weeks throughout the project duration.  

While the developed frameworks and theory have both scientific and industrial value, this 

study wanted to extend the findings in the previous three RQs into a more practical guideline 

for manufacturing firms facing these issues. Having developed a concept for smart PPC in 

Oluyisola et al. (2020), that paper and other notable publications on the subject (Bueno et al., 

2020, Cadavid et al., 2020) of smart PPC highlighted the gap in the literature for a guide and 

systematic method to aid the practical implementation of smart PPC, especially in small and 

medium sized companies with tighter budgets and also for big firms at times of global 

economic crises. Therefore, in the final phase of this PhD, and still in line with the research 

aim, the following question was specified: 

RQ4: How can the smart PPC be achieved in practice?  

In other words, how should a smart PPC system be designed and developed so that it fits 

with the current characteristics and the future requirements of the production system? 

Currently, there is no systematic, holistic design and development guide for the design and 

development of a smart PPC system. This thesis (in chapter 7) presents an attempt to address 

these gaps by discussing the design principles for smart PPC solutions and demonstrating 

(with a case illustration from a semi-process industry) the use of a five-step method for 

designing and developing smart PPC solutions. The method details how to capture the PPC-

attributes in the design and development process. 

Although the method was demonstrated using a case study, the actual development of the 

method followed a design science approach. Design science, as an active problem solving 

research method, is useful when a researcher aims to develop an artefact (Holmström et al., 

2009). The case study used in illustrating this method in chapter 7 was selected because it 

offers a production environment amenable to smart process strategy (see Figure 6.1) 

(Tenhiälä, 2011, Oluyisola et al., 2020). In addition, the case used to illustrate the method had 

been studied for almost two years a sufficient level of understanding of the processes had 

been gained by the PhD candidate (Voss, 2009). Figure 3.1 below gives an overview of the 

research design and the results which follow in the chapters 4-7 of this thesis. 
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3.3 Research Quality 

All the methods being considered for use in this project have limitations which must be 

considered for effective application. For example, case studies have limitations in their nature 

due to the constructivism approach and difficulties in generalization of the theories from 

specific cases (Creswell, 2013, Karlsson, 2010). The case study in this research faces this 

limitation and as such, questions about scientific rigour must be addressed (Eisenhardt and 

Graebner, 2007, Boyer et al., 2005). Nevertheless, by using several data sources to investigate 

the same questions, it is possible to triangulate the results and improve the validity of case 

research findings (Lewis, 1998). More generally, case research needs to pass four quality tests 

(Yin, 2013). 

3.3.1 Construct Validity 

Construct validity is the requirement that the correct operational measures for the concepts 

being studied are defined a-priori and not open to selective and subjective interpretation by 

the investigator during data collection and analysis (Voss, 2009, Yin, 2013) To this end, Yin 

(2013) further described three tactics that be adopted in case research to improve construct 

validity: during data collection, to use multiple sources, to establish a chain of evidence, and 

thirdly, to have key informants review the case report.  

In this PhD study, all three tactics where adopted to ensure construct validity. Historical 

production plans, historical production reports, interviews, direct observation, and other 

external reports were sourced during the data collection for the four research questions. 

Furthermore, an established chain of evidence was used in addressing the second research 

question which is explanatory in nature. Finally, key informants reviewed the preliminary 

case reports at various stages of the research both before and after the data analysis. 

3.3.2 Internal Validity 

Internal validity has received a lot more attention in quantitative research and explanatory 

case studies. It addresses the question of whether x causes y  

is accurate, and not that another unknown factor z is the causative factor (Voss, 2009). 

However,  (that is, by using interview and 

documentary evidence, a researcher infers that the property or outcome being studied was 

caused by an earlier event), case researchers must anticipate this and have it in mind at the 

inception (Voss, 2009, Yin, 2013). The question of internal validity does not arise for the 

descriptive and explorative parts of this project, that is, the first research question. Instead, it 

applies to the second research question in which there was an attempt to explain how and 
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why smart PPC can be achieved in different kinds of PPC environments. For this case, tactics 

such as pattern matching, explanation building and addressing rival explanations  were used to 

enhance internal validity (Yin, 2013). 

3.3.3 External Validity 

One of the main goals of research is that findings made in one study can be applied in other 

cases where applicable conditions are met, that is, that the findings are generalizable 

(Matthews and Ross, 2010). This is an important weakness for case research in particular 

because of the often-limited sample size and the risk of bias in such studies. However, Yin 

(2013) proposed two tactics to address this weaknesses: (a) that theory should be used to 

strengthen research involving single case studies; and (b) to design multiple-case studies with 

a replication logic. 

This PhD project followed these proposals. Following the preliminary studies and the 

subsequent literature review, an evaluation of theories relevant to (or that have been tested) 

in OM research was done (Ketchen Jr. and Hult, 2007, Sousa and Voss, 2008). The structural 

contingency theory was identified as providing the best lens through which the case study 

could be conducted. Furthermore, the first, second and third research questions were 

addressed with a multiple-case study design with a replication logic  replication of cases 

covering process and discrete production systems. While an exhaustive large-sample size 

survey might be needed to achieve full generalizability, the tactics deployed helps to enhance 

the external validity of this study. 

3.3.4 Reliability 

The goal of a reliability test of research quality is to minimize biases and eliminate errors that 

the researcher(s) could have unwittingly introduced during the study. For case research, this 

implies that it should be possible for another researcher to carry out the same 

again and arrive at the same conclusions (Yin, 2013). Tactics to address the reliability 

requirement include the use of case study protocol and database, thereby ensuring that every 

step can be documented and be auditable. In this regard, an interview protocol with a detailed 

questionnaire was developed for this study to address the first, second, and third research 

questions, and to provide insights into how the fourth research question could be answered. 

The questionnaire was applied to the first four cases companies where data was collected for 

answering RQs 1, 2 and 3. Case companies 5 (Tine) and 6 (PowerMac) were added to check 

the validity of findings at the preliminary stage while RQ1 was being investigated. 
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4 
Description and Analysis of  

Case Studies and PPC Challenges 
--- 

What are the planning and control challenges in production systems that are amenable to smart PPC? 

This chapter presents the descriptions of the six case companies, their PPC processes, and an analysis 

of their PPC challenges. The cases are described according to their market (supply and demand), 

product, production-process attributes. A pattern analysis of the PPC challenges wraps up the chapter. 

--- 

4.1 Brynild: PPC Environment Attributes and System 

Brynild is a food company which produces nuts, sweets (including pastilles) and chocolate 

from its factory situated in Norway. The company also distributes some non-food products 

for an international brand within Norway, leveraging its supply chain in the Norwegian 

market. The company manages its product development, purchasing, production, supply 

chain logistics, sales, and marketing along with its partners. 

4.1.1 Demand and supply attributes 

Brynild sells its products through the supermarket chains dagligvarehandel  in Norwegian) 

and the petrol stations -mart chains. It supplies its products to an industry that altogether 

is valued at NOK 180 billion. In the business year 2018 and 2019, Brynild reported a turnover 

of NOK 750 million (USD 81 million) across its three product categories. An overview of the 

market size and share by product category (as at 2019) is summarized in Table 4.1. 

These products are of the kind that are impulsively purchased, typically when customers are 

at the cashier stands in supermarkets. Demand is seasonal, rising during holiday periods. 

Also, because several competitors are trying to get a good share of this seasonal demand, there 

are often several simultaneous promotional sales campaigns being held concurrently by 

several competitors. There is high competition and manufacturers aim to achieve economies-

of-scale. Demand is also influenced by swings in national moods about social issues such as 

obesity, creating additional uncertainty in demand. 
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Table 4.1: Product categories and market share (for 2019) 

Product category 
Industry size 

(m NOK) 
Market 

share 

Confectionery 
Pastilles Vane; pastilles Oil; Drasje; Losvekt; Pick & mix, SugarChoco 

3 0501 14% 

Nuts 

Nøtte Fabrikken, St. Michaels Cashew, Chip nuts and more 
1 300 32% 

Chocolate: 
Chocolate mix; Losvekt CoatedChoco; CoatedChoco mix in nuts; 
SugarChoco mix, and more 

6 000 3% 

 

4.1.2 Products  attributes 

A list of some of product families is given in Table 4.1 and a few of the product 

examples are shown in Figure 4.1 below. The company has a small R&D department which is 

tasked with developing and testing new products. After a new product is approved, the tier-

two supplier inputs and processes must be certified for quality and safety. The food industry 

is highly regulated due to potential safety risks to the consuming public. Currently, Brynild 

has both the British Retail Consortium and the Det Norske Veritas (DNV) for its processes and 

supply chain. The company manufactures products under seven brand names.  

 

Figure 4.1: Examples of Brynild's products 

Under the confectionery category, which is the focus of this study, Brynild produces over 40 

SKUs within 19 product families. The shelf-lives of these products vary from few weeks to 

several months even though some of these products share some production stations such as 

cooking and drying for their production. The products are made available to customers in two 

forms  in small plastic and paper resealable wraps, and in large drums where customers can 

dish their desirable quantities at the supermarkets. A typical product could cost about 5 Euros 

 

1 Source: Statista.com (sourced on 05.Jun.2020) 
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in the supermarket and the demand is somewhat stratified with high demand for 

confectionery products among kids while other products are purchased more by adults. 

4.1.3 Production process attributes 

The factory at Fredrikstad is divided into three sections, each for confectionery, chocolate, and 

nuts-based products. Due to regulatory requirements about the transference of allergens, the 

movement of people and materials across sections is tightly controlled. Most importantly, 

nuts-based products cannot be transported to the other sections of the factory handling 

products that will not have nut-allergen warnings on their packaging. A diagram showing an 

overview of the confectionery production processes from raw materials to the finished goods 

storage warehouse is shown in Figure 4.2 below.  

Raw materials include sugar, flour, and formulation ingredients that give the products that 

unique properties and tastes. Cooking is done in boilers, with one boiler serving each 

production line. After cooking, the material flows to the molding station which houses a fast 

molding machine with trays. These trays must be retrieved and manually stacked into racks 

in preparation for drying. The filled racks are then taken to the drying ovens and once each 

batch is completed and loading into an oven, the oven is closed, and the drying settings and 

duration set based on predetermined values that are also stored in Microsoft Excel 

Spreadsheets.  

 

Figure 4.2: The confectionery production process 

The output from the drying stage then proceeds to ordinary coating process or to drasje-ing 

which is also a kind of coating with a unique product surface area feel. They also sometimes 

go directly to storage for intermediates as show in Figure 4.2. Intermediates are stored in 

inverted conical drums which are then transported to the packaging station within the factory. 

The packaging line are limited by product constraints and packaging types. For example, 

confectionery products cannot be packed in the lines for nuts even if these are free because of 

the regulation regarding allergens. This is an important factor that the planners must consider 
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during planning. The co current strategy regarding the choice of production 

technology is to increase automation and to move towards more flexibility manufacturing 

systems, that is, machines that can process several different products. 

4.1.4 Production planning and control 

The operations management team holds the sales and operations planning meeting to discuss 

the aggregate production plan ( hovedplan ) using the demand forecast and the firmed 

customer orders to plan production for the short-term. The hoved plan is an aggregation of 

all planned orders for all intermediates. Using the hoved plan as reference, rough-cut capacity 

planning is done on a weekly basis on Mondays. The main goals for rough-cut capacity 

planning is production smoothing in t -

incorporating seasonal demand that lies further into the future. The detailed production 

schedule is then made by the production planner who is also responsible for monitoring its 

execution. The schedule is converted into production orders for the shopfloor. The production 

orders are generated within the enterprise resource planning system SAP/R3 using the master 

production scheduling function. The planners consider the following factors during the 

process: 

 Promotions in Xmas, Easter, 

teams dictate  products and process flexibility. 

 Input materials delicate and must be kept at narrow environmental limits. 

 High set-up time in the production process and finished goods and WIP inventory. 

 Packaging lines independent, and intermediates need to be transported for packaging. 

 Schedules are made at the end of each week for the next week based on firmed customer 

orders and MPS values. 

 Combination of processes with varying throughputs and levels of automation. 

The detailed production planning process is as follows. Brynild runs two or three production 

shifts each day and the planned batch size of each intermediate is the amount 

that can be produced within one shift. This is done for practical reasons and to avoid 

changeover and setup times in the middle of a shift. The different changeover times between 

production of intermediates is considered when making the schedules. It is common to 

schedule long changeover products for the last shift of the day so that the changeover period 

occurs overnight. This allows for extensive cleaning (e.g. cleaning with water, which requires 

drying afterwards), at the end of the second shift. The main consideration here is that the line 

can dry after such cleaning.  
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Furthermore, intermediates are scheduled to be produced consecutively if they are used in 

the same SKU. The drying process is pacemaker and it limits the pace of the production line 

and is therefore a key consideration when making production plans. The eventual production 

plan is also used to estimate the number of required operators for shift. This is achieved by 

converting the workload into operator-hours. Many spreadsheets with planning input data 

such as changeover times between the SKUs, drying rates, input proportions and material 

estimates are managed by the production planners. After completing the production activities 

planned for each shift, a paper-based shift report is completed, and the SAP system is updated 

with the actual (as supposed to the planned) dates and amounts.  

 

4.2 Pipelife: PPC Environment Attributes and System 

Pipelife 

conglomerates in the market for plastic pipes and associated parts. The company has factories 

in Norway, and trading operations in Sweden, Norway, Finland, and the Baltic States; it is a 

market leader in the supply of plastic pipe systems in Scandinavia. 

direction for the near-term will give an even stronger focus on innovation and sustainability. 

4.2.1 Demand and supply attributes 

Pipelife products have been used in water, sewage, cable protection, electrical installations, 

and gas. A considerable share of the production is exported, particularly large dimensioned 

polyethylene (PE) pipes which is tugged to customers all over the world. However, the 

competition is stiff, and even though the middlemen in this industry (distributors) are large, 

the bulk of the customers are small and medium enterprises who are often price sensitive. 

Input feed and other materials for the production process are sourced from upstream chemical 

manufacturers, and smaller plastic manufacturers in Norway and abroad. Manufactured 

products are stored in inventory facilities located at the factory from where distributors are 

then supplied when orders are placed to the sales team. Demand is seasonal rising in the 

warmer months of the year when building and construction companies are most active and 

dipping in the winter and colder months. The products can be bought in small quantities 

(costing less than a 100 Euros) from large tools  stores or directly from Pipelife. 

4.2.2 Products attributes 

Pipelife manufactures and markets a wide range of high-quality pipe systems, providing 

tailor-made solutions for municipal infrastructure as well as for the industrial and house-

building sectors. In addition, PE pipes, polyvinylchloride (PVC) pipes, and plastic-protected 
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cables are produced to stock in several colour variants. There is also a section for customized 

solutions, mainly drainage solutions such as manholes and curved pipes with precise angular 

dimensions. In recent times, the company has been researching the potentials for smart pipes 

and systems which can reduce waste, safeguard water quality, and improve sustainability by 

using sensors and digital monitoring solutions. Some examples of 

products are given in the figure below. 

 

Figure 4.3: Examples of Pipelife's products 

4.2.3 Production process attributes 

The main products, PE, and PVC pipes are produced using injection moulding and blow 

forming. The PVC pipes are produced in similar production lines, and the processes are fully 

automated from feeding the raw materials into the mixing chamber and then dosing this mix 

into the moulding lines. For a few of the production lines, particularly those producing the 

smaller units, the packaging at the end of the lines is also fully automated. In the customized 

products department where products require significant amount of manual work to meeting 

specific customer design and engineering requirements (for example, manholes or pipeline 

elbows), the processes can include cutting, milling, grinding, and welding high-strength 

section of large PE pipes.  

4.2.4 Production planning and control 

There is no production planner title at Pipelife, but the function of production planning is 

jointly managed by the production manager and the supply chain manager. The sections in 

the factory have different control principles, with the PE, PVC, and plastic-protected cables 

mostly produced to inventory (except for cases where property developers or municipality 

projects place a large order). In general, production is made according to the demand forecasts 

and sometimes to meet specific customer orders for large projects. In additional, the company 

builds up inventory towards the high demand seasons. ERP software are used for production 

planning and inventory control while and MES software is used for production control.  
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4.3 Brunvoll: PPC Environment Attributes and System 

Brunvoll is a global supplier of heavy-duty propulsion, positioning, and maneuvering 

systems to shipping yards and marine companies with a turnover of 1000 million NOK (130 

million USD) in 2014. The company has a subsidiary in Germany and manufactures thrusters 

that are used in maneuvering large maritime vessels and smaller boats. 

4.3.1 Demand and supply attributes 

Demand for thrusters is complimentary with the demand for ships and both demands swing 

with the trends in global economy. The customers are large shipping companies and 

shipyards who individually can produce tens of large ships per year or hundreds of smaller 

yachts and ships. Brunvoll designs and produces all its products in-house to customer 

specifications, taking full responsibility for the delivered system. A few components are 

outsourced from nearby, tightly integrated suppliers. Demand is global but concentrated 

around ship-production hubs such as South-Korea/China and Eastern Europe.  

4.3.2 Products  attributes 

Brunvoll offers electric, hybrid and diesel drive systems and provides service and support for 

the entire lifetime of the supplied system. An example is shown in Figure 4.4 below. 

 

Figure 4.4: Example product - the Azimuth thruster 

In general, product complexity is relatively high; demand varies highly and is relatively low 

in comparison with, for example, an automobile engine production plant. Product variety is 

also high and typically require considerable engineering time and competence, due to the 
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degree of customization accepted from customers. In addition, products have a very deep and 

wide product structure vis-à-vis the bill of materials (BOM). The company also manufactures 

a few small standardized thrusters. 

4.3.3 Production process attributes 

Raw materials are purchased using estimates from order backlog received from suppliers and 

kept in inventory. The purchased raw materials (e.g., sheet metal) are taken to the machining 

department based on the manufacturing BOM for released production orders. The welding 

and final assembly for most customer orders are difficult to plan due to the significant 

variation in the throughput time. For the complete product from order confirmation to 

delivery, the throughput time can be a few weeks for smaller, more common systems and 

months for the more complex products. 

4.3.4 Production planning and control 

The sales team and production planner coordinate the customer ordering and delivery date 

setting process. The planner estimates a feasible delivery date by performing MRP and CRP 

calculations using dummy bill-of-materials (BOMs) and routings that are derived from 

historical completed orders. The planner is responsible for identifying (from experience) 

which BOM and routings are most like the new customer order. When order details (price, 

delivery date, etc.) have been agreed with the customer, the order is scheduled for production. 

Currently, production planning is performed using the M3 ERP system while spreadsheets 

are used less and less. The planning principle used is the backward planning, which starts 

estimating backwards from the planned due date. A key company objective is to maximize 

output while maintaining the current cost levels that is, to maximize throughput without 

increasing overtime cost or additional cost due to subcontracting. An add-on application 

shows machine loading and allows the planners to adjust due dates to avoid overloading. 

Most of Brunvoll products are made-to-order and most of the components are made-to-order 

or purchased when a customer is confirmed. However, some commonly used items are kept 

in inventory. Due to the variability in the welding and final assembly processes, production 

planning emphasizes machine capacity availability. Although equipped with an untested 

finite capacity option, Brunvoll, like several other companies in this industry, rarely uses this 

functionality. One reason in this case is the lack of experience with the functionality and the 

concern of the production planners that operations could be disrupted with unpredictable 

consequences if this functionality is used; therefore, the company uses the default setting. 
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4.4 Orkel: PPC Environment Attributes and System 

From its current headquarters in the Trøndelag region of Norway, Orkel AS started operation 

in 1949 making small, detachable tools for its local farming community. The company 

continued to expand its capabilities and in 1986, produced 

with a coupled forage harvester. Further innovations in product development followed with 

2002. With the emergence of digitalization, the company ventured into the development of 

precision farming solutions in 2014. 

4.4.1 Demand and supply attributes 

Up to 20% increase in milk production has been found when cows consume forage stored in 

the form of bales compared to those consuming forage stored in silos. The effect of this 

improvement in agricultural milk production has led to increasing demand for bale 

production machines  a form of combine harvesters. In addition, the ease of transportation 

of bales compared to forage stored in silos has made spurred the demand for these products, 

including also in other industries such as for industrial waste management machines. This 

new application area is gaining increasing attention due to the improved ease of 

transportation and handling after compacting into bales wrapped in plastic foil. 

4.4.2 Products  attributes 

An example product is shown in Figure 4.5. Orkel manufactures agricultural and industrial 

compactors (also referred to as baling machines).  

 

Figure 4.5: Product example - the MP2000-X baling machine 
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The company manufactures several variants of these compactors, broadly classified into three 

(3) product families in addition to several accessories  Dens-X (including the HI-X Evo and 

HI-X), MP series (the MP2000-X) and the MC series (MC 1000 and MC 850).. The industrial 

compactors are of the Dens-X family while the agricultural compactors are three product 

families. The compactors make bales of three diameters namely, 115 cm, 100 cm and 85 cm 

with the Dens-X being the newest product family with the highest capacity. The compactors 

and the accessories are used for compacting, baling, and wrapping maize silage and other 

forages. In recent times, more digital capabilities are being built into the products to make 

improve the performance and avoid breakdowns through condition-based maintenance and 

other data-driven methods. 

4.4.3 Production process attributes 

The production facility is organized in a functional layout as shown in the figure below. There 

are several workstations within the various departments  10 welding stations, and 15 

assembly stations. Other components and panels are products in other departments and 

brought to the assemble department. Some of the welding process has been automated and 

the company embraces several lean production tools and methods. 

 

 

Figure 4.6: Material flow at the assembly line 

4.4.4 Production planning and control 

Orkel AS uses an MRP system  Visma Business for tracking the purchase and consumption 

of materials from inventory, but not for production planning. Instead, customized 

spreadsheet templates are used for planning since this provides flexibility and a good pictorial 

overview of the work-in-process and the backlog of orders. At periodic planning meetings, all 

delays and weekly workplans are discussed and aligned. There is a seasonally high demand 

at the beginning of the harvesting season.  
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When orders are received and agreed with a customer, the planning spreadsheet is updated 

with predetermined work estimates for the order. In the example in Figure 4.7, two product 

orders are indicated where orange represents product type-1 and the yellow represents 

product type-2. Each coloured cell has a number representing the estimated number of 

operators required for the operation at the date given in the date row on the top of the table. 

The first top row of the template indicates the current estimated manning requirements. 

 

Figure 4.7: Snippet of planning template for capacity planning 

 

4.5 Tine: PPC Environment Attributes and System 

owners and 9,000 cooperative farmers. A major input into Tine  is fresh milk which 

is collected by milk trucks from several farms across Norway.  

4.5.1 Demand and supply attributes 

The products are primarily sold through all grocery retail stores, local convenience stores and 

kiosks. Domestically, the company faces some competition in most product categories. 

Promotions and other sales campaigns are common. The company is successful 

internationally as well. Demand uncertainty is high because there is a large variation in 

periodic demand, the promotional activity is high and increasing, and the presence of the 

bullwhip effect is high. Despite the high perishability, the demand is still met from the 
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finished goods inventory for most of the products. Because of the aforementioned factors, the 

fresh food supply chain can be considered as one of the most challenging and therefore 

requires a very capable PPC system. Tine has a strong brand recognition and competitors 

typically compete with lower prices as expected with most products in this commodity-based 

industry. There is a trend towards more sustainable production and Tine continues to 

innovate in this direction. 

4.5.2 Products tributes 

Tine Products include dairy-based products with shelf lives ranging from 11 to 91 days. This 

include short shelf-life products such as fresh milk and various kinds of flavored milk 

products. It also includes yoghurts, butter, cream, cheese, sour cream and deserts, bars, juice, 

and fruit drinks with shelf lives going more than a few months. Many of the products require 

strict environmental controls to meet regulatory requirements. Storage and transport 

temperatures must be kept within specified limits to preserve the shelf-life of the products. 

During the collection of raw materials, the processing, intermediate storage, shipment and 

retailing for milk, creams, and some cheese, require lower-than-ambience temperatures and 

tight controls to forestall biological contamination. 

 

Figure 4.8: Examples of Tine's products 

4.5.3 Production process attributes 

Tine has two different types of supply chains: direct distribution to retailers and distribution 

through wholesalers. The process is a make-to-stock  and one-to-many  type of operation, 

i.e., the type where one raw material  milk  is processed into many products. Tine (as well 

as its competitors) must meet a high service-level requirement. The company produces from 
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31 dairies, two central warehouses and two distribution terminals. Production is done in 

batches with a high level of process automation. ctories are also located in multiple 

regions within Norway. 

4.5.4 Production Planning and Control 

The supermarket chains require frequent deliveries with very short response times when 

orders are placed. This is partially due to the high perishability of many of the products. The 

challenges are increasing as there are more product variants and more demand uncertainty. 

The consequence is an even lower predictability. Furthermore, because weather patterns 

greatly affect demand at the supermarkets, PPC needs to be able to take all these into account 

when forecasting demand. Food producers (including Tine) often bear the cost of unsold items 

and discounts when expiry dates approach and they therefore tend to invest heavily in 

forecasting tools in addition to the use of ERP systems for production planning in the factories. 

 

4.6 PowerMac: PPC Environment Attributes and System 

PowerMac is a global manufacturing firm which produces low- and medium-voltage power 

and automation systems for the marine industry. The products are designed to deliver 

automated and energy efficient power management for passenger, off-shore, and other 

special-purpose vessels. The company has its headquarters in Scandinavia but has service 

offices and factories on every continent. PowerMac produces electronic and electro-

mechanical within six general application areas namely, deck machinery, pumping of water 

and other liquids, propulsion systems, security and safety systems, electric power systems, 

The company is organized around six main 

manufacturing hubs  one each in Norway, Sweden, Finland, USA, China, and Singapore. The 

China plant, which produces propulsion systems, was the focus of this case study. 

4.6.1 Demand and supply attributes 

Demand for PowerMac are often subject to volatile global economic events due to 

the nature of the industry. The products are used in marine vessels (namely, ships, offshore 

oil rigs) which are typically expensive, owned by few international firms and operated in 

multiple countries concurrently. However, the trend in the last two decades whereby an 

increasing share of the worlds marine vessel production was moved to Asia (first South Korea, 

but increasingly, China) led to the establishment of this factory over a decade ago. Most 

components and materials are sourced from local suppliers while a few components are 

procured from Europe. 
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4.6.2 Products  

PowerMac produces various types of Power and propulsion systems including electronic 

relays and controls, explosion protective components and systems, circuit breakers, current 

and voltage sensors, fuse gear, soft starter, pilot devices, motor controllers uninterrupted 

power supply (UPS) systems, and emergency lighting solutions. The China plant produces 

two types of rudderless and gearless thrusters and offers some customization to customer 

engineering requirements. The products are complex and electromechanical, with each unit 

having hundreds of components. 

 

Figure 4.9:  

4.6.3 Production process and Supply chain attributes 

Complex engineer-to-order products typically require an engineering design phase in their 

production. For PowerMac, the engineering design process is handled in-house except for 

these products. The products are assembled from components and subassemblies supplied by 

suppliers. The China production facility uses many suppliers although a few of them have 

well established longer-term relationship with the plant. Notably, four suppliers have been 

identified as being most vital by the volume of products they supply. 

4.6.4 Production and supply chain planning and control 

PowerMac ASA is run as an engineer-to-order operation with a fully project-based control of 

production. After a sales contract is agreed with the customer, the sales team hands-over the 

customer order to the project team. The process involves engineering, purchasing of 
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components and materials, assembly, installation, and commissioning. The process is 

managed with both an ERP system and add-ons that complement the functions that the 

system does not adequately address such as customer management. The on-time delivery 

(OTD) measure is a key performance measure for the company. In this case, delivering too 

early as well as later deliveries are undesirable. 

 

4.7 PPC Challenges at Case Companies 

4.7.1 PPC challenges at Brynild 

The constraints imposed by the production environment s attributes described above creates 

some challenges for PPC at Brynild. Furthermore, in view of its sometimes competing KPIs 

and the perceived shortcomings of the ERP system, compromises must be made when setting 

PPC policies to improve the performance of the production system. The production planning 

data is currently maintained manually in SAP and is not updated automatically. These means 

that until the plans are updated manually, they do not account for the most frequent updates 

to the planning environment such as if a new input raw material consistently leads to 

overproduction using the out-of-date values. 

Secondly, some of the constraints set upon the system to maximize the use of employee time 

creates flexibility issues for the planners. For example, the typical two-shift per day system 

with a planning policy to try to fit production into each of these two shifts leads to a situation 

in which planners aim to produce each batch in quantities that match the duration of a shift 

for the set-up, production and post-production cleaning activities. While this may seem 

innocuous, it can be a major planning efficiency delimiter because this policy does not allow 

enough flexibility regarding lot sizes and it places an additional burden on the planners when 

planning the sequence of batches. Furthermore, as the production demand increases due to 

increasing market demand since the pandemic began, the need to increase the effectiveness 

of this planning process is further highlighted. There is an option to use three shifts instead of 

two, but in the case, the drying and the packaging sections again place a limit on this option 

and must be addressed before this three-shifts option can be fully utilized. 

All these challenges combine with the market (demand and supply) constraints to lead to 

the following consequences: 

 Queues/waiting and poor asset utilization due to suboptimal material flow 

 High WIP inventory due to the combination of processes with varying throughputs and 

levels of automation 
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 Resource constraints and capacity underutilization due to the fixed process layouts 

 Large swings in resource requirements due to the current heuristics-based planning 

approach and planning of the bottleneck process (drying) 

 Long production lead time due to large batch-sizes and high set-up times 

 High demand variation due to frequent and sometimes uncoordinated promotions by 

supply chain actors 

 Large number of products (46) from the confectionery business alone leading to high 

finished goods inventory 

 In addition to the large number of products (52 primary input materials), there are also 

many product routings which leads to a high combinatorial scheduling problem. 

Two primary problem groups can therefore be identified  one, a short-term scheduling 

solution that takes all these constraints into account, and a precision planning support system 

that reduces the need for using gut feel in estimating the expected yield in planning. 

Additionally, there is also a long term- planning problem in which a solution that provides 

more flexibility than that offered by the current Microsoft Excel and SAP R3 ERP system. 

4.7.2 PPC challenges at Pipelife 

The challenges associated with PPC at Pipelife centre around tracking and tracing materials 

and componen

and suboptimal material flow in certain sections of the factory. Occasionally, the storage 

location of consumables can be haphazard since the factory has several storage facilities 

within the factory area and operators occasionally forget to move pallets of consumables to 

the designated locations. 

Furthermore, since materials are purchased based on inventory levels in the ERP system, it is 

important  even critical  for the numbers in the system to be accurate. However, there is the 

issue that inventory levels of some input components and consumables do not match what is 

on the ERP system. For example, plastic pipe covers/sealants (  

the ABC inventory classification) are often culprits. This is due to outdated product data and 

BOM data on the ERP system; difficult for operators to update the materials register when 

materials are consumed; and losses during the movement of products from the factory to 

other locations. It also happens that drawn-down pallets are occasionally returned to the 

warehouse after a batch is produced, and the ERP record still appears as having a full pallet 

instead of the reduced actual quantities, since the measurement system counts pallets and not 

a measure of the contents. The pallet count is only reduced when a full pallet is emptied, and 

individual consumption is not recorded due to the inconvenience such detail would require. 
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4.7.3 PPC challenges at Brunvoll 

Complex, highly customizable production causes uncertainties in the production, so much so 

that planning then relies on the shift planning with large planning buffers. In addition, 

material planning is order-driven and not forecast based due to the high holding cost of input 

materials and components. Demand exhibits large swings due to the increasing chaotic global 

economy which affects customers, making forecasting problematic. The use of dummy BOMs 

and routings is another source of variation in delivery precision. And unfortunately, the 

experience is carried by the production planners and is not available in a computer-useable 

format. When a planner leaves the company, the planner carries that experience with her/him, 

and new planners must learn and acquire this experience afresh.  

Furthermore, due to the high design and engineering content for every customer order, the 

PPC system is unable to plan for this part of the lead time and must use estimates, the 

consequence of which is a lower delivery precision. These non-physical production activities 

need to be captured and integrated into the production planning process to improve PPC 

performance. The consequence of all these challenges and the current PPC system is that 

orders are consistently late which is why the planners always use a three weeks buffer for the 

production plans.  

4.7.4 PPC challenges at Orkel 

While some common components of the three product families are kept in inventory, the 

cutting and welding of customizable parts and the main assembly starts main assembly starts 

after a customer order has been confirmed. This creates a need for speed to be competitive. 

However, there is much uncertainty in the assembly process, most of which are identified at 

the final steps of testing and control. This leads to delays when major corrections need to be 

made. A process-variance analysis of the assembly process data for one product family for the 

year 2019 was carried out. The analysis showed a high amount of variation at two 

workstations namely, preparation and testing. As this are not core processes, but rather 

quality assurance process steps, it could imply that Furthermore, the existing layout imposes 

two lines on the assembly process up until the electrical workstation. After this station, there 

is a single flow line and the variation per order and workload across workstations create 

waiting and delays in the assemble line.  

4.7.5 PPC challenges at Tine 

Tine runs a challenging supply chain. The short shelf-life of most of the products means that 

speed to the shelves and transport conditions are given lots of attention. Ideally, due to the 

sometimes-varying cooling conditions on the path to the shelf, 
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also desirable to monitor  till it is purchased. Tine, 

as well as its competitors, face this challenge. Furthermore, there is also the potential to 

analyse material flow paths in a bid to reduce transportation wastes. And all the generated 

information could be shared with SC partners to improve the overall supply chain surplus. 

strategic 

to suboptimal inventory planning strategies by the SC partners. These are some of the reasons 

why the company invested in RFID technology. The pilot project tested the use of RFID to 

improve control through better tracking and tracing. However, the project had to be 

abandoned after two years as it did not achieve all the expected benefits. 

4.7.6 PPC Challenges at PowerMac 

The main PPC challenge for PowerMac stem from its dependence on suppliers for all the 

components it uses in each of its products. As a result of this dependence, it often suffers 

delays in the supply of components and subassemblies needed to fulfil its customer orders.  

Poor delivery performance by these suppliers to PowerMac disrupts its production plans in 

two ways. First, since the production planning at PowerMac is scheduled based on the 

available production slots and delivery dates promised to the customer, delivering earlier 

than agreed is generally disadvantageous. This due to increased inventory levels and capital 

tie-downs. Secondly, late deliveries from suppliers is also crucial because such delays lead to 

production stoppages, waiting, overtime work, risk of high penalty and reputational damage 

from the shipyards. These then lead to increased costs in project execution and reduced 

profitability. To manage its own consequent order fulfillment process variability, which is 

relatively high, PowerMac uses internal buffers. The causes for high delivery-time by the four 

main suppliers are summarized in Table 4.2 below. 

It was also found that the most significant causes for delays were poor communication and 

coordination at Supplier A, process inefficiency at Supplier B, lack of process standardization 

at Supplier C, and a long transport distance in addition to inflexibility in the order-fulfilment 

it difficult for PowerMac to coordinate and manage suppliers. Very often, problems are 

discovered much later in the production process. As a result, it is highly problematic to trace 

the sequence of events that led to the issue precisely, and thus develop solutions to avoid such 

issues in the future. This is especially true with supplier A and B, who produce long lead-time 

components.  
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Table 4.2:   

 Supplier A Supplier B Supplier C Supplier D 

Primary 
source of 
untimely 
delivery 

Poor coordination 
between design 
departments of 
PowerMac and 
Supplier A 

Defective output 
from the casting 
process 

Lack of process 
standardization 

Long transport 
time; and 
inflexibility in 
order fulfilment 
process; 

Where/ 
when does it 
happen? 

Design phase, due 
to need for customer 
and 3rd party 
approval 

Casting process 
facility 

Entire operation 
relating to this 
supply chain 

Rush orders 

Other 
observations 

Poor inventory 
control leading to 
missing parts 

Poor coordination 
within two facilities; 
high inventory 

Need to have large 
time buffers for 
delivery of orders 

Poor inventory 
control, and use 
of large buffers 

 

4.8 Insights from Cases and Potentials for Digitalisation 

A summary of the PPC environment attributes and challenges are given in Table 4.3 below. It 

is common to see issues about inventory management for the semi-process, MTS case-studies 

and issues about delivery precision for discrete, MTO manufacturers. This is likely because of 

market engagement strategies in the two companies. However, some of the challenges 

observed in the cases have been unique.  

For example, at Brynild, one of the current PPC challenges is the result of a history of planning 

policy compromises to achieve stable operation. Instead of planning each production batch to 

fit a shift as it currently done, planning for smaller batch sizes might lead to improvements in 

flexibility, inventory levels, and other KPIs. However, changing this policy might reduce the 

efficiency and stability required in operator shift-planning. This problem is not one that 

digitalization can easily solve without causing much operator dissatisfaction especially while 

the issue of process uncertainty at the drying section persists. On the contrary, the challenge 

relating to process uncertainty is more amenable to solutions using emerging digitalization 

technologies since process data is often available of can be collected with increasingly 

abundant sensors. Furthermore, the type of data in process or semi-process production is 

often time-series data for which many simple and advanced data analytics and machine 

learning algorithms have been developed and published. 

For PowerMac, one reason for its challenges is that process times are not measured at the 

suppliers, making it very difficult to trace the sources of process variability. Therefore, one 
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key outcome of this study was the proposal that PowerMac and its suppliers begin to monitor 

actual process times or order fulfillment times, especially for orders involving long lead-time 

items. Another suggestion is to introduce delivery-time windows (or period) in purchase 

orders, thus allowing suppliers more flexibility in planning their own production to 

accommodate other operational constraints. In cultures where there is punishment for 

revealing issues, a management policy that rewards openness  maybe in the form of a 

continuous improvement programme  will lead to improvements. 

For Tine, the cost of implementing a material tracking technology and the relative benefits for 

the organization turned out to be the most critical for the choice of a solution to solving their 

production and inventory control problems with RFID. This is important especially because 

there was a perception by Tine that the wholesalers had more to gain than Tine from the RFID 

project. However, the cost had to be borne by Tine. Thus, the RFID project was discontinued 

although both Tine and the supermarket chain involved in the pilot project indicated interest 

in pursuing similar improvements projects in the future. 

Therefore, the preceding discussion highlights some of the considerations that must be made 

in developing a smart PPC solution. The commonality of scheduling-related problems that 

lead companies to keep larger-than-ideal inventories and the challenges with tighter control 

of production processes are areas where digitalization technologies could be applied. 

Technologies like the Internet-of-Things, data analytics, and potentially machine could lead 

to improved calculations and scheduling. Meanwhile, for the make-to-order cases, delivery 

precision issues and common capacity calculation problems appear to be challenges that can 

be ameliorated at the least with improved coordination among stakeholders and streamlined 

processes. 
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5 

Conceptual Model and Use-case Matrix 

for Smart PPC  
--- 

What are the elements of a smart PPC system? In this chapter, a conceptual model of smart PPC is 

developed from the literature and case data. A use-case matrix concludes the chapter. 

--- 

5.1 The Smart PPC Concept 

production operations and aims to intelligently plan and 

control current industrial assets and materials as well as future, more adaptive production 

systems. A Smart PPC system should employ emerging technologies to: enable the reduction 

of forecast uncertainty by using real-time demand and production system data; offer dynamic 

re-planning in the sense that it enables frequently updating and the ability to re-plan when 

there are new developments in the production system; capture the influence of an expanded 

set of factors including telemetry factors especially for the process and semi-process 

industries; to capture the experience of the operators or the production planners over time; 

and predict short-term system parameter values and enable increase agility (Strandhagen et 

al., 2017, Oluyisola et al., 2020, Bueno et al., 2020). 

This section presents the developed smart PPC concept and a description of its elements i.e., 

addressing RQ1. As firms digitalize their production operations in the move towards industry 

4.0, they progress in stages. Schuh et al. (2017) identified six progressive stages that an 

operation on the path towards smart manufacturing should follow. These are 

computerization, connectivity, visibility, transparency, predictive capacity, and adaptability. 

To simplify, the six stages were re-classified into three namely: connected, transparent, and 

intelligent. These three stages, shown in Figure 5.1

managers who seek better tools to improve their ability to respond quickly and accurately to 

changes in the business environment. A description of the theory behind each stage, the 

conceptual model, and a table of potential use-cases for smart PPC follows.  
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5.1.1 Connected 

Computerization of PPC processes is, by itself, not new. ERP systems and spreadsheets have 

been used for decades and almost every production system today is planned and controlled 

to some degree by either of these technologies. Moreover, the use of spreadsheets does not 

appear to be waning even with the advances in ERP systems and other planning solutions, 

probably due to the flexibility and ease of use that spreadsheet solutions afford most 

production planners (Klaus et al., 2000, de Man and Strandhagen, 2018). In addition, the 

production processes nowadays tend to have more electronic components and programable 

logic controllers (PLC), thus allowing for more automation of the production processes. 

Increasing computerization means that all elements in a production system have a digital life 

and can therefore be connected to a digital industrial network in the smart factory. 

On the contrary, connectivity is only just becoming widespread in this decade of digitalization 

and industry 4.0 as sensors and networking infrastructure gradually become ubiquitous and 

more affordable (Iansiti and Lakhani, 2014). This sensing will be achieved using auto-

identification and telemetry data collection sensor technologies such as radio frequency 

identification (RFID) technology, beacons and IoT devices (Liao et al., 2017). Furthermore, 

since the move from the internet protocol version 4 (IPv4) to the new internet protocol version 

6 (IPv6) standard which theoretically can allow up to 3.4*10E38 internet addresses, it is now 

possible to connect things that hitherto would have been too complicated or expensive to 

connect to the internet (Schuh et al., 2017, Davies, 2012). Therefore, with increasing ease to 

improved and all the data generated by the action or movement of things can then be used to 

improve the way systems are designed, the way processes and operations are planned and 

managed. This implies that tracking and tracing items within a factory becomes much easier. 

IoT connected sensors can, through IoT edge devices, interact with the physical production 

system sending location and state and compute request and receiving data and instructions 

from services hosted on cloud infrastructure. IoT Edge devices are more suited when there is 

need for quick reaction (e.g., action to prevent a crane from collapsing if the sensor data 

already detects that might happen, or action to prevent an automated tractor from colliding 

with an approaching operator) especially when there is higher-than-acceptable device to 

cloud data transfer latency, and when bandwidth could be a challenge (e.g., on offshore 

platforms what use satellite internet connection and have several functions demanding the 

available bandwidth) (Chen et al., 2018).  
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Consequently, real-time planning and control of the production system and supply chain 

becomes possible. Examples abound especially in the retail industry, which gained popularity 

in the past two decades due to the performance improvement achieved in inventory 

management and distribution logistics (Kärkkäinen, 2003, Ustundag and Tanyas, 2009). The 

same principles are now being applied in job shops, and production lines and warehouses at 

equipment manufacturers (Huang et al., 2019, Oluyisola et al., 2018b). Thus, computerization 

and connection enable smart PPC by making enabling the determination of the exact location 

of products, routes travelled in the factory, status of machines and other resources, frequency 

of use, idle times and non-value-added time, etc. all information which can then be processed 

with data analytics solutions to gain insights into the state of the system, why the system is 

performing that way, and the performance of the PPC processes managing that production 

system 

5.1.2 Transparent 

ible to make a digital model of not 

only individual machines or factories, but also components and final products moving 

through the production processes, i.e., a digital shadow of the entire system and all its 

elements (Schuh et al., 2017, Park et al., 2019). The digital shadow represents a digital state 

map of the production system and accepts data from the connected elements of that system 

to present in a form, typically visual, that production managers and planners can use to plan 

future states and operations of the system. A digital twin meanwhile goes a step further and 

in addition to accepting data can send action instructions to the production system (Kritzinger 

et al., 2018). The data can be collected from within the factory or on a truck transporting raw-

materials or other critical components or from the sensor-enabled pallets at the customer 

warehouses. It then becomes possible for a production planner to analyze the data to 

determine the sources and root-causes of logistical problems at the strategic, operational and 

tactical levels using dashboards with real-time KPIs collected from integrated enterprise and 

IoT systems (Kuo and Kusiak, 2019, Schuh et al., 2017). 

Regardless of the type used, or even in cases where no digital shadow or twin is used but that 

KPI data specific to the production system are sent to a database for processing and analysis, 

there is a tendency for this data to be enormous and of high-dimensionality if they are 

collected from several IoT sensors in a typical production system. This situation presents an 

opportunity and a challenge. First, the abundance and breadth of data possible allows for 

higher precision of simulation models of production systems (Kuo and Kusiak, 2019). 

However, it also creates a case in which standard data processing technologies are not capable 

to derive insights from such (big) data. As such, new emerging technologies and methods for 
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big data analytics such as MapReduce and Hadoop would be required to derive value from 

all the data being generated (Ren et al., 2015). And even when the data processing challenge 

is overcome, there is also the causality problem which requires an understanding of the 

underlying engineering principles and business context to translate data correctly (e.g., 

translating sensor measure depth in a raw material silo into estimated volume of weight of 

materials in the silos) and to establish cause and effect relationships from the data being 

generated by the system and the production and logistic KPIs of interest (Schuh et al., 2017).  

Hence, when used appropriately, big data analytics enable transparency of process 

performance, critical materials and critical paths, estimate delays per supplier, process 

material yield, and other factors affecting the behavior and output of the system (Dubey et al., 

2019, Strandhagen et al., 2017, Kuo and Kusiak, 2019, Wamba et al., 2015). However, it still 

requires a production planner who is highly skilled in production planning and data analytics 

methods to take an active look at the data, process and analyze the it, and make decisions. 

With the increasing research and wide application of ML and artificial intelligence, there is 

potential for a machine intelligent, self-optimizing PPC system which can handle all the 

relevant processes, process all data and interact with planners from time to time as may be 

determine by the production managers. 

5.1.3 Intelligent 

An intelligent system should be able to combine data from several sources about itself and its 

environment to learn and autonomously predict events which may influence its performance 

regarding set goals. In production, that implies being able to predict production delays, 

supplier delays, reduction in demand, etc. to avert a performance failure. Recent industrial 

interests in ML has led to significant advances which make these technologies and methods 

more feasible now for PPC than, say, a decade ago. Research into the use of AI approaches to 

planning and scheduling production systems have been going on since the 1980s, although 

those were of the form of expert systems and knowledge-based systems (Kusiak, 1987). 

However, it is the interest of companies like Google, Facebook and Amazon with vast 

compute and human resources have extended the capabilities and possible use-cases of ML 

and have also extended neural networks (a type of ML method) to new depths (i.e., deep 

learning) with advanced techniques and applications.  

There are three types of ML namely supervised, unsupervised, and reinforcement learning 

and all three types have been explored in PPC research, although limited empirical case 

studies have been reported. Supervised learning techniques have been applied in (Monostori 

et al., 1996). ML has also been applied for planning and control in the extended enterprise for 
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predicting supply disruptions (Brintrup et al., 2019). Reinforcement learning applications has 

been experimented on for real-time scheduling (Shiue et al., 2018). Other noteworthy 

empirical studies of ML use in PPC have been published. Using case studies, Garetti and 

Taisch (1999) explored the use of artificial neural network (ANN) for the selection of a 

production control strategy at a manufacturer of valves, and as a decision support system for 

plant parameter definition at the paintshop of a wagon manufacturer, highlighting each 

cases such as these, many of the ANN research output at that time lacked real-life application 

(Corsten, 1996).  

Furthermore, these cases have been applied to static, one-off PPC problems while research 

looking at the dynamic case of real-time learning PPC system has been rare. In the past decade 

however, deep learning has received enormous attention from the software industry and has 

witnessed significant application in industries outside of manufacturing. Prior to that, several 

studies investigating the use of ML methods to address different subsets of the PPC system 

where published. For example, Hruschka (1993) used the marketing variables (current and 

one-month lagging advertising budget, and the retail price), together with an exogenous 

variable (average monthly temperature) to predict sales for an Austrian consumer brand. 

However, the author highlighted how computer processing power was a challenge due to the 

limitations of the approach at that time (i.e., the low learning speeds of ANNs). 

an autonomous solution can be built using robotic 

process automation (RPA) with event-driven or scheduled applications and data pipelines for 

connected system of applications. According to Wróblewska et al. (2018), RPA allows for 

continuous upgrade of solution modules and therefore allows for continuous learning. Thus, 

smart systems can be preprogrammed so that they can not only run independently, but also 

learn and improve without human interventions. Nevertheless, the case study in 

(Wróblewska et al., 2018) (and most in the RPA literature) was within the financial services 

and document management application. It is noted that there is limited application in 

production management, and more so in PPC despite the potential benefits. 

5.2 Use-cases Matrix for Smart PPC 

The smart PPC system should incorporate the different levels of the PPC domains and 

intelligently manage all the key processes using data from diverse sources and allow human 

intervention. It should also provide a mechanism for continuous feedback from the 

production system to handle events that occur, the way a fully human-managed PPC system 

would work. 
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Figure 5.2: Conceptual diagram of smart PPC for a connected production system 

 

In general, smart PPC should perform better since it will be using a vast array of endogenous 

data from the production system and exogenous data its environment. And for some 

industries, the opportunity may be greater to incorporate more data into the production 

planning and control processes. Furthermore, when viewed in terms of PPC challenges, 

several use-cases can be identified at each of the three stages leading to a Smart-PPC system 

as the following table shows. The table was developed from the literature and brainstorming 

with senior researchers in field operations management with extensive research experience 

industrial logistics and supply chain management. 
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6 

The influence of Planning Environment 

Attributes on Smart PPC 
--- 

What constraints do the planning environment attributes impose on the design and development of a 

smart PPC system? In this chapter, this question is answered by using the structural contingency 

theory, with empirical data collected from four case studies. Data is collected using an interview 

protocol, semi-structured interviews, and field investigations. From the insights garnered from this 

evaluation, and the literature, a smart PPC strategy framework is then proposed. 

--- 

6.1 Smart PPC Projects at Case Companies 

Despite all the noise and marketing, many companies are struggling in their efforts to become 

more data-driven and attain smart operations (Bean and Davenport, 2019). The realities of the 

adoption and use of data analytics, machine learning tools, cloud computing, and related 

smart technologies have been much more challenging than many anticipated. From anecdotal 

evidence with industry partners, and as the extant literature shows, some projects are likely 

to succeed while others are more likely to fail depending on the structure of the supply chain, 

the attributes of the production system, and the kind of products being considered. In order 

in production operations with succeed or fail.  

In this chapter, the ideas explored previously, i.e., about the challenges and limitations of 

smart technologies in the planning and controlling of production operations, are extended to 

several cases. The aim is to understand if and how the market, products, and process attributes 

affect the kind of opportunities pursued, the challenges faced, and the successes achieved.  

6.1.1 Smart PPC related projects at Brynild 

Brynild has implemented several automation projects in the past few years such as using 

robots in packaging and palletizing, using visual control and dashboards, etc. One such 
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dashboard projects on the production lines provides direct access to data from the production 

line, thereby providing the planner real-time access into the status of the processes.  

The company is also investigating laser technology to measure the weights of products at the 

storage for intermediates, something that is not currently being measured. This will enable 

the measurement of the production at this intermediate stage and therefore it will allow more 

precise determination of the performance of the earlier processes before the products are 

weighed at the packaging line. Such data can then be integrated with other data sources to 

enrich big data analytics and machine learning improvement projects. 

The company is currently implementing a digital system which collects data from its 

production line and sends it to a data warehouse where big data analytics (BDA) tools can be 

used to harness this data and generate meaningful insights. Despite these efforts, Brynild 

struggles with its development of BDA and potential use of machine learning (ML). There 

may be several reasons for this, one of which is the complexity of the existing ERP system. 

The sheer cost of modifications and upgrades was highlighted as a major hinderance 

regarding the move to the use of smarter PPC with data analytics and ML. However, new 

cloud solutions such as Microsoft Azure and Google Cloud solutions offer a means to 

overcome such challenges. 

6.1.2 Smart PPC related projects at Pipelife 

Pipelife is involved in projects to improve material flow within the factory and the production 

efficiency of the operation. At the operational level, these include a pilot project investigating 

the use of autonomous guided vehicles (AGVs), and an investigation and pilot of ML for an 

autonomous error detection and classification in the PVC production lines. The company has 

also investigated the use of RFID for material control in the shop floor and warehouses. In 

addition, Pipelife is also involved in a collaboration project for a digital platform solution for 

the industry which will enable closer interaction with the final customers and create new 

product configuration discoveries. 

6.1.3 Smart PPC related projects at Brunvoll 

There is the smart welding project which aim to use robots to improve the quality, speed, and 

cost performance of the welding process. There is also a plan to develop a RCCP spreadsheet 

for the planners and the sales team to be able to quickly check available-to-promise (ATP) 

capacity before confirming a new customer order. A condition monitoring service if also 

offered to customers. Finally, there is a new plasma and water cutting machine with an 

integrated software for managing the production process and inventory of steel plates.  
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6.1.4 Smart PPC related projects at Orkel 

Orkel ventured into the development of precision farming solutions in 2014 and is increasing 

the digital capability of its products to improve product lifecycle. The company is attempting 

to utilize machine learning to generate intelligent insights about the use of the product and 

the health of its components by harnessing the data generated from integrated sensors. Other 

ongoing initiatives include kit-based material control for the assemble process, a research 

project to develop a decision support tool for selecting geography-oriented marketing, and a 

method for sharing plans and forecasts in Orkel  

 

6.2 Cross-case Analysis: Constraints and enablers on the path towards 

Smart PPC 

Following the analysis, this section reflects on findings from the cases by analyzing the cross-

case observations in the following sections. Thereafter, these findings are discussed within the 

backdrop of the literature presented earlier. The discussion is structured as follows: First, a 

discussion is presented about how planning environment attributes and supply chain 

structure, and extant enterprise planning systems, enable or inhibit smart PPC as seen from 

the cases studies  in section 6.2. Thereafter, a discussion of the sustainability implications of 

smart PPC (RQ3) follows and an attempt is made to explain why the case data revealed little 

explicit influence of sustainability KPIs on current PPC processes in the observed cases. This 

section is concluded with a brief discussion of some managerial implications of these findings 

(section 6.3). A comparison of the case companies is presented in Table 6.1.  

6.2.1 The influence of planning environment attributes 

While there are commonalities among the case companies, such as the tendency of production 

planners and managers to use simpler tools such as spreadsheets  for planning or scenario 

analysis  a common theme was the lack of KPIs for sustainability in the PPC planning 

process. Recall from section 2.7 that the moderating PPC environment attributes grouped into 

market, product and process categories can be further measured in terms of market attributes, 

product attributes, and process attributes. For the four cases, the semi-process operations differ 

from the discrete manufacturing operations for some of the attributes and some other 

attributes show no specific patterns. For example, demand uncertainty is higher for Brynild 

and Pipelife (MTS environments) relative to Brunvoll and Orkel (MTO environments). On the 

other hand, product variety and the relative level of supply uncertainty for inputs does not 

indicate any pattern in the sampled cases and may not explain patterns in smart PPC projects. 
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Table 6.1: Cross-case comparison of smart-PPC-related projects  

  Brynild Pipelife Brunvoll Orkel 

 Classification Semi-process Semi-process Discrete Discrete 

M
ar

ke
t 

at
tr

ib
u

te
s 

Demand uncertainty High High Low Low 

Market competition National; high Global; medium Global; medium Global; medium 

CODP MTS2 MTS/MTO2 MTO MTO 

Typical finished goods 

inventory 

High High Low - 

Input supply 

uncertainty 

Medium Low Low Medium 

Few vs many suppliers Medium Few Many Many 

P
ro

d
u

ct
 a

tt
ri

bu
te

s 

Variety Medium Low Medium Low 

Customization - Low Medium Medium 

Complexity Low Low High High 

Shelf life Low High High High 

Electronic - - Medium Medium 

Volume-to-cost ratio Medium High Low Low 

Unit cost Very low Low High High 

Final product or input Final product Input Input Final product 

P
ro

ce
ss

 a
tt

ri
bu

te
s 

Lead time Days Days Weeks Weeks 

Batch size > 1000s >100 1 or few 1 or few 

Process automation Medium High Low Low 

Process type Repetitive Repetitive Job shop Job shop 

Process tolerance 

specificity requirement 

Medium High High Medium 

Cost of capacity 

expansion 

Medium High Low Low 

 
Planning and shopfloor 

control 

ERP + Spreadsheet ERP + MES Spreadsheet Spreadsheet + 

custom add-ons 

 Inventory control ERP ERP ERP ERP 

 

Key PPC challenges Planning precision 

uncertainty due to 

factory 

environment; high-

combinatorial 

scheduling 

problem 

Poor tracking of 

key consumables; 

high holding 

inventory in 

preparation for 

high demand 

season 

Variation in 

delivery precision 

by component 

suppliers leading 

to poor delivery 

precision 

MRP inefficiencies in 

final assembly; large 

CRP buffers to 

compensate for high 

variability in 

assembly lead time 

 

Connected PPC 

projects1 

Give planners 

remote access to 

operator dashboard 

on the shopfloor 

RFID for the 

connected factory 

Sensor-in-pipe 

technology 

Sensors for 

collecting usage 

data 

Connect with the 

SFC systems; 

product sending 

data to cloud 
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  Brynild Pipelife Brunvoll Orkel 

 

Transparent PPC 

projects1 

New dashboard for 

planning and 

scheduling 

Dashboard for 

production lines 

RCCP2 tool to 

support sales 

process 

Upgrade of planning 

tool for resource 

specificity 

 

Intelligent PPC 

projects1 

ML for more 

process control and 

higher planning 

precision 

ML for quality 

control in lines 

ML for quality 

control in the 

welding process 

and product CM3 

ML for processing 

product use data 

and predicting 

service needs 

 

Sustainability 

consideration in PPC 

process 

Not considered 

explicitly, except at 

the strategic level 

Yes, as a measure 

of the quantity sent 

to recycling. 

Not considered 

explicitly, except 

at the strategic 

level 

Not considered 

explicitly, except at 

the strategic level 

1 Smart planning projects include both recently deployed within the past three years or currently being developed 

or piloted. 2 MTS = Make-to-stock; MTO = Make-to-order; RCCP = rough cut capacity planning. 3 Condition 
monitoring 
 

The general pattern of smart PPC technology projects however followed the pattern. For 

connected PPC, the two MTS cases have pursued or are pursuing the use of sensors to 

establish new connections to the data being generated by the production processes. In 

addition, Pipelife, the plastic pipe manufacturer, is also investigating a sensor-in-pipe 

technology although this remains challenging. On the other hand, the MTO cases are both 

pursuing solutions to connect their products to a data store where that data can later be 

harnessed for insights. However, Orkel also has process related connected PPC projects. There 

are several plausible explanations for this. One is that because Orkel produces a final product 

and not an input component, the user (final customer) experience is a more visible issue for 

them to address. 

For transparent PPC, all four cases had projects which aim to improve the visibility (what is 

happening) and transparency (why it is happening) of their planning and control processes. 

In all cases, managers express the need for dashboard solutions that can offer insights and 

support scenario analysis. While most of these projects are considering the use of spreadsheet-

based solutions, one of them uses more open-source software libraries. This case particularly 

had a starting focus of using machine learning for inspecting product quality before the 

products proceed to finished goods storage and down the supply chain.  

For intelligent PPC, a pattern can be observed for the four cases, but not according to the 

MTS/MTO distinction. The first three cases Brynild, Pipelife, and Brunvoll are investigating 

or testing the use of machine learning together with other technologies in their production 

line. In the fourth case, the use of machine learning is being investigated to make the product 
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smarter, processing data collected from sensors on each product. It can be observed that the 

MTS cases are trying to use this technology to improve the control of their production 

processes. On the other hand, the application is split for the two MTO cases. While both 

Brunvoll and Orkel which produce products with some assembled and some engineered 

components are attempting to make their products more intelligent for the final user, only 

Brunvoll is testing this ML in one of its production processes to improve the quality of the 

machined component and the overall performance of the product in service  so far with little 

practical success. The observations from the cross-case analysis from the technology point-of-

view can be summarized in the following propositions. 

Proposition 1: The fit of application of technologies for smart PPC 

depends on the PPC environment attributes of a company. In particular: 

Proposition 1a: F , process MTS-type companies 

and companies with simple, non-electromechanical products tend to achieve a better fit by using 

these technologies for their production processes. 

Proposition 1b: MTO-type companies or 

companies with complex products tend to achieve better fit by applying these technologies to 

their products. 

Proposition 1c: all types of companies benefit by applying 

these technologies to improve their overall PPC performance. 

In this regard, it was observed from the case data that process-based companies are more likely 

to benefit from (and therefore, should follow) a smart process strategy, with smart PPC as the 

driver. For MTO companies, it was found that the path to smart control is towards smart 

products with simplified PPC processes what will continue to allow human control for the 

needed flexibility. In addition, previous studies have shown that in some industrial sectors 

such as steel, chemical and plastics and SMEs in general pursue industry 4.0 primarily for 

operational benefits, while large companies tend to seek long-term strategic benefits from 

industry 4.0 technologies (Müller et al., 2018). As PPC processes contribute more towards 

operational performance, one would expect similar results. From the case studies, the reasons 

for this becomes apparent. Brunvoll, which is the largest of all four case companies for 

instance, is a global market leader in its industry and the industry has a high barrier of entry 

where the each product is typically very expensive and highly customized and the products 

are critical components of the ships they are installed on. In addition to some projects to 

automate some of the production processes like welding  a very difficult task to automate 

for MTO production  Brunvoll has focused mostly on innovative technologies that enhance 
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the products by increasing their digital content and making them connected. The same holds 

true for Orkel.  

For Brynild and Pipelife, the products are standardized, have no digital element are more 

difficult to digitize (even though pallets can be), and are more produced from raw materials 

which are chemically transformed in semi- or fully automated production lines. These 

companies (Brynild and Pipelife) are more inclined to pursue a smart process strategy (to 

achieve smart PPC) rather than smart products due to the process-oriented attributes as 

illustrated in Figure 6.1 below. The illustration is presented within the context of the product-

process matrix by Hayes and Wheelwright (1979). This can be explained by the fact that these 

two environments have different kinds of PPC challenges and data generation processes. 

Process manufacturing tends to have more automated production lines already generating 

data and little product complexity meaning that process data is also consistent and repeatable, 

enabling smart PPC. The same reason also allows more granularity in the data for analysis 

and in a format amenable to machine-intelligence.  

 

 

Figure 6.1: Product-process framework for smart PPC (Adapted from Hayes and  
Wheelwright (1979)) 

In addition, process manufacturing, as seen in companies Brynild and Pipelife, is more 

amenable to exogeneous telemetry factors which can play a greater role in final production 

output especially when the production is not sufficiently isolated from its environment. 

Meanwhile, complex products producers with job shop layouts are more focused on balancing 
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workloads and planning human operator requirements due to the high labour content. 

Furthermore, complex products manufacturers tend to have functional layouts and require 

much more manual or operator activity. This implies that the former is more likely to generate 

data in a consistent, repeatable format while the latter is less likely. The same reason also 

allows more granularity in the data for analysis and in a format amenable to machine-

intelligence. Therefore, the following proposition can be made: 

Proposition 2: Companies that are naturally rich in data (e.g. those who used previous data-intensive 

methods in the past) are more likely to pursue new smart PPC technologies which are data-driven than 

they are likely to pursue other smart PPC technologies. 

Finally, there is evidence to support the observation by Veile et al. (2019) about industry 4.0 

Brunvoll, which is 

more powerful relative to other members of its supply chain seemed to dictate the pace of 

industry 4.0 related innovation within its supply chain. Also, the intensely competitive 

industries tend to see more innovations, etc. In this case, this study found that Brynild, which 

has a relatively small market share in a highly competitive food industry is more eager to 

pursue innovations within that foster horizontal integration to the extent possible with its 

supply chain partners and has encouraged joint research projects with its major customers 

which are the retail conglomerates. 

6.2.2 The influence of extant enterprise and data systems influence smart PPC 

As it has been reiterated earlier in this thesis, PPC is a function ordinarily performed with ERP 

systems. But a new system which will take enhance PPC by taking advantage of emerging 

smart technologies namely IoT, BDA and ML is presented. Therefore, this study could have 

also been carried out, perhaps, as an investigation of the extended capabilities of enterprise 

systems. Indeed, many authors consider ERP systems as the foundation for smart production 

operations (Haddara and Elragal, 2015) and this same perspective was observed in some of 

the case companies. But these companies also seem to be averse to having their transition to 

smarter PPC tied to their ERP systems. For example, the Supply chain director at Brynild 

being used at the company while at the same time concerned about the how expensive the 

offers from IT vendors have been for implementing some of the upgrades management 

desires to have if they tried to extend the extant SAP R/3 especially considering that SAP 

S/4HANA (latest edition) has suitable and useful data analytics and BI functionalities. 

Furthermore, while the current ERP (and other enterprise) system(s) technology has led to 

better business processes and financial planning (Reynolds, 2015), its value as a complete 
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production management solution remains limited in practice. One reason for this is the high 

cost of regularly upgrading to the latest versions with up-to-date functionalities. This is 

somewhat linked to the issue of customization and its implications for buggy integration with 

future upgrades and security updates of the core ERP system. The other reason is the 

complexity of most ERP installations which leads to many companies using their ERP systems 

for MPS, MPR, and inventory control, but not the detailed day-to-day or shift-to-shift 

scheduling, a function now reserved for spreadsheets such as Microsoft Excel. Therefore, to 

get smarter systems, managers investigating any or all the triad of smart PPC technologies 

take the path of developing new cloud-based solutions which then connects to the 

ERP database through a data warehousing solution. 

In addition, the form, quality of the extant data generating enterprise systems are also very 

important and the ability to handle different formats can be a critical factor in determining 

success (Wamba et al., 2015, Gustavsson and Wänström, 2009). There are two types of data 

that production systems generate namely, stream and batch and these data types require 

different types of processing for insights to be derived from them. While it would be expected 

that a company which has enhanced processes and updated, standardized enterprise 

solutions are more likely to have the foundation to advance faster into smart PPC, no evidence 

was found for that within the case companies. In fact, the company that was most keen on 

smart PPC was one which was using an older, non-agile ERP solution i.e., Brynild. However, 

both Brynild and Pipelife had a significant amount of automation and process sensors which 

can easily be reconfigured and connected through the ethernet for a smart PPC solution using 

the streaming data from the PLCs of the machines in the production line. On the other hand, 

Brunvoll and Orkel pursued solutions that can enhance their capacity planning processes 

challenges. In addition to extant data sources, Brynild also sees potential in using exogenous 

data and historical data in improving the precision of its production planning process. 

However, the quality of historical data records which such a smart PPC system would need 

is in a form that cannot be used without arduous pre-processing. This data quality problem 

was more prevalent than anticipated, consistent with Bean and Davenport (2019). Thus, the 

relationship between process type, level of automation and smart PPC can be summarized in 

the following proposition: 

Proposition 3: Companies with automated production lines or chemical production processes are likely 

to benefit more by pursuing a smart PPC strategy focused on increasing process efficiency, while 

companies with more manual/operator-driven processes or physical production processes are likely to 

benefit more by pursuing a smart PPC strategy focused on capacity optimization. 
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6.3 Sustainability and Practical Implications 

Studies have shown (for example, in the automotive industry (Müller et al., 2018)) that 

anticipated operational and strategic gains are the primary drivers of industry 4.0 solutions, 

despite some of its core sustainability benefits. In this regard, findings align with 

the results of previous studies as all the case companies in this study, except one (Pipelife), 

had no any explicit sustainability measures or factors driving the PPC process, even though 

in all but one of the cases, planne

internal KPIs. The reasons for this are unclear, but it could be because of the following.  

First, the level of societal consciousness about sustainability is very high in Norway and it will 

be hard  

vision, or core value statements. Furthermore, all the companies in this study have had lean 

improvement programs at some point in the past decade and demonstrate all the visible 

elements of lean in their factories. Coupled with the high level of decision making allowed in 

Norwegian factories, it seems that the responsibility for sustainability has been given to 

operators on the shop floors in line in with a bottom-up approach. Although this has good 

benefits, it limits the true sustainability performance to only the broad measures such as 

carbon footprint, missing the opportunity to have a truly robust sustainability strategy. Smart 

PPC will address this, e.g., by enabling explicitly integration of environmental and social KPIs 

with the financial. Smart PPC can allow sustainability KPIs to be included in the performance 

parameters of the system, thereby enabling these companies to actively and comprehensive 

act on their overarching sustainability goals. But it will require new competences and training 

from operators and production planners, and it may also lead to stress and overextension as 

observed by Birkel et al. (2019). 

Secondly, it has also been reported in the literature that managers will sometimes invest in a 

new fad (e.g., blockchain) or new technology (e.g., cloud computing, a critical enabler of data 

analytics and BI) due to the fear-of-missing-out. A study of small and medium enterprises 

(SMEs) in Malaysia which found that the likelihood that an SME adopts cloud computing 

increases when competitors are already using the same technology (Hassan, 2020). But the 

key question is one about organizational and technological fit, about products and production 

processes, about market and PPC processes and how these issues can influence the use of any 

new technology in general and data analytics and ML tools in smart PPC specifically. 

Ultimately, the greatest value is obtained when managers pursue the smart product or process 

direction that is fitting for their type of company.  
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In general, managers of companies producing complex, high variety low volume product are 

more likely to derive most value from pursuing a smart product strategy while those with 

standard, non-electronic products in mass production environments are more likely to derive 

more value from a smart process strategy. In the latter case, a smart PPC solution has great 

potential and can drive an efficient, autonomous learning production system while tangibly 

addressing the sustainability goals.  
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7 

A Method for Designing and 

Developing a Smart PPC System 
--- 

How can the smart PPC be achieved in practice? To address this question, a method is developed from 

the literature for the design and development of smart PPC. The method is then illustrated using a case 

study. 

--- 

There have been increasing research interest in testing or demonstrating aspects some of the 

tools and listed use-cases of smart PPC partly due to the early stage in its development such 

as in (Brintrup et al., 2019). Among those studies, few present the design and architecture of 

sample solutions using either hypothetical scenarios or empirical data (Sun et al., 2020). But 

most do not emphasize or address the need for a generic development method, and those that 

attempt to address this gap so far have not been focused on smart PPC  for example Huang 

(2017). And even more important, the few that do take a far too broad approach, addressing 

concepts such as industry 4.0 (Chen et al., 1997, Hermann et al., 2019). A method, however, is 

needed to both to improve success rates and to streamline the process of creating a system.  

Brinkkemper (1996) defines a method as: an approach to perform a systems development project, 

based on a specific way of thinking, consisting of directions and rules, structured in a systematic way 

in development activities with corresponding development products.  The discipline of creating 

methods (also known as methods or methodology engineering) has links with other research 

areas such as project management and software engineering  fields where design science has 

seen increasing application (Peffers et al., 2007, Baskerville, 2008, March and Storey, 2008). 

The development of the method presented here followed the design science approach. 

 

7.1 The Method 

Having already established the need for a systematic method and guide for developing smart 

PPC solutions, the key steps that such a project could follow and the elements that should be 

considered are presented in this chapter. Here, the prese
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However, as it will be explained in the case study, the process does not have to be linear. In 

practice, it is often necessary to revisit preceding steps while at another as the requirements 

become clearer to the stakeholders of the project. The following steps can be followed in 

developing a smart PPC solution: 

Step 1. Preliminary study: determine objectives and priorities in fitting with the PPC-

environment  attributes. 

Step 2. Specify system requirements: validate the 

performance indicators. 

Step 3. Identify data sources and select relevant analytics and machine learning algorithms 

that fits the problem. 

Step 4. Design system and data architecture with consideration for integration with extant 

systems and IoT telemetry. 

Step 5. Implement with considerations for software development methodologies, continuous 

innovation, and long-term adaptability. 

Step 1: Preliminary study: determine objectives and priorities in fitting with the 

PPC-environment  attributes 

The immediate goals of the smart PPC solution must be determined ex ante. The process of 

getting to this could be either from the problem or from a perceived market opportunity. 

Furthermore, these objectives and priorities must be weighed with the constraints imposed 

by the planning environment attributes of the operation. However, it is a common occurrence 

for there to be a need to make tradeoffs over which elements of the solution requirements to 

prioritize in the short and long term. For instance, a firm in the process industry which 

produces, say, industrial paint, may see several opportunities and use cases for digitalizing 

its operations and PPC processes. Easily, managers could be interested in digitalizing the 

production line with IoT sensors that will collect various kinds of data about the production 

processes and send these data to the cloud for analytics and predictions, or on an edge device 

for real-time response. Another use case could involve attaching sensors to the packaging 

containers (which may be a bucket) or pallet, enabling a full tracking and tracing of the 

inventory coming out of the production line; yet another could involve the tracking of weather 

or climate factors and how this affect demand or sales at the stores; and so on.  

Now, if this were a large multinational with millions of euros in research and development 

budget, then the company could start with and run multiple projects simultaneously, bearing 

in mind that results will be mixed. However, for a smaller company with a tighter budget, it 

will be critical to prioritize, focusing only on projects with a high expected return be it financial 
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or digital competence gains for the company. In the example, following the argument that a 

process strategy is has great potential in this type of production environment, and the budget-

constrained producer will prioritize those projects that lead to a smart process, for instance 

digitalizing the production line with IoT sensors capturing parameters that affect the yield of 

the operations. This could also be combined with other telemetry data from the production 

 

performance indicators 

The objectives are typically the prerogative of the 

represent their interpretation of the problems that must be addressed from a top-down view 

of the operation. However, a lot of the data driven decisions and insights affect or are affected 

by junior managers and operators on the factory floor. Therefore, there is a need to validate 

the objectives of the solution from the perspectives of persons directly interacting with the 

production system.  

One way to achieve this is to formalize the requirements using user stories. User stories are 

a production planner, I want to be able to upload productions orders for the next two weeks 

into the solution with approved production orders from the ERP system so that I do not have 

-focused, 

estimable, small, and testable. Later during implementation, production managers and the 

system developers will determine how to prioritize the user stories for development. In 

addition, there should be flexibility in terms of which elements of the system remain on the 

list of functionalities to be developed, while allowing for future adjustments (Pressman and 

Maxim, 2015).  

In addition, performance indicators (PIs) are needed to monitor both the quality of analysis 

and predictions being generated by the smart PPC system and of the reliability of the system. 

The PIs relating to the quality of the results can include the standard deviation and errors for 

individual predictions determined through random spot measurements. Those relating to the 

performance of the smart PPC system can include prediction lag, simulation request 

processing time, and general indicators like availability/downtime hours and the like. While 

PIs relating to the quality of the analysis and predictions will be context specific, most of the 

system PIs are generic and common to service-oriented, cloud-based ICT systems. 
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Step 3: Identify data sources and select relevant analytics and machine learning 

algorithms that fits the problem 

The user stories give an indication of the services that primary users  production planners 

and operations managers  require the smart PPC system to fulfill. After identifying these 

services, the next step is to determine the relevant data sources from the production system 

and identify the appropriate analytics tools and machine learning algorithms that works best 

for the kind of insight or prediction required. This determination and identification can be 

done by a small technical team involving a machine learning engineer or data scientist with a 

good understanding of not just the technical problem but also the business problem. 

In many manufacturing use-cases, pilot projects could start with simpler ML algorithms such 

as Gaussian linear regression and logistic regression (supervised), and with PCA and k-means 

clustering (unsupervised) with an acceptable level of success. However, after the pilot phase 

of such projects  that is, during the real-life implementation  there will be a need to improve 

the performance of the solution and which can be achieved using hybrid models which 

combine multiple features of the basic algorithms. For example, when the use case involves 

sparse data inputs and an extensive feature list, the hybrid algorithm called  the 

DNNCombinedLinearRegression can be used in place of the common supervised learning to 

combine the strengths of neural networks (generalization) and linear regression models 

(memorization of feature interactions) (Cheng et al., 2016). 

Step 4: Design system and data architecture with consideration for integration with 

extant systems and IoT technology 

Many large manufacturing organizations, in addition to having an ERP system also have full-

fledged solutions for the control of production operations on the factory floor  the MES. Some 

MES systems have basic analytics capabilities built in such as statistical process control charts 

that allows process-tracking, and most collect time-series stream data from the discrete units 

of production lines to which they are connected. Alone, using the MES for production control 

misses the opportunity that a holistic, connected smart system affords. Therefore, the system 

architecture should cater for the introduction of IoT sensors to the factory even for factories 

are already automated. The MES and ERP systems provide a good starting point for 

developing smart PPC solutions. The data from these systems and other factory IT systems 

might however require extensive transformations before they can be used in combination with 

newly installed IoT technology in the smart factory.  

In general, modular smart PPC solution design would perform better than a monolithic 

solution since it will allow for future improvements within each module independent of 
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others and will also ensures that failure in one service does not break the entire system. 

Furthermore, when the solution is built on a service architecture from the onset, the it is easier 

to add more modules in the future and to update individual modules that are already in use. 

This is achieved by designing the modules as services and building application programming 

interfaces (APIs) to manage interaction among services. The data processing, model 

development, and prediction processes can be carried out without manual human interaction 

by automating the data preparation and prediction processes using ML pipelines. 

Moreover, in cases where an active control (rather than just a monitoring) of the production 

process is required, it is advisable to have the trained machine learning model interacting with 

the production machines and processe

and send instructions back to the plant. However, because the real-time data processing 

occurs at the edge, this creates a challenge due to the limited processing power at the edge 

and need for continuously monitoring the performance of the model to avert model drift. 

Furthermore, edge devices may lose their connection to the cloud and thus the solution must 

cater for offline operations. Otherwise, where there is no need for any serious computing at 

the edge, it suffices to send all data generated from the production system to the cloud. 

Step 5: Implement with considerations for development methodologies, continuous 

innovation, and long-term adaptability 

Regarding the implementations of smart PPC solutions, there are at least four key 

considerations: whether to develop in-house, which development methodology to adopt, 

whether to choose managed-cloud services or to use fully open source technologies, and how 

to foster continuous innovation. It is possible to develop in-house or to establish joint 

development teams with partners service providers for small scale functionalities and 

outsource the major development to established firms if the firm does not have the 

competence to execute the complete development in-house. Moreover, the development of 

the solution will often involve the choice of building almost from scratch with the use of open 

source technologies, or if faster deployment is desired, the use of any one or a combination of 

the several managed-cloud services for a faster development process, while allowing for 

 

Non-agile methodologies will be insufficient in this area because as they are not flexible 

us 

innovation in this sense relates to how the established infrastructure and development 

processes eliminates tedious manual processes for making changes and improvements to 

working system, and allow a seamless, continuous integration, testing, and deployment of 
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those changes without any downtime. Because many of these technologies being used in 

smart PPC systems are experiencing constant, fast-paced advancements, the success of any 

smart PPC solution requires that there is a smooth and simple process in place for its 

continuous improvement. Alignment or integration of the workflows/processes of the both 

the machine learning and information technology developers will streamline continuous 

innovation and refinement of models as new data becomes available from the production 

system being measured.  

manage the continuous version-controlled, code development cycle  write, test, build, 

deploy. While machine learning engineers and data scientists take the experimentation, model 

creation, testing, operations, and maintenance. By integrating these two workflows  to have 

what is now referred to as DevOps for machine learning (MLOps)  productivity can be 

improved significantly, allowing machine learning engineers and data scientists to focus on 

the model performance. One way to achieve this is to use infrastructure-as-code and process 

autonomous mode. Process automation could be achieved using bash or python scripts, or 

through robotic process automation software that allows automation using drag-and-drop 

tools which a trained production planner can manage, thus reducing development costs. 

 

7.2 Case Illustration  Smart PPC Design at Brynild 

Using the Brynild case, the method described above is illustrated below. 

7.2.1 Determine objectives & priorities in fitting with PPC-environment  attributes 

Candy production at Brynild is serviced by two production lines. The production process for 

the candy products is as shown in the Figure 7.1 below.  

 

Figure 7.1: The candy production process at Brynild 
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The operations at the candy section falls into the semi-process class. Raw materials are fed 

into the cooking drums in amounts determined by the recipe for the batch to be produced. 

When the cooking process is completed, the output is temporarily stored in a cooking buffer 

before molding, using mold trays with the shapes of the sweets engraved. The trays are 

thereafter arranged in racks which are loaded into one of the seven drying chambers in the 

drying section of the factory. The production data currently used in the production planning 

process includes the estimated lead time for all processes, stock levels of the different stock 

keeping units (SKUs) in the finished goods warehouse, recipes (which also provide a bill of 

materials). The maximum batch size the line can produce for each product is pre-calculated 

based on the capacity of the production processes. 

The challenges of this current PPC system can be described in three categories namely, market 

(demand and supply) related, product related, and process related. First, market related 

demand related challenges stem from the high competitiveness of the industry and the fickle 

nature of human taste preferences. A popular product can sometimes loose its spark with 

consumers or get overshadowed by new trending products. For this reason, the confectionery 

industry witnesses a lot of promotions and discount sales to drive and sustain demand. 

Secondly, the product related challenges are minimal in this case because the products are 

neither complex nor have any deep bill-of-materials which could have required extensive 

materials requirements planning tools. Furthermore, the simplicity of products made by this 

case company (packed sweets) and the price per unit implies that the product itself will not 

benefit from a smart product strategy. Rather, a smart process strategy will be for fitting for 

this type of case (Oluyisola et al., 2020). Such process approach must be able to track the 

remaining life for any product or batch in the finished goods storage and in the various 

through the value (Høyer et al., 2019). 

Thirdly, the process related challenges are generally due to the nature of the materials being 

processed and the level of maturity of the process technologies. Currently, there is a long set-

up and changeover time due to the need to wash the machines and equipment producing 

every new batch. This is also required to meet regulatory requirements for cleanliness and 

food safety. There is also a yield uncertainty that planners currently must guess when issuing 

production orders and this causes additional variability in the production system. Also related 

to the process is the operator-planning related challenges relate to how labour is planned in 

the company. Over several years, the company has developed a practice of planning batch 

sizes that can be completed within a production shift. This is a suboptimal constraint on the 

planning process. Therefore, with the attributes of this production environment, this 
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a smart product strategy since the product is simple and the unit price is very small.  

7.2.2 Specify system requirements: problems and performance indicators. 

Problem investigation 

Brynild faces one immediate challenge: finding an optimal production schedule and 

managing the scheduling process to minimize variation. Thus, the production planning 

problem for this case comprises two main elements, namely: the optimal plan, P, which 

maximizes throughput through the bottleneck drying process and assumes no yield variation 

(that is, Yk = 1); and the estimation of a yield uncertainty factor, k, to improve the accuracy of 

production plans. Currently, planners must guess the what the yield will be and add some 

buffer to the amount that is produced so that at least the final production output for each 

batch exceeds the planned amount required to meet order forecasts. This leads to 

-

type products. The mix-type products are made by combining three to five different types of 

products into one assortment. 

The planning problem can be formalized as follows: given a set of firmed customer orders, 

OC, and Master Production Scheduling or MPS orders (MPS orders are those generated by 

SAP using the MRPII principle), OM, each order oc  OC and om  OM characterized by: its 

drying i.e., throughput time THoc or THom, its due date ddoc or ddom, its volume voc or vom and 

given a set of drying sections or rooms R, each room r  R characterized by its capacity, kr, and 

given a set of packaging lines L, each room l  L characterized by its capacity, kl, find the 

schedule allocation of orders oc and om that maximizes the number of completed orders at 

the two stages drying and packaging.  

Furthermore, the planning problem can also be viewed as a multi-stage or multi-echelon 

scheduling problem for which although the drying stage, which is used for all products from 

the production line, is not always the bottleneck. This is because the average speed of the 

packaging machines is low enough that they can cause delays if poorly scheduled and 

depending on the product. This is partly because there are several packaging lines with 

varying speeds and no single product has a dedicated packaging machine. After production 

schedule is made, the plan must be adjusted for reality by estimating a yield uncertainty 

factor. This yield uncertainty is a factor of environmental parameters such as humidity and 

temperature. 
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Requirements specification 

The requirements, shown in Table 7.1, were gathered from the production managers and 

planners of Brynild during this research-based improvement project towards smart 

manufacturing. An overview of the solution concept is presented in Figure 7.2 below. KPI 

result data going into recommender system will include actual production performance 

(lateness, earliness, on-time, etc.), specific operator working the process (this shows how 

specific operators affect performance), etc. The newly added elements of this smart PPC 

system are described in section 4.3. A description of each step in Figure 7.2 is provided in 

Table 7.2. 

Table 7.1: Brynild's requirements for the smart PPC solution 

Purpose: 

 Senior Manager.  

More precisely, the system shall provide decision support capabilities to the production planner 
especially regarding the short and medium-term planning. 

Functional requirements: 

Schedule options  The solution should generate the optimal production when the planned 
orders for the short-term planning period (next two weeks) is provided. 

Integration with ERP 
system 

 The production planner will be able to upload the details of the new 
orders to the next planning period. 

Dynamic 
rescheduling 

 The solution should allow dynamic rescheduling when the attributes of 
production system changes for example, if an order is delayed or if there 
is machine breakdown 

Using telemetry 
factors 

 The solution should capture the effects of external factors that influence 
the production yield, to ensure for a more precise planning process 

Capture planner 
experience 

 The planning system should capture the practical experience of the 
planners with the production system which cannot be expressed in 
planning input parameter values. 

Non-functional requirements: 

Ease of use  The tool should be easy to use for non-advanced computer user, that is, 
anyone with experience using spreadsheet solutions like Microsoft 
Excel. 

Layout  The layout should be designed in such a way that important values are 
easy to read. 

Performance indicators 

It is important to have predetermined how the performance of the system will be measured. 

In the selection of performance measures or indicators for this case, there are two categories 

namely, operations reliability and services quality. The operations reliability measure has to 

do with how the software system is designed, architected, and developed. It is measured by 
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reliability measures such as up-time (a maximizing measure) or downtime (a minimizing 

measure), percent failed schedule requests from the user interface and waiting time between 

schedule launch and results presentation on the dashboard. The services quality refers to the 

quality of the results, estimates and recommendations offered by the smart PPC solution. 

Measures include the amount of deviation of the estimated yield from the actual yield, the 

average performance of the recommended schedule logic over period. 

 

 

Figure 7.2: Conceptual overview of the as-is compared to the to-be smart PPC solution 



 

91 

 

Table 7.2: Comparison of the as-is and to-be processes (reference to Figure 7.3) 

As-is planning process To-be planning process 

1. Input demand forecasts and customer orders into 

ERP system. Based on the demand forecasts and 
firmed customer orders provided by the 
marketing team, the master scheduling processes 
in the ERP is initiated periodically. The schedule 
comprises a list of production orders to be 
executed on the production floor with due dates, 
quantity or amount to be produced.  

1. Input demand forecasts and customer orders into ERP system. 
Same as in the as-is system except that a new plan can be 
triggered if the changes to the system is significant enough 
that it reaches the threshold set for a parameter of the 
factory. For example, if the yield is estimated to be 
significantly low for the current orders, then it can trigger 
a new batch or bring forward a batch originally scheduled 
for a later production date. 

2. Generate preliminary production schedule. From 
this ordered list of production orders, the 
production planners then manually allocated the 
orders to production shifts based on several 
constraints including capacity at the drying stage, 
planned repairs, and shift planning. 

2. Generate preliminary production schedule. Same process as 
in the as-is process 

2b. Regenerate multiple schedule options based on different 

planning logics. Unlike in the as-is situation, the to-be state 
will allow the generation of multiple schedules. In the pilot 

implemented with the option to add others later as 
additional features. The modular design and cloud 
infrastructure allow this, taking advantage of either 
autoscaling or the use of serverless computing services 
such as Cloud Functions. 

3. The production planner estimates the yield based on 

their experience. A record of this yield is stored in 
a spreadsheet and updated periodically every 
second year (see Appendix 2). NB: - In real time, 
the planners adjust the yield uncertainty factor 
upwards or downwards based on what their 
expectations by considering environmental 
factors and preceding yields. 

3. Yield uncertainty factor estimate generated by ML model. The 
trained machine learning model estimates the yield 
uncertainty for each production order so that the schedule 
options from Task 2b then reflects the realistic estimate. 

4. Adjust schedule with yield estimates and other 

constraints. The orders are adjusted to reflect this 
yield uncertainty factor and other constraints 
such as machine breakdowns and drying stage 
requirements. 

4. Human or computer planner chooses schedule option. If a 
human planner is involved, the planner can then choose 
the adjusted schedule option based on his or her 
preference. These choices will be recorded and over time, 
will capture the intrinsic experience of the planner by 
capturing his/her schedule choices for different scenarios 
over time, and this data can then be used as input to 
improve the performance of the computer planner. And if 
a computer planner is involved, it will use historical data 
and rank the different options. 

5. Report actual production outcomes in shift reports. 
After the production is completed, the paper-
based end-of-shift report is filled. The ERP 
system is also updated to indicate that the order 
has been produced. However, the details in the 
shift report (for example, input mass, output 
mass, etc.) are not digitally stored to allow data-
based improvements in the future. 

5. Report actual outcomes and KPI results. After production is 
complete, the production data is digitally recorded, and 
the data is stored in the data warehouse which will serve 
the ML programs and over time, will lead to an 
improvement in the accuracy of the yield estimate 
predictions and scheduling logic selection.1 

1This measurement and reporting are key to future improvements and will be managed by a strict company policy requiring 

the operators to take necessary measurements in the absence of an automatic measurement system which can be later 

integrated. 
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7.2.3 Identify relevant tools and algorithms 

There are two choices to be made regarding the two applications of machine learning within 

this Brynild case: one for estimating the yield and the other for recommending which schedule 

logic alternative will perform best for each planning scenario. The yield estimation (or 

prediction) can be hypothesized to be the dependent variable of a linear or non-linear system. 

As such, a simple linear regression model is a good start for this use case. Once the system is 

built and in place, other variants of the linear regression can be tested in a development 

environment to see how much improvement in performance is possible. Examples of those 

are models combining basic models with more performant neural networks such as the wide 

and deep DNNCombinedLinearRegression algorithm or similar. This model will be fitting 

for this purpose due to the potential sparseness of the features. The data fields that will be 

used in the model are shown (without telemetry) in the class diagram in Appendix 3 and a 

detailed list (with telemetry) is provided in the table in Appendix 4. Meanwhile, the 

subsystem for recommending which planning logic option to choose appears amenable to 

inverse reinforcement learning.  

7.2.4 Solution architecture data and systems architecture design 

While ML academic projects on ML in PPC tend to use linear development processes, live 

production projects require the use of recyclable, reproducible machine learning pipelines 

which can be automated. For this case study, an illustrative system architecture for the yield 

estimator use-case is presented in Figure 7.3 below. 

planning window is made in line with current practices by the production planners, during 

which the list of orders to be processed is assumed to be deterministic  except if a major 

disruption or urgent firmed customer order is received. However, during this one-week 

period, the forecasts for some of model feature variables (for example, environmental data) 

are only precise for two days into the future at any given point. Therefore, there will be a need 

for re-scheduling at least once every two days to take advantage of the trained model. In the 

future, when a lengthy historical data has been gathered, it will be possible to train the model 

using only the historical data without the need to use the weather forecast data whose 

accuracy diminishes materially beyond a 48-hours from the reference point. 

7.2.5 Implementation considerations and performance assessment  

This use-case is illustrated using open source technologies for the sake of demonstration. 

However, for production, the company might be better served by using managed services on 

any of the major cloud platforms. One could start with a small pilot to test an idea, or go big, 
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with a large-scale project and iterate on improvements. The latter approach can lead to faster 

business impact. There are also pilot versus real-life production implementation 

considerations. The nature of this production planning is such as that the properties of the 

system of interest changes frequently relative to the target precision of prediction results. 

Furthermore, as the data scientist and the developers working on this project will need close 

collaboration, and there is a requirement to be able to scale the solution to address other PPC 

use cases as the companies gains organizational competence with PPC. These factors 

strengthen the need for MLOps. 

 

 

Figure 7.3: An example smart PPC solution architecture for the yield estimator use-case 

 

7.3 Implications for Practice 

In the preceding sections, a method for designing and developing smart PPC systems is 

described and the application of this method is illustrated through a case study. In this section, 
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the application of the method within the case is reviewed, followed by a discussion of the 

insights gained from the case study and the implications for research and practice. 

The objectives and priorities identified in the first step of the method were used as basis for 

formalizing the problem and specifying the requirements and relevant performance 

indicators. This step helped refine the requirements that were put forth by production 

managers and planners, who are the intended beneficiaries of the smart PPC system. These 

requirements included having multiple schedule logic options, integration with existing ERP 

system, dynamic rescheduling or more frequent scheduling updates, yield estimation using 

telemetry factors and capturing the experience of managers. While these were the functional 

requirements for the PPC system, non-functional requirements such as ease of use and 

readability of the user-interface layout were also identified although the latter non-functional 

requirements were not the subject of this case study. Consequently, operations reliability and 

services quality were deemed as the relevant performance measures for the smart PPC 

solution design.  

Of interest in this case study was the problem of yield of estimation at the drying station. This 

was important in this case because the yield, which affects the precision of the entire planning 

process, is highly influenced by exogenous factors, e.g., temperature, humidity, etc., factors 

which can be modelled and predicted using analytics and ML tools. This again reemphasizes 

the importance of fitting smart technologies to production systems according to fit as pointed 

out in (Oluyisola et al., 2020). By the same principle, a smart product strategy would not be 

beneficial in this case company. In addition, the formalized problem and specified 

requirements were used to identify candidate tools and algorithms to address the problem 

and fulfill the requirements. For this case study, this selection of tools and algorithms was 

based on extant literature on smart PPC (reviewed in section 2.3.1). While this was lightly 

covered in this thesis, this as an area that future research needs to address for the ML value in 

PPC to be realizable. 

The final step in the method focuses on continuous innovation and/or development, i.e., the 

system should be adaptable when weaknesses are identified during use or as opportunities 

for utilization of better or more mature technologies become available. The performance of 

the current, as-is process is compared with the improvements that can be achieved by the 

proposed smart PPC (when fully operational) in Table 7.3 below. These are measured against 

the general goals of the smart PPC system established in the literature. By reason of the 

capacity, consistency, and flexibility that the smart PPC system affords, as the case illustration 

highlights, the improvements are such that the manufacturing firm will be able to anticipate 

and react more precisely to changes in the production environment.  



 

95 

 

Table 7.3: A comparison of as-is and to-be PPC systems 

Smart PPC Goals Current state performance 
Proposed Smart PPC 

performance 

1. Be dynamic, by using real-time 

demand and production system data 

thereby reducing variability due to 

forecasts 

Not dynamic, and uses 

planning data some of 

which (e.g., the yield 

estimate) are updated only 

once per year or less 

frequently 

Use near real-time data from the 

production system and its 

environment to monitor and 

ensure planning and control 

processes are reflective of the 

actual system data 

2. Use an expanded set of factors and 

data sources including system 

telemetry data 

Uses only order due dates 

and planners guess of what 

other factors could affect the 

plan 

Uses telemetry from within the 

production process and from the 

system environment and can 

determine correlations with yield 

3. By using historical and real-time 

production system and demand 

data, be able to accurately predict 

factors and events and thereby also 

support increased flexibility 

Historical data currently 

inadequate or unusable for 

advanced analytics due to 

inconsistencies and poor 

records 

The system is designed to allow 

real-time control or human 

planner control of the production 

system using data from the IoT 

sensors 

4. To capture and use the experience 

of the operators and planners 

currently managing the production 

system 

If planner retires, he goes 

with all his experience and a 

new planner gets to re-learn 

the same mistakes  

The system keeps records of 

decision patterns and success 

ratios of different planning logics, 

providing a log and summary of 

 

 

The general implications of having a method such as the one presented in this thesis are 

significant for research and practice. By having a method which starts with the determination 

of fit according to the planning and control environment attributes, it will be possible to 

streamline smart PPC projects and increase their chances of success. Based on the PPC 

environment characteristics, it was possible to determine early in the process that the case 

company would benefit more from a smart process strategy rather than a smart product 

strategy. And while the issues of interest in the case study are primarily operational, the 

method itself is not constrained vis-à-vis the application context or decision levels and can be 

applied for projects pursuing strategic and tactical decision support. 

Furthermore, due to the current rate of innovation within the disciplines of big-data analytics 

and machine learning, the availability of tools and algorithms for a given set of problems is 

constrained by the state of art at any point of time and may change as time progresses. 

Therefore, this step of the method could be reviewed after an interval, which should be 
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decided during the initial or pilot implementation. The next step in the method concerns 

architectural considerations for the implementation of the solution. This step not only 

considers the architectural design for the proposed solution itself, but also considers the 

integration of the solution with the existing enterprise systems, thus re-emphasizing the focus 

of the method on ensuring fit of the smart PPC system with the planning environment. 

Furthermore, while designing the data architecture in this step, due consideration must be 

given to future scenarios, such that the developed system is scalable and amenable to future 

operational demands. 

Additionally, as Cadavid et al. (2020) highlight in a recent review paper, there is a need to 

address the linearity limitations of extant research on ML-enhanced PPC and also a need to 

link tools, techniques and activities for industry get real benefits from research on the subject. 

The architectural considerations prescribed in this method addresses this key issue and 

should be a major consideration for future applied research on the subject. This cannot be 

overemphasized considering how small and medium sized manufacturing firms must 

grapple with the uncertainties of a pandemic-battered global economy and the post-pandemic 

global market. 

Additionally, anecdotal evidence with manufacturing firms in the Scandinavia region shows 

that while increasing automation and digitalization has led to the creation of massive volumes 

of big data in production systems, a lot of the data is neither used nor is useful. The reasons 

vary for each case, but a recurring theme is that the data architectures are often designed 

primarily as a logging system for use in maintenance activities and many manufacturing firms 

still are yet to fully adoption an IoT strategy. All these factors then make it more challenging 

to derive value using analytics or machine learning to build intelligence into these production 

environments. 

From the foregoing, the several considerations to be made when developing a smart PPC 

solution include the planning environment challenges which are often relatively consistent in 

the long-term, and the technology-related challenges which are related to the fast-paced 

evolution. And due to the significant uncertainty involved in the innovation process, and the 

high risk of project failure, the selection of use cases cannot be done randomly or based sole 

on what is trending with competitors. Indeed, while over 60 percent of IT projects fail 

outrightly or when defined by one of the performance metrics of timeliness, cost or quality 

(Mark, 2016), anecdotal evidence suggests that this may be even worse for projects involving 

emerging technologies. In one example, a major distribution and logistics center recently had 

an innovation project where it tried to deploy autonomous robots with machine learning 

capabilities in one its warehouses. The project failed both technologically and operationally, 
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and the company did not share information about this failure publicly potentially because it 

s a technology savvy organization.  

It can therefore be assumed that there is a greater likelihood or perhaps a tendency for 

companies to want to report only successful digitalization projects. This may, over time, lead 

sful projects to extract 

knowledge from, while losing access to the valuable knowledge that could be extracted from 

the failed implementations. Furthermore, this creates a lacuna because while there may be 

lobal loss due to several companies repeating 

pilot projects that many others previously tried and failed at. Therefore, a systematic method 

of the type proposed in this study can help reduce the risk of smart PPC project failure and 

can reduce the variation amongst several subsequent smart PPC projects, thus enabling easier 

shared learning.  
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8 

Conclusion 
--- 

In this chapter, conclusions are drawn from the study findings and discussions. Limitations of this 

study are described, and potential future research ideas are discussed. 

--- 

8.1 Summary of Contributions to Theory 

An important gap in extant research within industry 4.0, its technologies and their implication 

for PPC was the lack empirical studies investigating the constraints imposed by the 

(Bueno et al., 2020). In this thesis, an attempt 

was made to bridge this gap by delving deep into the processes and operations of six case 

companies covering four different types of manufacturing industries and spanning both MTS 

and MTO production environments. The first four case companies described in chapter 4 

formed the core of the empirical data source and cases 5 (Tine) and 6 (PowerMac) were only 

added to check the validity of the findings at the preliminary stages. 

In answering the need for a systematic, low-risk adoption of industry 4.0 and its technologies, 

this thesis posed four guiding research questions, namely, to identify and describe the 

challenges of PPC amenable to digitalization, to identify the elements of a potential smart PPC 

solution, to determine and evaluate the constraints and enablers of successfully implementing 

such a system through a contingency theory lens, and to develop a guideline for 

implementation in resource-constrained companies. Several artefacts were developed and 

proposed in this regard including an incremental, conceptual model for development of smart 

PPC, and some of the artefacts were exemplified in the case studies and have been published 

in peer-review journals. 

The key contributions to theory can be summarized as follows. The findings suggest a 

relationship exists between the PPC environment attributes and the digitalization strategy. 

This establishes a basis for introducing these attributes as factors in future smart PPC research, 

although further tests are required. From the literature search, this study is the first to establish 

this link and provide a strategic framework which shows this relationship. Furthermore, by 

demonstrating the use of the structural contingency theory for this research area, this study 
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demonstrates how more traditional management theories can be applied as both the industry 

and academia demand more grounded theories to explain the digitalization phenomenon in 

manufacturing and more specifically as this applies to PPC within the smart manufacturing 

context.  

This study further found that industry 4.0 implementations need not only integrate 

environment. In other words, the planning environment variables  product, production 

process, and market (i.e., supply and demand processes)  should dictate how industry 4.0 is 

, smart PPC 

solution. Companies in highly competitive industries, which are not market leaders are more 

for implementation success. 

The presented five-step method for designing and developing smart PPC systems emphasizes 

the influence of contextual fit in the selection of algorithms, design for scalability, and the 

flexibility of the designed system to address future demands so that the resulting PPC system 

fits with the targeted PPC-  The method seeks to harmonize the 

emerging interest and could help standardize future studies that test the introduction of 

digitalization technologies in production and logistics systems. By extending the principles of 

method engineering to smart PPC and illustrating the use of the design science approach in 

this research, this study increases the likelihood that future research developments in the field 

have a common basis and not only present results  which are important  but also further 

guidance on practical implementation, contributing to towards the design area of smart 

manufacturing (Hermann et al., 2019). 

 

8.2 Summary of Contributions to Practice 

This study further makes several contributions to production and operations management 

practice. The proposed conceptual model shows how a transition to smart manufacturing can 

be achieved by following a development pathway from connected, to analytic and finally to 

intelligent operations. The matrix of use-cases can provide ideas for reference starting points 

for production managers by struggling with digitalization. Together, the proposed conceptual 

model and matrix of use-cases can serve as a reference for production managers and other 

decision makers struggling in efforts to make their production systems more data-driven and 

intelligent. And while technologies such as data analytics and BI methods are not new in PPC 
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research, the combination with IoT and the incremental implementation smart PPC approach 

reduces the risk and allows for a natural maturation to smart manufacturing, both essential 

indicators for SMEs and companies with limited innovation R&D budgets.  

In addition, this study presents the argument that even though the industry currently has no 

explicit sustainability KPIs guiding the PPC processes, this can be ameliorated in a smart PPC 

system. This last point is double-edged. On the one hand, one can build environmental KPIs 

into an smart PPC solution to reduce the waste and other deleterious effects of production 

operations, while on the other, a mature smart PPC solution might lead to a reduction in the 

need for human planners where one planner could end up comfortably handling an operation 

hitherto managed by several planners. 

Lastly, the question of how a smart PPC system should be designed and developed for an 

environment has been addressed in the form of a proposed five-step method. The steps of the 

method have been formulated and structured with the consideration that the resulting PPC 

system should fit the characteristics of the environment in question. The importance of 

contextual fit in algorithm selection, solution scalability and amenability of the smart PPC 

system to address future demands were also discussed. In summary, the principles and 

considerations that guide the design in a smart PPC system are as follows:  

 The design of the smart PPC system should fit the characteristics of planning 

environment. This highlights an issue that has been observed in numerous ERP and APS 

implementation case studies  expensive monolithic systems forcing managers to modify 

the production system to fit an inflexible PPC system. The proposed method can guide 

the design and development of such a fitting smart PPC system.  

 The design and architecture of the PPC system should be scalable and amenable to 

variations in future demand volumes, demand patterns, product portfolios, number of 

users, etc. Since these parameters cannot be controlled or accurately predicted in advance, 

it is important to have provisions in the architecture to adapt as these parameters change 

during drift.  

 The implementation plan of a smart PPC system should also include a period of 

available. Simultaneously, the models can be tested for accuracy, such that the estimation 

errors can be accounted for in the planning activities. 
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8.3 Project and Study Limitations 

Considering how limited the sample size for this study is, no bold claims can be made about 

the generalizability of its findings. This study has explored the questions of interest within 

four (although starting with six) case companies all based in Norway, albeit with varied 

company sizes, reach, market positions, and industry structures. Therefore, the location of 

these companies (being based in Norway) could have influenced these findings as supposed 

to, say, being situated in Germany which has a much diverse and extensive industrial 

economy or even neighbouring Sweden with a larger industrial base. Furthermore, it can also 

be expected that the intensity of promotion of smart operations will be greater in industries 

which are of national strategic importance such as the oil and gas servicing industries for 

Norway or the automotive manufacturing industry in Germany. Therefore, the findings may 

be skewed in the sense that it may not reflect the current level of activity on the topic 

nationally, for example.  

In addition, the technologies in question are evolving and these case companies have been 

studied only for a short period of time while the future development paths of these 

technologies or the industry 4.0 vision are unknown. This study also did not capture the effect 

of popular improvement concepts like lean as factors in the case studies, even though there 

may be an association with industry 4.0. This was not without thought, as the level of lean 

maturity varied in terms of application in all the case companies although all four companies 

had mature lean programmes with signs of visual control evident in their factories. 

Nevertheless, since the aim of this study was to explore a relatively young research area, the 

research design is deemed adequate for the stated objectives based on the guidelines in 

Eisenhardt (1989). 

 

8.4 Future Research 

Following the approach in Dennis and Meredith (2000), and in tandem with antecedents in 

this research domain, for example, as in Feldmann et al. (2009), a future large scale empirical 

study may extend these findings, taking into account the market, product and process 

attributes such as firm size, industry type (process versus discrete), product types 

(complexity, etc.), level of internationalization/globalization of production-network or supply 

chain, , customer engagement strategy (MTS, ATO, 

MTO), extant dominant planning and control principle in the case, and the extent of use of 

information technology to aid these processes, description of level in the five-stage 
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framework, use cases planned, piloted or in use; and expected results versus planned results; 

constraints and challenges during development and use. This could build upon the findings 

presented in this thesis and previous studies by Wamba and Chatfield (2009) and Tenhiälä 

(2011) and more recent studies by Strandhagen et al. (2017) and Oluyisola et al. (2020) to 

further extend the interrelated research domains of logistics 4.0, smart PPC and the much 

broader smart manufacturing research field.  

Another potential future research direction could explore the link between smart PPC and 

potential future improvements in production. At the basic level, future research might seek to 

determine how to address the current challenges with the seamless, real-time integration of 

data sources from disparate systems with the factory and supply chain. At an higher level, 

future studies that test the various use-cases individually and in combinations in different 

market, product, and process configurations would be desirable to provide additional 

evidence as to the quantifiable effects of these technology interventions to the PPC processes 

in manufacturing and supply chain environments. In this regard, relevant theoretical support 

can be found in systems theory such as in Fatorachian and Kazemi (2020). 

In the light of the extended enterprise perspective which organizations now adopt to be able 

to effectively compete globally, future research could also benefit by investigations into how 

supply chain characteristics can influence the choice and investments of the smart 

technologies within supply chains. Particularly for technologies that can enhance the level of 

supply chain integration or coordination and performance, such as the use of sensor 

technologies to enhance track and trace of material flow through the supply chain, it will be 

interesting to researchers and practitioners to know how, say, power relationships with 

supply chains influence whether a firm can choose its own path or invest in complementary 

digitalization technologies due to pressure from dominant supply chain partners.  

Future research could extend this study with the aim to further rigorously test to what extent 

the insights raised in this study are generalizable. A follow-up large scale national or 

international survey can address several of the limitations highlighted above. For instance, 

while this study showed that process and semi-process MTS producers are likely to favour a 

smart process strategy much more than complex products MTO producers. Studies might also 

delve deeper into investigating what other factors  in addition to extensive process 

automation and the low or non-existent digital component of products  influence this choice 

and how these factors can be addressed by the producers of complex products. From the 

organizational and human resources perspective, the skills and capabilities of production 

planners and systems developers will be a critical success factor for achieving a smart PPC 
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and studies showing what skills sets and how to institutionalize that knowledge will be 

valuable insights for industry.  

From a practical implementation perspective, longitudinal studies evaluating actual 

performance improvements achievable in practice when using a fully developed smart PPC 

system will reveal how much of an effect a smart PPC system can contribute towards 

improved operational performance and sustainable production in the factories of the future. 

Implementing the developed method requires experience and judgement to ensure that the 

relevant contingent factors have been considered in assessing the fit of objectives and 

priorities with the planning environment attributes. A framework of contextual variables 

could provide an exhaustive reference and reduce the requirements for experience in 

implementing the method effectively and should be addressed by future research. In future 

studies, this method could also be tested in other types of production environments and 

industry sectors to assess its weaknesses and improve its robustness and generalizability. 
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Appendix 1: Interview guide for multi-case study 

 

Date: XX.YYY.2020 

1 Research objective in descriptive form: 

To determining the enablers, constraints and key factors that influence the fit of smart PPC 

solutions to the PPC environment (as determined by the market, product, and process 

dimensions) where such solutions are applied. 

2 Important information and interview plan 

 Purpose of the study 

 Confidentiality and anonymity 

 Use of tape recorder, transcription, and possibility to review 

 Format: Semi-structured interview  please feel free to talk freely 

o I will present open ended questions which the interviewees are asked to 

elaborate on 

 Publication considerations 

 Privacy declaration 

3 Interviewee data: 

Name:  

E-mail address:  

Position:  

No. of years in the company:  

No. of years in the production planner role: 

Any other important information: 

 

1. About the PPC environment variables: demand and supply characteristics, product 

attributes, and production system: 

a. Describe the demand characteristics of your market 

b. Describe the supply characteristics of your market 

attributes in terms of 

i. Bill of materials levels 

ii. Level of digital/electronic functions 

iii. Shelf-life 

iv. Number of process routes (no. of production lines could be an indicator) 
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d. Describe your production system in terms of  

i. layout  

ii. level of automation 

iii. level of product customization 

iv. intensity of operator input 

2. Planning and control process and system: process, inputs, outputs, technologies, key 

stakeholders, current challenges 

a. Describe the planning process from beginning to the end, step-by-step. 

b. Level of standardization:  

i. To what extent is the planning process standardized? What decisions is a planner 

allowed to use his discretion for? 

c. Highlight the following for the planning process: 

i. Frequency of production planning meeting 

ii. General planning accuracy and how much planning buffer is usual 

iii. Planning horizon 

iv. Detailed scheduling horizon 

v. Frequency of re-scheduling 

d. PPC process data: 

i. Describe the input and output data for every step of the planning process 

Every Monday, the forecast is review  

ii. What are the sources of these data and in what format is it? 

iii. Are these data used for improvement of the planning process? 

e. Describe (if any) the technology used for each step of the process (Excel, paper, SAP 

modules, etc.) 

3. History of use of data-driven decision-making: 

a. Data-driven methods in planning and controlling operations. This is with regards to not 

just having data from automated production lines, but do you use this data in planning and 

scheduling or is it used mostly for quality control? 

b. Does your company use any of the following: 

i. General business KPIs 

ii. KPIs for PPC process performance 

iii. Lean manufacturing elements 

a. 5S, Visual control, SMED, Kanban, Heijunka,  

b. Just-in-time 

iv. Data-intensive improvement methodologies such as statistical process control 

(SPC), six-sigma, etc. 
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4. Digitalization approach and projects in general 

a. Has your company completed any digitalization initiative/project in the last 3 years?  

i. If yes, how many?  

ii. Which technologies and which use-cases? 

iii. What was the expected business or operations outcome?  

iv. Which projects failed, and succeeded? 

v. What challenges did you face during the implementation and use? 

b. Is your company currently working on any digitalization project? 

vi. If yes, how many?  

vii. Which technologies and which use-cases? 

viii. What was the expected business or operations outcome?  

ix. What challenges are you facing with the development, implementation, and use? 

c. Is your company planning any future (within the next 1-3 years) digitalization project? 

x. If yes, how many?  

xi. Which technologies and which use-cases? 

xii. What is the expected business or operations outcome?  

5. Smart PPC decision making projects 

a. In addition to the initiatives/projects mentioned above, are there any others that perhaps 

where smaller, but addressed or affected the PPC process directly or indirectly? 

b. Palettizing which automatically updates the number of pallets produced. 

6. What is your opinion on potential of smart technologies in improving the PPC process? 

(process, inputs, challenges eliminated) 

a. Which elements of your planning process and system can be enhanced using smart 

technologies? 

b. What do you think are possible limitations of having smart PPC? 

7. How does this contribute to your sustainability goals? 

a. Do you have specific sustainability goals for the year? If yes, what are they? 

b. Do you currently have KPIs related to sustainability goals? 

 

d. Do planners use sustainability parameters when driving the PPC process? 
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Appendix 2: A manually updated yield estimate spreadsheet 
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Appendix 4: Data table illustrating modelling variables for the 

machine learning model 

 

Category Field-Id Data type Comment 

Planner userId string  

department  string  

Order-

List 

orderNumber string  

orderDueDate.year string  

orderDueDate.month string  

orderDueDate.day string  

orderDueDate.dayOfWeek string  

productId string  

productGroup string  

orderQuantity float  

actualYield float  

estimatedYield float  Value to be predicted 

Product bomId string  

bomList string []  

dryingConstraints string []  

Process-

recipe 

recipeId string  

processType string  

processList string []  

dryingConstraints string []  

Telemetry 

from 

processes 

and 

environme

nt 

processTelemetry.temp.sd float  

processTelemetry.temp.mean float  

processTelemetry.humidity.sd float  

processTelemetry.humidity.mean float  

ovenTelemetry.temp.sd float  

ovenTelemetry.temp.mean float  

ovenTelemetry.humidity.sd float  

ovenTelemetry.humidity.mean float  

envTelemetry.temp.sd float  

envTelemetry.temp.mean float  

envTelemetry.humidity.sd float  

processTelemetry.humidity.mean float  

  



 

122 

 

  



 

123 

 

Appended Papers #1-5 
Paper 1 

Citation: Oluyisola, O. E., Strandhagen, J. W., & Buer, S. V. (2018). RFId technology in 

the manufacture of customized drainage and piping systems: a case study. IFAC-

PapersOnLine, 51(11), 364-369. 

Type: Article 

Status: Published 

Role of PhD candidate and declaration of authorship: Oluyisola conceptualized and wrote 

the first draft. Strandhagen and Buer contributed to the revision process. Oluyisola 

presented the findings at the INCOM2018 conference in Berlin 

 

Paper 2 

Citation: Oluyisola, O. E., Salmi, T. E., & Strandhagen, J. O. (2018). Causes of delivery-

time variance in maritime-equipment manufacturing supply-chains: an empirical 

study. In IFIP International Conference on Advances in Production Management Systems 

(pp. 415-421). Springer, Cham. 

Type: Book chapter 

Status: Published 

Role of PhD candidate and declaration of authorship: Oluyisola conceptualized and wrote 

the paper from the results of the research project carried out by Salmi under 

supervision by Oluyisola and Strandhagen.  Strandhagen presented the findings at the 

APMS 2018 conference at Seoul 

 

Paper 3 

Citation: Høyer, M. R., Oluyisola, O. E., Strandhagen, J. O., & Semini, M. G. (2019). 

Exploring the challenges with applying tracking and tracing technology in the dairy 

industry. IFAC-PapersOnLine, 52(13), 1727-1732. 

Type: Article 

Status: Published 



 

124 

 

Role of PhD candidate and declaration of authorship: Høyer and Oluyisola conceptualized 

and co-wrote the paper from the results of the research project carried out by 

Madeleine under supervision by Oluyisola, Semini, and Strandhagen. Oluyisola 

presented the paper at the MIM2019 international conference in Berlin 

 

Paper 4 

Citation: Oluyisola, O. E., Sgarbossa, F., & Strandhagen, J. O. (2020). Smart Production 

Planning and Control: Concept, Use-Cases and Sustainability Implications. 

Sustainability, 12(9), 3791. 

Type: Article 

Status: Published 

Role of PhD candidate and declaration of authorship: Oluyisola, Sgarbossa and 

Strandhagen conceptualized the paper; Oluyisola conducted the research work and 

collected the data; Oluyisola wrote the first version of the article with supervision by 

Sgarbossa and Strandhagen; all authors contributed during the revision process. 

 

Paper 5 

Citation: Oluyisola, O. E., Bhalla, S., Sgarbossa, F., & Strandhagen, J. O. (2021). 

Designing and Developing Smart Production Planning and Control Systems in the 

Industry 4.0 Era: A Methodology and Case Study. Journal of Intelligent Manufacturing. 

Type: Article 

Status: Resubmitted  

Role of PhD candidate and declaration of authorship: Oluyisola, Sgarbossa and 

Strandhagen conceptualized the paper; Oluyisola conducted the research work and 

collected the data; Oluyisola and Bhalla wrote the first version of the article with 

supervision by Sgarbossa and Strandhagen; all authors contributed during the revision 

process. 

 

 



Oluyisola, O. E., Strandhagen, J. W., & Buer, S. V. (2018). RFId technology in 

the manufacture of customized drainage and piping systems: A case study. 

IFAC-PapersOnLine, 51(11), 364-369. 



 
 
 

 

 

 

 

 

 

 

This is an accepted manuscript of the article published in IFAC-PapersOnLine. The 

final authenticated version is available online at: 

https://doi.org/10.1016/j.ifacol.2018.08.320  

 

 



 

     

RFId technology in the manufacture of customized drainage  
and piping systems: a case study 

 
Olumide E. Oluyisola*. Jo W. Strandhagen**. Sven-Vegard Buer*** 

Department of Mechanical and Industrial Engineering,  
Norwegian University of Science and Technology (NTNU), Trondheim, Norway 

* (Tel: +47-47167686; e-mail: olumide.e.oluyisola@ntnu.no) 
** (e-mail: jo.w.strandhagen@ntnu.no) *** (e-mail: sven.v.buer@ntnu.no) 

Abstract: While Radio Frequency Identification (or RFId) technology has gained significant traction in 
the downstream operations and industries like retail, adoption upstream of the value-chain has been much 
slower. Few reported cases of implementations in job-shops exists today for several reasons, key among 
which is the relative cost of the technology and uncertainties regarding the expected results. In this paper, 
we present the insights from the evaluation and pre-implementation stage of a project to implement RFId 
technology in the customized products department of a large process manufacturing company in Europe. 
The case company is an innovation leader in the European 
industry. Preliminary findings indicate the need to align RFId implementation with strategic goals to 
minimize the risk associated with the implementation and increase the chance of success. 

Keywords: RFId and ubiquitous manufacturing, production activity control, manufacturing plant control, 
logistics in manufacturing, intelligent manufacturing systems 

1. INTRODUCTION 

1.1 RFId adoption for manufacturing operations 

RFId technology enables the tracking of the movement of 
objects (materials, machines, operators, etc.) (Brintrup et al., 
2010) usually through a well-defined system. In 
manufacturing supply chains and shopfloors, RFId 
technology has been reported to enable significant 
improvement in the coordination of  work-in-process within 
and across factories (Qu et al., 2012). Earlier, Huang et al. 
(2008) proposed that by combining RFId (or, in general, any 
auto-ID) technology with the Internet of things (IoT) in 
manufacturing systems  using the RFId tags with unique, 
internet-recognizable identities  it is possible to capture 
manufacturing data in real-time and improve the planning, 
scheduling and control of manufacturing operations. 

However, while similar-function technologies like bar-codes 
have been widely tested and adopted within industries and 
across their supply chains, others, such as the RFId 
technology has only seen relatively limited adoption (Li et 
al., 2012). Despite several potential benefits, however, 
barcode technology has several shortcomings when used in a 
job-shop. Apart from requiring line of sight, close-distance 
data reading  which is prone to error  it is also slower and 
requires conscious effort by operators, or pre-design if it is to 
be built into robotic manufacturing systems. On the contrary, 
RFID technology allows the simultaneous reading of multiple 
tags, and does not require items to be along the line of site of 
the scanner (Yu et al., 2016). 

Despite the surge in popularity within the past two decades, 
the cost of implementing RFId for manufacturing is still 
rather high. For instance, in comparison with the barcode 
technology, the cost of implementing RFID is exorbitant for 
most type of work-in-process materials (Brintrup et al., 
2010). Until recently, the implication has been that it was 
infeasible to justify the investment, except for large-scale 
applications. But with recent advances in the development of 
RFId system components notably, that tags are becoming 
cheaper and more accurate, and that readers increasing in 
range (Yu et al., 2016), the financial viability should increase. 

Furthermore, it is difficult to standardize procedures from 
previous implementation projects to increase the likelihood of 
success of subsequent implementations. The reasons for this 
are not far-fetched: to match the fact that every factory and 
supply chain is unique, designs and implementations of RFId 
technology solutions for factories are bespoke. Consequently, 
an implementation of RFId faces almost equal chance of 
success today as it would have faced if implemented half a 
decade earlier. While issues relating to the development of 
RFId technology are no longer has critical, the issues about 
managing the information flows between parts of the factory, 

with the technology remains important (Spekman and 
Sweeney 2006).  

From the foregoing, in addition to the recent drive towards 
mass-customization via the digitalization of products, 
manufacturing systems and supply chains  and the 
significant role auto-ID technologies have in those systems  
there is an urgent need for an assessment of the barriers to 
success in adopting RFId technology (Brettel et al., 2014). 
Thus, one expects that the customized nature of job-shop 



 
 

     

 

manufacturing environment can also serve as a good 
environment to investigate the limitations of RFId regarding 
the mass-customization goals of the factory of the future. Our 
case study in this paper provides such a context.  

1.2 The context: customized drainage systems unit 
production in a continuous flow production environment 

The case company within which this study was carried-out 
manufactures and markets a wide range of pipe systems, 
including tailor-made solutions for municipal infrastructure 
as well as for the industrial and house-building sectors. The 
company operates predominantly in Northern Europe, and 
has production and trading operations in Sweden, Norway, 
Finland and the Baltic States. It is a major producer and 
supplier of plastic pipe systems, also exporting a considerable 
share of its production. An example of an important export 
product for the company is the large dimensioned 
polyethylene (PE) family of pipes, which it has developed a 
with unique design concept that is popular in Europe. 

The company operates two factories: the first is situated 
along the south-western coast of Norway, where PE pipes are 
manufactured, and the other is in the midlands of Norway. 
Large dimension pipes of long lengths are produced at the 
coastal factory. The plant employs approximately 50 people. 
The midland factory, which also serves as the national 
headquarters, employs around 130 people. At this factory, 
underground pipes and parts made of PVC and polypropylene 
intended for the transfer of wastewater are manufactured. In 
addition, pipes for gas and water distribution, sewage 
systems, cable protection and electrical installations are also 
manufactured at this factory.  

In addition to the regular pipe manufacturing, the company  
customized, drainage 

junctions and other system components. Therefore, in 
addition to the more common plastic forming processes of 
extrusion, injection- and blow- moulding common to this 
industry, this department can also cut, mill, grind and weld 
high-strength large plastic pipe sections. The unit of analysis 
in this study  the handmade department  is the focus of 
RFId technology deployment at the case company. This 
department has several characteristics in common with many 
other high-variety, low-volume production environments. 
However, the products in this case are non-mechanical, with 
simple bill-of-materials, and are generally non-reusable, as is 
often the case with the mechanical components or sub-
systems.  

The business need according to the company is to increase 
the traceability of materials through the shopfloor and across 
the value-chain in order to reduce throughput time for WIP 
materials, and thereby improve efficiency and delivery 
precision. Management wanted to leverage sensor-based 
technologies  both new and matured  to meet this need. It 

product and process innovation. The aim of this paper, 
therefore, is to highlight the challenges and issues identified 
during the evaluation and pre-implementation phase. To do 
this systematically, we used the control model framework to 

evaluate the important factors vital for RFId implementation 
success. The paper also covers a brief discussion of the use of 
this framework and its strengths that make it fitting for use 
for similar RFId projects. 

2. LITERATURE REVIEW 

Within the RFId literature, there is little or no mention about 
the application of RFId technology for customized production 
in the pipe manufacturing industry. While there are cases 
about the application in the pipe manufacturing industry itself 
(Song et al., 2006), the requirements for customized 
manufacturing operations are more nuanced and will require 
an approach similar to that adopted in the customized 
equipment manufacturing environments. A description of this 
type of environment and the literature on RFId applications 
follow. 

2.1 Characteristics of production environments 

Several taxonomies and frameworks have been proffered for 
the classification the manufacturing systems. Besides the 
two-dimensional framework by Wikner and Rudberg (2005), 
most frameworks use a seeming linear comparison based on 
how much the activities upstream the product development 
and delivery process are similar (Olhager, 2003). In the latter 
category, there are four common classes namely: make-to-
stock (MTS), assemble-to-order (ATO), make-to-order 
(MTO), and engineer-to-order (ETO). For example, a car 
manufacturing operation is typically classified as an ATO 
operation. In this framework, a pipe manufacturing company 
will be classified as a MTS operation, whereas a drainage 
systems producer can be classified as either an MTO or ETO 
operation.  Material management in MTO or ATO 
manufacturing operations are different from conventional 
make-to-stock operations in that there are often low volumes, 
higher product complexity, and large variations from one 
order to the next. The release and movement of materials 
through the shopfloor can be controlled either manually or 
with the use of several trace and track technologies like 
barcode and auto-ID technologies like the RFId technology. 

The challenge, thus, is to align the production system with 
the fast-changing needs of the market to remain competitive 
(Beckman and Rosenfield, 2008, Miltenburg, 2005). Therein 
lies the challenge for manufacturing managers. One of the 
ways to improve the ability of the manufacturing operation to 
meet the needs of the fast-changing market is traceability  
knowing where every important element of the system is per 
time, and having the historical data of the path taken by the 
component or the processes which the component has visited 
at any time (Spekman and Sweeney 2006). Furthermore, in a 
job-shop production environment, because components are 
not pushed through a line, there is often many work-in-
process materials in and around the shopfloor. This situation 
could be further worsened when the shopfloor is served by a 
WIP storage facility, another reason for the high cycle time 
variation in job-shops (Hopp and Spearman, 2011). 

The choice of the order fulfilment process chosen for a 
manufacturing operation often varies according to the type of 



 
 

     

 

production environment. Many variants of the order 
fulfilment process for ETO production environments have 
been documented in the literature, such as in Brière-Côté et 
al. (2010). Notably, Hameri and Nihtilä (1998) presented a 
comprehensive characterization of the process. They divided 
the order fulfilment activities in an ETO company into four 
stages/phases, namely: concept development, design, 
manufacturing, and operations (after-sales). Each of these 
order-fulfilment process phases influence operations on the 
job-shop directly and can disrupt the material flow. In 
addition, an important area of concern in most companies is 
the interface between design phase and the manufacturing 
phase. In addition, each customer order often requires a 
unique production process and routing (Gosling and Naim, 
2009), the implications for material management cannot be 
predetermined accurately. To deal with this complication, the 
experience of the material management personnel and the 
ability of the engineering team to adequately forecast 
materials requirements  both human factors  are crucial 
(MacCarthy and Wilson, 2003). 

2.2 Tracing and tracking technologies for manufacturing 
operations 

The use of tracing and tracking technologies to provide 
material visibility in the manufacturing systems is nothing 
new. For a truly traceable system, it will be possible for the 
production operation, for example, to simulate the impact of 
changing a customer order or a disruption in supply 
(Lockamy, 1994, Bechini et al., 2007). This is one of the 
drivers for the increasing adoption of the RFId technology 
solutions in the retail industry and automobile assembly 
industry (Curtin et al., 2007). In the automobile industry for 
instance, it will be possible to determine before shipment that 
all the parts in the bill-of-materials is in a vehicle when it 
drives through a reader gate using an RFID solution that is 
integrated with the manufacturing execution system (MES) or 
the ERP system.  

Whereas all these hypothetical applications seem feasible, it 
has been difficult to implement them in practice. Indeed, the 
research into RFId applications typically take the form of 
either mathematical (analytical) studies or small scale, pilot 
studies (empirical). While the mathematical studies have 
centered on the accuracy of the technology in real cases, the 
case studies have been mostly exploratory studies 
documenting implementation of the technology by case 
companies. Moreover, little, if any, studies have addressed 
how the installation of RFId technology influence the 
flexibility of the manufacturing operation.  

While the two main methods dominate the literature on RFId 
research, there have also been some survey-based studies. A 
notable example is Vijayaraman and Osyk (2006) who 
conducted a survey of a warehousing council members 
working in manufacturing firms in the USA. The authors 
found that why several of the respondents where either 
already implementing RFId or were considering a significant 
investment in the technology in the near term, uncertainty of 
the expected results persisted. Specifically, the potential of 
the technology to result in a reduction in operating costs  of 

an amount which is at least as much as it costs to implement 
and use the technology  was highlighted, validating the 
concern raised in Niemeyer et al. (2003). As a testament to 
the perceived maturity of the technology then, the authors 
highlighted the need to replicate the study in the future when 
the technology matures. Niemeyer et al. (2003) also found 
that in the warehouse industry, companies already 
implementing RFId were less optimistic about its potential 
for cost reduction than companies that were just about to 
implement the technology. 

The literature is replete with several document cases from 
various industries highlighting the opportunities and 
challenges for implementing RFId technology in the 
warehouse and within the shopfloor (Spekman and Sweeney 
2006, Pero and Rossi, 2014). While the retail and distribution 
industries have seen increasing application, applications for 
job-shop operations remain limited (Huang et al., 2008). This 
may be because of the high level of flux required in 
production systems utilizing job shops layout. 

2.3 Integrating RFID technologies with other ICT systems in 
manufacturing 

Manufacturing systems are slow to change by nature 
(Miltenburg, 2005), partly because of the inherent pursuit of 
stability. Facilities once purchased, often are difficult to 
change; process technologies are generally expensive and 
require some learning time before acceptable levels of 
efficiency are attained; and supplier development takes time. 
Therefore, managers adopt various control methods and 
technologies to manage their manufacturing operations. In 
addition to internal factors like organizational capabilities, 
the choice of production system is often dictated by external 
factors such as the customer or market requirements, and the 
available production system technologies such as process and 
information technologies (Miltenburg, 2005).  

Therefore, beyond the factory floor, production and sales 
managers must collaborate to deliver products to the 
customers within the required quality and delivery-time 
limits. To this end, companies deploy enterprise systems 
software such as ERP and customer requirements 
management (CRM) systems to manage the order delivery 
process. It is possible to design an RFId solution that 
automatically updates and feeds data into the ERP solution 
(Spekman and Sweeney 2006). Whereas barcode technology 
can also be used this way, RFId does it seamlessly and can 
achieve significantly better results in terms of the reliability 
and timeliness of the operational data (Durugbo et al., 2014, 
Pei et al., 2017).  

3. RESEARCH DESIGN 

3.1 Methodology and governing framework 

The selection of the case was a matter of convenience. The 
authors and the case company are partners in a research 
project, Manufacturing Networks 4.0. In this case, the 



 
 

     

 

of RFID technology to improve the operational effectiveness 
factory. To 

ensure an adequate basis for the engagement with the case 
company, the authors began this study with a look at the 
unique characteristics of the handmade department. The 
authors used the control model framework proposed by 
Strandhagen et al. (2013) for the evaluation of the production 
system. The purpose of this holistic evaluation (see fig. 1) is 
to ensure that the eventual solution is not only technically 
feasible, but also acceptable to the workers. 

 

Fig. 1. The control model framework for improving 
manufacturing operations. Adapted from: Strandhagen et al. 
(2013) . 

The control model framework evolved over several years, in 
the attempt to systematically and pictorially describe a 
production system, while capturing factors such as the 
organization, information, materials, processes and resources 
that interact within that system (Slack et al., 2010, 
Strandhagen et al., 2013). The underlying premise can be 
traced to the strategic fit theory by Fisher (1997) and 
contingency theory. Essentially, the decisions regarding 
influencing factors should be such that ensures an alignment 
of those factors and the main production control methods 
deployed. The factors include: the choice of organizational 
capabilities and structure, work methods; the systems 
architecture and their integration of information technologies; 
the product attributes such as structure, volumes and 
processing times; the business and production processes; and 
the network of production resources namely, machines 
personnel and suppliers. All these factors must be aligned, 
and considered when decisions are made that could affect the 
production system. 

Using anecdotal evidence, parallels were drawn in terms of 
the fit of the RFId technology characteristics, challenges and 
solution approaches within the fields of complex systems, 
integrated operations and material management. We 
identified systems theory as the underlying principle and this 
paved the way for development of more robust solutions in 

these fields. It is on this basis that the framework was 
developed and illustrated in the handmade department, which 
is also the unit of analysis. We use one case company 
because it fits the exploratory nature of this study (Voss, 
2009), even though findings cannot be generalized due to the 
small sample size  (Yin, 2009, Matthews and Ross, 2010). 

3.2 Data collection and analysis 

The case data was collected using primary and secondary 
data collection sources. The authors combined workshops, 
multiple guided tours of the job-shop and secondary data 
sources like online product configurators and published 
company documents (Matthews and Ross, 2010, Voss, 2009) 
to achieve the benefits of triangulation and to improve the 
accuracy of judgement and discussion (Flynn et al., 1990, 
Yin, 2009). Two elicitation workshops were held within a 
three months  period to collect information about the 
business drivers for the project, the challenges that the 
management hopes to solve by implementing this technology, 
and the issues that currently exists in our unit of analysis.  

Workshops focused on the current material flow control 
principles, constraining factors, identified challenges and 
improvement initiatives currently being implemented or 
planned for the department. In addition to the minutes of the 
meeting, each of the authors took notes from the workshops. 
The authors then shared and synchronized their notes to build 
up a case database for all of the captured information. 
Thereafter, the authors discussed the notes with the key 
stakeholders who attended the workshop  including the 
supply chain manager and the production manager for the 
handmade department  for verification and/or correction. 
For the subsequent clarification of noted points, the authors 
used follow-up emails and phone calls. The information 
collected in the case database was used as foundation for 
addressing the research issues outline in Section 1. 

4. PRELIMINARY CASE INSIGHTS 

When the management team considered decision to 
implement RFId technology, they assumed that the 
technology would help to address concerns about the location 
of materials, tracking of the travelled paths and overall 
improvement in the operations and inventory management 
processes for this department. The decision was made based 
on the business and technology experience of the 
management team. Our research team was brought in to 
guide both the preparation and the implementation processes. 
Using the control model framework, we performed an 
assessment of the case, with an emphasis on the material and 
information flows within the department and across several 
storage points. As most of the RFId readers are fixed, it is 
generally desirable to limit changes to the layout after the 
technology has been implemented. Thus, it is necessary to 
optimize the flow of materials and information before 
implementing such a solution.  

The control model framework mentions five categories of 
factors that must be evaluated. The organization and 
resources categories relate to structure, competences, work 



 
 

     

 

methods, machines, personnel, suppliers and customers. The 
complexity of the customization involved in the operation 
requires highly skilled technicians. In this case, the company 
has highly skilled workers with high process and information 
technology capabilities. The department uses very little 
automation because of the customization of every product 
coming through the department. 

The other three categories in the control model framework 
are material/product, information and processes and these are 
often the key factors that directly influence the use of a fixed 
solution system like RFId technology. A preliminary 
evaluation  using data gathered in reports from previous 
projects, several factory tours, and two workshops  revealed 
several logistical challenges, which must be addressed before 
an RFId solution should be implemented: 

a) Incorrect product structure and registration of material 
requisitions, which leads to inaccurate inventory register 
in the ERP system. Since material purchasing is based on 
inventory levels in the IT system (ERP), a mismatch 
between the levels in the ERP system with actual 
inventory levels can cause avoidable disruptions in 
production plans and delivery precision. For instance, it 
was discovered that used pallets (pallets with boxes of 
components, where the boxes have been unsealed) were 
sometimes returned to storage after use, and erroneously 
counted as a full pallet. 

b) Tracking and tracing products locations: Several items 
can have different storage locations, and it is sometimes 
unclear where WIP items are located within the plant. In 
addition, excess materials are placed ad hoc at different 
locations around the department and are sometimes 
missed when inventory is being counted. 

c) The flow of material and information is less optimal in 
the handmade department compared to the rest of the 
plant: The department is characterized by recurring 
flows and multiple products/projects are being processed 
simultaneously, leading to a proliferation of work-in-
process and longer than necessary lead-time. 

The described challenges affect the performance of 
purchasing, inbound logistics and production functions at the 
department today and are currently being addressed through 
changes to the processes and better control. 

In addition to addressing these problems, the management of 
also wanted an investigation of the opportunities of applying 
RFID technology further downstream of products value 
chain. Currently, it is expected that integrating an RFID 
solution with  customers can further increase 
the logistics performance of all the members of the value 
chain  the case company, its suppliers, and customers. 
Furthermore, a number of ongoing and planned projects in 
the department would potential alter the layout and material 
flow in the department. Such alteration, if they were to 
happen after deploying the RFId solution, would have limited 
the flexibility in changes to the layout of the department, or 
in a worst case, required an alteration of the RFId solution.  

From the cases documented in the literature, together with 
our experience so far with this project at the case company, it 
is observed that the perceived risk (or otherwise, the 
difficulty) associated with RFId technology adoption is 
higher for operations that do not follow a steady, continuous 
path compared to those production environments that do. For 
example, the literature is rife with implementation studies 
within the retail industry, but cases for customized production 
are rare. Furthermore, in this case-study, the amount of 
uncertainty and process variation that is associated with every 
customer order has been a recurring factor in our evaluation, 
and this has been a disincentive, or at least a cause for 
caution, in going through to the actual implementation phase. 

Finally, the perennial question about the appropriate level to 
apply the tags  at pallet level or for individual items  was 
also evident in this case. Although item-level RFId 
application remains elusive in general, the predisposition of 
the industry to batching of materials has enabled increasing 
adoption whenever that is possible. In this case, it seems 
feasible to append an RFId tag to the biggest part of a 
product. For welded or joined accessories, it is also possible 
to append an RFId tag when they are not consumables. 
However, for consumables  components like caps  which 
are important, even though of little financial value, the only 
viable option might be to use RFId tags at the pallet level in 
combination with other methods to track box volume. One 
possibility is also to use active RFId tags, which will allow 
update of the volume levels every time workers take items 
from pallets. Overall, is appears feasible to go to the next 
phase of technical design, detailing the exact locations and 
configurations of the readers and antenna in the department 
and storage locations.  

5. CONCLUSIONS AND FUTURE RESEARCH 

This study highlights a framework for, and challenges of, 
RFId technology applications in the customized-production 
department in a process manufacturing industry. We observe 
that the challenges of implementing an RFId solution in 
operations increases with the amount of transformation 
carried in the operation. Furthermore, strategic changes to 
operations have significant implication for the usefulness and 
the ability of the solution to deliver the expected operational 
improvements.  

While the adoption of RFId continues in several industries, 
implementations projects that are not well aligned to the 
operations strategy of the company, especially regarding 
expected changes in manufacturing system, will lead to the 
worst results. Changes after implementation, say, to process 
machinery or the addition of a new warehouse are examples 
of strategic initiatives that can materially alter the layout and 
flow of materials and other items in a manufacturing system. 
In this case, we discovered late in the project (during our 
evaluation) that a new, improved machine at the welding 
workstation was to be installed in the next quarter. This 
would have implications for the flow and speed of materials 
in the job-shop and might necessitate a change to the layout 
of the department. This was not initially considered in the 
early phase of the project, and could have either severely 



 
 

     

 

constrained the ability to make the necessary changes to the 
layout of job-shop, or rendered the implementation a waste. 
To increase the likelihood of success, a thorough evaluation 
of strategic fit is necessary. A framework similar to the one 
shown in figure 1 can be used alone or in combination with 
others such the one in Ren et al. (2011). 

As with most case-based research, contextual factors could 
have significant influence on the case illustration, with the 
implication that findings might be non-generalizable. 
Nevertheless, the exploratory nature of the study and the fact 
that this project is rather innovative justifies the sample size. 
With a 
findings are insufficient to allow for generalization. Future 
studies might examine how the evaluation method affects the 
results of the implementation. With the current trends about 
digitalization and industry 4.0, future studies could 
investigate how technologies such as automated intelligent 
vehicles, computer vision, and machine learning, used with 
RFId technology can enhance manufacturing operations. 
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Abstract: The purpose of this research is to identify the various challenges encountered when using 
tracking and tracing technology in the dairy industry. Based on a systematic literature review, the 
challenges are reviewed from the supply chain perspective. The findings are then discussed within the 
context of a large dairy manufacturer that implemented RFID within its supply chain. The paper 
distinguishes between three different types of challenges regarding tracking and tracing technology: 
strategic, technical and convenience challenges, and are further categorized as either adoption barriers or 
implementation barriers. This study also finds that the technical requirements for implementing tracking 
and tracing technology pose the least difficulty, while organisational change and cyber-security risks are 
more critical. 

Keywords: RFId and ubiquitous manufacturing, logistics in manufacturing, intelligent manufacturing 
systems, manufacturing plant control 

1. INTRODUCTION 

Recent trends in technology development offers much 
promise for addressing the several challenges facing 

To 
cope effectively with ever-changing customer requirements, 
managers are looking into technology solutions, such as 
tracking and tracing technologies, to improve planning and 
control and performance (Kache and Seuring. 2017). This 
increased productivity will have a significant implication for 
successful operations management on a factory level but also 
across entire supply chains (Kehoe & Boughton, 2001). More 
importantly, it will result in an improved service level and 
customer satisfaction. This is crucial in such a competitive 

strengthens the brand integrity and increases the customer 
loyalty  

In the last two decades, tracing and tracking technologies 
have gained attention as potential enablers for improved 
supply chain integration, planning and control, and therefore 
better overall supply chain surplus (Strandhagen et al, 2016; 
Oluyisola et al, 2018). This has spurred research to increase 
the understanding of the conditions that facilitate the 
digitalisation of supply-chains and production systems in the 
recent times. It is also valuable to understand the role of 
digitalization in performance improvement and in raising the 
awareness of the risks, challenges and threats for the 
companies faced with digitalisation. For instance, there is a 
growth in available information collected from technologies 
like tracking and tracing systems and customer collected data. 
Such data has the potential to create several opportunities like 

improving forecasts and basing production plans on more 
accurate customer demand.  

Kache and Seuring (2017) noted how the research on the 
consequences of the lack of updated hain 
information is limited. Moreover, the need to integrate with 
existing systems and questions about whether to tag at item 
level or at package level remains challenging (Kache & 
Seuring, 2017). Perhaps, this is one reason why adoption has 
been most prominent in some segments of the retail industry 
where finished goods items are sold mostly piece-by-piece. 
Within the factory, adoption is even more limited if judged 
by the dearth of empirical data in the literature. Therefore, 
there is a need to shed more light onto the challenges facing 
the adoption and use of tracking and tracing technologies in 
other industrial settings, if the potential benefits are to be 
fully actualised. The paper aims to fill this research gap 
through a case study of a large producer, and more 

 

1.2 Research objective, questions and scope 

The paper will investigate the existing challenges and barriers 
for applying tracking and tracing technology in a cold supply 
chain in dairy producer operations. These tracking and 
tracing solutions suited in the dairy industry are intended to 
improve the accuracy and the efficiency of the planning and 
control in a complex supply chain whose objective is to 
remain competitive within the paradigm shift which is 
currently moving towards a more digital world, frequently 
referred to as Industry 4.0.   



 
 

     

 

Operational decisions-making is particularly difficult in the 
dairy industry as they need to address several uncertainties 
such as high perishability, a large variation in lead times, 
short delivery times, seasonality and both varying raw 
material availability and demand. With these characteristics 
this industry can be considered as one of the most complex 
and challenging supply chains. There is a plethora of 
information available supporting the statement that tracking 
and tracing technology is an enabler of supply chain visibility 
which can enable more informed planning and control. The 
purpose of this paper is to increase awareness of the potential 
challenges that may arise from these technologies. 

There is an increasing importance and expectation of 
monitoring food in the food industry, due to reasons related 
to both quality and safety. The food industry is exposed to a 
myriad of devices, sensors and instruments that continuously 
analyse, monitor and control parameters such as temperature, 
bacterial levels, pH-levels and contamination levels. These 
technologies are frequently found on the factory site and it 
can be less challenging to control these aspects that occur 
inhouse. Usually, the factory has a clear understanding of 
these characteristics. Once the consumable products leave the 
factory premises it will be more difficult to monitor and 
control. Nonetheless, the products are a lot more vulnerable 
as they are exposed to more radical and unpredictable 
changes in the external environments which can have a major 
influence on the quality of the product. Simultaneously, the 
products will be impacted by issues related to operations and 
logistics. Consequently, researching tracking and tracing 
technologies instead of other possible technologies is very 
attractive for this industry as they would be able to control 
and provide the supply chain with information on the current 
status and performance of the process. 

2. RESEARCH DESIGN 

A systematic literature review has been carried out in 
Emerald Insight and Science Direct, and the articles were to 
be dated no later than between 1998-2018. A further 
condition was that the articles found in Emerald Insight 
should come from leading journals as this would increase the 
validity of the project. Science Direct had articles coming 
from different journals than Emerald Insight and many of 
these journals were not regarded as leading. Nonetheless, the 
contents appeared relevant and therefore the criteria for the 
background of the journals did no longer aadoptionpply.  

The pool of selected keywords were based on a preliminary 
search. A boolean advanced search was generated separately 
for both Emeral Insight and Science Direct because each 
database had different constraints in their search engines. The 
first boolean search in Emeral Insight involved three blocks 

, however this resulted in 48 567. After 
several modifications such as changing the combinations of 
keywords and extending the search to four blocks resulted in 
67 hits after having applied the constraints mentioned above. 
The same process was repeated for Science Direct, however 
here two blocks were appropriate for searching in the body of 
the article and three blocks were tailored towards keywords 
to be found in the title, abstract or list of keywords. This 

resulted in 42 articles. The keywords used to retrieve relevant 
papers were the following: planning, control, forecasting, 
food industry, make to stock, RFID, traceability, tracking 
technology, Industry 4.0, challenges and constraints. These 
words were combined slightly differetly across the various 
levels in the two databases.  

In addition to the literature study, a semi-structured interview 
was carried out with the Logistics Project Manager at the 
case company. The purpose of the case study is to 
complement findings from the literature study, deemed 
necessary because of the limited studies on these challenges  

 

3. LITERATURE STUDY 

3.1  Findings from literature study 

Initially, the literature review resulted in 67 articles from 
Emerald Insight and 42 articles from Science Direct. Reading 
through the titles and the abstracts and assessing their 
relevance reduced this number to 30 articles and 6 articles, 
respectively. After thoroughly reading through all the 36 
articles, the final selection was filtered down to 33. The 
inclusion and exclusion criteria were based on papers having 
to include either food industry or cold supply chains, and it 
was imperative that the papers addressed tracking and tracing 
technology with the respective challenges. These 33 papers 
provided relevant information on existing technologies and 
the challenges when implemeting tracking and tracing 
technology in the cold supply chain, summarized in table 1, 
and the following sections will address these findings more 
specifically.  

3.2  Existing technologies 

Different traceability systems will have different capabilities 
and functions, some span across the entire chain, from farmer 
to retailer, while other solutions are bounded to one specific 
area. The level of information detail these technologies 
capture will vary. The following technologies were found 
during the literature study and were considered as being 
popular for tracking and tracing. 

3.2.1 Barcodes  

Barcodes and barcode scanners are a well-established 
technology for identifying products and they will only 
identify product types instead of unique items. Barcode 
technology can often be considered as a simpler form for 
tracing, nonetheless this is often preferred in industry as it is 
easier to implement, and it is a cheaper solution while still 
capturing data to the level of detail and accuracy which is 
required.  

3.2.2 RFID  

Radio frequency identification (RFID) technology is a 
compact technology which consists of two components: an 
antenna and the chip which contains the electronic product 
code. Real-time information can be traced continuously 
throughout the entire chain. With the emergence of RFID 



 
 

     

 

technology, research has proven that the handling of 
inventory and inventory management has improved (Lao et 
al., 2012), especially in the food industry, as it provides real-
time inventory data and hence gives a clearer visibility of 
stock levels. Adopting RFID technology will also lead to a 
reduction in human errors originally caused by manual data 
input. The significant benefits will be particularly 
experienced by the distributor and the retailer.  

3.2.3 Intelligent packaging systems and TTIs   

These packaging systems equipped with time-temperature 

stimuli can detect, sense, record, trace and communicate. 
These functions assist decision making regarding shelf life, 
quality, they are capable of warning when deviations occur, 
and they will support material and information flow (Yam et 
al., 2005, p.2).  

Table 1. RFID challenges from the literature. 

Challenges References 

Strategic challenges 
Cost of implementing Juan Ding et al. (2014); Kumari et al. (2015); 

Thiesse & Buckel (2015); Li et al. (2017) 

Low awareness of 
benefits 

Auramo et al. (2002) 

Information sharing Aramyan et al. (2007); Nakandala et al. (2017); 
Chaudhurri (2018) ; Morgan et al. (2018)  

Coordination, 
collaboration and trust 

Robson & Rawnsley (2001); Aramyan et al. 
(2007); Matopoulos (2007); Juan Ding et al. 
(2014); Anastasiadis & Poole (2015); Soosay & 
Hyland (2015); Jie & Gengatheran (2018); Morgan 
et al. (2018)  

Entrenched business 
practices 

Faisal (2015) 

Technical challenges 
Collisions Kumari et al. (2015) 
Environmental 
interference 

Kumari et al. (2015) 

Suboptimal reading Thiesse & Buckel (2015); Kumari et al. (2015) 
Data collection Zhong et al. (2017); Kumari et al. (2015) ; 

Chaudhurri (2018) 

Convenience challenges 
Waste and recycling 
of RFID tags 

Chaudhurri (2018) 

Lack of professional 
skills 

Faisal (2015); Chaudhurri (2018)  

Security and privacy Kumari et al. (2015); Li et al. (2017); Chaudhurri 
(2018) 

Regulations and 
standards 

Kumari et al. (2015); Nakandala et al. (2017); 
Stranieri & Banterle (2017) 

Data uniformity and 
standardisation 

Chaudhurri (2018) 

 

3.3 Challenges with tracking and tracing technology 

The challenges with tracking and tracing technology 
encountered during the literature study can be categorised as 
strategic challenges, technical challenges and convenience 

challenges (Vermesan & Friess, 2014) and each of these three 
challenges have various aspects that will now be discussed in 
more detail.  
 
3.3.1 Strategic challenges  

Cost of implementing. High deployment costs remain one of 
the greatest constraints to applying certain tracking and 
tracing technology, like RFID. However, it is believed that 
cost will become a less significant barrier with the expected 
advances in semiconductor fabrication techniques required to 
produce some of the components. If this proves to be correct, 
technologies such as RFID may become a more competitive 
choice in the future (Kumari et al., 2015).   

Low awareness of benefits and lack of incentives. It is 
believed that there is a lack of incentives for adopting the 
technologies. There is also a risk in believing in additional 
benefits when applying new technology to old processes. 
These can be incompatible with each other and can lead to 
increased costs and inefficiency.  

Information sharing. Information sharing, hence increased 
transparency and supply chain integration can have a 
significant positive impact on the entire supply chain by 
improving planning, production and delivery performance 
(Zhou, 2007). The quality and the availability of the 
information shared is critical and will be influenced by 
accuracy, timeliness, credibility, uncertainties and inter-
organizational relationships. Before investing in 
transparency, there should be an analysis on which situations 
would benefit from it and where transparency would not be 
worthwhile (Morgan et al., 2018). With the rise of big data, it 
will be necessary to ensure that the masses of data are made 
interpretable and timely for all the partners (Morgan et al., 
2018).  Information sharing is not achieved appropriately in 
cold supply chains because temperatures are recorded but are 
not transmitted. When temperature data is collected it is only 
used at the destination to determine whether the freight is 
accepted (White & Cheong, 2012). 

Coordination, collaboration and trust. A major incentive for 
coordination and collaboration is the opportunity of having 
access to more competencies (Anastasiadis & Poole, 2015).  
A supply chain can potentially comprise of several partners 
and there is always a risk of diverging and misaligned 
interests which can affect the quality of the information 
which is shared. The strategic value of some information can 
inhibit the free exchange of information (Aramyan et al., 
2007). There is a tendency of associating the act of 
information sharing with the loss of power and dependency 
(Soosay & Hyland, 2015). This will be counterproductive 
when working towards building trust and this can be 

Müller, 2003). As a result, trust can easily be an obstruction 
and will limit both the depth and the width of the 
collaboration. 

Entrenched business practices. Managers can be reluctant to 
change and commitment and not having all the key 
participants on board can lead to the technology not being 



 
 

     

 

implemented at all. Reasons can be due to high one-off 
investments.  

3.3.2 Technical challenges  
Collisions. A risk with technology requiring tags is the 
possibility of several tags being energised simultaneously 

signal. As a result, the various 
tags will transmit their response to the reader. The signals 
may superimpose which will then lead to a collision between 
the signals and will influence the data quality.  

Environmental interference. Environmental factors and high-
water-contents materials affect the performance of the tracing 
technologies (Kumari et al., 2015). These features are critical 
in food supply chains where foods are often characterised by 
possessing high contents of water, are exposed to extreme 
temperatures and have dielectric properties that can interfere 
with the signals.   

Suboptimal reading. A misconception is that technology 
allows for an error-free detection of products. Faulty readings 
will directly impact the quality of the collected data (Ruiz-
Garcia & Lunadei, 2011) and will for example affect the 
inventory control as there will be a discrepancy between the 
reality and the collected data (Thiesse & Buckel, 2015). A 
further factor that must be considered which is especially 
relevant in the food industry is that tracking and tracing 
technology usually traces and monitors the packaging that the 
food is contained in rather than the product itself. Therefore, 
there -to-one correlation between the 
parameters measured on the packaging of the product and the 
actual parameters of the product itself.  

Data collection. Not having an approachable data collection 
method will confine the data-based analytics and will directly 
impact the quality of the information and lead to 
unreasonable assumptions and decision making (Zhong et al., 
2017). A reason for this is that the industry is lagging 
compared to the research which has been done on the 
digitalisation of supply chains. The reality is that manual and 
paper-based operations are still common practices, the 
collected data is unstructured, and the masses of data which 
are generated are difficult to handle as the current collection 
systems are limited and unable to cope with large quantities 
of data.  

3.4.1 Convenience challenges  
Waste and recycling. Ruiz-Garcia and Lunadei (2011) 
express that a setback with choosing certain tracing 
technologies concerns the handling of the end of life of the 
technology. A disadvantage of RFID is the recycling of the 
tags. 

Lack of professional skills. Lack of professional skills, 
potentially due to insufficient or poor training of the 
employees in using the tracking and tracing technology, 
limits its potential in the supply chain (Ruiz-Garcia & 
Lunadei, 2011). Human error can lead to inaccurate data 
collection and poor data interpretation leads to poor decision 
making.  

Privacy and Security. Privacy issues restrain the companies 
from taking advantage of the opportunities with tracing 

technologies. Consequences are counterfeited barcodes, 
hacking, industrial espionage, unwanted customer tracking, 
virus attacks and malicious intentions. 

Regulations and standards. With growing transparency, there 
is an increasing need for regulations and traceability 
standards, and several standards currently coexist (Kumari et 
al., 2015). The lack of standards will lead to system 
incompatibilities making it more complicated to share 
information.  

Data uniformity and standardisation. The process of 
collecting and transferring data varies between supply chain 
partners. This disparity makes it harder to collaborate and 
leads to a greater incompatibility 

4. INSIGHT FROM A CASE STUDY 

4.1 Brief description from case 

The case company is a large Norwegian dairy product 
cooperative which offers a wide range of products. The 
products are primarily sold through all grocery retail stores, 
local convenience stores and kiosks. Domestically, the 
company face little to no competition. The company is 
successful internationally as well. The company makes to 
stock and has two different types of supply chains: direct 
distribution to retailers and distribution through wholesalers. 
The market requirements are frequent deliveries with very 
short response times. This is partially due to the high 
perishability of many of the products. The demand 
uncertainty is increasing because there is a large variation in 
periodic demand, the promotional activity is high and 
increasing, and the presence of the bullwhip effect is high. 
Despite the high perishability, the demand is still met from 
the finished goods inventory. The supply chain can be 
considered as one of the most challenging and complex 
supply chains in Norway. The challenges are increasing as 
there are more product variants and more demand 
uncertainty. The consequence is an even lower predictability. 

4.2 The chal  

Some of the points within each category of challenges will be 
relevant for certain specific technologies, whereas others will 
be applicable to a greater variety of tracking and tracing 
technologies. The case company experiences that their 
greatest challenge is strategic and weight this as the most 
decisive aspect when it comes to concluding whether they 
should implement RFID in their manufacturing. It is stressed 
that cost and low awareness of benefits are the primary 
deciding factors for adopting the technology. 

From the case interview, it was expressed that the wholesaler 
would benefit from greater advantages when using tracking 
and tracing technology than the manufacturer. However, it 
would be the manufacturer that would have to take the costs. 
Prater and Frazier (2005) created a framework explaining the 
different barriers in applying technology and they 
distinguished between adoption barriers and implementations 
barriers from a management perspective. For the purpose of 



 
 

     

 

this study the definitions have been slightly modified but the 
essence remains. Adoption barriers are defined as barriers 
that arise due to the lack of incentives and motivation, 
whereas implementation barriers are defined as barriers that 
impact the feasibility of implementing the technology in 
practice.  

It can be concluded that in the case of using RFID 
technology, the adoption barriers are greater and are more 
significant than the implementation barriers. Physically 
implementing RFID is not complicated as many companies 
have achieved it successfully, however the greatest 
hinderances arise due to the failure of achieving promised 
benefits at high deployment costs. 

4.3 
performance  

It is important to understand how the challenges discussed so 

performance if they are not managed adequately. Strategic 
challenges and technical challenges will have a direct 

performance and abilities 
to plan and execute their production. Certain aspects of 
convenience challenges, such as lack of professional skills, 
can also influence the performance. 

4.3.1  Impacts due to strategic challenges  

The ability to share information amongst supply chain 
partners and the ability to successfully coordinate and 
collaborate will have direct consequences on the overall 
operational performance such as longer lead times, higher 
costs throughout the supply chain and inaccurate information 
sharing. A possible reason that strategic challenges are 
weighted as more important by the case copmpany may be 
because the implications were more immediate during the 
pilot project. 

4.3.2  Impacts due to technical challenges  

Essentially, technical challenges can imply poor data quality. 
Poor data quality means that incorrect data is used for 
decision making and planning, there will be a poorer 
visibility throughout the chain and invisible costs may be 
more difficult to uncover. Poor data quality  data can lead to 
wrong inventory levels and give incorrect information on the 
location of the products, resulting in a skewed representation 
of the reality. This inaccurate image makes it more complex 
to uncover invisible costs and this will complicate the process 
of improv  

4.3.3  Impacts due to convenience challenges  

Most of the points that fall under the category of convenience 
challenges do not directly impact the operational 
performance. Nonetheless, that does not mean that their 
importance must be ignored. One aspect that can influence 
the operational performance is the lack of professional skills 
because it can lead to human errors. Human errors can impact 

the accuracy and the efficiency of the production. Humans 
may slow down production or make incorrect decisions or do 
wrong actions during their workday. Often it is the humans 
themselves who need to report these faults and it is likely that 
not all faults caused by human error are in fact reported as 
human error. Since not all of these faults are documented it 
can be difficult to identify them and improve the 
performance. 

4.3.4 Collective impact of challenges on operational 
performance 

Combining the impacts from all the challenges, it can be 
concluded that this will overall lead to both poor external and 
internal attributes. Poor external attributes include reduced 
delivery reliability, responsiveness and flexibility, while poor 
internal attributes include higher costs and reduced assets 
management efficiency (Dweekat et al., 2017). Each of the 
challenges will contribute to the external and the internal 
attributes in different ways, however the final consequences 
and impacts on the supply chain management will be the 
same. Managing all the three challenges correctly will 
maintain the costs low, and the assets management 
efficiency, the delivery reliability, the responsiveness and the 
flexibility will be high. Achieving this successfully will result 
in a competitive and sustainable supply chain and all the 
decisions must be made keeping these in the core, as 
illustrated in figure 1.  

 
 
Figure 1. Framework illustrating how the three categories of 
challenges will impact the internal and external attributes and hence 
the overall supply chain performance. 

5. CONCLUSIONS 

There is no doubt that tracking and tracing technology leads 
to more real and representative data, and hence improves and 
facilitates decision making. Traceability eases control by 



 
 

     

 

product monitoring and continuous process verification.  The 
dairy industry is already a complex and challenging supply 
chain and if the trends continue the complexities are 
envisioned to increase due to increased competition and 
higher customer expectations. Complex, dynamic and 
unpredictable supply chains need to be resilient and having 
the competence of capturing, extracting and using high 
quality data and information will enhance the supply chain 
resilience (Leat & Revoredo-Giha, 2013).   

Several challenges impede the application of tracking and 
tracing technolo
perspective. Investigating these technologies shows that the 
strategic, technical and convenience challenges can be 
categorised as either adoption barriers or implementation 
barriers. Although these challenges vary amongst companies 
and different tracking and tracing solutions, the governing 
challenges tend to be deployment costs and lack of benefits. 
These reasons are particularly directed towards RFID 
technology and have led to manufacturers discontinuing 
RFID pilot projects.  

This study concludes that physically implementing tracking 
and tracing technology does not tend to pose major 
difficulties, instead it appears to be aspects concerning 
organisational issues and security. Furthermore, being unable 
to manage these challenges successfully will have a direct 
implication on external and internal operational attributes. 
These attributes are essential to satisfy as they lie in the core 
of having a competitive and sustainable supply chain. 
Although the case company discontinued the RFID 
technology pilot project, both this manufacturer and others 
remain interested in exploring other solutions that will assist 
operational decision making.  

If the current technological advancements continue, there will 
be an immense growth in connectivity, information sharing 
and transparency both internally within organisations and 
externally amongst supply chain partners. To facilitate the 
transition from the traditional supply chains we know today 
towards the connected and digital world which is forecasted it 
is essential to acknowledge the existing challenges and 
address them adequately. Therefore, future research should 
explore how these challenges can be overcome and in which 
cases and industries the discussed challenges are most 
predominant. 
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Abstract: Many companies are struggling to manage their production systems due to increasing
market uncertainty. While emerging ‘smart’ technologies such as the internet of things, machine
learning, and cloud computing have been touted as having the potential to transform production
management, the realities of their adoption and use have been much more challenging than anticipated.
In this paper, we explore these challenges and present a conceptual model, a use-case matrix and a
product–process framework for a smart production planning and control (smart PPC) system and
illustrate the use of these artefacts through four case companies. The presented model adopts an
incremental approach that companies with limited resources could employ in improving their PPC
process in the context of industry 4.0 and sustainability. The results reveal that while make-to-order
companies are more likely to derive greater benefits from a smart product strategy, make-to-stock
companies are more likely to derive the most benefit from pursuing a smart process strategy,
and consequently a smart PPC solution.

Keywords: production planning and control; smart manufacturing; internet of things; machine
learning; industry 4.0; case study

1. Introduction

“Is pollution profitable?”, asked Bragdon and Marlin [1] five decades ago as the sustainability
question became a forefront topic for manufacturing managers and business management researchers.
Ever since, it has become popular for companies to list sustainability goals as an integral part of
their mission, even though, many fail to take tangible, significant steps to improve sustainability in
operations—a practice called ‘green-washing’ [2]. However, since the turn of the twentieth century,
there has been growing interest among managers and researchers in having sustainability as a source
of competitive advantage while simultaneously addressing the growing market pressure from global
consumers and supply chain (SC) partners [3,4]. This pressure, it is argued, has led towards the more
holistic triple bottom-line performance measurement for manufacturing and supply chain operations
management as well as the emergence of sustainable manufacturing paradigms such as the circular
economy, lean and green operations, and eco-logistics [4]. In order to address this challenge, every
element of manufacturing must be involved, most importantly, those elements tasked with managing
all the others —that is, production planning control (PPC).

The goal of PPC is to produce what the market demands at the expected quality, volumes, time,
at minimum costs, on an ongoing basis as well as to be able to adjust to disruptions to the system when
necessary. The PPC system includes all the tools and processes that are required to work towards
achieving that goal [5]. PPC is a critical function for manufacturing managers. One of the key elements
in operations management research is the fit of the PPC system to the production system, as the level of
fit often decides the efficiency, profitability and long-term viability of a production enterprise. However,
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in practice today, PPC managers must deal with several challenges such as changing regulatory
policies, climate change and other global phenomena all of which appear to put the world in a state of
near-perpetual turbulence. In order to deal with the increased complexity and new market demands,
production managers continually attempt to improve product and process flexibility, thereby leading
to increasing depth of bill-of-materials and greater variation in production routings [6]. This causes
PPC to be more challenging and the consequence is that a significant proportion of production lead
time is still wasted as queueing or waiting time [7].

Furthermore, recent developments in information and communications technology (ICT)
paradigms—within the concept of industry 4.0—indicate the potential of transforming all stages
in the lifecycle of products (from design, sourcing, manufacturing, to distribution, consumption, and
recycling) by enabling real-time planning and control of the factory and supply chain operations and
thereby minimizing waste [8–10]. While several conceptual studies on smart manufacturing have been
published, mainly focusing on manufacturing systems configuration and features, very few empirical
in-depth case studies have been reported in the literature that specifically focus on the management
processes of such systems [11,12]. Additionally, only a few of these studies address the importance of
production planning and control in achieving the vision of smart manufacturing [11,13,14]. We think
that this is a missed opportunity, as the PPC process is analogous to a brain for the production system
and is the most critical “smartness” element of a smart factory. Furthermore, addressing the subject
from the perspective of PPC enables firms to gradually advance in a holistic manner towards smart
and sustainable manufacturing.

Consequently, this study addresses how a ‘smarter’ or machine-intelligent PPC system (hereafter,
smart PPC) can be achieved in practice, and the sustainability implications of such a system and
its processes. Smart PPC combines emerging technologies and capabilities in the industry 4.0
framework with PPC processes in order to improve the performance of the production system through
real-time, data-driven, and continuous learning from a more diverse range of data sources than usual.
The following is a non-exhaustive list of possible goals for smart PPC: to use real-time demand and
production system data, i.e., reduce uncertainty from forecasts; to be dynamic, thus updating frequently,
and reactive to real-time data; to use an expanded set of factors and data including telemetry data; to
be able to accurately predict short-term requirements and support increased flexibility; and to capture
and use the experience of the operators in the production system. If these goals can be achieved,
it will lead to more precise planning processes, a reduction or elimination of various sources of waste,
and ultimately to a competitive advantage. Thus, this paper seeks to answer the following research
questions (RQs):

RQ1: What are the elements of a smart PPC system?
RQ2: What are the constraints, enablers and use-cases of smart PPC in practice?
RQ3: What are the implications of smart PPC for sustainable manufacturing?

In order to answer these questions, we present a concept for such a smart PPC system, adopting
an incremental approach. While we will attempt to illustrate a typical architecture of such a system,
the software architecture details are not the focus of this paper. Rather, through RQ1, we address
components—inputs, processes and outputs—of the system and assume the generic service-oriented
architecture. This approach is the basis for many notable architectures for emerging industry 4.0
applications [15]. RQ2 is ever more pertinent now as the dust settles on the industry 4.0 wave and
results about successes and failures in early implementations begin to trickle into the public domain.
The latter is an important gap in this relatively young research field, as there is limited know-how
of the strategic implementation of industry 4.0 [16,17]. Thus, this study lays the foundation for an
approach towards industry 4.0 through smart PPC.

The remainder of the paper is structured as follows: we present the theoretical background
to the conceptual model in Section 2. We describe the underlying framework guiding the concept
development, together with the case selection, data collection and analysis processes in Section 3.
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Thereafter, we present the developed framework and conceptual model in Section 4. We illustrate this
model using the cases in Section 5. We follow this with a thematic discussion in Section 6. We then
wrap-up with the conclusions, research limitations and future research topics in Section 7.

2. Theoretical Background

The literature is replete with studies investigating disparate elements of PPC and elements of
industry 4.0. However, there is much insight to be gained from a holistic view of PPC and industry 4.0
for smart PPC to be realizable, and consequently, the vision of smart and sustainable manufacturing.
Therefore, this section revisits the theory on hierarchical PPC systems, its processes and challenges
and industry 4.0 as a foundation for smart PPC. The section concludes with a literature on constrains,
enablers and an attempt to present a theory—the structural contingency theory—to explain the smart
PPC concept and its application in the selected cases.

2.1. The PPC System and Processes

PPC is often described using hierarchical frameworks which presents the various elements of
the PPC process at varying levels of detail and time horizon. This hierarchy supports the ‘drilling
down’ approach that business managers seek when making decisions regarding their production
systems. One notable PPC framework, created by Vollmann et al. [6], is the basis for most traditional
planning systems in production today. The framework describes the strategic (long-term), tactical
(medium-term) and operational (short-term) stages as the common levels of planning that exists within
a typical enterprise resource planning (ERP) system regardless of the type of industry in question.
While this framework has faced some criticism for not capturing the several feedback loops that are
witnessed in real life production systems, it remains popular due to its comprehensiveness and its
built-in optimization capabilities [18].

Nevertheless, several others PPC frameworks also exist, for example Bonney [19], which present a
slightly different take on the PPC process and highlight the importance of feedback loops. Notably,
these loops are more frequent and important in the tactical and operational stages of PPC. Moreover,
regardless of whether the system in question is built on a hierarchical framework, PPC systems have
become colossal, difficult to implement and maintain, and unwieldy to adapt to the needs of today’s
production environment [18]. Taking these loops into consideration, we adapt the three-domains
framework into a holistic PPC framework, as depicted in Figure 1.

The strategic level adopts a long-term, aggregated view of manufacturing operations. The process
begins with sales and operations planning (S&OP) which aims to balance overall demand with the
available capacity. S&OP receives demand data (volumes per product family per planning period) and
in some cases meta data (such as forecast uncertainty) as input from demand management (DM) and
future available aggregate capacity as input from resource planning (RP). Thereafter, the aggregated
plan generated at this level is disaggregated from the product family into individual products. Since
the plan is aggregated and with a relatively larger time horizon than others, it is not often accurate.
The relevant data for this stage typically includes demand forecast data which can be computed from
historical demand data or estimated from experience by the sales and marketing team or a combination
of the two [6]. The primary output is the master production scheduling (MPS), which encompasses
the purchasing and production plans at an individual product level by time period, typically weeks.
The output of this level is the input to the tactical level.

At the tactical level, the MPS records are combined with bill of materials data and inventory data
in order to calculate the components’ and parts’ requirements, and make recommendations to release
replenishment orders for materials, a process called materials requirements planning (MRP). Based on
the production system’s capabilities and lead times which dictates the capacity requirements planning
(CRP) process, it is possible to release detailed material and capacity plans with shorter time horizon
(typically weekly). These plans are revised frequently, and the output of this stage is production plans
and replenishment orders for materials, which in turn is the input for the operational stage.
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Figure 1. The production planning control (PPC) system levels and processes (adapted from [6,19,20]).

Finally, at the operational level, the concern is about how to execute the production order using
the materials and capacity plans from the MRP and CRP. The processes entail day-by-day, shift-by-shift
detailed scheduling, the coordination of the actual manufacturing processes (shop floor control, SFC),
and the issuance of purchasing schedules to the purchasing function or supplier systems (PSS) for
the supply of materials required to execute daily operations [6,19]. The documents at this level are
purchase orders at the component level and work orders and job lists at work centres. This stage also
involves the control, measurement, and evaluation of the performance of the production operations
and suppliers.

2.2. PPC Challenges

One key limitation of PPC at the strategic level is that it implicitly assumes that the effect of
extraneous factors such as weather or industrial policy changes, global economic downturns and other
disruptions average out from year to year. This often leads to the use—by planners and operators—of
excessive capacity, buffers and safety stock in the production system. Furthermore, since the data
is aggregated, the quality often varies depending on how data-driven the company is. Challenges
include quality of data in the long term (as the business environment continues to change), frequency
of update, etc. In this case, having real-time data does not necessarily lead to any advantage provided
the data is accurate. Perhaps more important is the span of the data, in which case “longer is better”
in order to enable various simulation scenarios. Finally, managers of production systems often must
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make resource planning and flexibility related investment decisions based mainly on uncertain forecast
data [6]. Therefore, the S&OP process must overcome variations in historical demand, uncertainties in
demand forecasts, and unavailability of demand data. Similarly, the MPS process must deal with issues
related to data integrity and completeness, estimation of product-level demand, inventory variability
leading to difficulty in estimating available-to-promise, rescheduling frequency periodic scheduling
while events alter production system, and a lack of feedback on the accuracy of resource planning.

At the tactical level, the challenges of traditional PPC include planning complexity due to data
integrity concerns, product mix exacerbated by increasing product customization needs, estimation
of production volumes, control principles that minimizes work-in-process inventory, etc. [6]. Thus,
the MRP process must deal with issues regarding the updatedness of bill-of-materials with respect to
(w.r.t.) components and levels; inventory data accuracy—what is produced and exact storage location;
and lot-size determination and revision policy. The CRP process must handle the updatedness of
process routes/charts and recipes; accuracy and integrity of production instructions; process variability;
variability in resources capabilities and capacity; and continually monitor the size of buffers [20].
Production managers deal with all these challenges using levelling and lot-sizing techniques within
the constraints of the planning solution that the company employs. They must also deal with the
limitation that the production planning process is run periodically while the demand situation is
continuously changing. They must also manage the contrast between the objectives of long-term
planning versus short-term scheduling—that is, levelling versus the minimization of earliness and
tardiness and nonexecution [21].

As shown earlier, at the operational (short-term) level, the status of the production system is
changing in real-time and the agility and precision of the PPC system in adapting to the changing
production environment is critical. However, the reality in most factories is that it is challenging
to track and accurately predict work-in-process inventory and resource status, and the system is
continuously being disrupted by rush-jobs and unplanned machine breakdowns or large changeover
and set-up times [9,22]. Specifically, the PO process is challenged by the reliability of supplier quality
and timeliness accuracy [23]. Furthermore, SFC processes and systems handle collection of operations
data in real-time, job tracking on the shop-floor, resource performance tracking, and estimating and
updating production schedule after rush jobs. Yet, a significant proportion of production lead time
continues to be wasted in the form of queueing or waiting time [7]. Moreover, the manufacturing
technologies are increasingly becoming sophisticated, and the SFC systems are required to handle a
disparate set of data types and sources.

Overall, a few underlying challenges commonly affect the strategic, tactical and operational levels
of the PPC system. Promotions and campaigns which are becoming commonplace can significantly
disrupt supply chains. In addition, the quality and completeness (w.r.t. the span of breadth) of data
and information used is a common challenge affecting resource efficiency and demand fulfilment [24].
These become even more important as systems become increasingly computerized and automated.

2.3. Towards Smart PPC in the Era of Industry 4.0

The temporal proximity or ‘real-time’ needs of PPC is a major uphill climb for conventional
enterprise systems such as the ERP, manufacturing execution system (MES), or advanced planning and
scheduling (APS) systems. Moreover, another critical limitation of these systems is that deviations
are common between information in these enterprise systems and the reality on the shop floor and
across the supply chain [25]. Furthermore, these enterprise systems are commonly configured to collect
data from a narrow range of sources in the production system typically from production lines and
perhaps warehouse inventories. However, in many production systems and value chains, several
more factors influence performance. For example, in the food and beverages industry, the weather
affects not only the production but also the distribution and consumption rates of numerous products.
Being able to capture and use data from a broad range of sources presents an opportunity for better
PPC performance in the current era. These limitations can be addressed by Industry 4.0.
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Industry 4.0 envisages a state of manufacturing in which the product’s end-to-end lifecycle
stages are integrated, the manufacturing systems and internal functional units are networked (vertical
integration), and the external value creation network is integrated (horizontal integration) [12,26,27].
This vision is enabled by the recent advances in technologies, including cyber-physical systems, internet
of things (IoT), big data analytics (BDA), machine learning (ML), augmented reality, cloud and edge
computing, and additive manufacturing [12,28]. Therefore, with all things connected, data generated
from these integrated systems with the plant and across the value chain will enable real-time control
(and, consequently, dynamic re-planning and rescheduling) of the factory and supply chain [8,9]. IoT,
BDA and ML connected to and run via the cloud can address these temporal proximity needs of a smart
and sustainable production value chain [29]. This specific collection of emerging technologies is at the
cutting edge in the development of information systems (IS), having seen tremendous investments
in research and development in the previous decade partially due to the significant reduction in the
costs of computation power and data storage [29]. The cost reductions have been possible due to the
reducing cost of hardware and the economies-of-scale achieved in cloud computing [17].

Furthermore, a key tenet of industry 4.0 is that manufacturing systems will be sentient and
autonomous [29]. This will enable the development of real-time planning and control of the plant and
supply chain operations thereby minimizing wastes in the system as every product will be produced
as close as possible to when it is required by a customer [9]. In addition, the ability of BDA and
ML tools and technologies to manage data with ordinarily challenging diversity (or variety) is an
opportunity. Since computerization of the planning process is, by itself, not new, and enterprise
systems and spreadsheet solutions have been used for decades, many production managers find it
challenging to step into this new way of using data and ICT [30].

In addition, digital technologies have the potential to improve social and environmental
sustainability when developed into organizational capabilities [16]. In a recent study, Dubey, et
al. [31] found that BDA improves sustainability performance among Indian firms, consistent with
previous studies. However, they also found that the primary driver for its adoption was its expected
economic impact rather than any social or environmental benefit. This latter point further highlights
previous findings which reveal how economics drives most transformational efforts including those
publicized as sustainability programmes [2]. Meanwhile in another similar survey-based study in
Brazil, Dalenogare, et al. [32] found that the maturity of certain digitalization technologies within the
local context can lead to different expectations in their contributions to operational and sustainability
performance. In their study, they found a strong positive correlation between the use of sensor
technologies and the resulting big data with operational performance (agreeing with [31]) but failed to
find a significant relationship between industry 4.0 and sustainability. They also found, contrary to
popular belief, that not all technologies are expected to lead to operational performance improvements.

However, more recently, studies are beginning to indicate that numerous companies are struggling
in their efforts to become more data-driven and attain smart operations [17]. The realities of the
adoption and use of BDA, ML, cloud computing, and related smart technologies have been much
more challenging than anticipated. From anecdotal evidence with industry partners, and as the extant
literature shows, certain projects are likely to succeed while others are more likely to fail depending
on the structure of the supply chain, the characteristics of the production system, and the products
attributes. In other words, there is the question of contextual ‘fit’ with the planning environment
factors in terms of whether a company that applies these technologies in manufacturing operations
will succeed or fail [16,33]. Therefore, the selection and implementation of smart technologies towards
a smart PPC system requires some consideration for the constraints of each technology and the
characteristics of the production system.

2.4. Constraints, Enablers and the Structural Contingency Theory

From the above discussion, it is therefore evident that it is not sufficient for a manufacturing
firm to select a technology and apply it and expect great results without due consideration for the
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intra- and inter-organizational factors that play a role in this regard [34]. Intraorganizational factors
are those that define the working principles and the control of processes within an organization.
Examples of such factors include the production process, products attributes, and human resource
management systems. Interorganizational factors, such as the pressures from supply chain partners
and the intensity of competition in an industry, can constrain or enable a company’s adoption of
industry 4.0 technologies for PPC to enable a better synchronization of planning efforts within the
supply chain [35,36]. While these factors can be expected to play a role in the fit of industry 4.0
technologies with the production system, the extent and the nature of this influence is unknown.

In a related study focused on the extended enterprise view, Ngai, et al. [37] identified cultural issues,
functionality requirements and legacy IT infrastructure, organizational and people-related challenges,
technical support and training of relevant personnel as the critical success factors for successful
ERP implementations [37]. Koh, et al. [38] extended these ideas and identified barriers, drivers,
and critical success factors for enterprise-wide ERP (ERPII) implementation across supply chains.
They observed that while vendors and suppliers tout real-time information, better decision-making
power, and efficiencies in operations as the key drivers for ERPII implementation, users and customers
are more concerned with how ERPII can provide new simpler and shorter ways for value creation,
core competency integration, customer demand responsiveness, and improved product innovation or
customization. They further identified barriers such as organizational inertia, resistance to change
by employees, cost, gap between the theory and practice of the extended enterprise, disparate data
standards and data inaccuracy as important factors. In addition, organizational structure and the
learning culture have also been identified as critical factors [34].

More recently, de Sousa Jabbour, et al. [39] extended the concepts related to critical success
factors into research on how industry 4.0 can enhance environmental sustainability in manufacturing.
They selected 11 nontechnical factors including management leadership, strategic alignment, training
and capacity building, empowerment to be innovative and discover new uses, national and regional
differences, and organizational culture. However, the presence of other studies with conflicting
results indicates that the influence of organization culture on the sustainability performance of firms
implementing digitalization and industry 4.0 remains unclear [31]. Arguably, the influence of these
internal and external factors varies based on the context that each production manager must consider
when planning their manufacturing operations. Considering all these factors, the production enterprise
is only likely to achieve the expected performance benefits of industry 4.0 if the technologies are
configured and implemented in a manner that fits with the characteristics of its production system.
Furthermore, certain industries (such as the engineering and equipment manufacturing industries)
expect a long-term strategic benefit and are willing to pursue industry 4.0 regardless of possible
challenges or implementation risks [33].

An appropriate foundational theory for addressing these kind of research problems is the structural
contingency theory, which argues that organizational processes must align with the organization’s
environment [40]. As an example, Hicks, et al. [41] applied the structural contingency theory to explain
the characterization of different engineer-to-order (ETO) archetypes in accordance with how ETO
companies reorganize their internal and external supply chains to remain competitive in the face of
changes in their production environments. Thus, it can be argued that the use of technologies in
production systems ought to fit with the characteristics of the system. While sensor technologies have
a wide application domain for example, in order to derive value from these sensors, several contextual
factors must be considered. Often, what works in one industry will lead to poor results in another,
like in the case of RFID application in the control of plastic pipes manufacturing [22,42]. Similarly,
the structural contingency theory can also be used to explain for the influence of the supply chain and
industry context [40,41].
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3. Methodology

Following a description of the PPC system, its processes, and current challenges, and after
developing a case for smart PPC and highlighting the constraints and enablers of such a system from
the applicable industry 4.0 and PPC theory, we proceed to develop a conceptual model of smart PPC
and case data to illustrate its use. Case research is fitting for research on subjects where there is a
need to capture details and the nuances of complex phenomena like in the case of a PPC system being
transformed by new advanced technologies [43]. Since one of the purpose of study is to identify
and describe key/salient variables (i.e., constraints and enablers) and draw maps (or scope) of these
variables for smart PPC, the research design will benefit from using a few, in-depth case studies with
data collection by way of observations, interviews, historical reports and survey questionnaires [44].

3.1. Conceptual Model Development

After collating and analysing the problem with current PPC systems, and considering alternatives
for improving their performance, we chose (among the alternatives) to investigate the potential of
emerging industry 4.0 (I4.0) technologies. Due to our interests in resource-constrained manufacturers,
we chose to build our concept on an incremental model which enables gradual advancements towards a
desired state. We chose the model by Schuh et al. [34] which presents an incremental view of the stages
of evolution towards the goal of an agile manufacturing company—that is, be able to respond accurately
(using data rather than mostly managerial intuition), quickly (almost in real-time) and continuously
(rather than at set, often long periodic intervals). They also highlighted how the model was developed
from empirical data, with case studies, and the benefit for small and medium enterprises (SMEs) who
have limited financial capacity and risk appetite towards seeming adventurous industry 4.0 projects.
This previous point is particularly relevant because even though the reduction in computation costs is
enabling digitalization and industry 4.0, small and medium-sized manufacturing companies which
employ a large part of the global population are the ones that are more likely to be disrupted by the
ongoing market transformation [12].

3.2. Data Collection and Analysis

The use of empirical data is important in this research area because the object of study is
new and evolving [44]. Furthermore, there is great scientific and managerial benefit to document
the actual experience of companies attempting to make advancements in the subject of this study.
The cases selected for this study are members of a large industrial research network, and have made
had a sizeable, publicized digitalization effort within the past three years. Two are semi-process
manufacturing companies and the other two are discrete manufacturing companies. An overview of
cases and interviewees is presented in Table 1. We began by analysing potential cases using available
data from secondary sources and published reports about the case companies, their market situation,
and each company’s competitive environment. This was to ensure that each company to be included
in the study met the requirements that they operated within a supply chain (SC) experiencing some
changes due to digitalization and that they will be willing to participate in this study by sharing
insights regarding their efforts as it relates to our research questions. From this pool, four companies
were eventually selected.

An interview protocol was developed to highlight the data required to address our research
questions and preliminarily administered in company A. The sections in the protocol followed the
classification of PPC environment factors described in Jonsson and Mattsson [45]—namely, markets
(covering the demand and supply factors), product attributes and process characteristics. This was then
followed by a description of the PPC system, process, and challenges; finally, digitalization initiatives
and sustainability considerations were then discussed. After the first interview, the protocol was
updated to address the gaps in the framing of the research questions, thereby eliminating ambiguity
and ensuring consistency at the point of subsequent interviews. The revised protocol (Appendix A)
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was then administered with respondents from company A and thereafter administered in the other
case companies B, C and D. In order to reduce social desirability bias, we assured interviewees
that the collected data will be anonymized if and when it is to be used in publications, similar to
Wilhelm, et al. [46]. After collecting case data through interviews, we proceeded to transcribe the
interview data while ensuring sufficient detail and structure for a thematic analysis and discussion [47].

Table 1. Overview of cases and interviews (real names of companies anonymized).

Case Category Description
Total no. of

Industry 4.0 (I4.0)
Projects

No. of I4.0 Projects
Affecting PPC

No. of Projects
with SC Partners Interviewee(s) No. of

Meetings

Company A Confectionery products >3 2 1 Production planners
SC director

2
2

Company B PVC pipes & drainage
subsystems >5 2 1

SC manager
Technical projects
engineer
Innovation manager

1
2
1

Company C Equipment for small &
large ships >3 1 - Master planner 1

Company D Agricultural &
industrial balers >3 1 1 Production manager

Innovation manager
2
1

4. The Smart PPC Concept

This section presents the developed smart PPC concept and a description of its elements—that
is, addressing RQ1. As companies digitalize their manufacturing operations in the move towards
industry 4.0, they progress in stages. Schuh et al. [34] identified six progressive stages that an operation
on the path towards smart manufacturing should follow. These are computerization, connectivity,
visibility, transparency, predictive capacity, and adaptability. To simplify, in line with industrial
practices, we reclassified the six stages into three—connected, transparent, and intelligent. These three
stages, depicted in Figure 2, relate easily to the managers of production systems who seek better tools
to improve their ability to respond quickly and accurately to changes in the business environment.
A description of the theory behind each stage, the conceptual model and a table of potential use-cases
for smart PPC is provided in the subsections below.

 

Figure 2. The path towards the development of smart production systems (adapted from
Schuh et al. [34]).
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4.1. Connected

The computerization of PPC processes is, by itself, not new. ERP systems and spreadsheets have
been used for decades and almost every production system today is planned and controlled to a certain
extent by either of these technologies. Moreover, the use of spreadsheets does not appear to be waning
even with the advances in ERP systems and other planning solutions, probably due to the flexibility and
ease of use that spreadsheet solutions afford most production planners [48,49]. In addition, production
processes nowadays tend to have more electronic components and programable logic controllers (PLC),
thereby enabling greater automation of production processes. Increasing computerization implies
that all elements in a production system have a digital life and can therefore be connected to a digital
industrial network in the smart factory.

On the contrary, connectivity is only just becoming widespread in this decade of digitalization
and industry 4.0, as sensors and networking infrastructure gradually become ubiquitous and more
affordable [29]. This sensing will be achieved using auto-identification and telemetry data collection
sensor technologies such as radio frequency identification (RFID) technology, beacons and IoT
devices [50]. Furthermore, since the move from the internet protocol version 4 (IPv4) to the new
internet protocol version 6 (IPv6) standard, which can theoretically allow up to 3.4*10E38 internet
addresses, it is now possible to connect things that hitherto would have been too complicated or
expensive to connect to the internet [34,51]. Therefore, with the increasing ease of connecting ‘things’
to networks, everything can be connected, traced, tracked, measured, and improved and all the data
generated by the action or movement of things can then be used to improve the design of systems, and
the planning and management of operations. Consequently, tracking and tracing items of resources
within a factory and in the supply chain becomes much easier [29].

IoT sensors can, through IoT edge devices, interact with the physical production system by
sending location, status, and compute requests, and by receiving data and instructions from services
hosted on cloud infrastructure. IoT Edge devices are more suited when there is a need for quick
reaction (e.g., action to prevent a crane from collapsing if the sensor data already detects that this
might happen, or action to prevent an automated tractor from colliding with an approaching operator)
particularly when there is higher-than-acceptable device-to-cloud data transfer latency, and when
bandwidth could be a challenge (e.g., on offshore platforms that use satellite internet connection and
have several functions that demand the available bandwidth) [52].

Consequently, real-time planning and control of the production system and supply chain becomes
possible. Examples abound particularly in the retail industry, which gained popularity in the past two
decades due to the performance improvement achieved in inventory management and distribution
logistics [53,54]. The same principles are now being applied in job shops, production lines and
warehouses at equipment manufacturers [22,55]. Thus, computerization and connection enable smart
PPC by enabling the determination of the precise location of products, routes travelled in the factory,
status of machines and other resources, frequency of use, idle times and nonvalue-added time, etc.,
all of which is information that can then be processed with data analytics solutions in order to obtain
insights into the state of the system, why the system is performing in a certain manner, and the
performance of the PPC processes that are employed to manage that system.

4.2. Transparent

When ‘things’ are computerized and connected, it is possible to make a digital model of not
only individual machines or factories but also components and final products moving through the
production processes—that is, a digital shadow of the entire system and all its elements [34,56].
The digital shadow represents a digital state map of the production system and accepts data from
the connected elements of that system to present it in a form that is typically visual, and which
production managers and planners can use to simulate and plan future states and operations of the
system. Meanwhile, a digital twin goes a step further and, in addition to accepting data, can send
action instructions to the production system [57]. Thereafter, the data can be collected from within the
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factory or on a truck transporting raw materials or other critical components or from the sensor-enabled
pallets at customer warehouses. It then becomes possible for a production planner to analyse the data
in order to determine the sources and root-causes of logistical problems at the strategic, operational
and tactical levels using dashboards with real-time KPIs collected from integrated enterprise and IoT
systems [34,58].

Regardless of the type used, or even in cases where no digital shadow or twin is used but that KPI
data specific to the production system are sent to a database for processing and analysis, there is a
tendency for this data to be enormous and of high-dimensionality if they are collected from several IoT
sensors in a typical production system. This situation presents both an opportunity and a challenge.
First, the abundance and breadth of data enables higher precision of simulation models of production
systems [58]. However, this also creates a case in which standard data processing technologies are not
capable to derive insights from such (big) data. As such, new emerging technologies and methods for
big data analytics such as MapReduce and Hadoop would be required to derive value from all the data
being generated [14]. Moreover, even when the data processing challenge is overcome, there is also
the causality problem which requires an understanding of the underlying engineering principles and
business context to translate data correctly (e.g., translating sensor measure depth in a raw material silo
into estimated volume of weight of materials in the silos) and to establish cause and effect relationships
from the data that is generated by the system and the production and logistics KPIs of interest [34].

Hence, when used appropriately, BDA enables the transparency of process performance, critical
materials, critical paths, supplier delivery performance, process material yield, and other factors that
affect the behaviour and output of the system [9,31,36,58]. However, this smart PPC level still requires
a production planner who is highly skilled in both production planning and BDA tools to actively
examine the data, process and analyse it, and make decisions. With the increasing research on and
wide application of ML and artificial intelligence (AI), there is potential for a machine-intelligent,
self-optimizing PPC system which can handle all the relevant processes, process all the data, and interact
with planners periodically, as determined by the production managers.

4.3. Intelligent

An intelligent system should be able to combine data from several sources about itself and its
environment in order to learn and autonomously predict events which may influence its performance
with regard to predetermined goals. In production, that implies being able to predict production delays,
supplier delays, reduction in demand, etc. in order to avert a performance failure. Recent industrial
interests in ML have led to significant advances which make these technologies and methods more
feasible now for PPC than, say, a decade ago. Research into the use of AI approaches to planning and
scheduling production systems have been going on since the 1980s, although those were in the form
of expert systems and knowledge-based systems [59]. However, it is the interest of companies such
as Google, Facebook and Amazon with vast compute and human resources that has extended the
capabilities and possible use-cases of ML and also extended neural networks (a type of ML) to new
depths (i.e., deep learning) with advanced techniques and applications.

There are three types of ML—supervised, unsupervised, and reinforcement learning—and all
three types have been explored in PPC research, although limited empirical case studies have been
reported. Supervised and unsupervised ML techniques have been applied in planning and control
for predicting supply disruptions [60,61]. Reinforcement learning has been experimented upon for
real-time scheduling [62]. Other noteworthy empirical studies of ML use in PPC have also been
published. Using case studies, Garetti and Taisch [20] explored the use of artificial neural networks
(ANN) for the selection of a production control strategy in the context of a valve manufacturer, and as
a decision support system for plant parameter definition at the paint shop of a wagon manufacturer,
thereby highlighting the pros and cons of each method and the implementation challenges. Except for
a few cases such as these, most of the ANN research output at that time lacked real-life application [63].
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Furthermore, these cases have been applied to static, one-off PPC problems, while research that
examines the dynamic case of real-time learning PPC system was rare.

However, in the last decade, deep learning has received enormous attention from the software
industry and has witnessed significant application in industries beyond manufacturing. Prior to that,
several studies were published that investigated the use of ML methods in subsets of the PPC system.
For example, Hruschka [64] used the marketing variables (current and one-month lagging advertising
budget, as well as the retail price), along with an exogenous variable (average monthly temperature)
to predict sales for an Austrian consumer brand. However, the author highlighted how computer
processing power was a challenge due to the low learning speeds of ANN at that time.

In current production environments, an autonomous solution can be built using robotic process
automation (RPA) with event-driven or scheduled applications and data pipelines for a connected
system of applications. According to Wróblewska, et al. [65], RPA can facilitate an iterative upgrading
of solution modules and therefore enables continuous learning. Thus, smart systems can be
pre-programmed so that they not only run independently but also learn and improve without
human intervention. Nevertheless, the case study in [65] (as with most cases in the RPA literature) was
within financial services and document management. Despite the potential benefits, we find that there
is currently little application in production management, and more so in PPC.

4.4. Conceptual Model and Matrix of Use-Cases for Smart PPC

The eventual conceptual model of such a smart PPC system is illustrated in Figure 3.
The smart PPC system incorporates the different levels of the PPC domains and intelligently

manages all the key processes using data from diverse sources and allows human intervention. It
should also provide a mechanism for continuous feedback from the production system to handle
events that occur, in the same manner that a human-managed PPC system would work. Furthermore,
when viewed in terms of PPC challenges, several use-cases can be identified (from the literature) for
each of the three stages that leads to a smart-PPC system, as depicted in Table 2.

Table 2. A matrix of use-cases for an incremental adoption of smart PPC.

Challenges in PPC levels
Connected Use-cases

(with IoT—Internet of
Things)

Transparent Use-cases (with
BDA—Big Data Analysis)

Intelligent Use-cases (with
ML—Machine Learning)

Strategic

Sales and operations planning (S&OP):
1. Variability in historical demand
2. Uncertainty in forecast demand
3. Unavailability in demand data

4. Investment assessment for green and
brown field resource capacity

Real-time point-of-sale
data

Real-time
goods-in-transit data

Demand summary
Visibility in production

resource performance patterns

Detect demand patterns
Identify emerging customer groups
Balance inventory and service levels

Master production scheduling (MPS):
1. Data integrity and completeness

2. Estimation of product-level demand
3. Inventory variability leading to difficulty

in estimating available-to-promise
4. Rescheduling frequency is periodic, while

change events are continuous
5. Feedback on accuracy of resource planning

Identify material
locations in real-time

Visibility of system
performance for various

product mix

Continuous lot-size optimization
Multi-sourcing of data with
error-detection mechanisms

Multi-horizon scheduling and
planning with KPIs

Tactical

Materials requirements planning (MRP):
1. Data integrity

2. Bill-of-materials updatedness w.r.t.
components and levels

3. Inventory data accuracy – what is
produced and exact storage location

4. Lot-size determination and revision

Connected materials are
easier to track and trace

Enables transparency into the
consumption of materials

Continuous lot-size optimization
Intelligent planning of inventory

control policy

Capacity requirements planning (CRP):
1. Process routes/charts updatedness w.r.t.

updates to processes and recipes
2. Data accuracy and integrity

3. Process variability
4. Variability in the capabilities and capacity

of resources

Capturing the behaviour
of production assets

Enables robust lifecycle
assessment of assets and
precise capacity planning

Predicts when capacity may fall
below requirements to meet

production plans
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Table 2. Cont.

Challenges in PPC levels
Connected Use-cases

(with IoT—Internet of
Things)

Transparent Use-cases (with
BDA—Big Data Analysis)

Intelligent Use-cases (with
ML—Machine Learning)

Operational

Purchasing function or supplier systems
(PSS):

1. Reliability of supplier quality
2. Supplier quantity and timeliness accuracy

Traceability of supplied
parts lifecycle

Visibility intro supplier
performance

Real-time delivery estimation and
stakeholder engagement

Shop floor control (SFC):
1. Collect operations data in real-time

2. Job tracking on the shop-floor
3. Resource performance tracking

4. Estimating and updating production
schedule after rush jobs

Connected “things” –
parts, finished goods,

machines,

Visual control for jobs and
resource performance tracking

in real-time

Real-time resource allocation
ML for production control

 

Figure 3. Conceptual model of smart PPC in a connected production system.

In general, smart PPC should perform better since it will be using a vast array of endogenous data
from the production system and exogenous data from its environment. Moreover, for certain industries
such as in process or semi-process production, there may be a greater opportunity to incorporate more
data into the production planning and control processes.

5. Case Studies

In this section, we illustrate the theory with findings from case studies, by analysing current
practices for PPC, digitalization and sustainability. For each case, we present a general overview and
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market factors, products, production process, PPC system and process, PPC challenges, digitalization
initiatives and sustainability consideration in the current PPC processes at the case companies.

5.1. Company A: Confectionery Products

Market factors and general overview: Company A is a food company, manufacturing nuts, sweets
(including pastilles) and chocolate from its single factory situated in Norway. In addition, the company
also distributes fast-moving consumer goods for an international brand within Norway, leveraging its
supply chain in the Norwegian market. The business encompasses all the value creation processes
from product development, purchasing, logistics and production, to sales and marketing of mainly
own brands. The company manages its product development, purchasing, production, supply chain
logistics, sales and marketing along with its partners. Company A offers its products through the grocery
industry, an industry valued at NOK 180 billion. In the business year 2018 and 2019, the company
reported a turnover of NOK 750 million (USD 81 million). Many the sweets are impulsively purchased
when customers are at the cashier stands in grocery stores. The level of competition is very high
with economies-of-scale in product development being a key driver for market performance in the
sweets market.

Products: Company A has a small R&D department which is tasked with developing and testing
new products. After a new product is approved, the supplier inputs are certified for quality, as the food
industry is highly regulated due to potential safety risks to the consuming public. Currently, Company
A has both the British Retail Consortium and the Det Norske Veritas (DNV) for its processes and supply
chain. The company manufactures products under seven brand names. Under the confectionery
section, Company A produces 19 product families.

Production process: Company A’s factory is divided into three sections, one each for confectionery,
chocolate, and nuts-based products. Due to regulatory requirements regarding the transference
of allergens, the movement of people and materials across sections is controlled. Most critically,
nuts-based products cannot be transported to the other sections producing products which will not be
marked for potential nut-allergens. The production technology strategy for the future is to use flexible
manufacturing systems —that is, machines that can process several products.

PPC system and process: Company A has a production planner role, responsible for making the
final production schedule and monitoring its execution. Production plans are generated within the
enterprise resource planning system. Company A currently uses Excel templates with formulas
based on estimates of the relationships between planning variables. The planning process is heavily
influenced by the promotions in Xmas, Easter, and other periods that are dictated by Company A’s
partners’ marketing teams. Furthermore, production input materials are delicate and must be kept at
narrow environmental limits; set-up time in the production process is high and finished goods and
work-in-progress (WIP) inventory is also high; packaging lines are semi-independent, and product
intermediates need to be transported to another section within the factory for packaging. In addition,
schedules for each week are made at the end of the previous week based on firmed customer orders
and MPS values; and the factory has a combination of processes with varying throughputs and levels
of automation.

PPC challenges: The consequences of these challenges are as follows: highly seasonal, impulsive
demand; queues/waiting and poor asset utilization due to poor material flow; high WIP inventory due
to the combination of processes with varying throughputs and levels of automation; resource constraints
and capacity limitations due to the fixed flow manufacturing processes; large swings in resource
requirements due to the current heuristics-based planning approach. Furthermore, the bottleneck
process (drying) limits the ability to increase plant throughput in its current form; production lead time
is high due to high lot size and high set-up times; finished goods inventory is typically large due to the
large number of products (51 from the confectionery business alone); high demand variation from
promos; and problematic scheduling due to the multiple routes and large number of input materials.
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Current and planned digitalization initiatives contributing to smart PPC: Company A has implemented
several automation projects in the past few years such as using robots in packaging and palletizing,
using visual control and dashboards, etc. One such dashboard projects on the production lines provides
direct access to data from the production line, thereby providing the planner real-time access into the
status of the processes. The company is currently implementing a digital system which collects data
from its production line and sends it to a data warehouse where BDA tools can be used to harness
this data and generate meaningful insights. Despite these efforts, Company A struggles with its
development of BDA and potential use of ML. While there may be several reasons for this, one of
which is the complexity of the existing ERP system. The sheer cost of modifications and upgrades was
highlighted as a major hinderance regarding the move to the use of smarter PPC through BI and big
data analytics. However, new cloud solutions such as Microsoft Azure and Amazon Web Services offer
a means to overcome such challenges.

Sustainability considerations in the PPC process: There are no explicit environmental sustainability
considerations for the ongoing industry 4.0 initiatives. However, while the aims are purely economical,
there is an implicit, unintended social benefit—that is, to improve the decision-support tools for
operators, thereby reducing stress. There is also an environmental benefit through waste reduction in
the production system.

5.2. Company B: Plastic Pipes and Custom Drainage Subsystems

General overview and market factors: Company B is a large producer of plastic pipe systems and is a
member of one of Europe’s leading conglomerates in the market for plastic pipes and associated parts.
Company B’s piping systems have been used in water, sewage, cable protection, electrical installations
and gas. The company has factories in Norway, and trading operations in Sweden, Norway, Finland
and the Baltic States; it is a market leader in the supply of plastic pipe systems in that region of Europe.
A considerable share of the production is exported, particularly large dimensioned polyethylene (PE)
pipes for which Company B has developed a strong global brand reputation. However, the competition
is stiff, final customers are SMEs and are often price sensitive.

Products: Company B manufactures and markets a wide range of quality pipe systems, providing
tailor-made solutions for municipal infrastructure as well as for the industrial and house-building
sectors. In addition, PE pipes, polyvinylchloride (PVC) pipes, and plastic-protected cables are produced
to stock in a wide range of colours. There is also a section for customized solutions, mainly drainage
solutions such as manholes and curved pipes with precise angular dimensions.

Production process: The main products, PE and PVC pipes, are produced using injection moulding
and blow forming. The PVC pipes are produced in several similar production lines, and the processes
are fully automated from feeding the raw materials into the mixing chamber and then dosing this mix
into the moulding lines. For a few of the production lines, particularly those producing the smaller
units, the packaging at the end of the lines is fully automated. In the customized goods department,
a substantial amount of manual work is involved with the operators cutting, milling, grinding and
welding high-strength section of large PE pipes.

PPC system and process: There is no production planner title at Company B, but the function of
production planning is jointly managed by the production manager and the supply chain manager.
The sections in the factory have different control principles, with the PE, PVC, and plastic-protected
cables mostly produced to inventory (except for cases where property developers or municipality
projects place a large order). The company also produces customized drainage solutions such as
manholes and curved pipes.

PPC challenges: The challenges associated with PPC at Company B centre around tracking and
tracing materials and components in the factory, inaccurate inventory levels in the input materials’
warehouses, and suboptimal material flow in certain sections of the factory. Purchasing is based on
inventory levels in the ERP system. There is the issue of inventory levels of input components (e.g., pipe
covers) not matching what is on the ERP system. This is due to outdated product data and BOM data
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on the ERP system; failure by operators to update the materials register when materials are consumed;
and losses during the movement of products from the factory to other locations. It also happens that
drawn-down pallets are occasionally returned to the warehouse after a batch is produced, and where
it is still counted as a full pallet, since the measurement system counts pallets and not a measure of
the contents. The pallet count is only reduced when a full pallet is emptied. The storage location of
items can occasionally be haphazard since the factory has several storage facilities within the factory
complex and operators occasionally forget to move pallets of consumables to the designated locations.

Current and planned digitalization initiatives contributing to smart PPC: Company B is involved in
projects to improve material flow within the factory and the production efficiency of the operation.
At the operational level, these include a pilot project investigating the use of autonomous guided
vehicles (AGVs), and an investigation and pilot of ML for an autonomous error detection and
classification in the PVC production lines. The company has also investigated the use of RFID for
material control in the shop floor and warehouses. In addition, Company B is also involved in a
collaboration project for a digital platform solution for the industry which will enable closer interaction
with the final customers and create new product configuration discoveries.

Sustainability considerations in the PPC process: Company B maintains an environmental account and
tracks its carbon footprint. From the planning perspective, the production department operates a small
recycling station which grinds waste or defective products which can then be reused in manufacturing
new products. However, the planning processes aims to have an inventory of potential demand due to
the competitive nature of the market and thus keep a large inventory which is not lean in that sense,
but one that the company deems necessary to compete in its market.

5.3. Company C: Equipment for Small and Large Ship Manufacturers

General overview and market factors: Company C is a global supplier of heavy-duty propulsion,
positioning and manoeuvring systems to shipping yards and marine companies with a turnover of
1000 million NOK (130 million USD) in 2014 and a workforce of just over 500 employees. The company,
which has a subsidiary in Germany, manufactures thrusters which are used in manoeuvring large
maritime vessels and smaller boats. Company C designs and produces all its products in-house to
customer specifications, taking full responsibility for the delivered system. Only a few components are
outsourced from nearby, tightly integrated suppliers.

Products: Company C offers electric, hybrid and diesel drive systems and provides service and
support for the entire lifetime of the supplied system. In general, product complexity is relatively high;
demand varies highly and is relatively low in comparison with, for example, an automobile engine
manufacturing plant. Product variety is also high and typically require considerable engineering time
and competence, due to the degree of customization accepted from customers. In addition, products
have a very deep and wide product structure vis-à-vis the bill of materials (BOM). The company also
manufactures a few small standardized thrusters.

Production process: Raw materials are purchased using estimates from order backlog received
from suppliers and kept in inventory. The purchased raw materials (e.g., sheet metal) are taken to
the machining department based on the material estimates from the manufacturing BOM in line with
the production orders released to the shop floor. The welding and final assembly for most customer
orders are difficult to plan due to the significant variation in the throughput time. For the complete
product from order confirmation to delivery, the throughput time can be a few weeks for smaller, more
common systems and months for the more complex products.

PPC system and process: Products are made to order. Due to the variability in the welding
and final assembly processes, production planning is typically focused on machine availability
planning. Currently, production planning is performed using a combination of simple Microsoft Excel
spreadsheets and the ERP system Infor M3 enterprise management system. Although equipped with
an untested finite capacity option, Company C, like several other companies in this industry, does not
use this functionality. The reason in this case was the lack of experience with the functionality and the
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concern of the production planners that the plans could be disrupted and thus, lead to unpredictable
consequences if used; therefore, the company uses the default setting, which the planning team is
more comfortable with. A key company objective is to maximize output while maintaining the current
cost levels—that is, to maximize throughput without increasing overtime cost or additional cost due
to subcontracting.

PPC challenges: Complex, highly customizable production leads to variations in the production
planning, so much so that planning then relies on shift planning with large planning buffers. In addition,
material planning is order-driven and not forecast based due to the high holding cost of components
and materials. Demand exhibits large variability due to the increasing chaotic global economy which
affects customers, thereby making forecasting problematic. The consequence of all these and the
current PPC system is that orders are consistently late by up to four weeks, which is why the planners
always use a three-week buffer in the production plans.

Current and planned digitalization initiatives contributing to smart PPC: There is the smart welding
project which aim to use robots to improve the quality, speed and cost performance of the welding
process. There is also a plan to develop a rough-cut-capacity planning MS Excel tool for the planners
and the sales team to be able to quickly check available-to-promise (ATP) capacity before confirming
a new customer order. Finally, there is a new plasma and water cutting machine with an integrated
software for managing the production process and inventory of steel plates.

Sustainability considerations in the PPC process: The company has sustainability goes which include
improving the sustainability rate, reducing energy consumption, designing products to minimize
environmental impact and identifying environmental contribution to the value chain. However,
these are not explicitly measured in relation to the performance of the PPC processes.

5.4. Company D: Agricultural and Industrial Balers

General overview and market factors: From its headquarters in Norway, Company D began operations
in 1949, manufacturing small, detachable tools for its local farming community. With its increasing
innovation capacity, the company produced the world’s first chopping baler with a coupled forage
harvester in 1986. Further innovations in product development followed with the production of the
integrated baler machine in 1987, and the world’s first compactor in 2002. It has been found that there
is an increase of up to 20% in milk production when cows consume forage stored in the form of bales
compared to those consuming forage stored in silos. The effect of this improvement in agricultural milk
production has led to increasing demand for bale production machines—a form of combine harvesters.
In addition, the ease of transportation of bales compared to forage stored in silos spurred the demand
for these products, which also includes demand in other industries, such as in the industrial waste
management industry. This new application area is gaining increasing attention due to the improved
ease of transportation and handling after compacting refuse into bales wrapped in plastic foil.

Products: Company D manufactures several variants of its novel baling machines, which are
broadly classified into three product families. The first product family is the oldest, and the second and
third product families have been developed in response to market needs. The third family of products
has a variant used in waste management industry for baling refuse waste into smaller volumes and
has lately experienced increasing demand. This variant also has higher strength properties to meet the
needs of non-agricultural industries.

Production process: The production facility is organized in a functional layout. There are several
workstations within the various departments, beginning from cutting, welding, painting, drying,
and final assembly before shipment to customer. There are 10 welding stations and 15 assembly
stations. Some of the welding is automated after several years of research and development.

PPC system and process: Company D uses an MRP system—Visma Business—for tracking the
purchase and consumption of materials from inventory, but not for production planning. Production
planning is done using a customized MS Excel template with formulas and prebuilt functions.
Production control is done using another customized solution which is integrated into the material
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database within the MRP system. The production planner, who is also the plant manager, leads the
planning meeting once every week where the sales and technical team leads the evaluation of new
orders, and available capacities to meet the new production plan.

PPC challenges: Due to the level of customization and the complexity of the products produced by
Company D, several challenges are being faced in the PPC process. For example, there is a substantial
variation in the reported task completion times and a significant amount of aggregation in planning
process, using averages and large buffers. Furthermore, the working time that operators record each
day differs from the actual working time since it often happens that progress is updated in batches
and not in real-time. Moreover, the Excel template used for production planning only considers the
availability of resources in terms of total aggregated man-hours regardless of skill, but the template
does not consider the differences—for example, even though there are 80 available hours in the electrical
department and 20 available hours in the hydraulics department, the total of 100 hours might be
misleading if 50 percent of the operations required for the day in question is hydraulics. This is a major
issue since some of the assembly operations require specialist technicians.

Current and planned digitalization initiatives contributing to smart PPC: Company D ventured into
the development of precision farming solutions in 2014 and is increasing the digital capability of its
products to improve product lifecycle. There are also lean efforts, like kit-based planning to improve
the assembly operation. In addition, there is an ongoing research project to develop and test a decision
support tool for selecting geography-oriented marketing and a method for sharing plans and forecasts
in Company D’s value chain using new ICT technologies.

Sustainability considerations in the PPC process: Sustainability is not an explicitly considered element
in the PPC process, even though the company has sustainability goals which are top priority for
management, and which guide the overall operation of the business.

6. Insights from the Literature and Case Studies

Following the case description and analysis, in this section, we reflect on our findings from the
cases by analysing the cross-case observations in Section 6.1. Thereafter, we discuss these findings
within the backdrop of the literature presented earlier. The discussion is structured according to the
two remaining research questions (RQs). Having addressed RQ1 in Section 4, we address RQ2 in
Section 6.2 by discussing how extant enterprise planning systems, company and industry attributes,
and supply chain structure enable or inhibit smart PPC as seen from the cases studies. Thereafter,
we discuss the sustainability implications of smart PPC (RQ3) and attempt an explanation for why
the case data revealed little explicit influence of sustainability KPIs on current PPC processes in the
observed cases. We conclude this section with a brief discussion of a few managerial implications of
these findings (Section 6.3).

6.1. Cross-Case Summary

A comparison of the case companies is presented in Table 3 below. While there are commonalities
among the case companies, such as the trend of using simpler planning tools like spreadsheets,
a common theme was the lack of KPIs for sustainability in the PPC planning process. Moreover, PPC
challenges were more materials-related for the (semi-) process, make-to-stock (MTS) companies A and
B and more capacity-related for the make-to-order (MTO) companies C and D.
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6.2. Constraints and Enablers in Transitioning towards Smart PPC

6.2.1. The Influence of Extant Enterprise and Data Systems Influence Smart PPC

In this paper, we examined PPC (a function that is ordinarily performed by ERP systems) and we
presented a new system which uses existing tools and takes advantage of emerging smart technologies
namely IoT, BDA and ML. Hence, this study could have also been carried out, perhaps, as an
investigation of the extended capabilities of enterprise systems. Indeed, some authors consider ERP
systems as the foundation for smart manufacturing operations [66] and we saw this same perspective
in a few of the case companies.

Interestingly, these companies also appear to be averse to having their transition to smarter PPC
tied to their ERP systems. For example, a manager at Company A complained about the company’s
need to upgrade to the latest version of the ERP system being used at the company. However, the same
manager simultaneously raised concerns about the expensiveness of offers from IT vendors for the
implementation of some of the upgrades that management desires to prepare the company for IoT,
BDA and ML utilisation.

Furthermore, while the current ERP (and other enterprise) system(s) technology has led to better
business processes and financial planning [30], its value as a complete production management
solution remains limited in practice. One reason for this is the cost of the regular upgrades to latest
versions with up-to-date functionalities. This is somewhat linked to the issue of customization and its
implications for buggy integration with future upgrades and security updates of the core ERP system.
The other reason is the complexity of most ERP installations which leads to numerous companies
using their ERP systems for MPS and MPR but not for detailed day-to-day or shift-to-shift scheduling,
a function now reserved for spreadsheets such as Microsoft Excel. Therefore, in order to have smarter
production systems, managers investigating any or all the triad of smart PPC technologies go with the
development of new cloud-based solutions which then connects to the ERP database through a data
warehouse solution.

In addition, the form and quality of the data generated by extant enterprise systems are
very important, and the ability to handle different formats can be a critical factor in determining
success [24,36]. There are two types of data that production systems generate—stream and batch—and
these data types require different types of processing in order to derive insights from them. While it
would be expected that a company which has enhanced processes and updated, standardized enterprise
solutions are more likely to have the foundation to advance faster into smart PPC, we could not find
any evidence for that within the case companies. In fact, the company that was most keen on smart
PPC was one which was using an older, nonagile ERP solution—that is, Company A.

However, both companies A and B had a significant amount of automation and process sensors
which can easily be reconfigured and connected to the internet for a smart PPC solution. Using the
stream data in the ERP and from the PLCs of the machines in the production line, Companies C and
D instead pursued solutions that could enhance their capacity planning processes, which were their
most critical PPC challenges (from their managements’ perspective). In addition to extant data sources,
Company A also sees potential in using exogenous data and historical data in improving the precision
of its production planning process. However, the quality of historical data records which such a smart
PPC system would need is in a form that cannot be used without arduous pre-processing. This data
quality problem was more prevalent than anticipated and was also influential in determining the ease
or difficulty of beginning or advancing towards smart PPC—consistent with Bean and Davenport [17].

6.2.2. The Influence of Planning Environment Variables

We also identified that process-based companies are more likely to benefit from (and therefore,
should follow) a smart process strategy, with smart PPC as the driver. For MTO companies, we find that
the path to smart control is towards smart products with simplified PPC processes that will continue to
allow human control for the required process flexibility. In addition, previous studies have shown that
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certain industrial sectors such as steel, chemical and plastics and SMEs in general pursue industry 4.0
primarily for operational benefits, while large companies tend to seek long-term strategic benefits from
industry 4.0 technologies [33]. As PPC processes contribute more towards operational performance,
one would expect similar results. Furthermore, from the case studies, we see why this may be the case.
Company C, which is the largest of all four case companies, is a global market leader in its industry
and the industry has a high barrier of entry where each product is typically very expensive and highly
customized and the products are critical components of the ships they are installed on. In addition to a
few projects to automate certain production processes like welding—a very difficult task to automate
for MTO production—Company C has focused mostly on innovative technologies that enhance the
products by increasing their digital content and making them “connected”. The same holds true for
Company D.

For Companies A and B, the products are standardized, have no digital element, are more difficult
to digitize (even though pallets can be), and are more likely to be produced from raw materials which
are chemically transformed in semi- or fully automated production lines. Therefore, the greater interest
of Companies A and B in smart PPC is understandable because they are more inclined to pursue
smart processes (and, consequently, smart PPC) rather than smart products, illustrated in Figure 4
below. This can be explained by the fact that these two environments have different kinds of PPC
challenges and data generation processes. Process manufacturing tends to have more automated
production lines that already generate data and little product complexity, which implies that process
data is also consistent and repeatable, thereby enabling smart PPC. The same reason also enables more
data granularity for analysis and in a format that is amenable to BDA and ML.

Figure 4. Product-process framework for smart PPC (Adapted from [67]).

In addition, process manufacturing, as seen in Companies A and B, is more amenable to exogeneous
telemetry factors which can play a greater role in final production output, particularly when the
production is not sufficiently isolated from its environment. Meanwhile, complex products producers
with job shop layouts are more focused on balancing workloads and planning human operator
requirements due to the high labour content. Furthermore, complex products manufacturers tend to
have functional layouts and require much more manual or operator activity. This implies that complex
products manufacturers are less likely to generate data in a consistent and repeatable format which,
along with the high human content of the operation, makes it less amendable to process digitization.
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Hence, MTO operations tend to benefit more from process simplification, improved coordination,
and a smart product strategy rather than from a smart process strategy.

Finally, we found evidence to support the observation by Veile et al. [16] regarding the
success/failure of industry 4.0 projects in terms of horizontal integration. For example, Company
C—which is more powerful relative to other members of its supply chain—tended to dictate the pace of
industry 4.0 related innovation within its supply chain. Moreover, the intensely competitive industries
tend to have more innovations activities. In this case, we found that Company A, which has a relative
small market share in a highly competitive food industry is more eager to pursue innovations that
foster horizontal integration to the extent possible with its supply chain partners and has encouraged
joint research projects with its major customers, which are mostly retail conglomerates.

6.3. Sustainability and Managerial Implications

Studies have shown (for example, in the automotive industry [33]) that anticipated operational and
strategic gains are the primary drivers of industry 4.0 solutions, despite some of its core sustainability
benefits. In this regard, our findings align with the results of previous studies as all the case companies
in this study—except one (Company B)—had no any explicit sustainability measures or factors driving
the PPC process, even though in all but one of the cases, planners were aware of the sustainability goals
of their companies and their internal KPIs. The reasons for this are unclear, but it could be because of
the following.

First, the level of societal consciousness regarding sustainability is rather high in Norway and it
will be difficult to find a company which does not have “sustainability” somewhere in its mission, vision,
or core value statements. Furthermore, all the companies in this study have had lean improvement
programs at some point in the past decade and demonstrate all the visible elements of lean in their
factories. Coupled with the high level of decision making permitted in Norwegian factories, it appears
that the responsibility for sustainability has been given to operators on the shop floors in line with a
bottoms-up approach. Although this has good benefits, it limits the true sustainability performance to
only broad measures like carbon footprint, thereby missing the opportunity to have a truly robust
sustainability strategy. Smart PPC will address this, for example, by explicitly enabling the integration
of environmental and social KPIs with the financial. Smart PPC can enable sustainability KPIs to be
included in the performance parameters of the system, thereby enabling these companies to actively
and comprehensively act on their overarching sustainability goals. However, it will require new
competences and training from operators and production planners and may also lead to stress and
overextension, as observed by Birkel et al. [68].

Secondly, it has also been reported in the literature that managers will occasionally invest in a
new fad (e.g., blockchain) or new technology (e.g., cloud computing, a critical enabler of data analytics
and BI) due to the fear of missing out. A study of SMEs in Malaysia found that the likelihood that an
SME adopts cloud computing increases when competitors are already using the same technology [69].
However, the key question is one regarding the fit of organizational structures, products and production
processes, market and PPC processes, and how these issues can influence the use of any new technology
in general and IoT, BDA and BI tools in smart PPC specifically. Ultimately, the greatest value is obtained
when managers pursue the smart product or process direction that is fitting for their type of company.

In general, managers of companies producing complex, high variety low volume product are
more likely to derive most value from pursuing a smart product strategy while those with standard,
nonelectronic products in mass production environments are more likely to derive more value from a
smart process strategy. In the latter case, a smart PPC solution has great potential and can drive an
efficient, autonomous learning production system while tangibly addressing sustainability goals.

7. Conclusions

One important limitation of extant of research within industry 4.0, its technologies and their
applicability, is the limited empirical content. In this paper, we attempted to bridge this gap by delving
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deep into the processes and operations of four case companies in four different types of industries
and spanning both MTS and MTO production environments. In answering the need for a systematic,
low-risk adoption of industry 4.0 and its technologies, this posed three guiding questions to guide
out research for a solution, namely, to describe a smart PPC, the constraints and enablers of such a
system and the sustainability implications for manufacturing. We proposed an incremental, conceptual
model for development of the smart PPC system within manufacturing companies and exemplified
this model with use-cases and the case studies.

7.1. Contributions to Theory

The theoretical contributions of this study to extant research are three-fold. First, the proposed
conceptual model and matrix of use-cases can serve as a reference for production managers and
other decision makers struggling in efforts to make their production systems more data-driven and
intelligent. Moreover, while technologies such as data analytics and BI methods are not new in PPC
research, the combination with IoT and the incremental implementation smart PPC approach reduces
the risk and enables a natural maturation to smart manufacturing, both essential indicators for SMEs
and companies with limited innovation R&D budgets.

Secondly, we found that industry 4.0 implementations should not only integrate adequately with
an organization’s existing processes and systems, but also with its planning environment. In other
words, the planning environment variables—product, production process, and market (i.e., supply
and demand processes)—should dictate how industry 4.0 is approached, and consequently, each firm’s
implementation of smart PPC. Furthermore, the intensity of competition in a firm’s industry can
influence its need for, and adoption of, smart PPC solution. Companies in highly competitive industries,
which are not market leaders are more likely to join the smart ‘bandwagon’ and in doing so, fail to
achieve the fit that is necessary for implementation success.

Third, we have argued that even though the industry currently has no explicit sustainability
KPIs guiding the PPC processes, this can be ameliorated in a smart PPC system. This last point is
double-edged. On the one hand, we can build environmental KPIs into a smart PPC solution to reduce
waste and other deleterious effects of manufacturing operations, while on the other hand, a mature
smart PPC solution might lead to a reduction in the need for human planners where one planner could
end up comfortably handling an operation hitherto managed by several planners.

7.2. Limitations and Future Research

Considering how limited the sample size for this study is, no bold claims can be made regarding
the generalizability of its findings. We have explored the questions of interest through four case
companies all based in Norway, albeit with varied company sizes, reach, market positions, and industry
structures. Therefore, the location of these companies (being based in Norway) could have influenced
our findings as opposed to, say, being situated in Germany which has a much diverse and extensive
industrial economy or even neighbouring Sweden which has a larger industrial base. Furthermore, we
also expect that the intensity of promotion of smart operations will be greater in industries which are of
national strategic importance such as the oil and gas servicing industries in Norway or the automotive
manufacturing industry in Germany. Therefore, our findings may be skewed in the sense that it may
not reflect the current level of activity on the topic at a national level, for example.

In addition, the technologies in question are evolving and we have studied these case companies
only for a short period of time, while the future development paths of these technologies (and vision of
industry 4.0) are unknown. Moreover, this study did not capture the effect of popular improvement
concepts like lean as factors in our case studies, even though there may be an association with industry
4.0 [70]. This was not without consideration though, as we observed that all four companies had
mature lean programmes—with signs of visual control, 5S, and Kanban clearly visible in their factories.
Furthermore, this study focused primarily on the perspective of the company and not the supply
chain, although the influence of both the supply chain and, to a lesser extent, industry structure was
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considered as planning environment factors throughout the study. While this choice was fitting for
this study as it allows for a nuanced investigation of the subjects, a focus on the supply chain might
also yield interesting insights. Nevertheless, since the aim of this study was to explore a relatively
young research area, we deem that the research design is adequate for the stated objectives based on
the guidelines in Eisenhardt [71].

Future research could extend this study using a large sample size survey to further rigorously test
if and to what extent the insights from this study are generalizable. A follow-up large scale national
or international survey can address the limitations highlighted above. For example, while this study
indicated that process and semi-process MTS producers are likely to favour a smart process strategy
as compared to complex products MTO producers, future studies could also investigate what other
factors—in addition to extensive process automation and the low or non-existent digital component of
products—influence this choice and how these factors can be addressed by the producers of complex
products. From the organizational perspective, the skills and capabilities of production planners and
systems developers will be a critical success factor for achieving smart PPC, and studies that investigate
the required skill sets and how to institutionalize that knowledge will be valuable insights for industry.
Finally, with regard to the implementation of the smart PPC system, longitudinal studies that evaluate
actual performance improvements achievable in practice when using a fully developed smart PPC
system could reveal how much of an effect a smart PPC system can have on improving operational
performance and sustainable manufacturing in the factories of the future.
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Appendix A. —Interview Guide

1. About the PPC environment variables: demand and supply characteristics, product attributes,
and production system:

a. Describe the demand characteristics of your market
b. Describe the supply characteristics of your market
c. Describe your products’ attributes in terms of

i. Bill of materials levels
ii. Level of digital/electronic functions;
iii. Shelf-life;
iv. Number of process routes (no. of production lines could be an indicator)

d. Describe your production system in terms of

i. layout;
ii. level of automation;
iii. level of product customization;
iv. intensity of operator input

2. PPC process and system: process, inputs, outputs, technologies, key stakeholders, current challenges
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a. Describe the planning process from beginning to the end, step-by-step.
b. Level of standardization:

i. To what extent is the planning process standardized? What decisions is a planner
allowed to use his discretion for?

c. Highlight the following for the planning process:

i. Frequency of production planning meeting;
ii. General planning accuracy and how much planning buffer is usual;
iii. Planning horizon;
iv. Detailed scheduling horizon;
v. Frequency of rescheduling

d. PPC process data:

i. Describe the input and output data for every step of the planning process;
ii. What are the sources of these data and in what format is it?
iii. Are these data used for improvement of the planning process?

e. Describe (if any) the technology used for each step of the process (Excel, paper, SAP
modules, etc.)

3. History of use of data-driven decision-making:

a. Data-driven methods in planning and controlling operations. This is with regards to not
just having data from automated production lines, but do you use this data in planning
and scheduling or is it used mostly for quality control?

b. Does your company use any of the following:

i. General business KPIs?
ii. KPIs for PPC process performance?
iii. Lean manufacturing elements: 5S, Visual control, SMED, Kanban, Heijunka,

Just-in-time, etc.?
iv. Data-intensive improvement methodologies such as statistical process control,

six-sigma, etc.

4. Digitalization approach and initiatives in general

a. Has your company completed any digitalization initiative/project in the last 3 years?

i. If yes, how many?
ii. Which technologies and which use-cases?
iii. What was the expected business or operations outcome?
iv. Which initiatives failed, and succeeded?
v. What challenges did you face during the implementation and use?

b. Is your company currently working on any digitalization initiative/project?

i. If yes, how many?
ii. Which technologies and which use-cases?
iii. What was the expected business or operations outcome?
iv. What challenges are you facing with the development, implementation and use?

c. Is your company planning any future (within the next 1–3 years) digitalization
initiative/project?

i. If yes, how many?
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ii. Which technologies and which use-cases?
iii. What is the expected business or operations outcome?

5. Smart PPC decision making initiatives and the supply chain

a. In addition to the initiatives/projects mentioned above, are there any others that perhaps
where smaller, but addressed or affected the PPC process directly or indirectly?

b. Has the company considered any initiative because other partners in the SC are
developing that?

c. Or was is mandated by the SC partner(s)? If yes, rank this customer among several
other customers?

6. What is your opinion on potential of smart technologies in improving the PPC process? (process,
inputs, challenges eliminated)

a. Which elements of your planning process and system can be enhanced using
smart technologies?

b. What do you think are possible limitations of having smart PPC?

7. How does this contribute to your sustainability goals?

a. Do you have specific sustainability goals for the year? If yes, what are they?
b. Do you currently have KPIs related to sustainability goals?
c. How do the company’s sustainability goals affect your PPC processes and activities?
d. Do planners use sustainability parameters when driving the PPC process?
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