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FOREWORD

This thesis is submitted in partial fulfillment of the requirements for
the degree of Philosophiae Doctor (Ph.D.) at the Norwegian Univer-
sity of Science and Technology (NTNU). The work was done at the
Department of Computer Science at the Faculty of Information Tech-
nology and Electrical Engineering.

Some notes on typesetting: Graphics not created by me are printed
in a frame. Emphasis on words is typeset with italics, direct quotes in
“quotation marks”. Explicit references to software packages or frame-
works such as Python are typeset with a typewriter font. The number-
ing of linguistic examples will start with 101 to avoid confusion with
other enumerated items in the text.

Some much-used terms, central to the thesis, will be capitalized,
e.g., Domain Adaptation, Statistical Machine Translation, and Self-
Organizing Map. Such terms are spelled out on their first use in a
paragraph but abbreviated thereafter. Other, more rarely used terms,
such as cross-entropy are printed in bold.

Trondheim, March 2019.

J/}
)
/ I‘/

vii






ABSTRACT

This thesis explores the application of unsupervised clustering for do-
main adaptation of machine translation systems. As in many artificial
intelligence areas, creating a system that generalizes to any domain
is a hard problem in machine translation. Domain adaptation, in con-
trast, aims to specialize a generic (or otherwise intended) system for
a particular domain and translate text within that domain better. In
this thesis, experiments on using unsupervised learning as a first step
in solving this problem are explored, posing the research questions a)
how unstructured data could be used for domain adaptation and b)
how a bespoke translation of an input document could be provided.

In the first part of the thesis, background theory is presented and
related work reviewed. In the second, experimental part, preliminary
experiments on building n-gram models and multiword expression
detection are presented before experiments into clustering of struc-
tured and unstructured document collections are conducted. Finally,
the parts are brought together in experiments on using these input
factors for domain adaptation of machine translation systems, with
end-to-end evaluation.

Some of the clusters identified in the clustering experiments on un-
structured web collections were used as auxiliary language models in
machine translation, in the experiments on domain adaptation. Self-
Organizing Maps are used in the first phase of unsupervised clus-
tering before a hierarchical agglomerative clustering algorithm is ap-
plied to extract tangible clusters from the map, with the number of
clusters determined by the knee method.

By creating a mapping between the input document and one of
the auxiliary language models, translation is aided by this language
model. Using the language model perplexity on the input documents
to select the auxiliary language model for domain adaptation links
the clusters to the translation process.

Results show that the performance according to metrics such as
BLEU, TER, and Meteor were on-par, and in some cases better than
the results from leveraging all the available supplementary text as
an auxiliary language model. The difference when using different
auxiliary LM could be up to 1 BLEU points and 0.9 Meteor points.
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SAMMENDRAG

Denne avhandlingen undersgker bruken av ikke-veiledet klynging for
a tilpasse maskinoversettelsessystemer til spesifikke domener. I likhet
med andre problemer innenfor kunstig intelligens, er det vanskelig
a lage systemer som generaliserer til et hvilket som helst domene.
Domenetilpasning, derimot, har det til formal & spesialisere et gener-
isk system (eller et system med annen spesialtilpasning) til et annet,
spesifikt domene, og forbedre oversettelse av tekst innenfor dette.

I avhandlingen blir eksperimenter pa bruk av ikke-veiledet leering
utfort som et forste skritt til 4 lose dette problemet med utgangspunkt
i forskningsspersmalene a) hvordan ustrukturerte datasamlinger kan
brukes til domenetilpasning, og b) hvordan oversettelse av dokumenter
kan skreddersys til det enkelte dokument.

I avhandlingens forste del blir bakgrunnsteori og andre relevante
arbeider presentert. I den andre, eksperimentelle, delen, blir eksperi-
menter med & bygge n-gram-modeller og flerordskonstruksjoner vist,
samt eksperimenter med klynging av strukturerte og ustrukturerte
dokumentsamlinger. Self-Organizing Maps ble brukt til ikke-veiledet
leering, for en hierarkisk agglomerativ klyngingsalgoritme ble brukt
til & lage konkrete klynger ut av dette. Antallet klynger ble avgjort av
kne-metoden.

Avslutningsvis blir eksperimentene forenet ved at eksperimentene
nevnt ovenfor ble brukt til domenetilpasning av maskinoversettelses-
systemer, med ende-til-ende-evaluering. Noen av klyngene som ble
identifisert i klyngingseksperimentene pa ustrukturerte tekstsamlinger
fra internett, ble senere brukt til & bygge hjelpespraksmodeller i mask-
inoversettelsesystemer, brukt i domenetilpasningseksperimenter. Ved
a tilordne et dokument som skal oversettes til en av hjelpespraksmod-
ellene, ble oversettelsen assistert av denne sprakmodellen. Sprdkmod-
ellenes perpleksitet pa inndatadokumenter ble brukt til & velge hjelpe-
spraksmodell.

Resultatene viste at ytelsen ifglge metrikker som BLEU, TER og
Meteor var pa linje med, og i noen tilfeller bedre, enn resultatene
fra & utnytte all tilgjengelig tilleggstekst som tilleggssprdksmodell.
Forskjellen ved bruk av en annen tilleggssprdksmodell enn den beste
ifelge algoritmen var i enkelte tilfeller s& mye som 1 BLEU- og 0,9
Meteor-poeng.



les langues sont des organismes languages are living organisms

vivants dont la vie, the life of which,
pour étre d’ordre purement intellectuel even though it is purely intellectual,
n’en est pas moins réelle et peut is in no way less real,
se comparer a celle des organismes and may be compared to that of the organisms
du regne végeétal ou du regne animal in the vegetable or animal kingdom

— Arseéne Darmesteter [1887]
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Part1

PRELIMINARIES

The first part introduces the thesis, defines the problem,
and provides the relevant background for the experiments
in Part II. Three background chapters follow the introduc-
tion, viz.: Self-Organizing Maps and Cluster Analysis, Ma-
chine Translation, and Domain Adaptation and Machine
Translation.
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INTRODUCTION

Data sparsity is a problem in data-driven applications like Machine
Translation (MT). The amount of online® data of all sorts increases
rapidly year-on-year, but it is mostly unstructured. Unsupervised
learning can be used to organize and understand such data, enabling
its use, e.g., for making predictions or analyses. Specifically, unsu-
pervised clustering algorithms can establish a structure in these doc-
ument collections such that they can be leveraged, e. g., for MT.

As more people around the world gain access to the Internet and
its vast resources, its share of English decreases. Consequently, the
need for translation of documents from and into languages one does
not master sufficiently well increases, e.g., for communication and
knowledge extraction purposes. Coinciding with this development,
advances in Machine Translation have made the use of foreign lan-
guage resources easier, albeit often only by getting the gist of the
document. This kind of low-quality MT, sufficient to acquire an un-
derstanding but hardly to publish, is popularly referred to as gisting.

Restricting the translation task to a domain, such as text about a cer-
tain topic, written in a certain style, or for a certain audience makes
the task easier. However, such domains can vary greatly and are hard
to separate. Moreover, systems created for one domain often perform
poorly on text from another, e. g., Lu et al. [2007], Tiedemann [2010],
and Pecina et al. [2015]. Domain Adaptation means to adapt a Ma-
chine Translation system such that it better translates text belonging
to other domains than it was created for. Especially when the avail-
able data in the desired text domain is scarce, leveraging a larger body
of general text is valuable.

This thesis will present work on using an unsupervised clustering
method based on Artificial Neural Networks — the Self-Organizing
Map (SOM) [Kohonen, 1982] — on monolingual data collected from
the web, applied to this problem. Leveraging monolingual data is
important for Domain Adaptation because it is as easy or easier to
obtain, and often all that is available. In the remainder of this chapter,
the thesis will be further introduced with a statement of motivation,
research questions, and an outline of its structure.

Henceforth, online is understood as something published on the Internet, whereas
on-line means something done while a system is running.
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1.1 MOTIVATION

This section will motivate the experimental work by first addressing
the complexity of the problem, then discussing how generic Machine
Translation could be achieved through Domain Adaptation, and last
addressing the relation between large data collections and DA. To-
gether, these elements explain the motivation behind the research
questions and the methods used for the experiments.

1.1.1  Al-Completeness of Machine Translation

Yampolskiy [2015] defined a problem C as Al-complete if it exhibits
two properties; (i) it is in the set of problems solvable by the union of
human minds, and (ii) any (other) such problem can be converted to C
by some polynomial time algorithm. The notion of Al-completeness
must be seen in light of the P vs. NP problem [Cook, 1971], and
the impact this classification of problems had on Computer Science.
P and NP reference Polynomial and Non-deterministic Polynomial time,
respectively, i. e., categories of problems that can be solved or verified
in polynomial time.

Yampolskiy argued that lacking a definition of the problem space
was a shortcoming of the Artificial Intelligence (Al) field and pro-
posed a theory of Al-completeness analogous to the classification of
problems in computer science outlined in the previous paragraph.
This formalism included a mechanism with which to prove the Al-
completeness of problems by reduction. A problem can be reduced
to another if all the information encoded in queries to the original
problem can be put as queries to the other and if all solutions to that
problem could be an answer for the original. After showing that a
Turing Test (TT) is Al-complete, this problem was reduced to Ques-
tion Answering (QA), as all queries to the TT could be put to a QA
system, whose replies could be provided as answers during the ad-
ministration of a TT. Thus, QA is also Al-complete according to the
theory.

By categorizing Al problems as either Al-easy, Al-hard, or Al-com-
plete, problems could then be proven to be Al-complete, as opposed
to only believed to be Al-complete. Without reference to a similar for-
malism, Shapiro [1992] listed the following problems as Al-complete:
(i) Natural Language (sic) (ii) Problem Solving and Search (iii) Knowl-
edge Representation and Reasoning (iv) Learning (v) Vision, and (vi)
Robotics. Moreover, Yampolskiy encouraged the research community
to give formal proofs of the categorization of other problems and gave
Machine Translation as an example.
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Machine Translation must be in the family of problems solvable by
the union of human minds as translation, by nature, depends on the
human mind. Furthermore, it requires a full understanding of the
reasoning behind the statement to be translated. If, as conjectured by
Yampolskiy, Natural Language Understanding (NLU) is Al-complete,
it can be reduced to MT by stopping at the level of representation
where the input query is understood before its representation in a
different language is generated. (If needed, the Machine Translation
system could use the representation of the NLU system as a pivot
language.) Thus, MT would also be Al-complete according to the
above definition.

More loosely, solving Al-complete problems is equivalent to solv-
ing the strong Al problem, i.e., to make computers as intelligent as
human beings. Perfect translation requires the ability to understand
what the author argues, which requires unlimited world knowledge
and the ability to reason about it.

1.1.2  Machine Translation Through Domain Adaptation

Machine Translation was an early problem in Computer Science, with
research going back to the 1940s. Still, it is a problem far from solved
in the broad sense that no human interaction would be needed to
translate text with human-equivalent quality (Chapter 3 will define
the term more rigorously). Since MT is both Al-complete and can
involve NP-complete operations, it is not surprising that there is no
panacea.

With some exceptions, such as Machine Translation systems for
very limited purposes, MT output is not up to a publishable stan-
dard today. However, MT becomes an easier task as more restrictions
are put on the specification of the problem. Definitions of MT often
come as a set of constraints, which can be relaxed to arrive at a solv-
able problem. One of these constraints is the purpose of translation,
such as processing text from a specific domain. Lehrberger [1982] ar-
gued that the solution to MT lies just in sublanguages (understood as
equivalent to domains):

“The solution in the case of automatic translation seems to
lie in restricting one’s attention to sublanguages.” [Lehrberger,
1982].

in a period when the domain-specific, limited-vocabulary TAUM-METEO
[Thouin, 1982] system attained considerable success.

Thus, if Domain Adaptation is possible for limited-domain contexts,
general purpose Machine Translation can be recast as a multitude of
limited-domain MT problems by treating every input document as if
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it were domain-specific. While an intriguing and highly motivating
idea, the problem of identifying domains remains.

1.1.3 Domain Adaptation in Machine Translation

CParallel text C > (Monolingual text < )

Input Output

Figure 1: Overview of a data-driven Machine Translation system.

Figure 1 shows an overview of a data-driven Machine Translation
system. A Translation Model (TM) is created by extracting bilingual
relations from parallel text, and a Language Model (LM) is created by
extracting relations from monolingual text. The TM models possible
translations of source language terms into a target language, whereas
the LM models the target language. These models are jointly searched
for the best target language term given a source language input to pro-
vide a translation. For historical reasons called decoding, this search
process produces the translation.

In a situation where two separate domain-specific Machine Trans-
lation systems are used for translation of documents from the other
domain, the translation quality is likely to be poor. Figure 2 illus-
trates how two domain-specific test documents are cross-applied be-
tween two different, domain-specific systems. Results on translating
in-domain data, i. e., documents from the same domain as the system
was trained on, are relatively good, which is illustrated with green
output boxes, while results on out-domain data are relatively poor,
illustrated with red output boxes with sawed edges. The green core
indicates that parts of the documents are translated correctly.



1.1 MOTIVATION

Input

Output E

Figure 2: Two separate Machine Translation systems, where test input is
cross-applied. System 1 with solid lines, and system 2 with sawed
lines. When documents are applied to a same-domain system, lines
are blue and in the opposite case red.

Figure 3 integrates the previous two figures and illustrates Do-
main Adaptation, i.e., that an existing Machine Translation system is
adapted to another domain. Here, the top system from Figure 2 with
solid lines is adapted to the domain of the bottom system with sawed
lines. The magenta arrows indicate possible types of adaptation. The
higher share of green in the output from running the adapted system
on the in-domain document illustrates that it is more successful after
DA.

A simple form of Domain Adaptation is to concatenate all domain-
specific training data to the data already available and train a new
model can on this concatenation. Alternatively, adaptation work can
be done directly on the translation modeling, language modeling, or
the decoding process. Each of the sub-processes in data-driven Ma-
chine Translation consists of many sub-tasks and parameters, and DA
can be done on any of these. Successful adaptation should result in
a model that provides better translations than either the (often larger)
out-domain model or the (smaller) in-domain model. This thesis will
address ways to achieve this, primarily by using Language Models
created from clustering web data with Self-Organizing Maps.
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Figure 3: Strategies for Domain Adaptation of a Machine Translation system.

1.1.4 Self-Organization and Large Data Collections

With an abundance of web data in existence, an enormous body of
text is available for research purposes, e.g., for use in Machine Trans-
lation or Computational Semantics. Advances in infrastructure have
made crawling, storage, and access easier. A service like Common
Crawl]® makes Terabytes of crawled data available to everyone on a
monthly basis. Similarly, large-scale computing resources are now
easily available, making it possible to utilize this vast resource. These
enormous data collections and their rapid updates create a potential,
not only for finding large amounts of domain-specific segments for
Natural Language Processing (NLP) applications but also for track-
ing changes in natural languages.

Self-Organizing Maps represent complex data with (very) high di-
mensionality in a lower-dimensional (mostly 2D) space [Floreano and
Mattiussi, 2008]. Reduced dimensions mean that structure in the data
can be visualized in this lower-dimensional space. Because of suc-
cesses in data mining, non-dependence on a fixed set of clusters or
partitions, and biological inspiration, unsupervised algorithms such

2 commoncrawl.org (Last visited: March 27, 2019.)
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as SOMs are well-suited for finding domain-specific segments within
large data collections with no provided structure. However, the ques-
tion of how to utilize the structures found by unsupervised methods
for Domain Adaptation remains open.

A Self-Organizing Map [Kohonen, 1982] is a topological mapping
of objects of arbitrary complexity provided that a distance measure
between objects exists. The maps provide cartographical insight into
the relations between these objects by placing similar objects in the
same area. The biologically inspired algorithm has its theoretical ori-
gins within the realm of Artificial Neural Networks, and it also has
well-defined mathematical properties as a practical tool.

jl Trade ‘

| Money, foreign exchange

'\
\{ Coffee ‘

—— Acquisitions
N\{ Crude |

"~/ Earnings

Figure 4: A Self-Organizing Map of the Reuters Corpus. Color-shaded areas
contain documents with largely the same labels.

Figure 4 shows an example of a Self-Organizing Map of the Reuters
Corpus [Lewis et al., 2004]. This map was trained on the text corpus
(consisting of newspaper articles) by providing documents in random
order for a given number of Epochs or iterations. (Chapter 7 presents
the experiments that created this map.) The experiments on this small
document collection effectively demonstrated that similar documents
were placed in the same areas of the map since the document labels
can verify their thematic similarity. The SOM algorithm can also be
used for unstructured data, i.e., unlabeled documents, such as collec-
tions of text mined from the web. The proximity between objects in
the low-dimensional space that visualizes similarity in higher dimen-
sions is an important result of the algorithm.

General-purpose Machine Translation of high-quality has been no-
toriously difficult to achieve, but there is a solace to find in the method-
ological advances since the first applications of the 1940s. However,
examples of special purpose systems for producing high-quality out-
put do exist, e. g., Thouin [1982] and Palmer et al. [1998].
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Using an unsupervised algorithm such as the Self-Organizing Map
to leverage both the growth of the web as a corpus and the availabil-
ity of increased computing power to identify pseudo-domain-specific
corpora useful for translating arbitrary documents, is the primary mo-
tivation behind this thesis.

1.2 RESEARCH QUESTIONS

Machine Translation divides into different approaches, again divisi-
ble into algorithmic steps, which all contribute to the output trans-
lation. During a time-span of more than 60 years, significant ad-
vances have been achieved in MT at different increments. For the last
three decades, data-driven approaches have achieved notable gains
by methodological advances including the ability to process large
amounts of training data. Recently, MT with Artificial Neural Net-
works has improved the state-of-the-art further. However, MT is not a
solved problem, and several open questions remain [Lopez and Post,
2013] — Domain Adaptation being one. Presently, acquiring large
collections of parallel text for every language pair is not possible, and
certainly not for every domain. The following research questions spec-
ify the problem:

1. How can unstructured web data be used to facilitate the Domain
Adaptation of translation into many different domains simulta-
neously?

2. How can a Machine Translation system be designed to translate
an input document, adapted to the characteristics of that partic-
ular document?

1.2.1  Facilitating Domain Adaptation with Unstructured Data

The first research question pertains both to using the web as a corpus
for Machine Translation and its application to the Domain Adapta-
tion problem. Some structure in the data must be established to make
use of previously unstructured data to translate between different
domains within a language pair. With a structure, pseudo-domain-
specific corpora can be identified. Using a fixed set of domains to
select relevant portions of the data, and using unsupervised methods
to identify inherent clusters, are possible ways to achieve this. If the
set of target domains is presumed unlimited or unknown, methods
that do not require a fixed set of domains are needed.
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Ch. 3,7,8

Unsupervised Clustering

Figure 5: Venn diagram of thematic intersections. Chapter numbers refer to
corresponding experiments.

1.2.2  Adapting Translation to Input Documents

The second research question relates to how Machine Translation sys-
tems can provide an adapted translation of each input document. A
mapping between an input and the configuration of the system is
required to provide a bespoke translation. The configuration of the
system could then adapt to the properties of the input document. Con-
cretely, a mapping could invoke the most relevant section of the avail-
able training data, when leveraging unstructured data collections as
Language Models. However, LMs are in the Target Language while in-
put documents are in the Source Language. Thus, this premise raises
the question of how to map a Source Language document to a Target
Language resource.

11
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Figure 6: Chapter structure.

1.3 THESIS STRUCTURE

The core of the thesis is the intersection between three research areas;
Machine Translation, unsupervised clustering, and Domain Adapta-
tion, jointly comprising a novel approach to the problem of DA in
MT. Figure 5 illustrates the thematic relationship between these areas,
annotated with chapter numbers. The included chapters are preceded
by an introductory chapter and succeeded by an analysis part.

Figure 6 presents an overview of the chapters in a 3-5-2 formation.
Part I covers relevant background information in Chapters 2-4 and
Part II presents experiments in Chapters 5-9. First, Chapter 5 presents
experiments on identifying Multiword Expressions (MWEs) with dic-
tionaries, and how MWEs can determine the proper translation of a
word given its context. Next, Chapter 6 discusses work on construct-
ing large-scale Language Models using grid computing.

The remainder of the experimental part covers experiments on Self-
Organizing Maps and their application to Domain Adaptation in Ma-
chine Translation. First, Chapter 7 presents work on using the SOM
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algorithm on a structured collection of text. Comparing the perfor-
mance of the SOM implementation to the state-of-the-art on classifica-
tion of this corpus confirms the MPI implementation of the SOM algo-
rithm. Next, Chapter 8 demonstrates how the SOM can combine with
hierarchical clustering to produce concrete clusters, with exact demar-
cations. Finally, Chapter 9 describes how these clusters were for DA
of MT systems by providing auxiliary training material (monolingual
text).

Part III sums up the experiments with a discussion and presents
ideas for future research. Additionally, Part IV contains appendices
with more details on the experiments.

1.4 CONTRIBUTIONS

In addition to a number of scientific publications on core and related
topics (listed in separate bibliographies in Part IV), the main contribu-
tions of this thesis are:

* A demonstration of a novel approach to Domain Adaptation in-
tegrated into a full Statistical Machine Translation pipeline and
evaluated on end-to-end experiments.

* A dictionary mining method of resolving the translation of Mul-
tiword Expressions for use in Word Translation Disambiguation.

¢ Experiments on the Hierarchical Clustering of Self-Organizing
Maps on unstructured document collections mined from the
web with visualizations of results.

¢ Experiments on clustering a structured document collection us-
ing Self-Organizing Maps with experiments on large topologies.

* Animplementation of the Self-Organizing Map algorithm in MPI
and Python, and code to visualize the results and facilitate clus-
tering of the SOM matrix with the sklearn package.

* A method for parallel building of IRSTLM Language Models with
an OpenPBS scheduler.

1.4.1 Scientific Publications

During the work with this thesis, several intermediate results were
published. Some of these papers include work related to the exper-
iments in Part II or related to the analysis part (listed on Page 245),
and some being peripheral to the thesis (listed on Page 247). All pa-
pers had some impact on Part I (introduction and background) and

13



14

INTRODUCTION

Chapter Title Author(s) Year

Word translation disambigua-
tion without parallel texts.

3 EM, AL, LB, BG 2011

A survey of domain adaptation
4 in machine translation: Towards LB, BG 2011
a refinement of domain space.

Disambiguating word transla-

] , AL, EM,
5 tions with target language mod- LB, BG 2012
els.
Improving word translation dis-
5 ambiguation by capturing mul- LB, BG, 2013
tiword expressions with dictio- AL, EM
naries.
Efficient n-gram language mod-
6 eling for billion word web- LB, BG 2012
corpora.
Self-organizing maps for classi-
7 fication of a multi-labeled cor- LB, BG 2015

pus.

Extracting and selecting rele-

8 vant corpora for domain adap- LB 2014
tation in machine translation.
Multi-domain adapted machine

9 translation using unsupervised LB, BG 2015
text clustering.

Linguistic domains and adapt-

able companionable agents. BG, LB 2016

1,2,10

Table 1: Paper relevance to specific chapters. LB=Lars Bungum, BG=Bjcrn
Gambick, AL=André Lynum, and EM=Erwin Marsi.

Part III (analysis). Table 1 lists how selected papers relate to different
chapters.

1.4.2 Mining Multiword Expressions with Dictionaries

Chapter 5 demonstrates a method for identifying Multiword Expres-
sions using dictionaries. The method finds MWEs listed as entries
in bi-directional dictionaries. The experiments were evaluated on a
cross-lingual Word Translation Disambiguation task.

If a Multiword Expression was found in the context of the text exam-
ples, this was often the correct sense. However, experimental results
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showed that the method had high precision but low-recall. Thus, the
method is well-suited for combination with methods with the inverse
property. Moreover, it was included in a recent Springer book on the
state-of-the-art in MWE processing [Ramisch, 2015].

1.4.3 Parallel Building of IRSTLM Language Models on OpenPBS Sched-
ulers

Chapter 6 presents work on building large Language Models using
the IRSTLM language modeling framework scripts modified to the
OpenPBS scheduler. The OpenPBS scripts used the same methods as
the scripts for the original scheduler for dividing LM creation into
sub-tasks, which are distributed to an HPC grid and subsequently
merged.

1.4.4 Clustering a Structured Document Collection with SOMs

Chapter 7 shows experiments on clustering the Reuters Corpus using
Self-Organizing Maps. The experimental method largely replicates
other SOM-based classification methods but also provides visualiza-
tions, which explore the multi-label characteristics of the task, i.e.,
how documents with multiple labels are similar. This similarity is rel-
evant to the discussion on whether multi-label classification should
be re-cast as a cascade of single-label classification tasks.

1.4.5 Hierarchical Clustering on SOM-Structured Web Data

Chapter 8 presents a method to cluster a trained Self-Organizing Map
into concrete clusters. These resulting clusters consist of documents
from areas on the map, which are concatenated into text corpora. The
algorithm is aimed at transforming the separate areas in the visualiza-
tions of the SOMs into delineated clusters whose member documents
can be output. The code relies on the scipy package for clustering
methods, distance metrics, and intrinsic evaluation criteria.

1.4.6 MPI Implementation of the SOM Algorithm

An implementation of the Self-Organizing Map algorithm using a
Message Passing Interface (MPI) was developed to conduct the exper-
iments presented in Part II. While there are other SOM implementa-
tions available, e. g., MATLAB's toolbox, an open source implementation
of the algorithm in MPI (or similar) is not available to the best of found
knowledge.

15
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The implementation used for the experiments in Part II integrates
the distributed calculation of vector comparisons and updates with
software packages such as scikit-learn for distance metrics and
tf-idf conversion, Numpy for matrix operations and Matplotlib for
visualization. The use of these packages makes it easy to exper-
iment with alternative distance metrics and vector representations.
The code is released under the GNU GPL license and is available
at https://github.com/Pinkertoncito/som-mpi- py.

1.4.7 Integration of Unsupervised Clusters into an SMT Pipeline

The final chapter in the experimental part provides an evaluation of
the document collections resulting from the unsupervised clustering
process in a specific setting, Domain Adaptation of Machine Transla-
tion systems. Language Models built on the document clusters are
integrated into a Statistical Machine Translation pipeline as features
in the log-linear framework of the Moses SMT system [Hoang et al,,
2007].

A perplexity ranking was used to map input documents to the most
relevant auxiliary Language Model built from supplementary data.
The performance of the top-ranked LM was benchmarked against all
other auxiliary LMs, and against one built on all of the available sup-
plementary data. Some experiments showed that the top-ranked aux-
iliary LMs gave better results than using all the available supplemen-
tary data.



SELF-ORGANIZING MAPS AND CLUSTER
ANALYSIS

The first background chapter will discuss the Self-Organizing Map
algorithm in particular and cluster analysis in general. Section 2.1
describes the SOM algorithm, and Section 2.2 clustering and cluster
analysis. Section 2.3 presents some categorizations of cluster analysis
and Section 2.4 a selection of clustering algorithms. Section 2.5 ad-
dresses how SOMs apply to clustering, and finally, Section 2.6 ends
the chapter with a discussion of cluster evaluation methods and met-
rics.

Self-Organizing Maps [Kohonen, 1982] are created by an unsuper-
vised learning algorithm with its roots in Artificial Neural Networks
(ANNSs), which is mostly referred to as the Self-Organizing Map al-
gorithm but also known as Kohonen Neural Networks, e.g., Lo et al.
[1991]. The SOM algorithm has an interpretation as a special form
of training ANNE, i. e., training their neurons and synaptic weights,
with mathematically clear specifications how nodes and vectors are
updated (the preferred vocabulary henceforth).

Unsupervised clustering, the algorithmic recognition of patterns
and natural groups among a class of entities, has been applied to
many areas of the natural sciences, e. g., biology, chemistry, and geo-
physics. These methods have also been applied to Language Technol-
ogy going back at least to the early nineties, exemplified by Valbret
et al. [1992] who clustered the acoustical space of each speaker into
non-overlapping segments for use in speech synthesis. Furthermore,
Self-Organizing Maps have been used in many Automatic Speech
Recognition (ASR) applications, such as clustering a text corpus with
SOMs to improve recognition by using multiple Language Models
[Podder, 2004]. Shum et al. [2013] used unsupervised clustering for
speaker detection and also for Domain Adaptation of speaker de-
tection systems [Shum et al.,, 2014]. Unsupervised clustering has
been applied to Machine Translation, e. g., by using mixture modeling
of translation models [Sennrich, 2012b] or factored translation using
word clusters [Rishej and Segaard, 2011].

By grouping semantically related documents together, Self-Orga-
nizing Maps achieve similar ends as Latent Semantic Indexing (LSI)
[Deerwester et al., 1990, Hofmann, 1999] and Latent Dirichlet Alloca-
tion (LDA) [Blei et al., 2003]. LSl is based on Singular Value Decompo-
sition (SVD), extracting the most salient terms using the left-singular

17
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vectors of the matrix decomposition. LDA draws multinomials from a
Dirichlet distribution to organize a collection of documents based on
a distribution of topics in documents and a distribution of words in
topics. The SOM algorithm can also be used for dimensionality reduc-
tion, e. g., by inputting distances between clusters [Tsimboukakis and
Tambouratzis, 2007] or cluster membership to other Machine Learn-
ing methods.

Vectorization refers to the representation of some object (such as a
document) as a vector, such as by the occurrences of specific terms in
each document, or by their tf-idf values. Widely used in Information
Retrieval, tf-idf — the product of the term frequency and the inverse
document frequency — offsets the number of occurrences of a term
in a document with the number of times it occurs in the document
collections with the aim of representing documents with more rele-
vant terms. Wu et al. [2008a] and Roelleke and Wang [2008] formed
theoretical bases to interpret the measure (as a relevance measure and
probabilistically, respectively).

2.1 THE SELF-ORGANIZING MAP ALGORITHM

The Self-Organizing Map algorithm organizes nodes with a given
topology, often two-dimensional with a square or hexagonal shape.
Nodes consist of vectors of some higher dimensionality, directly com-
parable to the same-arity vectors that represent training samples. Node
vectors are also known as prototypes in the SOM literature. The
nodes’ properties are gradually changed for a predefined number of
Epochs (cycles), making the nodes more similar to the training sam-
ples as they are processed. Changing one data point (node) will also
affect its neighboring nodes, inspired by biological systems in which
neurons with similar functions organize in the same areas.

Figure 7 illustrates self-organization, where 16x16 nodes are repre-
sented as vectors with three dimensions, each with values between o
and 1, making them directly plottable as red, green, and blue (RGB)
colors. Training samples consist of a set of fixed colors (a red, green,
and blue color) represented as vectors containing their respective RGB
values. After training, the grid has self-organized into areas of similar
colors based on the three training samples.

Specifically, the algorithm starts with an array of nodes and is re-
peated for a fixed number of Epochs. Sample vectors are successively,
but in random order, compared to node vectors. The closest node vec-
tor to the training sample according to a distance metric is the winner
(henceforth referred to as the Best-Matching Unit (BMU)). The vector
values (interpreted as weights) of the BMU, as well as weights of the
neighboring nodes, are updated to be more similar to the sample at a
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(a) First Epoch. (b) Last Epoch.

Figure 7: Self-Organizing Map of RGB color codes.

learning rate specified by a coefficient. Thus, each training sample is
compared to every node, using a distance metric 4, and drawing the
BMU and its neighborhood towards the training sample.

Formally, a Self-Organizing Map consists of N nodes and S sam-
ples with each node vector n; € RP and each sample vector s; € RP
representing nodes and samples, respectively, with vector dimension
p. Training iterates for a number of Epochs, E

For each s; € S, the Best-Matching Unit n,, at Epoch e is determined

by:
Ny (t) = argmin d(n;, x;) (1)
j
Next, the BMU n,, and neighbors update with the function:
M (t 4 1) <= mue(t) + Aty (t) (s — i) (2)

The learning rate A is a function that can be defined over time (i.e.,
Epoch) and distance from the BMU in the low-dimensional space. The
neighborhood function hy,,(t) determines whether the current node
Ny is in the neighborhood of the BMU n,, and optionally the prox-
imity to the BMU. Neighborhood can be expressed as topological ad-
jacency (i.e., bordering nodes) or as a circle around the BMU whose
radius decays with time.

The resulting map has grouped (self-organized) similar high-dimen-
sional vectors together in the low-dimensional topology. Hence, a feat
of cartography (a map) in the landscape of input samples has been
achieved, not only because similar samples attach to the same areas
on the map, but also because the distances between nodes can be vi-
sualized with color shadings or contour plots. Algorithm 1 presents
the Self-Organizing Map algorithm in pseudo-code.
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Algorithm 1 SOM algorithm for E Epochs, a set of N nodes and a set
of S training samples.
1: procedure CREATE-SOM
2 randomly initialize [N| nodes
3 for each Epoch e € E do
4 for each sample s € S in pseudo-random order do
5: for each node n € N do
6
7
8
9

distance[n] = distance(n,s)

end for

BMU = min distance[n € N]

update BMU + neighborhood towards s
10: end for
11 reduce neighborhood and/or learning rate
12 end for
13: end procedure

The ability of Vector Space Models (VSMs) to represent real-world
phenomena has been discussed by, e. g., Dubin [2004] and Clark [2015].
Machine Learning methods have been able to capture relations be-
tween the attributes of vectors, often referred to as latent. A wider
discussion of the merits of vector representation as such, however,
falls beyond the scope of this thesis.

2.1.1  Computational Complexity of the Self-Organizing Map Algorithm

Algorithm 1 shows that three loops are necessary for the computation
of the Self-Organizing Map. Furthermore, the number of Floating
Point Operations (FLOPs) will depend on the dimensionality of the
vectors representing each sample and node as the distance is com-
puted, the numerical rank of the matrix representing the SOM. An
increase in either |E|, |S| or [N| will increase the number of distances
to be computed, the product of the terms, O(ExSxN). If two (or three)
terms are related, an increase in one implies an increase of another,
the number of comparisons will be quadratic (or cubic) to this term,
otherwise linear. Practically, however, also linear growth of this mag-
nitude matters.

Kaski [1997] argued that the complexity of the algorithm is quadratic
to the number of nodes (map units) N because the number of Epochs
should be a multiple thereof. Drigas and Vrettaros [2008] also claimed
that the algorithm is quadratic to the number of map units.

Alternatively, Roussinov and Chen [1998] formulated complexity
with regards to the growth of documents in a collection. The authors
argued that the Self-Organizing Map algorithm is O(|D|?) where D
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represents the size of the document collection. This argument is based
on a formulation of time complexity, O(VE), where V represents the
length of the document vector and E the number of Epochs. Finally,
Roussinov and Chen argued that both terms can be replaced by |D|,
as the number of unique terms is proportional to the document col-
lection.

2.1.2  Alternative Formulations of the Self-Organizing Map Algorithm

Owing to practical necessity as configurations grow, some alterna-
tive formulations have emerged to make processing computationally
cheaper. Such include using a two-step approach (i.e., creating a Self-
Organizing Map from the output of another SOM [Kohonen et al.,
1996]), or formulating a batch-SOM algorithm. These methods con-
trast the on-line version by updating node weights in batches of sam-
ples, as opposed to individually for every sample.

After initialization of the node vectors, the method implements Vec-
tor Quantization (VQ) and smoothing of numerical values over a two-
dimensional grid [Kohonen et al., 2000]. The Voronoi set V; defines
the set of samples that have node n; as Best-Matching Unit. In a pro-
cess resembling quantization, the average of the Voronoi sets for all
nodes is calculated as:

. — ZseVi 5
Vi, Xi = T (3)
where m; = [s € Vj], i.e., the number of samples falling into V;, and
thereby representing the Voronoi set by its average. Subsequently, a
node n; is updated with:

_ 2 mhi%

Zj mj hji
where j iterates over the nodes in the neighborhood of the BMU and h
is a neighborhood function determining the proximity between nodes.
Thus, each node in the neighborhood of the updating node n; is rep-
resented by the average of the samples with this BMU. The method
iterates using the same input samples and recalculates X;. Kohonen
and Honkela [2007] claimed that the batch map essentially gives the
same results as the on-line SOM algorithm despite being an order of
magnitude faster.

Roussinov and Chen [1998] proposed an alteration of the Self-Orga-
nizing Map algorithm, leveraging the sparsity in vector representa-
tions.

Fort et al. [2002] compared the approaches and noted some prob-
lems with the batch formulation, such as initialization sensitivity, while

(4)

ny
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it had advantages regarding speed and efficiency. Furthermore, sev-
eral implementations of the parallel batch-SOM algorithm exist, e. g.,
Lawrence et al. [1999] and Patel et al. [2015].

2.1.3 Relation to Artificial Neural Networks

Artificial Neural Networks (ANNs) constitute a branch of computa-
tional neuroscience where computational models mimic the behavior
of biological systems to solve problems. These ambitions are traceable
back to the early years of Artificial Intelligence [McCulloch and Pitts,
1943]. Both the complexity of Neuroscience and the rapid advances
in the field [Marcus and Freeman, 2014] make it near-impossible for
computational models to regard all aspects of this world of knowl-
edge.

The term Artificial Neural Network makes a distinction between
what are real neural networks wired in the biological brain, and those
that are artificial, existing in computer models. Henceforth, this term
is preferred, although the word artificial is often omitted in the liter-
ature with the same meaning. A rigorous treatment of the steadily
increasing ecosystem of ANNSs is beyond the scope of this thesis. (See
Goldberg [2015] for a good primer on the use of “Neural Network
Models” in Natural Language Processing.)

Artificial Neural Networks consist of neurons (nodes), organized
in layers, connected by synaptic weights (edges). A function in each
neuron sums the dot products of the neurons connected to it and
their corresponding weights, and an activation function does a trans-
formation of this value to determine its output value (whether the
neuron fires). Connections can either be one-directional in the net-
work (feed-forward) or be between neurons in the same layer and
back (recurrent).

There is always an input- and an output layer. Hidden layers be-
tween input and output represent additional connections between in-
put and output. Deep learning mostly refers to the utilization of
numerous such hidden layers [Bengio, 2009], an approach also used
for NLP tasks [Collobert and Weston, 2008, Collobert et al., 2011]. At
the other end of the scale, the single-layer perceptron [Rosenblatt, 1962]
is the simplest Artificial Neural Network.

For practical use cases like classification (the attribution of a class
to an instance), output layers are given an interpretation. Connections
are given weights, finally determining the values in the output layer,
as the input values are fed forward. Setting these weights by trial-and-
error is only feasible for very small architectures, and much work has
been done on automatic training of these weights. Using variations
of Hebbian learning [Morris, 1999] (strengthening weights if both
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Figure 8: Self-Organizing Map viewed as connected neurons in an Artificial
Neural Network.

connected neurons are firing), weights can be set using only local
information.

In a supervised setting with desired (gold standard) values for the
output layer, the error between the prediction of the Artificial Neural
Network and the gold standard values can be used to set the weights.
By defining a loss (cost) function, which quantifies the difference be-
tween the prediction and desired output, this difference can be prop-
agated through the network and distributed on the weights. Back-
propagation [Rumelhart et al., 1986] is done by computing the partial
derivatives of the cost function with respect to the weights. Alter-
native methods for training network weights include neuro-evolution,
which uses evolutionary algorithms to construct Artificial Neural Net-
works.

In a general discussion of biologically inspired systems, Floreano
and Mattiussi [2008] categorized Self-Organizing Maps as an unsu-
pervised learning approach to Artificial Neural Networks, without
desired output when provided with training samples. When SOMs
are viewed as ANNS, they consist of two layers; one is the input layer,
corresponding to the dimensionality of the vectors in Algorithm 1, an-
other being a competitive layer corresponding to the number of nodes
chosen for the 2D space. Figure 8 illustrates how nodes in the input
layer are fully connected to the nodes in the competitive layer.

Self-Organizing Maps are created using both competitive and coop-
erative learning strategies. Competitive, because neurons compete for
each input vector to become its winning unit, i. e., the Best-Matching
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Unit, cooperative because also the neighborhood of neurons around
the BMU have weights set closer to the input sample. This neighbor-
hood crucially relates to the topological space, and not the difference
between vectors in their original dimensionality. Neurons bordering
each other or residing close in 2D space are considered neighbors, re-
gardless of the values of their vector weights. Floreano and Mattiussi
[2008][p. 206] noted that such topological organization could also
be found in the mammalian brain, with neighboring neurons affect-
ing one another. Kohonen [1982] pointed out that this local feedback
mechanism is key to the formation of the resulting maps.

2.1.4 Self-Organizing Maps Applied to Natural Language Processing

Kohonen et al. [1996] applied the algorithm to self-organize USENET
(newsgroup) data in then-large simulations (with a 512-processor par-
allel architecture). A two-step approach was used to organize doc-
uments, so-called USENET posts®. First, each word in the corpus
was represented by a go-dimensional vector and organized in a small
Self-Organizing Map. After the first step, each node represented clus-
ters of words with related meanings. In a second step, a histogram
of cluster memberships for each document was created, i. e., a vector
with the dimensions corresponding to the number of nodes in the first
SOM. By applying the SOM algorithm to these document vectors, a
document map was created. Some heuristics were necessary to make
training feasible, and the number of nodes in the final map was also
expanded with interpolation. (The authors did not offer any detail
on the node expansion step.) The final result was a granular map of
nodes where similar documents were found in the same areas on the
map.

Newsgroups are named according to a set of hierarchical categories,
such as news, weather, and sports with both general groups and sub-
categories, specifying, e. g., location or topic. Thus, it could be verified
that documents from related newsgroups ended up in the same area
on the map.

This methodology was later used to cluster patent data [Kohonen
et al., 2000] and the Encyclopedia Britannica [Lagus et al., 2004].

Hyotyniemi [1996] used Self-Organizing Maps to extract features
for document representation, based on clustering character trigrams,
arguing that this would account better for linguistic features. Eyassu
and Gambéck [2005] used SOMs to classify Amharic news text. Cat-
egorized by experts, each document in the training corpus was as-
sociated with a query. A merged query and document matrix (i.e.,

1 Such posts are similar to emails but intended for many (unlimited) recipients.
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the vector representation of the collection) was used for training the
SOM. While the authors offered little detail on the SOM internals,
such as topology and grid size and how class predictions were made,
Eyassu and Gambaick did report using many Epochs (up to 20,000)
and reported comparable classification accuracies to methods such as
Latent Semantic Indexing.

Tambouratzis et al. [2012a] used Self-Organizing Maps for a special-
ized type of language modeling applied to Word Translation Disam-
biguation. Initially, terms were clustered with a SOM. Subsequently,
the distances between these clusters were used to select word se-
quences using only monolingual resources.

Kaski et al. [1998] compiled a bibliography of SOM usage up to
1998, and Honkela [1997] surveyed the usage of SOMs within Natural
Language Processing.

2.1.5 Self-Organizing Maps as Classification Device

Given a supervised classification task where a model first is fitted to
a training corpus and subsequently tested on a held-out test portion,
Self-Organizing Maps can be applied. Training samples have labels,
which test samples will be attributed. A SOM is first created as de-
scribed in Section 2.1 to train a classifier. After the last Epoch, the
Best-Matching Units of all samples are stored.

For testing (classification), each test sample is first compared to the
SOM matrix, returning its Best-Matching Unit. Because this BMU
does not provide a prediction of a label directly, the BMUs from the
training phase are consulted.

If each node in the Self-Organizing Map is the Best-Matching Unit
of exactly one document with exactly one label, each node could pre-
dict this label for the test sample, and there would always be an avail-
able prediction. However, a given node can either be the BMU of
multiple training documents with multiple labels or none at all. In
the former case, a choice must be made from these labels. A natural
solution is to pick the most frequent, i.e., majority voting. Another
option is to attribute all found labels to the test sample, or all labels
found within the neighborhood of the BMU. When the BMU of the
test sample is void of training samples, labels can be found by search-
ing the neighborhood of the BMU, either by moving on to the next
closest node or gathering all labels within this neighborhood. These
choices depend on how a task is defined, notably if one or more labels
are to be requested for each test sample.

Figure 9 illustrates such a classification process, where two out of
the four nodes in a 2x2 Self-Organizing Map are Best-Matching Units
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Figure 9: Example of clustering with a 2x2 SOM. The yellow labels are from
the training corpus, and the magenta labels are from the test cor-
pus.

for some documents. Yellow and magenta labels represent training
and test samples, respectively.

In the bottom-left square of the grid, the label would be acq (ac-
quisitions), and the single test document with that label would be
classified correctly. In the top-right, however, the label of the node
would be money-fx, and the five documents labeled interest would be
incorrectly classified.

This example is from the Reuters Corpus [Lewis et al., 2004], which
will be revisited in Chapter 7. The task can be defined as either single
or multi-label by using subsets of the collection.
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2.1.6  Evaluation of Classification

Accuracy is the ratio of correct predictions to the total number of pre-
dictions made. In binary classification, however, this measure can be
misleading, as an unbalanced dataset with more positive than nega-
tive (or the opposite) instances can lead to a preference of a potentially
useless classifier that classifies all instances as either positive or nega-
tive.

The measures precision and recall are evaluation metrics that pro-
vide alternative information on classification performance than accu-
racy. The following four outcomes of binary classification express the
evaluation metrics well:

* True Positive (TP) = A positive instance classified as positive.

* False Positive (FP) = A negative instance classified as positive.

¢ True Negative (TN) = A negative instance classified as negative.
¢ False Negative (FN) = A positive instance classified as negative.

Precision is the proportion of correctly predicted positive instances to
the number of predicted positive instances (TP/(TP + FP)). Recall is
the proportion of correctly predicted positive instances to the number
of positive instances (TP/(TP 4 FN)). Accuracy can be expressed as
(TP+TN)/(TP+FP+ TN +FN).

F-score is a combination of precision and recall. Formally, Fg-score
weights precision 3 times as much as recall:

precision - recall
B2 - precision + recall

Fp=(1+p%)- (5)

With (3 set to 1, Fy-score is the harmonic mean of precision and recall:

precision - recall

F=2 —
precision + recall

(6)

Henceforth, F-score is understood as this measure (Equation 6).

In a situation with more classes in a dataset for which instances can
be positive or negative, calculating the macroaverage and microaver-
age over these classes are two ways of averaging the measures men-
tioned above. The microaverage averages over the classes by adding
the TPs, FPs, TNs, and FNs for all categories and computing a sum.

Equation 7 shows microaveraged precision, where c denotes the
number of correctly classified documents (summing TPs for all classes)
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and n (summing TPs and FPs for all classes) the total number of doc-
uments in that class, respectively:

Microaverage = % (7)

This measure is skewed towards larger classes: Consider a classifier
that classifies one large category with go documents 100% correctly,
whereas ten other classes with one document each were all wrong.
That would give a microaverage of 9o%, even though most categories
were completely wrong.

The macroaverage creates a simple average over classes, expressed
formally for precision in Equation 8 where c; and n; are the numbers
of correctly classified documents belonging to class j and the total
number of documents in that class, respectively:

)
i

|Classes]

Macroaverage = (8)

If a classification problem is cast as a one-of classification, i.e.,
when all documents in the test set belong to exactly one class, the
microaveraged F-score will be the same as the accuracy. This because
the number of False Positives and False Negatives will be equal. If a
document is falsely classified to a label, it will be an FP in that class,
but also an FN in the class it correctly belongs to [Manning et al.,
2008].

2.2 CLUSTERING AND CLUSTER ANALYSIS INTRODUCED

Clustering is an important problem in Machine Learning, and key to
unsupervised learning. Consequently, it is a topic in many books on
statistical learning, e. g., Jain and Dubes [1988], Manning and Schiitze
[1999], Hastie et al. [2009], Everitt et al. [2011], and Han et al. [2011];
theses, e. g., van Dongen [2000] and Braeban [2011]; and reviews, e. g,
Xu and Tian [2015]. Loosely, it pertains to the sectioning of objects into
groups that are close to each other. A successful clustering algorithm
establishes natural groups to which the various input objects belong.
These groups should be as similar to each other as possible within
each cluster (internal homogeneity), and as different as possible to
the objects in other clusters (separation). Despite these criteria, a crisp
definition has not been established. Everitt et al. [2011] highlighted
the claim of Bonner [1964] that all that is required for a cluster to be
a cluster is that this term is meaningful to the user. In the following,
a partitioning refers to the specific division of a set of objects into a
number of clusters.
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Van Dongen (2000)* defined cluster analysis as follows:

Cluster analysis is the mathematical study of methods for
recognizing natural groups within a class of entities.

Tracing it back to the 1970s, van Dongen viewed cluster analysis as the
result of cross-fertilization between mathematics and sciences such as
biology, chemistry, medicine, and psychology. The author argued that
mathematically, cluster analysis is the last step of sorting problems,
progressing from classification through discriminant analysis.

Xu and Tian [2015] summed up the clustering process in four steps:

e Feature extraction and selection.

¢ Design of algorithms pertaining to the characteristics of the prob-
lem.

* Result evaluation: evaluate the clustering and judge the validity
of the algorithm.

* Result explanation, give a practical explanation for the result.

Clustering algorithms need a distance score, or conversely a sim-
ilarity score, between two data points to make assessments of these
groups and the objects they contain. If a clustering is good, the intra-
class similarity is high, whereas inter-class similarity is low.

Although there are many ways of establishing such natural groups,
and often not possible to answer what the correct grouping is in ev-
ery case (consider grouping people), there are patterns that a good
algorithm should discover in some datasets. Consequently, an op-
timal clustering of objects largely depends on its intended use. A
multitude of different clustering algorithms with different desiderata
is available. Some categorizations of clustering are discussed in the
next section.

2.3 CATEGORIZATIONS OF CLUSTER ANALYSIS

Because there is no objectively correct clustering for many problems,
the number of clustering algorithms is only limited by combinatorics,
i.e., the theoretical bound on object groupings. Thus, categorizations
of algorithms are helpful to analyze the various approaches.

Jain and Dubes [1988] noted an increased interest in cluster analysis,
outlining the current methods and their mathematical foundations as
well as their relation to application areas. Moreover, they provided a
schematic overview of dichotomies in Pattern Recognition, presented

2 This thesis contains a very interesting chapter on the etymology of key terms.
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B = R

Complete Incomplete
[ ‘ 1
Supervised Unsupervised
learning learning
Parametric Non- Categories | | Categories

Parametric known unkown

“Optimal” | [ “Plugin” Density Geometric | | Mixture Cluster

Bayes decision rules rules estimation rules resolving analysis

theory

Figure 10: Dichotomies in Pattern Recognition. After Jain and Dubes [1988]
(reprinted with permission from Anil Jain).

as a binary tree, shown in Figure 10. According to this figure, un-
supervised learning recognizes patterns when prior information is
incomplete, and as a branch thereof, cluster analysis finds patterns in
data with unknown categories.

Manning and Schiitze [1999] distinguished between clustering meth-
ods first based on their use, either for exploratory data analysis or
generalization, understood as the induction of object bins from data.
On the methodological side, Manning and Schiitze focused on the
structures produced by the clustering algorithms, either as hierarchi-
cal or flat, and whether the clustering is either soft (objects can be
members of several clusters) or hard (objects can only be members of
one cluster).

Han et al. [2011] summarized how clustering approaches are cate-
gorized, shown in Table 2. While the authors explained how distinc-
tions are not crisply separatable, a categorization at this granularity
was found meaningful. Other categorizations also exist, e. g., Braeban
[2011] (from a discussion of evolutionary approaches to clustering).
The K-means algorithm is an example of a partitioning method, and
hierarchical agglomerative clustering algorithms are, as the name im-
plies, hierarchical.

2.4 SOME CLUSTERING ALGORITHMS

A comprehensive presentation of clustering algorithms, of which there
are many, e. g., [van Dongen, 2000, Lancichinetti and Fortunato, 2009],
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Method Description

Organizing objects into a set of several
Partitioning exclusive clusters.

Organize objects into a hierarchy or tree,
Hierarchical  either agglomerative or divisive.

Using connectivity and density functions,
growing the clusters as long as the density
is within some threshold. Density refers to

Density-based . L
the number of objects or data points in the
neighborhood of a given radius.
Quantizing data objects into a structure of
Grid-based grid cells and doing the clustering operations

on that.

Table 2: Different clustering approaches according to Han et al. [2011].

is beyond the scope of this thesis. Since, however, there is a relation
between classification and clustering, i.e., that elements within the
same class can be said to form a cluster, a selection of approaches will
be discussed.

As shown above, the Self-Organizing Map algorithm is also applica-
ble to clustering, as is the Expectation-Maximization (EM) algorithm
[Dempster et al., 1977], e.g., to estimate the parameters of Gaussian
Mixture Models. The EM algorithm loops over expectation and max-
imization steps, calculating expected values and maximizing parame-
ters on those values until convergence.

In the remainder of this section, hierarchical agglomerative clus-
tering will be presented, as well as the (also partitioning) K-means
algorithm. The Self-Organizing Map can be seen as a constrained ver-
sion of the K-means algorithm, which eventually will stabilize at one
of its local optima [Hastie et al., 2009].

2.4.1 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering algorithms, which were used
for the clustering stage in the experiments in Part II, successively
merge clusters from the bottom up according to some distance metric.
In contrast, a top-down approach successively splits clusters.

Two elements are necessary for merging clusters; (i) a similarity
metric to determine which clusters to merge and (ii) a method to
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select between which elements in the clusters to calculate this similar-
ity. Distance metrics, such as Euclidean or Chebyshev distances are
used for calculating a distance matrix, i.e., a matrix containing the
distances between nodes. In a Self-Organizing Map, the grid of nodes
is normally in 2D, while the vectors that represent them can be of
any dimensionality (subject to hardware constraints). The intra-node
distances are represented in a R™" matrix. Based on this matrix, a
linkage matrix can be computed, consisting of the choice of points
inside clusters to which the distance metric is applied.

A linkage matrix is a representation of the links between the nodes.
It is an (n-1)x4-matrix for n data points, with the first two columns be-
ing the IDs of the clusters to be merged, the third the distance between
them, and the fourth the number of observations in the new clus-
ter. The matrix can also be computed from raw observations directly,
which is necessary for some methods, e.g., centroid, Ward’s method,
and median-based clustering. Using raw observations is more expen-
sive since the intermediate distance matrix provides distance data that
otherwise must be recalculated. In the bottom-up direction, nodes
are merged with their closest neighbors, subsequently updating intra-
cluster distances, such that clusters are formed, which, in turn, can be
merged until all nodes are contained in one cluster at the top. Finally,
the clustering height must be decided, which determines the number
of resulting clusters.

2.4.2  Clustering Methods

The clustering method determines how the distance between two clus-
ters is measured, mainly a choice of what points to compare distances
between, thereby establishing their degree of similarity. The meth-
ods used in this thesis are single linkage, complete linkage, average
linkage, weighted linkage, centroid, median, and Ward’s clustering.
Figure 11 shows first three methods graphically, and Figure 12 sum-
marizes the definitions of all methods mentioned above.

For the single linkage method, the distance between the clusters is
determined as the distance between the two points in the two clusters
that are closest. At the other extreme, the complete linkage method
uses the maximum distance between two points in the clusters. The
average method uses the distances between all points. The weighted
linkage method takes the children of clusters into account, using the
average of the distance between the two clusters that formed clusters
A and B, as the distance between them [Han, 2005, Manning et al.,
2008].

Ward’s method, also known as the minimum variance method,
minimizes the increase in within-cluster variance after merging. The
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(a) Single Linkage; distance measured between the
closest samples in candidate clusters.

(b) Complete Linkage; distance measured between the
farthest samples in candidate clusters.

(c) Average Linkage; distance measured between all
samples in candidate clusters.

Figure 11: Illustrations of three linkage methods.

merging cost is defined as the increase of the within-cluster variance
as clusters A and B are merged and symbolized with A. The merging
cost can be computed as the within-cluster squared difference of the
merged cluster subtracted by the within-cluster sums of squares of
clusters A and B. ﬁj is the center of cluster j.
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As follows from Equation 9, the increase of within-cluster variance
of the merged clusters A and B is the variance of the merged cluster
subtracted by the variances of the two parts of which it consists. This
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¢ single linkage (min) clustering;:
d(A,B) =min{d(a,b):a € A, be B}

¢ complete linkage (max) clustering:
d(A,B) =max{d(a,b):ac A, be B}

¢ average linkage clustering
(Unweighted Pair-Group Method Using Arithmetic Averages):

d(A,B) = \ATW 2 aea 2_bep dla, b).

* weighted linkage
(Weighted Pair-Group Method Using Arithmetic Averages):

d(A,B) = WEBIATE) (A s formed by S and T)

® centroid clustering
(Unweighted Pair-Group Method Using Centroids):
The distance between two clusters is defined as the distance
between their centroids ||cs — c¢|| where ¢s and ci are the cen-
troids of the two clusters, calculated by the arithmetic mean,

: 1
ie,co =10 (eoX

¢ median clustering
(Weighted Pair-Group Method Using Centroids):
the weighted center of mass between the two clusters is the dis-
tance d(A, B) = [|Xa —Xgl| between their weighted centroids. X;. If

A was formed by clusters p and q, then X is defined recursively
Xq+¥q
as ~5—1
2

e Ward’s minimum variance method [Ward, 1963]:
The method minimizes the total within-cluster variance. At each
step, it finds the two clusters with the minimum within-cluster
variance after merging.

Figure 12: Summary of hierarchical clustering methods. d(ab) is the dis-
tance metric between two nodes and d(A,B) is the distance be-
tween the corresponding clusters. The names in parentheses are
alternative names for the methods.
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calculation can be reduced to the expression in the final line, i.e.,
expressed via the centroids of clusters A and B.

2.4.3 Determining the Number of Clusters

With an agglomerative clustering algorithm, data points are recur-
sively merged into clusters until all points are contained within one.
While the different methods above perform the actual merging of
the clusters through the establishment of their linkages, the result-
ing number of clusters depends on the height limit at which point
branches are cut. Setting the height to the very top result in one clus-
ter only. In contrast, setting it to the very bottom, i.e., before any
merging is done, results in as many clusters as data points.

Since the optimal number of clusters depends on the task for which
the clusters are used, there is no analytical way of finding this num-
ber. Methods for approximating this number include the knee (elbow)
method, which finds the point with the maximum curvature on the
line of within-cluster distances, information theoretic methods that
quantify the fit of cluster members to their centroids and optimize
the number of clusters on this basis, and experimental exploration
according to some evaluation criterion [Salvador and Chan, 2004].

A dendrogram3 shows how the agglomerative clustering algorithm
successively merges all objects to clusters until only one cluster on
top contains all objects. It is created from the linkages between nodes
in the clusters as they are successively merged, i.e., by which nodes
connect to each other. Figure 13 shows a dendrogram from clustering
a Self-Organizing Map.

A visual interpretation of the dendrogram shows that a vertical
bar can be placed anywhere in the figure to determine the number
of clusters, cutting off the clusters at some height, illustrated with
horizontal lines. In the extremes of top and bottom, the clustering
process would add nothing, and the question is where between the
two to place the vertical bar.

2.4.4 The K-means Algorithm

The K-means algorithm is an unsupervised clustering algorithm which
requires a pre-set number of clusters (also referenced in Chapter 4)
with appealing qualities, such as O(n) time complexity and concep-
tual simplicity. This algorithm was categorized as flat by Manning
and Schiitze [1999] and as a partitioning method by Han et al. [2011].
After initializing k means, each data point is assigned to its closest

3 From Greek déndron (“tree”).
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height 1: 2 clusters

height 2: 5 clusters

Figure 13: Dendrogram of hierarchical clustering of a Self-Organizing Map.
Corpus: enTenTen, grid size: 64x64, clustering method: Ward’s

method.
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(a) Nodes attaching to random means. (b) New means calculated based on mem-
bers.

Figure 14: Sample iteration of the K-means algorithm. X and O represent the
samples and the K means, respectively.
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mean, after which new, true means are computed, and the process is
repeated until the stopping criterion is met, such as a certain mini-
mum of change in the means. Figure 14 illustrates one such iteration
[Manning and Schiitze, 1999].

2.5 SELF-ORGANIZING MAPS AND CLUSTERING

jl Trade ‘

—— Money, foreign exchange

F
\{ Coffee ‘

—— Acquisitions
N\{ Crude |

] Earnings

Figure 15: A Self-Organizing Map of the Reuters Corpus. Color shaded ar-
eas contain documents with the largely the same labels. A repeat
of Figure 4 (example SOM from Reuters Corpus).

Figure 15 (repeat of Figure 4) visualizes each node in the grid as
colors, annotated with labels indicating the classes of the documents
belonging to the designated areas (after manual inspection). These
colors are created by first reducing the vectors representing each node
to four dimensions using Principal Component Analysis (PCA) [Jol-
liffe, 1986] (a method based on Singular Value Decomposition) and
then rendering these vectors as colors. If two feature vectors are close
to each other in the high-dimensional space, they will also be close
to each other in the topological space of the Self-Organizing Map.
Hence, the visualization of the SOM shows the underlying structure
in the training data. However, it is the feature vectors in each node
that are displayed, not the documents themselves.

The Best-Matching Units after the last training Epoch are stored,
e.g., for labeling purposes (see Section 2.1.5) or dumping documents
contained in a cluster. In the Self-Organizing Map displayed in Fig-
ure 15, there were 4096 nodes. While each node could be seen as a
separate cluster, this number of clusters is high and not necessarily
useful for an application. Thus, when the number of nodes is higher
than the desired amount of clusters, node vectors must be grouped.
The aim is to identify the borders of the areas discernible by the color
shadings in Figure 15. In effect, that is the same as clustering the
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SOM matrix after training. After clustering, areas in the SOM become
concrete clusters, which group objects (documents in this example)
with these node vectors as BMUs. Chapter 8 presents a method of
clustering SOMs hierarchically (see Section 2.4.1) with experimental
evaluation.

2.6 EVALUATION OF CLUSTERING

Evaluation of clustering splits in two directions; (i) intrinsic evalua-
tion (according to the mathematical properties of relations between
objects) or (ii) extrinsic evaluation (according to the performance on
a task for which the clustering was done). Examples of extrinsic and
intrinsic evaluation metrics will be presented in the remainder of this
section. The list is not intended to be exhaustive, numerous other
measures based on Information Theory (to which Section 3.2.5 re-
turns) and Information Retrieval (i.e., obtaining relevant resources
to an information need from a larger source) can be found. Rendén
et al. [2011] conducted a study of the relationship between extrinsic
and intrinsic metrics.

2.6.1 Extrinsic Evaluation of Clustering

In place of human evaluation, labeled data is necessary for automated
extrinsic evaluation. The appropriate kind of extrinsic evaluation is
heavily task-dependent, such as the automated metrics for Machine
Translation that will be used for the end-to-end evaluation of the ex-
periments in Part II, of which clustering is an integral part. With
a labeled corpus, several automated metrics can also be applied to
the clustering itself by measuring how well the proposed clustering
matches the gold standard reference clusterings.

2.6.1.1 Purity

When a set of objects is labeled and partitioned into some number of
clusters, purity is a measure of the proportion of data points correctly
put into the same cluster, according to some ground truth t. Poor
clusterings have purities close to o, whereas perfect clusterings have
purities of 1.

Which label in the ground truth that occurred most frequently in
a cluster (hence, the max) is determined for each cluster in a pro-
posed partitioning. Ideally, each cluster would contain only elements
from one label in the ground truth (being pure), but often elements
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also from other ground truth labels appear in a cluster. Equation 10
expresses this as follows:

K
Purity = % Z mjax lcj Nt (10)
i=1
where ¢y is a cluster, tj a true classification (i.e., a group of objects
with the same label). N is the number of data points, and K is the
number of clusters.

The purity metric is not affected by which objects that are assigned
to respective clusters, but expresses how pure clusters are, i.e., to
what degree same-label objects are found therein. The highest purity
is attained by mapping true clusters (t) to classifications (c) with the
highest number of objects, as any other mapping would reduce the nu-
merator in Equation 10, which explains the max operation. It should
be noted that having many clusters is not penalized. Hence, putting
each data point in a separate cluster would resulting in a purity of 1.

2.6.1.2 Rand Index

The Rand Index is based on typical Information Retrieval performance
metrics (see Section 2.1.6) on the combinations of pairs of clustered
objects based on the status of these pairs, viz. True Positive, True
Negative, False Positive or False Negative. Of (z‘) pairings in the set
of objects, the status of each pair is assigned as follows:

* True Positive (TP) = Two similar objects assigned to the same
cluster.

¢ False Positive (FP) = Two dissimilar objects assigned to the same
cluster.

¢ True Negative (TN) = Two dissimilar objects assigned to differ-
ent clusters.

¢ False Negative (FN) = Two similar objects assigned to different
clusters.

From these statistics, the Rand Index is calculated similarly to accu-
racy, i.e.:
TP+ TN

RandIndex = 55N TN (11)

2.6.2 Intrinsic Evaluation of Clustering

Intrinsic evaluation metrics rely on the properties of the clusters, with-
out regard to their final application. These metrics can indicate how
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well-suited a partitioning of a set of objects is, but a good score does
not guarantee the correspondingly good performance of an applica-
tion. Three prominent intrinsic evaluation metrics will be described
in the remainder of this section. More metrics can be found in the
above-cited works on cluster analysis and also, e. g., in Legény et al.
[2006] and Baarsch and Celebi [2012].

2.6.2.1 The Davies-Bouldin Index

The Davies-Bouldin index [Davies and Bouldin, 1979] measures the
intra-cluster compactness relative to the inter-cluster separation. For-
mally expressed as:
1 X
DB = — max (Dj ; 12
k2 (Py) (2)
i=1
K is the number of clusters and Dy is the ratio of the within-cluster
distances of clusters i and j to the distance between them. D;; is
derived as follows:
d; + d;
Dij=—" 1
WS T (13)
dy is the average distance between each object in the cluster and its

centroid, and d;; the Euclidean distance between the centroids. A
lower Davies-Bouldin index value represents a better clustering.

2.6.2.2 The Dunn Index

The Dunn Index [Dunn, 1973] measures the ratio between the small-
est inter-cluster distance and the largest intra-cluster distance, respec-
tively. Equation 14 expresses this formally as:

DI = min { min { dinter(Ci, C;) }} (14)
1<i<k | 159<Ki% | maxi<i<k dintra (Ci)

The numerator represents the highest inter-cluster distance after mini-
mization, and the denominator represents the cluster with the largest
intra-cluster distance after maximization. This index can be used with
any distance function, e. g., the type of linkage to determine the inter-
and intracluster distances, respectively. A higher Dunn index value
indicates a better clustering.

2.6.2.3 The Silhouette Coefficient

The Silhouette Coefficient (SC) is a measure of how well the clusters
are separated and how compact they are. The number of clusters
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could also be determined using this score. The SC is calculated by
first taking the average distance between each object belonging to a
cluster and all other objects in the cluster to which this object belongs,
and then the minimum average distance from the object to all other
clusters to which it does not belong.

Formally#, if an object o € C;i(1 < i < K), then

Z 'eC; /d(0,0/)
a(o) = =R (15)
1

The term a(o) is an indication of compactness. Thus, a lower value
indicates a more compact cluster, i.e., small distances between the
objects inside a cluster. and

Zo'ecj d(o,0') }

b(o) = min { Cl
j

= (16)
Cj1<<K il

b(o) describes the separation from other clusters. The larger it is, the
more separated the cluster is from the others. Finally, the Silhouette
Coefficient is determined by

s(0) = b(o) — a(o)

~ max{a(o),b(0)} (17)

The value of the Silhouette Coefficient ranges from —1 to 1. When
the SC reaches 1, the clusters are compact (low a(o)) and far away
from the other clusters (high b(0)). A higher number indicates a better
clustering.

Petrovi¢ [2006] compared the Davies-Bouldin measure to the Sil-
houette Coefficient on an intrusion detection task and found the latter
to correspond better to performance on that task.

4 Definitions from [Han, 2005, pp 489-490].
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This second background chapter will further introduce Machine Trans-
lation by discussing major challenges, components, and methodolo-
gies. First, Section 3.1 outlines the main approaches to Machine Trans-
lation. Next, Section 3.2 takes up language modeling because of its
importance for the experiments in Part II before Section 3.3 discusses
the role of Artificial Neural Networks in MT. Finally, Section 3.4 ad-
dresses evaluation.

The linguist Garvin [1956] defined Machine Translation as using
logical machines to perform translation, understood as:

“The transference of meaning from one patterned set of
symbols occurring in a given culture ... into another set of
patterned symbols in another culture.”

Garvin divided translation into two processes; (i) the selection of the
appropriate translation unit and (ii) the arrangement operations en-
suring that the translations of these units appear in the output in an
order such that the text as a whole is correctly translated.

Commonly thought of as the use of computers in translating from one
natural language to another, unassisted from input to output, Machine
Translation is also understood as any use of computers along this path
[Maegaard, 1999]. If defined as any use of technology in translation
such as electronic dictionaries, most forms of translation would fall
in this category. This definition would include Computer-Assisted
Translation (CAT), translation aided by tools such as dictionaries, the-
sauri, and spell checkers [Dunne, 2012].

Other ways to divide the translation task between automated and
manual systems involve pre- or post-processing of data. Because it
requires less training than translation proper, post-editing by humans
[Carl et al., 2015] is an alternative for systems that can produce reason-
able, but not publishable quality. Systems like Unbabel [Graga, 2014]
use crowdsourcing to leverage post-editing to ensure high-quality Ma-
chine Translation output.

An in-production example of Machine Translation is La Vanguardia,
a newspaper that credits® MT for being able to publish in both Span-
ish and Catalan simultaneously [Martin and Serra, 2014]. However,

http://www.lucysoftware.com/english/news-events/
143-1la-vanguardia-5-years-anniversary-of-catalan-edition.html
(Last visited: March 27, 2019.)
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this system does require post-editing by a human, which means the
output is not published verbatim, and the creators are clear that the
output is not good enough for direct publication. Nonetheless, the
newspaper considers the dual-language system as a product of MT.

While the details of the methodologies used in the corporate world
often remain commercial secrets, fully automated translation in pro-
duction is mostly associated with recommender websites like Trip-
advisor* whose Machine Translation output is published to the user
without post-editing3 or the shared economy giant Airbnb#4, which
machine translates customer reviews.

Henceforth, Machine Translation is understood as fully automated
unless otherwise stated, i.e., without human intervention until the
result is evaluated.

3.1 MACHINE TRANSLATION APPROACHES

With precursors and roots dating further back, Machine Translation
(MT) using computers as we know them today, surfaced in the wake
of World War II [Hutchins, 2010]. Since then, methodologies have pro-
gressed both regarding computational resources and linguistic analy-
sis.

Coarsely typologized, Machine Translation systems are either rule-
based (RBMT) or statistical (SMT), rationalist and empiricist para-
digms, respectively. Hybrids slide between these distinct approaches.
Some division of labor between them is widely accepted as necessary.
The etymological roots of the word translate come from Latin and Old
French, and roughly it means to carry across. Abstractly, what sep-
arates RBMT and SMT is how the meaning content is carried across,
either using hand-crafted linguistic rules or statistically inferred rela-
tions based on data analysis.

Since 2016, Neural Machine Translation (NMT) is established as
the state-of-the-art on many Machine Translation tasks. As Statistical
Machine Translation, it is a data-driven approach that learns rules
from processing data. However, using Artificial Neural Networks
to learn these relations deviates significantly from SMT in method-
ological terms, such that NMT represents a salient shift and a new
approach.

Henceforth, a translation of a language pair is referred to as trans-
lating Source Language (SL) text into a Target Language (TL) repre-
sentation, i.e., Source and Target Languages refer to what is trans-
lated from and into, respectively.

2 http://www.tripadvisor.com/ (Last visited: March 27, 2019.)
3 http://www.promt.com/media/news/44383/ (Last visited: March 27, 2019.)
4 http://www.airbnb.com (Last visited: March 27, 2019.)
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3.1.1 Rule-Based Machine Translation

Rule-Based Machine Translation dominated the early decades of Ma-
chine Translation. Hutchins [2005] argued that the Georgetown Exper-
iment of 1954 marked the beginning of MT as a research field worthy
of funding. In this experiment, a system comprised of a vocabulary
of 250 words and six grammar rules was able to produce translations
of text in the chemistry domain. Some of the sentences looked like
general statements. Despite the limited scope, the press reported the
program as an “electric brain,” and the public reception of the pro-
gram showed most interest for automatic translation of the general-
sounding sentences.

The coverage of rule-based systems improved with time, both re-
garding linguistic phenomena accounted for by grammatical rules
and semantic entities covered by increased vocabulary. The Canadian
TAUM-METEO system [Thouin, 1982], which translated weather fore-
cast between the two official languages (English and French) and the
Systran system used at the European Commission are prominent use
cases. In recent years, the open-source Apertium’ framework [Forcada
et al., 2011] has been widely used to create Rule-Based Machine Trans-
lation systems, offering translation between many language pairs.

Figure 16 shows the Machine Translation triangle, which explains
the difference between different types of Rule-Based Machine Trans-
lation [Vauquois, 1976]. This triangle appears in many forms, and the
differences mostly owe to the vertical granularity, as intermediate lev-
els of analysis are not always made explicit, e. g., between word forms
and tokens. Figure 16 shows five levels of analysis. From the bottom

up:
1. TOKEN — here understood as the raw input to the system, such

as inflected forms.

2. LEMMA — the canonical form of words that can be looked up in
traditional dictionaries.

3. SYNTAX — analyzed (parsed) text, which is attributed with syn-
tactic information.

4. SEMANTIC — analyzed (parsed) text, which attributed with se-
mantic information.

5. INTERLINGUA — text is converted to a representation shared be-
tween two or more languages.

5 http://www.apertium.org (Last visited: March 27, 2019.)
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~ direct

direct

Langudge gap

Figure 16: Machine Translation Triangle. Source Language text is analyzed
at various depth levels, and translated into the Target Language
by generating text at levels closer to surface form. The green ar-
rows show the types of transfer rules required to translate at each
level.
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Translation is done by first analyzing the Source Language input (left
side of the figure), then looking up the representation of this analysis
in translation rule tables, and finally generating the Target Language
output with corresponding grammars in that language (right side
of the figure). Thus, the transfer rules on different levels work like
bridges, over which the meaning can be carried across from Source to
Target Language. The triangular shape captures how the distance be-
tween the languages decreases as the levels of representation deepen,
illustrated with deeper shades of red.

Rule-Based Machine Translation has the advantage that complex
linguistic phenomena such as anaphora resolution can be addressed
directly in the analysis phase. Such phenomena can be idiosyncratic
to each language pair, and difficult to capture by data-driven method-
ologies, e. g., owing to data sparsity. Conversely, complex rules have
challenges with robustness and coverage. Furthermore, the mainte-
nance of such rules is resource-demanding, as adding all new rules
and exceptions needed would be an endless task [Attnés et al., 2005].

3.1.2  Example-Based Machine Translation

Example-Based Machine Translation (EBMT) systems originated in
Japan in the early 1980s. By reusing examples in the form of al-
ready translated text, such examples can improve Machine Transla-
tion systems, similar to how translation memories offer help to hu-
man translators [Somers, 2003, Reinke, 2013]. EBMT is separated into
three phases, viz.: matching, alignment, and recombination. First,
an input sentence is matched to the database of translation examples.
Next, the portions (as a full match is unlikely) that are matches be-
tween the sentences are identified. Finally, these relevant portions are
recombined. Thus, EBMT has similarities to Case-Based Reasoning
[Aamodt and Plaza, 1994], a data-driven Al method that learns from
examples for problem-solving.

3.1.3 Statistical Machine Translation

Statistical Machine Translation is a data-driven method for inferring
relations between source and target languages. The so-called IBM
models, whose implementations were published in the early 1990s
[Brown et al., 1990, 1993] were especially influential. Data-driven
approaches have established themselves as the state-of-the-art, and
a myriad of different approaches have emerged. Surveys by Lopez
[2008] and Koehn [2010] offer comprehensive overviews. A “survey
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wiki,” i.e., a continuously updated online survey is also maintained
at http://statmt.org/su rvey/é.

Statistical methods estimate parameters from occurrences of events
in parallel corpora. Parallel corpora consist of sentence-aligned data
structures, which means that the algorithms are processing sentences
that are translations of each other to infer statistical relations between
the languages.

By gathering statistics from these corpora, a model can be queried
for the probability of a Target Language string being a translation of
the Source Language input. Thus, translation becomes a search for
the TL string with the highest probability of being its translation.

argmax P(T|S) =? (18)
T

Equation 18 expresses the conditional probability of seeing T given
S. T and S and represent the Target and Source Language strings,
respectively. The modeling of such translation probabilities will be
explained below.

3.1.3.1 Statistical Modeling

Counting the possible translations of each Source Language sentence
in a given parallel corpus would create a valid probability mass func-
tion since all members of the sample space have above-zero probabil-
ities, and the probability of the samples would sum to 1.

However, such a model would only be able to translate the exact
sentences appearing in a parallel corpus. It is necessary to model
translation probabilities compositionally to extrapolate the statistical
relations to unseen data successfully. Neither the set of source lan-
guage sentences nor the set of their translations is finite. Consider
how easy it is to construct a perfectly valid, syntactically and seman-
tically, English sentence yielding zero Internet search results, despite
the size of the indexed web.

Because of innumerability, there is no such thing as a probability
of a given string’s existence in or translation into a natural language.
Nonetheless, the coverage of models estimating it will increase as the
available training data increases. Still, to be operational, statistical
models of translation must assign some probability to a given string
and its translation, also if it contains elements not seen in training.
Concretely, Equation 18 is decomposed into many other equations

6 Last visited: March 27, 2019.
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that represent phenomena in the corpus, which provide a translation

in combination.
Translation model
/ Language model

P(SIT) * P(T) (19)
P(TIS) = ——
P8y
Constant dur@earch

Equation 19 shows the first step in decomposing the argument of
the argmax function in Equation 18, which is its Bayesian inversion.
The search for the best translation is done by querying a model of how
likely the Target Language string is, given the Source Language input
multiplied by the probability of the TL string itself. When searching,
the denominator P(S) can be disregarded, as the SL input — whose
translation is being searched for — is constant during the search.

The probability mass function P(S|T) is referred to as the Transla-
tion Model and P(T) as the Language Model. The former models the
probability of a Source Language string being the translation of a Tar-
get Language string — a model of translation — whereas the latter
models the probability of seeing that particular string in the TL — a
model of language.

While Equation 19 retains equality with Equation 18, these prob-
ability mass functions must be decomposed further such that they
can be queried for probabilities of individual words and aggregated.
Thus, the equation must be modified to provide translations for en-
tire Source Language strings from its parts, such that translations for
unseen events can be provided.

The IBM models decomposed the formula for the Translation Model
with transformations that did not maintain equivalence, but resulted
in a model that looks up translation probabilities of single words and
combines them. As a result of these transformations, the Transla-
tion Model formula was transformed into a combination of generative
models of separate aspects of translation.

IBM models 1 to 5 introduced concepts such as alignment, align-
ment probabilities, fertility, and deficiency. Fertility pertains to the
probability of a Source Language word becoming translated into mul-
tiple words in the Target Language. Deficiency is a less intuitive term
relating to the wasted probability mass on impossible alignment prob-
abilities. Alignments, having a different meaning than in Example-
Based Machine Translation, will be explained in the next subsection.
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spiser blader sper
are eating leaves ruby asks

(a) Direction: Norwegian-English.

eating leaves ruby asks
spiser blader sper

(b) Direction: English-Norwegian.

Figure 17: Example word alignments between sentences in Example (101)
(alignments provided by author). Punctuation removed.

3.1.3.2 Alignment

(101)  Spiser du blader? sper Ruby.
eat  you leaves? asks Ruby
Are you eating leaves? Ruby asks.

Consider Example (101)7, a Norwegian sentence translated into En-
glish. The gloss outlines some syntactic differences between the lan-
guages, such as differences in word order (last two words), and the
use of an auxiliary verb in the English question.

Figure 17 shows an example of aligning the English sentence to
the Norwegian original. Each Target Language word aligns to a max-
imum of one Source Language word, which is not required in the
opposite direction. The alignment between the sentences represents
this mapping. While the words are not spatially aligned in the figure
as the gloss in Example (101) is, the alignment rather models what
words are translations of each other. This way, translation probabili-
ties of individual words based on their alignment can be modeled and
used in a generative model. Translation Models and alignment prob-
abilities are estimated with the Expectation-Maximization algorithm
in the IBM models, from parallel corpora.

Determining the correct alignment of a sentence pair is difficult,
also for humans. Valid arguments for different alignments can often
be made, much like how multiple translations can be equally correct.
Since the Target Language token spiser can only be aligned to one
Source Language word, a decision must be made on aligning either

7 From Lars Saabye Christensen’s novel Herman.
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are or eating to the Norwegian word spiser, which is a translation of
both in Figure 17b.

Reports on the effect of alignment on overall Statistical Machine
Translation performance vary. Lambert et al. [2012] studied different
alignment characteristics (such as precision, recall, and the number of
links) and concluded that the impact of these characteristics depends
on the particular Machine Translation system and the training corpus.

Alignment may also refer to sentence alignment, i.e., which sen-
tences that are translations of each other in a parallel corpus. Hence-
forth, alignment refers to word alignment unless otherwise stated.

3.1.3.3 Phrase-Based Statistical Modeling

Since relying on modeling translations of whole sentences is infeasible
due to sparsity, it is necessary to model translation compositionally
for a model to be useful. However, reducing translation to a multi-
plication of word translations has caveats. The problems posed by
alignment above show that reducing translation to a translation of in-
dividual words is problematic. Often, the units of equivalence are se-
quences of words between languages. When phrase-based Statistical
Machine Translation was introduced [Koehn et al., 2003], it achieved
significant performance improvements over word-based models. The
phrase-based models reduce the complexity of the more elaborate
generative models by reducing the Translation Model to translation
probabilities between phrases and their reordering.

Extraction of these phrases from parallel data represents an increase
in complexity, however. Koehn et al. [2003] did this by computing
alignments in both directions and subsequently extracting phrases
from these alignments based on their commonalities. First, these
alignments are expanded according to a heuristic somewhere between
the intersection (high precision) and the union (high recall) of the two
alignment sets. From these expanded alignments, consistent phrases
are extracted, i. e., phrases that are exclusively aligned with each other,
and no words outside [Och et al., 1999].

Figure 18 shows a matrix of both the intersection and the union of
the two alignments presented in Figure 17, handmade for illustration
purposes. Phrase pairs such as Example (102) are extracted from this
matrices, such that their frequencies can be computed.

(102)  spiser du
are you eating

The green ellipse in Figure 18 marks the phrase, whereby all words
in either language are aligned to words in the same phrase. On the
other hand, the red ellipse encloses the phrase pair “are you/spiser
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spiser _du_blader spor ruby ------------

are / /: Inconsistent phrase |

you \\ / //

eating

leaves

ruby

asks

Figure 18: Alignment example for phrase extraction. Intersections of align-
ments in solid pattern, union in checkered.

du”, which is inconsistent, as the word spiser is aligned to “eating”,
outside of the phrase pair. Other methods for phrase extraction in-
clude syntax-based (dependencies and treebanks) [Srivastava et al.,
2009] or information theoretic measures, such as multivariate mutual
information [Nasri et al., 2013].

I It
[T o(siE e d(start; —endi g — )M [ [ pemltilts -+t (20)

i=1 i=1

In its basic form, the search for the best translation finds the Target
Language phrase that maximizes Equation 20, where s; and {; denote
source and target language phrases, ¢(silt;) is the phrase translation
probability, d the reordering model, and prp the language model
probability. I and [t| denote the number of phrases and the length
of the Target Language string, respectively. If two phrases are trans-
lated in succession, the current phrase, start; equals the end of the
previous phrase, endi_j + 1. Thus, the reordering model applies a
reordering cost to differences from this state if the starting position is
elsewhere. A feat of the phrase-based models is the log-linear formu-
lation where the score of a given translation candidate is represented
as a combination of features with weights Ay, Aq, and App, which can
be extended to more features.
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channel directjg,
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Translation
Language Model
Model p(c)) p(nle)

are you . sor d
eating Source Channel Receiver spiser du
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Figure 19: Noisy channel interpretation of Machine Translation. Noisy chan-
nel direction: left to right. Translation direction: right to left.

3.1.3.4 Decoding of SMT Models

Section 1.1.3 introduced decoding as a search for the optimal Target
Language string given the input to the statistical models. The term
for what really is a search is attributed to Weaver [1947]:

“This is really written in English, but it has been coded in
some strange symbols. I will now proceed to decode.”

Shannon’s theorem [Shannon, 1948] models how signals are trans-
mitted from a source, through a noisy channel, are received at the
other end. These received signals can be decoded, such their original
state is recovered. The noisy channel model is used as an analogy for
many NLP problems such as Automatic Speech Recognition (ASR),
Optical Character Recognition (OCR), as well as Statistical Machine
Translation.

Figure 19 shows the noisy channel model applied to Machine Trans-
lation. The source signal (here: an English string) is passed through
the noisy channel, distorting the signals and dispatching them to the
receiver (here: a Norwegian string). By modeling the noisy channel as
a Translation Model and the source signal as a Language Model, it is
possible to recover the original string that was sent through this noisy
channel. Hence, the model assumes that the received (Norwegian) sig-
nal was intended to be an English string and searches the models for
the optimal English string given the received signal. This is consistent
with the formulation in Equation 19 if English is the Target and Nor-
wegian is the Source Language. The first letters of the languages are
used to describe the models in the figure to avoid confusion between
the source of the noisy channel and the SL of translation.

53



54

MACHINE TRANSLATION

Going backward through the noisy channel means searching for the
Target Language string that has the highest probability of the Transla-
tion Model and Language Model combined. Because TL word-order
can change for word-based models, the search space is exponential.
Knight [1999] proved that decoding is NP-complete.

Log-linear models have the general form:

exp (Z Aifi(X)> (21)

where A contains the weights and f; are real-valued feature functions
on the variables X. The combination of weights listed in Equation 20
generalizes to a log-linear model combining feature functions (cor-
responding to the log of what is being raised to an exponent) with
weights (the exponents). With a log-linear model, decoders can inte-
grate knowledge external to the models, such as preliminary evalu-
ation scores, auxiliary Language Models, or other sources of knowl-
edge, as long as they produce real-valued output.

Costa-Jussa and Farrts [2014] surveyed the integration of linguis-
tic knowledge into SMT models, describing feature functions as one
way of achieving this (in addition to, e. g., to pre- and post-processing
and syntax-based models). Feature weights can be tuned in a phase
between learning the featured models and decoding using various
strategies utilizing a development corpus and error metrics to opti-
mize weights [Cherry and Foster, 2012]. (Neubig and Watanabe [2016]
surveyed optimization methods for SMT systems and concluded that
good evaluation metrics, stable optimization of millions of features,
and better utilization of non-linear scoring methods remained open
questions.)

Decoders such as the Moses decoder [Hoang and Koehn, 2008], the
decoder of the Joshua Machine Translation System [Post et al., 2015],
and the cdec decoder [Dyer et al., 2010] offer well-known search and
pruning strategies, such as A* search, greedy hill climbing, and stack
decoding, as well as histogram and cube pruning.

Data structures representing partial translations, hypotheses are
created by ticking off Source Language words in any order, creat-
ing the Target Language string left-to-right. Heafield et al. [2014] at-
tained performance gains with comparable output quality by sorting
hypotheses into equivalence classes, avoiding unnecessary queries to
the Language Model by exploiting shared words between hypotheses
that only differ in SL coverage.
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Figure 20: Example (102) annotated with syntactic levels.

3.1.3.5 Hierarchical Phrases / Synchronous Grammars

Motivated by leveraging the strengths of the phrase-based approach
in reordering words to reordering of clauses, Chiang [2007] presented
a framework for mapping hierarchical phrases (phrases containing
other phrases) to each other. Formally, the methods learn synchronous
context-free grammars, where syntax trees of translation pairs form
the basis for inducing rules for translation between Source and Tar-
get Languages. Weighted rules are learned from parallel corpora and
applied to translation as the models are decoded.

Figure 20 shows Example (102) amended with trees for both lan-
guages. The example shows how creating a synchronous rule such as
S =< spiser, Xy, are, X, eating > can deal with the reordering and
use of an auxiliary verb in this phrase. Furthermore, it can account for
similar syntactic constructions, and not just that particular realization
of the phrase.

While syntactically enhanced methods are competitive with, and
also have outperformed phrase-based translation [Zollmann et al,,
2008, Williams et al., 2015] on some translation tasks, they are still
burdened with the complexity of learning rules [Cohn et al., 2010]
and decoding [Sennrich, 2014].

The hierarchical phrase-based systems do not use syntactic trees
with linguistic annotations as they are known from treebanks such as
the Penn Treebank [Marcus et al., 1994], or indeed, classical linguistics.
Syntax has also been used for Statistical Machine Translation, such as
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by using linguistic syntax as input or output [Neubig and Duh, 2014].
Combinations of the words tree and string denote whether syntax was
used on either the source or target sides of translation, e.g., tree-to-
string and string-to-tree.

3.1.4 Hybrid Machine Translation

If “hybrid” is understood as a combination of something heteroge-
neous in origin, the Hybrid Machine Translation idea presupposes a
dichotomy of methods. While heated exchanges of words in early
years of Statistical Machine Translation may have given rise to such
a dichotomy [Jelinek, 2005, Haji¢ and Hajicovd, 2007] between Rule-
Based Machine Translation and SMT systems, elements of both are
often included in either approach today. For instance, in the docu-
mentation of the Moses MT system [Hoang et al., 2007], rule-based
preprocessing steps such as tokenization [Dridan and Oepen, 2012]
are included in the walk-through of example systems. Costa-Jussa
and Fonollosa [2015] separated hybrid approaches into three; (i) multi-
engine approaches combining the output of various MT systems, (ii)
the incorporation of linguistic information into SMT pipelines [Costa-
Jussa and Farrts, 2014], and (iii) systems that combine MT architec-
tures into single architectures.

The PRESEMT MT system [Marsi et al., 2011, Tambouratzis et al,,
2012b] is an example of a Hybrid Machine Translation system which
processes a small bilingual corpus for structural correspondences off-
line, later to be used in a translation engine. Aimed at providing trans-
lation capabilities between scarcely resourced language pairs bilin-
gually (e.g., Greek-Italian and Norwegian-German), it was conjec-
tured that a bilingual corpus of only a few hundred sentences is nec-
essary to encompass the salient contrastive differences between lan-
guage pairs. The parallel corpus was manually revised by linguists to
account for as many structural correspondences as possible. Accom-
panied by much larger monolingual corpora collected from the web,
only these resources were used for Machine Translation.

The method matches a Source Language sentence against a database
of sentences in example-based fashion during translation, and the
highest-ranking match provides a Target Language structure. This
structure is filled with lemma translations provided by a dictionary,
and the word order in the phrases therein is resolved by querying
monolingual resources for co-occurrence information. Tambouratzis
et al. [2013] reviewed the performance of PRESEMT.
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3.2 LANGUAGE MODELING

A Language Model is a computerized model of a particular language
and can be queried with strings, scoring them with numbers that can
be interpreted as probabilities that the string is part of that language.
Presently, this is mostly done with data-driven methods, but in prin-
ciple, such models could be created with any knowledge source. As
data-driven methods gained popularity in the 1980s and 1990s, this
was also reflected in data-driven Language Models, then called Statis-
tical LMs, as they were applied, initially, to Automatic Speech Recog-
nition. When the term Language Model is used henceforth, Statistical
Language Models are meant. Such models have also found use in
other Natural Language Processing tasks, e. g., Information Retrieval,
spell checking, and Optical Character Recognition (OCR).

In formal language theory, the members of a language have an exact
definition, as they either can or cannot be generated by the grammar
and vocabulary. In contrast, natural languages are moving targets,
and it is impossible to ascertain which strings are valid members in
the same way. When a language is modeled from a corpus, probabil-
ities are attributed to strings according to their distributions in this
training corpus. If a Language Model is queried with a set of strings,
strings that were seen during training must be a part of that language
according to the model. Unseen strings, may or may not be a part of
the language, and a higher score should ideally be given to the strings
that are. Thus, LMs must have a strategy for differentiating between
such unseen events to model a language properly.

Consider the Norwegian string in Example (103).

(103)  Lisa gikk til skolen
Lisa walked to school

Table 3 lists the 4! permutations of the four words, ranked after Lan-
guage Model® score. Of these 24 permutations, only a few are gram-
matical and give semantical meaning. The LM can say something
about how likely it is that one of these strings is a valid member of
the Norwegian language. Syntactically and semantically valid strings
should, therefore, rank above invalid strings.

Permutations 1,2 and 6 (as a question) are normal Norwegian ut-
terances. Permutations 9 and 23 are possible if the two first words
are interpreted as a topicalized preposition phrase. These sentences
have correspondences where Lisa and skolen are interchanged, which
is syntactically possible, but semantically questionable. An exception

Tested on a 4-gram model built on the noTenTen corpus (https://www.
sketchengine.co.uk/notenten-corpus/ (retrieved: 28th of January, 2016)).
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ID Permutation LM score Syntax Semantics
1 Lisa gikk til skolen 0.92 yes yes
2 skolen Lisa gikk til 0.46 yes yes
3 Lisa skolen gikk til 0.0013 no no
4  Lisa gikk skolen til 0.0002 yes no?
5  gikk Lisa skolen til 3.4e-05 no no
6  gikk Lisa til skolen 2.4e-05 yes yes
7 til skolen Lisa gikk 9.2e-06 no yes
8  gikk skolen Lisa til 7.5e-06 no no

9  skolen gikk Lisa til 7.5e-06 yes? yes
10 skolen til Lisa gikk 2.2e-06 no no
11 til Lisa skolen gikk 9.8e-08 no yes?
12 Lisa til skolen gikk 4e-08 no? yes
13 til gikk Lisa skolen 3.3e-11 no no
14 Lisa til gikk skolen 2.1e-11 no no
15 gikk til Lisa skolen 8e-12 no no
16 skolen Lisa til gikk 6e-12 no no
17  til Lisa gikk skolen 3.ge-12 yes? yes?
18 Lisa skolen til gikk 2.3e-12 no no
19 gikk skolen til Lisa 2e-13 yes yes?
20 skolen gikk til Lisa 1.3e-13 yes yes?
21 til gikk skolen Lisa 2.3e-16 no no
22 skolen til gikk Lisa 1.3e-16 no no
23 til skolen gikk Lisa 6.5e-17 yes? yes
24 gikk til skolen Lisa 5.6e-20 no no

Table 3: LM scores for permutations in decreasing order. The columns Syn-
tax and Semantics represent an informal assessment of their valid-
ity according to the author (native speaker). Question marks signal

readings where the school did the walking.
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is permutation 3, which is not syntactically valid, as the noun phrase
Lisa is indefinite as opposed to skolen. While being an unrealistic ex-
ample in the context of Machine Translation (i. e., that n-gram models
rank utterances alone without translation probabilities), Table 3 shows
how an n-gram model can capture normal utterances, but also miss
other, possible but peripheral (thus, less frequent) utterances.

For polysemous words, one (or more) sense(s) should be trans-
ferred to the Target Language, out of the potential senses of the Source
Language string during translation. A Language Model queried with
candidate translations does not hold any information about which
sense is the correct and will attribute the highest score to the most
likely string according to the model. It could, however, filter out can-
didates that are very unlikely, e. g., if the permutations in Table 3 were
translation hypotheses.

3.2.1 Estimation of N-gram models

N-grams, defined as contiguous sequences of n items from a given se-
quence of text or speech, are statistically modeled by their counts, i.e.,
their occurrences in a body of text. The counted items are normally
tokens (mostly corresponding to words [Grefenstette and Tapainen,
1994]) but alternatives are individual characters, phrases, or, in prin-
ciple, sentences. N-grams are discerned by their order n, such as
unigrams modeling unique tokens, bigrams two successive tokens,
trigrams three, and quadgrams four consecutive tokens, as in Exam-
ple (103).

N-gram models model languages as sequences of words, where the
next token in the sequence is predicted based on the relative number
of times that word has followed the preceding words in the sentence.
In Example (103), the conditional probability that skolen follows the
sequence Lisa gikk til, i.e., P(skolen|Lisa gikk til) is estimated from
data by counting relative occurrences.

Formally, p(wq,w;---wy) is a joint probability of n occurrences.
This joint probability can also be transformed using the chain rule
of probabilities, into a product of conditional probabilities p(w7) *
pwalwy) - s p(wnlwy, wy - - -wyn_1). Under the Markov Assumption,
this is modeled as a Markov chain where transitions depend only on
a few, previous steps. For bigram models, the probability of a word
sequence depends only on the previous word.

pwy, W= wn) =p(wi) xp(walwy) - -+ p(wnwn_1) (22)
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Equation 22 shows how this probability is calculated given this as-
sumption for a bigram model (sequences of two tokens).

plwi,wy---wn) = [ [ pwilwi_ gy wi1) (23)
i

Equation 23 shows the formula in general form (for n-grams of any
order n).

Modeling of the conditional probabilities of n-grams models is done
by counting occurrences in a text corpus. The probability of a uni-
gram is the occurrences of that unigram divided by the total number
of unigram occurrences. The probability of a bigram is the occur-
rences of that particular bigram (w; followed by w,) divided by all bi-
gram occurrences starting with the same history, expressed formally
as:

count(wy, ws)

plvaiv) = = (24)

3.2.2  Problems with N-gram Models

It is well established that the Markov assumption does not hold for
natural language. Consider long-distance dependencies such as the
stranded prepositions found in Norwegian and English:

(104) Mannen skrev jeg etter lang tid et brev med
The-man wrote I  after long time a letter with

where the preposition med relates to the noun Mannen. If the noun
were different like the inanimate traktoren (the tractor), a different
preposition would be needed for the utterance to be sensible? (but
not grammatical). Intuitively, these long-distance dependencies can-
not be captured by the previous few words. Furthermore, it is not
obvious that the sentence was constructed left to right, or even se-
quentially. Some of the sentence structure could be chosen initially
with long-distance dependencies at each end, filling the middle por-
tion as it was formed.

Another weakness with n-gram models is the difficulty with mod-
eling higher-order n-grams (say, an order of 25 or 30) as the models
would become too large. Thus, they could not model all the relevant
context for a token, even if a corpus with sufficient occurrences of all
long-distance dependencies were available. Such context can contain
relations such as stranded prepositions as above, sentence-end word

In most, but not all models of the world, such as imaginary worlds where tractors
do write letters or are written letters with.
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particles as seen in, e.g., German, or domain-specific word distribu-
tions.

As the n-gram order increases, the number of n-grams increases as
long as n-grams of that order are represented in the data, and pruning
(i.e., the systematic trimming-down of models) becomes necessary.
Higher order n-grams increase the likelihood that n-grams in the test
data will not be observed in training. Because the number of different
word forms would be so high for morphologically rich languages,
amassing training data that accounts for the relative occurrences of
these all word forms is difficult. Data sparsity also weakens the ability
of n-gram models to account for long-distance relationships.

Nonetheless, n-gram models remain popular. The Markov Assump-
tion makes them easy to compute, and they scale well to large datasets.
Being conceptually simple and computationally inexpensive to train
are practical advantages. Training mostly consists of counting oc-
currences of n-grams, which can be done in parallel, although some
smoothing techniques introduce added complexity. The resulting n-
gram model is a lookup table of (log)-probabilities for each n-gram.

3.2.3 Handling Unseen Events

What is the probability of a random person uttering jibberish? Al-
ternatively, something that really is, such as blarghsnarksnackishly, or
perhaps the famous sentence:

“Colorless green ideas sleep furiously” [Chomsky, 1956]

This sentence was constructed to demonstrate that deriving meaning
also from syntactically valid phrases can be difficult. Ironically, while
true at its inception, now, this is a well-known reference to a famous
piece of literature, which is uttered all the time at universities across
the world — with an intended meaning.

The true probability of new words is unknown, beyond the grasp
of current models. Still, by virtue of the productivity and evolution
of language, novel utterances are created all the time. Also, Language
Models trained on finite resources will contain many strings that are
neither syntactically nor semantically valid.

Since Equation 23 is the product of several multiplications depend-
ing on the length of the string, if any factor is zero, the product is
zero. Thus, the probability of such a word sequence would also be
zero, which could make little sense. An unseen event in any n-gram
would render a zero probability, and the model would fail at its task.
Such a model would not be useful for Natural Language Processing
tasks unless the vocabulary of the queries was strictly controlled.
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Some of the probability mass must be transferred from seen to un-
seen events in the training corpus to avoid zero probabilities, and
unseen events are expected to occur during the application of a Lan-
guage Model. Back-off, smoothing, and interpolation (and combina-
tions thereof) are methods that address this task. A back-off method
would back off, literally, to lower-order n-grams if they were not
found in the model at full length, e.g., if the quadgram skolen | Lisa
gikk til was not found, the method would recursively back off to the
trigram skolen | gikk til (and further on to bi- or unigrams if needed).

Smoothing is a statistical method, where the Probability Mass Func-
tion is smoothed to assign som probability mass to unseen events. Be-
cause the sum of the probability of all possible events must be 1, the
probability mass must be reduced accordingly for the tokens observed
1 or more times to remain a probability distribution.

Interpolation refers to a weighted (e.g., linear or estimated by a
held-out corpus) average of n-gram probabilities of different orders,
and can be applied to all or only the unseen n-grams.

Chen et al. [1998] empirically evaluated many different varieties of
back-off and smoothing techniques.

3.2.3.1 Katz Back-off
A much-used implementation is Katz back-off [Katz, 1987].

Poo (Wi | Wing1 - Wi1)

d C(Wing1 - Wi_1wy)
Wint1Wi

if c(Winir--wi) >k
- cWing1--wiq)

;g wig Poo(Wi [ Wiing2 - wiq) if c(wingr---wi) <k
(25)

Equation 25 shows how the back-off probability of an n-gram is de-
rived. If the n-gram count c is above k (normally o), the probability is
calculated as its count divided by its full history, then discounted by a
parameter d, to have some probability mass to send to the lower-order
models. If it is not, the model will instead use the probability of the
n-gram with a history of one less word. This estimate is normalized
with a parameter, &, such that only the probability left over from the
discounting is used for the n-grams that are estimated by backing off.

3.2.3.2  Absolute Discounting Interpolation

The easiest way of doing smoothing is to add counts to all unobserved
n-grams, and discounting the observed accordingly. Another simple



3.2 LANGUAGE MODELING

method is absolute discounting interpolation, which subtracts proba-
bility mass from higher-order n-grams by subtracting a constant from
their counts and adding probability mass to lower order n-grams.

_ max(c(wi_wi) —5,0)

Paps(wilwi_1) = S i) + apaps(Wi) (26)
w’ 1—

Equation 26 formulates absolute discounting interpolation for bigrams.

The parameter 6, by which counts are discounted, can be estimated,
e.g., by a held-out dataset. « is a normalization term.

3.2.3.3 Kneser-Ney Smoothing

Kneser-Ney smoothing [Kneser and Ney, 1995] performed best in the
experiments by Chen et al. [1998] and still is considered a state-of-
the-art smoothing method. This method is based on continuation
probabilities. For the bigram case, this means the count of bigrams
that each word completes as its continuation. A much-used example
is “San Francisco” because the word Francisco is unlikely to appear in
many other bigrams than this (with exceptions, e.g., religious texts
and texts about Spanish names). While absolute discounting would
give a high probability of Francisco because of frequency, the Kneser-
Ney method would lower it, as its ratio to the number of possible
n-grams is low.

max(c(wi_iwi) —,0)
2w Cwiw/’)
{wi_1 : c(wig, wi) > 0}
{wj—1 : c(wj_1,w;) > O}

Pyn(wilwi_1) =

(27)
+

Equation 26 formulates Kneser-Ney smoothing for bigrams. j is a free
term in the denominator of the right-most term, which consists of the
number of possible n-grams. The terms « and 6 are the same as for
absolute discounting.

Brants et al. [2007] argued that the importance of refined smooth-
ing techniques diminishes as the training material increases, and in-
troduced a simple back-off scheme, nearing the performance of the
Kneser-Ney method at a lower computational cost.

3.2.4 Alternative Models of Language

Several ideas have been put forward to address the above problems
with n-gram models. An example is exponential models, such as Max-
imum Entropy (logistic regression) modeling presented in [Rosenfeld,
2000], which model the conditional probability of one word being the
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next in a sequence, given the history. An arbitrary number of features
f are combined with the formula:

ﬁ * exp [Z ?\iﬁ(h,w)]

where Z is a normalization term, and A is the weight vector. In this
framework, language is modeled as a sequence of words. The models
can include features that account for long distance and domain speci-
ficity. Such feature-based representations can also be used for whole-
sentence models, with which the probabilities of whole sentences are
modeled based on the same feature-based approach [Rosenfeld et al.,
2001].

Class-based models first address sparsity by separating words into
classes and then modeling the sequences of class patterns, similar
to how n-grams are modeled, often interpolated with n-gram models.
Brown et al. [1992] separated words into classes based on the minimal
loss of Mutual Information, an information-theoretic measure of the
association between variables. If variables are independent, Mutual
Information is zero. Finding words classes also can be achieved by
clustering [Goodman, 2001].

Using a cache — a dynamic window of words — to train a spe-
cialized model for interpolation with a larger, static n-gram model
has been used to enable Language Models to account for phenomena
such as that the probability of seeing rare words increases if seen in
recent history [Louis and Webber, 2014].

Other methods for modeling language include decision tree mod-
els [Rosenfeld, 2000], where a sequence of binary questions model
the history of each word. However, the storage space of such histo-
ries will grow large as the vocabulary increases, which poses practical
problems. Parsing text with formal grammars (e.g., context-free or
link grammars [Sleator and Temperley, 1993]) for inclusion in struc-
tured Language Models has also been done, e.g., Chelba and Jelinek
[2000], facing many of the same problems with complexity. Since
then, Neural Network Language Models (NNLMs) were introduced
[Bengio et al., 2003] (see Section 3.3).

3.2.5 Evaluation of Language Models

How useful a particular model of a language is, ultimately depends
on its intended use, which can only be evaluated in an end-to-end set-
ting with a Language Model embedded, i.e., evaluated extrinsically.
However, extrinsic evaluation is often resource-demanding and not
possible to rerun for every adjustment of an LM.
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Language Models can also be evaluated intrinsically, which is a
lighter process that offers an approximation of how the evaluated dif-
ferences ultimately impact a given application. Such intrinsic evalu-
ation can be done using metrics relating to information entropy, ex-
pressing the surprisal, or perplexity of an LM when seeing some test
data. While this approximation can be useful, it is not always the
case that the text it is tested on is distributed equally to the training
corpus. Moreover, Mikolov [2012] argued that reporting Language
Model improvements as perplexity reduction can obscure results be-
cause constant relative reductions in perplexity will not result in the
same reduction of cross-entropy (explained below).

3.2.5.1 Information Entropy
=—) p(x)log,p(x (28)

xeX
Equation 28 defines Information Entropy, a measurement of uncer-
tainty in a random variable from Information Theory. Borrowed
from thermodynamics where it pertains to how evenly energy is dis-
tributed in a system, it is used to capture how evenly distributed a
probability mass is.

A distribution where all events are equiprobable will have the high-
est entropy because the unpredictability of the information content is
the highest. Low probabilities give low values in the log, p(x) term
in Equation 28 as they are canceled out by the p(x) term contributing
less to lowering the sum, thereby increasing the Entropy as the sum
is negated. Correspondingly, the very high probabilities would give
log,, terms very close to zero, and the contribution towards Entropy
would be small. Jelinek [1997, pp. 121-126] discussed the mathemati-
cal properties of Entropy more rigorously.

When modeling language as a set of word sequences, the entropy
H of a variable ranging over all these sequences is:

H(wy, wy - - — Y p(Wi)log, p(W}) (29)
Wrel

where n is the maximum length of the sequence W in the language L.
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3.2.5.2 Entropy Rate

Dividing Equation 29 by n arrives at the entropy rate or entropy per
word of such a sequence. The Entropy rate is the limit of the per-word
entropy, as n goes to oo:

H(L) = — lim lH(w1,w2 <o Wn)

n—oo N

im (30)
:_nlg)l(;loa Z p(w1’W2Wn)10gp(W1,W2Wn)
Wrel

Through simplifying assumptions, e.g., that the language is a sta-
tionary and ergodic process, the Shannon-McMillan-Breiman Theo-
rem [Algoet and Cover, 1988, Cover and Thomas, 1991] states that the
Entropy rate is:

1
H(L) = — lim — logp(wi,w) -+ wy) (31)

n—oo N

A statistical process is ergodic if its statistical properties can be de-
duced from a large enough random sample, meaning that it does
not change erratically. It is stationary if the statistical properties do
not change over time. This assumption does not hold for natural
language, as the probability of upcoming words can depend on arbi-
trarily time distant events [Jurafsky and Martin, 2017].

3.2.5.3 Cross-Entropy
Zp x)log, q(x (32)

xeX
Equation 32 defines the cross-entropy between two probability distri-
butions p and q over the same events with base b. It is a measure
of the number of bits needed to identify an event from the set if opti-
mized for an approximate distribution q, rather than the true distribu-
tion, p. Cross-entropy will find its minimum when the distributions
p and q are equal.
Similarly, the cross-entropy per word is derived by:

.1
Hip ) =—lim — 3 plwi,wywn)logq(wy,wa - wa) (33)

and by the Shannon-McMillan-Breiman theorem, this equals:

]
H(p,q) = — lim —logq(w1,wz---wn) (34)
The true entropy is a lower bound on the approximate entropy; i. e.:

H(p) < H(p, q) (35)
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Equation 35 implies that the cross-entropy is a good measure of how
the approximate distribution q (e. g., a Language Model) fits the true
distribution p (e. g., the true entropy of a language) as it will be lower
the better the approximation is.

3.2.5.4 Derivation of Perplexity

Perplexity has origins in Information Theory, mainly related to the
concept of Information Entropy [Shannon, 1948]. Crooks [2016] de-
fined perplexity as the exponentiation of the cross-entropy with the
base used to derive it. With base 2, perplexity is 2 raised to the cross-
entropy:

PP = 2M(Pm) (36)

where H(Ppm) is the cross-entropy of the Language Model. Raising 2
to the average amount of bits necessary to encode the words, can be
interpreted as the number of choices available at each point. This cor-
responds to the 7-bit American Standard Code for Information Inter-
change (ASCII) character set having 2’ = 128 options at each choice
point. When normalizing perplexity by the number of words (tokens),
perplexity per word is reported, making figures smaller and easier to
handle, as well as having intuitive appeal.

The cross-entropy between the true probability distribution p and
the approximate distribution q from Equation 34 is then estimated for
a sequence of words W = wiw; - - - wy, with a fixed length n:

HOW) = —loglalwiwa -+ wy)) (7)

Substituting the right side of Equation 36 with the formula from Equa-
tion 37 and replacing the approximation q with a Language Model
probability Py gives the following:

3=

1
Pim(wiwy - -wy)

PP(W) = 2= log(Pum(wiwz-wn)) _ (38)

Thus, perplexity can also be expressed as the geometric average of
the inverse of the conditional word probabilities, when the formula
for Language Model probabilities in Equation 23 is used:

n
1
PP W =N

W $i=1(PLM(Wi|Wi(n1)~--wi1) (39)
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3.3 ARTIFICIAL NEURAL NETWORKS AND MT

Feed-forward Artificial Neural Networks are universal function ap-
proximators, and recurrent ANNSs are universal approximators for
discrete sequences [Goodfellow et al., 2016, Chapters 6 and 10]. Thus,
ANN s can be used to predict an output from an input, with or with-
out regard to their biological inspiration and plausibility. Conse-
quently, ANNs may be used in place of other Machine Learning meth-
ods for predictions, integrated into Statistical Machine Translation
frameworks or for the entire modeling of translation. When ANNSs
are used for the entire translation process, the process is referred to
as Neural Machine Translation.

The next subsection will present the use of Artificial Neural Net-
works for constructing Language Models, followed by a subsection
on applications of ANNs to Machine Translation.

3.3.1 Artificial Neural Networks and Language Models

Section 3.2 mentioned Neural Network Language Models, an early
application of ANNs in NLP and Machine Translation based on feed-
forward networks [Bengio et al., 2003, Schwenk, 2007]. As output,
such Language Models compute a probability for every word in the
vocabulary given the input using the Softmax function:

Tw:
eX Wi

Y e

which gives a probability for the output class y (word) being the class
j for vocabulary j = 1, ...,K. Hence, these models also rely on the
Markov Assumption (see Section 3.2.1).

The computation of the Softmax is expensive, which creates prob-
lems for large vocabularies. Vocabularies can be trimmed by auto-
matic methods, such as regarding more words as one token if they
are fixed expressions or given names.

Ply=jlx) = (40)

3.3.1.1 Recurrent Neural Network Language Models and Embedded Fea-
tures

Later, other types of Artificial Neural Networks have been used for
language modeling, such as Recurrent Neural Networks (RNNs) [El-
man, 1990, Mikolov et al., 2010, Mikolov, 2012], a by-product of which
has received much attention — Word Embeddings. Such models up-
date the recurrent states one word at the time, and thereby do not
rest on the Markov Assumption, conditioning predictions on arbitrar-
ily long context.
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Word Embeddings represent discrete words in continuous space,
with easy-to-handle vectors in a lower dimension than the vocabulary
size. The embeddings are derived from an intermediate represen-
tation of the discrete word occurrences, by projecting them onto a
lower dimensional space, implemented as another hidden layer with
the same weights for all words. Hence, these embeddings have com-
putational advantages (e. g., caching) and can also be used to measure
word similarities in applications outside language modeling and Ma-
chine Translation [Mikolov et al., 2013b, Goldberg and Levy, 2014].

Mikolov et al. [2013¢c] demonstrated that these vector representa-
tions encompass both syntactic and semantic (demonstrated on a Sem-
Eval 2012 test set) regularities, such as the vector subtractions of
Xapple — Xapples ~ Xcar — Xcars- Furthermore, Mikolov et al. [2013a]
found that the similarities are partially consistent also across lan-
guages, which could be used for Machine Translation purposes, e.g.,
by augmenting dictionaries and phrase tables.

3.3.2 Neural Machine Translation Applications

Different versions of Recurrent Neural Networks are used for sequence
modeling, such that weights in an Artificial Neural Network layer are
updated depending not only on the input layer but also on values
from the current layer. Thus, information from used training material
is retained as more is processed.

The models use an encoder-decoder architecture where a Recur-
rent Neural Network encodes the information in the Source Language
string, such that last hidden state in the encoder encompasses infor-
mation about the entire input string as a real-valued vector. Next, an-
other RNN is trained to predict (decode) the Target Language string
based on that vector. The output layer is interpreted as a probability
distribution over the words in the vocabulary. Methods such as ran-
dom sampling or beam search can be used to produce the TL string.

This idea for modeling translation goes back the 1980s, e.g., Allen
[1987] who conducted translation experiments with as little as 30-
40 words. Hardware constraints made experiments with data large
enough for real-world applications difficult. Decades later, advances
such as the ability of Graphics Processing Units (GPUs) to efficiently
do matrix calculations, made increasingly large models feasible, and
in 2013 Kalchbrenner and Blunsom [2013] presented a purely neural
Machine Translation system.

The following year, Neural Machine Translation systems were com-
petitive also for larger-scale tasks, and by 2016 they were outperform-
ing Rule-Based- and Statistical Machine Translation on most tasks [Bo-
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jar et al., 2016]. Moreover, commercial systems such as SYSTRAN’s
pure NMT system were launched the same year [Crego et al., 2016].

Britz et al. [2017] experimented with the hyperparameters of Neural
Machine Translation systems, using 250,000 GPU hours on exploring
embedding sizes, Recurrent Neural Network variants, and beam sizes
during decoding.

3.3.2.1 Neural vs. Statistical Machine Translation

While Neural Machine Translation is widely considered to be state-
of-the-art, the picture is nuanced. Still, the vocabulary sizes of NMT
systems are limited (up to 50,000 tokens +/- 10%), which could impact
performance when large datasets are available for training. Also, for
the smaller translation tasks used, e. g., in shared tasks, the picture is
nuanced.

Toral and Sédnchez-Cartagena [2017] made a systematic comparison
of the outputs of the Workshop on Statistical Machine Translation
2016 tasks and found that Neural Machine Translation outperformed
Statistical Machine Translation for 7 of 9 language pairs. They sum-
marized their findings as follows:

* NMT output was considerably more varied.
* NMT output was more fluent.

* NMT systems introduced more changes to word order (except a
hierarchical SMT system).

* NMT performed better for most sentence lengths unless sen-
tences were very long (over a threshold).

These findings mostly corroborated a case study by Bentivogli et al.
[2016]. Additionally, Farajian et al. [2017] found that Statistical Ma-
chine Translation outperformed Neural systems in multi-domain sce-
narios (see Subsection 4.5.5).

3.4 MACHINE TRANSLATION EVALUATION

Different aspects like purpose, sender, recipient, style, and informa-
tion content must be taken into account to provide a good transla-
tion, which makes professional translation resource- and knowledge
intensive. Disagreement on the correct translation of a given input
can also arise between highly skilled translators. Similarly, as the
recipient of translations of cultural items, one might also object to
translations. Likewise, human evaluation of Machine Translation per-
formance varies among annotators, which can be quantified by the
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Figure 21: Summary of Machine Translation evaluation.

level of inter-annotator agreement. However, to automatically eval-
uate MT output, it is necessary to have a specific notion of what a
correct translation is.

Figure 21 highlights two aspects of Machine Translation Evaluation:
the source of error and the methods that assess errors. Finding the
source of errors, i. e., error analysis, is instrumental in improving sys-
tems. Furthermore, an actual assessment and a subsequent ranking
of output are necessary to account for improvements in quality after
system modifications.

3.4.1 Model Error vs. Search Error

Model error is the translation error of the best translation found in
the model and search error is the failure to find the best translation
in the model [Germann et al., 2001]. Heuristics such as pruning are
necessary for decoding Statistical Machine Translation models. Hence,
better translations could, in principle, be present in the model with
a better decoder. Post and Gildea [2008] did experiments on selected
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sentences with few words to cut down on pruning, reducing search
error and isolating the model error.

Auli et al. [2009] refined model error with the introduction of in-
duction errors, i. e., the possibility of the rule set of the Statistical Ma-
chine Translation to find the/a correct translation, in the context of
log-linear models. By restricting model error to the parameterization
of the models and the search errors to the heuristics (the approxima-
tions in search), the induction errors pertain to the actual rules being
weighted. If a Target Language string is not present in the rule tables
of the model, it is impossible to find this translation even with optimal
weights and search algorithms. Comparing phrase-based and hierar-
chical models, Auli et al. found that the main difference between the
models stemmed from parameterization.

3.4.2 Assessment of Machine Translation Output

Evaluation of Machine Translation is a contentious and much-debated
issue. Broadly, MT output is evaluated either by human annotators
directly or by automatic metrics based on reference translations. A
reference translation is a translation against which candidate transla-
tions are measured. Such references are mostly created by humans,
but could also come from another MT system.

There is no consensus on which metrics correlate the best with hu-
man assessment, and a wide variety of measures exist. Tuning the
parameters of Statistical Machine Translation systems to the same
metrics that later will be used to evaluate them raises the question
of whether said criteria fairly rank them against Rule-Based Machine
Translation systems not tuned to these metrics. Some evidence sug-
gests that the widely-used automatic metric BLEU (defined below)
is more favorable to statistical than rule-based systems, e. g., [Koehn
and Monz, 2006, Callison-Burch et al., 2006]. Koehn [2010, Chapter 8]
presented evidence for both camps and other principled points from
this debate.

Human evaluation of Machine Translation output usually involves
more evaluators, who rank systems after a set of criteria. The two
dimensions adequacy and fluency were established as the primary
means of human evaluation in MT by the DARPA Machine Trans-
lation initiatives in the 1990s [Graham et al., 2012]. These dimen-
sions were also used by the Linguistic Data Consortium when creat-
ing human evaluated datasets, expanded with detailed guidelines on
how to use them for ranking [Ma and Cieri, 2006]. Adequacy cap-
tures whether the meaning in the Source Language is properly car-
ried across and preserved in the Target Language. Fluency measures
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whether the output is fluent and proper language, which flows freely
in the TL with well-formed sentences.

Translation is a science in its own right, for which training can take
years. Thus, the supply of professional translators, especially for rare
language pairs is limited and using such to evaluate output every
time a Machine Translation system is run is practically impossible.
Using human evaluators, with or without formal training, is expen-
sive nonetheless, whereas automatic evaluation metrics output results
almost instantly.

Automatic evaluation metrics require one or more reference transla-
tions and score Machine Translation output on the difference to these
references. Some metrics do alterations of the output before reference
comparison, e. g., by expanding synonyms. In principle, any distance
metric between output and reference sentences can be used to provide
a score, which makes the correlation between automatic metrics and
human evaluation important.

Much work has gone into researching the various automatic metrics’
correlation with human evaluation. Machine Translation evaluation
has been reviewed frequently, e.g., Euromatrix [2007], Lopez [2008],
and Koehn [2010]. Song et al. [2013] deconstructed the BLEU mea-
sure and experimented with changing parts of it, such as weighting
arithmetically instead. They reported better correlation with human
evaluation using arithmetic means.

Custom measures have been created for some language pairs in ad-
dition to work on what evaluation metrics best provide information
about specific aspects of Machine Translation. Irvine et al. [2013] pro-
posed new measures for MT errors for statistical systems moving into
a new domain. These measures rely on word alignments, on which
errors are marked as either:

1. Seen. An attempt to translate a source word unseen to the
model.

2. Sense. An attempt to translate a word in a sense unseen to the
model.

3. Score. A translation the model could have successfully pro-
duced but did not because an incorrect translation hypothesis
scored higher.

4. Search. Errors due to approximations during searching.

Crowdsourcing leverages, e.g., services and content from a large
number of mostly online contributors. Because it is a cost-effective
form of human evaluation, it has become an option for MT Evaluation
[Zaidan and Callison-Burch, 2011].
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3.4.3 Automatic Metrics

This subsection will present a selection of automatic evaluation met-
rics often used in Machine Translation evaluation. Automatic metrics
have the advantage that they produce results quickly.

3.4.3.1 BLEU

BLEU [Papineni et al., 2002] is a highly influential and widely used
automatic metric, motivated by a need for quick and frequent transla-
tions. Fundamentally precision-based, the metric counts the n-gram
overlaps between candidate and reference translations. The method is
also augmented with a brevity penalty to penalize too short transla-
tion candidates and count-clipping. Count-clipping reduces the num-
ber of correct n-grams in a sentence to the maximal number of occur-
rences in any reference translation to avoid translations with only one
repeated word getting perfect precision. N-gram precisions up to N
(normally set to 4) are averaged geometrically.

N
BLEU =BPx \| [ [pn (41)
n=1
1 if |c] > ||
BP = b (42)
exp(1— 1) iflc| < I
ZCGCandidates anramec Countclip(ngram)

ZC’eCandidates anram/ec Count(ngram’)

Equations 41-43 show the derivation of the BLEU metric.

3.4.3.2 NIST

Doddington [2002] launched NIST, another n-gram-based metric based
on n-gram co-occurrences (present in both candidate and reference
translations), and suggested two variations on BLEU scoring. First,
since n-grams of higher orders co-occur less frequently, the geomet-
rically averaged BLEU metric has the potential of counterproductive
variance and should be replaced, e.g., by an arithmetic average. Sec-
ond, since n-grams that occur less frequently might be more infor-



3.4 MACHINE TRANSLATION EVALUATION

mative and are more difficult to anticipate, lower-frequency n-gram
co-occurrences should get increased weight.

> Info(wiwy - --wy)

Score_i{wC S 1) }

n=1 wo (44)
- exp {[5log2 [min <Lsys, 1>} }
Lret

count(wiwy - --wp_1)
count(wiwy -+ - wy)

Info(w; ---wy) = log, ( (45)
Equations 44 and 45 show the weighting formulas. wc and wo re-
fer to the string that co-occurs in the string length up to n in the set
of reference translations and the count of the same string in the sys-
tem output. Lgys and L,er refer to the average number of words in
the system output and the average number of words in the reference
translations, respectively.

3.4.3.3 Meteor

Meteor [Lavie and Denkowski, 2009] included more concepts in eval-
uation while maintaining speed and ease of use. Computing word
alignments between candidate and reference translations and count-
ing matches on aligned words are fundamental to the metric. When
more references are available, the highest scoring is used for matching.

P.R
F =
mean OC.P_"_(—I_O()'R (46)
# chunks B
Penalty =7 <#unigram matches) 47)
Meteor = (1 — Penalty) - Fmean (48)

Equation 46 shows how a parameterized harmonic mean of precision
and recall of unigram matches is computed, optionally accepting syn-
onyms as correct based on WordNet synsets [Miller, 1995]. Equa-
tion 47 introduces a fragmentation metric, designed to penalize sys-
tems outputting several chunks of contiguous and identically ordered
words. Equation 48 combines the two as a final score. Chunks refer to
consecutive unigrams in the system output that are also consecutive
in the reference, and the number of unigram matches is the raw count
of said unigrams.
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3.4.3.4 Word Error Rate

Word Error Rate (WER) is a distance metric first used in Automatic
Speech Recognition, but also used in Machine Translation.

insertions + deletions + substitutions
Word Error Rate = (49)
reference-length

Equation 49 shows this formally. This score, computing the Leven-
shtein distance [Levenshtein, 1966] for words, not characters, can be
efficiently computed with dynamic programming.

3.4.3.5 Translation Edit Rate

Translation Edit Rate (TER) [Snover et al., 2006] is defined as the min-
imum amount of edits necessary to morph the system output into the
reference translations.

# Edits

Translation Edit Rate =
ransiation At Rate Average # of reference words (50)

Equation 50 shows this formally. Edits include insertions, deletions,
substitutions (as in WER), and crucially shifts, i.e., movements of
words and phrases, making the calculation NP-complete [Shapira and
Storer, 2007]. The first three types of edits are computed with dy-
namic programming, whereas a greedy search is done for the shifts
that subsequently determine these edit distances. Snover et al. [2008]
published a refined version of TER, incorporating stem matches, syn-
onyms, and phrase substitutions.

3.4.4 Validity and Significance of Results

Reported differences in automatic metrics are often small. These dif-
ferences could be caused by random error, e.g., as a consequence
of how the test data was sampled. Some methods have been devel-
oped to assess the validity of such small differences between Machine
Translation systems.

Riezler and Maxwell [2005] cautioned about the multiplicity prob-
lem in significance testing of Machine Translation systems. As the
number of pairwise comparisons grows, the chance of any of them
falsely rejecting the null hypothesis (no difference) Hy increases. The
risk pe of such an error occurring in k pairwise comparisons, depend-
ing on the risk of falsely rejecting the Hy in a given experiment, is:

Pe=1—(1 *pc)k (51)
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For a p-level of 0.05, a 50% chance of falsely rejecting Hy occurs al-
ready at 14 comparisons.

Clark et al. [2011] studied the impact of parameter optimization
methods and their impact on results. The authors claimed that in-
stability in the optimizer could significantly affect results and exper-
iments should, therefore, be rerun such that spurious differences (or
non-differences) between systems attributed to this instability can be
uncovered.

Berg-Kirkpatrick et al. [2012] empirically investigated significance
testing in Natural Language Processing on some tasks, e. g., Machine
Translation. While the authors strongly advocated the use of sig-
nificance testing based on their findings, their experiments on the
WMT 2010 data suggested that the rule-of-thumb BLEU score differ-
ences (0.5) deemed as significant were not far from their empirical
results. When plotting differences in BLEU score against confidence
levels (1 —p), Berg-Kirkpatrick et al. found that the o0.05 threshold
was met with 0.28 BLEU points for same-system scores and 0.37 for
different systems, respectively.

3.4.5 Bootstrap Resampling

Koehn [2004] proposed a method using bootstrap sampling, a method
whereby a test set is resampled n times, with replacement. The idea
behind the bootstrap method [Efron and Tibshirani, 1993] is to use
observed data, a sample, to construct an estimated population distri-
bution, which in turn is used to figure out a statistic of interest. For
Machine Translation evaluation, this statistic is often the difference
between systems, which may or may not be present in the population
that was sampled for evaluation.

As the number of samples n increases, the estimate of the signifi-
cance level will improve. However, there is no analytical way to de-
termine an optimal, or required, #, but it must be reasonably large
(sample sizes in the thousands) to avoid Monte Carlo errors. A high
number is rarely a problem, as average computers unproblematically
calculate evaluation metrics with bootstrap samples in the tens of
thousands, which is considered sufficient [Clark et al., 2011].

The bootstrap samples can be used for hypothesis testing. When
assessing the difference between two systems, the hypothesis H, (no
difference) can be rejected if the difference is present in sufficiently
many of the bootstrap samples.

Of the existing randomized significance tests, the simplest is the
one-sided bootstrap resampling test. If the system hypothesized as
better performs worse for a sample, a counter is incremented. The
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p-value is then determined by the quotient of the counter divided by
the number of bootstrap samples.
Formally, for B bootstrap samples with mean g, the test statistic is:

Sx, — Sy, — T8 = Sx — Sy (52)
The absolute value is used for the two-sided test:
ISx,, — Sy, — T8l = Sx — Syl (53)

where Sx, and Sy, represent the scores on the individual bootstrap
samples and Sx and Sy the scores on the actual data, respectively.

3.4.5.1 Approximate Randomization for p-values

Approximate Randomization [Noreen, 1988] reshuffles sentences be-
tween the compared systems. If sentences are randomly exchanged
between the (result of) using two Machine Translation systems, the
score will be equal if the systems are equal. It differs from bootstrap
sampling regarding replacement as shuffling is done without. Other-
wise, the score of the reshuffled data is compared to the actual score
differences:

S)(T — S\(r > Sx—Sy (54)

Because Machine Translation evaluation metrics are not, most often,
comparable across datasets, samples are stratified in that only trans-
lations of the same sentences are exchanged. Stratification is under-
stood as dividing samples into homogeneous groups before sampling,
strata here being the translations of the unique Source Language sen-
tences.

Graham et al. [2014] compared paired bootstrap sampling, boot-
strap resampling, and Approximate Randomization to human evalu-
ation and found that all methods reached the same conclusions.



DOMAIN ADAPTATION AND MACHINE
TRANSLATION

This final background chapter will present Domain Adaptation (DA)
in a Machine Translation context. First, Section 4.1 discusses some
definitions, and then Section 4.2 addresses the linguistic background
of domains before Section 4.3 thematizes statistical modeling. Sec-
tion 4.4 is aimed at categorizing Domain Adaptation approaches, and
Section 4.5 presents relevant applications.

Chapter 1 stated that Domain Adaptation of Machine Translation
systems pertains to the adaptation of a system either built for general
purpose or some other domain, to a target domain. Thus, DA is also
relevant to many other Natural Language Processing and Artificial
Intelligence tasks.

Whether rules are hand-written or statistically learned, to adapt
a system to new input, these rules must be changed from their ini-
tial state to another state that performs better on the target domain.
Consequently, Domain Adaptation is both a theoretical problem for
statistical learning, as well as a practical problem for application areas
like Machine Translation.

As the focus of Machine Translation gradually shifted from rule-
based to data-driven (and later hybrid) approaches in the wake of
the data-driven IBM models [Brown et al., 1990, 1993] (see Chap-
ter 3), Domain Adaptation received more attention as a particular
problem. Since Rule-Based Machine Translation systems are better
at precision but worse at coverage (recall) in general, it follows that
they are adapted to the particular types of text they translate well. In
practice, DA of RBMT systems has been done by manual encoding of
domain-specific terminology [Wolf and Bernardi, 2013]. Lagarda et al.
[2009] and Wolf and Bernardi argued that Statistical Machine Transla-
tion systems are more sensitive to out-domain input than rule-based
systems. Training material is a scarce resource for data-driven ap-
proaches; often the available data is not particular to a domain at all,
let alone the domain in demand. Thus, leveraging the little in-domain
data available as effectively as possible is essential, either by altering
the models directly or acquiring more in-domain training material
based on the available corpora.

Machine Translation systems consist of a cascade of pre-processing,
processing, and post-processing steps, each of which can be adapted
to a particular domain and evaluated either in unison (intrinsically)
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or plenum (extrinsically). Hence, Domain Adaptation applies to the
different, potentially nested, levels of this cascade. Gamback and
Bungum [2016] divided DA at any such level into three steps for dia-
log agents, also a complex problem with many subparts. Analogously,
a similar distinction applies to MT:

1. Identification of the structures at a given level.
2. Mapping of these structures to a set of distinct domains.

3. Leveraging this domain knowledge to the task at hand.

4.1 DEFINITIONS AND PROBLEM FORMULATIONS

In Psychology, a domain pertains to the way knowledge is stored in
the human mind. As in Natural Language Processing, there is no
sharp definition of what domains are; it is rather an assumption that
it is common knowledge, also known under names such as domain-
specific knowledge, subject-matter-knowledge, and content-specific
knowledge [Alexander, 1992].

In Mathematics, the domain of a function is the set of argument
values, i. e., the set of legal inputs, for which the function is defined.

Chapter 1 introduced Domain Adaptation of Machine Translation
as the adaptation of an MT system created for one domain (or a gen-
eral system) for use in another domain. This definition will be ex-
panded upon below, both concerning the meaning of domain in gen-
eral, and how it is understood for DA in MT in particular. Some of
the analyses referenced below will have a broader scope than MT, i.e.,
apply to more Natural Language Processing applications.

“Since there is no accepted, clear definition of what a do-
main is with regard to Machine Translation, there is no ac-
cepted definition of the term Domain Adaptation either.”
Carpuat [2014]

This statement by Carpuat is typical, and also reiterated by Cuong
and Sima’an [2017] who considered the definition question open. Of-
ten, a notion of domains is referenced without specific criteria for how
they are separated, other than that a text corpus is attributed to some
domain, such as news, medical text or subtitles. While consensus on
a precise definition is missing, this does not entail that the existing
definitions are conflicting. Despite being hard to define and delimit,
domains do exist, much like other Artificial Intelligence terms like
intelligence and creativity.

Mabhajan et al. [1999] used the terms domain and topic interchange-
ably and made the following observation:
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“Topic of discussion is a dynamic concept. It can change
over time within the same document and new topics of
discussion can also get created with new developments.”

From a Machine Learning perspective, Jiang [2008] defined Domain
Adaptation as:

“exploiting labeled data from the source domain to help
train classifiers in the target domain...”

in an analysis of Domain Adaptation in Natural Language Processing.
In that study, the experimental tasks were formulated as classification
problems. Furthermore, Jiang confronted a major point observing
(author’s emphasis) the following:

“Although the focus on domain adaptation in natural lan-
guage processing in this thesis, most of the analysis of the
problem and the proposed domain adaptation techniques
are not restricted to natural language processing problems
but can be generally applied to most classification tasks when
the training and the test domains differ.”

From a statistical learning point of view on Domain Adaptation, the
findings are relevant to all such tasks. Fundamentally, a statistically
learned model assumes that the evaluation data on is distributed iden-
tically to the training data. Practically, this is never the case, which
gave rise to the questions studied by Jiang.

Blitzer [2008] emphasized the data sparsity of target domains in the
definition:

“Domain adaptation methods provide a way to alleviate
the problem of creating training sets for different domains
by generalizing models from a resource-rich source do-
main to a different resource-poor target domain.”

without going into the specifics of what domains are, other than differ-
ent probability distributions. The focus was on how sparse in-domain
training data is a practical problem that is relevant for Machine Trans-
lation.

Plank [2011] defined a domain as a hypernym over any types of text
variability, such as topic, genre, style, medium, and vocabulary, in a
thesis on Domain Adaptation of parsing systems. Furthermore, Plank
provided empirical evidence on the variability of sentence length across
domains, and stated the following concerning the goal of DA:

“Therefore, the goal of domain adaptation is to develop
algorithms that allow the adaptation of NLP systems to
new domains without incurring the undesirable costs of
annotating new data.”
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This description is also centered around the cost of annotation, an-
other practical problem in applications, which is related to having
little in-domain data as more annotation means more domain-specific
training data.

Chen et al. [2013] understood the term domain as a particular com-
bination of facors along which domains vary, such as genres, topics,
and dialects.

Sennrich [2013b] considered Domain Adaptation as important for
Statistical Machine Translation, due to linguistic phenomena such as
homonyms and polysemous words. While the study included an em-
pirical assessment of the differences between the two considered text
domains, the discussion of what a domain is was limited to subject
matter (following Lee [2001]). However, that domains vary over other
dimensions was mentioned.

Hasler [2014] saw Domain Adaptation and Topic Modeling as sub-
fields of Machine Translation, which concern building systems that
are suited to translate either a given type of input text or a specific text
instance. Thus, the author emphasized the design of adapted systems,
in contrast to the alteration of a present system to an adapted system.
Moreover, Hasler defined the domain as the source of a text corpus
(such as text about news), and topic as the latent variables in a prob-
abilistic model of topics. According to this view, Topic Adaptation
is fine-grained DA under the assumption that there can be multiple
distributions of domains on the same dataset, as opposed to datasets
being domain-homogeneous.

Corpora that separated topic and genre differences were created by
van der Wees et al. [2015] for experiments to investigate their rela-
tive impact on Domain Adaptation of Machine Translation systems.
The authors found that genre-specific errors were more attributable
to model coverage than topic-specific errors.

4.2 DOMAINS IN LINGUISTICS

In Linguistics, the understanding of domains is tied to Lexical Seman-
tics, i.e., the study of the word meaning, not grammatical function.
Carpuat et al. [2012] argued that errors due to unseen words and
word senses account for most errors when moving into a new do-
main in Machine Translation. Thus, word meaning is a vital aspect of
Domain Adaptation.

The history of Lexical Semantics (LS) since 1830 can be divided into
three phases, viz.: (i) Historical-Philological, (ii) Structuralist, and (iii)
Post-Structuralist Semantics [Geeraerts, 2010]. In the second of these
phases, Lexical Field Theory (also known as Semantic Fields) [Trier,
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1973] emerged as a way of explaining the structure of the lexicon and
the relations between words.

Trier characterized such lexical (semantic) fields as mosaics of sets
of related lexical items with interdependent meanings. These delin-
eated lexical fields consist of sense-related words. The theory was
not uncontroversial, e. g because the mosaic metaphor is suggesting
hard borders between fields exist. Nonetheless, a relationship can be
inferred between this theory and modern ideas like semantic nets. A
similarity between Self-Organizing Maps such as the ones presented
in Figures 4 and 7 on Pages 9 and 19 and a mosaic is apparent.

4.2.1 A Theory of Semantic Domains

Gliozzo and Strapparava [2009] developed a theory of Semantic Do-
mains based on Lexical Field Theory. The hypothesis of lexical coher-
ence conjectures that a large part of the lexical concepts in a specific
text belongs to the same domain, and constitutes the founding idea
behind the theory. Additionally, language games [Wittgenstein, 1953]
were used as the theoretical basis for delineating these Semantic Do-
mains by inspecting real data in such a way that Semantic Domains
arise from words as they are used (i. e., meaning-is-use). Each of the
texts from which Semantic Domains are induced comprises language
games of their own. While the “theoretical void” of delineation in
Lexical Field Theory is filled by positing that Semantic Domains are
defined by the properties of domain-specific corpora, the delineation
of those texts was not theoretically addressed.

Nonetheless, the theory established a computational model for Se-
mantic Domains and a way of characterizing them. Such domain
models are tabular expressions of the relative importance of terms
and domains. Gliozzo and Strapparava [2009, p.20] defined Semantic
Domains as:

“Semantics Domains are common areas of human discourse,
such as Economics, Politics, Law, Science, etc., which demon-
strate lexical coherence.”

Table 4 shows an example of a domain model. The numbers indi-
cate the domain relevance, for which a function R(D,, O) is defined
to indicate the relevance of a domain D, to a linguistic object, O. Do-
main relevance could be established either from hand-made sources
such as WordNet Domains [Magnini and Cavaglia, 2000] or via unsu-
pervised algorithms such as Latent Semantic Indexing.

Gliozzo and Strapparava [2009] applied domain models to several
Natural Language Processing tasks, such as Word Sense Disambigua-
tion and (Cross-lingual) Text Categorization, and reported consistent
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Medicine Computer Science

HIV 1 0
AIDS 1 0
virus 0.5 0.5

laptop 0 1

Table 4: Example of a Domain Model.

performance improvements. By building Multilingual domain mod-
els from parallel corpora, comparable corpora, and dictionaries, such
models could be used to quantify the similarity between documents
from different languages.

4.2.2  Domains and Sublanguages

The term sublanguage [Lehrberger, 1982, Luckhardt, 1991] is closely
related to domains. Constituting subsystems of language that, e.g.,
arise in a subject-matter domain, sublanguages are potentially infinite
in number. Despite observing that:

“Sublanguages have been characterized in various ways,
but there is no widely accepted definition of them.”

Kittredge [1983] considered the following factors as present when a
subset of natural language was restricted enough for efficient seman-
tic processing: (i) restricted domain of reference, (ii) restricted pur-
pose and orientation, (ii) restricted mode of communication, and (iv)
community of participants sharing specialized knowledge. Regard-
ing the term sublanguage as relatively new, Kittredge and Lehrberger
[1982] recognized the need for sharpening its definition.

Lehrberger [1982] presented a descriptive study of a text corpus
comprised of about 70,000 words regarding instructions for aircraft
maintenance and analyzed it as a sublanguage in connection with
studies of translation. Figure 22 on Page 85 lists factors that help to
characterize sublanguages, as a result of the study. The syntactic and
semantic restrictions in point 2 are exemplified by, e.g., non-use of
questions in instruction manuals, or words like air and flap only being
used concretely, or verbs being restricted in their complements. De-
viant rules of grammar are exemplified by sentences that are normal
in the sublanguage but would be considered ungrammatical in the
standard language. Finally, particularities in text structure (point 5)
are exemplified by numbered sections and linking devices between
neighboring sentences.
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1. Limited subject matter.

2. Lexical, syntactic and semantic restrictions.
3. Deviant rules of grammar.

4. High frequency of certain constructions.

5. Text structure.

6. Use of special symbols.

Figure 22: Factors which help to characterize sublanguages [Lehrberger,
1982].

However, the term sublanguage itself has not been uncontroversial,
as the connotations to set theory presupposes that there exists a su-
perlanguage from which sublanguages can be separably cut out [Karl-
gren, 1993]. Karlgren argued that this could make the concept seem
unrealistically simple, and preferred the term register [Zwicky and
Zwicky, 1982]. However, the disagreement appears largely about se-
mantics, as Lehrberger [1982] stated:

“Furthermore, sublanguages overlap and their interrela-
tions form a part of the description of the language as a
whole. A language is not simply a union of sublanguages

”

Moreover, Lehrberger argued that a sublanguage is not merely a sub-
set of the set of sentences of a language, and could have a grammar
of its own, not restricted to a subset of the grammar of the standard
language.
Melby [1997] distinguished between the terms in the following def-
inition:
“A sublanguage could be considered to be a case of domain-
specific language that is naturally rather than artificially
controlled”

Kittredge [2003] further refined the notion of sublanguage by intro-
ducing the phenomenon of natural sublanguage, contrasting it with con-
trolled language as two types of sublanguages, arising spontaneously
within a domain or imposed by conscious design, respectively.

Additionally, Lippincott et al. [2011] explored subdomain variation
in biomedical literature (considering sublanguages as associated with
domains) and Temnikova et al. [2014] created a tool for assessing the
sublanguage characteristics of corpora automatically.
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4.2.3 Sublanguages and the Feasibility of Machine Translation

Kittredge and Lehrberger [1982] argued that similarity between sub-
languages across languages should make translation easier due to the
similarity between linking devices, i.e., the way sentences are inter-
connected (such as repetition of words or sharing pronouns).

Relaxing the constraints on what successful Machine Translation is,
makes the task easier. In fact, MT is trivial if the input is completely
controlled, e. g., to one particular sentence. The (in)feasibility of MT
was debated since its early stages as a function of such requirements.
Yehoshua Bar-Hillel claimed in the 1950s that ambiguity resolution
required a “Universal Encyclopedia” [Hutchins, 1999] and that this
entails that Fully Automated High-Quality Translation (FAHQT) is
not feasible.

Refinements of what the feasibility of Machine Translation requires
ensued. Kay [1997]" maintained that MT only could produce useful
results under very special circumstances, repeating the concerns of
Bar-Hillel 20 years earlier, and extending the above abbreviation with
General Purpose (GP). “Purpose” could mean text within a specific
domain, thereby integrating Domain Adaptation in the high-level de-
scription of translation.

Melby [1997] plotted the feasibility of Machine Translation in a 2x2
matrix with domain-specific language and dynamic general language
along one axis and high-quality and indicative translation (i.e., gist-
ing) on the other, and claimed that MT did well in the high-quality,
domain-specific box.

4.3 DOMAIN ADAPTATION AND STATISTICAL MODELING

As seen in some of the definitions in Section 4.1, Domain Adaptation
can be regarded as the adaptation between two probability distribu-
tions, i.e., the source, and target domains. Hence, DA considered at
this level would apply to any statistical learning problem.

Jiang [2008] analyzed Domain Adaptation from a theoretical Ma-
chine Learning perspective, addressing the following subproblems:

* The difference between the joint distributions (intrinsic prob-
lem).

* The difference between the optimal classification functions for
the two domains.

* Whether the domain difference comes from special characteris-
tics in the target domain or those in the source domain.

1 First appeared as a Xerox PARC Working paper in 1980.
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The analysis points to differences between the source domain(s) and
the target domain according to properties of the respective statistical
distributions. Adaptation targets pick up novel characteristics in the
target domain, such that the resulting, adapted model can correctly
classify instances that belong to it.

Blitzer [2008] also analyzed making changes to distributions to fit
the data in the target domain better. In a binary classification scenario,
a domain was considered a pair consisting of a distribution D on X
and a labeling function f : X — [0,1]. X is a set of instances (such
as words or Part-of-Speech tags) and their contexts, and f a labeling
function (here, attributing one of two possibilities). The value of f(x)
corresponds to the probability that the label of x is 1.

Two such pairs were considered, the source domain (Dg, fs) and
a target domain (Dr, fr). A hypothesis h : X — {0,1} is a predictor
that indicates to what degree the instance belongs to a label, and the
ideal hypothesis minimizes the probability of disagreeing with both
(Ds, fs) and (D, fr). If this ideal hypothesis performs badly, little
gain from using source domain data could be expected in the target
domain.

4.4 CATEGORIZATIONS OF DOMAIN ADAPTATION METHODS

This section includes some categorizations of Domain Adaptation
methods before the next sections will review specific research efforts.
Broadly, the approaches can be categorized according to the level they
target, whether the methods focus on the corpora or the Machine
Translation methods, or on the availability of data.

4.4.1  Domain Adaptation on Different Levels

Domain Adaptation is a general problem for statistical modeling, and
some general methods used in statistical learning were discussed
above. However, not all DA methods found in general Machine Learn-
ing can be directly applied to Statistical Machine Translation [Carpuat
et al., 2012]. Due to the log-linear combination of Translation Model
and Language Model features in decoding, it is not possible to cast
Machine Translation directly as a classification problem, although
some sub-processes can be.

Domain Adaptation applies to any of the sub-processes in a Ma-
chine Translation pipeline that deviate with domains. Figure 23 di-
agrams how different DA methods relate to their placement in a
pipeline. The diagram is not intended as a flowchart but instead di-
vides the process into key components. Sub-processes and methods
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Figure 23: Overview of Domain Adaptation levels in Machine Translation.

are mixed, with the sub-processes in a pink shade and the adaptation
methods in blue. Several of the methods are relevant to more lev-
els, such as data selection that applies to Language and Translation
Models.

4.4.2  Corpus and Model-Focused Adaptation

Domain Adaptation can also be categorized along other dimensions,
such as the distinction between corpus- and model-focused adapta-
tion. There is a conceptual difference between methods that use dif-
ferent portions of training data, but the same procedure for creating
the models, and other methods that make alterations to an already
built model. Since it has been shown that adding more data has con-
sistently improved Statistical Machine Translation performance, e.g.,
Brants et al. [2007] and Dyer et al. [2008], simply adding more train-
ing data to the data-driven model will increase coverage, and thereby
domain coverage, as domains’ representation in the training data will
increase. However, in some DA experiments, adding all data has not



4.4 CATEGORIZATIONS OF DOMAIN ADAPTATION METHODS

been necessary to acquire the same increase in performance. Much
work has gone into identifying relevant portions of an available text
corpus to attain this performance gain with a selection of data.

Active Learning strategies have also been applied to Machine Trans-
lation, e.g., Haffari et al. [2009] and Bloodgood and Callison-Burch
[2010], where the former also applied the method to Domain Adap-
tation. Active Learning strategies select salient sentences for human
evaluation and feed them back into the MT pipeline.

Wang et al. [2014] and Joty et al. [2015] divided Domain Adaptation
into a) corpus level methods and b) model level methods. Corpus
level methods combine and select among available training material,
while the model methods combine the resulting models, e. g., mixture
modeling.

Alternatively, the models can be manipulated, e. g., by altering Lan-
guage Model counts directly [Iyer et al., 1997] or adding Translation
Model and LM entries, [Wang et al., 2016]. In the following, methods
that make alterations to how models are created are also considered
model-focused.

4.4.3 Adaptation and Data Availability

Pecina et al. [2015] focused on the availability of data. The authors
divided the literature into three according to data availability; either
(i) available, and could be directly used in training (often by interpo-
lating in and out-domain models), (ii) existing, but not readily avail-
able and needing to be acquired by data mining, or (iii) unidenti-
fiable sources of in-domain data such that pseudo-domain must be
used. Furthermore, they argued that there are three ways to use ei-
ther monolingual or bilingual data to adapt Language or Translation
Models; (i) simple concatenation and retraining, (ii) linear interpola-
tion, and (iii) log-linear interpolation.

4.4.4 Adaptation and the Specificity of Target Domains

Foster and Kuhn [2007] separated Domain Adaptation approaches
on whether the target domain was specific or unknown. A situation
where the target domain is known beforehand with some in-domain
material available was termed cross-domain adaptation. In contrast,
dynamic adaptation assumes no knowledge about the target domain.
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4.4.5 Induction and Combination of Models and Features

In a survey of Domain Adaptation of Statistical Machine Translation,
Cuong and Sima’an [2017] separated the work into sections on the in-
duction and combination of phrase translation tables, lexical weights,
and reordering probabilities. Methods such as instance weighting
and data selection fall under induction, and linear and log-linear
combinations of models fall under combination. Additionally, Cuong
and Sima’an had a separate section for “other trends”, which include
methods such as multi-domain adaptation and cache-based systems.
These methods will be discussed in the next section.

4.5 REVIEW OF SELECTED DOMAIN ADAPTATION METHODS

Considering the divisions of Domain Adaptation approaches outlined
in the previous section, some examples from the literature follow be-
low. This review is not intended to be exhaustive but rather to high-
light some relevant methods to put the work presented in this thesis
into perspective. The continuously updated StatMT.org survey wiki
(see Section 3.1.3) has a separate section on DA.

This chapter introduced the structure of Domain Adaptation as a
three-fold process directed at some level of analysis. While this is
helpful in surveying related work, there are overlaps between meth-
ods and sub-processes, e.g., data selection methods used for both
language and translation modeling or data selection criteria used for
domain identification and mapping instances to domains. Hence, the
review in the remainder of this section is structured as follows: First,
DA directed at particular levels is discussed. Next, methods for iden-
tification, mapping, and leveraging are presented, before the section
finishes with a discussion of multi-domain adaptation. All methods
target at least one level of representation, and the structure is aimed
at highlighting the salient parts of the surveyed work.

4.5.1 Adaptation Specific to Levels

The work presented in this subsection is directed at specific levels,
notably Language Models, and also the alignment process that can
be evaluated standalone. Some of this work also targeted Translation
Models. That work was mostly evaluated extrinsically and will be
described in the following sections.
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4.5.1.1 Language Model Domain Adaptation

Early work on the Domain Adaptation of Machine Translation mod-
els focused on Language Model adaptation, which was already well
underway in the Automatic Speech Recognition community. Such re-
search efforts include Carter [1994], who clustered input sentences ac-
cording to the best Language Model by linear combination of these
clusters, lIyer et al. [1997] who interpolated LM counts, Rosenfeld
[1996] who used trigger words (i. e., domains are triggered by words)
in Maximum Entropy modeling, Mahajan et al. [1999] who retrieved
similar documents to the input and built new, termed dynamic Lan-
guage Models, on the retrieved documents, and Janiszek et al. [2004]
who retrieved similar documents using Singular Value Decomposi-
tion and augmented the corpus counts with the corpus of retrieved
documents. Also, Gao et al. [2005] compared linear interpolation to a
selection of discriminate methods (optimizing a feature weight vector)
based on an in-domain development corpus, applied to a specialized
task of converting Japanese signs into string form, of which Language
Models are integral parts. Adaptation of Language Models was sur-
veyed by Bellegarda [2004].

Applied to Machine Translation, Eck et al. [2004] retrieved docu-
ments based on their similarity with an initial translation of the input
document. Similarity was defined as the cosine of the angle of the
vectors, vectorized with tf-idf counts. Subsequently, domain-adapted
Language Models were created with these documents. The input doc-
ument was then translated again, using this Language Model in de-
coding. The most similar documents (10, 100, 1000) and sentences
(100, 1000, 10k, and 100k) were retrieved from a larger document
collection. Eck et al. concluded that sentence level retrieval per-
formed better in terms of perplexity reduction, but extrinsic evalu-
ation showed that the correlation between improvement of the Lan-
guage Model and the overall Statistical Machine Translation task was
weak.

4.5.1.2 Translation Model Domain Adaptation

Hildebrand et al. [2005] expanded their earlier work on Language
Model Adaptation [Eck et al., 2004] to Translation Models, by simi-
larly using Information Retrieval techniques to select the sentences in
the training material that were similar to the test set. Adapted TMs
were created by selecting extra training material more similar to each
sentence in the test corpus and re-training a TM on that selection. This
work was combined was with an adapted LM, showing small changes
in areas such as language pairs and selection criteria. This method is
based on training a new adapted TM for each input sentence, which
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raised questions about scalability. Translation would potentially be
very slow because of re-training, or the TMs would have to be small.

4.5.1.3 Domain Adaptation of Alignment Models

Civera and Juan [2007] applied mixture modeling to the alignment
process in Statistical Machine Translation (see Section 3.1.3.2). Mix-
ture models model an overall population probabilistically by repre-
senting the presence of subpopulations therein, each modeled by sepa-
rate probability distributions. When these distributions are weighted,
they form a mixture distribution. Experiments used 1 to 4 compo-
nents in the mixtures with parameters estimated with the Expectation-
Maximization algorithm. Two corpora (Europarl Koehn [2005] and
News Commentary [Tiedemann, 2012]) were used for the language
pair English-Spanish, bi-directionally. An extrinsic evaluation was
done with a Statistical Machine Translation system using these align-
ments. Some improvement of BLEU score was reported for the News
Commentary corpus for the direction English-Spanish.

4.5.2 Identification of Structures

The initial step of Domain Adaptation, the identification of structures,
establishes the idiosyncrasies of each domain. When using labeled
corpora, it is (normally) assumed that a corpus belongs to the do-
main corresponding to its label. Otherwise, such structures can be
identified through the acquisition of more training material, or the
selection of data from a larger, general corpus. This subsection is
ordered correspondingly.

4.5.2.1 Data Acquisition

Wu et al. [2008b] used an in-domain dictionary and a monolingual
corpus to improve a Statistical Machine Translation system. A sec-
ond phrase table was created from the in-domain dictionary, giving
the phrases from the dictionary probabilities according to their im-
portance as translations, measured as 1/n where n is the number
of translations for that entry. The two phrase tables were then com-
bined using linear and log-linear interpolation, as were the Language
Models built from in- and out-domain data. The method gave ab-
solute improvements of 8.16 and 3.36 BLEU points for the language
pairs English-Chinese and English-French, respectively. The best re-
sults came with linear interpolation.

Bertoldi and Federico [2009] used monolingual in-domain data by
translating a monolingual corpus into the target language (running
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the experiment in both directions), thereby synthesizing a parallel cor-
pus. The experiments were done on the United Nations® and Europarl
corpora. A performance gain was found when parallel corpora were
synthesized by translating Target, but not Source Language data.

Daumé and Jagarlamudi [2011] addressed unseen words in Statisti-
cal Machine Translation by mining dictionaries for such. The authors
argued that unseen words represent a significant problem when mov-
ing between domains, and searched dictionaries for tokens missing
from the phrase table. Later, these entries were used in the SMT
model by including them as a quasi-parallel corpus. Results were
reported to improve from o.5 to 1.5 BLEU points.

4.5.2.2 Data Selection

Zhao et al. [2004] retrieved similar sentences from a document collec-
tion based on initial translations. A new, specialized, Language Model
was built on these documents, subsequently interpolated with the
original, assumed general LM. Tf-idf weighting was used to retrieve
sentences in this project, building queries based both on bag-of-words
and Structured Query Models, which enable the inclusion of syntactic
and semantic information with the use of proximity operators. The
authors cited better results using this retrieval method than the bag-
of-words method. While the Gigaword? corpus was used, the largest
experiments retrieved only 4000 sentences.

Moore and Lewis [2010] proposed an alternative method for select-
ing relevant sentences from an out-domain corpus to build an auxil-
iary Language Model. The experiments were done on the Europarl
and Gigaword corpora*, where the former was used as in-domain text.
This method selected sentences from the Gigaword corpus by measur-
ing the difference in cross-entropy from an LM built on the English
side of the English-French Europarl corpus and a random selection of
N sentences from Gigaword corresponding in size:

Heu(s) —Hn(s) (55)

The Gigaword corpus was segmented into eight equal portions, ranked
after this difference, from which new LMs were built. Subsequently,
the models were tested on a held-out portion of Europarl. Moore
and Lewis compared the method with other selection criteria, such
as ranking the sentences only on the perplexity score from the Eu-
roparl corpus alone (corresponding to Gao et al. [2002] and Lin et al.
[1997]), and scored each Gigaword sentence on the log-likelihood of

2 https://conferences.unite.un.org/uncorpus (Last visited: March 27, 2019.)
3 https://catalog.ldc.upenn.edu/LDC2003T05 (Last visited: March 27, 2019.)
4 Third edition.
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the tested Europarl corpus on unigram models built with and without
this sentence, as well as to a random selection of Gigaword sentences.

Results using all selection methods converged as more and more
text was added, until all available text was selected, at which point
the auxiliary Language Models were equal. The method used the
difference in cross-entropy, and it reported to have lower perplexity
than all of the other methods until all data was added. More impor-
tantly, reached lower perplexity than adding the whole corpus, also
after using only a small portion of the data.

Axelrod et al. [2011] did a similar extraction of pseudo-in-domain
sentences based on cross-entropy measures — pseudo because they are
similar, but not identical to in-domain data. Expanding the method
proposed by Moore and Lewis [2010] by measuring the difference
in cross-entropy between the in-domain and out-domain models on
the source level, they proposed a measure motivated by the bilingual
nature of translation:

Hi_gre(s) —Ho—sre(s) + HI—tgt(t) - HO—tgt(t) (56)

which includes the corresponding difference on the Target Language
side’.

These pseudo-in-domain corpora were used to train smaller Statis-
tical Machine Translation models adapted to the target domain, and
performing better than a model built on the entire material. Scores im-
proved more when the models were combined. Discarding as much as
99% of the original, general-purpose corpus, Axelrod et al. achieved
better (1.8 BLEU points) results with the pseudo in-domain corpus.

Axelrod [2017] proposed an idea of adding sentences based on their
marginal contribution to cross-entropy (not yet empirically evaluated)
consisting of both a penalty and a gain term. Axelrod argued that this
would not treat the in- and out-domain Language Models as opposing
ends, taking into account that portions of them can be similar.

Duh et al. [2013] experimented with a similar selection criterion as
Axelrod et al. [2011] but using Neural Network Language Models, not
n-gram models. Sentences selected by the criteria were compared in a
Statistical Machine Translation translation task. The authors stressed
that the difference between the language modeling frameworks was
not dramatic. Still, the overlap between the selected sentences was
reported to be in the range of 60-75%. This method achieved improve-
ments from 0.1 to 1.7 BLEU points on the translation task.

Axelrod et al. [2011] used s, not t also on the target language side, but this was
changed for clarity.
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Wang et al. [2014] introduced an edit-distance approach to select-
ing relevant corpora. The edit-distance was based on the normalized
Levenshtein [1966] score:

LD(Sg, Sg)

FMS =1— —— =28
Max(|Sgl, ISrl)

(57)
Sg and Sg denote sentences from the general and in-domain corpora,
respectively. The general corpus consisted of more than 1M sentences
from various sources (mainly from the Linguistic Data Consortium),
and the in-domain corpus came from the Hong Kong Law Corpus®.

The experiments mainly targeted exploring differences between se-
lection criteria. Linear interpolation both of corpora directly and mod-
els was done, but without a thorough investigation of the interpola-
tion parameters. First, sentences were retrieved based on the various
criteria, and then their impact on BLEU score was measured. Differ-
ences were small, but combined models did best, followed by perplex-
ity, IR, and edit-distance selection criteria.

Banerjee et al. [2015] used Quality Estimation (QE) of translated
sentences as the basis for data selection, i.e., selecting out-domain
sentences similar to those with the worst translations according to
this QE, such that the weakness of the Statistical Machine Translation
model is targeted in the Domain Adaptation process. First, the quality
of translations was estimated, using only monolingual data by train-
ing a classifier. Next, relevant sentences from the out-domain corpus
were selected, and finally leveraged as linearly interpolated (weights
estimated with Expectation-Maximization) Language and Translation
Models in the Moses Statistical Machine Translation system. Banerjee
et al. found that this selection method performed better on the over-
all translation task than either using all supplementary data or other
selection strategies.

Bigici [2015] experimented with instance selection based on a Fea-
ture Decay Algorithm (FDA), and Dice’s coefficient [Dice, 1945] which
provides an association score for each word position pair. The features
used were n-gram overlaps and the output of the common cover link
algorithm [Seginer, 2007], an unsupervised parsing algorithm that
provides links between head and base words. Experiments compared
the algorithms after how instances were selected. Two domains were
used, and a parameter « determined their relative share of the sam-
pling pool. The best method produced almost as good BLEU results
as a baseline system with 2M sentences using only 10,000 selected
instances.

6 Linguistic Data Consortium: LDC2004To8.
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4.5.2.3 Unsupervised Methods

Sennrich et al. [2013] used an adaptation of K-means clustering on
a concatenated corpus of in- and out-domain data, with 10 and 100
means, respectively, both on document and sentence level. Two dis-
tance functions were applied; (i) using Language Models as centroids
and their scores as distances and (ii) using Word Sequence Kernels
[Cancedda et al., 2003]. Furthermore, exponential decay was used
with the distance function to capture that words that are close to each
other in the text belong to the same domains. Separate models were
built from these clusters, interpolated similarly as by Foster and Kuhn
[2007], using perplexity minimization on a separate development cor-
pus to determine the interpolation weights. In contrast, the baseline
methods used sentence or document level distances to predict a do-
main and combining the domain-specific model with a general one
using fixed weights. These experiments also showed that perplexity
optimization performed as well as — or better than — competing
methods.

Hasler et al. [2014] combined Topic Modeling with Domain Adap-
tation using interpolation as per Sennrich [2012a]. Topic Models are
built using Latent Dirichlet Allocation, which estimates the parame-
ters for a set of multinomials sampled from a Dirichlet distribution,
resulting in a distribution over words for each topic, and a distribu-
tion over topics for each document. In place of documents, a context
was created for each phrase pair, all words in the sentence contexts
of each such pair.

The domain-specific information was implemented as a set of fea-
tures with information specific to each topic from the model, e. g., how
many times the source and target pairs were seen in the contexts. The
models were also used as domain classifiers, by comparing cosine
similarities between input documents and topics to determine their
provenance. Reported performance gains were modest (0.82 and 1.6y
BLEU points over unadapted and mixture models, respectively), but
the method was a template for how Topic Modeling could offer finer
granularity on the document level on top of broader text categories,
as well as an unsupervised method for domain classification.

4.5.3 Mapping of Structures to Distinct Domains

The mapping of the structures at a given level is a prerequisite for its
subsequent use in an application. Often, the same criteria as used for
data selection in the previous subsection can also be used to attribute
a domain to an input document or string. Otherwise, this can be cast
as a classification problem.
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4.5.3.1  Domain Identification

Xu et al. [2007] built separate Statistical Machine Translation mod-
els for each domain based on little in-domain data for, building both
Translation and Language Models. These models were combined with
a larger, general SMT system, to mitigate data scarcity. Domain Adap-
tation was implemented as a classification task; a document was clas-
sified before translation into domains, and the corresponding SMT
model was used for translation. Classifying the right domain for an
input document was reported as more accurate when data selection
was done with perplexity (LM score) than with a similarity score be-
tween a document and the in-domain collection based on the number
of shared words (termed an Information Retrieval method).

4.5.4 Leveraging Domain Knowledge to Translation

There is a variety of options for leveraging the obtained structures for
translation. Many methods are based on mixture modeling or interpo-
lation of more Language or Translation Models, evaluated jointly or
separately. Moreover, experiments have been done using, e. g., caches,
dynamic phrase tables, Artificial Neural Networks, and also manual
adjustment of parameters.

4.5.4.1  Cache Models

Tiedemann [2010] used caches for Domain Adaptation, either imple-
mented directly in the Language Model software using interpolation
or as a feature in log-linear decoding. The cache contained recently
seen events, either in the Language Model or the Translation Model.
Without needing domain-specific training data (other than for inter-
polation weights), this method could be applied to any new domain.
Furthermore, a decay factor was introduced to diminish the impact of
the cache proportional to the time since the last observation. Improve-
ments in BLEU score of 0.78 (2.6% relative) were reported.

Louis and Webber [2014] included domain-specific information in
cached Language Models as features in log-linear decoding. This
work leveraged the structure of Wikipedia documents and the domain
characteristics of biographies to create specialized caches for the gen-
eral domain and sub-topics, respectively. The sub-topic caches were
obtained by topic modeling with Latent Dirichlet Allocation. The au-
thors reported improvements of 0.5 BLEU points.
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4.5.4.2 Dynamic Phrase Tables

Dynamic phrase tables are auxiliary phrase tables in Statistical Ma-
chine Translation systems that are created especially for the current
input and combined with an existing, primary phrase table. Thus,
source-side information that is relevant within a certain time window
is retainable, such as domain provenance affecting lexical choice on
phrasal or word level. Feeding post-editing results being back into a
live system [Germann, 2014] is also possible.

Sennrich [2011] implemented dynamic phrase tables using an alter-
native scoring mechanism. In contrast to Maximum Likelihood Esti-
mation (MLE) scoring, the proposed method factored in the frequen-
cies used to make MLE scores in the primary corpus when scoring the
dynamic phrase table. That increased coverage (recall) but still took
the in-domain characteristics of the dynamic corpus into account (pre-
cision). The method was evaluated on the bilingual (French-German)
Swiss Alpine Club Annals [Volk et al., 2010].

The alternative scoring was evaluated using two approaches to Ma-
chine Translation, both implementable with dynamic phrase tables;
multi-engine learning (i.e., training dynamic phrase tables with the
output of multiple MT systems) and on-line learning (i.e., training
dynamic phrase tables with corrections of translation output). Refer-
ence translations of already translated sentences were used to simu-
lated post-editing. The alternative scoring attained a gain of 0.73 and
0.78 BLEU points for the two approaches, respectively.

4.5.4.3 Interpolation

Lu et al. [2007] adapted a Machine Translation system to three differ-
ent domains from the Linguistic Data Consortium: the Hong Kong
Laws (LDC2004T08), Hong Kong Hansards (LDC2004T08), and the
FBIS News corpora (LDC2003E14). The authors reported that con-
catenating all the available data did not yield better results while ex-
perimenting with better ways of utilizing the available parallel data.
A distinction between off-line and on-line approaches was made. Lu
et al. used the concatenation of all three sources as the baseline cor-
pus.

In the off-line phase, documents were represented by tf-idf-trans-
formed vectors and retrieved ranked by cosine difference with the
input query, where the target domain was given. Each sentence in
the training data was treated as a document. The adaptation was
implemented as altered sentence weights of the original training data
with the retrieved sentences by using them in GIZA++ word alignment
(see Section 3.1.3.2). Counts from the retrieved sentences, close to the
target domain, were added before computing alignment.
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In the on-line phase, log-linear interpolation of sub-models, i.e.,
models built from the data from each of the domains mentioned
above, was done. For each input, similar sentences were retrieved
and used to determine the weighting of the sub-models. Four weight-
ing schemata based on different weightings of the proportion of each
retrieved document coming from each component were explored, but
results suggested that different weighting did not markedly impact
results.

Foster and Kuhn [2007] applied mixture modeling to both Lan-
guage and Translation Models. First, a corpus was clustered into com-
ponents; next models were built on each component before they were
weighted according to distance criteria. Finally, the models were com-
bined as a global model linearly and log-linearly. The crux of this ap-
proach is the weighting of the models. For cross-domain adaptation,
weights were set using the available in-domain data. For dynamic
adaptation, weights were a function of distance from the components
and the input document. Several distance metrics were used, e.g.,
tf-idf, LSI-reduced word and document frequencies, Language Model
scores, and weights obtained by using Expectation-Maximization on
a word-level mixture model. Foster and Kuhn found LM-based met-
rics to work better, and LM adaptation to yield better results than TM
adaptation.

Sennrich [2012a] experimented with different methods for interpo-
lating Translation Models, either by weighting counts when estimat-
ing translation probabilities, or two ways of linearly interpolating the
scores. This work moved away from the in-domain or out-domain
dichotomy and experimented with four and ten domains simultane-
ously. Interpolation weights were set by minimizing TM perplexity
on the in-domain development data. While results were modest, Sen-
nrich argued that perplexity minimization is a robust baseline for TM
interpolation. Furthermore, the expected gains of custom interpola-
tion gains depend on how close the interpolated domains are. Uni-
form weights (corresponding to concatenation) were expected to work
better for closer domains.

4.5.4.4 Manual Alterations

Offersgaard et al. [2008] studied the use of Translation Model inter-
polation for Machine Translation systems in production. The study
was conducted in connection with a comparison of Statistical Machine
Translation and Translation Memory for a Linguistic Service Provider.
For domains as close as camcorders, software, DVDs, printers and mobile
phones, interpolation increased BLEU scores in the range of 2.2 to 3.7
with a zero gain outlier and reduced TER rates in the range of 1.8
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to 2.8 points (with the same outlier). The interpolation weights were
manually set.

4.5.4.5 Continued Training of Neural Machine Translations Systems

Neural Machine Translation has been reported to perform either worse
than or on par with Statistical Machine Translation for low-resource
domains [Zoph et al., 2016]. Zoph et al. used transfer learning, i.e.,
using parameters learned from high-resource language pairs to im-
prove results on other tasks, but Domain Adaptation methods would
also have been applicable.

For Domain Adaptation of Neural Machine Translation systems,
continued training is a method used, e.g., by Sennrich et al. [2016],
where a generic system is trained on out-domain data, and parame-
ters are later fine-tuned on a smaller corpus by continued training.
Both parallel and monolingual data (e.g., by back-translating a syn-
thetic corpus) can be used for this. Chu et al. [2017] expanded this
idea by proposing mixed-fine tuning, where the tuning is done on a
mixture of out- and in-domain data to reduce the problem of overfit-
ting.

4.5.4.6 Neural Network Joint Models

Joty et al. [2015] trained Neural Network Joint Models (NNJMs) on in-
domain and out-domain data and later combined them into adapted
models referred to as Neural Domain Adaptation Models (NDAMs).
NNJMs model Target and Source Language information jointly, inte-
grated as an additional Language Model feature in log-linear decod-
ing [Devlin et al., 2014]. The NNJMs were trained on the whole data
but regularized with the in-domain data (by an alternative definition
of the loss function). The data selection methods were similar to Ax-
elrod et al. [2011]. However, there are clear differences, as Joty et al.
did scoring at the bilingual level and also retained coverage by not dis-
carding unused out-domain data. Instead, the weights of data similar
to in-domain instances were altered.

4.5.4.7 Phrase-Sense Disambiguation

Carpuat and Wu [2007b] introduced Phrase-Sense Disambiguation
(PSD), which is Word Sense Disambiguation-style disambiguation ex-
tended to the phrase level, i.e., that entire phrases (in the Statistical
Machine Translation sense) are disambiguated based on Source Lan-
guage information. Carpuat et al. [2012] applied standard Domain
Adaptation techniques like interpolation and data selection to PSD,
implemented as features engineered with the Vowpal Wabbit Machine
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Learning system [Langford et al., 2007]. The reported results were
modest for the method over the baselines.

4.5.5 Multi-Domain Adaptation

Multi-Domain Adaptation systems refer to Machine Translation sys-
tems that are adapted to more domains at the same time, in contrast
to adaptation to one specific target domain. In a Multi-Domain Adap-
tation setting, different input documents will be given different trans-
lations depending on domain provenance. Strategies include using
different configuration parameters for the decoder [Huck et al., 2015]
or using separate models altogether [Cui et al., 2013]. Domain mem-
bership can be assumed to be known, or established by a statistical
classifier [Banerjee et al., 2010].

4.5.5.1 Sentence Clustering and Bi-and Monolingual Domain-Specific Mod-
els

In the most similar work to the experiments presented in Part II, Ya-
mamoto and Sumita [2008] used unsupervised methods to cluster
both bilingual and monolingual data, subsequently using these clus-
ters for multi-domain Domain Adaptation. While the paper did not
use that term, it did take a distributional view of domains (i. e., with-
out pre-defined labels).

The authors argued for their method probabilistically, by making
several transformations of the Statistical Machine Translation objec-
tive function (Equation 18 on Page 48). A variable D for domain was
introduced, on which both Language and Translation Models depend:

argmax P(T|S, D) (58)
T

which, in turn, is transformed into a domain-conditioned formula-
tion interpretable as separated into Language and Translation Model
probabilities (the Bayes” Rule denominator P(S|D) is constant during
search and is left out):

argmax P(T,D) * P(S|T, D) (59)
T

On this background, and through a series of algorithmic operations
and approximations, Yamamoto and Sumita ended with a two-part
setup. The probability of each translation unit (word sequence, or
sentence) is first modeled to belong to some domain and later trans-
lated with a Machine Translation model particular to this domain.
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Clustering of the documents was done off-line. Domain adapted
translation, where a domain is attributed to the input and later trans-
lated with the corresponding model was done on-line. The algorithm
required a preset number of clusters and assigned sentence pairs to
these clusters randomly. Language Models were built from these clus-
ters, and the entropy (equations were not provided) for the documents
within the clusters was calculated. The entropy was summed for both
languages and all clusters and termed the total entropy. Bilingual
sentences were reassigned such that total entropy was reduced. This
process was repeated until reduction met a certain threshold, and the
clusters were returned. Bilingual corpora were clustered according to
the above procedure.

Sentences were evaluated on the above-mentioned Language Mod-
els as well as a general LM in the monolingual case. If any of the
domain-specific models had lower entropy than the general model,
the sentence was added to it. The system was evaluated both using
domain-specific Language and Translation Models separately, as well
as their combination. All systems improved results over the baseline,
with the largest improvement in BLEU terms for the combination (2.7
points). Results improved with 0.56 BLEU and o.5 Meteor points over
the baseline with the method proposed by Yamamoto and Sumita.

4.5.5.2  Multitask Learning

Motivated by the heterogeneity of input, Cui et al. [2013] created a
multi-domain system tailoring several domain-specific models. The
authors used Multi-Task Learning (MTL) [Caruana, 1997], a method
which trains more Machine Learning problems jointly to leverage
commonalities. In a complicated setup using an in-house hierarchical
phrase-based Machine Translation system, several domain adapted
models were created using a three-phase method; (i) selecting in-
domain bilingual data similar to Axelrod et al. [2011], (ii) training
in- and general domain models, and (iii) tuning the models jointly
using MTL.

Luong et al. [2016] used Multi-Task Learning for a translation task,
citing improvements of up to 1.5 BLEU points over single-task base-
lines. Martinez Alonso and Plank [2017] argued that MTL is not al-
ways effective but works well for auxiliary tasks with more compact
and uniform label distributions.

4.5.5.3 Multi-Domain Versus Mixed-Domain Translation

Huck et al. [2015] contrasted the multi-domain approach to a mixed-
domain approach, where all domains are mixed, i.e., concatenated
into one training corpus, which is used for training and tuning of the
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system. Besides the domain-specific models of translation themselves,
multi-domain approaches require a classification of domains, such
that the input can be translated with the optimal domain model. The
authors created three domain-specific models for a pre-defined set of
domains (Europarl, TED-talks, and News), by tuning the log-linear
weights of the model to the respective development sets. Further,
the general Language Model from the baseline system was replaced
with an interpolation of domain-specific LMs, as well as incorporating
provenance features binary signaling whether the input sentence was
seen in a given corpus.

Huck et al. explored several classification algorithms and concluded
that the multi-domain method was more reliable across language
pairs, while the mixed-domain approach worked well for half of the
pairs. Resulting differences in BLEU score were small (< 0.9), how-
ever.
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Part I1

EXPERIMENTS

The second part of the thesis contains experiments. First,
Chapter 5 presents experiments on identification of Multi-
word Expressions, followed by Chapter 6 with experiments
on building large-scale Language Models using HPC re-
sources. Next, a series of experiments on Self-Organizing
Maps and Machine Translation follows. Chapter 7 shows
a SOM implementation used for a standard classification
task, followed by Chapter 8 using SOMs with hierarchical
clustering to produce tangible clusters. Finally, Chapter 9
describes experiments that used these clusters for Domain
Adaptation of Machine Translation systems.






MULTIWORD EXPRESSION IDENTIFICATION

The first experimental chapter will present a computationally inex-
pensive method for the identification and translation of Multiword
Expressions (MWESs). Section 5.1 discusses related work before Sec-
tion 5.2 describes the datasets. Section 5.3 explains the methods used
in the experiments, and Section 5.4 presents the experimental results
before Section 5.5 sums up.

Multiword Expressions are sequences of words that exhibit some
kind of idiosyncratic interpretations on, e.g., syntactic, semantic, or
pragmatic levels [Yazdani et al., 2015]. Idiomaticity refers to the de-
viation of an MWE from the basic properties of component lexemes,
and compositionality refers to the degree to which the features of an
MWE combine to predict the features of the whole [Baldwin and Kim,
2010]. Baldwin and Kim defined MWEs as:

Lexical items that: (a) can be decomposed into multiple lex-
emes; and (b) display lexical, syntactic, semantic, and/or
statistical idiomaticity.

Multiword Expressions cause particular lexical choice problems in
Machine Translation, but can also be an opportunity both to gener-
alize outside the bilingual corpora often used as training data in Sta-
tistical Machine Translation, and as a vehicle to adapt to specific do-
mains. Identification of MWEs is important for many Natural Lan-
guage Processing tasks [Sag et al., 2002], but can be crucial in Word
Sense Disambiguation and MT. Because the semantics of many MWEs
are sufficiently non-compositional, a suitable translation cannot be
guaranteed by translating the words in isolation. Identifying MWEs
can help identify idioms or domain specific language use (leading
to better translations) and potentially reduce the amount of lexical
choice an MT system faces during Target Language generation.

The method proposed in this chapter uses bilingual dictionaries as a
source of Multiword Expressions. Relationships are induced between
the source sentence and candidate translation lexical items based on
their corresponding entries in the dictionaries. The approach was
combined with a data-driven baseline for evaluation on an adapta-
tion of the SemEval'10 cross-lingual Word Sense Disambiguation task
[Lefever and Hoste, 2010a]. Concretely, a deterministic Multiword Ex-
pression disambiguation procedure based on translation dictionaries
in both directions (from Source to Target Language and vice versa)
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is used, in comparison to a baseline system that ranks target lexi-
cal items based on their immediate context and an n-gram Language
Model. The n-gram model is a high-coverage, low-precision method,
which complements the dictionary approach.

Results showed that the dictionary method improves the baseline
system. Experiments also showed that when Multiword Expression
dictionary entries are identified, they tend to be particularly strong
translation candidates, suggesting that features based on MWE dictio-
nary entries have the potential to improve the performance of data-
driven Machine Translation methods. Furthermore, the method is
computationally cheap, and also expandable to any Source Language
words in an MT pipeline (only nouns were considered in these ex-
periments). When domain-specific dictionaries are available, as they
are, e. g., for law and medicine, these could be leveraged for Domain
Adaptation.

5.1 RELATED WORK

Nagy T. et al. [2011] discussed how methods for discovering Multi-
word Expressions (exemplified by nouns and light verb constructions)
could be adapted to different domains. The authors observed domain-
related differences in the frequency of MWE types, which impacted
the quality of Machine Translation.

In any translation effort, automatic or otherwise, the selection of
Target Language lexical items to include in the translation is a cru-
cial part. In Rule-Based Machine Translation systems, lexical choice
is derived from the semantics of the source words, a process that
often involves complex semantic composition. Data-driven systems,
on the other hand, commonly base their translations almost exclu-
sively on co-occurrences of bare words or phrases in bilingual cor-
pora. This approach leaves the responsibility of selecting lexical items
in the translation entirely to the local and bare context found in phrase
translation tables and Language Models without an explicit notion of
either source or target language semantics. Systems of this type have
been shown to produce reasonable translation quality without explic-
itly considering Word Translation Disambiguation. Carpuat and Wu
[2007a] found that the incorporation of Word Sense Disambiguation
systems into Statistical Machine Translation consistently improved re-
sults, although earlier work suggested the contrary [Carpuat and Wu,
2005].

The translation of Multiword Expressions can be a significant source
of errors for phrase-based Statistical Machine Translation systems [Pal
et al., 2013], despite that those systems explicitly recognize and use
alignments of sequential chunks of words. Several researchers ap-
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proached this problem by adding MWE translation tables to the sys-
tems, either through expanding the phrase tables [Ren et al., 2009] or
by injecting the MWE translations into the decoder [Bai et al., 2009].
Furthermore, there has been some interest in automatic mining of
MWE pairs from bilingual corpora as a task in itself: Caseli et al.
[2010] used a dictionary for evaluation of an automatic MWE extrac-
tion procedure using bilingual corpora. The authors recommended
stopword filtering, which was done in the experiments presented
below. Sharoff et al. [2006] extracted MWE pairs from comparable
monolingual corpora in place of a parallel bilingual corpus. Semmar
and Laib [2017] mined dictionaries of MWEs from parallel corpora
and used them in Domain Adaptation of an Example-Based Machine
Translation system, and reported significant performance improve-
ments for out-domain translation.

5.2 DATA AND RESOURCES

The 2010 Semantic Evaluation exercise (SemEval’10) featured a Cross-
Lingual Word Sense Disambiguation (CL-WSD) task where systems
were given an English word in its context and asked to produce ap-
propriate substitutes in another language [Lefever and Hoste, 2010a].
The task was created to facilitate the integration of general or domain-
specific WSD into Natural Language Processing applications like Ma-
chine Translation.

5.2.1 The Cross-Lingual Word Sense Disambiguation Datasets

The CL-WSD datasets were constructed by making a sense inven-
tory of all possible translations of a given Source Language word
based on word-alignments in Europarl [Koehn, 2005]. Alignments
that involved the SL words were manually checked. The aligned
target words were manually lemmatized and clustered into transla-
tions with a similar sense; see Lefever and Hoste [2010b] for details.
Trial and test instances were extracted from two other corpora, JRC-
Acquis [Steinberger et al., 2006] and British National Corpus (BNC)
[Burnard, 2007]. Four human translators picked the contextually ap-
propriate sense for each SL word, preferring o—3 translations. Since
translations were restricted to those appearing in Europarl, a slight do-
main bias was introduced. Each translation has an associated count
indicating how many annotators that considered it to be among their
top-3 preferred translations in the given context.

The trial data for each language consists of five nouns (20 sentence
contexts per noun), and the test data of twenty nouns (50 contexts per
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(1) AGREEMENT in the form of an exchange of letters
between the European Economic Community and the Bank
for International Settlements concerning the mobilization
of claims held by the Member States under the medium-
term financial assistance arrangements

{bank 4; bankengesellschaft 1; kreditinstitut 1; zentral-
bank 1; finanzinstitut 1}

(b) The Office shall maintain an electronic data bank with
the particulars of applications for registration of trade
marks and entries in the Register. The Office may also
make available the contents of this data bank on CD-ROM
or in any other machine-readable form.

{datenbank 4; bank 3; datenbanksystem 1; daten 1}

(c) established as a band of 1 km in width from the banks
of a river or the shores of a lake or coast for a length of at
least 3 km.

{ufer 4; flussufer 3}

Table 5: Examples of contexts for the English word bank with possible Ger-
man translations.

word, 1000 per language). The CL-WSD data covers Dutch, French,
Spanish, Italian and German; however, the experiments presented be-
low were only evaluated on the German data. Table 5 provides exam-
ples from the trial data of contexts for the English word bank and its
possible translations into German.

The Cross-Lingual Word Sense Disambiguation task involves two
subtasks:

1. Finding translations candidates.
2. Ranking and filtering translation candidates.

Section 5.4 presents experiments that addressed Word Sense Disam-
biguation (Subtask 2). As Subtask 1 was skipped, it was assumed that
a perfect solution to finding translation candidates is available. This
assumption implies that all possible translations are in the dictionary,
which is accomplished by extracting all possible translations from the
gold standard. For the English lemma bank, for example, the CL-WSD
trial gold standard for German contains the word Bank itself, together
with 40 other translation candidates, as shown in Table 6. Eight of
those are related to river banks (Ufer, but also, e. g., Westbank and West-
jordanland), three to databases (Datenbank), and one to blood banks.
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bank, bankanleihe, bankanstalt, bankdarlehen,
bankengesellschaft, bankensektor, bankfeiertag,
bankgesellschaft, bankinstitut, bankkonto,
bankkredit, banknote, blutbank, daten, daten-
bank, datenbanksystem, euro-banknote, feiertag,
finanzinstitut, flussufer, geheimkonto, geldschein,
geschiftsbank, handelsbank, konto, kredit, kred-
itinstitut, nationalbank, notenbank, sparkasse,
sparkassenverband, ufer, weltbank, weltbankgeber,
west-bank, westbank, westjordanien, westjordanland,
westjordanufer, westufer, zentralbank

Table 6: All German translation candidates for bank as extracted from the
gold standard.

The rest are connected to financial institutions (e. g., Handelsbank and
Finanzinstitut) or by association to finance, e.g., Konto, Weldbankgeber,
Banknote, Geldschein, Kredit).

5.2.2  Dictionaries

Two English-German dictionaries were used in the experiments, both
with about 900,000 entries. One was obtained by reversing an existing
proprietary German-English dictionary made available by its owners,
while the other is a free online resource:

e The GFAI dictionary (called D1 below) is a proprietary and
substantially extended version of the Chemnitz dictionary pro-
viding over 9oo,000 entries. The Chemnitz electronic German-
English dictionary" contains over 470,000 word translations and
is available under a General Public License (GPL).

* The freely available CC dictionary? (called D2 below) is an Inter-
net-based German-English and English-German dictionary based
on user-generated word definitions with 879,456 dictionary en-
tries (83,781 MWEs in the German-English direction and 83,613
in the English-German direction).

The actual dictionaries are irrelevant to the discussion at hand. Since
determining the strengths or weaknesses of either dictionary was not
an objective of this research, neither was indicating a bias towards a
particular resource.

1 http://dict.tu-chemnitz.de/ (Last visited: March 27, 2019.)
2 http://www.dict.cc/ (Last visited: March 27, 2019.)
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5.3 METHOD

This section describes the complete disambiguation model that con-
sists of both Language Model-based context matching and dictionary-
based Multiword Expression extraction. Using a dictionary to iden-
tify MWEs after translation had low recall of Target Language MWEs,
but high precision. Often the dictionary did not have an entry for a
would-be-identified MWE, or there were no MWEs to discover, such
as in Example (1). The precision was high, however, when an MWE
was identified.

(1) ...1 km in width from the banks of a river...

Extraction of Multiword Expressions was done in both a direct and
indirect manner: Direct extraction used adjacent words in the Source
Language in combination with the word to be translated, if the com-
bination had an entry in the source-to-target language (SL-TL) dictio-
nary. Indirect extraction searched the target-to-source (TL-SL) dictio-
nary, looking up translation candidates for the combined words.

Due to low recall, relying on Multiword Expressions from dictio-
naries would not be sufficient for the Cross-Lingual Word Sense Dis-
ambiguation task. As a consequence, the method was combined with
an n-gram model built on a Target Language corpus. The Language
Model was used to rank translation candidates according to the score
of the n-gram best matching the context around the translation can-
didate, i.e., the LM score of the n-gram with context. This approach
is more robust but less precise, and it was used as a baseline for,
and also in combination with, the high-precision but low-recall dictio-
nary approach. The n-gram-matching method is described before the
dictionary-based methods in the following subsection.

5.3.1 N-gram Context Matching

The n-gram matching procedure is used to produce a ranked list of
translation candidates and their context, providing robustness as well
as a baseline measure. The procedure consists of two steps:

1. An n'" order source context is extracted, and the translation
candidates for each source word in this context are retrieved
from the dictionary. (The context is stopword-filtered.)

2. All relevant n-grams are inspected in order from left to right and
from more specific (5-grams) to least specific (single words).

For each part of the context with matching n-grams in the target
Language Model, the appropriate target translation candidates are
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extracted and ranked according to their LM score. The result is an
n-best list of translation candidates.

Since dictionary entries are lemma-based, lemmatization is neces-
sary to use this approach in combination with the dictionary enhance-
ments. The source context is formed by the lemmata in the sentence
surrounding the focus word — the word to be disambiguated — by a
window of up to four words in either direction, limited by a 5-gram
maximum length. Stopwords are removed to extract the semantically
most relevant content. For each of the five lemmata in the window,
the relevant translation candidates are retrieved from the bilingual
dictionary. The candidates form the ordered translation context for
the source word window.

The following example from the trial data illustrates how the con-
texts are created. First, the relevant part of the Source Language sen-
tence with the focus word in boldface:

(2)  The BIS could conclude stand-by credit agreements with the
creditor countries’ central bank if they should so request.

The following Source Language context is obtained after a prepro-
cessing involving lemmatization, stopword removal, and insertion of
sentence start (<s>) and end markers (</s>):

(3)  country central bank request </s>

From this window, the possible n-grams in the target side context are
generated by assembling all ordered combinations of the translations
of the Source Language words for each context length: the widest
contexts (5-grams) are looked up first before moving on to narrower
contexts and ending up with looking up only the translation candi-
date.

Each n-gram is looked up in the Language Model, and for each
context part, the n-grams are ordered according to LM score. Table 7
shows a few examples of such generated n-grams with their corre-
sponding scores from the LM. The target candidates (italics) are then
extracted from the ordered list of Target Language n-grams. Note that
there are no scores for the 4- and 5-grams here; an expected outcome
of generating TL n-grams with direct translation. This results in a
ranked list (n-best) of translation candidates. Duplicate translation
candidates are filtered from the n-best list.

How stopword-filtered n-grams that correspond to the lemma-based
LM are created can be explained by introducing slots. A not stopword-
filtered model would, given a 3-gram order (slots [0, 3], [-1,2], and
[—2,1]) generate the n-grams created by combining the translations of
words:
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n n-gram LM score
5 land mittig bank nachsuchen </s> Not found
4 mittig bank nachsuchen </s> Not found
3 mittig bank nachsuchen Not found
3 kredit anfragen </s> -0.266291
2 mittig bank -3.382560
2 zentral blutbank -5.144870
1 bank -3.673000

Table 7: Target language n-gram examples from look-ups of stopword-
filtered lemmata country central bank request reported in log scores.
The first three n-grams were not found in the Language Model.

bank if they, central bank if, country central bank

that subsequently are listed and looked up in the Language Model.
For a stopword-filtered model, however, the corresponding bag of n-
grams is the exhaustive list of translations of lemmata:

bank request </s>, central bank request, country central bank

some translations of which are shown in Table 7. The slot is the se-
quence of words determined by the indices by the tuple in its specifi-
cation3, with the focus word at slot [0, 1].

A priority list of slots can be configured, such that the algorithm pri-
oritizes the n-grams of various sizes. Thus, if [—4, 1] is the top priority,
n-grams generated with four words of context before the focus word
are ranked highest until the specified number of results is reached.
If asking for five answers (and the [—4, 1] set of n-grams could only
yield two suggestions), the algorithm would have to move on to the
next slot in the priority list. In practice, many instances have to revert
to n-grams comprised by the slot [0, 1] — the direct translation of the
focus word.

5.3.2 Using Dictionaries

After creating an n-best list of translation candidates with the n-gram
method, more candidates are generated by looking up multiword en-
tries in bilingual dictionaries. The existence of multiword entries in
the dictionary corresponding to adjacent lemmata in the source con-
text or translation candidates in the target context is taken as a strong
indicator of the suitability of a particular translation candidate. Such

3 Inspired by Python-style indexing.
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Algorithm 2 SL algorithm to rank translation candidates (tcands) for
SL lemma b given list of tcands

1: procedure FINDcAND(list rlist,SL-lemma b, const tcands)

2: comblemmata — list(previouslemma(b) + b,b +
nextlemma(b))

3 for lem € comblemmata do

4 ¢ « sl-dictionary-lookup(lem)

5 if ¢ € tcands then rlist < list(c + rlist)

6: end if

7 end for

8 return rlist

9: end procedure

entries are added to the top of the n-best list, which represents a
strong preference in disambiguation. An example is how the trans-
lation candidate Commerzbank is ranked first because it is found as
a translation of the dictionary entry Community Bank. (The n-gram
matching method also used dictionaries to look up translation candi-
dates and Target Language translations of the context words.)

Two separate procedures are used to find such indicators, a di-
rect procedure based on the source context and an indirect procedure
based on the weaker Target Language context, as follows:

SOURCE LANGUAGE (sL) METHOD: If there is a dictionary entry for
the source word and one of its adjacent words, search the set
of their translations for any of the provided translation candi-
dates for the word (see Table 5 for examples). Specifically, the
translations of the combination of the source word and an ad-
jacent word in the context are matched against the translations
candidates for the word. Algorithm 2 shows this method is pseu-
docode.

TARGET LANGUAGE (TL) METHOD: If a translation candidate looked
up in the reverse direction matches the source word along with
one or more adjacent words, it is a good translation candidate.
The target translation candidates are looked up in a TL-SL dic-
tionary and multiword results are matched against SL combi-
nations of disambiguation words and immediate context. Algo-
rithm 3 shows this method in pseudocode.

The dictionary entry for either the target word or translation candi-
date is matched against the immediate context in both methods. Such
lookups are done exhaustively for all combinations of translations of
the words each slot. A translation candidate is only added once if it
generates hits with either (or both) methods.
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Algorithm 3 TL algorithm to rank translation candidates (tcands) for
SL lemma b given list of tcands

1: procedure FINDCAND(list rlist,SL-lemma b, const tcands)

2: for cand € tcands do

3: translist «+ list(cand, tl-dictionary-lookup(cand)) +
translist

4 end for

5 for cand, trans € translist do

6: if previouslemma(b) + b||b 4+ nextlemma(b) € trans
then

7: rlist « list(cand) + rlist

8: end if

9 end for

10: return rlist

11: end procedure

(4)  country central bank request

Example (4) revisits the running example, stopword-filtered, and with
lemmatized context. The example generates two Source Language
Multiword Expressions; central bank and bank request. With the SL
method, these word combinations are looked up in the dictionary
where the zentralbank entry is found for central bank, which is also
found as a translation candidate for bank. The Target Language method
works in the reverse order by looking up the translation candidates
in the TL-SL direction and creating a list of translations in the SL. If
a lemma combination is found in this list, the corresponding trans-
lation candidate is ranked on top. Since the entry zentralbank:central
bank is found in the dictionary, with a translation matching the Source
Language context, zentralbank is assumed to be a correct translation.

5.3.3 Evaluation

Two evaluation measures were used for the CL-WSD shared task: the
Best and Out-of-Five scores [Lefever and Hoste, 2010a]. The Best
criterion was intended to measure how well a system succeeded in
delivering the best translation, i. e., the one preferred by the majority
of annotators. The Out-of-Five (OOF) criterion measures how well the
top five candidates from the system match the top five translations in
the gold standard:

ZaeAi fTeqi(Cl)

OOF(i) = o
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where H; denotes the multiset of translations proposed by humans for
each test data sentence t; (1 <1 < N, with N being the number of test
items). A; is the set of translations produced by the system for test
item 1. Since each translation has an associated count of annotators
that selected it, there is for each t; a function freq;, which returns
this count for each term in H; (o for all other terms), and a function
max freq;, which returns the maximal count for any term in H;.

For the first example in Table 5, the cardinality of the multiset is:
[Hi| = 8:

H; = {bank, bank, bank, bank, zentralbank,
bankengesellschaft, kreditinstitut, finanzinstitut}

freq; (bank) =

freq (zentralbank) = 1

(
(
freq; (bankengesellschaft) = 1
freqy (kreditinstitut) = 1

(

freq; (finanzinstitut) = 1

maxfreq; =4

This equates to the sum of all top-3 preferences given to the transla-
tion candidates by all annotators.

For the Out-of-Five evaluation, systems are allowed to submit up to
five candidates of equal rank. OOF is a recall-oriented measure with
no additional penalty for precision errors, so there is no benefit in out-
putting less than five candidates. Concerning the previous example
from Table 5, the maximum score is obtained for system output

A1 = {bank, bankengesellschaft, kreditinstitut, zentralbank, finanzinstitut}
is
OOF(1)=4+1+14+1+1)/8=1
whereas
A, = {bank, bankengesellschaft, nationalbank, notenbank, sparkasse}
would give
OOF(1) = (4+1)/8=0.625

Note that the maximum OOF score is not always 1 (i.e., it is not
normalized) since the gold standard sometimes contains more than
five translation alternatives.
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Source Language  Target Language

Dictionary Di D2 comb D1 D2 comb

Mean 3.25 1.5 3.25 12.65 11.45 14.20
Total 65 30 65 253 229 284

Table 8: Number of instances with a translation candidate over test set (20
words).

MF MFA 5-gram s5-gram All Dict VSM
+ Dict Comb Model

Top 51.77 68.71  52.02 52.74 24.67 55.92
Low 1.76  9.93 14.09 15.40 0.00 10.73
Mean 21.18 34.61 30.36 36.38 10.13 30.30

Table 9: F-scores on SemEval data across methods.

For evaluation of overall system performance, the average of OOF
scores across all test items for a single source word was used, with
Fi-score reported as a harmonic mean of the precision and recall of
the OOF scores.

5.4 EXPERIMENTS

Experiments were carried out both on the trial and test data described
in Section 5.2 (5 trial and 20 test words; with 20 and 50 instances of
each word, respectively; in total 1100 instances in need of disambigua-
tion).

Baseline scores from the SemEval dataset were used in the evalu-
ation. A stopword-filtered 5-gram model built with the IRSTLM lan-
guage modeling toolkit [Federico and Cettolo, 2007, Federico et al,,
2008] was used as a benchmark.

Figure 8 shows how many instances that produced translation can-
didates with the Source and Target Language methods, respectively.

5.4.1 Results

Table 9 shows a result overview for the different methods on the
dataset. For each method, the three lines give both the best (Top)
and worst (Low) scoring terms, as well as the mean value for all terms
in the dataset.
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Source language Target language All
Dictionary D1 D2 comb D1 D2 comb comb
Top 889 6.99 889 2271 24.43 2534 24.67
Low 0.00 0.00 000 0.00 0.00 0.00 0.00
Mean 271 0.99 304 835 7.10 9.24 10.13

Table 10: Fq-scores for individual dictionaries.

The maximum attainable score for each of those would be 99.28,
90.48 and 95.47, respectively, but those are perfect scores not reachable
for all items due to the way scores are calculated (revisit OOF-scoring
in Section 5.3.3). Instead, the columns Most Frequent (MF) and Most
Frequently Aligned (MFA) give the baseline scores for the SemEval
dataset. MF is the translation most frequently seen in the corpus
and MFA the translation most frequently aligned in a word-aligned
parallel corpus (Europarl [Koehn, 2005]). The next columns show
results for using only a stopword-filtered 5-gram model, and when
combining the 5-gram model with the dictionary approach (5-gram +
Dict).

The next-to-last column (All Dict Comb) shows how the dictionary
methods performed on their own, i. e., without the support of a high-
recall method. The combined dictionary approach has low recall (see
Table 8) and does not provide a good solution to the overall problem
by itself. Due to high precision, however, the method can enhance the
n-gram method, which already produces acceptable results. Finally,
the column VSM Model as comparison gives the results obtained when
using a Vector Space Model for Word Sense Disambiguation [Marsi
et al., 2011].

A comparison of the dictionary approach to state-of-the-art mono-
lingual solutions to the Word Translation Disambiguation problem on
this dataset shows that the method scored better for the terms’ lowest
and mean scores, but not for the top scoring [Lynum et al., 2012]. The
Top result row shows that the Vector Space Model produced the over-
all best score for a single term. However, the method combining a
5-gram Language Model with the dictionary approach was best both
at avoiding too low scores for any single term and when comparing
the mean scores for all the terms.

5.4.2 Dictionary Results

A more fine-grained analysis of the precision scores of the dictionary
experiments could help explain the improvements. Table 10 shows
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Source language  Target language  All

Dictionary D1 D2 comb Di D2 comb comb

coach 1.00 0.00 1.00 0.21 0.00 0.21  0.21
education 0.83 0.67 0.83 047 062 054 0.53

execution 0.00 0.00 0.00 0.17 0.22 0.17 0.17

tigure 1.00 0.00 1.00 0.51 0.57 0.55 0.55
job 088 080 094 045 078 046 044
letter 1.00 0.00 1.00 0.66 0.75 0.62 0.66
match 1.00 1.00 1.00 080 0.50 o0.80 0.80
mission 071 0.33 071 046 037 036 0.36
mood 0.00 0.00 0.00 0.00 0.00 0.00 0.00
paper 0.68 o0.17 068 053 035 055 0.55
post 1.00 1.00 1.00 0.39 048 045 048
pot 0.00 0.00 0.00 1.00 1.00 1.00  1.00
range 1.00 1.00 1.00 0.28 0.37 0.30 0.30
rest 1.00 0.67 1.00 0.60 0.56 056 058
ring 0.09 0.00 0.09 0.37 093 038 0.38
scene 1.00 0.00 1.00 0.50 0.42 0.44  0.50
side 1.00 0.00 1.00 0.21 0.16 023 0.27
soil 1.00 0.00 1.00 0.72 0.58 0.66 0.69
strain 0.00 0.00 0.00 0.51 088 0.55 0.55
test 1.00 1.00 1.00 0.62 052 0.57 0.61
Mean 084 074 084 050 056 049 0.51

Table 11: Custom precision scores for all terms in test data.

results for each dictionary approach on the test set: Target Language
look-up contributes more to providing good translation candidates
than the Source Language methodology. At least one guess was re-
quired to make the scoring script provided with the SemEval data
work. As a consequence, the results in this table were calculated as
though the methods guessed a wrong candidate word if they provided
none. This gauges how well the approach performs overall on the task
without combination with methods that offer higher recall.

Table 11 lists the results of filtering out the instances for which no
candidate translation was produced and taking the average precision
scores only over these, for each term in the test data. Table 12 summa-
rizes the results. In the last rows, markedly different mean precision
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Source language  Target language  All

Dictionary D1 D2 comb Di D2 comb comb

Top 1.00 1.00 1.00 1.00 1.00 1.00  1.00
Low 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mean 084 074 084 050 056 049 0.51

Table 12: Custom precision scores summarized on dictionary and method
use.

scores appear: the Source Language method has higher precision on
the suggestions it makes than its Target Language counterpart. (Ta-
ble 8 on Page 118 showed how this higher precision is offset by lower
coverage, with far fewer instances producing a translation candidate
with the dictionary lookup methods.)

Furthermore, Table 11 shows a difference in the precision of the
SL and TL approaches, coinciding with more candidates produced by
the latter. Several words give 100% precision scores for at least one
dictionary, while a few give 0% precision for some dictionaries. The
word mood has 0% precision for both dictionaries in both directions.

5.5 DISCUSSION

This chapter presented experiments into Cross-Language Word Sense
Disambiguation and Multiword Expression identification using dic-
tionary lookups based on the concatenation of a focus word with ad-
jacent words in both the Source Language text and Target Language
candidate translations. The top-ranked translation is identified by
disambiguating the available translation candidates. Generating Mul-
tiword Expressions lookup strings by using both neighboring words
improved disambiguation performance on the SemEval 2010 English-
German Cross-Lingual Word Sense Disambiguation task datasets.
Multiword Expressions are often missing from dictionaries, poten-
tially resulting in contorted Machine Translation output. The experi-
ments in this chapter used general-purpose dictionaries, but domain-
specific dictionaries and word lists could also have been applied to
translate particular MWEs. Since the use of specialized terms is a
feature of domain-specific language (see Chapter 4), the treatment of
such is relevant for Domain Adaptation. Sennrich [2013b] also consid-
ered the treatment of MWEs important for Domain Adaptation.
Sennrich [2013a] noted the importance of Multiword Expressions
for Statistical Machine Translation in general, due to the propensity
of SMT models to overgeneralize translations that are used in only
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specific contexts. The English expression of course, whose idiomatic
French correspondence, bien siir, could lead to siir (literal translation:
sure) being learned as the translation of course was provided as an ex-
ample. Sennrich used a measure of phrase flexibility to provide bet-
ter translations, which refers to the set of different phrases an MWE
may translate into, similar to different continuations in Kneser-Ney
smoothing (see Section 3.2.3.3). Thus, incorrect translations could also
appear in other contexts, due to the frequency of the expression. The
phrase flexibility measure, quantifying the propensity to occur also in
other contexts, was integrated as log-linear features.

The experimental results presented above were compared to the
baselines from the SemEval data and an n-gram-based method. How-
ever, restricting the task to only picking among a predefined set of
translation candidates makes the task easier than the full task of deter-
mining the sense inventory. Thus, results are not directly comparable
to the SemEval results [Lefever and Hoste, 2010a, 2013].

Additionally, differences between the Source and Target Language
methods of using dictionary lookups were addressed, where the for-
mer has very high precision (0.84) but low coverage, while the TL
method compensates lower precision (0.51) with markedly better cov-
erage. These results mean that the errors using the first method are
profound; without a hit on a candidate, no solution will be provided,
but with one, this candidate is likely to be correct. Consequently, this
method pairs well with other, recall-strong methods such as the base-
line n-gram-based method.

The SL dictionary method provided answers to only between 1.5
and 3.25 of 50 instances per word on average, depending on the dictio-
nary. The difference owes mainly to the TL method matching any ad-
jacent lemma to the focus word with the translation of the predefined
translation candidates, whereas the SL method matches dictionary
entries of the lemmata of the focus word and its adjacent words com-
bined, to the same list of translation candidates. False positives (iden-
tifying dictionary entries for incorrect translation candidates) must be
expected for the TL method. The use of specialized dictionaries or
data mining to extend dictionaries by leveraging resources such as
Wikipedia or Wiktionary could mitigate this.

Using extended dictionary lookups provides valuable information
for disambiguating translation. In future work, this could be inte-
grated into existing feature-based Machine Learning approaches, such
as the Vector Space Model approach [Lynum et al., 2012]. The ex-
tended use of dictionaries proves a valuable source of information for
disambiguation and can introduce low-cost phrase-level translation to
quantitative Word Sense Disambiguation approaches such as n-gram
or Vector Space Model methods.
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Searching the entire context of the Source Language instances us-
ing this method — and not just a focus word as provided by test data
— could generate translations of Multiword Expressions elsewhere
in the sentence, for a better translation of the sentence as a whole.
Integration into a Statistical Machine Translation pipeline would be
necessary to test this idea in practice. Differences between dictionar-
ies could also be explored, e. g., by giving more weight to translations
found in two or more dictionaries. Additionally, differences between
the Source and Target Language approaches should be explored in
further detail, to see if the higher precision of the SL method is pos-
sible to retain with the added coverage of the TL method. Moreover,
the method should be tested on more language pairs, e.g., to assess
the potential impact of less related languages on results.
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BUILDING LARGE LANGUAGE MODELS

This chapter will present experiments into building large Language
Models with parallel processing. First, Section 6.1 presents related
work and Section 6.2 the data collection. Section 6.3 explains the
method used, and Section 6.4 shows the experiments. Finally, Sec-
tion 6.5 discusses the findings and sums up.

Broadly, in a Statistical Machine Translation context, a Language
Model (LM) contributes to the fluency of the Target Language string
(conversely, a Translation Model contributes to the adequacy [Banchs
etal., 2015], see Section 3.2). An LM will assign a higher probability to
strings it has seen compared to those observed less frequently during
training or not at all. A well-formed sentence will include longer pas-
sages of text found in the LM, whereas the same sentence in random
order is unlikely to do so and be assigned a lower score. Thus, dur-
ing decoding of SMT models, the LM will contribute to well-formed
translation hypotheses being ranked higher.

Language Models are used in many Natural Language Processing
tasks, such as Machine Translation, Automatic Speech Recognition,
and Optical Character Recognition. In MT, one or more LMs can
be used during decoding in a standard Statistical Machine Transla-
tion configuration. Moreover, they can also be used in separate dis-
ambiguation or Domain Adaptation modules, during decoding or re-
ranking stages. In commercial systems, LMs can be as large as 1 Ter-
abyte (TB) [Lopez and Post, 2013]. Also for creating LMs not nearly
that large, building them in a reasonable amount of time requires re-
sources beyond single machines.

6.1 RELATED WORK

Brants et al. [2007] built large Language Models using distributed
techniques. The authors reported decreased perplexity and better
n-gram coverage with increasing numbers of tokens, and also that
larger n-gram models improved BLEU scores for Machine Translation
tasks. The Map-Reduce framework [Dean and Ghemawat, 2008] was
used for distributed compilation of LMs, parallelizing the counting
step of the n-gram model creation. This method has an initial map-
ping step where words (keys) and values are gathered on different
parts of the data, followed by a reduce step aggregating the values
of the same keys on the same nodes. The result is a key/value list
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(i.e., n-gram counts) for the entire corpus. LMs with Kneser-Ney (see
Section 3.2.3.3) smoothing were built in two days for a 30G corpus.

Storing and processing large n-gram Language Models have been
dealt with using different methods; Talbot and Osborne [2007] used a
Bloom filter with logarithmically quantized n-gram frequency counts,
i.e., a lossy randomized representation efficiently encoding the n-
grams with their corresponding frequency information. This random-
ized language modeling (commonly referred to as RandLM) can give
significant storage space reductions, at the cost of additional false
positives (the filter may report that an item not in the set is a member)
and speed.

In contrast, Pauls and Klein [2011] presented some compact lossless
implementations based on tabular tries storing only the suffix of the
n-gram (the last word) together with an offset encoding the context
(the remaining words). Working on the Web1T 5-gram corpus [Brants
and Franz, 2006], Pauls and Klein encoded each n-gram in only 23
bits, in the best case reducing storage requirements to only 1/4 and
also improving on the best previous lossy representations. Encoding
the context also gives faster processing (since there is no need to look
up the context again when moving on to the next word). Combined
with a direct-mapped cache, the method gained substantial speed-ups
(up to 300%).

Heafield [2011] introduced the language modeling library KenLM
and compared using regular hash tables to tries. Results showed
that a linear probing hash table method gave significantly faster pro-
cessing while tries produced smaller data structures. Furthermore,
Heafield addressed how a lossy compression of the trie pointers fur-
ther reduces necessary storage space but concluded that linear prob-
ing hash tables are preferable if processing speed is more important
than reduced memory usage. On the other hand, RandLM is poten-
tially the most memory efficient approach, even though lossless com-
pression can further optimize the memory allocation needed by the
tries. Raj and Whittaker [2003] reported an 86% reduction in Lan-
guage Model size for a marginal increase in word error rate.

6.2 DATA

During development of the language modeling scripts, three corpora
of English (enTenTen, with 3.5Bn Words), German (deTenTen, 3.2Bn
Words), and Italian (itTenTen, 2.2Bn Words) were used, all originating
in the previous “Web as Corpus” corpora known as UKWac, DeWac
and ItWac [Baroni and Kilgarriff, 2006], respectively. The TenTen cor-
pora were mined from the web and provided in a “vertical” corpus
format, with one word per line [Kilgarriff et al.,, 2010, 2011]. On
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each line, words presented in three forms (tab-separated): original
form, lemma, Part-of-Speech (POS), and (lempos) (lemma + POS). Sec-
tion 8.2 will return to the enTenTen corpus, and Listing 3 on Page 164
shows an excerpt.

6.2.1 Corpus Noise

The corpora contained noise also after tagging, which was removed
before building the models, because certain high UTF-8 characters
could break the language modeling software. Many of the problems
stemmed from the web-corpora being encoded in a mixture of char-
acter sets. Scripts were written to handle these errors, as well as to
unify different representations of dates and numbers into the collec-
tion tokens @date and @card. The most notable types of noise in the
German corpus were:

* Words beginning with special characters (e. g., -Bus).

¢ Higher order special UTF characters, e. g., different newline char-
acters. With the Unix command less, these characters are ren-
dered as, e.g., U+0084, but with cat and more they are invisible.
In the LM software, they appear as token ghosts, i.e., tokens
comprised of empty strings.

¢ Umlauts being rendered differently (from various character sets).
* Incorrectly split words (e. g., Bewaff- net).
* Repeated words (often multiple times) as tokens.

* Very long words (usually between 50 or 100 characters, possibly
created by keyboard hammering).

6.2.2  DPreprocessing

Each corpus was tokenized and Part-of-Speech-tagged with the Tree-
Tagger [Schmid, 1994]. Preprocessing included stripping higher-order
UTF characters that would cause the IRSTLM software to crash or give
undesired output, e.g., when tokens rendered as spaces would pro-
duce spurious n-grams. Before building the Language Models, the
corpora were transformed from the vertical format to a horizontal
format with one sentence per line encapsulated in <s> </s> sentence
boundary markers. This format was a requirement of the language
modeling software.

The deTenTen corpus produced a large number of unique tokens.
The highly compounding nature of the German language resulted in
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many tokens ending with “—”, as compounds were rendered in split
mode (i. e., by enumeration or line breaks) in the web material. Date
formats also varied extensively.

The corpora used for the experiments were sectioned into Training
and Test corpora with a Perl script, randomly sampling 10% of the
lines for the latter. Language Model perplexity was calculated on
these test corpora.

6.3 METHOD

The n-gram models were built with the standard tool IRSTLM, the
IRST Language Modeling Toolkit [Federico and Cettolo, 2007, Fed-
erico et al., 2008]. The IRSTLM framework was adapted to the OpenPBS*
queue handler to distribute the task to a cluster of machines?.

The alternative to adapting the parallelization scripts from IRSTLM,
the similar SRILM [Stolcke et al., 2011], or other already existing, openly
available language modeling toolkits, e. g., RandLM or KenLM (see Sec-
tion 6.1) would have been to implement an n-gram modeling tool in
a parallel programming framework such as MPI or OpenMP. This ap-
proach was discarded because it was unlikely to result in any signifi-
cant gain in performance over the chosen PBS alternative, which pro-
duced acceptable results. Language Models of various types (lemma-
based, word-based, POS-based and combinations thereof) were built.

The IRSTLM software package already had scripts for parallel treat-
ment of data developed for a proprietary implementation of the PBS
system, and these were adapted to the slightly different syntax of
OpenPBS. Such job schedulers receive jobs that are submitted to a
queue and handle their execution depending on access rights and
system load.

Figure 24 lists the processing steps of the Language Model creation.
The dictionary (i.e., list of unigrams) was sectioned into lists that
were frequency-balanced: a list of unigrams for each section, with a
similar amount of total frequency counts. More unigrams are needed
to reach approximately the same total, as unigram frequencies go
down. Top unigrams alone could have a frequency well above the
average per section, but, obviously, a one-entry list cannot be split.

Subtasks were submitted to a queue handler, enabling them to be
done in parallel (except the first step, dictionary collection, and the
last step, merging) as processing resources became available on the
grid. IRSTLM provides similar scripts for diving the building of LMs

http://www.mcs.anl.gov/research/projects/openpbs (Last visited: March 27,
2019.)

A 96 node cluster consisting of equal amounts of nodes with 48G and 24G RAM
was used.
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1. Compile a dictionary for the entire corpus.

2. Section the corpus into n parts according to word frequency.
3. Count n-grams for each of these parts.

4. Compute (sub-)LM scores for each part.

5. Merge all counts into one LM.

Figure 24: Overview of the processing steps in parallel Language Model
building.

into smaller steps to overcome memory constraints, also for serial ar-
chitectures, such that the parallelizable steps 3 and 4 are processed
separately, but serially, before the parts are merged. The parallel pro-
cessing reliably gave the same output as serial processing.

The changes required to modify the Sun Grid PBS script to the
OpenPBS format mostly related to the control of workflow, i.e., sub-
mission of jobs. Specifying that some jobs submitted to the queue
should halt until the successful execution of other jobs on which they
depend finished was necessary, such as n-gram counting depending
on the completion of the dictionary creation. Also, to avoid submit-
ting too many jobs at once, the shell script waited for the dictionary
compilation before the n-gram counting and sub-LM jobs were sub-
mitted to the queue.

Steps 3 and 4 can be done in parallel by distributing jobs to a queue
handler. A shell script submits the jobs to the PBS queue and delays
merging until all have finished successfully. When submitting the jobs
in steps 3 and 4, each sub-LM job depended on the corresponding
job for n-gram counting (did not start before it was finished), as the
n-gram counts for each section needed to be compiled before their
respective sub-LM (LM for that section) could be computed.

The IRSTLM framework can output LMs in the ARPA LM format, an
intermediate, internal format (iArpa), as well as a compiled version
for quicker access with IRSTLM tools. The (D)ARPA format is a text
file with of a header specifying the number of n-grams of each order,
which are ordinally listed below, in sections with lines containing log-
probabilities and n-grams?>.

The SRILM [Stolcke, 2002, Stolcke et al., 2011] documentation has a good ex-
planation of the format: http://www.speech.sri.com/projects/srilm/manpages/
ngram- format.5.html (last visited: March 27, 2019).
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English Training Test
Lines Words Lines Words

Lemma 108.4 31505 12.0 350.3
Fullform 107.4 3122.6 11.9 347.0

(a) Size of the English Corpora

German Training Test
Lines Words Lines Words

Lemma  141.8 28370 158 3153
Fullform 141.1 2809.0 157 312.2

(b) Size of the German Corpora

Italian Training Test
Lines Words Lines Words

Lemma 78.5 2913.4 8.7 3239
Fullform 77.9 2851.2 8.7 317.0

(c) Size of the Italian Corpora

Table 13: Sizes of Training and Test corpora.
Figures reported in millions of lines and words.

6.4 EXPERIMENTS

Two corpora were extracted for each language; (i) a corpus comprised
of words represented by lemmata and (ii) a corpus with words in full
forms. Henceforth, these corpora are referred to as the Lemma and
Fullform, respectively. Differences in the extraction methods from
the original format of the corpora explain the minor differences in
size. Table 13 shows the size of the training and test corpora in the
different languages.

5- and 7-gram models were built with Kneser-Ney smoothing for
all extracted corpora. For the Fullform corpora, 5-gram models with
and without pruning of singleton n-grams (i.e., n-grams occurring
only once in the corpus) were built as well. The number of words
reported in Table 13 is lower for the Fullform corpora because some
tokens from the Fullform corpora were discarded in preprocessing,
but retained in the lemmatized versions.
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6.4.1 Corpora Statistics

Evaluating Language Models extrinsically would have complemented
the information from intrinsic measures. However, for these experi-
ments, no specific task was intended, and the held-out test corpora
were used to compute perplexity and Out-of-Vocabulary (OOV) statis-
tics. Perplexity statistics on the Test corpora were computed for the
pruned models, but for the unpruned models, this was deferred due
to memory constraints.

The IRSTLM [Federico et al., 2010] language modeling software’s
standard functionality offers computation of such corpus statistics,
which were collected for all three languages and corpus types.

Table 14 shows results on the Test corpora for twelve Language
Models. The differences in word numbers in the Test corpora com-
pared to the dictionary sizes presented in Table 13 are explained by
how sentence boundary markers are counted. In Table 14, they are
counted once per line, whereas all markers are counted in Table 13,
which means that the differences equate to the line numbers of the
models.

The 7-gram models had lower perplexity than the 5-gram models
for lemma-based Language Models, whereas the opposite was true for
the for English and Italian Fullform models (although barely). This
result was observed both with and without the effect of the OOV
words taken into account. On the German corpus, however, the 7-
gram model had markedly lower perplexity than the 5-gram model
also for the Fullform corpus.

The difference in perplexity between the Lemma and Fullform-based
models were larger for the deTenTen corpus, suggesting a higher de-
gree of noise in this corpus (see Section 6.2.1).

6.4.2 Dictionary Growth Curves

In addition to the statistics above, a Dictionary Growth Curve (DGC)
was created, i.e., a curve showing the number of n-grams above the
orders 0—9, with the OOV frequency in each category on the held-out
Test corpus. Tables 15 and 16 on Pages 133 and 134 show these DCGs
for the Lemma and Fullform corpora, respectively. The first three
columns of each table show the percentage of words in the training
corpus whose frequencies are over 0 (all of them, 100%), those having
a frequency over 1 (40%), and so on.

The number of dictionary entries (unigrams) should be the same as
the number of unigrams in an unpruned Language Model. However,
due to the implementation of Kneser-Ney smoothing, the singleton
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English Nw PP PPwp Noov OOV

5-Lemma  338M 66,467 1,483 517K 0.15%
7-Lemma  338M 65,721 1,466 517K 0.15%

5-Fullform 335M 59,606 1,432 564K 0.17%
7-Fullform 335M 59,813 1,437 564K o0.17%

(a) EN Test Corpus

German Nw PP PPwp Noov OOV

5-Lemma  299M 29,740 2,088 1347K 0.45%
7-Lemma 299M 29,264 2,054 1347K 0.45%

s5-Fullform 296M 62,139 4,606 1,423K 0.48%
7-Fullform 296M 60,933 4,516 1,423K 0.48%

(b) DE Test Corpus

Italian Nw PP PPwp Noov OOV

5-Lemma 315M 81,825 1,682 434K 0.14%
7-Lemma  315M 79,060 1,625 434K 0.14%

5-Fullform 308M 96,281 2,208 483K 0.16%
7-Fullform 308M 99,458 2,280 483K 0.16%

Table 14:

(c) IT Test Corpus

Experimental results on the Test corpora. N,, is the total number
of words in the evaluation corpus (reported in millions of words),
PP is the perplexity, and PP, reports the contribution of out-of-
vocabulary (OOV) words to the perplexity. The out-of-vocabulary
word term OOV is defined as (Noov/Nw) * 100, with Ngo, being
the number of OOV words (reported in thousands of words).
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Freq Entries Percent Freq OOV

>0 19,300,334 100.00% <1 0.45%
>1 7,404,928 38.37% <2 0.64%
>2 4,841,598 25.09% <3 0.76%
>3 3,706,439 19.20% <4 0.86%
>4 3,042,511 15.76% <5 0.94%
>5 2,606,399 13.50% <6 1.01%
>6 2,293,273 11.88% <7y 1.07%
>7 2,056,786 10.66% <8 1.13%
>8 1,870,568 9.69% <9 1.18%
>9 1,719,753 8.91% <10  1.22%

(a) Dictionary Growth Curves for German Lemma Corpus

Freq  Entries Percent Freq OOV

>0 7,507,448 100.00% <1 0.15%
>1 3,072,234 40.92% <2 0.22%
>2 2,074,727 27.64% <3 0.26%
>3 1,628,826 21.70% <4 0.29%
>4 1,362,639 18.15% <5 0.32%
>5 1,185,035 15.78% <6 0.35%
>6 1,054,988 14.05% <7 0.37%
>7 956,259 12.74% <8 0.39%
>8 877,378 11.69% <9 0.41%
>9 813,647 10.84% <10  0.43%

(b) Dictionary Growth Curves for English Lemma Corpus

Freq  Entries Percent Freq OOV

>0 6,475,359 100.00% <1 0.14%
>1 2,778,546 42.91% <2 0.20%
>2 1,903,603 29.40% <3 0.24%
>3 1,511,911 23.35% <4 0.27%

>4 1,275,415 19.70% <5 0.30%
>5 1,116,931 17.25% <6 0.32%
>6 1,000,423 15.45% <7 0.34%
>7 911,485 14.08% <8 0.36%

>8 840,714 12.98% <9 0.38%
>9 782,787 12.09% <10  0.40%

(c) Dictionary Growth Curves for Italian Lemma Corpus

Table 15: Dictionary Growth Curve for the Lemma corpora.
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Freq  Entries Percent Freq OOV

>0 8,203,706 100.00% <1 0.17%
>1 3,335,431 40.66% <2 0.24%
>2 2,280,889 27.80% <3 0.28%
>3 1,801,269 21.96% <4 0.32%
>4 1,516,574 18.49% <5 0.35%
>5 1,325,480 16.16% <6 0.38%
>6 1,185,591 14.45% <7 0.40%
>7 1,079,341 13.16% <8 0.43%
>8 994,459 12.12% <9 0.45%
>9 925,466 11.28% <10  0.47%

(a) Dictionary Growth Curves for English Fullform Corpus

Freq Entries Percent Freq OOV

>0 20,775,474 100.00% <1 0.48%
>1 8,163,441 39.29% <2 0.68%
>2 5,463,441 26.30% <3 0.81%
>3 4,253,230 20.47% <4 0.92%
>4 3,543,995 17.06% <5 1.01%
>5 3,071,589 14.78% <6 1.09%
>6 2,731,179 13.15% <7 1.15%
>7 2,470,988 11.89% <8 1.21%
>8 2,263,809 10.90% <9 1.27%
>9 2,096,181 10.09% <10  1.32%

(b) Dictionary Growth Curves for German Fullform Corpus

Freq  Entries Percent Freq OOV

>0 7,365,655 100.00% <1 0.16%
>1 3,169,535 43.03% <2 0.22%
>2 2,222,344 30.17% <3 0.27%
>3 1,786,668 24.26% <4 0.31%
>4 1,525,238 20.71% <5 0.34%
>5 1,348,829 18.31% <6 0.37%
>6 1,219,203 16.55% <7 0.39%
>7 1,119,484 15.20% <8 0.41%
>8 1,040,111 14.12% <9 0.44%
>9 974,612 13.23% <10  0.46%

(c) Dictionary Growth Curves for Italian Fullform Corpus

Table 16: Dictionary Growth Curves for the Fullform corpora.
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n-grams for orders 1 and 2 were pruned. Markedly higher number of
dictionary entries and OOV rates for the deTenTen corpora stand out.

6.4.3 N-gram Counts

N-gram level counts were extracted from the corpora by looking at
the header of the output Language Model files. Table 17 on Page 137
shows the number of n-grams in the models for all three languages.
For the English and Italian corpora, 4-grams was the most frequent n-
gram order in the LMs, whereas the highest amount of non-singleton
n-grams was found in the bigram category for the German corpus.

Unpruned models were built for the Fullform corpora. Compar-
ing those to the singleton-pruned Language Models shows that the
number of n-grams grows quickly. These unpruned models required
about 31G of storage (in the intermediate iArpa format), compressed
with bzip?.

6.4.4 Computation Times

Because of variations in cluster load owing to other users, it is diffi-
cult to report comparable computation times for the different models.
However, as an indication, the whole process of building any one of
these Language Models could take 8-12 hours, using the hardware
configuration described in Section 6.3.

On average, the parallelized jobs took about 1.5 hours, except the
jobs counting n-grams based on the most frequent unigrams that
could take up to 5 hours to finish. The merging of the sub-LMs would
have to wait for the creation of all the sub-models to finish. Hence, it
was necessary to wait for these initial jobs to start merging and exit
the script.

It would be possible to find an ideal number of jobs to minimize
the total computation time, where the smaller jobs were big enough
to correspond in time-usage to the jobs counting n-grams for the most
frequent unigrams. If the jobs performing the counting step required
a similar amount of time, fewer resources would be constrained by
waiting jobs. With an ideal number of jobs, the total computation
time would be smaller, requiring fewer resources from the cluster.
However, the total time the script needs to return with a Language
Model would not be changed as the counting of the most frequent
n-grams would still be the lower bound.

4 http://www.bzip.org/ (Last visited: March 27, 2019.)
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6.5 DISCUSSION

Experimenting with building and rebuilding n-gram models from
large corpora requires efficient computation. The above experiments
show how Language Models can be efficiently built using the IRSTLM
framework, adapted to the OpenPBS job scheduler. The Language
Models created in the above experiments could not fit in memory
on a single machine (available at that time), and exploring alternative
ways of building them was necessary. In addition to the proposed
method, vector quantization could have been used.

With web corpora, noise can be a problem, and some steps that
can be taken to reduce the number of unique tokens were identified
through these experiments. Such tokens are not necessarily members
of the language but have rather come about as the result of idiosyn-
crasies in the corpus processing.

The low degree of Out-of-Vocabulary words, also when using cor-
pora that retain capitalization and inflected forms (such as the Full-
form corpora), is an indication of the effect of adding more data. The
experiments indicate differences in noise between the English, Ger-
man and Italian corpora, but more experiments are necessary to es-
tablish such a relation.
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English Fullform

Order 5pruned 5unpruned 7 pruned
1-gr 33 33 33
2-gt 135-3 135.3 135.2
3-gr 165.6 668.8 165.6
4-gr 222 1,451.9 222.0
5-gr 179.4 2,026.2 179.4
6-gr 115,4
7°8¢ 72,1

In total 705.7 4,285.5 893.3

(a) EN Corpus n-gram counts

German Fullform

Order 5 pruned s5unpruned 7 pruned

1-gr 8.1 8.1 8.1
2-gr 237.0 237.0 237.9
3-gr 168.5 842.9 168.5
4-gr 180.5 1,493.3 180.5
5-gr 128.1 1,844.2 128.1
6-gr 79.6
7-gr 52.6
In total 722.4 4,425.5 854.7

(b) DE Corpus n-gram counts

Italian Fullform

Order 5 pruned 5 unpruned 7 pruned

1-gr 3.1 3.1 3.1
2-gr 131.2 131.2 131.2
3-gr 169.7 670.3 169.7
4-gr 225.1 1,454.8 225.1
5-gr 174.8 1,991.3 174.8
6-gr 114.2
7-8r 79-2

In total 704.1 4,250.9 897.6

(c) IT Corpus n-gram counts

Table 17: N-gram counts for pruned and unpruned 5 and y-gram models
from the Fullform en/de/itTenTen corpora. Figures reported in
millions of n-grams.






SELF-ORGANIZING MAPS AND CLASSIFICATION

This chapter is the first of three chapters presenting experiments in-
volving Self-Organizing Maps. In these experiments, SOMs are cre-
ated from a structured document collection, as a precursor to the doc-
ument clustering experiments in Chapter 8.

Section 7.1 presents related work and Section 7.3 the data collec-
tions and evaluation. Section 7.4 introduces the experimental meth-
ods. Next, Section 7.4 presents the experiments and Section 7.5 their
visualization. Finally, Section 7.6 ends the chapter with a discussion.

Categorization of a text corpus where a set of categories (labels) is
attributed to each article is a classical supervised classification task.
For such classification tasks, parameters are learned from a training
set of labeled instances, and the learned model is subsequently used
to classify test instances. The Self-Organizing Map, in contrast, is
an unsupervised method that clusters training instances without any
prior knowledge of their categories. Using a two-step methodology,
the labels in a training corpus first associate with areas of the map; ar-
eas that in turn can be used to classify previously unseen documents.

A key problem in document classification is representation — how
documents are transformed into vectors. In principle, such vectors
can be of any size, limited only by hardware constraints. Practically,
the vector representation is constrained to some arity. When repre-
senting documents by their tf-idf or n-gram statistics (such as below),
cut-off points as a minimum threshold for occurrences can be speci-
fied, indirectly limiting the vector dimensionality. Additionally, fea-
tures can be engineered from other sources, either knowledge-based
such as specialized dictionaries or thesauri, or machine-learned se-
mantic representations.

Several experiments were conducted on two different portions of
the Reuters Corpus, termed the “Top 10” and “Full” sets of cate-
gories. While the experiments follow a tradition of Self-Organizing
Map-based classification, they provide more details on implementa-
tion, vectorization, and the parameters used to create the map. SOMs
of different sizes were used to evaluate the benefit of increasing the
number of nodes (grid sizes) in SOM-based classification versus the
increased computational cost of a larger grid.
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7.1 RELATED WORK

Wermter and Hung [2002] used Self-Organizing Maps with Word-
Net-based [Miller, 1995] semantic networks for classifying the Reuters
Corpus (details follow in Section 7.2). Documents were represented
by significance vectors, representing the degrees to which the doc-
uments belong to certain preassigned topics, which were calculated
from the importance of words in each category. Tsimboukakis and
Tambouratzis [2007] used SOMs in an ensemble method classifying
Greek language documents. First, terms were grouped by interpret-
ing each node in the SOM as one group. Next, the number of groups
was further reduced before group membership was used as features
in supervised classification.

Saarikoski [2009] experimented with using Self-Organizing Maps
for Information Retrieval and document classification [Saarikoski et al.,
2011], and compared the algorithm to other Machine Learning meth-
ods on classification of the Reuters Corpus. While Saarikoski et al.
explained how the SOM was applied to the problem, some factors
that affect classification performance were unaccounted for, such as
the parameters for the SOM creation, notably grid size and learn-
ing rate. Restricting the classification task to the Top 10 categories
(by frequency), their best experiments had micro- and macroaverages
of 93.2% and 83.5%, respectively. Notably, a Naive Bayes classifier
outscored all other methods on the data (95.2% and 90.4%), results
that also significantly beat the findings of Dumais et al. [1998], who
reported only 81.5% accuracy for the Naive Bayes method. This dis-
crepancy is likely due to a difference in scoring, as Dumais et al. [1998]
reported break-even scores (motivated by comparability with other re-
search), as opposed to Saarikoski et al. [2011] who provided true accu-
racy scores without any adjustment for precision-recall trade-off. The
break-even point is where the precision is equal to recall, the point
at which false positive and negative misclassifications are done at the
same rate.

Saarikoski et al. [2011] noted how costly training of Self-Organiz-
ing Maps was, in contrast to the cheap testing of new instances during
classification, and suggested using multiple maps for multi-label clas-
sification, or using the three nearest labels for a new instance. This
approach, however, would imply that all documents have the same
amount of labels in multi-label classification.

7.2 DATA

The Reuters Corpus [Lewis et al., 2004] has been extensively used for
text classification research. Because it makes the comparison of results
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easier, some conventions on the corpus are established, such as the
ModApté split [Lewis, 1997] into training and test sets with designated
sections.

Other much-used splits are: to divide the ModApté into either the
ten most frequent categories, the categories with at least one positive
training and one test example (90), or the categories with at least
one training example (115). The split with the go categories with at
least one positive training and test example is somewhat confusingly
also called AptéMod [Yang and Liu, 1999], and the R(90) subset of the
ModApté split [Debole and Sebastiani, 2004]. Elsewhere, the R(g90) split
with 10,789 documents is also called ModApté [Yang et al., 2009, Chen
et al., 2004, Saarikoski et al., 2011].

The Reuters Corpus consists of text documents with varying num-
bers of labels per instance. Sebastiani [2002] noted a fundamental dis-
tinction between the single-label and multi-label classification tasks.
In the former, only one label is attributed to each document, whereas
sets of labels are attributed to the documents in the latter. Hence, the
Reuters Corpus is a multi-label dataset.

Zhang and Zhou [2013] reviewed multi-label classification, and high:
lighted two transformations of the problem; (i) it can be recast as a
cascade of single-label (binary) classification problems and evaluated
together, thus disregarding the dependence between labels, and (ii) it
can be transformed into a multiclass (one-of) problem, which treats
each labelset as a separate class and ensures that all documents are
attributed one, and only one, of the labelsets.

The Natural Language Toolkit (NLTK) interface [Loper and Bird,
2002] to the Reuters Corpus, provides the AptéMod split as comprised
of 7,769 training and 3,019 test examples. The frequencies of category
counts are 2160, 1173, 255, 91,52, 27,9,7,5,3,2,1,0, 2,1, i.e., 9160
documents with just one category, 1173 with two categories, etc. The
category counts follow Zipf’s law [Zipf, 1935] with an exponent of
3.44". Figure 25 is a plot of the log-frequency of category counts. The
Top 10 categories refer to the ten categories with the highest frequency
of documents.

7.3 METHOD

The method used to classify the Reuters Corpus is two-phased; (i) a
Self-Organizing Map is created from the training portion of the cor-
pus and (ii) test instances are labeled according to their placement on
this map.

The exponent was found by optimizing the squares of differences between the log
of the frequency probabilities and the log-theoretical probabilities, which was 1.35
at its optimum.
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10

Figure 25: Number of categories per document (x-axis) plotted against log-
frequencies of category counts (y-axis) in the Reuters Corpus. Log
of o set to o.

Before creating the Self-Organizing Map, the document collection
was vectorized for both the training and test parts. Documents were
converted into vectors consisting of tf-idf or raw word counts, or a
combination thereof (details follow in Section 7.3.2). A parallel ver-
sion of the SOM algorithm (see Section 2.1) was implemented, and a
quadratic node topology was used for the Self-Organizing Maps.

In the subsequent classification phase, the methodology presented
in Section 2.1.5 was applied. Majority voting was used for labeling test
samples, and if no training samples were found in the Best-Matching
Unit of the given test sample, an n-best list was searched. This follows
Saarikoski et al. [2011] and largely also Isa et al. [2009].

7.3.1 Implementation

The Self-Organizing Map algorithm was implemented in MPI (us-
ing mpidpy bindings)* and Python [Dalcin et al.,, 2011], and run on
a Portable Batch System (PBS)? scheduler. Samples were processed
serially, but for each sample, the vector comparisons and updating of
nodes were done in parallel. Hence, the algorithm was still on-line as

2 https://mpidpy.readthedocs.io/en/stable/ (Last visited: March 27, 2019.)
3 Both OpenPBS and PBS Professional were used.
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Algorithm 4 Parallel, vectorized on-line SOM algorithm for E epochs,
a set of N nodes, and a set of S training samples and P processes.

1: procedure CREATE-SOM-PARALLEL

2 randomly initialize [N| nodes into a matrix MmNl
3 control node: scatter MN nodes to P processes
4 for each epoch e € E do

5: for each sample s € S do
6

7
8

9

for each node n € N do
distance[n] = distance(s,n)

end for
: BMU = min distance[n € N]
100 reduce BMU back to control node
11: update BMU + neighborhood towards s
12: end for
13: reduce neighborhood and/or learning rate
14: end for

15: end procedure

in Algorithm 1 (see Section 2.1). With the on-line formulation, vector
comparisons and updates are run per training sample, increasing lin-
early with the number of training samples. Consequently, the number
of vector comparisons increases with the number of nodes in the grid.
Vector comparisons are costly, and therefore lend themselves well to
parallelization. Hence, the parallel on-line implementation used in
these experiments is sensitive to large numbers of training samples
but well equipped to handle large Self-Organizing Map topologies.
Algorithm 4 outlines the process in pseudo-code.

Equation 60 shows time complexity of a parallel SOM implemented
on a hypercube grid [Hamaldinen, 2002].

O(mlogP +m(K/P)) (60)

m represents vector length, K the grid size and P the number of pro-
cesses. The two parts of the equation respectively represent the cost of
communication and computation, where the latter term grows much
faster than the former, which is reflected in the results in Table 19 on

Page 149.

7.3.1.1 Parallelization of the On-line Self-Organizing Map Algorithm

Figure 26 explains Line 3 of Algorithm 4. Before nodes are distributed,
the matrix of nodes is resized to a list format, thereby distributing the
nodes fairly among processes with the strict requirement that the to-
tal number of nodes must be divisible by the number of processes.
The current sample is also distributed to all processes, enabling them
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Figure 26: Distribution of 16 nodes to 4 processes.

—

to calculate distances for their nodes and return the minimum. In the
update step, each process can calculate its nodes” locations in the orig-
inal 2D grid by using its process ID, with which the distance from the
Best-Matching Unit in Euclidean space can be determined. Thus, up-
dating nodes can be done with matrix operations inside each process.
The storage required for this matrix grows with vector dimensional-
ity, and storing the total matrix — a matrix of all nodes in the grid
inside one node — would exhaust the memory available for single
processes even for small SOMs. At the end of a given Epoch, each
process stores its local matrix in a file. Special high-memory nodes
are then used to read all these matrices from file and recombine them
into their original shape. Operations such as drawing graphics and
calculating distances for hierarchical clustering are not parallelized
and operate directly on the total matrix.

7.3.1.2  Experiment Configuration

Each experiment that will be presented in Section 7.4 was defined in
a configuration file, where parameters such as the size of the grid,
the number of iterations, the learning rate, and the size of the initial
neighborhood radius were specified. Listing 1 contains an example
configuration.

Listing 1: Example SOM configuration file. Selected parameters displayed.
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[SOM]
dimension = 64 % quadratic layout side size

num_epochs = 100 % number of epochs

learning_rate = 0.20 % initial learning rate
start_radius_divisor = 4 % initial neighborhood radius size
input_vectorization = filename % option for loading

vectorization from file

[Dataset] % options for loading datasets from files;
collapsed

[Runtime] % runtime options controlling temporary storage
and plot frequency; collapsed

[Logging] % logging options, notably log-file; collapsed

The neighborhood surrounding each Best-Matching Unit was defined
by a radius diminishing with Epochs, with a configurable initial size.
The radius was reduced by exponential decay, as was the learning
rate, i.e., the degree to which BMUs were updated to be similar to
training samples.

o(t) = start radius * exp(—%) (61)

Equation 61 shows the calculation of the decaying neighborhood with
respect to time steps (Epochs). The starting radius is configurable, and
A is a time constant dependent on this initial radius. The learning rate
was reduced similarly.

7.3.2  Document Vectorization

The NLTK interface provides a data structure where the raw text and
categories of the documents in the Reuters Corpus are indexed with
filenames. Documents were vectorized with scikit-learn [Pedregosa
et al.,, 2011], retaining a vectorizer object such that the test corpus
could be vectorized equivalently to the training corpus. In experi-
ments below, the tf-idf transformer was used for vectorization along-
side the Euclidean distance. The implementation is modular in the
choice of vectorization method. In the experiments presented below,
documents were transformed into a matrix of tf-idf values.

7.3.3 Evaluation

The Reuters Corpus is comprised of text documents with o to 15 cat-
egory labels. The five most frequent labels of go categories in the
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ModApté split have the following counts: 3923,2292,374,326,309, to-
taling 7224 of 9160 documents. The skewed distribution means that
accuracy on the entire corpus is not necessarily a good measure of
classifier performance, as the performance on less frequent categories
may drown in the larger categories. The distinction between micro-
and macroaveraging mitigates this problem (see Section 2.1.6). Both
metrics are reported for the experiments below.

7.4 EXPERIMENTS

Two rounds of experiments were carried out: The first experiments
were conducted with the same vectorization parameters on five grid
sizes; 8x8, 16x16, 32x32, 64x64, and 128x128 (i.e., from 64 to 16,384
nodes) on the Top 10 categories of the Reuters Corpus. The compu-
tation times for different grid configurations were compared as the
numbers of parallel processes were increased. The second round of
experiments was done on the entire AptéMod split (9o categories), in-
vestigating the effect on classification performance of varying grid
sizes by the same amount. In both rounds of experiments, the Self-
Organizing Maps were configured with an initial learning rate of 0.10
and an initial neighborhood radius of a quarter of the grid dimension.

The training and test corpora were limited to documents with only
one category when classifying the Top 10 categories to concentrate
experiments on the one-of classification problem. When using ma-
jority voting for prediction, the method would not benefit from the
added information that some documents have more classes, as less
frequent classes in each node could be voted down. Using documents
restricted to one label could, therefore, bring about better separation
in the Self-Organizing Map.

Figures 27a and 27b plot the differences between the multi-label
and multi-class versions of the ModApté split, respectively. They
show how the labels that are concurrent with other labels shrink (such
as money-fx and interest) whereas others, such as acq and earn, are
largely retained in counts. Figure 27c partly explains the differences,
by plotting the concurrence of the labels in the multi-label version of
the dataset. Each arc represents a label and is proportional to the
number of documents with more labels, e.g., documents labeled as
money-fx share 1,2,35,184, and 2 labels with the labels acqg, crude, trade,
interest, and grain, respectively. The links between the arcs show the
strength in the relationships. Furthermore, the plot shows how the
shared instances between the most frequent labels, acq and earn are
few, both betw<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>