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Chapter 1

Introduction

Bayesian modelling has over the recent years had a raise in popularity among
both statisticians and applied scientists through easy-to-use software (e.g., van de
Schoot et al., 2021). They allow for fitting complex models, but lack thorough
explanations on how to choose prior distributions for these models. There is
an increase in recommendations about being sceptical to default prior distri-
butions, i.e., general-purpose priors chosen without any specific application in
mind (e.g., Gelman et al., 2017, 2020; Smid and Winter, 2020; Stan Develop-
ment Team, 2021a). However, it can be difficult to navigate through the huge
amount of proposed priors. Everyone comes with their own suggestions, and it
can be difficult to transform the prior knowledge, when it exists, into a prior
distribution function.

This thesis presents the new prior framework hierarchical decomposition
(HD) priors. The HD prior framework makes it possible to specify joint priors
for variance parameters in Bayesian hierarchical models that are intuitive, eas-
ily communicated, and robust in the sense that it leads to stable inference and
avoids estimating spurious random effects. It offers a simple way of including
prior intuition and knowledge in the prior, and is a tool for easy communication
of the prior. With this framework we can simplify the process of eliciting prior
knowledge and choosing a good prior, reflecting our prior beliefs on the scale
of the prior knowledge. The penalized complexity (PC) prior of Simpson et al.
(2017) enables shrinkage to stabilize the inference and avoid overfitting. We
extend the idea of the PC prior to the model level. Through a combination of

1



2 Ingeborg Gullikstad Hem

default settings and prior knowledge the HD prior framework yields a weakly-
informative prior (Gelman et al., 2008; Simpson et al., 2017). The framework is
focused on variance parameters. Including other parameters such as correlations
is future work, and fixed effects are given vague Gaussian priors.

Often, one does not have good intuition about the absolute magnitudes of
each variance parameter in the model. In such cases it may be easier to elicit
information about the total variation in the data attributed to the random ef-
fects, and about the relative magnitudes of the individual variance parameters.
This is the idea behind the HD prior framework. For example, in genomic
modelling, experts in the field typically have prior knowledge about the phe-
notypic (total) variance and the heritability. Heritability is the proportion of
phenotypic variance for some trait that can be attributed to the effect of the
genes (Allenby et al., 1995; Holand et al., 2013; Mäki-Tanila and Hill, 2014).
This prior knowledge can come from for example previous analyses on similar
datasets, or intuition and knowledge about the species of interest. In the HD
prior framework, we consider the total variation accounted for by the random
effects, as we keep the fixed effects out of the framework.

The HD prior provides a flexible parameterization of the joint variance prior
that is not restricted to the variance parameters, but can be customized to co-
incide with the available prior knowledge. This yields a transparent and easily
communicated prior, making the elicitation process simpler (O’Hagan et al.,
2006). For the genomic model where we have knowledge about the pheno-
typic variance and heritability, a prior parameterized with phenotypic variance
and heritability is more intuitive than one with two independent variance pa-
rameters. In addition to being proper, the prior provides an option to easily
investigate how much the prior influences the posterior. The latter indicates
whether the data is able to provide information, or if the model is overfitting.

To evaluate the performance of the HD prior, it is applied in an extensive
simulation study of wheat breeding, where one of the main goals is to identify
the genetically best individuals in a population, and is shown to outperform
both the standard maximum likelihood approach and independent priors on
variance parameters. To make the HD prior easily available and applicable, a
software is developed, which encourages to integrate prior choice as an active
part of the Bayesian workflow.

The main contributions of this thesis are a novel framework for specifying
joint variance priors in Bayesian hierarchical models, demonstrating the added
value of incorporating expert knowledge in plant breeding programs, and an R
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package that opens for easy inclusion of prior knowledge in an intuitive and
transparent way. These contributions are summarized in Chapter 2 and are
followed by the scientific papers. Details around aspects from and background
for the enclosed papers are given in Chapter 1. First, a brief introduction to
Bayesian statistics is given, before moving on to prior distributions. Some chal-
lenges, distribution families, and various approaches and methods are presented,
and Chapter 1 ends with a short discussion.

1.1 Bayesian statistics

Thomas Bayes (1701–1761) was the origin of Bayesian statistics, and formulated
what is now well-known as Bayes’ theorem (Bayes, 1763). His work was com-
municated by Richard Price and published after his death. The famous theorem
describes the posterior probability of some event A based on a priori knowledge
relevant for the event, and states:

P(A|B) =
P(B|A)P(A)

P(B)

where B is an observed event and P(B) 6= 0 (see e.g. Casella and Berger, 2002).
The a priori knowledge about the event is formulated through P(A), and the
theorem gives information on this event A given the observations done on event
B.

The term “inference” covers statistical methods where one wants to learn
something about a population from a sampled subset of the population. Through
an analysis, we want to learn properties of some underlying probability distribu-
tion from observed data. We use a statistical model consisting of an observation
model and a latent model describing the observed data for the population sub-
set, and want to use this model to gain knowledge about the whole population.
Bayesian inference is a statistical inference method where we strengthen the
statistical model with beliefs, using new information and evidence to update
the probability of some hypothesis.

The following formulation of Bayes’ theorem is more relevant for this thesis:

π(θ,x|y) = π(y|x,θ)π(x|θ)π(θ)
π(y)

, (1.1)

where y = (y1, . . . , yn) is observed data for some phenomenon, x = (x1, . . . , xn)
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is an underlying process describing these data, and θ = (θ1, . . . , θp) are parame-
ters describing the underlying process π(x|θ) and observation model, also known
as the likelihood, π(y|x,θ) π(y) is the marginal likelihood. Prior knowledge
about the parameters is included in the model through the prior distribution
π(θ). This model is known as a Bayesian hierarchical model (BHM, Cressie and
Wikle, 2011) and represents a flexible and widely used class of models (e.g., Gel-
man and Hill, 2007; Gelman et al., 2013; Banerjee et al., 2014). Models where
the underlying, or latent, process x consists of additive combinations of model
effects are called additive models, and the useful latent Gaussian models are a
subset of these (Rue et al., 2009). In a latent Gaussian model the individual
model components in x are all Gaussian conditional on the parameters θ, and
the data is assumed to come from an exponential family of distributions such
as the Gaussian or Poisson distributions (see e.g. Casella and Berger (2002,
Chapter 3.4) for details). The latent Gaussian models have a latent process
that can be formulated as:

ηi = µ+

p∑

j=1

βjzi,j +
m∑

k=1

fk(vi,k), i = 1, . . . , n, (1.2)

where ηi is commonly known as the linear predictor due to its additive proper-
ties. The linear predictor is linked to the observations yi through a link function
g(·) such that the mean µi of observation yi can be modelled through ηi = g(µi).
In Equation (1.2), µ represents an intercept, βj , j = 1, . . . , p, represents coef-
ficients of covariates zj = (z1,j , z2,j , . . . , zn,j) (fixed effects), and {fk(·)}, k =
1, . . . ,m, are unknown functions of covariates vk = (v1,k, v2,k, . . . , vn,k) (random
effects). The coefficients βj are assigned Gaussian distributions N (µβj

, σ2
βj
)

where µβj
is commonly set to 0, and σ2

βj
is typically large. The same goes for

the intercept µ.

In this thesis, the latent Gaussian models are considered, and the main fo-
cus is set on the properties of the prior distribution π(θ), more specifically the
prior distributions on the variance parameters. The intercept µ and coefficients
βj are typically easy to identify (Goel and Degroot, 1981), and we do not con-
sider properties of priors on them. We limit the scope to models where the
random effects are multivariate Gaussian conditional on the variance parameter
σ2
k, such that {fk(vk)} ∼ N (0, σ2

kΣk). Σk is the known covariance matrix of
the effect with corresponding variance σ2

k. This covariance matrix can be dense
or sparse. When the covariance matrix is the identity matrix, a special case of
a sparse matrix, the effect is unstructured, such as a residual effect. We can set
{fk(vk)} = uk = (u1,k, u2,k . . . , un,k) and get a simplified version of the linear
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predictor in Equation (1.2):

ηi = µ+

p∑

j=1

βjzi,j +
m∑

k=1

uk,i. (1.3)

Of note, if σ2
k = 0, the random effect uk is removed from the model in the

sense that it does not contribute. We assign prior distributions to the variance
parameters σ2

k of the random effects. These priors cannot be Gaussian since
σ2
k ≥ 0.

1.2 Prior knowledge

“Prior knowledge” is a loose term and can include everything from ideas, beliefs
and intuitions to specific and highly detailed information about a phenomenon,
before the phenomenon itself has happened or is investigated. Prior knowledge
exists to some extent for more or less any situation, such as genomics (e.g.,
Dougherty and Dalton, 2013), medical image segmentation (e.g, Grau et al.,
2004), weather prediction (e.g., Lorenc, 1986), and marketing (Allenby et al.,
1995), and can be used to improve the analysis. This knowledge both can
and should be utilized in a Bayesian framework through the prior distribution
(O’Hagan et al., 2006). This is one of the great advantages with Bayesian infer-
ence; we can use the prior to express our prior beliefs. However, to transform
an intuition into a probability distribution is not straight-forward; it is difficult
to get the prior to express these prior beliefs we have. It is not obvious how to
use single numerical values, or perhaps just an estimate or idea, to construct a
prior distribution. Dallow et al. (2018) combines prior knowledge from several
experts, “team beliefs”, and make a prior distribution, providing transparency
about the beliefs and priors through a robust framework, and there is an in-
creasing interest in using prior and expert knowledge in analyses through prior
distributions, such as in social science (Zondervan-Zwijnenburg et al., 2017).
Prior elicitation in a transparent way is today a relevant topic.

A prior distribution can be constructed in many ways. One can use prior
knowledge from similar experiments performed in the past, or use the intu-
ition and knowledge from one or several experts in the field of interest that
expresses detailed and subjective information about the problem at hand (e.g.,
Spiegelhalter et al., 2004). One can use vague or weakly-informative priors that
says something, but not much (e.g., van de Schoot et al., 2021). One can use
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so-called non-informative prior distributions that contain objective information
that does not use any prior knowledge at all (e.g., Gelman, 2006). One can
use general principles developed independently of the application at hand (e.g.,
Kass and Wasserman, 1996). One can utilize conjugacy to choose a prior that
will simplify and increase the efficiency of the computation (e.g., Gelman et al.,
2013). One can use a uniform prior to restrict the parameter space assigning
equal probability to all values in the chosen space (Lambert et al., 2005). All
these approaches let us take advantage of pre-existing knowledge, also the non-
informative priors. If we indeed know absolutely nothing about the problem at
hand, we should use a prior that reflects that, and not use some default prior
which may say something about the parameter you do not have grounds to as-
sert. Gelman et al. (2020) points out that a uniform prior is often classified as
non-informative, but depends on the parameterization of the model, and thus
it contains some information (see also Lambert et al., 2005).

The need for a good prior distribution will decrease with increasing amounts
of data, however, how much data required before vague priors will be sufficient
depends on the complexity of the model and number of model parameters (Gel-
man et al., 2020). A simple model requires less data to tolerate vague priors than
a complex model with many effects and parameters that must be estimated. An
example of this is in quantitative genetics: the data needed for accurate esti-
mation of nonadditive genetic effects is huge. The nonadditive effects are often
confounded, and we seldom have enough observed data to estimate these effects
without an informative prior (Sorensen and Gianola, 2007).

There is no one ultimate answer to the question about how to perform
Bayesian inference - it varies with among others the problem at hand, model
complexity, goal of analysis and prior knowledge. Gelman et al. (2020) has put
together a comprehensive guide to Bayesian workflow. We do not go into de-
tails, but want to point out some of their aspects related to prior distributions.
They stress that awareness and being critical of the decisions made in the model
fitting process is important. The joint prior should be considered to ensure it
does not become more informative than intended as many weakly-informative
component-wise priors may lead to a much more informative joint prior. They
argue that prior information can solve computational problems in the inference,
and that priors must be considered for each model in the Bayesian workflow. If
you change the model, you may need to adjust your prior.
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1.3 The challenge of choosing prior distributions

The process in all kinds of inference starts with a research question one wants
to answer. To answer this question, data are collected in the form of observa-
tions, one decides on a model, what components it should contain and on what
likelihood distribution is suitable for the available data. It can also be done
the other way around: data are collected after one has decided on what model
is suitable for the problem at hand. In Bayesian inference, the next step is to
choose the prior distributions, and then the question becomes: “Which prior
distribution do I use for my model?”.

This is not an easy question we can answer with just a sentence. As pointed
out by Gelman et al. (2020), this is a part of an iterative process. We do not
consider the whole Bayesian workflow from the beginning to the end, but focus
on the prior distribution part. There is no single recipe describing how to choose
prior distributions, and there is no mutual agreement on which distributions are
better or worse in general (e.g., Lambert et al., 2005; Gelman, 2006; Gelman
et al., 2017). As indicated in Gelman et al. (2017), there are no general-purpose
priors that suits every model and application. The question on which prior to
use becomes even more complex for non-variance parameters, such as correlation
parameters, which are even more important to assign good priors as they are
further away from the data and it may thus be little information in the data
about them (Goel and Degroot, 1981). This is however outside the scope of the
thesis. In addition, the probability distribution itself should have favourable
properties to ensure stable inference and avoid overfitting, such as how much
mass there is in the tails or around the mode of the distribution. that the prior
should be independent of the observed data, and be chosen before the data is
seen.

Bayesian modelling has become increasingly more popular the recent years,
especially through software such as Bayesian Analysis Toolkit (BAT, Cald-
well et al., 2009), OpenBUGS (Lunn et al., 2009), Template Model Builder
(TMB, Kristensen et al., 2016), JAGS (Plummer, 2017), Integrated Nested
Laplace Approximations (INLA, Rue et al., 2009) through the R package INLA

(see www.r-inla.org), Stan (Carpenter et al., 2017) through the R package
rstan (Stan Development Team, 2020) and Stan extensions such as rstanarm
(Goodrich et al., 2020) and loo (Goodrich et al., 2020), and more (see e.g.,
van de Schoot et al., 2021). Each software comes with default prior distributions
for variance parameters. For example, the default in INLA is an inverse-gamma
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distribution with shape 1 and scale 10−5 (InvGam(1, 5 · 10−5)) (Blangiardo and
Cameletti, 2015) (this corresponds to a gamma prior on inverse variance with
shape 1 and rate 10−5), and TMB has “non-informative priors in the Bayesian
literature” as default (Kristensen et al., 2016). rstan has implicit priors that are
uniform on the specified range of the parameter (Stan Development Team, 2018)
which are improper if the parameter is allowed to take any value along the real
line, however, the developers discourage the use of such very vague priors (Stan
Development Team, 2021a). Bounded uniform priors have been investigated
on both variances (Lambert et al., 2005) and standard deviations (Martinez-
Beneito, 2013). Other proposed prior distributions include Half-Cauchy(25) on
standard deviations (Gelman, 2006), and WinBUGS, OpenBUGS, JAGS and
Stata used InvGam(ε, ε) priors in their old examples and manuals (Spiegelhalter
et al., 1996; Plummer, 2017; StataCorp, 2017). These distributions can provide
computational advantages due to conjugacy, but they are generally inappropri-
ate for variances of random effects (Lunn et al., 2009). Prior distributions are
in other words a highly debated topic, but no overall conclusion on what prior
distribution is the right one in general exist.

When choosing the default prior from some software or blindly using generic
prior distributions found in the literature, the properties of the Bayesian frame-
work are not fully utilized, and prior knowledge may go to waste. It is also
difficult to know how this default or literature-based prior contributes to the
inference without extensive testing of the model, and it may even contradict the
prior knowledge (which with a default prior is not used). An inappropriate prior
distribution can lead to slower inference than necessary because the posterior
is difficult to explore, to overfitting, or it can lead to unstable or even failing
inference.

1.4 Component-wise variance priors

The common approach is to choose individual prior distributions for each vari-
ance parameter σ2

k (see model description in Section 1.1) in the model in a
component-wise fashion. This leads to a joint prior distribution

π(σ2
1 , . . . , σ

2
m) = π(σ2

1)× · × π(σ2
m)

where the prior on each variance is independent of the others. If prior knowledge
about the absolute sizes of each variance is available, individual prior distribu-
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tions on the variance parameters is a satisfactory solution. However, we are
seldom in a situation where we have such specific information.

It is in general difficult to choose prior distributions for variance parame-
ters (Fong et al., 2010), and independent component-wise variance priors have
several properties that can lead to problems. First of all, it is problematic to
exploit prior knowledge unless the knowledge exists on the scale of the variance.
This is not the case in for example animal models, where the available prior
information and knowledge often is on the heritability (Holand et al., 2013), or
in disease mapping where it makes sense to elicit prior knowledge on the total
random effect variances (Wakefield, 2006).

Further, challenges arise when we change the linear predictor, by adding or
removing a model component, and with this get a new model. If we already had
chosen a prior that reflects our prior beliefs on how much variance each model
effect accounted for, we now need to restructure the prior so the new model
match our beliefs. This problem increases when default priors for every variance
parameter are used. By using the same prior distribution for all variances, one
expresses that they account for an equal amount of the total variance in the
data. However, when a model component is added or removed, the change in
the prior reflects that the amount of variance in the observed data increases or
decreases, which is seldom the intention, and is with default priors something
that is not always considered.

As the total amount of variation in the data is the sum of the individual
variance parameters for each model effect, it is an advantage to have some idea
on what the total amount of variation the prior indicates. Unfortunately, we are
not guaranteed that the sum of the distributions is a known distribution family
we can interpret in a simple way. For example, the sum of two inverse-gamma
distributed random variables is in general not inverse-gamma itself. There is
potential for making the process of choosing priors for variance parameters
simpler, more transparent and more intuitive, and at the same time constructing
a prior that robustifies the modelling.

1.4.1 Application-based priors

A variance parameter σ2 is always non-negative, and thus needs a prior dis-
tribution with zero mass for negative values on the variance scale. A range of
probability distributions fulfills this requirement. It should have support for the
variance being 0 to avoid overfitting. Note that distributions over the real line
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can be used on log-variances, but this may make interpretation of the prior less
intuitive.

The inverse-gamma distribution with shape α > 0 and scale β > 0, given by

InvGam(σ2;α, β) =
βα

Γ(α)

(
1

σ2

)α+1

e−β/σ2

, σ2 > 0,

is a popular prior choice for variances in Bayesian modelling with Gaussian data
due to the conjugacy properties of this distribution. Γ(·) denotes the gamma
function. An inverse-gamma distribution with shape α and scale β on the
variance is equivalent to an gamma distribution with shape α and inverse-scale
(rate) β on the inverse variance, commonly known as precision. Consider a
model with likelihood π(y|µ, σ2) = N (µ, σ2) where we use an inverse-gamma
prior π(σ2) = InvGam(α, β) and assume µ is known. For simplicity we set
µ = 0. We can compute the posterior distribution analytically:

π(σ2|y) = π(y|σ2)π(σ2)

π(y)
∝ 1

σ
e−

y2

2σ2

(
1

σ2

)α+1

e−β/σ2

=

(
1

σ2

)α+1+1/2

e−
y2/2+β

σ2 , σ2 > 0.

π(y) is the marginal likelihood. This corresponds to π(σ2|y) = InvGam(α +
1/2, y2/2 + β), and the posterior becomes the prior with updated parameters
and can be regarded as a prior for the next observation. For y = (y1, . . . , yn) ∼
N (0, σ2In) and σ2 ∼ InvGam(α, β) this generalizes to (σ2|y) ∼ InvGam(α +
n/2,y2/2 + β). Unstructured random effects in latent Gaussian models are as-
sumed to follow aN (0, σ2I) distribution, and it is thus a natural choice to use an
inverse-gamma distribution as the prior for the variance parameter. The same
holds for multivariate Gaussian distributed data with structured covariance ma-
trices. This relationship offers computational advantages, since the posterior is
a known distribution family and one do not need to compute it. However, this
prior has no support in 0, meaning the variance is forced to be positive, implying
that the corresponding random effect is forced to be present in the model. This
can lead to overfitting, and shows that the prior distributions used should be
thoroughly inspected before performing inference.

Gelman (2006) suggest the heavy-tailed Half-Cauchy distribution on stan-
dard deviations, which is given by

Half-Cauchy(σ;λ) =
2λ

π(λ2 + σ2)
, σ ≥ 0,
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for a scale λ > 0. This heavy tails allows the parameter, in this case the standard
deviation, to be very large, and has mode in σ = 0.

A uniform prior distribution on an interval [0, σ2
MAX] is yet another option.

It assigns equal preference to all values in the range, and values outside the
range is given 0 probability.

All these priors require hyperparameters (α, β, λ, σ2
MAX). To choose them

can be a challenge, as it is difficult to have intuition on what value of, for
example, the shape α gives a prior matching the existing prior knowledge. Priors
based on principles can ease this process, as the principles themselves can aid
the user in choosing hyperparameters.

1.4.2 Principle-based priors

Some priors are based on principles, instead of being chosen with a specific
application or model in mind. Such priors are often a safer choice than literature-
based ones, as they can be subjective in the sense of hyperparameters, while
the idea of the prior is objective and it is developed independent of any model
and situation. We mention the reference priors (Berger et al., 2009) with the
special case Jeffreys’ prior (Jeffreys, 1946) and the newly-developed penalized
complexity priors (Simpson et al., 2017). These priors are constructed on a
general model parameter and then transformed to the parameter of interest,
and are applicable on any kind of model parameter.

Reference priors The reference prior is based on a principle stating that the
prior should be dominated by the data as much as possible, and the posterior
should be influenced as little as possible by the prior (Berger et al., 2009). The
prior should have minimal information about the parameter. This is the same
as maximizing the distance between the prior and posterior, so the posterior
changes as much as possible when data is observed. As the prior naturally does
not depend on the observed data, the expectation of this distance conditional
on the model is maximized to construct the prior.

The reference prior is considered to be a non-informative, or objective, prior,
as it aims to not affect the inference more than necessary. However, Gelman
et al. (2020) argue that a non-informative prior does not generally exist, and the
reference prior is one of these priors that are often taken as non-informative,
but does in fact contain some information. The prior depends on the model
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and on some assumed asymptotic properties of the soon-to-be observed data,
meaning it is not completely without information. This model-dependence of
the reference prior means it needs to be computed for each new application,
such as the addition of a new covariate, which might be difficult.

Jeffreys’ prior When we consider only one single parameter, the reference
prior reduces to Jeffreys’ prior (Jeffreys, 1946). Jeffreys’ prior is a scale-in-
dependent, objective prior with density proportional to the square root of the
determinant of the Fisher information matrix. It is useful for scale parameters,
such as a variance, as it is invariant under reparameterization. Jeffreys’ prior is
often classified as a non-informative, or objective, prior where the application
and prior knowledge is not taken into account. However, as it is a special case
of a reference prior, the prior depends upon the model. Jeffreys’ prior can be
improper and should be used with case. It may lead to improper posteriors (e.g.,
Wakefield, 2006; Fong et al., 2010) and give misleading results if the impropriety
is not discovered (Hobert and Casella, 1996).

For a variance parameter σ2, Jeffreys’ prior is given by

π(σ2) ∝ 1/σ2, σ2 > 0.

and is improper without support in 0. This distribution is useful when we do
not want to say anything about the scale of the variance parameter.

Penalized complexity priors The penalized complexity (PC) priors pro-
posed by Simpson et al. (2017) are priors based on four general principles. They
aim to avoid overfitting through penalizing a model that is more complex than
there is support for in the data. This idea is in line with Occam’s razor: the
simplest explanation is probably the right one (Merriam-Webster, 2021), or in
this case: the simplest model is preferred until the data tells otherwise. Since
the PC prior is based on principles, rather than on application-specific informa-
tion, it is weakly-informative, and can be tuned for the problem at hand. The
idea is to define a base model, which for each model parameter ξ is a simpler
version of the model. For example, if ξ is a variance parameter, a natural base
model is a model where the variance is 0. The flexible extension of this model
is then a model where the variance is different from 0. We summarize the four
principles behind the PC prior, and refer to Simpson et al. (2017) for further
details.
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As we through the concept of Occam’s razor prefer simpler models over
more complex models, deviating from the simple model should be penalized.
The penalty is put on a measure of distance between the simple base model and
the flexible extension. Simpson et al. (2017) suggest to use the Kullback-Leibler
divergence (KLD, Kullback and Leibler, 1951) to compute this distance, which
is defined as

KLD(π(x|ξ)||π(x|ξ = 0)) =

∫
π(x|ξ) log

(
π(x|ξ)

π(x|ξ = 0)

)
dx, (1.4)

for a model π(x|ξ) where ξ = 0 indicates the base model. The KLD is trans-
formed to a more interpretable distance d(ξ) =

√
2KLD(π(x|ξ)||π(x|ξ = 0)),

and measures the complexity of the model with varying ξ when compared to
the model with ξ = 0. Then a prior is assigned to the distance, instead of di-
rectly to the parameter of interest ξ. Following Simpson et al. (2017), we choose
a constant rate penalization for the distance d, which is achieved by using an
exponential prior distribution π(d) = λ exp(−λd).

We determine the hyperparameter λ > 0 (rate) with information from the
user. The user must prior have intuition on the size of ξ, or on some prop-
erty of the corresponding model component. This is related to the concept
of weakly-informative priors. The prior information comes on the scale of
some interpretable transformation Q(ξ) of ξ which we use to control the den-
sity mass of the prior distribution. This is typically done through quantiles,
Prob(Q(ξ) > U) = α, where U is a plausible bound specified by the user, and α
is the probability of the event such as an upper tail or the median. In this way,
the hyperparameters U and α can be chosen so the prior is weakly-informative,
or one can use prior and expert knowledge to make the prior more informative.

The prior is transformed from the distance space to the space of the flexibility
parameter ξ, and is thus invariant to reparameterization. This is a large advan-
tage, as we can specify the prior without taking the specified parameterization
into account, but rather select the prior on a interpretable scale (Simpson et al.,
2017). The PC priors have been shown to perform well in various contexts and
for various parameters, such as BYM (Besag, York, and Mollié) models (Riebler
et al., 2016), correlation parameters (Guo et al., 2017), autoregressive processes
(Sørbye and Rue, 2017, 2018), and Matérn Gaussian random fields (Fuglstad
et al., 2019).

For a standard deviation parameter σ, we have a linear transformation of the
distance to the standard deviation, d = σ, and the PC prior is an exponential



14 Ingeborg Gullikstad Hem

distribution on the standard deviation:

π(σ) = λe−λσ, σ ≥ 0,

with rate parameter λ = − log(α)/U where Prob(U > σ) = α (Simpson et al.,
2017).

1.5 Model-wise variance priors

Often, expert knowledge consists of some approximate numeric value for a model
parameter, and maybe also a corresponding uncertainty in this numeric value,
but the knowledge is not necessarily on the variances σ2

k directly. To utilize the
knowledge about the heritability in animal models, or the total variance of the
random effects in disease mapping, we need a prior distributions on proportions
of variances, and not on the variance components directly.

1.5.1 Distributing the total variance along a prior tree

Instead of considering each variance parameter independently, we can take the
model as a whole and create a joint prior for all variance parameters. In this
case, we first consider the total latent variation in the data, i.e., the total vari-
ation attributed to the random effects in the linear predictor η conditioned on
the model parameters θ. Then we use variance proportions to distribute this
total latent variance to the individual random effect components. This idea is
explored by Simpson et al. (2017, Section 7), and they conclude that this ap-
proach opens for exploiting the structure of the model, in a way component-wise
variance priors do not. This can be extended to a division of the linear predic-
tor, where we distribute the latent variance for some components independent
of other components. This is the idea behind the hierarchical decomposition
(HD) prior framework.

To make this variance decomposition intuitive and easily communicated, we
can imagine the linear predictor in the shape of a tree. Each random effect in
the model is represented by a leaf node, which we combine according to our prior
knowledge about the model and model structure. We use this tree structure to
construct a joint prior for the variance parameters. Consider a model with a
linear predictor consisting of three components:

ηi,j,k = ai + bi,j + ci,j,k, i = 1, . . . , p, j = 1, . . . ,m, k = 1, . . . , n, (1.5)
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a+ b+ c

a b c

Figure 1.1: Tree structure describing
the model in Equation (1.5) assigning
equal amount of the total variance to
each model effect.

a+ b+ c

a+ b c

a b

Figure 1.2: Tree structure describing
the model in Equation (1.5) utilizing
the nested structure of the model.

where a = (a1, . . . , ap) ∼ Np(0, σ
2
aA), b = (b1, . . . , bm) ∼ Nm(0, σ2

bB), and
c = (c1, . . . , cn) ∼ Nn(0, σ

2
cC). σ2

a, σ
2
b and σ2

c are marginal variance parameters
and A, B and C are covariance matrices. We denote the total variance, i.e.,
the sum of the variances of the random effects, σ2 = σ2

a + σ2
b + σ2

c . We want to
visualize how the total variance is distributed among the three model effects.
How this is done depends on the prior knowledge of the model and the hierar-
chical structure of the model. Figure 1.1 shows a tree structure where we do not
use knowledge about the model structure, and give each component the same
amount of variance in the prior. This is similar to using the same priors on each
variance individually, however, we can easily control the total variance σ2. This
is more complicated with component-wise priors, as the sum of the distributions
may not belong to a known distribution family. The model in Equation (1.5) is
nested, and we can utilize that in our tree structure, for example with a tree as
in Figure 1.2.

Disease mapping models can contain several nested unstructured effects,
and typically contain a spatial effect, for example at the coarsest level of nest-
ing. Riebler et al. (2016) studied how the variance in a BYM (Besag, York and
Mollié) model (Besag et al., 1991) can be divided between an unstructured noise
effect and a structured spatial effect (Besag effect) in the same way we do with
the HD prior. They argue that the two components should not be treated inde-
pendently, but together, and a prior shrinking the structured effect can improve
the inference. In this way the unstructured effect accounts for the variation in
the BYM part of the model unless the data tells otherwise. See Section 1.5.3 for
possible prior distributions for variance proportion parameters. As previously
mentioned, in disease mapping it is natural to elicit prior knowledge about the
total random effect variance, and how this is believed to be attributed to the
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different random effects in the model, rather than asking about the individual
variance parameters (Wakefield, 2006), making the model-wise approach highly
relevant for such models.

The parameterization of the model is decided by the tree structure. For the
tree structure in Figure 1.1, we get total variance σ2 = σ2

a + σ2
b + σ2

c , and two
variance proportions ωa = σ2

a/σ
2 and ωb = σ2

b/σ
2 measuring the amount of total

variance to effect a and b, respectively. The amount of total variance to effect c
is 1−ωa−ωb. We get a different parameterization for the tree in Figure 1.2. See
also Section 1.6. The scale of the prior knowledge varies between application,
scientist, model and perhaps also the goal of the analysis. Prior elicitation will
be easier if the parameterization of the model parameters coincides with the
prior knowledge, and it is a huge advantage if the parameterization is flexible.

1.5.2 Priors for the total variance

The total variance is a variance parameter, and all distributions presented in
Section 1.4.1 are applicable for such parameters.

Jeffreys’ prior for the total variance is particularly handy when we have
Gaussian data, as we do not need prior knowledge about the total variation in
the data due to the scale-independence of the prior. In line with the principles
of the penalized complexity (PC) prior, favouring the simplest model, it makes
sense to shrink the total variance. If Jeffreys’ prior is used, we can induce
shrinkage towards the residual variance further down in the model, with a PC
prior on a variance proportion distributing the total variance between residual
and the other the random effects. Note that Jeffreys’ prior is only meaningful
for a prior where all model components are involved in the same prior tree.
Jeffreys’ prior is improper, but the joint prior on the variance proportions is
proper, and in the case of a single tree and Gaussian data we are ensured a
proper posterior. We can also use a PC prior on the total variance to include
prior knowledge or induce shrinkage. The interpretation of the total variance
in a model with Gaussian likelihood is straight-forward, as we can think on the
scale of the data.

When the likelihood is not Gaussian, the interpretation of the total variance
is more complicated than with Gaussian data. There is already an induced
scale for the random effects through their effect on some measure related to
the linear predictor, and a scale-invariant prior is not meaningful. One possible
solution is to consider the linear predictor through the link function or on some
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other relevant and interpretable scale. For example, odds-ratio for a binomial
likelihood with logit link function, or the relative risk in models with a Poisson
likelihood with log link function. We can use a PC prior on the total variance
of the latent effects to induce shrinkage, meaning the variation in the data will
be explained by any fixed effects in the model if there is no support in the data
for there to be random effects present.

1.5.3 Priors for variance proportions

A variance proportion is restricted to be between 0 and 1. Several distributions
with all the density mass in this interval exist. Just as for variance parameters,
any distribution can be used on a scaled variance proportion parameter, for
example on the logit-scale, but again this may obfuscate the interpretation of
the prior.

The beta distribution is a popular prior choice in for example analysis of
clinical trials (e.g., Brophy, 2020; Ye et al., 2020), and is given by

Beta(ω;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
ωα−1(1− ω)β−1, 0 ≤ ω ≤ 1.

Γ(·) is the gamma function and α, β > 0. The uniform distribution is a special
case of the beta distribution with α = β = 1. The beta distribution can be
generalized to multiple variables with the Dirichlet distribution, and is then the
marginal distribution for each parameter. The Dirichlet distribution is given
by:

Dirichlet(ω;α) =
1

B(α)

p∏

i=1

ωαi−1
i , ω = (ω1, . . . , ωp) and

p∑

i=1

ωi = 1, ωi ≥ 0,

where B(α) =
∏K

i=1 Γ(αi)/Γ(
∑K

i=1 αi) is the beta function. The Dirichlet and
gamma distributions are related. If we have p gamma distributed parameter
with equal rate parameter, the ratio of each of them divided by the sum will be
Dirichlet distributed:

ξi ∼ Gamma(αi,θ), i = 1, . . . , p and ξi > 0, then
(

ξ1∑
ξi
, . . . ,

ξp∑
ξi

)
∼ Dirichlet(α1, . . . αp).
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The scale-independent Jeffreys’ prior can be used for a variance proportion
and is then given by

π(ω) ∝ 1

ω(1− ω)
, 0 ≤ ω ≤ 1.

As with Jeffreys’ prior on variances, this prior does not use any expert knowledge
and is improper, and should be used with care to ensure a proper posterior.

A variance proportion can be assigned a penalized complexity (PC) prior.
The distribution function is dependent on the covariance matrix structure, and
does in general not have an analytic expression. The idea is still the same:
choose a value of the proportion that corresponds to the base model, and com-
pute the distance from this base model to the flexible extension. Prior knowledge
can be used to tune the prior through hyperparameters, and also here the PC
prior provides shrinkage properties. An example for a random intercept model
is included in the following section.

1.6 Example: Random intercept model

In general, we have to compute the Kullback-Leibler divergence (KLD) in Equa-
tion (1.4) numerically. However, in some special cases we can compute the pe-
nalized complexity (PC) prior for a variance proportion analytically. One of
these exceptions is the random intercept model:

yi,j = αj + εi,j , i = 1 . . . , ng, j = 1, . . . , nj , n =
∑ng

j=1 nj . (1.6)

α ∼ Nng
(0, σ2

αIng
) is a group effect and ε ∼ Nn(0, σ

2
εIn) is a residual effect.

The variance parameters describing this model are σ2
α and σ2

ε , and we can
imagine that a model with a (σ2

α, σ
2
ε) parameterization is visualized as in Figure

1.3. If we instead follow the tree structure in Figure 1.4, we can introduce the
parameterization σ2 = σ2

α+σ2
ε and ω = σ2

α/σ
2, meaning σ2 is the total variance

in the observations, and ω is the amount of the total variance that is attributed
to α. This corresponds to σ2

α = ωσ2 and σ2
ε = (1 − ω)σ2. By setting priors

for the variance proportion ω and total variance σ2 instead of for the variances
σ2
α and σ2

ε , we can use prior knowledge we have on the ratio of group effect to
residual effect and on total variation in the data.

We choose a prior on ω such that we shrink the group effect unless the data
indicate otherwise, i.e., we choose the base model to be ω = 0, which gives
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εα

Figure 1.3: Tree structure visualizing
the random intercept model (Equation
(1.6)) when we use component-wise
variance priors for σ2

α and σ2
ε .

α+ ε

α ε

Figure 1.4: Tree structure visualizing
the random intercept model (Equation
(1.6)) when we use priors on the to-
tal variance priors σ2 and the variance
proportion ω.

σ2
α = 0. We compute the distance d(ω) =

√
2KLD (Equation (1.4)) and the

corresponding derivative d′(ω) for the variance proportion:

d(ω) =
√

−
[
(n− ng) log(1− ω) +

∑ng

j=1 log(1 + (nj − 1)ω)
]
,

d′(ω) =
1

2d(ω)

(
− n− ng

1− ω
+

ng∑

j=1

nj − 1

1 + (nj − 1)ω

)
.

If we assume that each group is of the same size, i.e., nj = np for all j, the
expressions simplify to:

d(ω) =
√

− [(n− ng) log(1− ω) + ng log(1 + (np − 1)ω)],

d′(ω) =
1

2d(ω)

(
− n− ng

1− ω
+ ng

np − 1

1 + (np − 1)ω

)
.

We choose a median ω = m, i.e., Prob(ω > m) = 1/2, and get

λ = log(2)/d(m).

Note that the latter holds in general for d(·) ∼ Exp(λ). Hence, the prior for a
variance proportion parameter depends on the choice of base model, the median,
and the covariance matrix structure of the random effects involved.

Figure 1.5a shows the prior for ω where ng = np = 10 and the median of
ω is m = 0.25. The spike in ω = 1 is caused by the infinite distance between
the base model and ω = 1, which is shown in Figure 1.5b, and does not induce
overfitting.

With the (ω, σ2) parameterization, it is straight-forward to see whether or
not the model has learned anything from the data through the parameter ω.
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(a) Prior π(ω). (b) Distance d(ω).

Figure 1.5: a) Prior distribution for the variance proportion ω, and b) the
corresponding distance measure, for the random intercept model in Equation
(1.6). We use ng = np = 10 and m = 0.25.

Even though the prior and posterior of the individual variances differ, it does
not mean that the model has learned about the ratio of group effect versus
residual effect, it has only learned something about the total variance in the
data. In this way we can uncover overfitting.

1.7 Bayesian inference

Bayesian inference can be performed in several ways. For models where we have
a known posterior due to conjugacy, the inference is simple to carry out. In
cases where we do not have conjugate distributions, but we have a low number
of parameters, one can analytically obtain the posterior, or do it numerically.
However, the models quickly become too big for straight-forward computation,
and we need other tools to obtain the posterior distribution.

The bottle neck in the computation is the normalizing constant. In Bayes’
theorem (Equation (1.1)), we know the prior π(θ), the latent process π(x|θ)
and the likelihood π(y|x, θ). However, the normalizing constant π(y) is only
analytically tractable in special cases. To obtain the posterior distribution, we
need this constant, and we need to use numerical methods to compute it.

Markov Chain Monte Carlo (MCMC, see e.g. Gelfand and Smith, 1990) is
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a common approach when the problems become too complex for direct com-
putation. One simulates from the known prior distribution, latent model and
likelihood to obtain the posterior distribution, without explicitly compute the
normalizing constant. This is a very flexible method for inference, and will in
the limit of an infinite number of samples be exact. However, it requires good
implementation to be efficient, and for large models this can be difficult.

In most of the work in this thesis, Stan (Carpenter et al., 2017) is used to
carry out the inference. This is a probabilistic programming language with a
sampling algorithm that uses a variant of Hamilton Monte Carlo called the No-
U-Turn Sampler (NUTS, Hoffman and Gelman, 2014). NUTS replaces random
walks with an exploration strategy based on solutions of differential equations
that is more efficient, and requires less tuning compared to other MCMC algo-
rithms. Stan only needs the joint posterior distribution up to proportionality,
meaning that we do not need to specify the normalizing constant or the full con-
ditional distributions ourselves; Stan does this for us. This is a huge advantage
and makes the model specification easy: the user only needs to write a code in a
language similar to C++ that specifies the joint posterior. Through Stan, it is
simple to compute desired posterior quantities. Stan is available in many pro-
gramming languages, such as Python, MATLAB, and R (Stan Development Team,
2021b). We have used the R package rstan (Stan Development Team, 2020) to
carry out the inference.

Another popular tool for inference is the Integrated Nested Laplace Approxi-
mations (INLA, Rue et al., 2009). This is a method where the marginal posterior
distributions are approximated in a very efficient way for latent Gaussian mod-
els. We omit details on INLA, as we have mainly used Stan for inference and
only used INLA for initial tests, and refer to Rue et al. (2009); Blangiardo and
Cameletti (2015) and Rue et al. (2017) for a thorough description of INLA.

We listed some software and interfaces for doing Bayesian inference in Sec-
tion 1.3. They all allow for user-specified prior distributions, and for example
the Stan developers have given some recommendations on prior choices (Stan
Development Team, 2021a). In most it is easy to implement the prior, but it is
not always straight-forward to choose what prior to use, as it is difficult in itself
to create a prior that utilize the available prior and expert knowledge.

To be able to visualize and inspect the chosen prior in a simple way can
ease the process of choosing the prior we want to use, and it will increase the
awareness of what prior distributions are chosen. We have implemented an R

package that uses the hierarchical decomposition (HD) prior to ease the process
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of using expert knowledge in the construction of in the prior. This software has
a graphical user interface where the user easily can look at the chosen prior,
and will be confronted with the choice, also when the default is used. The prior
should be an active choice, and the R package helps communicating that.

In contrast to component-wise variance priors, which are easy to implement
but difficult to choose, it easy to choose priors with the HD prior, but the
implementation can be tedious. It may require reparameterization through Ja-
cobians, and the distance measure used for the penalized complexity (PC) prior
is complicated to compute. To make the prior framework available and useful
in practice, we have automated the computation of the prior in the developed R

package. Inference with INLA and Stan can be performed directly after having
chosen the desired prior for a selected set of likelihoods and latent models. The
software can also be used to select priors that to be used with another software,
or to simply verify that chosen prior distributions are indeed the intended ones.

1.8 Discussion

In the first paper of this thesis (Fuglstad et al., 2020), we chose to compute the
joint prior following the tree structure from the bottom and up, conditioning on
the priors further down in the tree. This can also be done the other way around,
by starting at the top and conditioning on priors higher up in the tree as we
move downwards, and was merely a design choice. Note that this bottom and
up approach does not decide what order one must specify the prior in; you are
not restricted to choose priors and hyperparameters for the lowest level first.

To use the HD prior for model averaging could be interesting, by averaging
over several prior trees. However, this would require specification of numerous
parameters, and is as of today not something we have investigated.

Fixed effects are not included in the framework today. As pointed out by
Goel and Degroot (1981) and Gelman et al. (2020), how vague the prior can
be depends on the role of the parameter in the model. Parameters close to the
data, such as the mean, do not need as strict priors as scale or shape parameters
must have. The fixed effects have coefficients that control the mean of the
(Gaussian) linear predictor, and we keep them out of the joint prior in the HD
prior framework. An issue with fixed effects is that they are often correlated,
and the variance explained by one effect is not well defined. It would however
be interesting to see how each fixed effect contributes to the data variation, but
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as already stated, this was outside the scope of this thesis.

In multiple linear regression models, we measure the amount of variance
explained by the model with the coefficient of determination, also known as
R2. Gelman and Hill (2007) discuss how this can be extended to hierarchical
models with random effects, such as for the random intercept model (see Sec-
tion 1.6), where R2 is computed at each level in the hierarchical model. For
a random intercept model, the variance proportion measuring the amount of
variance accounted for by the group effect is equal to the intraclass correla-
tion (ICC, McGraw and Wong, 1996), which again the generalized version of
R2 proposed by Gelman and Hill (2007) is linked to. Zhang et al. (2020) have
investigated prior distributions for regression coefficients in high-dimensional
linear regression. They propose to use a new class of shrinkage priors where one
first specifies a prior on R2, which is a prior on a function of parameters, and
then this prior is induced on the separate parameters in a natural way. These
approaches could be starting points for including fixed effects in the HD prior
framework.



24 Ingeborg Gullikstad Hem



Chapter 2

Scientific papers

The papers

Paper I Fuglstad, G.-A., Hem, I. G., Knight, A., Rue, H., and Riebler, A.
(2020). Intuitive joint priors for variance parameters. Bayesian Analysis,
15(4):1109–1137.

Paper II Hem, I. G., Selle, M. L., Gorjanc, G., Fuglstad, G.-A., and Riebler,
A. (2021). Genetics, iyab002. Advance publication.

Paper III Hem, I. G., Fuglstad, G.-A., and Riebler, A. (2021). makemyprior:
Intuitive construction of joint priors for variance parameters in R. In prepa-
ration.

Documentation

Open-access research is important, and all code included in the papers is avail-
able for those who wants to reproduce the results. Most of the research has
been through simulation studies, and scripts for reproducing the datasets are
also available, see Supplementary materials for Papers I and II for code and
data. Datasets used in real case studies are available online or upon request
from the provider of the data. The R-package developed in Paper III is avail-

25
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able online: https://github.com/ingebogh/makemyprior_0.1.0. See Paper
III for details.

Paper I: “Intuitive joint priors for variance parameters”

There is little consensus on what prior distributions to use for variance param-
eters in Bayesian hierarchical models. Model-specific priors found in literature
may be unsuitable for the application at hand, and independent general-purpose
priors for variance parameters cannot exploit the model structure.

Paper I presents a new framework for joint prior distributions for variance
parameters in latent Gaussian hierarchical models: the hierarchical decompo-
sition (HD) prior framework. The idea is to follow a tree structure describing
the model structure and how the total variance is attributed to the different
random model components. For each split in the tree, the user can choose to
be ignorant through a Dirichlet prior, or informative through a penalized com-
plexity (PC) prior. The results show that the new HD prior approach perform
at least as good as current state-of-the-art priors in terms of robust modelling,
and are more transparent and intuitive.

The framework enables easy communication between statisticians, and be-
tween statisticians and applied scientists. As Bayesian modelling is becoming
increasingly more popular and available, there is a corresponding increasing
need for frameworks resulting in robust priors and at the same time are easy to
understand. This to verify that the prior distribution actually reflects the be-
liefs of the scientist that holds knowledge about the model. The method yields
robust priors in terms of them leading to stable inference.

Paper II: “Robust modeling of additive and nonadditive
variation with intuitive inclusion of expert knowledge”

Nonadditive genetic variation is often hard to separate as it is confounded with
other model effects. This may result in unstable inference and can in some cases
lead to a divergent model where we cannot obtain results at all.

In Paper II we have applied the framework described in Paper I to a genomic
model. The main contribution is a Bayesian approach that robustifies genomic
modelling by utilizing prior expert knowledge. The hierarchical decomposition
prior gives a parameterization on the scale of the expert knowledge, making it
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easier for statisticians and geneticists to discuss the prior with minimal statisti-
cal jargon. The graphical visualization of the prior using a tree structure makes
it intuitive and transparent.

The results show that the proposed prior approach with expert knowledge
improves the robustness of genomic modelling over independent component-
wise variance priors. It also gives a better variety selection in a simulated case
study. In a real case study, the prior increases phenotype prediction accuracy
for situations where the standard maximum likelihood approach is not able to
find the optimal estimates for the variance parameters.

Paper III: “makemyprior: Intuitive construction of joint pri-
ors for variance parameters in R”

The hierarchical decomposition (HD) prior is intuitive and shown to be both
useful and perform well, however, it is somewhat tedious to implement, espe-
cially in terms of computing the penalized complexity prior in large models. We
have automated this process.

Paper III describes the R package makemyprior. This is a software where
we have gathered the method developed in Paper I (Fuglstad et al., 2020) and
applied in Paper II (Hem et al., 2021). The package eases prior specification in
latent Gaussian models by utilizing the HD prior framework.

The software extends the idea of the HD prior to be applied to a subset of
the model components and use component-wise variance priors and/or another
HD priors on the remaining parameters. This makes the HD prior framework
applicable in more general settings. The software use a graphical user interface
to aid the prior selection process, where the user can choose a tree structure,
and then be guided through the tree and choose prior distributions based on
prior knowledge the user holds. The package allows the user to feed the chosen
prior directly into the Bayesian inference interfaces INLA and rstan in R.
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workflow. arXiv preprint arXiv:2011.01808 [stat.ME].

Goel, P. K. and Degroot, M. H. (1981). Information about hyperparame-
ters in hierarchical models. Journal of the American Statistical Association,
76(373):140–147.

Goodrich, B., Gabry, J., Ali, I., and Brilleman, S. (2020). rstanarm: Bayesian
applied regression modeling via Stan. https://mc-stan.org/rstanarm. R
package version 2.21.1.

Grau, V., Mewes, A., Alcaniz, M., Kikinis, R., and Warfield, S. K. (2004).
Improved watershed transform for medical image segmentation using prior
information. IEEE transactions on medical imaging, 23(4):447–458.

Guo, J., Riebler, A., and Rue, H. (2017). Bayesian bivariate meta-analysis
of diagnostic test studies with interpretable priors. Statistics in Medicine,
36(19):3039–3058.

Hem, I. G., Selle, M. L., Gorjanc, G., Fuglstad, G.-A., and Riebler, A. (2021).
Robust modeling of additive and nonadditive variation with intuitive inclusion
of expert knowledge. Genetics. iyab002.

Hobert, J. P. and Casella, G. (1996). The effect of improper priors on gibbs sam-
pling in hierarchical linear mixed models. Journal of the American Statistical
Association, 91(436):1461–1473.

Hoffman, M. D. and Gelman, A. (2014). The No-U-Turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learn-
ing Research, 15(1):1593–1623.

Holand, A. M., Steinsland, I., Martino, S., and Jensen, H. (2013). Animal
models and integrated nested Laplace approximations. G3: Genes, Genomes,
Genetics, 3(8):1241–1251.



32 Ingeborg Gullikstad Hem

Jeffreys, H. (1946). An invariant form for the prior probability in estimation
problems. Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences, 186(1007):453–461.

Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by
formal rules. Journal of the American statistical Association, 91(435):1343–
1370.

Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. M. (2016).
TMB: Automatic differentiation and Laplace approximation. Journal of Sta-
tistical Software, 70(5):1–21.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The
Annals of Mathematical Statistics, 22(1):79–86.

Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R., and Jones, D. R.
(2005). How vague is vague? A simulation study of the impact of the use of
vague prior distributions in MCMC using WinBUGS. Statistics in Medicine,
24(15):2401–2428.

Lorenc, A. C. (1986). Analysis methods for numerical weather prediction. Quar-
terly Journal of the Royal Meteorological Society, 112(474):1177–1194.

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS
project: Evolution, critique and future directions. Statistics in Medicine,
28(25):3049–3067.

Mäki-Tanila, A. and Hill, W. G. (2014). Influence of gene interaction on complex
trait variation with multilocus models. Genetics, 198(1):355–367.

Martinez-Beneito, M. A. (2013). A general modelling framework for multivariate
disease mapping. Biometrika, 100(3):539–553.

McGraw, K. O. and Wong, S. P. (1996). Forming inferences about some intra-
class correlation coefficients. Psychological Methods, 1(1):30.

Merriam-Webster (2021). Occam’s razor. https://www.merriam-webster.

com/dictionary/Occam%27s%20razor. Accessed 2021-02-10.

O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H.,
Jenkinson, D. J., Oakley, J. E., and Rakow, T. (2006). Uncertain Judgements:
Eliciting Experts’ Probabilities. John Wiley & Sons.



Robustifying BHMs Using Intuitive Prior Elicitation 33

Plummer, M. (2017). JAGS version 4.3. 0 user manual [Computer software
manual]. sourceforge.net/projects/mcmc-jags/files/Manuals/4.x.

Riebler, A., Sørbye, S. H., Simpson, D., and Rue, H. (2016). An intuitive
Bayesian spatial model for disease mapping that accounts for scaling. Statis-
tical Methods in Medical Research, 25(4):1145–1165.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference
for latent Gaussian models by using integrated nested Laplace approxima-
tions. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 71(2):319–392.

Rue, H., Riebler, A., Sørbye, S. H., Illian, J. B., Simpson, D. P., and Lindgren,
F. K. (2017). Bayesian computing with INLA: a review. Annual Review of
Statistics and Its Application, 4:395–421.

Simpson, D., Rue, H., Riebler, A., Martins, T. G., and Sørbye, S. H. (2017).
Penalising model component complexity: a principled, practical approach to
constructing priors. Statistical Science, 32(1):1–28.

Smid, S. C. and Winter, S. D. (2020). Dangers of the defaults: A tutorial on
the impact of default priors when using Bayesian SEM with small samples.
Frontiers in Psychology, 11:3536.

Sørbye, S. H. and Rue, H. (2017). Penalised complexity priors for stationary
autoregressive processes. Journal of Time Series Analysis, 38(6):923–935.

Sørbye, S. H. and Rue, H. (2018). Fractional Gaussian noise: Prior specification
and model comparison. Environmetrics, 29(5-6):e2457.

Sorensen, D. and Gianola, D. (2007). Likelihood, Bayesian, and MCMC methods
in Quantitative Genetics. Springer Science & Business Media.

Spiegelhalter, D., Thomas, A., Best, N., and Gilks, W. (1996). BUGS 0.5*
Examples Volume 2 (version ii). MRC Biostatistics Unit.

Spiegelhalter, D. J., Abrams, K. R., and Myles, J. P. (2004). Bayesian Ap-
proaches to Clinical Trials and Health-Care Evaluation, volume 13. John
Wiley & Sons.

Stan Development Team (2018). Stan modeling language users guide and refer-
ence manual, version 2.18.0. http://mc-stan.org.



34 Ingeborg Gullikstad Hem

Stan Development Team (2020). RStan: the R interface to Stan. http://

mc-stan.org/. R package version 2.21.2.

Stan Development Team (2021a). Prior choice recommendations. https://

github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations. Ac-
cessed 2021-02-25.

Stan Development Team (2021b). Stan. https://mc-stan.org/. Accessed:
2021-02-12.

StataCorp (2017). Stata Bayesian analysis, reference manual. StataCorp LLC,
College Station, TX, 15 edition.

van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse,
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Abstract

Variance parameters in additive models are typically assigned independent
priors that do not account for model structure. We present a new frame-
work for prior selection based on a hierarchical decomposition of the total
variance along a tree structure to the individual model components. For
each split in the tree, an analyst may be ignorant or have a sound intuition
on how to attribute variance to the branches. In the former case a Dirichlet
prior is appropriate to use, while in the latter case a penalised complex-
ity (PC) prior provides robust shrinkage. A bottom-up combination of
the conditional priors results in a proper joint prior. We suggest default
values for the hyperparameters and offer intuitive statements for eliciting
the hyperparameters based on expert knowledge. The prior framework is
applicable for R packages for Bayesian inference such as INLA and RStan.

Three simulation studies show that, in terms of the application-specific
measures of interest, PC priors improve inference over Dirichlet priors when
used to penalise different levels of complexity in splits. However, when
expressing ignorance in a split, Dirichlet priors perform equally well and
are preferred for their simplicity. We find that assigning current state-
of-the-art default priors for each variance parameter individually is less
transparent and does not perform better than using the proposed joint
priors. We demonstrate practical use of the new framework by analysing
spatial heterogeneity in neonatal mortality in Kenya in 2010–2014 based
on complex survey data.

Keywords: Additive models, hierarchical variance decomposition, latent
Gaussian models, penalised complexity, joint prior distributions, variance
parameters.
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1 Introduction

Bayesian hierachical models (BHMs) are ubiquitous in science due to their flexi-
bility and interpretablity (Gelman and Hill, 2007; Gelman et al., 2013; Banerjee
et al., 2014). In this paper, we consider BHMs where the latent level consists of
an additive combination of model components that are classified as fixed effects
and random effects. This subclass covers a range of common model classes such as
generalised linear mixed models (GLMMs) and generalised additive mixed mod-
els (GAMMs) (Fahrmeir and Lang, 2001). In additive models, the total latent
variance of the sum of the random effects decomposes into the sum of the variance
contributed by each random effect, and each random effect has a variance param-
eter that controls its a priori contribution. We present a general framework for
constructing joint priors for these variance parameters for BHMs, and suggest
robust shrinkage priors for the reduced class of latent Gaussian models (LGMs)
where the model components are Gaussian conditional on the model parameters
(Rue et al., 2009, 2017; Bakka et al., 2018; Krainski et al., 2018).

There is no concensus on priors for variance parameters in BHMs (Lam-
bert et al., 2005; Gelman, 2006; Gelman et al., 2017). The default prior in
the R package INLA (Lindgren and Rue, 2015) is an inverse-gamma distribution
InvGamma(1, 5·10−5) (Blangiardo and Cameletti, 2015), and the R package RStan
(Carpenter et al., 2017; Stan Development Team, 2018a) has implicit priors that
are uniform on the range of legal values for the parameters (Stan Development
Team, 2018b). WinBUGS, OpenBUGS and JAGS used InvGamma(0.001, 0.001)
distributions in their examples (Spiegelhalter et al., 1996; Plummer, 2017), and
the Stata manual employs InvGamma(0.01, 0.01) priors (StataCorp, 2017). Con-
jugacy provides InvGamma(ε, ε) distributions with computational advantages,
but their use may result in severe problems (Gelman, 2006) and they are gener-
ally inappropriate for variances of random effects (Lunn et al., 2009). Gelman
(2006) proposed heavier tails through Half-Cauchy(25) distributions on the stan-
dard deviations, and others have investigated bounded uniform densities on the
variances or the logarithms of the variances (Lambert et al., 2005) and bounded
uniform priors on the standard deviations (Martinez-Beneito, 2013). Recently,
Simpson et al. (2017) proposed a principle-based, robust prior termed penalised
complexity (PC) prior that offers shrinkage towards zero variance. In the case of
LGMs, the PC prior is an exponential distribution on the standard deviation.

However, general-purpose priors may not be suitable for a given application
(Gelman et al., 2017) and independent priors for each random effect cannot ex-
ploit the structure of the model (Simpson et al., 2017, Section 7). For example,
in disease mapping, prior elicitation is more meaningful for the total variance
of the random effects than their separate variances (Wakefield, 2006), and, for
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animal models in genetic settings, the proportion of variability in a phenotypic
trait being accounted for by genes is important (Holand et al., 2013). Further,
the intraclass correlation (ICC) (McGraw and Wong, 1996) in a random inter-
cept model is linked to a generalised version of the coefficient of determination
(Gelman and Hill, 2007), also known as R2, which expresses the proportion of the
total variance explained by the model components. However, putting a prior on
R2 requires a joint prior on the two variance parameters in the random intercept
model. Additionally, in the context of regression, Som et al. (2014) discuss block
g-priors where regression coefficients are partitioned and shrinkage is applied to
the R2 of each partition.

Consider a simple multilevel model with responses yi,j,k|ηi,j,k ∼
Poisson(exp(ηi,j,k)), where ηi,j,k = ai+ bi,j + ci,j,k for experiment k on individual
j in group i. We will term the group effect, individual effect and measurement ef-
fect for A, B, and C, respectively, and write the latent model as A+B+C for short
hand. The total latent variance t of A+B+C decomposes as t = σ2

A + σ2
B + σ2

C,
where σ2

A, σ
2
B and σ2

C are the variances of A, B and C, respectively. This stan-
dard parametrization facilitates independent priors on the variances and can be
used to achieve the desired a priori marginal properties for the random effects.
However, it is difficult to encode a priori knowledge on joint properties such as
the size of t or preference for A over B or A+B over C in a transparent and
intuitive way.

An obvious alternative is to parametrize the variance parameters as t and
the proportion of t assigned to each random effect (ωA, ωB, ωC), where 0 ≤
ωA, ωB, ωC ≤ 1 and ωA+ωB+ωC = 1. This is illustrated in Figure 1a by splitting
A+B+C into the models A, B and C. This parametrization is suitable for express-
ing ignorance about how the variance should be attributed to the random effects.
A simple way to assign the joint prior is to set (ωA, ωB, ωC) ∼ Dir(a, a, a), a > 0,
where Dir denotes the Dirichlet distribution (Balakrishnan and Nevzorov, 2003).
This prior has no preference for one of the random effects over the other and is
invariant to the ordering of the random effects, and we can select a > 0 to make
the prior suitably vague. Together with the conditional prior π(t|ωA, ωB, ωC), this
implicitly defines a proper joint prior for (σ2

A, σ
2
B, σ

2
C) that is invariant to permu-

tations in the order of the random effects, but can incorporate prior knowledge
on t. This has a similar flavor as the Dirichlet-Laplace prior by Bhattacharya
et al. (2015), which is a global-local shrinkage prior (Polson and Scott, 2010) that
induces sparsity in regression. However, in this paper we will focus on random
effects and not fixed effects.

The simple split strategy is not always suitable and Riebler et al. (2016)
demonstrated that for the BYM (Besag, York and Mollié) model, which is a sum
of a Besag random effect and an unstructured random effect, a PC prior that
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A+B+C

A B C

(a) Unstructured

A+B+C

CA+B

BA

(b) Structured

A+B+C

CA+B

BA

(c) Structured shrinkage

Figure 1: Hierarchical model decomposition. Gray boxes indicate preferred
branches.

penalises the added complexity of the structured effect relative to the unstruc-
tured effect improves inference. For A+B+C, fewer levels of hierarchy may be
preferred so that B is preferred to A and C is preferred over A+B. This knowledge
about relative complexity of the random effects can be incorporated by splitting
A+B+C hierarchically as shown in Figure 1b. Here we first split A+B+C into
A+B and C through ω1 = (σ2

A+σ2
B)/t, and then split A+B into A and B through

ω2 = σ2
A/(σ

2
A+σ2

B), where 0 ≤ ω1, ω2 ≤ 1. The joint prior for (σ2
A, σ

2
B, σ

2
C) is then

constructed by first selecting π(ω2), then π(ω1|ω2), and finally π(t|ω1, ω2). Priors
inducing shrinkage towards ω2 = 0 and ω1 = 0 can be chosen in the lower and
upper split, respectively. The shrinkage can be illustrated graphically as shown
in Figure 1c. For LGMs, PC priors offer a robust choice, but the framework is
general and other priors can be selected by the analyst. For example, if shrink-
age is only required at the top level, a Dirichlet prior for (ω2, 1 − ω2) could be
combined with a shrinkage prior for ω1|ω2.

The ideas generalize to more random effects through the selection of a hier-
archical decomposition of the model in the form of a tree, and the selection of a
conditional distribution for the attribution of the total variance to the branches
for each split. The joint prior is calculated in a bottom-up approach using these
conditional distributions. We suggest default values for the hyperparameters of
the Dirichlet distribution based on the marginal prior distributions for the pro-
portions of variance assigned to each branch of the split. This ensures that the
default setting for the prior is well-behaved as the number of branches in a split
increases. Default values for the PC priors can be selected based on moderate
shrinkage of the proportion of variance. Additionally, we discuss how to include
expert knowledge through interpretable statements on the total variance and the
distribution of variance in the tree. The joint prior can contain a mix of expert
knowledge and default values that provide a weakly informative prior (Gelman
et al., 2008; Simpson et al., 2017). This means the prior framework with joint
priors is appropriate for default priors for software packages such as INLA and
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RStan.

The properties of the proposed priors are compared to the properties of default
priors from software and vague priors from literature. This is a fair comparison
since even though the new priors account for model structure, they do not in-
corporate strong expert knowledge and are suggested to be used in a default
way in Bayesian software. The comparison is performed through three simula-
tion studies: a simple random intercept model with Gaussian responses, a latin
square experiment with Gaussian responses, and a spatial model with Binomial
responses. To ease the presentation of the comparisons and not overload the
reader with results, we choose a set of targets for each simulation study and com-
pare the posteriors resulting from the different prior choices with respect to the
targets. Additional results are provided in the Supplementary Materials. Fur-
thermore, we provide example code in the Supplementary Materials for producing
results for different priors for the latin square model in Section 5.2. The code is
described in Section S4.3 in the Supplementary Materials.

We start by introducing the general framework in Section 2, then we introduce
LGMs and suitable priors for developing a new class of priors for LGMs in Section
3. The new class of priors for LGMs is introduced in Section 4 and is applied to
simulation studies with Gaussian responses in Section 5. In Section 6 we present
one simulation study with Binomial response and explain how the approach can
be used in practice. The paper ends with a discussion in Section 7.

2 Tree-based hierarchical variance decomposition

In this section we cover basic notation, and formally introduce additive models,
hierarchical variance decomposition, and the new framework for joint priors for
variances.

2.1 Additive models

Let y = (y1, . . . , yn) be a vector of n > 0 observations. We model the expected
values E(yi) = g−1(ηi), i = 1, . . . , n, through a vector of linear predictors η =
(η1, . . . , ηn) and a link function g : R → R. We consider models where the
likelihood has parameters θL and factors as π(y|η,θL) =

∏n
i=1 π(yi|ηi,θL). This

covers models such as GLMMs and GAMMs. We term η and its description as
the latent part of the model.
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We assume that the linear predictor is described as

ηi = β0 + xT
i β +

N∑

j=1

uj,kj [i], i = 1, . . . , n, (2.1)

where β0 is the intercept, xi is the vector of covariates associated with observation
i, β is a vector of coefficients, and uj = (u1, . . . , umj

) is a random vector and
kj [i] is the associated element of uj for observation i for j = 1, . . . , N . The two
first terms will be called fixed effects and the last N terms will be called random
effects. To focus on the joint prior for variance parameters, we will assume that
each random effect uj has a single model parameter, which is a variance σ2

j .
In general, the random effects may have other parameters such as correlation
parameters and we discuss how to handle this in Section 7.

We denote the vector of model parameters by θM = (σ2
1 , . . . , σ

2
N ). The BHM is

completed by specifying the latent model through π(uj |σ2
j ) for j = 1, . . . , N , and

the prior π(β0,β,θL,θM). We follow common practice so that the prior satisfies
π(β0,β,θL,θM) = π(β0)π(β)π(θL)π(θM). The major improvement over common
practice is that we will develop a framework for selecting intuitive joint priors for
the variance parameters that does not require that π(θM) =

∏N
j=1 π(σ

2
j ).

2.2 Hierarchical variance decomposition

The additivity in Equation (2.1) causes the total latent variance Var[ηi|β0,β,θM]
of linear predictor i to decompose as the variance contributed by each random
effect Var[ukj [i]|β0,β, σ

2
j ], j = 1, . . . , N , for i = 1, . . . , n. If random effect j is ho-

mogeneous, the variance parameter of random effect j will be a marginal variance
in the sense that Var[ukj [i]|β0,β, σ

2
j ] = σ2

j for i = 1, . . . , n. If all random effects
are homogeneous, the total latent variance of the linear predictors is homoge-
neous, t = Var[η1|β0,β,θM] = · · · = Var[ηn|β0,β,θM] = σ2

1+ . . .+σ2
N . If random

effect j is heterogenous so that Var[ukj [i]|β0,β, σ
2
j ] varies for different values of i,

the variance parameter σ2
j is selected to be comparable to a marginal variance;

see the discussion in Section 3.1. We term the parameter t = σ2
1 + . . . + σ2

N the
total latent variance.

We describe the attribution of t to the individual random effects through a
tree T . The construction of T starts with a root node T0 = {1, . . . , N} that
contains all the random effects, and in the first step we introduce K1 > 1 child
nodes T1, . . . , TK1

that partition T0 into T0 = T1 ∪ · · · ∪ TK1
. We continue this

recursively for each child node until all leaf nodes are singletons. This results in
a tree T with S splits where there are Ks child nodes for split s = 1, . . . , S. We
have S ≤ N − 1, where S = 1 is achieved by directly splitting the root node to
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singletons as in Figure 1a and the maximum value is achieved by only using dual
splits such as in Figure 1b.

For each split s, the parent node Ps is split into Ks child nodes C1, . . . , CKs

and we will define a vector of parameters ωs = (ωs,1, . . . , ωs,Ks
), s = 1, . . . , S.

The child nodes describe a partitioning of the random effects in the parent node,
and we let ωs describe the proportion of the total variance in the parent node,∑

j∈Ps
σ2
j , that is assigned to each child node through

ωs =
1∑

j∈Ps
σ2
j


∑

j∈C1

σ2
j , . . . ,

∑

j∈CKs

σ2
j


 , s = 1, . . . , S.

We denote the K − 1 simplex by ∆K = {(x1, . . . , xK)|∑K
k=1 xk = 1, xk ≥ 0 ∀k}

so that the restrictions are ωs ∈ ∆Ks for s = 1, . . . , S. This means that the
parameters ωs,Ks

are superfluous for s = 1, . . . , S, but we keep them for ease of
notation and interpretability.

For any split s = 1, . . . , S, we term a child node and its decendants as a branch
of the split. The description of the model structure through a tree structure
defines a re-parametrization of (σ2

1 , . . . , σ
2
N ) to (t,ω1, . . . ,ωS), where S is the

number of splits in the tree. The examples discussed in the introduction can be
rephrased in this terminology, and demostrate that there is no unique selection
of the tree.

Example 1 (Tree structure). Consider three random effects A, B and C with
marginal variances (σ2

A, σ
2
B, σ

2
C). Let the root node be T0 = {A,B,C}.

Figure 1a, describes the case that the root node is partitioned into three
children T1 = {A}, T2 = {B} and T3 = {C}. This leads to a reparametrization
(t,ω), where t = σ2

A + σ2
B + σ2

C and ω = (σ2
A, σ

2
B, σ

2
C)/t.

Figure 1b shows the case that T0 is first partitioned into T1 = {A,B} and
T2 = {C}, and then T1 is partitioned into T3 = {A} and T4 = {B}. This results
in a reparamerization (t,ω1,ω2), where t = σ2

A + σ2
B + σ2

C, ω1 = (σ2
A + σ2

B, σ
2
C)/t

and ω2 = (σ2
A, σ

2
B)/(σ

2
A + σ2

B). 4

2.3 Hierachical decomposition priors

The tree-based hierarchical variance decomposition facilitates the construction of
joint priors that include prior belief about the relative sizes of groups of random
effects. The tree structure must be selected so that the desired comparisons can
be made. Trees such as shown in Figure 1a are useful for expressing ignorance
about the attribution of variance to the random effects, whereas trees such as
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shown in Figure 1b are useful for imposing shrinkage to one of the branches in
each dual split. Generally, a tree may consist of a mixture of splits where the
analyst wants to be informative and splits where the analyst wants to express
ignorance.

We propose to construct a joint prior for the marginal variance parameters in a
bottom-up approach where the prior for a given split only depends on descendant
nodes of the parent node.

Assumption 1 (Bottom-up approach). For a tree structure with S splits, we

use π({ωs}Ss=1) =
∏S

s=1 π(ωs|{ωj}j∈D(s)), where D(s) is the set of descendant
splits for split s = 1, . . . , S.

This means that the joint prior for the decomposition uses a directed acyclic
graph so that parameters that belong to subsplits in different branches of a split
are marginally independent. We combine the prior for the decomposition of the
variance with a conditional prior on the total variance of the random effects to
form what we will call hierarchical decomposition (HD) priors.

Definition 1 (Hierarchical decomposition (HD) priors). Consider a BHM with
an additive latent structure with N random effects with marginal variance pa-
rameters σ2

1 , . . . , σ
2
N . Assume that the model structure is described by a tree that

recursively partitions the set of random effects into singletons. Then a hierarchi-
cal decomposition (HD) prior is given by

π(σ2
1 , . . . , σ

2
N ) = π(t|{ωs}Ss=1)

S∏

s=1

π(ωs|{ωj}j∈D(s)),

where t = σ2
1 + . . . + σ2

N , S is the number of splits, and D(s) denotes the set of
descendant splits for the parent node in split s and ωs describes the proportions
of the total variance of a parent node assigned to its branches for s = 1, . . . , S.

3 Latent Gaussian models and priors for the
splits

This section introduces LGMs and the priors we will use for the splits to build
the intuitive class of joint priors for the variance parameters for LGMs.
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3.1 Latent Gaussian models

LGMs constitute a subclass of BHMs with additive latent structure where the
model components are Gaussian conditional on the model parameters. We write
the additive model in Equation (2.1) in vector form, η = 1β0+Xβ+

∑N
j=1 Ajuj ,

where 1 = (1, . . . , 1) is a column vector of length n, X is the n× p design matrix
that contains the covariates for each observation as rows, and Aj are sparse
n × mj matrices that select the appropriate elements of the random effects for
j = 1, . . . , N . The latent Gaussian structure is achieved by β0 ∼ N (0, σ2

I ),
β ∼ Np(0, σ

2
FIp), and uj |σ2

j ∼ Nmj
(0, σ2

jΣj) for j = 1, . . . , N . It is common to

give σ2
I and σ2

F suitably vague values, and we will assume that σ2
I and σ2

F are
fixed and focus on the variance parameters σ2

1 , . . . , σ
2
N .

For non-intrinsic Gaussian random effects, such as independent and identi-
cally distributed (i.i.d.) random effects, stationary autoregressive processes and
Matérn Gaussian random fields, the covariance matrix Σ of the random effect u is
chosen to be a correlation matrix and the variance parameter σ2 is the marginal
variance. However, this does not work for intrinsic Gaussian Markov random
fields (GMRFs) (Rue and Held, 2005) such as the Besag model (Besag et al.,
1991), the first-order random walk and the second-order random walk (Rue and
Held, 2005, Chapter 3). In this case there is no well-defined concept of a marginal
variance since they are defined through singular precision matrices that cannot
be inverted to find a covariance matrix. We follow Sørbye and Rue (2014) and
choose the variance parameter σ2 to be a representative value for the marginal
variance.

3.2 Introducing shrinkage towards branches

3.2.1 Penalising complexity

The fundamental basis for introducing robust shrinkage in our proposed class of
priors are the PC priors introduced in Simpson et al. (2017), which uses a set of
principles to derive model-component-specific prior distributions. The main idea
is to regard a single model component as a flexible extension of a so-called base
model. In the simplest case of an unstructured random effect, the base model
would be to remove the effect entirely from the linear predictor by letting the
variance parameter go to zero. The idea is to follow Occam’s razor and favour a
simpler, more sparse or more intuitive model as long as the data does not indicate
otherwise. The PC priors have been used successfully in a variety of contexts such
as BYM models (Riebler et al., 2016), correlation parameters (Guo et al., 2017),
autoregressive processes (Sørbye and Rue, 2018) and Matérn Gaussian random
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fields (Fuglstad et al., 2019).

Simpson et al. (2017) proposed to compute the complexity of the alternative
model relative to the base model using the Kullback-Leibler divergence (KLD)
defined as

KLD(π(u|ξ) || π(u|ξ = 0)) =

∫
π(u|ξ) log

(
π(u|ξ)

π(u|ξ = 0)

)
du, (3.1)

where ξ is the flexibility parameter, and ξ = 0 at the base model. The KLD
is consequently transformed to an interpretable distance measure between two
densities f1 and f2: d(f1 || f2) =

√
2KLD(f1 || f2). In contrast to defining a

prior for ξ directly, a prior is defined for d. See Simpson et al. (2017) for detailed
motivation.

We follow Simpson et al. (2017) and select an exponential distribution, where
information provided by the user is used to determine the rate λ. Usually this
information is provided by a probability statement about the tail probability of
the prior,

P (X(ξ) > U) = α.

Here, X(ξ) is an interpretable transformation of the parameter of the flexible
extension, U can be thought of as a sensible upper bound, and α is a small
probability. A user can express their knowledge by constraining tail probabilities
of X(ξ) as above. Selecting U near a large plausible value for X(ξ) and α small
encodes weak information about ξ (Simpson et al., 2017). This means that it
is a priori unlikely that the value of X(ξ) exceeds U . Finally, the prior can
be transformed to the corresponding prior for the flexibility parameter ξ. An
attractive feature of this principle-based construction is that the resulting priors
are proper and have a natural link to Jeffreys’ priors.

3.2.2 Shrinking a marginal variance parameter

In the case of a single Gaussian random effect with marginal variance σ2, the PC
prior with base model σ2 = 0 is an exponential prior on σ. The rate parameter
λ can be set, for example, by an a priori statement P(σ > U) = 0.05 so that
the 95th percentile of the prior for σ is U > 0. Then the prior is an exponential
prior with rate parameter λ = − log(α)/U which we denote as σ ∼ PCSD(U,α);
see Simpson et al. (2017) for details and derivation.

3.2.3 Shrinking a weight parameter

Consider the situation that the linear predictor only contains two random effects
A and B with variances σ2

A and σ2
B, respectively. The proportion of t = σ2

A + σ2
B
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assigned to each random effect is described by ω = (1− ω, ω) = (σ2
A, σ

2
B)/(σ

2
A +

σ2
B). If one a priori prefers the attribution ω = ω0 = (1 − ω0, ω0), shrinkage

can be induced in the joint prior for the variance parameters using a PC prior
where ω = ω0 is the base model. Here we apply the KLD from Equation (3.1) to
express distance from the base model ω0 to the alternative model ω, and penalise
deviations from the base model according to the difference in model complexity.

Theorem 1 (PC prior for dual split). Let u1 and u2 be random effects of an
LGM that enter the linear predictor through A1u1 ∼ Nn(0, σ

2
1Σ̃1) and A2u2 ∼

Nn(0, σ
2
2Σ̃2). Assume that Σ̃1 + Σ̃2 is non-singular1. Let ω = σ2

2/(σ
2
1 + σ2

2) and
Σ(w) = (1 − ω)Σ̃1 + ωΣ̃2. Then the distance from the base model Σ(ω0) to the
alternative model Σ(ω) is given by

d(ω) =
√

tr(Σ(ω0)−1Σ(ω))− n− log |Σ(ω0)−1Σ(ω)|

for 0 ≤ ω0 ≤ 1.

The PC prior for ω with base model ω0 = 0 is

π(ω) =





λ|d′(ω)|
1−exp(−λd(1)) exp (−λd (ω)) , 0 < w < 1, Σ̃1 non-singular,

λ
2
√
ω(1−exp(−λ))

exp(−λ
√
ω), 0 < ω < 1, Σ̃1 singular,

where λ > 0 is the hyperparameter. We suggest to set λ so that the median is
ωm = 0.25.

For base model 0 < ω0 < 1, the PC prior whose median is equal to ω0 is

π(ω) =





λ|d′(ω)|
2[1−exp(−λd(0))] exp (−λd (ω)) , 0 < ω < ω0,

λ|d′(ω)|
2[1−exp(−λd(1))] exp (−λd (ω)) , ω0 < ω < 1,

where λ > 0 is a hyperparameter. We suggest to set λ so that

P(logit(1/4) + logit(ω0) < logit(ω) < logit(ω0) + logit(3/4)) = 1/2.

Base model equal to ω0 = 1 follows directly by reversing the roles of u1 and
u2.

Proof. See Section S1.1 in the Supplementary Materials.

1If this were not the case, some elements of the sum of A1u1 and A2u2 would be exactly
equal and we would choose a subset of maximal size so that Σ̃1 + Σ̃2 was non-singular for
comparing the effects of A1u1 and A2u2.
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The default values in each case are specified as to place most of the prior mass
in a small interval on the ω scale around ω0, but to also ensure large deviations
from ω0 are a priori plausible; in this sense they are weakly informative (Gelman,
2006; Gelman et al., 2008). Sections 5.1 and 5.2 show that the results from the
inference are stable to changes in these hyperparameters; which in turn shows
that these λ’s provide weak information. If the analyst has expert knowledge
this should be used instead of the default values. Large ω might be 0.75 for test-
retest reliability in a psychology study (Cicchetti, 1994) but 0.4 for the genetic
heritability of a trait (Shen et al., 2016).

3.3 Expressing a priori ignorance about a split

3.3.1 Exchangeability

In some cases the analyst does not want to express an a priori preference for any
of the branches in a split in the tree. This can be achieved indirectly through a
series of dual splits. For example, by replacing the split in Figure 1a by the series
of dual splits as shown in Figure 1b where the left-hand side has a base model
of 2/3 in the first split and the left-hand side has a base model of 1/2 for the
second split. In total this is specifying a base model of 1/3 of the total variance
to each random effect, but the resulting prior is not invariant to permutations
of A, B and C in Figure 1b. See Section S2 of the Supplementary Materials for
details. When the goal is to express ignorance about the decomposition of the
variance, one can use a base model of equal attribution of the total variance to
each random effect and choose an exchangeable prior for (σ2

A, σ
2
B, σ

2
B). This can

be done, for example, through a Dirichlet prior.

3.3.2 Dirichlet prior

The Dirichlet prior of order K ≥ 2 with parameters a1, . . . , aK > 0 is given by

π(ω) =
1

B(a1, . . . , aK)

K∏

k=1

ωak−1
k , ω = (ω1, . . . , ωK) ∈ ∆K ,

where B is the multivariate beta function, and ∆K is the K − 1 simplex. Since
there is no preference for any random effect, we consider the symmetric Dirichlet
distribution where a1 = . . . = aK = a > 0, where a is the hyperparameter that
must be selected by the analyst. For a = 1 the prior is uniform, for a < 1 the prior
has peaks at the vertrices of ∆K , and for a > 1 the mode is ω = (1, . . . , 1)/K.



Intuitive joint priors for variance parameters 49

The prior is invariant to permutations of the elements of ω for any value of a > 0
and it is computationally cheap for arbitrary dimensions K.

The hyperparameter a can be selected by considering the marginal properties
of π(ω). The marginal prior π(ω1) ∝ ωa−1

1 (1 − ω1)
(K−1)a−1, 0 < ω1 < 1, is a

Beta distribution whose quantiles are dependent both on the values of a and K.
We select a by requiring P(logit(1/4) < logit(ω1)− logit(ω0) < logit(3/4)) = 1/2.
By symmetry the same marginal properties are satisfied for ωi, i = 2, . . . ,K.

4 Hierarchical decomposition priors for LGMs

In this section we introduce the new class of intuitive joint priors for the variance
parameters in LGMs.

4.1 Accounting for model structure

In the general formulation of HD priors in Definition 1, the prior is composed of
conditional priors that for each split depends on all descendant splits. This is im-
practical because computing PC priors would require new KLDs to be computed
every time the prior is evaluated. We take a pragmatic approach where we decide
on a set of base models, which expresses our best prior guess, and condition on
these.

Assumption 2 (Simplified conditioning). For a given tree with S splits and base
models {ω0

1 , . . . ,ω
0
S}, we replace π(ωs|{ωj}j∈D(s)) with π(ωs|{ωj = ω0

j }j∈D(s)),
s = 1, . . . , S.

Under this assumption a new class of HD priors for LGMs are constructed by
combining intuition about shrinkage and ignorance through independent priors
for the splits.

Prior class 1 (HD priors for LGMs). Assume the LGM contains N random ef-
fects with variances σ2

1 , . . . , σ
2
N and that the hierarchical decomposition of the vari-

ance is described through a tree with S splits. Under base models {ω0
1 , . . . ,ω

0
S},

the prior is

π(σ2
1 , . . . , σ

2
N ) = π(t|{ωs}Ss=1)

S∏

s=1

π(ωs|{ωj = ω0
j }j∈D(s)),

where the total latent variance is t = σ2
1 + . . .+σ2

N , and ωi ∈ ∆ls , where ls is the
number of branches in split s, s = 1, . . . , S.
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For each of the S splits, the analyst can express ignorance through a Dirichlet
prior or sequence of PC priors as described in Section 3.3, or express preference to
the selected base models as described in Section 3.2. The selection of π(t|{ωs}Ss=1)
must be done in the context of the likelihood as described in Section 4.2.

This prior is computationally inexpensive since the overall prior probability
density factorises into independent conditional distributions that consist of PC
priors, which can be precomputed, and Dirichlet priors, which are cheap to com-
pute.

We demonstrate the use of HD priors through one example where the analyst
wants to express ignorance and one example where the analyst wants to penalise
complexity.

Example 2 (Non-nested random effects). Consider responses y1, . . . , yn, de-
scribed by the Gaussian linear model yi|ηi ∼ N (ηi, σ

2
R) with

ηi = µ+ h1(Agei) + h2(Weighti) + h3(Incomei), i = 1, 2, . . . , n,

where µ is the intercept, h1, h2 and h3 are smooth effects of the covariates ex-
pressed as second-order random walks (Rue and Held, 2005), and σ2

R is the resid-
ual variance. Assume that one has no a priori preference for the three smooth
effects, and decide to encode the decomposition of the total latent variance as
shown Figure 1a, where A, B and C represents the three smooth of covariates
effects. Let ω1 denote the proportions of variance assigned to model components
and let t denote the total latent variance. We construct an HD prior by assigning
a Dirichlet prior to ω1, and handle t|ω1 as discussed in Section 4.2. 4
Example 3 (Shrinkage in multilevel models). The latent part of the multilevel
model in Section 1 can be written in vector form as η = AAuA+ABuB+ACuC,
where AA, AB and AC are sparse matrices selecting the appropriate group,
individual and measurement effects, respectively. Assume we use an LGM, then
u1 ∼ NG(0, σ

2
AIG), u2 ∼ NGP (0, σ

2
BIGP ) and u3 ∼ NGPK(0, σ2

CIGPK), where
G is the number of groups, P is the number of individuals per group, and K is
the number of measurements per individual.

If we prefer shrinkage towards fewer levels in the multilevel model as shown in
Figure 1c, we decompose the total latent variance t = σ2

A + σ2
B + σ2

C through two
splits. For the split at the root node, we decompose t according to the proportions
ω1 = (σ2

A+σ2
B, σ

2
C)/t. Then in the second split we decompose σ2

A+σ2
B according

to the proportions ω2 = (σ2
A, σ

2
B)/(σ

2
A + σ2

B).

We use an HD prior where we apply base models ω0
1 = (0, 1), which prefers C

over A+B, and ω0
2 = (0, 1), which prefers B over A. Due to the desire for shrinkage

we apply PC priors and use Theorem 1 with base model ω0
2 to compute π(ω2). We
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define ũ1 = AAuA+ABuB and ũ2 = ACuC. Then if we condition on ω2, the top
split in Figure 1c compares ũ1|ω2 ∼ Nn(0, (σ

2
A + σ2

B)(ω2,1AAA
T
A + ω2,2ABA

T
B))

and ũ2 ∼ Nn(0, σ
2
3A3A

T
3 ), and the conditional prior π(ω1|ω2 = ω0

2) can be
computed using Theorem 1 with base model ω0

1 conditional on ω2 = ω0
2 . The

joint prior is then π(ω1,ω2) = π(ω1|ω2 = ω0
2)π(ω2), and an appropriate prior is

chosen for π(t|ω1,ω2) as described in Section 4.2. 4

4.2 Accounting for the likelihood

Meaningful priors for the total latent variance t depend on the likelihood and
prior beliefs about the responses in the specific application (Gelman et al., 2017).
We provide tools for expressing scale-invariance for the variances of the random
effects and the measurement error when the responses are Gaussian, or shrinkage
for the total latent variance of the random effects.

Under a Gaussian likelihood, the selection of the unit of measurement by the
analyst affects the sizes of the variances. However, when the residual variance
σ2
R is expected to be well-identified, we can define the prior on t relative to σ2

R

and shrink t by preferring to describe the total variance V = t+σ2
R in the model

by σ2
R. This can be complemented by a scale-independent Jeffreys’ prior on V to

achieve a scale-invariant joint prior for the variance parameters.

Prior class 2 (HD priors with Gaussian likelihoods). Assume an HD prior from
Prior class 1 is desired for an LGM with Gaussian responses with residual vari-
ance σ2

R. First select the prior on the decomposition of the total latent variance
t. Then augment the tree by an extra node on the top with variance V = t+ σ2

R.
The new top node has one branch with residual variance and the other branch is
the subtree describing the latent model. Let ωR = (1− σ2

R/V, σ
2
R/V ) and assume

shrinkage through a PC prior π(ωR|{ωs = ω0
s}Ss=1) with base model ω0

R = (0, 1).

If V is assigned a scale-invariant prior, the full joint prior is

π(V,ωR, {ωs}Ss=1) ∝ π(ωR|{ωs = ω0
s}Ss=1)π({ωs}Ss=1)/V, V > 0,ωR ∈ ∆2,

and ωs ∈ ∆ls , where ls is the number of branches in split s, for s = 1, . . . , S.

Proof. The scale-invariant prior is π(V |ωR, {ωs}Ss=1) ∝ 1/V , and π(ωR, {ωs}Ss=1)
= π(ωR|{ωs}Ss=1)π({ωs}Ss=1)

If the likelihood is binomial with a logit link function, a scale for the random
effects is induced through their effects on the odds-ratio. Similarily, for a Poisson
likelihood with a log link function, there is a scale for the random effects through
their effects on the relative risk. In these cases, scale-invariance is not meaningful
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and we can induce shrinkage on the total variance of the random effects by using
the PC prior for variance from Simpson et al. (2017).

Prior class 3 (HD priors with shrinkage on latent variance). Assume an HD
prior from Prior class 1 is desired for an LGM where shrinkage on the total latent
variance is appropriate. First select the prior on the decomposition of the total
latent variance t. Then t can be shrunk towards 0 by a PC prior π(t|{ωs}Ss=1)
with base model t0 = 0. This results in

π(t, {ωs}Ss=1) =
λ

2
√
t
exp(−λ

√
t)π({ωs}Ss=1),

t > 0, and ωi ∈ ∆ls , where ls is the number of branches in split s, for s = 1, . . . , S,
and λ > 0 is a hyperparameter.

Proof. The conditional PC prior for t with base model t0 = 0 is given by
π(t|{ωs}Ss=1) = λ exp(−λ

√
t)/(2

√
t), t > 0 (Simpson et al., 2017).

We illustrate how the hyperparameter can be selected by considering the prior
on the total latent variance in the case of a Binomial likelihood.

Example 4 (Shrinking latent variance). Let logit(p) = µ+x, where x ∼ N (0, t),
for a t > 0, and µ is considered fixed. The latent variance t is difficult to interpret
directly due to the non-linear link function, but we can interpret it through the
effect on the odds-ratio, p/(1 − p) = exp(µ) exp(x). The hyperparameter λ in
Prior class 3 can, for example, be set so that the relative change in the odds-
ratio, exp(x), is between 1/2 and 2 with probability 90%, P(1/2 < exp(x) < 2)
= 0.90. 4

5 Case studies: Gaussian responses

In this section we investigate the performance of HD priors compared to a set
of commonly used standard priors for two simulation studies with Gaussian re-
sponses.

5.1 Random intercept model

The random intercept model is given by yi,j = αi + εi,j for j = 1, . . . , ni, i =
1, . . . , ng, where ni is the size of group i, and ng is the number of groups. The
random intercepts are i.i.d. Gaussian with variance σ2

α and the residual effects
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α, ε

α ε

(a) Model structure (b) π(ω) (c) π(d(ω))

Figure 2: Model structure and prior for ω in the random intercept model with 10
individuals in each group and prior median ωm = 0.25. The prior is independent
of the number of groups. a) Tree structure, b) prior for ω, and c) prior for
distance d(ω).

are i.i.d. Gaussian with variance σ2
R. The total latent variance is t = σ2

α and the
total variance is V = σ2

R +σ2
α. We introduce the proportion of the total variance

explained by the latent model ω = σ2
α/V , and decompose V as σ2

α = ωV and
σ2
R = (1−ω)V . We desire shrinkage towards the base model ω0 = 0 and use an HD

prior based on the tree structure in Figure 2a, where the prior on ω is calculated
using Theorem 1 and we use the scale-invariant prior from Prior class 2. The
specification of the hyperparameter of the HD prior is done through the median
ωm of π(ω). The resulting prior for ω is shown in Figure 2b for ωm = 0.25 and
the corresponding prior for the distance d(ω) discussed in Section 3.2 is shown in
2c. Further details can be found in Section S3.1 of the Supplementary Materials.

The intraclass correlation (ICC) for the random intercept model is given by
σ2
α/(σ

2
R + σ2

α), which equals the weight parameter ω. Thus the shrinkage of
the ICC is completely controlled in the construction of the prior and expert
knowledge about the ICC can be incorporated directly. Further, ω can be linked
to a generalised version of the coefficient of determination, R2, suggested by
Gelman and Hill (2007); see Section S3.2 in the Supplementary Materials for
details.

We use the R-package RStan (Stan Development Team, 2018a) to perform
the inference for the simulation study. We use HD priors from Prior class 2
with shrinkage from PC priors on ω with hyperparameters ωm = 0.25 (P-HD-
25), ωm = 0.5 (P-HD-50) and ωm = 0.75 (P-HD-75), and an HD prior from
Prior class 2 where the PC prior is replaced by a Dirichlet prior on (ω, 1 − ω)
(P-HD-D) with default hyperparameter. Additional priors are Jeffreys’ prior on
the residual variance combined with different priors on the random intercepts
variance or standard deviation: the default INLA prior InvGamma(1, 5 × 10−5)
(P-INLA), Half-Cauchy(25) (P-HC), and PCSD(3, 0.05) (P-PC). This gives seven
joint priors. Each scenario in the simulation study consists of 500 datasets which
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Figure 3: Results for logit(ω) for the random intercept simulation study. True
value of ω shown on the x-axis, the number of groups is shown on left-hand side,
and the group size is 10. Results for P-INLA are only shown when it leads to
stable inference.

are simulated from the random intercept model for ng ∈ {5, 10, 50}, and 10,
50, or varying number of individuals in each group. We select true values ω ∈
{0.1, 0.25, 0.5, 0.75, 0.9} and select true total variance V = 1 in every scenario.

We evaluate the performance of the different priors with respect to poste-
rior inference for total variance V and ICC ω. We use the bias of log(V ) and
logit(ω), calculated using the estimated median minus the true value, and the
80% empirical coverage, found by counting the number of times the true value is
contained in the 80% equal-tailed credible interval. We use the same settings for
the call to the stan function for all priors and scenarios in the simulation study.
RStan reports a divergent transition for each iteration of the MCMC sampler
that runs into numerical instabilities (Carpenter et al., 2017). In Figure S3.1 in
the Supplementary Materials we report the proportion of datasets that resulted
in at most 0.1% divergent transitions for each prior and scenario. This is used
as a measure of stability of the inference scheme for each prior, and the dataset
and prior combinations causing unstable inference are removed from the study.

The results in Figure 3 are for ng ∈ {10, 50} and group size 10, and show that
P-HD-25 performs at least as good in terms of bias and coverage of logit(ω) as
P-INLA, P-HC and P-PC. The magnitude of the bias decreases and the coverage
approaches 80% for all four priors when the number of groups increases, which
is expected as the amount of information about the parameters in the datasets
increases. Figures S3.3-S3.7 in the Supplementary Materials show that the HD
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priors perform at least as good in terms of bias and coverage for logit(ω) as P-
INLA, P-HC and P-PC also for the other combinations of the number of groups
and group sizes, and that the same conclusions as for logit(ω) also holds for
log(V ).

Furthermore, Figures S3.3-S3.7 show that the behaviour of the four HD priors
is stable with respect to the choice of ωm when group size is 10, and that P-HD-
D performs worse than P-HD-25, P-HD-50 and P-HD-75 for all values of the
true weight except 0.5. For 10 groups with two observations per group, the risk
of overfitting is high because low information about the parameters may lead
to overestimating the weight parameter and estimating spurious signals in the
group effect. In this setting, P-HD-25 leads to overfitting for true weight equal
to 0.1, but underfitting for true weight equal to 0.25, 0.5, 0.75 and 0.9. P-HD-50,
P-HD-75 and P-HD-D result in overfitting for true weight equal to 0.1 and 0.25,
but underfitting for true weight equal to 0.5, 0.75 and 0.9. See Section S3.4 in
the Supplementary Materials for additional details.

Figure S3.1 shows that P-INLA is the only prior that is heavily affected by
divergent transitions during the inference for scenarios with 10 or 50 groups.
Part of the problem with P-INLA is that it results in a bi-modal posterior for
σ2
α; see Figure S3.2. The new HD priors are preferred for the random intercept

model due to their intuitive definition, where the structure of the shrinkage is
directly available in Figure 2a, and interpretability of the parametrization which
aids prior elicitation.

5.2 Latin square experiment

Consider an experiment where a latin square design (see e.g., Hinkelmann and
Kempthorne, 1994) is used to control for two nuisance sources of noise. For
example, a field split into rows and columns where different levels of strength of
a new fertilizer is applied to each plot. We assume there are nine possible levels
of the treatment so that a 9 × 9 grid of plots is necessary for a full latin square
design. We focus on random effects and exclude fixed effects from the model, and
assume that the responses can be modelled by

yi,j = αi + βj + γk[i,j] + εi,j , i, j = 1, . . . , 9, (5.1)

where α = (α1, . . . , α9) ∼ N (0, σ2
r I9) is an i.i.d. effect of row, β = (β1, . . . , β9) ∼

N9(0, σ
2
cI9) is an i.i.d. effect of column, γ = (γ1, . . . , γ9) is the effect of the

treatment, k[i, j] denotes the treatment assigned to row i and column j, and
ε = (ε1,1, . . . , ε9,9) ∼ N81(0, σ

2
RI81) is the residual noise.

We believe that the effect of the treatment is ordered, and that the treatment



56 Fuglstad, G.-A., Hem, I. G., Knight, A., Rue, H., and Riebler, A.

effect consists of a smooth signal of interest γ(1) = (γ
(1)
1 , . . . , γ

(1)
9 ) and random

noise γ(2) = (γ
(2)
1 , . . . , γ

(2)
9 ) we have to control for. The signal is given a second-

order random walk model described by N9(0, σ
2
RW2Q

−1
RW2), where σ2

RW2 is the
variance and Q−1

RW2 is a slight abuse of notation to describe the intrinsic second-
order random walk defined by the precision matrix QRW2, and the noise is γ(2) ∼
N9(0, σ

2
t I9). We use the constraints

∑9
i=1 γ

(1)
i = 0 and

∑9
i=1 iγ

(1)
i = 0 to remove

the implicit intercept and linear effect, respectively.

We set the true standard deviations equal, σr = σc = σt = σR = 0.1, and let
the true effect of treatment be given by xi = C

(
(i− 5)2 − 20/3

)
, i = 1, . . . , 9.

We entertain three scenarios: C = 0 for no effect of treatment (S1), C = 0.05
for medium effect of treatment (S2) and C = 0.2 for strong effect of treatment
(S3). More details on the true treatment effect is included in Section S4.1 in the
Supplementary materials, see especially Figure S4.2. We simulate 500 datasets
for each scenario and analyse them with four choices of priors.

The three default priors used are Jeffreys’ prior for the residual variance σ2
R

combined with InvGamma(1, 5 × 10−5) for σ2
r , σ

2
c , σ

2
t and σ2

RW2 (P-INLA), or
Half-Cauchy(25) (P-HC) or PCSD(3, 0.05) (P-PC) for σr, σc, σt and σRW2. We
select an HD prior from Prior class 2 using the model structure in Figure 4a,
where the triple split has a Dirichlet prior and the two other splits have PC
priors (P-HD-D3). We also decompose the triple split into the two dual splits
as shown in Figure 4b, and use a PC prior on all four splits according to the
shrinkage structure in the figure (P-HD-25). In all cases we use default values for
the hyperparameters. See Section S2 in the Supplementary Materials for more
details on changing a triple split to two dual splits. Figures S4.3, S4.4, S4.10 and
S4.11 in the Supplementary Materials show that the implementation of the triple
split has little influence on the targets of the analysis.

The targets of the analysis are the posterior distribution of the structured
treatment effect γ(1) and the model fit. The former will be assessed by the con-
tinuous rank probability score (CRPS) (Gneiting and Raftery, 2007) and the lat-

ter by the leave-one-out log predictive score (LOO-LPS) − 1
81

∑81
i=1 log π(yi|y−i).

CRPS is a proper scoring rule and given by 1
9

∑9
i=1

∫∞
−∞ (Fi(x)− I(x ≥ xi))

2
dx,

where Fi is the cumulative distribution function for the posterior of γ
(1)
i , xi is

the true effect of treatment i, and I is the Heaviside function, and is estimated
using the procedure of Jordan et al. (2017). We report the proportion of datasets
leading to no more than 0.1% divergent transitions for each prior and scenario,
and use this as a measure on stability of the inference. These numbers can be
seen in Figure S4.5 in the Supplementary Materials, and show that all priors lead
to similar stability. The datasets leading to more than 0.1% divergent transitions
for one or more priors are removed from the study.
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α,β,γ(1),γ(2), ε

α,β,γ(1),γ(2) ε

γ(1),γ(2) α β

γ(1) γ(2)

1/3 1/3 1/3

(a) Original structure.

α,β,γ(1),γ(2), ε

α,β,γ(1),γ(2) ε

γ(1),γ(2) α,β

α βγ(1) γ(2)

1/3 2/3

1/2 1/2

(b) Dual-split structure.

Figure 4: Model structure for the latin square simulation study. Gray nodes
indicate base models. (1/3, 1/3, 1/3), (1/3, 2/3), and (1/2, 1/2) indicates that
the base model for the split is a combination of the branches. a) Original, and
b) alternative structure.
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Figure 5: Results from the latin square experiment simulation study.

The main results from the simulation study are displayed in Figure 5. Low
LOO-LPS indicates good model fit and low CRPS indicates good predictive power
for the treatment effect. P-INLA gives a poorer model fit than the other priors,
and with respect to predictive power, the HD priors P-HD-D3 and P-HD-25
perform best for S2 and S3. The high predictive power of P-INLA for S1 is due
to the fact that P-INLA has a peak at low variance and produces a posterior for
the treatment effect with mean closer to zero and lower variance. Overall, the HD
prior performs well across all scenarios. The results are stable to changes in the
construction of the HD prior and the choice of hyperparameters; see Section S4.2
in the Supplementary Materials for details. The HD priors are preferable to the
other priors because of their intuitive parametrization and the interpretability of
the a priori assumptions placed on the joint prior of the variance parameters.
Further, P-HD-D3 is preferred to P-HD-25 since they perform similar and P-HD-
D3 is more intuitive.

6 Case studies: Binomial responses

In this section we study neonatal mortality counts arising from complex surveys
through a simulation study, and show how to practically apply the HD priors.

6.1 Background

Neonatal mortality is an important indicator of health and well-being in a coun-
try and is included in Goal 3.2 of the Sustainable Development Goals (SDGs)
(General Assembly of the United Nations, 2015), and mapping child mortality
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is an important area of current research (Golding et al., 2017; Wakefield et al.,
2018; Li et al., 2019). We define neonatal mortality as the rate of deaths within
the first month of life per live birth. An important source of data for neonatal
mortality is the nationally-representative household surveys performed by De-
mographic and Health Surveys (DHS). The survey performed by DHS in 2014
in Kenya targets its 47 counties, which is the relevant administrative level for
health policies (Kenya National Bureau of Statistics et al., 2015). The target of
the simulation study in Section 6.2 and the analysis in Section 6.3 is the spatial
heterogeneity in neonatal mortality in Kenya in the time period 2010 to the time
of the survey.

From the survey we can extract the number of live births, bi,j,k, and the
number of neonatal deaths, yi,j,k, in household k in cluster j in county i. We
also have an indicator xi,j specifying whether the cluster is rural (0) or urban (1)
and each household has an inclusion probability πi,j,k of being included in the
survey sample. See the Section S5.1 in the Supplementary Materials for more
background.

6.2 Simulation study

In this section we use the n = 290 constituencies shown in Figure 6a2. We assume
thatmi = 6 clusters are visited in constituency i, i = 1, . . . , n, and consider births
bi,j and neonatal deaths yi,j in cluster j in constituency i. We assume that there
are bi,j = 25 live births in each cluster and the outcomes are simulated according
to the model yi,j |pi,j ∼ Binomial(bi,j , pi,j) for

logit(pi,j) = ηi,j = µ+ ui + vi + νi,j , j = 1, . . . ,mi, i = 1, . . . , n,

where µ is a joint intercept, u = (u1, . . . , un) has a Besag distribution with
variance σ2

B and a sum-to-zero constraint, v = (v1, . . . , vn) ∼ Nn(0, σ
2
IIDIn), and

ν = (ν1,1, . . . , νn,mn) ∼ NM (0, σ2
CIM ) with M = m1 + . . .+mn = 6 · 290 = 1740.

We use the structure for the prior shown in Figure 6b to make an HD prior
from Prior class 3 with PC priors on all splits according to the base models
indicated in the figure (P-HD-25) and an HD prior from Prior class 3 where a
Dirichlet prior distributes variance to the three model components (P-HD-D).
In all cases, the splits have default hyperparameter values and we select the
hyperparameter in the PC prior on total variance, t = σ2

B + σ2
IID + σ2

C, so that
P(t > 3) = 0.05. Further, we use InvGamma(1, 5 × 10−5) for σ2

B, σ2
IID and

2Preliminary investigations revealed that 47 counties provided too little information to learn
about model structure in the data. We instead use the 290 constituencies of Kenya for the
simulations study.
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(a) The 290 constituencies of Kenya.

u,v,ν

νu,v

u v

(b) Model structure. Gray nodes indi-
cate base models.

Figure 6: Map and model structure for the Kenya neonatal simulation study.

σ2
C (P-INLA), Half-Cauchy(25) for σB, σIID and σC (P-HC), and the joint prior

proposed in Riebler et al. (2016) (P-PC), where σ2
B and σ2

IID has a PC prior of
the type introduced in this paper with P(σ2

B/(σ
2
B + σ2

IID) < 0.5) = 2/3 and σ2
C is

given an independent PC prior σC ∼ PCSD(3, 0.05).

Based on the final report from the survey (Kenya National Bureau of Statistics
et al., 2015) the estimated national level of neonatal mortality is 0.022 for 2010–
2014, and we set µ = logit(0.022). Further, we choose σ2

C = 0.1 and create five
scenarios by combining this with σ2

IID = σ2
B = 0 (S1), σ2

IID = 0.4 and σ2
B = 0

(S2), σ2
IID = σ2

B = 0.2 (S3), σ2
IID = 0.04 and σ2

B = 0.36 (S4), and σ2
IID = 0

and σ2
B = 0.4 (S5). We simulate 500 datasets for each scenario. The main

targets of the simulation study are the structured part of the spatial heterogeneity
through the posterior of u, the degree of structure in the spatial heterogeneity
through ω(2) = σ2

B(σ
2
B+σ2

IID)
−1, and how well the underlying neonatal mortality

is estimated through the posterior of the intercept µ. The performance is assessed
through the CRPS (see Section 5.2) of u, the bias of the posterior median of ω(2),
and the bias of the posterior median and the coverage of the 80% equal-tailed
credible interval for µ. We use the proportion of datasets leading to at most 0.1%
divergent transitions as a measure of stability in the inference, these numbers can
be seen in Figure S5.1 in the Supplementary Materials, and show that P-INLA
leads to more unstable inference than the others.

Figure 7 shows the main results from the simulation study. We drop datasets
that cause more than 0.1% divergent transitions for at least one of the priors
from each scenario. All priors have a tendency to overestimate the intercept,
with P-INLA doing worse than the others, P-INLA gives close to exact estimates



Intuitive joint priors for variance parameters 61

Figure 7: Main results from the Kenya neonatal mortality simulation study. Left
to right: bias of the intercept µ, CRPS of u and bias of ω(2). Scenario shown on
the x-axes.

when the true value of ω(2) is 0 (in S2) and 1 (in S5), but performs worse than the
other priors for S3 and S4. Figure S5.2 in the Supplementary Materials shows
that P-HD-25 performs better than P-HD-D except in S3 where the Dirichlet
prior is closest to the truth, and that ω(1) tends to be underestimated under all
the priors. P-HD-25 is preferred because overall it performs at least as good as
the other priors P-HC and P-PC, and P-HD-25 is an intuitive and well-behaved
prior that takes the hierarchical structure of the model into account.

6.3 Neonatal mortality in Kenya

This section follows the notation introduced in Section 6.1. The survey consists of
13183 households with one or more live births, distributed over 1593 clusters that
are distributed over n = 47 counties. In total there are 376 deaths among 17664
children. Figure 8c shows the counties and the weighted neonatal mortality by
the inverse inclusion probabilities, and it is unclear if there is a structured spatial
pattern. The neonatal mortality is assumed to follow a survival model with
constant hazard through the first month of life, and we use a latent Gaussian
model with a binomial likelihood, yi,j,k|bi,j,k, pi,j,k ∼ Binomial(bi,j,k, pi,j,k), a
logit link function, and a linear latent Gaussian model

ηi,j,k = logit(pi,j,k) = µ+ xi,jβ + ui + vi + νi,j + εi,j,k, (6.1)

where µ is an overall intercept, β is the effect of urban, u is a Besag model
with variance σ2

11, v is a Gaussian i.i.d. effect of county with variance σ2
12, ν

is a Gaussian i.i.d. effect of cluster with variance σ2
2 , and ε is a Gaussian i.i.d.
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effect of household with variance σ2
3 . In this model, u and v provide structured

and unstructured, respectively, between-county variation, ν provides between-
cluster variation, and ε provides within-cluster variation. The Besag effect has
a sum-to-zero constraint to make the overall intercept identifiable. The random
effects of cluster and household are necessary to account for the dependence
induced between sampled households due to the clustering in the sampling design.
We assume that there is no difference between the effect of urbanicity between
different counties.

The model has four variance parameters that must be assigned a joint prior.
The first step is to choose the tree structure. For simplicity’s sake, the alternatives
to the full model (6.1) we would entertain are first ηi,j,k = µ + xi,jβ + vi, then
we would add ui, so νi,j , and at last εi,j,k. We prefer coarser unstructured effects
over finer unstructured effects since we would like to explain the data at a coarser
level if possible, and we prefer the unstructured spatial effect over the structured
spatial effect since we want to reduce the risk of estimating spurious spatial
signals. This gives the nested tree structure in Figure 8a where the household
effect, cluster effect and Besag effect are sequentially split off from the total latent
variance. We construct an HD prior based on the tree structure with PC priors
with default hyperparameter values for the splits, and induce shrinkage on the
total latent variance as in Prior class 3 with a PC prior where P(Total variance >
11.296) = 0.05. This corresponds to a priori equal-tailed 90% credible interval of
(0.1, 10) for the effect of the random effects on the odds-ratio, exp(ui+vi+νi,j +
εi,j,k). This allows for high variation in the data and is used because the data is
observed at the household level. The splits in Figure 8a are given PC priors with
default hyperparameters and bases models as indicated in the figure.

The model is parameterized by total standard deviation σT, and proportion
of household variance to total variance of the random effects ω(1), proportion of
cluster variance to the sum of cluster and county variance ω(2), and the proportion
of structured spatial variance to county variance ω(3). The priors and posteriors
of the proportions ω(1), ω(2) and ω(3) are shown in Figure 8e. The total standard
deviation has a posterior median of 1.47, and the prior and posterior can be
seen in Figure S5.3 in the Supplementary Materials. The results show that the
data only weakly informs about the proportion of structured to unstructured
spatial effects, which indicates that the data provide no strong evidence in favor
of or against a structured spatial effect. Also the posterior of ω(2) is similar
to the prior, but there is a strong signal in the posterior of ω(1) that there is
non-negligible household-level dependence. A plausible explanation for the weak
signals in ω(2) and ω(3) is that there is substantial noise coming from high variance
in the household-level random effect and weak information from the Binomial
likelihood due to few successes and few numbers of trials.
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u,v,ν, ε

εu,v,ν

νu,v

u v

(a) Model structure. (b) Variance of u relative to total variance.

(c) Weighted average of neonatal mortality. (d) Posterior median of eu.

(e) The priors and posteriors for the proportion of household variance to total variance of
the random effects ω(1), the proportion of cluster variance to cluster- and household-level
variance ω(2), and the proportion of structured spatial variance to total between-county
variance ω(3).

Figure 8: Description of model structure, map of observed mortality, and results
for neonatal mortality in Kenya.
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As shown in Figure 8b the proportion of the total latent variance attributed
to the structured spatial effect is low and the posterior median is 0.56%. The
estimated spatial effect in Figure 8d only explains a small part of the variation
seen in the observed data in Figure 8c. One should be careful to draw conclu-
sions about spatial variation based on Figure 8d because the data is only weakly
informative about the split between the structured and the unstructured spatial
random effects ω(3), and there is only weak evidence for the spatial effect being
different from 0 as shown in Figure S5.5 in the Supplementary Materials. The
fact that the comparisons of priors and posteriors for ω(2) and ω(3) directly in-
forms about the weak signal in the data is an advantage of the parametrization
through proportions of variance, and a strong argument for setting priors on ω(2)

and ω(3) rather than independent priors on the variance of each effect since the
resulting posteriors for ω(2) and ω(3) are strongly dependent on the resulting
implicit priors for ω(2) and ω(3).

One could argue for other splits in the tree in Figure 8a such as preferring
finer level effects to coarser level effects because one does not want to estimate
spurious cluster-level or county-level effects, but the key point of this application
is that it is easy to set up the prior based on a priori assumptions and the
assumptions are available to other scientists at a glance. With the traditional
approach of independent priors, the resulting prior on the total variance of the
random effects and the distribution of this total variance to the different random
effects is obfuscated. Furthermore, if expert knowledge indicates that stronger
relative shrinkage of the variances than the default setting is needed, the medians
of the conditional priors for ω(1), ω(2) and ω(3) can be reduced.

7 Discussion

Independent priors for the variance parameters in a BHM result in an implicit
prior on the total variance of the random effects, t, and the attribution of t to
the random effects. Additive models are typically built in a modular fashion,
but these implict priors are not consistent with respect to adding or removing
random effects. In the case of Gaussian responses, both the prior for t and the
prior for t relative to the size of the residual variance change. The proposed HD
priors overcomes these shortcomings, and respect the defined model structure
and are consistent for t and the attribution of t to the different random effects
for different selections of random effects.

The HD priors admit a visual representation through trees that allow trans-
parent communication of the assumptions made in constructing the priors and
facilitate discussion around the assumptions. The tree clearly specifices where
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shrinkage has been applied, and in some cases lead to more intuitive parametriza-
tion that is more suitable for elicitation of priors. For the random intercept model,
the tree-based hierarchical variance decomposition leads to a parameterisation in
terms of t and the ICC. A prior on these parameters is more interpretable than
separate priors on the group variance and individual variance, which obfuscates
the joint effect of the priors. The increased interpretability of joint priors com-
pared to independent priors addresses concerns raised about transparency for
point processes where prior sensitivity is a major concern (Sørbye et al., 2018).

The mix of robust PC priors for shrinkage and simple Dirichlet priors for
expressing ignorance, allows principled priors that respect the relative complexity
of the random effects when shrinkage is necessary, and intuitive exchangeability
when no random effects are preferred or no model structure is apparent. The
simulation studies show that this approach performs better than a completely
unstructured approach with a Dirichlet prior attributing t to the different random
effects, but that Dirichlet priors perform well for subgroups of the random effects
where there is no nested structure or difference in complexity.

HD priors with default settings for the hyperparameters performs well, but
there are corner cases like no treatment effect in the latin square experiment and
no structured spatial effect for the binomial data, which are best handled by the
default INLA prior. However, this prior has a peak in the prior distribution for
low variances and generally performs surprisingly bad. The HD priors perform
comparable to component-wise PC priors and separate half-cauchy priors for the
marginal variances. The main benefit of the HD priors over other default priors
is their combination of intuitive graphical representation with robust inference
that behaves well across a range of different scenarios.

The calculation of PC priors is more complex in the context of correlation
parameters, but multivariate PC priors have been developed for more complex
random effects such as autoregressive processes (Sørbye and Rue, 2017) and spa-
tial Matérn models (Fuglstad et al., 2019). These can be integrated into the
HD prior framework by first defining priors on the correlation parameters, and
then constructing the joint prior for the variance parameters with the correlation
parameters fixed to reasonable values. This follows the pragmatic mindset of As-
sumption 2 of producing priors that are computationally feasible, intuitive and
practically useful.

A key focus for future work is to exploit sparsity in the precision matrices of
the random effects. This is important when shrinkage is desired through PC priors
because many models such as random walks, Besag models, and Gaussian random
fields (Lindgren et al., 2011) have dense covariance matrices, but can be expressed
through sparse precision matrices. Assume that the total variance is split between
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random effects with sparse precision matrices Q1 and Q2, where Q1 corresponds
to the base model. Let 0 < ω < 1, then the KLD used in Theorem 1 consists of
the trace of Q1[(1 − ω)Q−1

1 + ωQ−1
2 ], which can be computed quickly through

the techniques in Rue and Held (2010, Section 12.1.7.10), and the determinant
det[Q1[(1 − ω)Q−1

1 + ωQ−1
2 ] = det[(1 − ω)Q2 + ωQ1](det[Q2])

−1, which can be
computed quickly through Cholesky factorizations.

We aim to further broaden the advantages of the HD priors in the future
by constructing a joint prior for the variance parameters and the fixed effects.
However, this will require re-thinking of the concept of total latent variance as
it is the values of the coefficients of the fixed effects and not their variance that
determines the amount of variance they explain. Instead of starting with the
concept of marginal variances, it is natural to begin with the classical concept of
explained variance and use ideas from block-wise g-priors (Som et al., 2014) to
distribute variance inside a group of covariates. In a multilevel model this would
connect the attribution of explained variance to different levels to generalised
coefficients of determinations. Additionally, towards non-parametric regression
by including a combination of a linear effect of a covariate and a smooth effect of
a covariate, and explicitly putting a prior on the degree of non-linearity (Simpson
et al., 2017, Section 7). However, there are still open questions and this addition
is outside the scope of this paper.

The choice of tree structure for HD priors should be guided by the application
at hand, for example, by considering the relative complexity of the random effects.
When expert knowledge is available, the default values for the hyperparameters
should be replaced by values elicited based on expert knowledge. We believe
that the advantages of the HD priors over independent priors mean that they
should be used as the default option in software for Bayesian analysis. However,
it is necessary to make the selection and computation of HD prior for a specific
problem easier for analysts. We plan to address this by providing a separate R

package, which is compatible with INLA, that provides a graphical user interface
for selecting the tree structure and selecting priors for the splits, and has the
option to pre-compute priors for use in RStan. This will allow analysts to ex-
periment with different a priori assumptions and produce graphical figures that
summarize their assumptions and can be communicated to fellow scientists. This
will encourage transparancy and clarity in a priori assumptions in the scientific
community.



Intuitive joint priors for variance parameters 67

Supplement

Supplement to “Intuitive joint priors for variance parameters”. (DOI: 10.1214/
19-BA1185SUPP; .zip). The Supplementary Materials consist of a supplementary
document providing additional results and discussion, and example code for the
latin square model. The code is described in the Section S4.3 of the supplemen-
tary document.
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S1 Proofs

S1.1 Theorem 3.1

Theorem S1.1 (Prior for the caseN = 2). Let u1 and u2 be random effects of an
LGM that enter the linear predictor through A1u1 ∼ Nn(0, σ

2
1Σ̃1) and A2u2 ∼

Nn(0, σ
2
2Σ̃2). Assume that Σ̃1 + Σ̃2 is non-singular1. Let ω = σ2

2/(σ
2
1 + σ2

2) and
Σ(w) = (1 − ω)Σ̃1 + ωΣ̃2. Then the distance from the base model Σ(ω0) to the
alternative model Σ(ω) is given by

d(ω) =
√

tr(Σ(ω0)−1Σ(ω))− n− log |Σ(ω0)−1Σ(ω)|

for 0 ≤ ω0 ≤ 1.

The PC prior for ω with base model ω0 = 0 is

π(ω) =





λ|d′(ω)|
1−exp(−λd(1)) exp (−λd (ω)) , 0 < w < 1, Σ̃1 non-singular,

λ
2
√
ω(1−exp(−λ))

exp(−λ
√
ω), 0 < ω < 1, Σ̃1 singular,

where λ > 0 is the hyperparameter. We suggest to set λ so that the median is
ωm = 0.25.

1If this were not the case, some elements of the sum of A1u1 and A2u2 would be exactly
equal and we would choose a subset of maximal size so that Σ̃1 + Σ̃2 was non-singular for
comparing the effects of A1u1 and A2u2.
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For base model 0 < ω0 < 1, the PC prior whose median is equal to ω0 is

π(ω) =





λ|d′(ω)|
2[1−exp(−λd(0))] exp (−λd (ω)) , 0 < ω < ω0,

λ|d′(ω)|
2[1−exp(−λd(1))] exp (−λd (ω)) , ω0 < ω < 1,

where λ > 0 is a hyperparameter. We suggest to set λ so that

P(logit(1/4) + logit(ω0) < logit(ω) < logit(ω0) + logit(3/4)) = 1/2.

Base model equal to ω0 = 1 follows directly by reversing the roles of u1 and
u2.

Proof:
First, note that since Σ̃1 and Σ̃2 are positive semi-definite and Σ̃1 + Σ̃2 is non-
singular, Σ(ω) = (1−ω)Σ̃1 +ωΣ̃2 is positive definite for 0 < ω < 1. This follows
from the fact that Σ̃1 + Σ̃2 is non-singular means that vT(Σ̃1 + Σ̃2)v 6= 0 for
v ∈ Rn and v 6= 0, where n is the dimension of Σ̃1, which implies that either
vTΣ̃1v > 0 or vTΣ̃2v > 0 for each v 6= 0 so that vT[(1− ω)Σ̃1 + ωΣ̃2]v > 0 for
v ∈ Rn and v 6= 0.

The proof of the theorem is split into three cases.

S1.1.1 Case 1: ω0 = 0 and Σ̃1 is non-singular

The Kullback-Leibler divergence (KLD) from Nn(0,Σ(ω)) to Nn(0, Σ̃1) is given
by KLD(ω) = 0.5(tr(Σ̃−1

1 Σ(ω))−n− log(|Σ̃−1
1 Σ(ω)|)), where tr denotes the trace

of the matrix, and KLD(ω) is finite for 0 ≤ ω < 1 since the KLD between two
non-singular multivariate Gaussian distributions is finite. Thus a distance can
be defined through

d(ω) =

√
tr(Σ̃−1

1 Σ(ω))− n− log(|Σ̃−1
1 Σ(ω)|), 0 ≤ ω < 1, (S1.1)

and we follow Simpson et al. (2017) and use an exponential distribution on the
distance so that π(d) = λ exp(−λd)(1 − exp(−λd(1)))−1, 0 < d < d(1), where
λ > 0, and the possibly truncated density is normalized by (1− exp(−λd(1))). A
change of variables gives

π(ω) =
λ|d′(ω)|

1− exp(−λd(1))
exp(−λd(ω)), 0 < ω < 1. (S1.2)
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S1.1.2 Case 2: ω0 = 0 and Σ̃1 is singular

If Σ̃1 is singular and Σ(ω), 0 < ω < 1, is non-singular, the distance d(ω) given
in Equation (S1.1) is infinite for all 0 < ω < 1 and the direct approach for
constructing the prior is not possible. We change the notation to d(ω;ω0) to
make the dependence on the base model explicit. For any base model ω0 > 0,
d(ω;ω0) is finite for ω0 ≤ ω < 1, and the prior can be constructed as for Case 1.
The distance d(ω;ω0) is scaled by λ in Equation (S1.2) and we seek an expression
λ(ω0) so that λ(ω0)d(ω;ω0) remains finite for all ω0 ≤ ω < 1 when ω0 → 0+.

Since Σ̃1 + Σ̃2 is positive definite, there exist an n× n matrix P so that

P(Σ̃1 + Σ̃2)P
T = I.

This corresponds to a linear transformation of the Gaussian distributions that
results in covariance matrices S1 = PΣ̃1P

T and S2 = PΣ̃2P
T. The KLD is

invariant to a linear transformation of the variables and the distance in Equation
(S1.1) can be calculated by

d(ω;ω0)
2 = tr(S(ω0)

−1S(ω))− n− log(|S(ω0)
−1S(ω)|),

where

S(ω) = (1− ω)S1 + ωS2 = ω(S1 + S2) + (1− 2ω)S2 = ωI+ (1− 2ω)S1,

since S1 + S2 = I.

S1 is symmetric and can be diagonalized so that S1 =
∑n

i=1 λiviv
T
i . This

gives

S(ω) =
n∑

i=1

[(1− 2ω)λi + ω]viv
T
i

so that

S(ω0)
−1S(ω) =

n∑

i=1

[(1− 2ω)λi + ω]

[(1− 2ω0)λi + ω0]
viv

T
i .

Thus the distance is given by

d(ω;ω0)
2 =

n∑

i=1

[(1− 2ω)λi + ω]

[(1− 2ω0)λi + ω0]
− n−

n∑

i=1

log

(
[(1− 2ω)λi + ω]

[(1− 2ω0)λi + ω0]

)
.

Let l be the rank deficency of Σ̃1 and assume that the eigenvalues of S1 are
sorted from largest to smallest, then λi > 0 for i = 1, . . . , n − l and λi = 0 for
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i = n− l + 1, . . . , n, and the distance can be written as

d(ω;ω0)
2 = l

(
w

ω0
− log

(
ω

ω0

))
+

n−l∑

i=1

[(1− 2ω)λi + ω]

[(1− 2ω0)λi + ω0]

− n−
n−l∑

i=1

log

(
[(1− 2ω)λi + ω]

[(1− 2ω0)λi + ω0]

)
.

The first term blows up as ω0 tends to zero, whereas the latter terms converges
to a finite value. We introduce the scaled distance

d̃(ω;ω0)
2 = ω0d(ω;ω0)

2 = l

(
ω − ω0 log

(
ω

ω0

))
+ ω0C(ω0),

where C(ω0) = O(1) as ω0 → 0+, and define d̃(ω; 0) = limω0→0+
√
ω0d(ω;ω0) =√

lw.

Thus by letting λ(ω0) =
√

ω0/lλ̃, we find the density

π(ω) =
λ̃

2
√
ω(1− exp(−λ̃))

exp(−λ̃
√
ω), 0 < ω < 1, (S1.3)

as ω0 → 0+.

S1.1.3 Case 3: 0 < ω0 < 1

This case proceeds like Case 1 for 0 ≤ ω < ω0 and for ω0 < ω < 1. On each side
of ω0 we get a similar expression as in Equation (S1.2). If we want to place the
median at ω0 we must place 1/2 probability on each side of ω0 by introducing
factors of 1/2 in the expressions. The density becomes

π(ω) =





λ|d′(ω)|
2(1−exp(−λd(0))) exp (−λd (ω)) , 0 < ω < ω0,

λ|d′(ω)|
2(1−exp(−λd(1))) exp (−λd (ω)) , ω0 < ω < 1,

where (1 − exp(−λd(0))) makes sure the density in 0 < ω < ω0 integrates to
1/2 and (1 − exp(−λd(1))) makes sure the density in ω0 < ω < 1 integrates to
1/2.
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S2 Multivariate PC priors for ignorance

The PC prior framework can be applied directly to dual splits since distance can
be defined as a function of a single parameter. However, the PC prior framework
does not translate to a general approach for distances that are functions of mul-
tiple parameters without further assumptions (Simpson et al., 2017, Section 6).
Consider a split with K > 2 branches, and denote the proportion of variances
assigned to each branch as ω = (ω1, . . . , ωK). Assume that the base model for
the split is equal apportion of variance into the branches. Then the following
procedure can be applied to replace the split with a sequence of dual splits.

Assumption S2.1 (Turn a multi-split into dual splits). Consider a split in the
tree structure that has K > 2 branches and assume that the variance in each
branch is σ̃2

i , for i = 1, . . . ,K. We sequentially split out random effect 1, 2, and
so on, through K − 1 dual splits. The proportion of variance assigned to random
effect i of the total variance

∑K
j=i σ̃

2
j is ω(i) = σ̃2

i /
∑K

j=i σ̃
2
j for i = 1, . . . ,K − 1.

The base models are ω
(i)
0 = 1/(K + 1 − i), and ensures that conditioning on the

base models results in a proportion of 1/K of the total variance to each child
node.

The priors for each dual split can be precomputed before inference. The prior
depends on the ordering of the K − 1 dual splits, but when the hyperparameters
are set according to the suggested values for dual splits in the main article, we
do not expect the ordering of the child nodes within each multisplit to greatly
affect inference because the conditional priors are weakly informative in the sense
that they put most mass around the base models, but also ensure that large
deviations from the base model are plausible. The base models are chosen so
that the variance is split equally between the child nodes.
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S3 Gaussian responses: Random intercept model

In this section we include additional background, theory and results for the ran-
dom intercept model simulation study from Section 5.1 in the main article.

S3.1 Additional background

The random intercept model is given by

yi,j = αi + εi,j , j = 1, . . . , ni, i = 1, . . . , ng, N =

ng∑

i=1

ni,

where yi,j is the j-th observation in group i, α = (α1 . . . , αng
)T ∼ Nng

(0, σ2
αIng

)
is a vector with the random intercepts (group effect), and the residual noise
(individual effect) is ε = (ε1,1, ε1,2, . . . , εng,nng

)T ∼ NN (0, σ2
RIN ). We denote

the N -dimensional vector of observations y = (y1,1, y1,2, . . . , yng,nng
)T and let

A be a block matrix of size N × ng connecting the correct entries of α to each
observation in y. Reparameterizing the model with total variance V = σ2

R + σ2
α

and ω = σ2
α/V , the model can be written in vector form as

y =
√
V
(√

ωAα+
√
1− ωε

)
, (α, ε) ∼ Nng+N (0, Ing+N ).

We use the R package RStan (Stan Development Team, 2018b) to perform the
inference for all the three simulation studies in the paper. More specifically, we
use the function stan from this package, where we use the following settings for
the random intercept model simulation study: burn-in of length 25 000, total
sample length of 125 000 (i.e., 100 000 samples after burn-in), one chain, we
thin the chain to every fifth sample, initialize all parameters to zero, and we set
the value adapt delta to 0.95. adapt delta is the average proposal acceptance
probability Stan aims for during the adaption (burn-in) period, and a larger
value will give a smaller step size (Stan Development Team, 2018a). For all other
inputs we use the default values. We ran the simulation study on a computing
cluster, where the full study runs in between a day and a week, depending on the
available memory on the cluster.

RStan reports a divergent transition for each iteration of the MCMC sampler
that runs into numerical instabilities (Carpenter et al., 2017). The divergent tran-
sitions are typically caused by an inappropriately large step size in the sampler or
a poorly parameterized model, and may indicate that the results are biased since
the sampler had trouble exploring the posterior (Stan Development Team, 2018a).
It is difficult to completely avoid divergent transitions across all datasets, but to
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avoid reporting biased results, we removed dataset and prior combinations that
resulted in 0.1% or more divergent transitions during the inference for ng = 10
or 50. For ng = 5 we remove the dataset from the study if at least one prior
results in too many divergent transitions. We report the proportion of datasets
that resulted in at most 0.1% divergent transitions for each prior and scenario
and use this as a measure of stability of the inference scheme for each prior.

S3.2 Connection to R2

The coefficient of determination, commonly known as R2, is a measure on how
much of the data variance is explained by a given linear regression model (Gelman
and Hill, 2007). In frequentistic statistics, the R2 is used to assess model fit by
comparing the variance in the residuals to the variance in the data. Gelman and
Hill (2007) generalise the R2 to also make sense for multilevel models, such as
the random intercept model. In this approach the R2 is computed at each level
of the model, which means we can assess the model fit at each level. In the case
of the random intercept model, we have two levels in the model. The classical
R2 can be written as

R2 = 1−
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − ȳ)2

where yi, i = 1, . . . , N , are observations, ȳ = N−1
∑N

i=1 yi, and ŷi are the fitted
values. Originally, the R2 compares the model fit of any given linear regression
model with covariates to a regression model with only an intercept. Gelman
and Hill (2007) define the generalised R2 at each level k in the model to be a

comparison of the errors ε
(k)
i at level k and the total linear predictor η

(k)
i at the

same level of the model. The total linear predictor η
(k)
i is the covariates and

predictors at level k in addition to the errors at the level, which means that

η
(k)
i ≥ ε

(k)
i for all k. We write the generalised R2 as

R2,(k)
gen = 1−

E

(
1
nk

∑
i

(
ε
(k)
i − ε̄

(k)
i

)2)

E

(
1
nk

∑
i

(
η
(k)
i − η̄

(k)
i

)2)

where nk is the number of observations/groups at level k. The random intercept
model has two levels, so k ∈ {1, 2}. In the main article we have standardised the
data and omitted the intercept from the random intercept model we use, and we

have no covariates. This means that ε
(1)
i = εi, η

(1)
i = yi, ε

(2)
i = αi and η

(2)
i = αi,
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and we have that

E

(
1

ng

∑

i

(αi − ᾱi)
2

)
ng→∞
= E(Var (α)) = σ2

α,

E

(
1

N

∑

i

(εi − ε̄i)
2

)
N→∞
= E(Var (ε)) = σ2

R,

E

(
1

N

∑

i

(yi − ȳi)
2

)
N→∞
= E(Var (y)) = σ2

α + σ2
R.

The generalised R2 at the group level (k = 2) for our model is zero (in the limit
ng → ∞), which makes sense as there is nothing more in the linear predictor
than the errors at the lowest level when we have no covariates in the model. For
the data level, the generalised R2 is given by 1− σ2

R/(σ
2
α + σ2

R) = σ2
α/(σ

2
α + σ2

R),
which is the weight ω in the parametrization presented in this paper. Thus this

weight is the asymptotic R
2,(1)
gen , which is also equal to the intra-class correlation.

S3.3 Results

We present all the results from the random intercept model simulation study. The
priors used in the study are the HD prior with median ωm = 0.25 (P-HD-25),
ωm = 0.5 (P-HD-50) and ωm = 0.75 (P-HD-75), the HD prior with a symmetric
Dirichlet prior on the weight (P-HD-D), and the three commonly used priors P-
INLA (Jeffreys’ prior on residual variance and InvGamma(1, 5× 10−5) on group
variance), P-HC (Jeffreys’ prior on residual variance and Half-Cauchy(25) on
group variance) and P-PC (Jeffreys’ prior on residual variance and PCSD(3, 0.05)
on group variance). The different scenarios we have used are the true weight
ω ∈ {0.1, 0.25, 0.5, 0.75, 0.9}, ng ∈ {5, 10, 50}, ni = 10 ∀i, and ni = 50 ∀i,
and 10 groups with varying group size where the group size is sampled from a
Poisson(10)-distribution, and samples equal to 0 or 1 is set to 10 so no group
is of size smaller than 2. As performance measures we use the bias (estimated
median minus true value) and 80% coverage (found by counting the number of
times the true value lies in the 80% credible interval) of log(V ) and logit(ω), and
the number of datasets that leads to more than 0.1% divergent transitions during
the inference as a measure of stability. All the box-plots show the median, the
first and third quartile, 1.5 times the inter-quartile range (distance between first
and third quartile), and outliers, if any.

From Figure S3.1 we see that P-INLA is less stable than the other priors,
except for datasets with five groups where also P-HC leads to inference with
too many divergent transitions. If a dataset leads to more than 0.1% divergent
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transitions for a given prior, we remove the dataset from the study for this prior.
For the scenarios with ng = 5, P-INLA and P-HC are more affected by divergent
transitions than the other priors. In this case we remove the dataset from the
study for all priors. This means that the results for P-INLA is based on fewer
simulations than the other priors for ng = 10 or 50.

Figure S3.2 shows the posterior distribution of the logarithm of the group vari-
ance (log(σ2

α)) when the priors of σ2
R and σ2

α are Jeffreys’ and InvGamma(1, 5×
10−5) (i.e. the INLA default prior), respectively. This is the true posterior, calcu-
lated using numerical integration, with a dataset where the maximum likelihood
(ML) estimates of the group and residual variances are exactly equal to ω and
1− ω, respectively. We vary the value of ω, and have 10 groups with 10 persons
in each. When the true ω = 0.1, and most of the variance in the model is residual
variance, the posterior is highly influenced by the prior and we have close to no
mass at the ML estimate (which is 0.1). When ω = 0.25, the posterior is bimodal,
and when ω = 0.5 almost all the mass is at the ML estimate. This explains the
bad results from P-INLA for datasets with true ω ≤ 0.5.

Figures S3.3-S3.7 show all the bias and coverage results from the random
intercept model simulation study. Note that the coverage of ω is only shown for
values larger than 65%. The order of the priors is the same in the legend and
for each scenario in all plots, so P-INLA is the leftmost, so comes P-HC and so
on. For a given number of groups and group size, the magnitude of the bias for
log(V ) increases and for logit(ω) decreases when the true value of ω increases.
This is expected as a larger value of ω means that the group variance is larger
relative to the residual variance and the dataset provides more information about
the ω than would be the case when group variance is small relative to residual
variance. On the other hand, a larger ω means the group variance dominates
the total variance V more and there is less information about the group effect,
which only has 5, 10 or 50 replicates, than the residual effect, which has 10 or 50
replicates for each group. This means less information about the V .

In the following we list the main results from each figure. It is clear from
Figure S3.3 that the choice of ωm does not have a large impact on the results.
For an HD prior with a Dirichlet prior on the weight ω (P-HD-D), the results are
similar for the scenario with equal group and residual variance (true ω = 0.5),
and worse for the other scenarios. This is true for all dataset sizes. Figure S3.4
shows that also for varying group sizes the HD prior with a PC prior on ω behaves
as well as or better than the other priors in terms of bias and coverage, and again
the value of ωm does not influence the results noticeably. Figure S3.5 shows that
larger groups improves the results in terms of low bias and accurate coverage,
especially for P-INLA, but not as much as larger number of groups improves the
results. In Figures S3.6 and S3.7 we include results for fewer groups, ng = 5,
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and 10 and 50 persons in each group, respectively. It is difficult to estimate the
group variance with a low number of groups, and the results show that P-INLA
is performing badly in terms of both bias and coverage for V and ω. For a
given scenario with the HD prior, the bias and the coverage both increases for
increasing values of ωm. P-HC leads to the least stable inference for ng = 5, and
the other five priors give about equally stable inference. Note that for a given
scenario we have removed the same datasets from the results for all priors, and
the results may be slightly biased because of this.

S3.4 Simulation study for small group sizes

We explore the properties of the HD prior when applied to problems with small
datasets with only few observations in each group. Here the amount of informa-
tion about the parameters is low and the risk of overfitting is high. We define
overfitting as overestimating the value of ω, and thus estimating spurious signals
in the group effect; and define underfitting as underestimating the value of ω.
Specifically, we use a small simulation study with two observations per group,
and group size ng ∈ {10, 50, 100}. We include an additional prior denoted P-
HD-10 not included in the main article, which is the HD prior with PC prior on
weight with median ωm = 0.1. P-HD-10 is added to explore the option of higher
shrinkage in small data settings. The remaining HD priors are introduced in the
main article.

From Figure S3.8 one can see that the inference for total variance V is stable
in terms of bias and coverage. This indicates that the Jefferey’s prior on V works
well also in low information settings. From Figure S3.9, one can see that the
inference for the weight ω depends on the chosen prior. Using the recommended
P-HD-25, we are slightly overfitting for the scenario where the true weight is 0.1,
and we are slightly underfitting in the other scenarios. Using stronger shrinkage
through P-HD-10 avoids overfitting for true weight equal to 0.1, but results in
a stronger bias for higher values of the true weight, and the resulting coverage
varies from 100% to 0% in the scenarios. P-HD-50, P-HD-75 and P-HD-D result
in overfitting also for true weight equal to 0.25 for ng = 10. The results indicate
that the recommended prior P-HD-25 is also appropriate for small group sizes.
None of the priors displayed lead to inference with more than 0.1% divergent
transitions.
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Figure S3.1: The proportion of datasets for each scenario and prior leading to
at most 0.1% divergent transitions during the inference in the random intercept
model simulation study. We say that the stability is 1.0 if all datasets for a given
prior and scenario lead to no more than 0.1% divergent transitions. No number
means that the stability is 1.0. The rightmost column, denoted “All”, shows how
many datasets must be removed from the study so all priors lead to at most 0.1%
divergent transitions for the remaining datasets.
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Figure S3.2: The posterior distribution of the logarithm of the group variance σ2
α

when using Jeffreys’ prior on the residual variance and InvGamma(1, 5 × 10−5)
on the group variance (P-INLA). The prior on the group variance is included in
the plot. We have ng = 10 and ni = 10 ∀i.
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Figure S3.3: The true value of ω is on the x-axis in all graphs, the two upper
rows contain the posterior diagnostics for the log total variance, and the two
lower rows for logit weight. Bias in the left column, coverage in the right. The
number of groups is indicated at the beginning of each row, either 10 or 50, and
the group size ni = 10 ∀i. The order of the priors is the same in the legend and
for each scenario. The coverage for P-INLA is sometimes below the 65% and not
shown in the figure.
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Figure S3.4: The true value of ω is on the x-axis in all graphs, the upper row
contains the posterior diagnostics for the log total variance, and the lower row
for logit weight. Bias in the left column, coverage in the right. The number of
groups is 10 and the group size ni varies. The order of the priors is the same in
the legend and for each scenario. The coverage for P-INLA is sometimes below
the 65% and not shown in the figure.
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Figure S3.5: The true value of ω is on the x-axis in all graphs, the two upper
rows contain the posterior diagnostics for the log total variance, and the two
lower rows for logit weight. Bias in the left column, coverage in the right. The
number of groups is indicated at the beginning of each row, either 10 or 50, and
the group size ni = 50 ∀i. The order of the priors is the same in the legend and
for each scenario. The coverage for P-INLA is sometimes below the 65% and not
shown in the figure.
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Figure S3.6: The true value of ω is on the x-axis in all graphs, the upper row
contains the posterior diagnostics for the log total variance, and the lower row
for logit weight. Bias in the left column, coverage in the right. The number of
groups ng = 5, and the group size ni = 10 ∀i. The order of the priors is the
same in the legend and for each scenario. The coverage for P-INLA is sometimes
below the 65% and not shown in the figure.
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Figure S3.7: The true value of ω is on the x-axis in all graphs, the upper row
contains the posterior diagnostics for the log total variance, and the lower row
for logit weight. Bias in the left column, coverage in the right. The number of
groups ng = 5, and the group size ni = 50 ∀i. The order of the priors is the
same in the legend and for each scenario. The coverage for P-INLA is sometimes
below the 65% and not shown in the figure.
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Figure S3.8: Results for log(V ). The true value of ω is on the x-axis in all graphs,
bias is shown in the left column, coverage in the right. The number of groups is
indicated at the beginning of each row, and there are two persons in each group.
The order of the priors is the same in the legend and for each scenario.
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Figure S3.9: Results for logit(ω). The true value of ω is on the x-axis in all
graphs, bias is shown in the left column, coverage in the right. The number
of groups is indicated at the beginning of each row, and there are two persons
in each group. The order of the priors is the same in the legend and for each
scenario. The coverage for P-HD-10 is sometimes below the 65% and not shown
in the figure.
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S4 Gaussian responses: Latin square

We include additional background and all results from the latin square simulation
study from Section 5.2 in the main article.

S4.1 Additional background

The reasoning behind the tree structure for the prior in the latin square simulation
study displayed in Figure S4.1a is as follows: At the first level (top level) the prior
shrinks the latent part of the model, at the second level the total latent variance
is distributed with equal preference to the row effect, the column effect and the
treatment effect, and at the third level the treatment effect is shrunk towards
the unstructured effect. We select an HD prior using the model structure in
Figure S4.1a. We also implement the triple split as explained in Section S2.
The original order chosen in the main article is denoted Order1 (S4.1b), and the
permuted orders Order2 (S4.1c) and Order3 (S4.1d). The total variance of the
latent model is split into ω(1), ω(2) and ω(3), which are the proportions of the
latent variance going to the row effect, column effect and the treatment effect,
respectively. Figure S4.3 shows the difference in marginal priors for ω(1), ω(2) and
ω(3) for Order1 and Order2, on weight scale and on logit weight scale. Figure
S4.4 shows the difference in the same marginal priors for Order1 and a Dirichlet
prior on the triple split, where the latter is the default choice in the HD prior
framework.

The true treatment effect x = (x1, . . . , x9) we use in the latin square simu-
lation study is given by xi = C

(
(i− 5)2 − 20/3

)
, i = 1, . . . , 9 where C = 0 for

scenario S1, C = 0.05 for scenario S2, and C = 0.2 for scenario S3. These corre-
sponds to signal to noise ratios (SNRs) of 0%, 48% and 94% for S1, S2 and S3,

respectively, as computed by SNR = Sxx/(Sxx+σ2
t ), where Sxx =

∑9
i=1(xi− x̄)2.

Figure S4.2 shows the true treatment effect for the three scenarios.

In the latin square experiment we use the following settings in the R-function
stan: a burn-in of length 25 000, a total sample number (including burn-in) of
125 000, one chain which we thin to every fifth sample, we initialize all parameters
to zero, and use adapt delta equal to 0.95. We use default values for the rest of
the settings. For the leave-one-out log predictive score (LOO-LPS), we use 1000
simulations for warm-up and 2000 samples in total, which yields a low estimated
variance of the LOO-LPS. The simulation study ran on a computer cluster and
takes no more than a couple of days, depending on the activity on the cluster.
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(a) Multi-split structure.
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(b) Dual-split structure, original order (Order1)
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(c) Dual-split structure, permuted order (Order2)
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(d) Dual-split structure, permuted order (Order3)

Figure S4.1: Two of the possible orderings for turning the triple split into a dual
split. a) The multi-split structure of the HD prior, b) the original order used in
simulation study in paper (Order1), c) one permuted order (Order2), and d) the
other permuted order (Order2)
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Figure S4.2: The true treatment effect for the simulated datasets in the latin
square simulation study.

S4.2 Results

We have investigated the properties of the HD prior when the principles of the
framework are tweaked. What we investigate is varying values of the median ωm

of the prior on the weight indicating the proportion of treatment variance going
to the structured effect, varying distributions on the distance in the original PC
prior framework, varying the value of λ for the multi-split, varying the type and
ordering of the multi-split (see Figure S4.1), and we also study a joint prior where
we use a Dirichlet prior on all effects except the residuals, and on all five effects.
We compare the HD prior to the following default priors, where all have Jeffreys’
prior on the residual variance and the following priors on the remaining variances
or standard deviations: InvGamma(1, 5× 10−5) (P-INLA), Half-Cauchy(25) (P-
HC), and PCSD(3, 0.05) (P-PC).

For each scenario, we have removed the datasets that lead to more than 0.1%
divergent transitions for at least one of the priors, so all the results for a given
scenario are based on the same datasets for all priors. We use the proportion
of datasets leading to at most 0.1% divergent transitions during the inference as
a measure of stability, for each prior and scenario. Figure S4.5 displays these
proportions for the latin square simulation study, and we see that it is not a
big difference between P-INLA, P-HC, P-PC, and P-HD-25. However, when we
lower the value of the shape parameter in the distribution we use on the distance
(tweaking the third principle of the PC prior), the number of divergent transitions
occurring during the inference increases, which indicates a more difficult posterior
to draw samples from. When we change the values of ωm, λ, or the way we
implement the triple split (see Figure S4.1) the stability of the inference does not
suffer.

Figures S4.6-S4.11 show all results from the latin square simulation study.
The box-plots include the median, the first and third quartile, 1.5 times the
inter-quartile range (distance between first and third quartile), and outliers, if
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Figure S4.3: Comparison of priors on distribution of total latent variance to row
effect, column effect and treatement effect for the original order Order1 and the
permuted order Order2. The distributions of the weights to the left, and of the
logit weights on the right.
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Figure S4.4: Comparison of priors on distribution of total latent variance to row
effect, column effect and treatement effect for the original order Order1 and a
Dirichlet prior on the triple split. The distributions of the weights to the left,
and of the logit weights on the right.
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any. The six graphs all show the continuous rank probability score (CRPS) of
the structured treatment effect γ(1) and the leave-one-out log predictive score
(LOO-LPS). In each plot, we have removed the datasets leading to too many
(i.e., more than 0.1%) divergent transitions in the inference for at least one of
the three priors displayed. The order of the priors is the same in the legend and
for each scenario in all plots, so P-INLA is the leftmost, so comes P-HC and so
on.

Figure S4.6 shows the results that are also displayed in the main paper: P-
INLA gives a lower LOO-LPS, i.e. a poorer model fit, than the other priors.
The CRPS is lowest for the HD prior with either triple split implementation for
scenarios S2 and S3. Figure S4.7 shows results for varying values of the median ωm

for the prior for selecting between γ(1) and γ(2) has little effect on the results, and
we see that a lower value of the median is slightly better when the true treatment
effect is weak, and a higher value is slightly better when the true treatment effect
is strong. The difference is however small. Figure S4.8 shows the results when we
change the distribution we use on the distance between γ(1) and γ(2). Changing
the exponential prior on the distance between γ(1) and γ(2) to a gamma prior
with shape parameter 0.5 or 0.25, which has a stronger peak at 0, improves
results for S1 (see Figure S4.8), but induces more instability in the inference
(Figure S4.5). The results are also stable to changes in the hyperparameter for
the two dual-splits (Figure S4.9) and changes in the way that the triple-split is
implemented; either decomposed into dual-splits in different ways (Figure S4.10)
or using a Dirichlet distribution (Figure S4.11).

We have compared the HD prior with a Dirichlet prior on the triple split
(P-HD-D3) to HD priors with a Dirichlet prior on a quadruple split between α,
β, γ(1) and γ(2) (P-HD-D4) and between all five effects (P-HD-D5). The two
latter perform worse than P-HD-D3 when the treatment effect has no structured
contribution, scenario S1, in terms of CRPS (Figure S4.11). Using P-HD-D4
and P-HD-D5 we lose the shrinkage properties between the unstructured and
structured treatment effect, so we expect them to perform worse for S1. For S2
and S3 they perform slightly better. The LOO-LPS is not affected noticeably by
the implementation of the triple split.
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Figure S4.5: The proportion of datasets for each scenario and prior leading to at
most 0.1% divergent transitions during the inference in the latin square experi-
ment simulation study. We say that the stability is 1.0 if all datasets for a given
prior and scenario lead to no more than 0.1% divergent transitions. No number
means that the stability is 1.0. The bottom four priors are the main focus of the
study, the top three are the Dirichlet priors, while the middle eight are the HD
prior with varying values of ωm, amount of shrinkage, varying values of λ, and
varying ordering of the implementation of the triple split. The notation for the
HD prior is P-latin(ωm, shape parameter, λ, order number/type).
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Figure S4.6: Results from the latin square simulation study.

Figure S4.7: Results from the latin square simulation study when varying the
position of the median ωm in the PC prior on the distance between γ(1) and γ(2).
ωm = 0.25 gives P-HD-25.
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Figure S4.8: Results from the latin square simulation study when varying the
shape parameter in the distribution on the distance in the PC prior for the split
between unstructured and structured treatment effect. Shape parameter 1 gives
the exponential distribution, which gives P-HD-25.
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Figure S4.9: Results from the latin square simulation study when varying the
value of λ in the PC prior for the multi split. λ = 1 gives P-HD-25.

Figure S4.10: Results from the latin square simulation study when varying order
of the implementation of the triple split in the PC prior. Order1 gives P-HD-25.
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Figure S4.11: Results from the latin square simulation study for the Dirichlet
prior. P-HD-D3 has a Dirichlet prior on the split between the row, column and
treatment effects, P-HD-D4 has a Dirichlet prior between all effects except the
residuals, and P-HD-D5 has a Dirichlet prior on all five random effects (including
the residuals). The other weights has PC priors as in P-HD-25.
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S4.3 Example

We provide a script for R that can be used to simulate data and fit the latin
square model. The script is available as part of the Supplementary Materials.
This script can be used to look at differences between the priors and the resulting
posteriors.

The following priors from the simulation study can be chosen:

1. INLA default (P-INLA)

2. Half-Cauchy (P-HC)

3. Component-wise PC priors (P-PC)

4. HD prior with PC priors on all splits (for example, P-HD-25). Here you
can choose to change

• the median ωm for the proportion of treatment variance going to the
structured effect [0.25 is default],

• the shape parameter for the gamma distribution on the distance be-
tween the unstructured and structured treatment effect [1 is default],

• A scaling factor for the value of λ used in the multi-splits [1 is default],

• the ordering of the triple split [1 is default, 2 and 3 are the other
orderings].

5. HD prior with a combination of PC and Dirichlet priors (for example, P-
HD-D3). Here you can choose to change

• the number of effects involved in the Dirichlet prior in the HD prior
[3 is default, 4 and 5 are the other options].

After the prior has been chosen, the scenario can be selected: scenario S1
(no treatment effect), S2 (medium treatment effect) or S3 (strong treatment
effect). See Section S4.1 for details. A dataset of the same size as the ones in the
simulation study is simulated, and the dataset can be reproduced using a seed
value.

Rstan is used for the inference, and you can choose between the following
number of samples: "low" (250 (warmup) + 1000, only for testing, this will not
give enough samples), "medium" (2500 (warmup) + 10000) or "high" (25000
(warmup) + 100000, this is used in the simulation study in the paper).

The sampler can be run without the likelihood to sample from the prior. A
plot of the prior on total weight (the amount of the total variance) for each of the
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five effects in the model is available. The prior on total variance and the separate
variances for the effects are not shown as they do not have proper priors under
the scale-invariant HD priors or Jeffreys’ prior on the residual variance.

For the posterior, the following scores and plots are provided:

• The number of divergent transitions that occurred during the inference (see
e.g. Section S3.1).

• The posterior total weights for the five model effects and the posterior total
variance.

• The posterior standard deviations for the five model effects.

• The posterior mean of the structured treatment effect, with standard devi-
ations, compared to the true effect.

• The average CRPS of the structured treatment effect, see Section 5.2 in the
main article for details.

• The LOO-LPS (see Section 5.2 in the main article for details), with cor-
responding variance of the estimate, and the number of the 81 inferences
with more than 1% divergent transitions.
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S5 Binomial responses

We include additional background and results from the Kenyan neonatal mor-
tality simulation study and real application presented in Section 6 in the main
article.

S5.1 Additional background

The DHS survey from 2014 is stratified by county and urban/rural and has two
levels of clustering. Since the counties Nairobi and Mombasa are fully urban,
there are in total 92 strata. The households were selected within each stratum
through a two-stage clustered sampling design. Kenya was divided into 96251
enumeration areas (EAs) based on the 2009 national census, and the first stage
of the sampling design consists of sampling clusters from the list of EAs in the
stratum and the second stage consists of sampling households within the selected
clusters. Within the selected households all women aged 15–49 who spent the
last night in the household are interviewed.

In Section 6.2 in the main paper, we simulate from a model consisting of
spatially structured and unstructured random effects and an i.i.d. effect of clus-
ter. Further, preliminary investigations showed that the design with 47 counties
provides little information about how the variance should be distributed between
the structured and the unstructured spatial effect. Therefore, we use the 290
constituencies of Kenya with 6 clusters per constituency to replicate the size of
the survey, but provide a spatial design where the data is more informative about
the relative sizes of the unstructured and structured spatial effects. In Section 6.3
in the main paper we analyse the original data on the county-level and include
a random effect of household. The key focus of the application is to display how
to use and select the new prior, and how the interpretability and transparency
of the prior is helpful for assessing and criticising the results.

S5.2 Simulation study

We use the following input values to the function stan for the simulation study
with neonatal mortality in Kenya: 25 000 samples for burn-in, in total 75 000
samples, one chain thinned to every fifth sample, all parameters initialized to
zero, adapt delta equal to 0.95, and default settings for all other input values.
The simulation study ran on a computer cluster and takes less than a week,
depending on the activity on the cluster.
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We include additional results from the Kenya neonatal mortality simulation
study. Figure S5.1 shows the proportion of datasets leading to no more than
0.1% divergent transitions during the inference. P-INLA is the only prior which
leads to a large number of datasets giving divergent transitions, and mainly in
scenario S3, the other three priors give stable inference for all scenarios. Figure
S5.2 shows the bias and coverage of µ, the the bias of ω(1) and ω(2) and the
CRPS of u, for the five priors we have used in the simulation study. It is only
for scenario S3, when the Dirichlet prior is closest to the truth, that P-HD-D is
performing better than P-HD-25, in the other scenarios it is doing worse.

Figure S5.2 shows that P-INLA gives way too low coverage for µ, while the
other priors leads to a better and similar coverage. For scenarios S2-S5 the true
value of the weight is 0.2, P-INLA is for most datasets estimating ω(1) to be 0,
giving a bias of -0.2. The other four priors are all slightly underestimating the
weight in S2-S5. P-HD-D is as good as (only scenario S3) or worse than P-HD-25.
In scenario S1, the true weight is equal to 1 while the base model is 0, and all
priors are underestimating the weight. P-INLA is doing worst with a bias around
-0.75 for most datasets, while P-HD-25 is doing a bit better with a bias of around
-0.5, and P-HC and P-PC are also underestimating the weight. This may be an
indication that we get the prior back, and that the likelihood does not contribute
much in the inference.

Figure S5.1: The proportion of datasets for each scenario and prior leading to at
most 0.1% divergent transitions during the inference in the neonatal mortality in
Kenya simulation study. We say that the stability is 1.0 if all datasets for a given
prior and scenario lead to no more than 0.1% divergent transitions. No number
means that the stability is 1.0.
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Figure S5.2: Upper left: bias of the intercept µ, upper right: the coverage of µ,
mid left: the bias of ω(1), mid right: the bias of ω(2), and lower left: CRPS of
u. Scenario is indicated at the x-axes. The order of the priors is the same in the
legend and for each scenario, so P-INLA is the leftmost, then comes P-HC and so
on. The biases are calculated using the estimated median minus the true value,
and the coverage is found by counting the number of times the true value lies in
the 80% credible interval.
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S5.3 Application

The prior and posterior of the total standard deviation from the Kenya neonatal
mortality dataset analysis can be seen in Figure S5.3.

Figure S5.3: The prior and posterior of the total standard deviation σT from the
analysis of the neonatal mortality in Kenya dataset.

The prior and posterior distributions of the total weight of the unstructured
random effects v (unstructured county effect), ν (unstructured cluster effect) and
ε (unstructured household effect) can be seen in Figure S5.4. The total weight
is ω(1) for ε, ω(2)(1 − ω(1)) for ν, and (1 − ω(3))(1 − ω(2))(1 − ω(1)) for v. The
medians of these three are 0.955, 0.014 and 0.011, respectively. It is clear that
the household effect ε explains most of the variance, the cluster effect ν explains
some, and the unstructured county effect v explains the least of the three.

Figure S5.5 shows how far a value of 0 is from the posterior median of u
expressed by the posterior tail probability of getting 0 or further away from the
median. We see that for many counties the posterior median of u is close to 0 as
expressed by the value 0.5 in the figure, and 0 is at the most barely outside the
interquartile range as expressed by a value of 0.25.
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Figure S5.4: The priors and posteriors of the proportion of the total latent vari-
ance assigned to the household effect, the cluster effect, and the unstructured
spatial effect.



Supplementary materials: Intuitive joint priors for variance parameters 111

Figure S5.5: The significance of the spatial effect u visualized through the tail
probabilities Prob(ui > 0) for the counties where the median of u is smaller than
0, and Prob(ui < 0) for the counties where the median of u is larger than 0.
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Abstract

We propose a novel Bayesian approach that robustifies genomic modeling
by leveraging expert knowledge through prior distributions. The central
component is the hierarchical decomposition of phenotypic variation into
additive and nonadditive genetic variation, which leads to an intuitive
model parameterization that can be visualised as a tree. The edges of
the tree represent ratios of variances, for example broad-sense heritability,
which are quantities for which expert knowledge is natural to exist. Pe-
nalized complexity priors are defined for all edges of the tree in a bottom-
up procedure that respects the model structure and incorporates expert
knowledge through all levels. We investigate models with different sources
of variation and compare the performance of different priors implement-
ing varying amounts of expert knowledge in the context of plant breeding.
A simulation study shows that the proposed priors implementing expert
knowledge improve the robustness of genomic modeling and the selection
of the genetically best individuals in a breeding program. We observe this
improvement in both variety selection on genetic values and parent selec-
tion on additive values; the variety selection benefited the most. In a real
case study expert knowledge increases phenotype prediction accuracy for
cases in which the standard maximum likelihood approach did not find
optimal estimates for the variance components. Finally, we discuss the im-
portance of expert knowledge priors for genomic modeling and breeding,
and point to future research areas of easy-to-use and parsimonious priors
in genomic modeling.

Keywords: Bayesian analysis, expert knowledge, genomic selection, hi-
erarchical variance decomposition, nonadditive genetic variation.
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1 Introduction

Plant breeding programs are improving productivity of a range of crops and with
this addressing the global and rising hunger problem that impacts 820 million
people across the world (FAO et al., 2019). One of the most important food
sources in the world is wheat (Shewry and Hey, 2015), however, recent improve-
ments in wheat yield are smaller than the projected requirements (Ray et al.,
2013) and might become more variable or even decrease due to climate change
(Asseng et al., 2015). This trend is in stark contrast to the United Nation’s Sus-
tainable Development Goals that aim to end hunger and malnutrition by 2030
(General Assemby of the United Nations, 2015). Breeding has contributed sig-
nificantly to the improvement of wheat yields in the past (e.g., Mackay et al.,
2011; Rife et al., 2019), and the recent adoption of genomic selection could en-
able further significant improvements (Gaynor et al., 2017; Belamkar et al., 2018;
Sweeney et al., 2019).

Breeding programs generate and evaluate new genotypes with the aim to
improve key characteristics such as plant height, disease resistance and yield.
Nowadays, a key component in breeding is genomic modeling, where we aim to
reduce environmental noise in phenotypic observations and associate the remain-
ing variation with variation in individual genomes. We use these associations
to estimate genetic values for phenotyped or even non-phenotyped individuals
and with this identify the genetically best individuals (Meuwissen et al., 2001).
Improving this process involves improving the methods for disentangling genetic
variation from environmental variation.

Genetic variation can be decomposed into additive and nonadditive compo-
nents (Fisher, 1918; Falconer and Mackay, 1996; Lynch et al., 1998; Mäki-Tanila
and Hill, 2014). Additive variation is defined as variation of additive values,
which are sums of allele substitution effects over the unobserved genotypes of
causal loci. Statistically, the allele substitution effects are coefficients of multiple
linear regression of phenotypic values on causal genotypes coded in an additive
manner. Nonadditive variation is defined as the remaining genetic variation not
captured by the additive values. It is commonly partitioned into dominance
and epistasis values. Dominance values capture deviations from additive val-
ues at individual loci. Epistasis values capture deviations from additive and
dominance values at combinations of loci. Statistically, dominance and epistasis
values capture deviations due to allele interactions at individual loci and com-
binations of loci, respectively. Modeling interactions between two loci at a time
gives additive-by-additive, additive-by-dominance and dominance-by-dominance
epistasis. Modeling interactions between a larger number of loci increases the
number of interactions.



Robust modeling of genetic variation 117

Estimates of genetic values and their additive and nonadditive components
have different applications in breeding (Acquaah, 2009). Breeders use estimates
of additive values to identify parents of the next generation, because additive
values indicate the expected change in mean genetic value in the next generation
under the assumption that allele frequencies will not change. Breeders use esti-
mates of genetic values to identify individuals for commercial production, because
genetic values indicate the expected phenotypic value. Estimates of genetic val-
ues are particularly valuable in plant breeding where individual genotypes can be
effectively cloned. While genomic modeling currently focuses on additive values
(Meuwissen et al., 2001; Varona et al., 2018), the literature on modeling nonad-
ditive variation is growing (Oakey et al., 2006; Wittenburg et al., 2011; Muñoz
et al., 2014; Bouvet et al., 2016; Martini et al., 2017; Vitezica et al., 2017; Varona
et al., 2018; de Almeida Filho et al., 2019; Santantonio et al., 2019; Tolhurst
et al., 2019; Martini et al., 2020). Notably, modeling nonadditive variation has
been shown to improve the estimation of additive values in certain cases (Varona
et al., 2018).

However, modeling nonadditive variation is challenging because it is diffi-
cult to separate nonadditive variation from additive and environmental variation
even when large datasets are available (e.g., Misztal, 1997; Zhu et al., 2015; de los
Campos et al., 2019). Further, pervasive linkage and linkage disequilibrium are
challenging the decomposition of genetic variance into its components (Gianola
et al., 2013; Morota et al., 2014; Morota and Gianola, 2014). This suggests that
genomic modeling needs robust methods that do not estimate spurious nonaddi-
tive values and whose inference is stable for all sample sizes.

One way to handle partially confounded sources of variation is to take advan-
tage of expert knowledge on their absolute or relative sizes. Information about
the relative magnitude of the sources of phenotypic variation has been collated
since the seminal work of Fisher (1918). The magnitude of genetic variation for a
range of traits is well known (e.g., Houle, 1992; Falconer and Mackay, 1996; Lynch
et al., 1998). Data and theory indicate that the majority of genetic variation is
captured by additive values (Hill et al., 2008; Mäki-Tanila and Hill, 2014), while
the magnitude of variation in dominance and epistasis values varies considerably
due to a range of factors. For example, there is no dominance variation between
inbred individuals by definition. Further, model specification has a strong effect
on the resulting estimates (e.g., Huang and Mackay, 2016; Martini et al., 2017;
Vitezica et al., 2017; Martini et al., 2020). With common model specifications,
additive values capture most of the genetic variation because they capture the
main effects (in the statistical sense), while dominance and epistasis values cap-
ture interaction deviations from the main effects (Hill et al., 2008; Mäki-Tanila
and Hill, 2014; Hill and Mäki-Tanila, 2015; Huang and Mackay, 2016). This ex-
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pert knowledge does not need to come directly from the literature, it can also be
formed based on internal estimates for a similar population in the past, or be a
combination of both.

In a Bayesian setting we can take advantage of such expert knowledge through
prior distributions; see Gianola and Fernando (1986); Sorensen and Gianola
(2007) for an introduction to Bayesian methods in animal breeding and quan-
titative genetics, respectively. Prior distributions reflect beliefs and uncertainties
about unknown quantities of a model and should be elicited from an expert in
the field of interest (O’Hagan et al., 2006; Farrow, 2013). Intuitively, prior distri-
butions allow expert knowledge to act as additional observations, and make the
current analysis more robust by borrowing strength from past analyses. Priors
can improve weak identifiability of the sources of variation by guiding inference
towards expert knowledge when the information in the sample is low. However,
quantification of the effective number of samples added by a prior is only available
in specific situations (Morita et al., 2008).

We propose an easy-to-use, intuitive, and robust Bayesian approach that
builds on two recent innovations in Bayesian statistics: 1) the hierarchical de-
composition prior framework (Fuglstad et al., 2020) to provide an hierarchical
description of the decomposition of phenotypic variation into different types of
variation, and 2) the penalized complexity prior framework (Simpson et al., 2017)
to facilitate robust genomic modeling. The key ideas of the approach are that (i)
visualization eases model specification and communication about the model (see
Figure 1), (ii) hierarchical decomposition of variation makes it easy to incorporate
expert knowledge on e.g. heritability, (iii) leveraging expert knowledge provides
robust methods, and (iv) comparison of posterior distributions and prior distri-
butions reveal the amount of information the data provided on the decomposition
of variation.

The aim of this paper is to demonstrate the new approach and to evaluate
the potential impact of using the approach along with expert knowledge in plant
breeding. We first describe the genomic model and how to incorporate the ex-
pert knowledge in this model. To test the proposed approach, we first use a
simulated wheat breeding program and evaluate inference stability, estimation of
genetic values and variance components with different priors and with the stan-
dard maximum likelihood estimation. We also investigate the impact of dataset
size. Then we apply the approach to a publicly available wheat yield dataset with
1,739 individuals from 11 different trials in 6 locations in Germany with vary-
ing amounts of observed phenotypes from Gowda et al. (2014) and Zhao et al.
(2015). We use cross-validation to assess the accuracy of phenotype prediction
when using the proposed priors in the model. A description of the simulated
and real wheat breeding case studies, model fitting and analysis follows. Our key
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focus is to demonstrate how an analyst can take advantage of expert knowledge
from literature or domain experts to enable robust genomic modeling of additive
and nonadditive variation. This focus involves specifying and visualizing the ex-
pert knowledge in an intuitive way. We then present the results and discuss the
relevance of our work.

2 Materials and Methods

2.1 Genomic model

We model observed phenotypic values of n individuals y = (y1, . . . , yn) with the
aim to estimate their genetic values and their additive and nonadditive compo-
nents. To this end we use the genomic information about the individuals con-
tained in the observed single nucleotide polymorphism (SNP) matrix Z, where
row i contains SNP marker genotypes for individual i coded additively with 0, 1, 2.
We let Za be the column-centered Z where we have removed markers with low
minor allele frequency, and let Zd be the column-centered matrix obtained from
Z after setting heterozygote genotypes to 1 and homozygote genotypes to 0.

We model the phenotypic observation yi of individual i as

yi = µ+ gi + ei, i = 1, . . . , n, (1)

where µ is an intercept, gi is the genetic value and ei the environmental residual
for individual i. We model the environmental residual as an independently and
identically distributed Gaussian random variable, e = (e1, . . . , en) ∼ N (0, σ2

eIn),
where σ2

e is the environmental variance and In is the n× n identity matrix. The
intercept is typically well-identified from the data, and we specify the nearly
translation-invariant prior µ ∼ N (0, 1000).

We consider the simple additive model with gi = ai (Model A), and non-
additive extension with dominance gi = ai + di (Model AD), and epistasis
gi = ai + di + xi (Model ADX ). Here, a = (a1, . . . , an), d = (d1, . . . , dn) and
x = (x1, . . . , xn) respectively denote vectors of the additive, the dominance and
the epistasis values for the individuals. Figure 1 shows the model structure for all
three models, where every added component extends the model tree by one level.
Moving from the root downwards, Model A is defined by the first split. Here only
the additive value represents the genetic value. Model AD is defined by the first
two splits, and as such has one level more. The genetic value splits into additive
and nonadditive values, where only the dominance value represents the nonaddi-
tive value. Model ADX is defined by the complete tree and the nonadditive value
consists of both dominance and epistasis values.
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We model the genetic values as a ∼ N (0, σ2
aA), d ∼ N (0, σ2

dD) and x ∼
N (0, σ2

xX), where σ2
a , σ2

d and σ2
x are the additive, dominance and epistasis

variances, respectively. We specify the covariance matrices as A = ZaZ
T
a /Sa,

D = ZdZ
T
d /Sd and X = A �A/Sx (we consider only additive-by-additive epis-

tatis), where � is the Hadamard product (Henderson, 1985; Horn, 1990; Gi-
anola and de los Campos, 2008; Vitezica et al., 2017). To incorporate our expert
knowledge in a unified way, we scale the covariance matrices with Sa, Sd, and
Sx according to Sørbye and Rue (2018). The idea of such scaling is not new,
see Legarra (2016), Vitezica et al. (2017) and Fuglstad et al. (2020) for details.
Finally, the phenotypic variance is σ2

P = σ2
g + σ2

e = σ2
a + σ2

d + σ2
x + σ2

e .

2.2 Expert knowledge about variance components

As highlighted in the introduction, there is prior information about the relative
magnitude of the genetic and environmental variation and the relative magnitude
of the additive, dominance and epistasis variation that can guide the construction
of prior distributions. We specify this expert knowledge (EK) in a hierarchical
manner:

EK-pheno
informs on the split of phenotypic variation into genetic and enviromental
variation. The proportion of genetic to phenotypic variation is denoted as

R g
g+e

=
σ2
g

σ2
p
= h2

g, where h2
g is the broad-sense heritability.

EK-genetic
informs on the split of genetic variation into additive and nonadditive
variation. The proportion of additive to genetic variation is denoted as

R a
g
=

σ2
a

σ2
g
=

h2
a

h2
g
, where h2

a is the narrow-sense heritability.

EK-nonadd
informs on the split of nonadditive variation into dominance and epistasis
variation. The proportion of dominance to nonadditive variation is denoted

as R d
d+x

=
σ2
d

σ2
g−σ2

a
=

h2
d

h2
g−h2

a
, where h2

d is the proportion of dominance to

phenotypic variation.

Figure 1 illustrates where the respective expert knowledge in the form of
relative magnitudes R∗ applies. Of note, for Model A only EK-pheno is used,
and EK-genetic is one (R a

g
= 1) as nonadditive effects are not considered in

this model. Similarly, for Model AD only EK-pheno and EK-genetic are used as
EK-nonadd is one (R d

d+x
= 1).
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Figure 1: Tree structure visualizing the three possible model formulations A, AD
and ADX. Edge labels illustrate where expert knowledge applies, namely on the
relative magnitude of the genetic and environmental variation and the relative
magnitude of the additive, dominance and epistasis variation.
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Values for the relative magnitudes R∗ will vary between study systems and
traits in line with the expert knowledge. In this study our knowledge is based on
the cited literature in the introduction and practical experience with the analysis
of a range of datasets. We follow the fact that many complex traits in agriculture
are under sizeable environmental effect and that additive effects capture most
genetic variation by standard quantitative model construction. With this in
mind we assume EK-pheno to be R g

g+e
= 0.25, EK-genetic to be R a

g
= 0.85

and EK-nonadd to be R d
d+x

= 0.67. This implies R d
g
= 0.15 · 0.67 ≈ 0.10 and

R x
g
= 0.15 · 0.33 ≈ 0.05. We emphasize that we use this information to construct

prior distributions, i.e., these relative magnitudes are only taken as a guide and
not as the exact magnitude of variance components. Fuglstad et al. (2020) show
that the prior for the first partition, the broad-sense heritability h2

g, is not very
influential.

We present two approaches for constructing a prior based on EK-pheno, EK-
genetic and EK-nonadd: 1) a component-wise (comp) prior, that is placed in-
dependently on each variance parameter; and 2) a tree-based (tree) model-wise
prior, that is defined jointly for all variance parameters. Both approaches are
motivated by the concept of penalized complexity priors (Simpson et al., 2017).

2.3 Penalized complexity priors

A penalized complexity (PC) prior for a parameter θ is typically controlled by:
1) a preferred parameter value θ0 which is intuitive or leads to a simpler model;
and 2) an idea on how strongly we believe in θ0. The PC prior shrinks towards
θ0, unless the the data indicate otherwise. This is achieved by constructing the
prior based on a set of well-defined principles, for details we refer to Simpson
et al. (2017). PC priors can be applied to a standard deviation or variance, a
proportion of variances, or other parameters such as correlations (Guo et al.,
2017).

The PC prior for a standard deviation (σ) of a random effect will shrink the
standard deviation towards zero, that is, towards a simpler model without the
corresponding random effect (assuming the prior mean of the effect is zero). This
prior is denoted as σ ∼ PC0(

√
V , α) and results in an exponential distribution

with rate parameter − ln(α)/
√
V . The subscript 0 in PC0(·) indicates that the

prior shrinks towards σ = 0. To define the prior the analyst has to specify an
upper value

√
V and a tail probability α such that the upper-tail probability

P(σ >
√
V ) = α. Here, we use α = 0.25 so the prior distribution is weakly-

informative towards
√
V , but shrinks to zero unless the data informs otherwise.

For a variance proportion p ∈ [0, 1] we denote the PC prior as p ∼ PC0(R).
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The numerical value R ∈ [0, 1] encodes the available expert knowledge about
the proportion and is set as the median of the prior, i.e. P(p > R) = 0.5. The
subscript 0 indicates that the prior shrinks towards p = 0. Shrinkage towards
the median is achieved by the PC prior p ∼ PCM(R), where R has the same
interpretation as for PC0(R). For PCM(R), we need to specify how concentrated
the distribution is on logit-scale in the interval [logit(R)− 1, logit(R)+ 1] around
the median (see Fuglstad et al. (2020) for details). We allocated 75% probability
to this interval.

The PC prior for a variance proportion depends on the structure of the two
random components that are involved through their covariance matrices. We omit
this in the notation for simplicity, and to emphasize that we chose to make the
marginal priors on the proportions independent of each other. As the PC prior on
proportions depends on the covariance matrix structure, it is application specific,
and the priors do not correspond to common families of distributions such as the
exponential or normal distributions (see Riebler et al. (2016); Fuglstad et al.
(2020) for more details).

2.4 Component-wise prior

In the component-wise setting we use a PC prior for each standard deviation
parameter σ∗. The PC prior on σ∗ requires an upper value

√
V∗, so in addition

to the relative magnitudes specified through EK-pheno, EK-genetic and EK-
nonadd we need information on the magnitude of the phenotypic variance to set
up the component-wise priors. For this purpose we could calculate the empirical
phenotypic variance VP from a separate dataset, which is a trial study or a study
believed to exhibit similar phenotypic variance as the study at hand. From this
we can define the upper values for the individual PC priors. For example, to

formulate priors for Model A we use EK-pheno to find σa ∼ PC0

(√
h2
gVP, 0.25

)

and σe ∼ PC0

(√
(1− h2

g)VP, 0.25
)
. For Model AD we need EK-pheno and EK-

genetic to formulate the priors, and for Model ADX, the most complex model,
we take into account all available expert knowledge.

We follow the tree-structure shown in Figure 1 downwards to define the upper
values, and multiply the relative magnitudes on the edges leading to the respective
leaf nodes. For Model ADX this leads us to:

• σe ∼ PC0

(√
(1− h2

g)VP, 0.25
)
,

• σa ∼ PC0

(√
h2
aVP, 0.25

)
,
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• σd ∼ PC0

(√
h2
dVP, 0.25

)
, and

• σx ∼ PC0

(√
(h2

g − h2
a − h2

d)VP, 0.25
)
.

Combining the available expert knowledge procedure with the three different
genomic models gave us settings we denote as A-comp*, AD-comp* and ADX-
comp*. We have contrasted these settings with a default component-wise PC
prior proposed by Simpson et al. (2017) with

√
V = 0.968 and α = 0.01 on

all variance parameters, which gave us settings denoted as A-comp, AD-comp
and ADX-comp. This default prior is a prior without any expert knowledge.
Preliminary analyses showed that the inferences for AD-comp, AD-comp*, ADX-
comp and ADX-comp* are not stable, i.e. the methods are not robust in the sense
that they did not avoid estimating spurious nonadditive effects, and we do not
present results from these settings. The priors for A-comp* and A-comp are
plotted in Figure S1 in File S1 in the Supplemental materials. using h2

g = 0.25
and VP = 1. If VP takes another value, we simply rescale the x- and y-axes;
the shape of the prior stays the same. In the simulated case study, we will use
VP = 1.86. The priors are equal on all standard deviations for A-comp, AD-
comp and ADX-comp. The priors for AD-comp* and ADX-comp* can be seen
in Figures S2 and S3 in File S1. See Note S1 in File S1 for a detailed description
of the component-wise prior and posterior distributions for Model A and Model
AD.

2.5 Tree-based model-wise prior

In the model-wise setting, we shift the focus in Figure 1 from the leaf nodes to the
splits. In other words, a shift from the component-wise perspective of variances
associated with different sources of variation to a model-wise perspective of how
these variances arise as a hierarchical decomposition of the phenotypic variance.
This provides a complementary way to construct priors where EK-pheno, EK-
genetic and EK-nonadd are directly incorporated at the appropriate levels in
the tree structure. We achieve this by applying the hierarchical decomposition
(HD) prior framework of Fuglstad et al. (2020). We focus the presentation on
the essential ideas for understanding and successfully applying the priors, and
provide the comprehensive and mathematical description in Note S1 in File S1.
We emphasize that in the following p∗ denotes an actual variance proportion that
we will infer (along with variances), while R∗ denotes expert knowledge for this
proportion.

We first assign a marginal prior for the decomposition of variances in the
lowest split, and then move step-wise up the tree assigning a prior to the de-
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composition of variance in each split conditional on the splits below it. The
bottom-up process ends with the assignment of a prior to the root split, and
the result is a joint prior for the decomposition of phenotypic variance into the
different sources of variance. In the final step, we assign a prior for phenotypic
variance σ2

P that is conditionally independent of the prior on the decomposition
of the phenotypic variance.

We follow Fuglstad et al. (2020) and simplify the prior at each split by con-
ditioning on expert knowledge from the lower splits. For example, the prior for
p a

g
is constructed under the assumption that p d

d+x
= R d

d+x
; that is, π(p a

g
|p d

d+x
)

is replaced with π(p a
g
|p d

d+x
= R d

d+x
). Note that even though we construct the

prior from the bottom and up, the arrows in the tree indicate how the pheno-
typic variance is distributed in the model from the top down. This means that
the amount of, for example, dominance variance σ2

d depends on the variance par-
titions further up, since σ2

d = σ2
Pp g

g+e
(1 − p a

g
)p d

d+x
following the tree structure

(Figure 1).

In this study, we assumed that at the lower levels the model shrinks towards
the expert knowledge EK-nonadd and EK-genetic by using PCM(·) priors. Fur-
ther, at the top level we use a PC0(·) prior to shrink towards the environmental
effect unless the data indicates otherwise to reduce overfitting. Note that we could
have chosen different assumptions. To obtain a prior fulfilling our assumptions,
we follow four steps:

1. we use a PCM(·) prior for the proportion of dominance to nonadditive

variance with median R d
d+x

=
h2
d

h2
g−h2

a
(EK-nonadd),

2. we use a PCM(·) prior for the proportion of additive to genetic variance

with median R a
g
=

h2
a

h2
g
(EK-genetic),

3. we use a PC0(·) prior for the proportion of genetic to phenotypic variance
with median R g

g+e
= h2

g (EK-pheno), and

4. we achieve scale-independence through the non-informative, scale-invariant
Jeffreys’ prior for the phenotypic variance σ2

P ∼ 1/σ2
P.

This construction gives the joint prior

π(σ2
P, p g

g+e
, p a

g
, p d

d+x
) = π(σ2

P)π(p g
g+e

)π(p a
g
)π(p d

d+x
)

for Model ADX, where the conditioning on expert knowledge from lower splits
is omitted to simplify notation. We denote this setting as ADX-tree* and show
this prior in Figure 2 for R g

g+e
= 0.25, R a

g
= 0.85 and R d

d+x
= 0.67. Note that

the model-wise priors with expert knowledge are dependent on the covariance
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Figure 2: The HD prior used in the ADX-tree*a setting with the proportion of ge-
netic to phenotypic variance p g

g+e
, additive to genetic variance p a

g
and dominance

to nonadditive variance p d
d+x

. We use R g
g+e

= 0.25, R a
g
= 0.85, and R d

d+x
= 0.67.

This is a dataset specific prior.

aAdditive and nonadditive model with model-wise expert knowledge prior.

matrices of the modelled effects and are therefore dataset specific (Fuglstad et al.,
2020), and the plots of these priors thus pertain to one specific dataset. The
spike at p = 1 for p g

g+e
in Figure 2 is an artifact of the parameterization chosen

for visualization and does not induce overfitting; see Fuglstad et al. (2020) for
details. See Note S1 in File S1 for a detailed description of the model-wise prior
and posterior distributions for Model A and Model AD.

We explored the influence of alternative expert knowledge. In addition to
the previously stated values for EK-pheno, EK-genetic and EK-nonadd we also
tested R g

g+e
= 0.25, R a

g
= 0.05, and R d

d+x
≈ 0.11 (so R d

g
≈ 0.95 · 0.11 ≈ 0.10

and R x
g
≈ 0.95 · 0.89 ≈ 0.85). The constructions follows the description above

but with these relative magnitudes instead. We denote this setting as ADX-tree-
opp*, as it expresses almost opposite or ”wrong” beliefs compared to ADX-tree*
setting, and show the prior in Figure S4 in File S1 in the Supplemental materials.

For Model AD the nonadditive effect only consists of dominance, and the
variance is attributed to the different effects as visualized by the top and middle
split in Figure 1. We construct a prior using EK-pheno and EK-genetic with
R g

g+e
= 0.25 and R a

g
= 0.85 and denote this setting AD-tree*. The prior is

shown in Figure 3.

For Model A the genetic variance is not decomposed to different sources and
the distribution of the phenotypic variance can be visualized using the top split
in Figure 1. We use EK-pheno with R g

g+e
= 0.25 to construct a prior for the
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Figure 3: The HD prior used in the AD-tree*a setting with the proportion of
genetic to phenotypic variance p g

g+e
and additive to genetic variance p a

g
. We use

R g
g+e

= 0.25 and R a
g
= 0.85. This is a dataset specific prior.

aAdditive and dominance model with model-wise expert knowledge prior.

proportion of genetic to phenotypic variance and denote this setting as A-tree*.
We show this prior in Figure 4.

We compared the model-wise prior with expert knowledge to a default prior
with no expert knowledge by constructing an HD prior using the exchangeable
Dirichlet prior on the proportion of phenotypic variance attributed to each of the
sources of variance following Fuglstad et al. (2020). For Model A we use a uniform
prior, which is a special case of the symmetric Dirichlet(m) prior with m = 2, on
the proportion of genetic to phenotypic variance p g

g+e
and denote this setting as A-

tree (see Figure 4). For Models AD and ADX we use Dirichlet(3) and Dirichlet(4)
priors on the proportions, respectively, and denote these settings AD-tree and
ADX-tree. These priors do not induce shrinkage towards any of the effects, and
assume that each model effect contributes equally to the phenotypic variance,
which due to the lack of expert knowledge did not lead to stable inference for
Models AD and ADX. We do not show results from these settings. The tree
structure and prior for AD-tree and ADX-tree can be seen in Figures S5 and S6
in File S1, respectively. We summarize the model-wise priors that will be used
in the following in Table 1.

2.6 Simulated case study

We applied the described genomic model (1) with the above mentioned priors to
a simulated case study that mimics a wheat breeding program to investigate the
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Figure 4: The prior for the proportion of genetic to phenotypic variance p g
g+e

for

the A-tree*a (left) and A-treeb (right) settings. We use R g
g+e

= 0.25. A-tree* is

a dataset specific prior.

aAdditive model with model-wise expert knowledge prior.
bAdditive model with model-wise default prior.

properties of the different settings. We simulated the breeding program using the
R package AlphaSimR (Faux et al., 2016; Gaynor, 2019) and closely followed the
breeding program descriptions of Gaynor et al. (2017) (see their Figure 3) and
Selle et al. (2019).

Specifically, we simulated a wheat-like genome with 21 chromosomes, selected
at random, 1, 000 SNP markers and 1, 000 causal loci from each chromosome
and used this genome to initiate a breeding program with breeding individuals.
Every year we have used 50 fully inbred parents to initiate a new breeding cycle
with 100 random crosses. In each cross we have generated 10 progenies and
selfed them to generate 1, 000 F2 (second filial) individuals, which were selfed
again to generate 10, 000 F3 (third filial) individuals. We reduced the 10, 000 F3
individuals in four successive selection stages (headrow, preliminary yield trial,
advanced yield trial and elite yield trial) with 10% selection intensity in each
stage. In the headrow stage, we simulated a visual selection on a phenotype
with the heritability of 0.03. For the preliminary, advanced and elite yield trials
we respectively simulated selection on phenotype with heritability 0.25, 0.45 and
0.62. We used the 50 individuals with the highest phenotype values from the last
three selection stages as parents for the next breeding cycle.

We ran the simulation for 30 years. At year 1, we set the following variances
for the population of the 50 parents: additive variance of 1.0, dominance variance
of 0.5, and epistasis variance of 0.1. We set the environmental variance to 6.0 for
all stages and years. We ran the simulation for 20 years as a ”burn-in” to obtain
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realistic breeding data under selection. We then ran the simulation for another
10 years with selection on phenotype. We removed the SNP markers with minor
allele frequency below 5%. We did not use the models for selection.

2.7 Real case study

We also applied the described genomic model (1) to the publicly available Cen-
tral European wheat grain yield data from Gowda et al. (2014) and Zhao et al.
(2015). In short, the data consists of 120 female and 15 male parent lines, which
were crossed to create 1,604 hybrids. The parents and hybrids were phenotyped
for grain yield in 11 different trials in 6 locations in Germany. The number of
observed phenotypes for the parents and hybrids vary between the trials, i.e.,
some datasets have more observed phenotypes than others, ranging from 834 to
1,739 (see Table S1 in File S1 in the Supplemental materials). The parents and
hybrids have genotype data for 17,372 high-quality SNP markers.

In the real case study we analyzed the performance of the tree-based priors
using expert knowledge (tree*) for the additive model (A), the additive and dom-
inance model (AD), and the additive and nonadditive model (ADX). We used the
same as in the simulation study: R a

g
= 0.85 and R d

d+x
= 0.67. We have however

used a higher value in EK-pheno, R g
g+e

= 0.75, in line with Reif et al. (2011) -

later stage trials tend to have higher heritability than early stage trials. Again,
we emphasize that these values are only used to construct prior distributions and
are not taken as literal proportions. The resulting priors can be seen in Figure
S7 in File S1.

2.8 Implementation details

We fitted the models with a Bayesian approach through the R package rstan

(Carpenter et al., 2017; Stan Development Team, 2019). This package provides a
sampling algorithm that uses the No-U-Turn sampler, a variant of Hamiltonian
Monte Carlo, and only requires that the user specifies the joint posterior distri-
bution up to proportionality, without having to write a sampling algorithm. See
Note S1 in File S1 in the Supplemental materials for details. Sampling methods
such as Markov Chain Monte Carlo and Hamiltonian Monte Carlo have guaran-
teed asymptotic accuracy as the number of drawn samples go to infinity. However,
in an applied context with finite computational resources, it is hard to assess this
accuracy. Betancourt (2016) developed a diagnostic metric for the Hamiltonian
Monte Carlo, called divergence, that indicates whether the sampler is able to
transition through the posterior space effectively or not, where in the latter case
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the results might be biased (we show an example on this in the results).

We also fitted Models A, AD and ADX with the maximum likelihood (ML)
approach using the low-storage BFGS (Broyden–Fletcher–Goldfarb–Shanno) al-
gorithm through the R package nloptr (Nocedal, 1980; Liu and Nocedal, 1989;
Johnson, 2020). This approach does not use priors. We denote them as A-ML,
AD-ML and ADX-ML and use them as a base-line for comparison because max-
imum likelihood is a common approach in the literature. Inference for ADX-ML
was not robust, and we do not present results from this setting. At last, we com-
pared the model results to the performance of selection based solely on phenotype
where we treat the phenotype as a point estimate of the genetic value.

2.9 Performance assessment

For the simulated case study, we ran the breeding program simulation 4,000 times
and fitted the model and prior settings in each of the last 10 years of simulation
(40,000 model fits in total) at the third selection stage (advanced yield trial) in the
program. Here we had 100 individuals each with five replicates and the goal was
to select the 10 genetically best individuals for the fourth, last, stage. For each
model fit we evaluated: (i) robustness of method, (ii) the accuracy of selecting the
genetically best individuals, (iii) the accuracy of estimating the different genetic
values and (iv) the accuracy of estimating the variance parameters. We evaluated
the fits against the true (simulated) values.

We measure how robust the method (model and inference approach) is, i.e., to
which degree it avoids estimating spurious nonadditive effects, in stability of in-
ference. For the stability of inference of the Bayesian approach with Stan we used
the proportion of analyses that had stable inference (which we define as at least
99% samples where no divergent transitions were observed) for each model and
prior setting. For the stability of inference of the maximum likelihood approach
we used the proportion of analyses where the optimizer algorithm converged.

For the accuracy of selecting the genetically best individuals we ranked the
best 10 individuals based on the estimated genetic value or estimated additive
value, and counted how many were among the true genetically best 10 individuals
based on the true genetic value or true additive value. We used the posterior
mean of the effects as estimated values for ranking. Selection on the genetic
value indicated selection of new varieties, while the selection on the additive
value indicated selection of new parents.

For the accuracy of estimating the different genetic values (total genetic, addi-
tive, dominance and epistasis values) we used Pearson correlation and continuous
rank probability score (CRPS, Gneiting and Raftery, 2007). With the correla-
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tion we measured how well posterior means of genetic values correlated with true
values (high value is desired). This metric works with point estimates and ig-
nores uncertainty of inferred posterior distributions of each individual genetic
value. The CRPS is a proper scoring rule and as such measures a combination
of bias and sharpness of the posterior distribution compared to true values (low
value is desired). Specifically, CRPS integrates squared difference between the
cumulative estimated posterior distribution and the true value over the whole
posterior distribution (Gneiting and Raftery, 2007). See Selle et al. (2019) for
a detailed explanation of CRPS used in a breeding context. In the case of phe-
notypic selection, we have a phenotype value for selection candidates, which is
a point estimate of the genetic value, and its CRPS then reduces to the mean
absolute error between the true genetic values and the phenotype.

The accuracy of the estimates of the variance parameters was assessed by
dividing them by the true genetic variances for each of the 10 years from the
simulated breeding program (a value close to 1 is desired). This is not done for
phenotype selection.

To test the effect of dataset size on inference, we ran the breeding program an
additional 1,000 times and fitted the models to n = 700, 600, . . . , 100 individuals
in the preliminary stage (instead to 100 individuals in the advanced stage) at year
21. We used the settings with tree-based expert knowledge priors and the max-
imum likelihood approach and investigated the performance of the methods for
increasing number of observations by evaluating the robustness, and the accuracy
of estimating the different genetic values and variance parameters.

We analyzed the real case study with the same models and tree-based expert
knowledge priors and focused on the ability of predicting observed phenotypes in
a cross-validation shceme. We performed 5-fold cross-validations five times for
each of the 11 trials independently. For each fold in each cross-validation, we
predicted the held-out phenotypes (their posterior distribution involving inter-
cept, genetic value and environmental variation), and calculated the correlation
between the point predictions and the observed phenotypes, and the CRPS using
the phenotype posterior prediction distributions and the observed phenotypes
available for each trial. We note that phenotype posterior predictions involve en-
vironmental variation, which does not affect point predictions and correlations,
but affects the CRPS as the whole distribution of the prediction is involved in
the calculations. We also looked at the posterior medians of the model variances.
Of note, in contrast to the simulated case study the genetic effects are unknown
for real data, so that we cannot assess the estimation accuracy of the effects.
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2.10 Data and code availability

We provide code to simulate the data described in the simulated case study (File
S2 in the Supplemental materials). We also provide example code to fit the
models presented in this paper together with an example dataset (File S3). In
the real case study we used data from Gowda et al. (2014) (SNP genotypes) and
Zhao et al. (2015) (phenotypes), and provide code for fitting the models in File
S4, including the folds used in the cross-validation. The Supplemental materials
are available at figshare: https://doi.org/10.6084/m9.figshare.12040716.

3 Results

3.1 Simulated case study

In the simulated case study the model-wise priors and expert knowledge im-
proved the inference stability of the nonadditive models and the selection of the
genetically best individuals, but did not significantly improve the accuracy of
estimating different genetic values for all individuals or for variance components.

3.1.1 Robustness and stability:

Table 2 shows the proportion of stable model fits by model and prior setting.
The model-wise priors combined with expert knowledge improved the inference
stability of the additive and dominant (AD) model and the nonadditive (ADX)
model to the level of stability of the additive (A) model and phenotypic selec-
tion. Phenotypic selection does not depend on a model fit to a dataset and
therefore had the highest method robustness by definition. This maximum level
of robustness was matched by the simple additive model with the model-wise
prior with and without using expert knowledge (A-tree* and A-tree) and with
the standard maximum likelihood approach (A-ML). This high model robustness
was followed closely by fitting the more complicated nonadditive and additive
and dominance models with model-wise prior and expert knowledge (ADX-tree*
and AD-tree*). The Bayesian approach using component-wise priors with expert
knowledge (A-comp*), the additive and dominance model with the maximum
likelihood approach (AD-ML), the component-wise priors without expert knowl-
edge (A-comp), and the model-wise prior with wrong/opposite expert knowledge
(ADX-tree-opp*) also resulted in satisfactory robustness, but then the proportion
of model fits with stable inference started to decrease. The robustness of the ad-
ditive and dominance model and the nonadditive model with default component-
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Table 2: Method robustness measured in stability of inferencea by model and
prior setting.

Setting (abbreviation) Stability
Phenotype selection 1.00
Add. tree expert (A-tree*) 1.00
Add. tree default (A-tree) 0.99
Add. maximum likelihood (A-ML) 0.99
Nonadd. tree expert (ADX-tree*) 0.98
Add. + dom. tree expert (AD-tree*) 0.97
Add. comp. expert (A-comp*) 0.94
Add. + dom. maximum likelihood (AD-ML) 0.88
Add. comp. default (A-comp) 0.86
Nonadd. tree expert opposite (ADX-tree-opp*) 0.86
Nonadd. comp. expert (ADX-comp*) 0.80
Nonadd. maximum likelihood (ADX-ML) 0.79
Add. + dom. comp. expert (AD-comp*) 0.69
Add. + dom. tree default (AD-tree) 0.51
Nonadd. tree default (ADX-tree) 0.23
Add. + dom. comp. default (AD-comp) 0.13
Nonadd. comp. default (ADX-comp) 0.04

aas a proportion of analyses with less than 1% divergences for the Bayesian approach and
as a proportion of analyses with convergence for the maximum likelihood approach.

wise priors (AD-comp and ADX-comp) was improved by using the model-wise
priors (AD-tree and ADX-tree), and even further by expert knowledge (AD-
comp* and ADX-comp*), but neither they nor the nonadditive model fitted with
maximum likelihood (ADX-ML) had more than 80% stable model fits.

The reason for deteriorated robustness of some model and prior settings is
that genetic (especially the nonadditive) and environmental effects can be par-
tially confounded, which limits the exploration of the posterior when using the
Bayesian approach or limits convergence of mode-seeking algorithms when using
the maximum likelihood approach. We show the partial confounding with images
of the covariance matrices for additive, dominance, epistasis and environmental
sources of variation for one dataset in Figure S8 in File S1 in the Supplemental
materials, and scatterplots of the pairwise elements on and off the diagonal of
the same matrices in Figure S9. Figure S10 shows joint posterior samples for
the epistasis and environmental variance for model ADX with model-wise priors
with and without expert knowledge (ADX-tree* and ADX-tree) for one dataset.
Without a robust method (this includes both the model and inference approach),
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the posterior distribution becomes difficult to explore, and this is also supported
by the divergence diagnostics (Table 2). The posterior of the ADX-tree setting
is bimodal and the sampler has not been able to sample with convergence due to
confounding.

We do not present results from the settings with 80% or less stable model fits
(see Table 2) in the following. Note that Table 2 includes all model abbrevia-
tions used. For each setting, the breeding programs that did not result in stable
inference were removed from the results.

3.1.2 Selecting best individuals:

Figure 5 shows the accuracy of selecting individuals with the highest genetic value
(variety selection, Figure 5a) and with the highest additive value (parent selec-
tion, Figure 5b). The model-wise priors exploiting expert knowledge improved
the selection of the genetically best individuals significantly, and the model choice
was important for different breeding aims. The settings with the additive and
dominance model and the nonadditive model with model-wise expert knowledge
(AD-tree* and ADX-tree*) performed significantly better in selection of new va-
rieties than the others, which followed in order from A-tree, A-tree*, A-comp*,
A-comp, A-ML, ADX-tree-opp* and AD-ML (see Table 2 for abbreviations). The
differences between the settings were small, but they all performed significantly
better than sole phenotype selection, which is sensitive to environmental noise.
For the selection of new parents the simpler additive model performed the best,
and the model-wise priors improved its performance (A-tree, A-tree* and A-
comp*). Wrong expert knowledge harmed the parent selection (ADX-tree-opp*),
but it still outperformed sole phenotype selection.

3.1.3 Estimation:

We summarize the remaining results here, and include a detailed description of
the results for the additive model with model-wise default prior (A-tree) and
the maximum likelihood approach (A-ML), the additive and dominance model
and the nonadditive model with model-wise expert knowledge prior (AD-tree*
and ADX-tree*), in addition to phenotype selection, in Note S2, and provide the
complete results for all settings in Figures S11-S16 in File S1 in the Supplemental
materials.

While using the model-wise priors and expert knowledge significantly im-
proved the selection of the genetically best individuals compared to the maximum-
likelihood approach, it did not significantly improve the accuracy of estimating
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(a) Genetic value (variety selection).

(b) Additive value (parent selection).

Figure 5: Accuracy of selecting individuals with the highest (a) genetic value (for
variety selection) and (b) additive value (for parent selection) by model and prior
setting - measured with the number of the top 10 true best individuals among
the top 10 selected individuals (average ± two standard errors over replicates).
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different genetic values across all individuals (Figures S11 and S12). There was
a tendency for the Bayesian models to perform better than the models fitted
with the maximum likelihood approach, but the variation between replicates was
larger than than the variation between the settings. All models outperformed
phenotype selection, where we treat the phenotype as a point estimate of the
genetic value.

Figure S13 shows that the variance component estimates varied considerably
around the true values for all models and prior settings. The estimates from
the Bayesian inference showed slightly larger biases and smaller variances than
maximum likelihood estimates. Estimates for epistasis variance were considerably
more underestimated than for the dominance variance.

The inference stability did not increase with increasing number of observa-
tions for any of the models fitted with the maximum likelihood approach. The
Bayesian models with model-wise expert knowledge priors had the same high in-
ference stability as in Table 2. The variation between replicates decreased for the
variance estimates (Figure S14) and the correlation and continuous rank proba-
bility score (CRPS) of the model effects improved for all models for increasing
number of observations (Figures S15 and S16). 700 observations was not enough
for the maximum likelihood approach to obtain a bias in dominance and epistasis
variance estimates as low as the Bayesian approach (Figure S14), indicating that
the need for good prior distributions is still there, but decreases with increasing
number of observations.

3.2 Real case study

The Bayesian approach with model-wise expert knowledge priors performed at
least as good as or better than the maximum likelihood (ML) approach. Figure 6
shows the predictive ability of phenotypes measured with correlation and CRPS
from three trials in Seligenstadt (Sel13 and Sel12) and Hadmersleben (Had12)
over the five 5-fold cross-validations. These trials had phenotype observations for
1,739 (Sel13), 834 (Sel12) and 1,738 (Had12) parents and hybrids, and represent
three different groups of trials: Sel13 represents the trials Ade13, Boh13, Hhof12,
Hoh12, Hoh13 and Sel13 where few observations are missing and the Bayesian and
ML approaches perform equally good. Sel12 represents the trials Boh12 and Sel12
where we have many missing observations and the ML approach is diverging.
Had12 represents the trials Had12, Had13 and Hhof13 where few observations
are missing but the ML approach leads to overfitting of the nonadditive effects.
Inside each group the results give similar conclusions, and we show results for
only one trial in each group here. We include correlation and CRPS for all
11 trials in Figures S17 and S18 in File S1 in the Supplemental materials. The
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Figure 6: Phenotype prediction ability measured with correlation (top; high value
desired), and continuous rank probability score (bottom; low value desired) from
three of the trials in the real case study (boxplots show variation over the cross-
validations and folds). Left: Sel13 (1,739 observations), middle: Sel12 (834 ob-
servations), right: Had12 (1,738 observations).

maximum likelihood approach was as good as the Bayesian approach in the Sel13
trial where all phenotypes were observed for the parents and hybrids, but in
the Sel12 trial, which consists of only 834 out of 1,739 observed phenotypes, the
maximum likelihood approach had worse predictive ability for the additive model
(A), and slightly worse for the nonadditive model (ADX). In the Had12 trial
with practically no unobserved phenotypes, the maximum likelihood approach
is outperformed by the Bayesian approach for the nonadditive model due to
overfitting through overestimation of the epistasis variance (see Figure 7). The
results from the additive and dominance (AD) model did not differ from the
results from the additive and nonadditive model, and we to not discuss them
here, but include the results from AD-tree* and AD-ML in File S1 (Figures S17-
S19).

We explored reasons for the bad performance of A-ML in the Sel12 trial
(representing trials with many missing observations). The maximum likelihood
optimizer returned a converge error message for two of the total 25 folds (we
removed these model fits from all the results). However, the severe overestimation
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Figure 7: Posterior median variances from the real case study for three of the
trials for the five 5-fold cross-validations. Top: Sel13 (1,739 observations), middle:
Sel12 (834 observations), bottom: Had12 (1,738 observations). For Sel12, the A-
ML is overestimating the additive variance so badly (values over 400) that we
have truncated the y-axes at 1.5 to highlight the other results.
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of the additive variance shown in Figure 7 indicates that the optimizer did not find
the global maximum, but rather a local one. A closer investigation of the variance
estimates showed that the optimizer got ”stuck” at the lower boundary values
(−20 for the environmental and −50 for the other variances on a logarithmic
scale). We gave 0 as initial value for the intercept and log-variances for both the
Bayesian and maximum likelihood approach, however, the latter did not converge.

In Figure 7 we see that for Sel13 the approaches are in agreement on the
variance estimates. With a dataset with many unobserved phenotypes (repre-
sented by Sel12), the additive model fitted with the maximum likelihood approach
(A-ML) estimated the environmental log-variance at −20, and in compensation
severely overestimated the additive variance. The nonadditive model fitted with
maximum likelihood (ADX-ML) had the same underestimation of the environ-
mental variance for some folds, but compensated with nonadditive effects. This
indicates overfitting and means that predictions from such are based solely on
genetic values, and no environmental effects, which gives misleading predictions.
ADX-ML was also underestimating the environmental variance for the data from
Had12, Had13 and Hhof13, and compensated this variance with the dominance
and epistasis effects. We reran the maximum likelihood optimizer with initial
values set to posterior medians from the corresponding Bayesian models. In this
case, the maximum likelihood approach was not outperformed by the Bayesian
approach (see Figures S17 and S18 in File S1). The variance estimates for all
environments can be seen in Figure S19.

In Figures S17 and S18 we see that the trend is the same across the trials;
for datasets where we have observed most of the phenotypes for the parents
and hybrids, the maximum likelihood and Bayesian approaches are in general
performing equally, and we gain predictive accuracy by including nonadditive
effects, but as soon as there are many unobserved phenotypes, such as for Boh12
and Sel12 (see Table S1 for information about all trials), the maximum likelihood
approach is deteriorating. For the Had12, Had13 and Hhof13 trials, which has few
unobserved phenotypes but still has poor predictive abilities for the nonadditive
model (ADX), the maximum likelihood approach has problems with overfitting
(see Figure S19). The model underestimates the environmental variance and
attributes this variation to the dominance and epistasis effects.

4 Discussion

In this study we have introduced new priors for robust genomic modeling of addi-
tive and nonadditive variation based on the penalized complexity prior (Simpson
et al., 2017) and hierarchical decomposition prior (Fuglstad et al., 2020) frame-
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works. In the simulated case study, the new priors enabled straightforward use
of expert knowledge, which in turn improved the robustness of genomic modeling
and the selection of the genetically best individuals in a wheat breeding program.
However, it did not improve the overall accuracy of estimating genetic values for
all individuals or for variance components. In the real case study, the new priors
improved the prediction ability, especially for trials with fewer observations, and
they reduced overfitting. These results highlight three points for discussion: (i)
expert-knowledge priors for genomic modeling and prediction, (ii) the importance
of priors for breeding and (iii) limitations of our work.

4.1 Expert-knowledge priors for genomic modeling and
prediction

Genomic modeling is challenging due to inherent high-dimensionality and per-
vasive correlations between loci and therefore requires substantial amounts of
information for robust estimation. Most genomes harbour millions of segregat-
ing loci that are highly or mildly correlated. While estimating additive effects
at these loci is a challenging task in itself (e.g., Visscher et al., 2017; Young,
2019), estimating dominance and epistasis effects is an even greater challenge
(e.g., Misztal, 1997; Zhu et al., 2015; de los Campos et al., 2019). One challenge
in estimating the interactive dominance and epistasis effects is that they are cor-
related with the main additive effects and all these effects are further correlated
across nearby loci (Mäki-Tanila and Hill, 2014; Hill and Mäki-Tanila, 2015; Vitez-
ica et al., 2017). Information to estimate all these locus effects and corresponding
individual values has to inherently come from the data, but could also come in a
limited extent from the expert knowledge. There is a wealth of expert knowledge
in genetics (e.g., Houle, 1992; Falconer and Mackay, 1996; Lynch et al., 1998),
however, this expert knowledge is seldom used because it is not clear how to use
it in a credible and a consistent manner.

We showed how to use the expert knowledge about the magnitude of differ-
ent sources of variation by leveraging two recently introduced prior frameworks
(Simpson et al., 2017; Fuglstad et al., 2020). While the penalized complexity pri-
ors are parsimonious and intuitive, they require absolute prior statements when
used in a component-wise approach, which are challenging to elicit for multiple
effects. The hierarchical decomposition framework imposes a tree structure ac-
cording to a domain model, and the intuitive penalized complexity prior can be
used in the hierarchical decomposition prior framework to ensure robust mod-
eling. This model-wise approach enables the use of relative prior statements,
which are less challenging to elicit than the absolute prior statements, because
we tend to have good knowledge of the broad sense heritability for most traits and
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by the standard quantitative genetic model construction we know that additive
effects capture majority of genetic variance (Hill et al., 2008; Mäki-Tanila and
Hill, 2014; Hill and Mäki-Tanila, 2015; Huang and Mackay, 2016). The presented
priors therefore pave a way for a fruitful elicitation dialogue between a geneticist
and a statistician (Farrow, 2013). In particular, the hierarchical decomposition
prior framework provides both a method for prior construction and a platform
for communication among geneticists and statisticians. The model-wise expert
knowledge prior must naturally be adapted to each model, as it depends on the
model structure, but using the tree structures makes this adaption intuitive and
should as such help with prior elicitation (O’Hagan et al., 2006; Farrow, 2013).
Further, the graphical representation allows a description of a joint prior in a
visual way with minimal statistical jargon (Figure 1).

An example of using such expert knowledge was the choices of a median for
the broad-sense heritability of 0.25 in the simulated and 0.75 in the real case
study. However, as Figures 2 and S7 show, the priors do not differ tremendously.
This shows that the prior proposed in this study is vague and not restricted by the
value chosen for the median. Perhaps there is even scope for more concentrated
priors, should such information be available.

The hierarchical decomposition prior framework enabled us to use expert
knowledge on relative additive and nonadditive variation. If nonadditive effects
are to be added to the model, expert knowledge is necessary for the inference
to be stable and the results reliable, and the simulation study shows that the
expert knowledge must be added in such a way that the magnitude of the vari-
ances are not restricted by the prior, i.e., the model-wise approach instead of
the component-wise approach. In the simulated case study the expert knowledge
improved the stability of inference of the Bayesian approach over the maximum
likelihood approach and improved the selection of the genetically best individuals.
This improvement was due the additional information that alleviated the strong
confounding between the nonadditive (particularly epistasis) and environmental
variation.

The hierarchical decomposition prior framework is also useful when expert
knowledge is only available on parts of the model. For example, an expert may
not have a good intuition about the level of broad-sense heritability, say for
a new trait, but will likely have a good intuition on how the genetic variance
relatively decomposes into additive, dominance and epistasis components, simply
due to the model specification (Hill et al., 2008; Mäki-Tanila and Hill, 2014;
Hill and Mäki-Tanila, 2015; Huang and Mackay, 2016). In those cases, we can
use weakly-informative default priors on the parts of the model where expert
knowledge is missing, and priors based on expert knowledge for the rest of the
model. The component-wise specification of expert knowledge with the standard
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(Sorensen and Gianola, 2007) or the penalized complexity (Simpson et al., 2017)
priors is infeasible in this context, and does not admit a simple visualization
of the implied assumptions on the decomposition of the phenotypic variance.
Further, the component-wise specification of expert knowledge is particularly
challenging when phenotypic variance is unknown or when collected observations
are influenced by a range of effects which can inflate sample phenotypic variance.
The model-wise approach with the hierarchical decomposition prior can address
these situations.

There exists previous work on penalized estimation of genetic covariances
(e.g., Meyer et al., 2011; Meyer, 2016, 2019) that also uses Bayesian principles
and scale-free penalty functions to reduce variation of the estimates from small
datasets and for large numbers of traits. Our proposed priors and expert knowl-
edge reduced variation of estimates in the simulated case study. However, our
estimates were biased, which is expected given the small sample size and that
the Bayesian approach induced bias towards a lower variance (e.g, Sorensen and
Gianola, 2007). It is worth noting that the maximum likelihood estimates of
genetic variance also were largely underestimated, which we believe is due to the
small sample size and a large number of parameters to estimate. We see in Note
S2 in the Supplemental materials (File S1) that the data informs about pheno-
typic variance and broad-sense heritability, but only weakly about the division
of the additive and nonadditive, and dominance and epistasis. Further, for some
datasets we could not obtain the maximum likelihood estimates, while priors ro-
bustified the modeling by penalizing the genetic effects. The real case study also
showed that using expert knowledge increases the inference robustness in datasets
with a large amount of unobserved phenotypes, and reduces overfitting. We saw
this improvement in both the Bayesian approach and the maximum likelihood
approach where we used the results from the Bayesian models as initial values
for the optimization algorithm. However, the latter approach requires specific
expert knowledge on the size of the variances, which in the same way as the
component-wise expert knowledge priors, is difficult to elicit from experts in the
field. We note, however, that genomic models are inherently misspecified by try-
ing to estimate the effect of causal loci through correlated marker loci (Gianola
et al., 2009; de los Campos et al., 2015). Also, linkage and linkage disequilibrium
are challenging the decomposition of genetic variance into its components (Gi-
anola et al., 2013; Morota et al., 2014; Morota and Gianola, 2014). Indeed, our
variance estimates were not very accurate in the simulated case study.

Future research could expand the hierarchical decomposition prior framework
to other settings. For example, to multiple traits or modeling genotype-by-
environment interactions, which are notoriously noisy, and we aim to find par-
simonious models (e.g., Meyer, 2016, 2019; Tolhurst et al., 2019). Also, expand
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to model macro- and micro-environmental effects (e.g., Selle et al., 2019) and to
model multiple layers of sparse, yet high-dimensional, ”omic” data from mod-
ern biological experiments using network-like models (Damianou and Lawrence,
2013).

4.2 Importance of priors for breeding

Robust genomic modeling of nonadditive variation is important for breeding pro-
grams. There is substantial literature indicating sizeable nonadditive genetic
variation (e.g., Oakey et al., 2006; Muñoz et al., 2014; Bouvet et al., 2016;
Varona et al., 2018; de Almeida Filho et al., 2019; Santantonio et al., 2019; Tol-
hurst et al., 2019), but robust modeling of this variation is often challenging. We
have shown how to achieve this robust modeling with the proposed priors and
expert knowledge. We evaluated this approach with a simulated wheat breeding
program where we assessed the ability to select the genetically best individuals
on their genetic value (variety selection) and additive value (parent selection).
The results showed that the proposed priors and the expert knowledge improved
variety and parent selection. We observed more improvement in the variety se-
lection, which is expected because there is more variation in genetic values than
its first-order approximation additive values. However, this additional nonaddi-
tive variation is hard to model due to a small signal from the data relative to
environmental variation and confounding with the environmental variation. This
confounding is expected. As pointed by one of the reviewers, we obtain the epis-
tasis covariance matrix using the Hadamard product of the additive covariance
matrix with itself, and such repeated Hadamard multiplication converges to an
identity matrix, i.e., to the covariance matrix of the environmental effect. Both
the simulated and real case studies showed that including nonadditive effects in
the model requires some sort of penalization to avoid overfitting environmental
noise as nonadditive genetic effects. The proposed priors and the expert knowl-
edge helped us to achieve this.

Importantly, all models improved upon sole phenotypic selection in the simu-
lated case study, which shows the overall importance of genomic modeling While
the differences between the different models and priors were small, the improved
genomic modeling can contribute to the much needed improvements in plant
breeding (Ray et al., 2013; Asseng et al., 2015). Also, even a small improvement
in the variety selection has a huge impact on production, because varieties are
used extensively (Acquaah, 2009). In the terms of model complexity, the answer
to whether to use the additive model, the additive and dominance model or the
nonadditive model depended on the aim of the analysis. The latter models were
the best in selecting the genetically best individuals on genetic value, whereas
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the additive model performed best in selecting the genetically best individuals
on additive value. The reason for this is likely the small sample size and large
number of parameters to estimate with the nonadditive model (Varona et al.,
2018). In the real case study adding nonadditive effects to the model improved
the phenotypic prediction accuracy beyond the additive model, and the expert
knowledge helped us to avoid overfitting, which shows the advantage of the expert
knowledge.

Of note is the observation that the proposed priors and the expert knowledge
improved the selection of the genetically best individuals, but not the estimation
of the different genetic values. We did not expect this difference. In principle
both of these metrics are important, but for breeding the ability to select the
genetically best individuals is more important (de los Campos et al., 2013). A
possible explanation for the difference between the two metrics is that the top
individuals deviated more from the overall distribution and the overall metrics
do not capture well the tail-behaviour.

The importance of the proposed priors and the expert knowledge will likely
vary with the stage and size of a breeding program, and as the simulation study
with increasing amount of observations and the real case study shows, the im-
portance of priors increases with the decreasing amount of observations. Prior
importance is known to decrease as the amount of data increases (Sorensen and
Gianola, 2007), but the required amount of data for accurate estimation of nonad-
ditive effects is huge compared to the size of most breeding programs. Therefore
the proposed penalized complexity and hierarchical decomposition priors could
be helpful also in large breeding programs as they enforce shrinkage according
to the expert knowledge unless the data indicates otherwise, reducing the risk of
estimating spurious effects.

4.3 Limitations of our work

The aim of this paper was to describe the use of the expert knowledge to im-
prove genomic modeling, which we achieved through two recently introduced prior
frameworks (Simpson et al., 2017; Fuglstad et al., 2020), and demonstrated their
use in a simulated and a real case study of wheat breeding. There are multiple
other possible uses of the proposed priors in genomic modeling and prediction.
The simulated case study is small with only 100 individuals at the advanced yield
trials of a wheat breeding program, and up to 700 individuals at the preliminary
yield trials. A small number of individuals and a limited genetic variation at this
stage made a good case study to test the importance of priors, and we show that
using our approach can be beneficial beyond the standard genomic model. We
have also chosen this stage for computationally simplicity and speed because we
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evaluate the robustness of estimation over many replicates. Studies with more
individuals are a natural next step, but is beyond the scope of this paper due
to computational reasons. Finally, we could have tested more prior options, in
particular the shrinkage of the nonadditive values towards the additive values,
i.e., the PC0(·) versus the PCM(·) prior. More research is needed in the future
to see how the expert knowledge can improve genetic modeling further.

Interesting areas for future research are also in other breeding domains with
the recent rise in volumes of individual genotype and phenotype data, which pro-
vide power for estimating dominance and epistasis values (e.g., Alves et al., 2020;
Joshi et al., 2020). The ability to estimate the nonadditive values would be very
beneficial in breeding programs that aim to exploit biotechnology (e.g., Gottardo
et al., 2019). Finally, an exciting area for estimating nonadditive individual val-
ues is in the area of personalized human medicine (de los Campos et al., 2010;
Mackay and Moore, 2014; Sackton and Hartl, 2016; de los Campos et al., 2018;
Begum, 2019).

The proposed priors are novel and require further computational work to fa-
cilitate widespread use. The penalized complexity priors (Simpson et al., 2017)
are increasingly used in the R-INLA software (Rue et al., 2009, 2017), while hi-
erarchical decomposition priors (Fuglstad et al., 2020) have been implemented
with the general purpose Bayesian software Stan (Carpenter et al., 2017; Stan
Development Team, 2019). This implementation is technical and Stan is slow for
genomic models, although there is active development to increase its computa-
tional performance (Margossian et al., 2020).

We are in the process of developing an R package that will offer an intuitive
user interface to specify hierarchical decomposition priors. The clear graphical
representation of the priors along the model defined tree encourages increased
transparency within the scientific community. It facilitates communication and
discussion between statisticians and non-statisticians in the process of the model
design, prior specification but also model assessment. Existing expert knowledge
is intuitively incorporated into PC prior distributions for the parameters where it
applies to. The resulting model-wise prior can be fed directly into Stan or INLA,
or can be pre-computed for use in other Bayesian software. Thus, the new priors
will be straightforward to apply for statisticians and non-statisticians, robustify
the analysis, and the use of INLA will speed up computations. Further work is
needed to enable Bayesian treatment of large genomic models fitted to datasets
with hundreds of thousands of individuals.
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4.4 Conclusion

In conclusion, we have presented how to use the expert knowledge on relative
magnitude of genetic variation and its additive and nonadditive components in
the context of a Bayesian approach with two novel prior frameworks. We believe
that when modeling a phenomenon for which there exists a lot of knowledge,
we should employ methods that are able to take advantage of this resource. We
have demonstrated with a simulated and a real case study that such methods are
important and helpful in the breeding context, and they might have potential
also in other areas that use genomic modeling.
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de Almeida Filho, J. E., Guimarães, J. F. R., Fonsceca e Silva, F., Vilela de
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Hill, W. and Mäki-Tanila, A. (2015). Expected influence of linkage disequilibrium
on genetic variance caused by dominance and epistasis on quantitative traits.
Journal of Animal Breeding and Genetics, 132(2):176–186.

Hill, W. G., Goddard, M. E., and Visscher, P. M. (2008). Data and theory
point to mainly additive genetic variance for complex traits. PLoS Genetics,
4(2):e1000008.

Horn, R. A. (1990). The Hadamard Product. In Proceedings of Symposia in
Applied Mathematics, volume 40, pages 87–169.

Houle, D. (1992). Comparing evolvability and variability of quantitative traits.
Genetics, 130(1):195–204.

Huang, W. and Mackay, T. F. C. (2016). The genetic architecture of quantitative
traits cannot be inferred from variance component analysis. PLoS Genetics,
12(11):e1006421.

Johnson, S. G. (2020). The NLopt nonlinear-optimization package. Accessed
2020-03-01.

Joshi, R., Meuwissen, T. H., Woolliams, J. A., and Gjøen, H. M. (2020). Genomic
dissection of maternal, additive and non-additive genetic effects for growth and
carcass traits in Nile tilapia. Genetics Selection Evolution, 52(1).

Legarra, A. (2016). Comparing estimates of genetic variance across different
relationship models. Theoretical Population Biology, 107:26–30.

Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for
large scale optimization. Mathematical Programming, 45(1-3):503–528.

Lynch, M., Walsh, B., et al. (1998). Genetics and Analysis of Quantitative Traits,
volume 1. Sinauer Sunderland, MA.

Mackay, I., Horwell, A., Garner, J., White, J., McKee, J., and Philpott, H.
(2011). Reanalyses of the historical series of UK variety trials to quantify the
contributions of genetic and environmental factors to trends and variability in
yield over time. Theoretical and Applied Genetics, 122(1):225–238.



Robust modeling of genetic variation 151

Mackay, T. F. and Moore, J. H. (2014). Why epistasis is important for tackling
complex human disease genetics. Genome Medicine, 6(6):42.
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Würschum, T. (2011). Mapping QTLs with main and epistatic effects un-
derlying grain yield and heading time in soft winter wheat. Theoretical and
Applied Genetics, 123(2):283.

Riebler, A., Sørbye, S. H., Simpson, D., and Rue, H. (2016). An intuitive Bayesian
spatial model for disease mapping that accounts for scaling. Statistical Methods
in Medical Research, 25(4):1145–1165.

Rife, T. W., Graybosch, R. A., and Poland, J. A. (2019). A field-based analysis
of genetic improvement for grain yield in winter wheat cultivars developed in
the US Central Plains from 1992 to 2014. Crop Science, 59(3):905–910.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference
for latent Gaussian models by using integrated nested Laplace approximations.
Journal of the Royal Statistical Society: Series B, 71(2):319–392.

Rue, H., Riebler, A., Sørbye, S. H., Illian, J. B., Simpson, D. P., and Lindgren,
F. K. (2017). Bayesian computing with INLA: A review. Annual Review of
Statistics and Its Application, 4(1):395–421.

Sackton, T. B. and Hartl, D. L. (2016). Genotypic context and epistasis in
individuals and populations. Cell, 166(2):279–287.



Robust modeling of genetic variation 153

Santantonio, N., Jannink, J.-L., and Sorrells, M. (2019). Prediction of subgenome
additive and interaction effects in allohexaploid wheat. G3: Genes, Genomes,
Genetics, 9(3):685–698.

Selle, M. L., Steinsland, I., Hickey, J. M., and Gorjanc, G. (2019). Flexible
modelling of spatial variation in agricultural field trials with the R package
INLA. Theoretical and Applied Genetics, 132(12):3277–3293.

Shewry, P. R. and Hey, S. J. (2015). The contribution of wheat to human diet
and health. Food and Energy Security, 4(3):178–202.

Simpson, D., Rue, H., Riebler, A., Martins, T. G., and Sørbye, S. H. (2017).
Penalising model component complexity: A principled, practical approach to
constructing priors. Statistical Science, 32(1):1–28.

Sørbye, S. H. and Rue, H. (2018). Fractional Gaussian noise: prior specification
and model comparison. Environmetrics, 29(5-6):e2457.

Sorensen, D. and Gianola, D. (2007). Likelihood, Bayesian, and MCMC methods
in Quantitative Genetics. Springer Science & Business Media.

Stan Development Team (2019). RStan: the R interface to Stan. http:

//mc-stan.org/. R package version 2.19.2.

Sweeney, D. W., Sun, J., Taagen, E., and Sorrells, M. E. (2019). Genomic
selection in wheat. In Miedaner, T. and Korzun, V., editors, Applications
of Genetic and Genomic Research in Cereals, Woodhead Publishing Series in
Food Science, Technology and Nutrition, pages 273–302. Woodhead Publishing.

Tolhurst, D. J., Mathews, K. L., Smith, A. B., and Cullis, B. R. (2019). Genomic
selection in multi-environment plant breeding trials using a factor analytic
linear mixed model. Journal of Animal Breeding and Genetics, 136(4):279–
300.

Varona, L., Legarra, A., Toro, M. A., and Vitezica, Z. G. (2018). Non-additive
effects in genomic selection. Frontiers in Genetics, 9:78.

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown,
M. A., and Yang, J. (2017). 10 years of GWAS discovery: Biology, function,
and translation. The American Journal of Human Genetics, 101(1):5–22.

Vitezica, Z. G., Legarra, A., Toro, M. A., and Varona, L. (2017). Orthogonal esti-
mates of variances for additive, dominance, and epistatic effects in populations.
Genetics, 206(3):1297–1307.



154 Hem, I. G., Selle, M. L., Gorjanc, G., Fuglstad, G.-A., and Riebler, A.

Wittenburg, D., Melzer, N., and Reinsch, N. (2011). Including non-additive
genetic effects in Bayesian methods for the prediction of genetic values based
on genome-wide markers. BMC Genetics, 12(1):74.

Young, A. I. (2019). Solving the missing heritability problem. PLoS Genetics,
15(6):e1008222.

Zhao, Y., Li, Z., Liu, G., Jiang, Y., Maurer, H. P., Würschum, T., Mock, H.-P.,
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S1 Note S1: Detailed method description

In this note we describe the two approaches A-comp* and A-tree* in detail. We
focus on the additive model (Model A) since this allows us to maximize readability
and is sufficient to illustrate the main ideas, but the final section provides a
description on how to extend to the additive and dominance model (Model AD)
with the two approaches AD-comp* and AD-tree*. We also provide examples of
the resulting prior and posterior distributions for two specific datasets with 100
and 500 observations. The aim is that this note contains all details necessary to
reproduce the results.

S1.1 Model description

The additive genetic model is given by

yi = µ+ ai + ei, i = 1, 2, . . . , n,

where n is the number of individuals, µ is the intercept, a = (a1, a2, . . . , an) ∼
Nn(0, σ

2
aA) are the additive values, and e = (e1, e2, . . . , en) ∼ Nn(0, σ

2
eIn) is the
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environmental noise. The covariance matrix A is singular with rank less than
n due to the construction from the SNP matrix. If we collect the phenotypes
in a vector y = (y1, y2, . . . , yn), the model can be formulated as the Gaussian
likelihood

π(y|µ, σ2
a , σ

2
e ) =

(
1

2π

)n/2
1

|Σ(σ2
a , σ

2
e )|n/2

× exp

(
−1

2
(y − 1µ)TΣ(σ2

a , σ
2
e )

−1(y − 1µ)

)
, y ∈ Rn, (S1.1)

where Σ(σ2
a , σ

2
e ) = σ2

aA+ σ2
eIn, and 1 = (1, 1, . . . , 1) is the n-dimensional vector

of ones.

In Bayesian statistics, the likelihood must be combined with a prior distri-
bution for the parameters, π(µ, σ2

a , σ
2
e ). This prior should encapsulate our prior

beliefs about the parameters based on expert knowledge, and stabilize inference
in low-data settings. Bayes’ theorem gives the posterior distribution for the pa-
rameters as

π(µ, σ2
a , σ

2
e |y) =

π(µ, σ2
a , σ

2
e )π(y|µ, σ2

a , σ
2
e )

π(y)
∝ π(µ, σ2

a , σ
2
e )π(y|µ, σ2

a , σ
2
e ), (S1.2)

where π(y) is the marginal distribution of the phenotypes, and the proportionality
is with respect to everything that does not vary as functions of the parameters.
The constant π(y) in Equation (S1.2) is not needed for Markov chain Monte
Carlo methods.

S1.2 Component-wise priors

The common approach for selecting priors is to select independent component-
wise prior distributions for σ2

a , σ
2
e and µ so that π(σ2

a , σ
2
e , µ) = π(σ2

a)π(σ
2
e )π(µ). A

recent development are the penalized complexity (PC) priors that are derived in a
principled way (Simpson et al., 2017). They are constructed based on a base model
and ”distance” to a more complex model that extends the base model. In the case
of a model (S1.1) the base model does not have a genetic effect or equivalently
genetic variance is zero. The proposed prior penalizes increased model complexity
through Kullback-Leibler divergence between the base and complex model, but
the details are not essential to our presentation, and we encourage interested
readers to see Simpson et al. (2017) for details. The PC prior for the variance of
a Gaussian distribution is an exponential distribution on the standard deviation,
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which leads to the following priors transformed to variances for the model (S1.1):

π(σ2
a) =

λa

2
√

σ2
a

exp
(
−λa

√
σ2
a

)
, σ2

a > 0,

π(σ2
e ) =

λe

2
√

σ2
e

exp
(
−λe

√
σ2
e

)
, σ2

e > 0.

These priors are combined with a weakly informative Gaussian prior for the
intercept, µ ∼ N1(0, σ

2
Int). This is a PC0(·) prior on variance.

Simpson et al. (2017) proposes to select λa and λe by elicting a statement
about a quantile for each variance from experts. In this paper we consider the
specification of the two hyperparameters by specifying the upper quartiles of the
priors through Va and Ve for σ

2
a and σ2

e , respectively. In this case, one must select

λa = − ln(0.25)√
Va

, and λe = − ln(0.25)√
Ve

.

Applying Bayes’ theorem from Equation (S1.2) results in

π(σ2
a, σ

2
e , µ|y) ∝ π(µ)π(σ2

a)π(σ
2
b)π(y|µ, σ2

a , σ
2
e )

∝ λaλe

4
√

σ2
aσ

2
e |Σ(σ2

a , σ
2
e )|n/2

× exp

(
− 1

2
(y − µ1)TΣ(σ2

a , σ
2
e )

−1(y − µ1)

− µ2

2σ2
Int

− λa

√
σ2
a − λe

√
σ2
e

)
, (S1.3)

for µ ∈ R, σ2
a > 0 and σ2

e > 0.

Even though the normalizing constant is not analytically tractable in Equa-
tion (S1.3), Markov chain Monte Carlo (MCMC) methods can be devised for
performing Bayesian inference through sampling. In this paper, we used Hamil-
tonian Monte Carlo (HMC) through Stan (Carpenter et al., 2017), a probabilistic
programming language for statistical inference. Stan takes advantage of the No U-
Turn Sampler (NUTS Hoffman and Gelman, 2014), which replaces random walks
with a more efficient exploration strategy based on numerical solution of differ-
ential equations. NUTS also has a reduced need for tuning compared to other
MCMC algorithms and, in some cases, the algorithm can be run completely with-
out manually setting tuning parameters. Sampling from the posterior in Equa-
tion (S1.3) through Stan requires writing the expression for ln(π(σ2

a, σ
2
e , µ|y)) in

a Stan description file. Clever parametrizations such as using the logarithms of
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the variances instead of the variances themselves will improve the efficiency, but
the complexity involved in implementing MCMC is greatly reduced from writ-
ing one’s own MCMC algorithms. The coding language in the description file is
similar as C++.

We have used Stan through the R-package rstan (Stan Development Team,
2019) to implement the inference in the paper. This required us only to provide
the expression for the joint posterior, and we did not need to calculate the different
full conditionals such as in a standard Gibbs sampling algorithm. We rephrased
the additive model as a hierarchical model, where the additive values are be
sampled together with the parameters,

y|µ,a, σ2
e ∼ Nn(1µ+ a, σ2

eIn),

a|σ2
a ∼ Nn(0, σ

2
aA),

(µ, σ2
a , σ

2
e ) ∼ π(µ, σ2

a , σ
2
e ),

where 1 = (1, 1, . . . , 1) is the n-dimensional vector of ones. Again Bayes’ theorem
provides

π(a, µ, σ2
a , σ

2
e |y) ∝ π(µ)π(σ2

a)π(σ
2
e )π(a|σ2

a)π(y|µ,a, σ2
e ),

where all terms in the product are known distributions. This joint posterior is
implemented in Stan through a calculation of ln(π(a, µ, σ2

a , σ
2
e |y)). The details

of the sampling is handled by the software. This approach is termed A-comp* in
the paper, and the prior π(σa) is denoted PC0(

√
V 2
a , 0.25) and the prior π(σe) is

denoted PC0(
√

V 2
a , 0.25).

S1.3 Model-wise prior

A shortcoming of using independent component-wise priors is that it does not
provide a direct way to include expert knowledge about the relative sizes of
variance parameters. In the context of the additive model, this refers to the sit-
uation where expert knowledge could be available about the phenotypic variance
σ2
P = σ2

a + σ2
e and the broad-sense heritability h2

g = p g
g+e

= σ2
a/(σ

2
a + σ2

e ), i.e.,

σ2
a = p g

g+e
σ2
P and σ2

e = (1 − p g
g+e

)σ2
P. If component-wise priors are chosen for

σ2
a and σ2

e , it can be extremely challenging to understand the a priori assump-
tions being imposed on σ2

P and p g
g+e

. Furthermore, we are not ensuring that we

end up with reasonable families of priors for σ2
P and p g

g+e
, which have desirable

properties.

A complementary framework to PC priors are the recent hierarchical decom-
position (HD) priors by Fuglstad et al. (2020). Using this framework, we can
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directly incorporate expert knowledge about the quantities σ2
P and p g

g+e
. As-

sume that the expected variability in phenotypes is not known a priori and that
we aim for a scale-invariant prior. We can address this situation with a Jeffreys’
prior

π(σ2
P) ∝ 1/σ2

P, σ2
P > 0.

Next, we apply the approach detailed in Fuglstad et al. (2020) by assuming that
the model described by Equation (S1.1) is a flexible extension of the base model
y|µ, σ2

P ∼ N (1µ, σ2
PIn), where the heritability p g

g+e
= 0. This means that we use

a PC0(·) prior on p g
g+e

. Based on Fuglstad et al. (2020), we can then calculate

the prior

π(p g
g+e

) = λh|d′(p g
g+e

)| exp
(
−λhd(p g

g+e
)
)
, 0 < p g

g+e
< 1,

where

d(p g
g+e

) =
√
p g

g+e
(tr(A)− n)− ln(det(p g

g+e
A+ (1− p g

g+e
)In)),

and

d′(p g
g+e

) =
tr(A)− n− tr

{
(p g

g+e
A+ (1− p g

g+e
)In)

−1(A− In)
}

2
√
p g

g+e
(tr(A)− n)− ln(det(p g

g+e
A+ (1− p g

g+e
)In))

denotes the derivative of the function d(·). Here λh is a hyperparameter, tr(·)
denotes the matrix trace, and det(·) denotes the matrix determinant. The func-
tion d(·) is the Kullback-Leibler distance and expresses the added complexity of
having a broad-sense heritability p g

g+e
> 0 compared to having the broad-sense

heritability p g
g+e

= 0. We set the hyperparameter λh by specifying the median

R g
g+e

of the prior for p g
g+e

. This is achieved by setting

λh = − ln(0.5)

d(p g
g+e

= R g
g+e

)
.

We choose to use independent priors for µ, σ2
P and p g

g+e
so that π(µ, σ2

P, p g
g+e

) =

π(µ)π(σ2
P)π(p g

g+e
).

Since the prior is formulated in terms of phenotypic variance and heritability,
it is useful to reparametrize the hierarchical model as

y|µ, σ2
P, p g

g+e
∼ Nn(1µ+ a, σ2

P(1− p g
g+e

)In)

a|σ2
P, p g

g+e
∼ Nn(0, σ

2
Pp g

g+e
A)

µ, σ2
P, p g

g+e
∼ π(µ, σ2

P, p g
g+e

).
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We calculate the posterior up to proportionality through Bayes’ theorem,

π(a, µ, σ2
P, p g

g+e
|y) ∝ π(µ)π(σ2

P)π(p g
g+e

)π(a|σ2
P, p g

g+e
)π(y|µ,a, σ2

P, p g
g+e

),

where all terms in the product are known distributions. The sampling in Stan
is automatically handled based on code that calculates the value of the joint
posterior up to proportionality. We precompute ln(π(p g

g+e
)) for a range of values

and approximate the function by a spline. This greatly reduces the computational
burden and provides a large speed-up under MCMC sampling. This approach is
termed A-tree* in the paper, and the prior π(p g

g+e
) is denoted PC0(R g

g+e
).

S1.4 Data example

We simulated two datasets using the breeding program described in the main
paper by reducing the 10,000 individuals at the first trial stage (headrow) to
n = 700, 600, . . . , 100 individuals, and used one dataset of size 100 and one of size
500. The choices of hyperparameters for the priors follow the main paper: Va =
0.25 · 1.86 and Ve = 0.75 · 1.86. Figures S1.1 and S1.2 clearly demonstrates that
the dataset of size n = 500 provides more information than the data set of size
n = 100. Figure S1.2a indicates that the inference about the phenotypic variance
is not sensitive to the choice between the two priors for both n = 100 and n = 500,
whereas Figure S1.2b shows that inference about heritability is influenced by the
prior for n = 100, but not for n = 500. This suggests that it is important to select
a plausible prior that encodes prior belief for heritability. This is an argument
for a principled approach for prior construction directly targeting heritability and
phenotypic variance instead of additive and environmental variances separately.
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(a) Additive variance, σ2
a .

(b) Environmental variance, σ2
e .

Figure S1.1: Columns indicate data sizes n = 100 and n = 500, and rows indicate
priors A-comp∗ and A-tree∗. The upper panel (a) shows priors and posteriors
for additive variance σ2

a and the lower panel (b) shows priors and posteriors for
environmental variance σ2

e . Priors are not plotted for A-tree∗ because the prior on
the phenotypic variance σ2

P and thus also on σ2
a = p g

g+e
σ2
P and σ2

e = (1−p g
g+e

)σ2
P

are scale-invariant, and therefore improper.
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(a) Phenotypic (total) variance, σ2
P.

(b) Heritability, p g
g+e

.

Figure S1.2: Columns indicate data sizes n = 100 and n = 500, and rows indicate
priors A-comp∗ and A-tree∗. The upper panel (a) shows priors and posteriors
for phenotypic variance σ2

P and the lower panel (b) shows priors and posteriors
for heritability p g

g+e
. Priors are not plotted for the combination A-tree∗ and σ2

P

because the prior on σ2
P is scale-invariant, and therefore improper.
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S1.5 Extension to the additive and dominance model

For Model AD, dominance values are added to the model,

yi = µ+ ai + di + ei, i = 1, 2, . . . , n,

where n is the number of individuals, µ is the intercept, a = (a1, a2, . . . , an) ∼
Nn(0, σ

2
aA) are the additive values, d = (d1, d2, . . . , dn) ∼ Nn(0, σ

2
dD) are dom-

inance values, and e = (e1, e2, . . . , en) ∼ Nn(0, σ
2
eIn) is the environmental noise.

Let σ2
P = σ2

a+σ2
d+σ2

e be the phenotypic variance, p g
g+e

= (σ2
a+σ2

d)/(σ
2
a+σ2

d+σ2
e )

be the broad-sense heritability.

Following the main paper, we plan to describe the prior on the variances
through a joint prior on σ2

P, p g
g+e

, and the proportion of additive to genetic

variance, p a
g
= σ2

a/σ
2
g . The details are technical, and we therefore present the

rationale behind each prior before we describe the technical details. We will apply
independent priors to σ2

P, p g
g+e

, and p a
g
. These three priors will be described in

reverse order.

We believe that p a
g
should be around R a

g
, and desire a prior that favors this

value and penalizes deviations from R a
g
. Therefore, we apply Fuglstad et al.

(2020, Theorem 1) with the base model p a
g
= R a

g
, which yields

π(p a
g
) =





λ1|d′
1(p a

g
)|

2(1−exp(−λ1d1(0)))
exp(−λ1d1(p a

g
)), 0 < p a

g
< R a

g
,

λ1|d′
1(p a

g
)|

2(1−exp(−λ1d1(1)))
exp(−λ1d1(p a

g
)), R a

g
< p a

g
< 1.

This formulation guarantees that the median is R a
g
. This is a PCM(·) prior. The

distance is calculated as

d1(p a
g
) =

√
tr
(
Σ−1

0 Σ(p a
g
)
)
− n− ln

(
det(Σ−1

0 Σ(p a
g
)
)
,

where Σ0 = R a
g
A+ (1− R a

g
)D and Σ(p a

g
) = p a

g
A+ (1− p a

g
)D. In practice, we

have found

π(p a
g
) =

λ1|d′1(p a
g
)|

2
exp(−λ1d1(p a
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g
< 1,

to be a reasonable approximation for the datasets in this paper as d1(0) and
d1(1) � 1/λ1. The hyperparameter λ1 controls the spread of the prior around
the median R a

g
and is selected by numerical optimization so that a priori
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)
= 0.75,
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where logit(p) = ln(p/(1− p)).

In the next step we construct a prior for p g
g+e

with the base model p g
g+e

=

0. In this construction we assume the total genetic effect g|σ2
P, p g

g+e
= (a +

d)|σ2
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2
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)D)). This means that we fix p a

g
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under the construction of the prior for p g
g+e

. Following Fuglstad et al. (2020,

Theorem 1), a prior is constructed based on the distance measure
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)D. The resulting prior is
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)| exp(−λ2d2(p g
g+e

)), 0 < p g
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< 1.

We set the hyperparameter λ2 by specifying the median R g
g+e

of the prior for

p g
g+e

. This is achieved by setting

λ2 = − ln(0.5)

d2(p g
g+e

= R g
g+e

)
.

This is a PC0(·) prior.
We want a scale-invariant prior for the phenotypic variance, and choose a

Jeffreys’ prior:

π(σ2
P) ∝

1

σ2
P

, σ2
P > 0.

These three priors are combined with the previous prior on µ to form
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To allow sampling of both additive and dominance effects, we describe the model
as a hierarchical model
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Bayes’ theorem results in
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The inference is implemented through rstan, where we write code to calculate
ln(π(a,d, σ2

P, p g
g+e

, p a
g
|y)), and parameterization through the logarithm of the

variances and the logit transformation of the proportions are needed. This is
the approach termed AD-tree* in the paper, and the prior π(p g

g+e
) is denoted

PC0(R g
g+e

) and the prior π(p a
g
) is denoted PCM(R a

g
). Plots of priors and pos-

teriors offer little added value over those shown for Model A and are therefore
omitted.

The approach given in this section extends further to the model also including
epsistatis (Model ADX). One additional step is required, but the same approach
is taken for all steps as described above for Model AD.

Full details of the implementation in Stan for the approaches used in the paper
are found in Files S3 and S4. File S3 contains the full Stan-code used for model
fitting in the simulated case study, with necessary R functions and scripts for
constructing the prior distributions and running inference, and File S4 contains
the full Stan-code used in the real case study, with necessary R functions and
scripts.
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S2 Note S2: Results

Here we give a detailed description of the results for the the additive model with
model-wise default prior (A-tree) and the maximum likelihood approach (A-ML),
the additive and dominance model and the nonadditive model with model-wise
expert knowledge prior (AD-tree* and ADX-tree*), in addition to phenotype
selection. We show the results of the remaining settings in the Figures S11-S16.

Figure S2.1: Accuracy of estimating the different genetic values for all individuals
by model and prior setting - correlation (high value is desired, boxplots show
variation over replicates). Genetic (upper left) means the estimated additive
values for Model A, and the sum of estimated additive, dominance and epistasis
values for Model ADX.

S2.1 Estimating genetic values

While using the model-wise priors and expert knowledge significantly improved
the selection of the genetically best individuals compared to the maximum-
likelihood approach (see the main paper), it did not significantly improve the
accuracy of estimating different genetic values across all individuals. We show
this in Figure S2.1 with the correlation between the true (simulated) values and
corresponding posterior means and in Figure S2.2 with the continuous rank prob-
ability score (CRPS) between the true values and corresponding posterior distri-
butions. We show this for the genetic, additive, dominance and epistasis values
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Figure S2.2: Accuracy of estimating the different genetic values for all individuals
by model and prior setting - continuous rank probability score (CRPS; low value
is desired, boxplots show variation over replicates). Genetic (upper left) means
the estimated additive values for Model A, and the sum of estimated additive,
dominance and epistasis values for Model ADX.

separately. While there was a tendency of more favourable correlation and CRPS
for certain model and prior settings, the variation between replicates was much
larger than variation between the model and prior settings. The model-wise
prior tended to perform better than the component-wise prior, expert knowl-
edge tended to perform better than the default non-informative prior knowledge
and use of prior knowledge via the Bayesian approach tended to perform better
than the maximum likelihood. All models performed better in estimating the
genetic and additive values, especially in the terms of CRPS, than the phenotype
selection where we treat the phenotype as a point estimate of the genetic value.

S2.2 Estimating variances

Variance component estimates varied considerably around the true values for
all models and prior settings, but the estimates from the Bayesian inference
showed slightly larger biases and smaller variance estimates than the maximum
likelihood approach. We show this in Figure S2.3 with the ratio of estimated
to true variances (value close to 1 is desired and values below/above 1 denote
underestimation/overestimation). Of the model and prior settings in Figure S2.3,
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(a) Environmental and genetic variance.

(b) Additive, dominance and epistasis variance.

Figure S2.3: Accuracy of estimating (a) environmental and genetic variance and
(b) additive, dominance and epistasis variance by model and prior setting - ex-
pressed as the estimated posterior median divided by the true value (a value close
to 1 is desired, boxplots show variation over replicates, x-axes have a log-scale
(except for environmental variance) and is focused on area around 1 with some
outliers excluded).
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A-ML was the closest to the true value on average in estimating the genetic
variance, but also had the largest variation between replicates. Bayesian analysis
with A-tree reduced variance between replicates, but did not improve bias. AD-
tree* and ADX-tree* further increased the bias (underestimation) compared to
A-ML and A-tree. When estimating dominance variance, AD-tree* performed
better than ADX-tree*, but does not give estimates of the epistasis variance.
Estimates for epistasis variance were considerably more underestimated than for
the dominance variance.

In Figure S2.4 we show the posterior distributions of the environmental, addi-
tive, dominance and epistasis variances from one year in one simulated breeding
program for the ADX-tree* setting (model-wise expert knowledge priors for the
additive and nonadditive model). We see what we would expect: The envi-
ronmental variance is larger than the variances of the genetic components, the
additive effect stands for most of the genetic variation, and the dominance and
epistasis variances are small.

We show the prior and posterior distributions of the phenotypic variance, the
proportion of genetic to phenotypic variance, proportion of additive to genetic
variance, proportion of dominance to nonadditive variance, also for the ADX-
tree* setting in Figure S2.5. We see that the data informs about the phenotypic
variance and the broad-sense heritability, but only weakly informs about the two
other splits.
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Figure S2.4: Posterior distribution of the environmental, additive, dominance and
epistasis variance from the ADX-tree* setting, from one year in one simulated
breeding program. Priors are not plotted because the prior on the phenotypic
variance σ2

P and thus also on the variance parameters σ2
e , σ

2
a , σ

2
d and σ2

x, are
scale-invariant, and therefore improper.
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Figure S2.5: Prior and distribution of the phenotypic variance and variance pro-
portions from the ADX-tree* setting, from one year in one simulated breeding
program. The prior is not plotted for phenotypic variance σ2

P because it is scale-
invariant, and therefore improper.
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S2.3 Increasing number of observations

Figure S2.6 shows the ability of estimating the model variances for increasing
number of individuals for the additive (A) model and the additive and nonadditive
(ADX) model. The plot shows the posterior median from each model fit divided
by the true variance from the simulated breeding program. Figure S2.6 shows
the variance estimates from Models A and ADX, and datasets of size 100, 300,
500 and 700 here, and include the full results with variance estimates, correlation
and continuous rank probability score (CRPS) for all models and number of
individuals in the Figures S14-S16. From the environmental variance estimates
we see that the variation between replicates decreases for all models for increasing
number of observations. The maximum likelihood approach underestimated the
additive, dominance and epistasis variances to a larger extent than the Bayesian
approach did, and this underestimation decreased when the number of individuals
increased. However, 700 observations is not enough for the maximum likelihood
approach to obtain a bias in dominance and epistasis variance estimates as low
as the Bayesian approach, indicating that the need for good priors decrease with
increasing number of observations, but suitable priors are still necessary also
for 700 observations. The inference stability did not increase with increasing
number of observations for any of the models fitted with the maximum likelihood
approach. The Bayesian models had the same high inference stability as in Table
2 in the main paper.

The correlation did not differ significantly between models and approaches,
and increased with increasing number of observations for all settings (Figure S15).
The CRPS of the genetic and additive effects was significantly lower (better) for
the models fitted with the Bayesian approach for a low number of individuals,
but the maximum likelihood approach improved quickly when the dataset size
increased (Figure S14). The Bayesian models had a significantly lower CRPS
of the dominance and especially epistasis effects than the maximum likelihood
approach for all dataset sizes. The results from the additive and dominance (AD)
model did, with an exception of slightly more overestimation of the dominance
variation for the maximum likelihood approach, not differ from the results from
the nonadditive model (ADX).
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Figure S2.6: Accuracy of estimating environmental, additive, dominance and
epistasis variance expressed as the estimated posterior median divided by the
true value (a value close to 1 is desired). The dataset size is indicated for each
box, and the y-axis shows the model and prior settings. x-axes have a log-scale
(except for environmental variance), and all values smaller than 10−6 are set to
10−6 as those values are essentially zero.
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S3 Supplemental tables and figures

Trial No. of obs.
Adenstedt (Ade13) 1,729
Böhnshausen (Boh12) 1,101
Böhnshausen (Boh13) 1,692
Hadmersleben (Had12) 1,738
Hadmersleben (Had13) 1,669
Harzhof (Hhof12) 1,736
Harzhof (Hhof13) 1,738
Hohenheim (Hoh12) 1,720
Hohenheim (Hoh13) 1,703
Seligenstadt (Sel12) 834
Seligenstadt (Sel13) 1,739

Table S1: The number of observed phenotypes for each of the 11 trials in the 6
locations in Germany for the Central European wheat dataset. The total number
of individuals in the dataset is 1,739, where 15 are male parents, 120 are female
parents and 1,604 are hybrids. Names in parentheses are the abbreviations used.
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Figure S1: The prior used for the A-comp* (additive model with component-wise
expert knowledge prior) (left) and A-comp (additive model with component-wise
default prior) (right) settings. For A-comp*, we use h2

g = 0.25. We have plotted
the priors for VP = 1. For A-comp, additive and environmental variances have
the same prior.

Figure S2: The prior used for the AD-comp* (additive and dominance model
with component-wise expert knowledge prior) setting. We use R g

g+e
= 0.25 and

R a
g
= 0.85. We have plotted the priors for Vp = 1.
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Figure S3: The prior used for the ADX-comp* (additive and nonadditive model
with component-wise expert knowledge prior) setting. We use R g

g+e
= 0.25,

R a
g
= 0.85 and R d

d+x
≈ 0.67. We have plotted the priors for Vp = 1.

Figure S4: The HD prior used for the ADX-tree-opp* (additive and nonadditive
model with model-wise opposite expert knowledge prior) setting with the pro-
portion of genetic to phenotypic variance p g

g+e
, additive to genetic variance p a

g
,

and dominance to nonadditive variance p d
d+x

. We use R g
g+e

= 0.25, R a
g
= 0.05

and R d
d+x

≈ 0.11. This is a dataset specific prior.
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Phenotypic

EnvironmentalAdditive Dominance
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(a) Tree structure.

(b) Prior.

Figure S5: The (a) tree structure and (b) HD prior for the AD-tree (additive and
dominance model with model-wise default prior) setting with equal magnitude
for the four sources of variation without using expert knowledge - the proportion
of additive to phenotypic variance p a

g+e
, and dominance to phenotypic variance

p d
g+e

. This corresponds to a Dirichlet (3) prior on the variance proportions.
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Phenotypic
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(a) Tree structure.

(b) Prior.

Figure S6: The (a) tree structure and (b) HD prior for the ADX-tree (additive and
nonadditive model with model-wise default prior) setting with equal magnitude
for the four sources of variation without using expert knowledge - the proportion
of additive to phenotypic variance p a

g+e
, dominance to phenotypic variance p d

g+e
,

and epistasis to phenotypic variance p x
g+e

. This corresponds to a Dirichlet (4)
prior on the variance proportions.



Supplementary materials: Robust modeling of genetic variation 179

(a) A-tree*. (b) AD-tree*.

(c) ADX-tree*.

Figure S7: The model-wise expert knowledge HD prior used in (a) A-tree*, (b)
AD-tree* and (c) ADX-tree* settings in the analysis of the Central European
winter wheat data. R g

g+e
= 0.75, R a

g
= 0.85 and R d

d+x
≈ 0.67.
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Figure S8: Covariance matrices for the additive (A), dominant (D), epistasis
(X) and environmental (In) sources of variation for one year in one simulated
breeding program.
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Figure S9: Scatterplot of entries of the covariance matrices for the additive (A),
dominant (D), epistasis (X) and environmental (In) sources of variation for one
year in one simulated breeding program. The off-diagonal values for each row is
plotted pairwise against the diagonal value on the same row.



182 Fuglstad, G.-A., Hem, I. G., Knight, A., Rue, H., and Riebler, A.

Figure S10: The joint posterior of the environmental and epistasis variances (log-
scale) for one year in one simulated breeding program with the ADX-tree (left)
and ADX-tree* (right) settings. By a divergent sample we mean a sample where
the MCMC sampler had a divergent transition.



Supplementary materials: Robust modeling of genetic variation 183

Figure S11: The ability to estimate the different genetic values for all individuals
by the model and prior setting - correlation (high value is desired, boxplots show
variation over replicates). Genetic (upper left) means the estimated additive
values for Model A, the sum of the estimated additive and dominance values for
Model AD, and the sum of estimated additive, dominance and epistasis values
for Model ADX.
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Figure S12: The ability to estimate the different genetic values for all individuals
by the model and prior setting - continuous rank probability score (CRPS; low
value is desired, boxplots show variation over replicates). Genetic (upper left)
means the estimated additive values for Model A, the sum of the estimated ad-
ditive and dominance values for Model AD, and the sum of estimated additive,
dominance and epistasis values for Model ADX.
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(a) The environmental and genetic variance.
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(b) The additive, dominance and epistasis variance.

Figure S13: The ability to estimate (a) environmental and genetic variance and
(b) additive, dominance and epistasis variance by the model and prior setting -
expressed as the estimated posterior median divided by the true value (a value
close to 1 is desired, boxplots show variation over replicates, x-axes have a log-
scale (except for environmental variance) and is focused on area around 1 with
some outliers excluded).
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(a) The environmental and additive variance.
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(b) The dominance and epistasis variance.

Figure S14: The ability to estimate (a) environmental and additive variance and
(b) dominance and epistasis variance by model, prior setting and size - expressed
as the estimated posterior median divided by the true value (a value close to 1
is desired).



Supplementary materials: Robust modeling of genetic variation 189

(a) The environmental and additive effect.
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(b) The dominance and epistasis effect.

Figure S15: The ability to estimate (a) environmental and additive effect and (b)
dominance and epistasis effect by the model, prior setting and size - correlation
(high value is desired, boxplots show variation over replicates).
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(a) The environmental and additive variance.
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(b) The dominance and epistasis variance.

Figure S16: The ability to estimate (a) environmental and additive effect and (b)
dominance and epistasis effect by the model, prior setting and size - continuous
rank probability score (CRPS; low value is desired, boxplots show variation over
replicates).
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Figure S17: The ability of phenotype prediction in the real case study for all 11
trials, measured using correlation (high value is desired, boxplots show variation
over cross-validations and folds). The number of observations in each dataset is
indicated for each trial. The total number of parents and hybrids is 1,739.
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Figure S18: The ability of phenotype prediction in the real case study for all
11 trials, measured using continuous rank probability score (CRPS; low value is
desired, boxplots show variation over cross-validation and folds). The number
of observations in each dataset is indicated for each trial. The total number of
parents and hybrids is 1,739.
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(a) Trials where the approaches perform equally good.
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(b) Trials where we have a lot of ubobserved phenotypes, and ML is diverging. For
Boh12 and Sel12, A-ML (additive model fitted with the maximum likelihood approach)
is overestimating the additive variance to be so large (estimates over 900 and 400,
respectively) that we have truncated the y-axes at 2.5 and 1.5, respectively, to highlight
the other results.
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(c) Trials where the maximum likelihood approach leads to overfitting.

Figure S19: Posterior median variances from (a) Ade13, Boh13, Hhof12, Hoh12,
Hoh13 and Sel13, where both approaches perform equally good, (b) Boh12 and
Sel12, where large amounts of the phenotypes are unobserved and the maximum
likelihood approach is diverging, and (c) Had12, Had13 and Hhof13, where ML is
overfitting. We have included the variances from the five 5-fold cross-validations,
giving 25 estimates for each trial and model. We have removed results where the
maximum likelihood optimizer did not converge. The y-axes of (b) are truncated
to highlight the other results. The total number of parents and hybrids is 1,739.
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Abstract

makemyprior is an R package that formulates prior distributions for vari-
ance parameters taking the entire model structure into account. Existing
prior or expert knowledge can be intuitively incorporated at the level it
applies to. Independent of the existence of any prior knowledge the pack-
age enhances the consciousness of prior selection and makes it an active
component in the Bayesian workflow performed by the applied researcher.
The prior distribution is constructed based on a hierarchical decomposi-
tion of the total variance in the model along a tree. It is proper and leads
to robust inference. The user controls the prior construction by specifying
their prior beliefs or ignorance at each level of the prior tree and obtains
the resulting prior distributions without any additional involvement. A
graphical user interface facilitates prior construction through visualization
of the tree and returns the priors graphically for each variance proportion
parameter.

Keywords: Bayesian hierarchical models, robust inference, variance pa-
rameters, prior distributions, hierarchical variance decomposition, graphi-
cal user interface, R.

1 Introduction

Bayesian modelling is more available than ever through fast and easy-to-use soft-
wares for Bayesian inference such as Integrated Nested Laplace Approximations
(INLA, Rue et al., 2009), Stan (Carpenter et al., 2017) with the R interface rstan
(Stan Development Team, 2020) and dependencies such as rstanarm (Goodrich
et al., 2020), shinystan (Gabry, 2018) and loo (Vehtari et al., 2020), Tem-
plate Model Builder (TMB, Kristensen et al., 2016), JAGS (Plummer, 2017),
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and Bayesian Analysis Toolkit (BAT, Caldwell et al., 2009). These softwares
offer many ways to construct complex models suitable for a wide range of ap-
plications, and often give default settings and as such not requiring any action
by the user. It is convenient to use the default priors, but then the Bayesian
framework is not fully utilized. How to implement the priors is explained in the
softwares, but they lack thorough guides on how the priors should be chosen, even
though there is an increasing focus on that prior distributions should be chosen
consciously (Zondervan-Zwijnenburg et al., 2017; Gelman et al., 2020; Smid and
Winter, 2020). Our goal is to empower users to actively select priors that are
suitable for their model structure and application at hand, and to increase the
awareness of prior choices. The user is confronted with which priors are chosen
and what they express, also when the default settings are chosen.

We focus on Bayesian hierarchical models that model the variation in the ob-
servations through a combination of an observation model, a linear latent model,
and priors for the parameters. The observation model defines a distribution for
the observed data conditional on the latent model. The link between the latent
model and each observation acts through a transformation of a linear predictor,
which is a linear combination of fixed and random effects. The goal of the lin-
ear predictor is to explain the variation in the true signal. We concentrate on
latent Gaussian models, where the linear predictor is composed of random model
components that follow multivariate Gaussian distributions conditional on the
parameters. These parameters control the random effects and need prior distri-
butions. We set focus to the most central type of model parameters: the variance
parameters. Other parameters such as correlations are outside the scope of the
paper.

Parameters controlling mean and medians, such as the coefficients of fixed
effects, are close to the data and tolerate vague priors (Goel and Degroot, 1981;
Gelman et al., 2020), and are commonly given Gaussian priors with zero mean and
a fixed high variance. We follow Fuglstad et al. (2020) and do not give attention to
the fixed effect coefficients. The specification of a prior distribution for a variance
parameter can be regarded as a challenge (Lambert et al., 2005; Gelman et al.,
2017), but is at the same time a strong feature of Bayesian inference, as here prior
knowledge, obtained from previous experiments or comparable investigations,
and expert knowledge can be included to make the model more robust and more
complete. So far, there is no R package that intuitively allows the proper inclusion
of such knowledge and simple visualization of chosen priors in a straightforward
manner. Here, we present the R package makemyprior that tries to fill this gap,
and is a tool for increasing the awareness around prior choices.

The makemyprior package applies the hierarchical decomposition (HD) prior
framework proposed by Fuglstad et al. (2020) and distributes the total variation
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in the observed data to the random effects following a prior tree structure. In this
tree, the leaf nodes represent the random effects specified in the linear predictor,
and the root node represents the sum of the random effect variance, denoted the
total variance. We do not include the variance of the fixed effects in neither the
tree nor in the total variance, only the latent random effects and their variances.
How much variation is distributed from a parent node to its child nodes is deter-
mined by a split in the tree, and this procedure continues until the leaf nodes.
This gives us a parameterization with proportions of variation, instead of the
more common variance parameter parameterization. The priors for those vari-
ance proportion parameters can be specified intuitively and transparently as they
often coincide with the scale on which prior or expert knowledge exists, such as
in genomic modelling (Holand et al., 2013; Hem et al., 2021) and disease mapping
(Wakefield, 2006). The main goal with makemyprior is to raise the awareness of
the need of prior distributions and to help the user to formulate, compute and
visualize sensible and proper prior distributions.

makemyprior allows the user to specify the prior distribution either directly
within R or through a graphical user interface (GUI). In the GUI the user can in-
spect the prior tree and adapt it as needed. Consequently, one can click through
the splits independently, or be guided, to specify the beliefs for each split. The
user be ignorant and distribute the variance equally to the child nodes through
a Dirichlet prior, or exploit expert knowledge implemented via penalized com-
plexity (PC, Simpson et al., 2017) priors. The PC prior is a principle-based,
weakly-informative proper prior, and is used by Fuglstad et al. (2020) in the HD
prior framework to formulate a joint prior where the whole model is taken into
account. After completing the prior specification the package computes the joint
prior, which has desired properties such as being robust and interpretable, the
package allows to feed the prior directly into the R packages rstan and INLA for
inference.

We begin with explaining the concepts of total variance and hierarchical vari-
ance decomposition through two motivating examples in Section 2. We then in-
troduce the necessary background in Section 3 before we present the makemyprior
package with general explanations on how to use it in Section 4. Section 5 gives
more detailed examples showing how to use the package in various situations.
A summary and discussion is given in Section 6. The package is available at
https://github.com/ingebogh/makemyprior_0.1.0 with instructions on how
to install it.
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2 Motivating examples

We demonstrate the core ideas of total variance and hierarchical decomposition
of the total variance through two illustrative examples. These examples are
simplified versions of examples we use later to demonstrate the usage of the
makemyprior package.

First, in quantitative genetics, one of the key quantities, heritability, concerns
the distribution of observed variation to genetic and environmental sources. In
this setting, good intuition exists on the ratio of genetic to phenotypic variation,
also known as the heritability, whereas it is more difficult to define suitable priors
separately on the two variance parameters.

Example 2.1 (Genomic models). Consider a group of n individuals, where
each individual i has an observed phenotype yi. A simple genomic model is

yi = µ + ai + εi, i = 1, . . . , n, (1)

where µ is an intercept, a = (a1, . . . , an)> ∼ Nn(0, σ2
aA) is an additive genetic

effect, and ε = (ε1, . . . , εn)> ∼ Nn(0, σ2
εIn) is environmental noise. The co-

variance matrix A is calculated based on genetic sequencing of the n individuals
and is scaled so that σ2

a is representative of the variance arising from the genetic
effect; see Selle et al. (2019); Hem et al. (2021) for details.

In this simple model, two key quantities are the phenotypic variance σ2
a+ε =

σ2
a + σ2

ε , which is the total variance, and the heritability ω a
a+ε

= σ2
a/(σ2

a + σ2
ε),

which is the proportion of the phenotypic variance explained by the genetic effect.
When expert knowledge is available about these two quantities, this information
can be directly exploited through a joint prior assigned to phenotypic variance and
heritability. A simple and intuitive visualization of this parameterization is given
by the tree in Figure 1a where the phenotypic variance σ2

a+ε = σ2
a + σ2

ε in the
top (root) node is distributed to the genetic variance σ2

a and the environmental
variance σ2

ε in the two leaf nodes. Note that we do not include the intercept in
the tree, and treat it independently with a wide Gaussian prior. See Hem et al.
(2021) for a detailed description.

The idea of expressing a parameterization that is given in terms of total
variance and proportions of variances through a tree, extends to more complex
models with more random effects. For example, when analysing data arising from
designed experiments.

Example 2.2 (Design of experiments). Based on the ideas in Fuglstad et al.
(2020), we assume that a field is split into rows and columns resulting in a 9 × 9
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a + ε

εa

(a) Genomic model.

α + β + γ + ε

εα + β + γ

α β γ

(b) Latin square model.

α + β + γ + ε

εα + β + γ

α + β

α β

γ

(c) Latin square model.

Figure 1: Prior trees for (a) the genomic model in Example 2.1, and (b, c) the
latin square model in Example 2.2.

grid, and that one out of 9 different strengths of fertilizer is applied in each grid
cell. Outcomes yi,j are observed in row i and column j under treatment k[i, j],
and modelled through

yi,j = αi + βj + γk[i,j] + εi,j , i, j = 1, . . . , 9, (2)

where α = (α1, . . . , α9)> ∼ N9(0, σ2
αI9) is a row effect, β = (β1, . . . , β9)> ∼

N9(0, σ2
βI9) is a column effect, γ = (γ1, . . . , γ9)> ∼ N9(0, σ2

γI9) is a treatment
effect, and the residual noise is ε = (ε1,1, ε1,2 . . . , ε9,9)> ∼ N81(0, σ2

εI81). α, β
and γ have sum-to-zero constrains. The individual variances, σ2

α, σ2
β, σ2

γ and σ2
ε ,

are nuisance parameters, and it may be difficult to have prior knowledge about
them.

Figures 1b and 1c visualize two ways in which the total variance σ2
α+β+γ+ε =

σ2
α+σ2

β+σ2
γ+σ2

ε can be distributed to the individual variances σ2
α, σ2

β, σ2
γ and σ2

ε in
the leaf nodes. Using Figure 1b, we could envision that, in the top split, shrinkage
is applied to the latent variance σ2

α+β+γ = σ2
α + σ2

β + σ2
γ relative to the residual

variance σ2
ε with the goal of reducing the risk of overfitting. Then in the second

split, we could envision that we want to express ignorance about how the latent
variance is distributed to the individual variances σ2

α, σ2
β and σ2

γ . Alternatively,
using Figure 1c, we may want to express ignorance about how σ2

α+β = σ2
α + σ2

β

is distributed to σ2
α and σ2

β, but apply shrinkage to the variance of the treatment
variance σ2

γ relative to σ2
α+β. The full details can be found in Fuglstad et al.

(2020).

Examples 2.1 and 2.2 make it clear that in some cases it is natural to think
in terms of proportions of variances. However, explicitly writing out how the
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proportions are defined may obfuscate the key ideas that one want to express.
Therefore, trees such as shown in Figure 1 are critical to define such priors. We
want to emphasize that a prior can be chosen in many ways, and there are no
wrong choices. Our message is that it is a choice to use the default prior, it is
a choice to use literature-based priors, and it is a choice to use prior and expert
knowledge in the prior. We believe it is important to communicate this and to
make prior selection an active part of the Bayesian workflow.

3 Background

In this section, we present the necessary theoretical and methodical background
behind the makemyprior package, in addition to terminology used throughout
the paper.

3.1 Hierarchical variance decomposition along a prior tree

3.1.1 General definition of a prior tree

A prior tree is a directed acyclic graph consisting of a top node, split nodes
and leaf nodes, connected by directed edges. Each random model components is
represented by a leaf node. The top node in the tree represents total variance, i.e.,
the sum of the variance of the leaf nodes (random effects). Note that even though
we may have fixed effects in the model that contribute to the total variance in
the data, we follow Fuglstad et al. (2020) and omit intercept and fixed effects, in
the hierarchical decomposition (HD) prior and thus also in the tree, and the total
variance refers to the sum of the variance of the random effects. We combine two
or more leaf nodes in a split node in a way that reflects the hierarchical model
and our prior beliefs about how the total variance is distributed. The split nodes
represent a variance proportion. Note that a top node is also a split node.

In some cases we might want to include only a subset of the model components
in the same prior tree, and in that way have several trees. An example is the
animal model (e.g., Holand et al., 2013), a mixed model that is usually used
to decompose environmental and genetic variances in animal populations. We
may have a good intuition on the absolute magnitude of the variation that is
explained by the environment and by all the genetic contributions separately, but
the latter might be split into several sub-components, like additive, dominance
and mutational variance where we only have intuition on the relative magnitude of
the variation. The genetic contributions are confounded, thus it is useful to split
the variance of the genetic contribution using a prior tree, and in that way have
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both variance parameters, total variance parameters, and variance proportions.
If a variance component is assigned an individual prior, its corresponding random
effect is represented by a singleton: a node not connected to any other nodes.
The singletons can be considered as trees with only one node, and no variance to
distribute. Several prior trees gives a prior forest. We refer to the forest of trees as
the prior tree structure of the model. Each tree in a tree structure is associated
with their own joint prior distribution, independent of the priors belonging to
the other trees. The tree structure is made based on prior knowledge about the
model, data and problem at hand.

3.1.2 Defining priors for the split nodes: Shrinkage versus ignorance

Given a tree structure describing the distribution of the variance in the model,
we can use the rest of our pre-existing knowledge to steer the variance to the dif-
ferent model components by choosing suitable priors for the different parameters
belonging to the prior tree.

A good prior distribution can improve the robustness of the inference, by
helping to avoid estimating spurious effects. We apply penalized complexity
(PC) priors as they shrink towards a so-called base model and are thus robust
by design. PC priors are based on the distance d(·) between the base model
and a flexible extension of the base model, measured using the Kullback-Leibler
divergence (Simpson et al., 2017). In the base model the parameter of interest
θ is fixed to θ0. An example of a base model for a random effect with mean
zero and one variance parameter is to fix this variance parameter θ = σ2 to zero,
which corresponds to removing the effect from the model. In the flexible model
on the other hand, θ is allowed to vary. The PC prior induces shrinkage towards
the base model, which gives a robust prior that aids to avoid overfitting. As in
Simpson et al. (2017), we use an exponential prior for the distance d(·) between
the two models, and transform this to a prior on the desired parameter. This
means that the PC prior always is an exponential distribution on the distance,
but for the parameter in question θ the distribution varies with parameterization,
choice of base model and covariance matrix structures, and does in general not
have an analytical expression. The parameter θ can be a variance or standard
deviation (Simpson et al., 2017), a variance proportion (Fuglstad et al., 2020;
Hem et al., 2021), or, for example, a correlation parameter (Guo et al., 2017).
In makemyprior we consider standard deviation σ (and variance σ2) parameters
together with variance proportions ω. For a standard deviation the distance is
simply d(σ) = σ (Simpson et al., 2017). For a variance proportion parameter
the distance will be a function of the covariance matrices of the random effects
involved in the split, see Fuglstad et al. (2020) for details.
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When constructing the joint prior, a bottom-up approach following the prior
tree is used, and the prior will thus be dependent on prior tree structure. The dis-
tance measure d(·) for a variance proportion depends on the covariance matrices
of the effects of the child nodes in a split (Fuglstad et al., 2020), and the covariance
matrix of a split node will be a function of the variance proportions(s) involved in
this split. This means we must condition on the variance proportions associated
with splits lower in the tree (if any), and that each prior depends on choices and
covariance matrices at that and lower levels. We omit the dependence of tree
structure, covariance matrices and prior choices for other splits in the notation of
the PC prior for readability. Consider a random intercept model yi,j = ai + εi,j

for i, j = 1, . . . , 10, where ai
iid∼ N (0, σ2

a) is a group effect and εi
iid∼ N (0, σ2

ε) is
a residual effect. We define the variance proportion ω a

a+ε
= σ2

a
σ2

a+σ2
ε
. Then we

denote the different PC prior distributions as:

• σ∗ ∼ PC0(U, α), with Prob(σ∗ > U) = α, and shrinkage towards σ∗ = 0.

• ω a
a+ε

∼ PC0(m) with Prob(ω a
a+ε

> m) = 0.5 so that m defines the median,
and shrinkage towards ω a

a+ε
= 0, i.e., the base model is a model with only

ε.

• ω a
a+ε

∼ PC1(m) with Prob(ω a
a+ε

> m) = 0.5 so that m defines the median,
and shrinkage towards ω a

a+ε
= 1, i.e., the base model is a model with only

a.

• ω a
a+ε

∼ PCM(m, c) with Prob(ω a
a+ε

> m) = 0.5 and Prob(logit(1/4) <

logit(ω a
a+ε

) − logit(m) < logit(3/4)) = c so that m defines the median,
and c says something about how concentrated the distribution is around
the median. The shrinkage is towards ω a

a+ε
= m, i.e., the base model is a

combination of the effects a and ε.

Note that PC1(m) on ω a
a+ε

is equivalent to PC0(1 − m) on 1 − ω a
a+ε

= ω ε
a+ε

.
Since the PC prior is a prior put on the distance between two models, and then
transformed to the parameter of interest, we do not distinguish the notation
between the PC prior on a standard deviation and variance parameter, as it will
result in the same prior. In Figure 2 we show examples for the four different
priors. Note that the shape of the PC prior on a standard deviation, shown in
Figure 2a, is independent of the hyperparameters and other hyperparameters will
simply give a rescaling of the axes.

If the covariance matrix of the base model is non-singular, we get a PC prior
where the median is guaranteed to be where we choose it to be, as in Figure 2b.
However, if the base model is chosen so that the covariance matrix is singular,
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(a) σ ∼ PC0(3, 0.05). (b) ω ∼ PC0(0.75).

(c) ω ∼ PC1(0.25). Note that the base
model has a singular covariance matrix.

(d) ω ∼ PCM(0.25, 0.8).

Figure 2: Examples of the different PC priors for a random intercept model
yi,j = ai + εi,j for i, j = 1, . . . , 10. ω = σ2

a/(σ2
a + σ2

ε).

we get a distance measure that is infinite, and we cannot have a median that
is further than 0.25 from the base model, which is the case for the prior in
Figure 2c (see Fuglstad et al. (2020, Theorem 1) for details). The base model
covariance matrix is always non-singular for a PCM prior (shown in Figure 2d).
The concentration parameter c in PCM(m, c) measures how certain we are about
the prior median, and can be between 0.5 and 1. Fuglstad et al. (2020) suggest
c = 0.5. A concentration of less than 0.5 will indicate that a prior with median
at ω = 0.5 is less concentrated around 0.5 than a uniform distribution on [0, 1]
would be, and thus we set the lower limit to 0.5. As this parameter says something
about how much of the distribution mass is in an interval that is smaller than
the parameter space (0 ≤ ω ≤ 1), the distribution will not change much when c
approaches 1.

The difference between the PC0/PC1 and PCM priors is how certain the user
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is in the prior knowledge. In the genomic model in Example 2.1, assume we
have knowledge about the heritability from similar experiments, and that, for
this phenotype and species, it is around 0.4. If we are certain that the additive
genetic effect is contributing to the variation in the observed phenotype, we use
a PCM prior with median m = 0.4, and we choose the concentration parameter
c based on how strongly we believe in this value. In this case we get a prior with
shrinkage towards a heritability of 0.4. If the contribution of the additive effect
to the total variation is not clear, for example due to a small data sample, we can
use a PC0 prior with median m = 0.4, which results in a prior with shrinkage
towards the heritability being 0.

By using a multi-split, a split with more than two child nodes, the user ex-
presses no strong opinions on how the variance is distributed among the com-
ponents involved in the split, and we follow Fuglstad et al. (2020) and use the
ignorant symmetric Dirichlet prior on such splits. For a split with p children this
prior is given by:

π(ω, p) = Dirichlet(p) = Γ (pα)
Γ (α)p

(
p∏

i=1
ωi

)α−1

,

where ω is the vector of variance proportions involved in the split with ωi > 0
for i = 1, . . . , p and

∑p
i=1 ωi = 1. Further, Γ(·) denoted the gamma function and

α > 0 is chosen so P(logit(1/4) < logit(wi) − logit(1/p) < logit(3/4)) = 1/2 for
i = 1, . . . , p (if this is achieved for one i, it is by symmetry achieved for all i).
This prior assigns equal amount of variance to each model component. For a split
consisting of p nodes we denote this as ω ∼ Dirichlet(p) for each proportion in
the split. Note that a Dirichlet(2) prior can be used on a dual split where the user
wants to be ignorant about the attribution of variance to the two child nodes.
The Dirichlet distribution for a dual split reduces to a uniform distribution.

There may be situations where the user wants to assign unequal amounts of
variance to the components in a multi-split. In that case, the user has opin-
ions about the variance decomposition in the split, and should thus not use the
ignorant Dirichlet prior. Instead we transform the multi-split to several dual
splits and use a PC prior on each of the dual splits. In Example 2.2, assume
that we want a (20, 30, 50) division of the latent total variance of α, β and γ.
This we achieve by first splitting the variance 50/50 between γ and α, β with
a PCM(0.5, c) prior, and then dividing the variance of α and β 40/60 with a
PCM(0.4, c) prior for some suitable value of c, for example c = 0.5. We show the
corresponding tree structure in Figure 1c. We could also have chosen another
effect to split off first, but Fuglstad et al. (2020) show that this order does not
have much impact on the resulting prior.
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To ease the computation of the joint PC prior, we follow Fuglstad et al. (2020)
and condition on the base models of the splits below, instead of on the parameters
themselves. In this way we can pre-compute the marginal priors for each split
in the tree. The base model for the Dirichlet distribution is equal variance to
each component, i.e., for a split with p components the base model is 1/p of the
variance in the split node to each child node. A split where with a Dirichlet prior
do not use information from lower levels in the tree.

3.1.3 Defining priors for top nodes and singletons

Appropriate prior distributions for variance parameters varies with the likelihood.
We describe the train of thought when specifying prior distributions for variance
parameters when the likelihood is Gaussian, binomial and Poisson.

In a model with a Gaussian likelihood, the total variance is usually easy to
identify and does not need an informative prior. This is a parameter close to the
data in the model, just as the intercept, and settles with a vague prior (Gelman
et al., 2020). For the total variance in the top nodes, Fuglstad et al. (2020) rec-
ommend the scale-invariant, improper Jeffreys’ prior when all model components
are involved in one single tree. This prior does not require any hyperparameters
and is straight-forward to use. In cases where the user has specific knowledge
about the total model variance, a proper prior can be used to include this knowl-
edge in the prior. In cases where the nodes are not all involved in the same tree,
a scale-invariant prior is not meaningful, and an improper prior may lead to an
improper posterior. Fuglstad et al. (2020) recommend the PC prior, and so do we
due to its desirable shrinking properties, but any prior distribution suitable for
variance parameters is applicable. The hyperparameters can be selected using
a tail probability of the standard deviation, and we recommend a weak prior.
Singletons must always be assigned a proper prior.

For the genomic model in Example 2.1, assume we have prior knowledge
saying it is unlikely that the total standard deviation in the observed data is
greater than 4. We want to use this knowledge, and choose a PC0(U, α) prior
with U =

√
4. The value we choose for α says something about how certain we

are in the value of U . α = 0.05 is in this case a suitable choice.
Other likelihoods require proper priors on all variances, also the total vari-

ance, and scale-invariance is not meaningful for data that are not Gaussian.
Again we follow the recommendation of Fuglstad et al. (2020) and suggest PC
priors. However, instead of choosing a prior using the upper tail probability of
the standard deviation, we think on a different scale than for Gaussian data, and
choose a credible interval for the variance parameter on a suitable scale that we
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transform into an upper tail probability. For both binomial and Poisson data, an
exponential scale with logit and log links, respectively, is appropriate. This will
correspond to thinking on odds-ratio scale for binomial data, and on the scale
of the data for Poisson data. This is a bit less intuitive than for the Gaussian
likelihood, however, the interpretation of each single variance parameter is not
straight-forward either, and with the HD prior framework the user only needs to
consider one instead of multiple variance parameters.

Assume we have a model with linear predictor ηi = µ + ai + bi and binomial
likelihood with logit link function. An intuitive way of choosing a prior for the
total variance is to choose an equal-tailed credible interval for the effect of the
random effects on the odds-ratio, exp(ai +bi), i.e., Prob(l < exp(ai +bi) < u) = p
(Fong et al., 2010). For example, we can say we want Prob(0.1 < exp(ai + bi) <
10) = 0.9. This corresponds to a 90% credible interval [0.1, 10] for exp(ai + bi).
The idea is the same for a Poisson likelihood with a log link: we can think on
the effect of the random effects on the relative risk. Note that we do not include
fixed effects when we choose parameters for the prior.

4 Software

Throughout this section, the use of the package is exemplified by the following
model.

Model 1 (Example model). Consider the hierarchical model for the n = m · p
observations yi,j, i = 1, . . . p and j = 1, . . . , m, given by

yi,j |ηi,j , σ2
ε ∼ N (ηi,j , σ2

ε),
ηi,j = µ + xiβ + ai + bj ,

where µ is an intercept and xi is a covariate with coefficient β. a1, a2, . . . , ap
iid∼

N (0, σ2
a) and b1, b2, . . . , bm

iid∼ N (0, σ2
b) are random effects, and ε1, ε2, . . . , εn ∼

N (0, σ2
ε) are residuals.

Several likelihoods, latent models and prior distributions are available in
makemyprior, which can be listed with the function:

makemyprior_models(type = c("prior", "latent", "likelihood"),
select = NULL)
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4.1 Specifying the linear predictor and preparing the data
object

First, the linear predictor is specified using a formula object with a syntax similar
to e.g. lm() and inla(). Covariates are included directly by name in the formula,
and mc() is used to include information about each random effect:

mc(label, model = "iid", ...)

The main arguments are label (name of the effect) and model (the type of latent
model effect, i.i.d. is the default). The other arguments depend on the choice of
latent model, see documentation for details.

For Model 1 where both a and b are i.i.d., the formula is:

> formula <- y ~ x + mc(a) + mc(b)

The intercept µ is included by default, but can be removed with -1. The residual
effect for a Gaussian likelihood is not specified in the formula.

The next step is to gather data and create a data object as either a data.frame
or list with names corresponding to the elements of the formula. For Model 1,
we need the observed response y, the covariate x, and indexes for a and b (these
must be specified as integers). A simple simulated dataset is:

> p <- 10
> m <- 10
> n <- m*p
>
> set.seed(1)
> data <- list(a = rep(1:p, each = m),
+ b = rep(1:m, times = p),
+ x = runif(n))
> data$y <- data$x + rnorm(p, 0, 0.5)[data$a] +
+ rnorm(m, 0, 0.3)[data$b] + rnorm(n, 0, 1)

We recommend the use of short names for the input data because these names
need to be used to refer to model components in later steps. An example is
"rain" instead of "rainfall august 2020". Note that the observations yi,j are
not used to make the prior.
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Tree structure Text string

P
ri

or
1

a b ε "(a); (b); (eps)"

P
ri

or
2 εa + b

a b

"s1 = (a, b); (eps)"

P
ri

or
3 a + b + ε

εa b

"s1 = (a, b, eps)"

P
ri

or
4

a + b + ε

εa + b

a b

"s1 = (a, b); s2 = (s1, eps)"

Table 1: Four tree structures for Model 1 with text strings specifying them. s1
and s2 are names on the splits (variance proportions) chosen by the user in the
initial specification of the prior, and are used in a nested formulation to specify
the prior tree structure.

4.2 Exploring and selecting the prior graphically

We provide a graphical user interface (GUI) where the user can construct the
prior in an interactive way. The graphical user interface is implemented as a
shiny (Chang et al., 2020) app running locally and allows the user to first define
the tree structure, and then be guided sequentially through the steps of selecting
priors for each singleton, split and total variance. The interface supports the use
of prior forests (multiple trees) such as Priors 1 and 2 in Table 1. shiny apps are
useful to display and investigate results from analyses. For example, the user can
customize graphs and tables in a simple way. shiny apps are used by Depaoli
et al. (2020) to show why prior sensitivity analysis is important, and by Smid and
Winter (2020) to let users explore the impact of prior distributions in inference.
However, to the extent of our knowledge, as of today there are no packages or
apps that allows the user to use a shiny app (or similar) to specify priors for
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custom models and data and directly carry out inference.
The first step is to initialize a prior object. This is done with the function

make prior():

make_prior(formula, data, family = "gaussian", prior = list(),
intercept_prior = c(), covariate_prior = list())

formula and data are the objects created in Section 4.1, and family is the like-
lihood (Gaussian likelihood is the default; binomial and Poisson likelihoods are
also available). The prior argument is not relevant when the GUI is used, and its
description is deferred to Section 4.3. intercept prior and covariate prior
specifies the parameters for the Gaussian priors on the intercept and covariate co-
efficients. The default in makemyprior is N (0, 10002) for both, and the coefficient
priors are specified as a named list with names corresponding to the covariate
names.

For Model 1, we can create a prior object with the following command:

> prior <- make_prior(formula, data, family = "gaussian",
+ intercept_prior = c(0, 1000),
+ covariate_prior = list(x = c(0, 100)))

Warning message:
Did not find a tree, using default tree structure instead.

This gives a prior with a single tree with one split as shown in Prior 3 in
Table 1, which is the default setting. We get a warning, to make the user
aware that the default prior is chosen. For Gaussian likelihoods, a Jeffreys’
prior is set for the total variance. Let σ2

a+b+ε denote total variance, and ω =(
ω a

a+b+ε
, ω b

a+b+ε
, 1 − ω a

a+b+ε
− ω b

a+b+ε

)
describe the attribution of variance to the

three different sources, then the initial choice of priors is

ω ∼ Dirichlet(3) and σ2
a+b+ε ∼ Jeffreys′. (3)

The intercept has a N (0, 10002) prior, and the covariate a N (0, 1002) prior.
The function makemyprior gui() allows the user to select the desired prior

tree structure and choose prior distributions interactively:

makemyprior_gui(prior, guide = FALSE, no_pc = FALSE)

This function takes the arguments prior, which was created with make prior()
earlier, guide, which is a boolean that specificies whether or not the guide should



216 Hem, I. G., Fuglstad, G.-A., and Riebler, A.

Figure 3: Screenshot of the GUI in makemyprior with the default prior (Equation
3).

automatically start (the guide can be started at any time), and no pc. Since
the PC prior is computed using the covariance matrix structure of the model
components, it may be slow for large models. For a better user experience, the
user can turn off the computation of the PC prior in the GUI using no pc = TRUE.
The prior will be computed upon closing, and this will only affect the plotting of
the prior in the GUI.

For Model 1, we start the GUI by running:

> new_prior <- makemyprior_gui(prior)

This saves the changes made in the graphical interface to the variable new prior.
Figure 3 shows a screenshot of the GUI with Model 1 for m = p = 10 and the
default prior. The user can create the desired tree structure, and then choose the
desired priors for this tree. Note that every time the tree structure is modified,
all splits are set to have the default Dirichlet prior. Figure 4 shows a screenshot
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Figure 4: Screenshot of the GUI in makemyprior when the prior is chosen as in
Equation 4.

of the GUI where we have chosen the tree in Prior 4 in Table 1 and the following
distributions:

ω a
a+b

∼ PCM(0.7, 0.5), ω a+b
a+b+ε

∼ PC0(0.25), and σa+b+ε ∼ PC0(3, 0.05). (4)

The chosen prior distributions and the connection between the parameterization
and model variances are easily seen in the GUI. Figure 5 shows the initial page
of the guide, where the user is asked about the tree structure, and then guides
them through how to choose priors based on prior knowledge for each split, total
variance and singleton through simple questions.

The GUI is intuitive and contains a thorough description of the options, and
we do not explain the features in detail here. We instead recommend to use the
guide in the GUI, either by running makemyprior gui() with guide = TRUE, or
clicking “Begin guide” inside the GUI itself. A summary of the prior object can
be printed with:
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Figure 5: Screenshot of the guide in makemyprior.

> summary(new_prior)

Tree structure: a_b = (a,b); eps_a_b = (eps,a_b)

Weight priors:
w[a/a_b] ˜ PCM(0.7, 0.5)
w[eps/eps_a_b] ˜ PC1(0.75)

Total variance priors:
sqrt(V)[eps_a_b] ˜ PC0(3, 0.05)

Covariate priors: intercept ˜ N(0, 1000ˆ2), x ˜ N(0, 100ˆ2)

y ˜ x + mc(a) + mc(b)

4.3 Selecting the prior non-graphically

If the prior has been constructed with the GUI, this section can be skipped. Here
we describe an alternative way to specify the prior without the use of a GUI.
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This is done with same function we use to make the default prior, make prior(),
through the prior argument. This is a named list with the following arguments:

tree The tree structure as a string. A split is specified as s1 = (a, b), where s1
represents a split node and can be any name except names of the input data
in data and the reserved eps, which is used for residuals for a Gaussian
likelihood. Short names are recommended. Note that these split names
are just used in the initial specification. The child nodes for each split are
included in parentheses separated by commas, and each split is separated
by semicolons. Singletons are included as (a). Examples of strings for
different tree structures for Model 1 are shown in Table 1.

V A named list with information on the priors on each top node and singleton,
i.e., all variances. Options are "pc", "jeffreys", "invgam", and "hc"
(Half-Cauchy). The names in the list are the top node and singleton names
from the tree argument.

w A named list with information on the priors on each split, i.e., all variance
proportions. The names in the list are the split node names from the tree
argument. Options are "pc0", "pc1", "pcM" and "dirichlet".

V and w must have the following structure for each element in the list: list(prior
= prior name, param = parameter vector), except for Jeffreys’ and Dirichlet
priors, where param should not be specified (as the distributions do not have
hyperparameters). See makemyprior models() for details, and see Section 5 for
examples on how to specify priors in specific examples.

The prior specified in Equation 4 for Model 1 can be specified as

R> prior <- make_prior(
+ formula, data,
+ prior = list(
+ tree = "s1 = (a, b); s2 = (s1, eps)",
+ w = list(s1 = list(prior = "pcM", param = c(0.7, 0.5)),
+ s2 = list(prior = "pc0", param = 0.25)),
+ V = list(s2 = list(prior = "pc0", param = c(3, 0.05)))
+ ),
+ covariate_prior = list(x = c(0, 100)))
R> prior

Model: y ~ x + mc(a) + mc(b)
Tree structure: a_b = (a,b); eps_a_b = (eps,a_b)
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Weight priors:
w[a/a_b] ~ PCM(0.7, 0.5)
w[eps/eps_a_b] ˜ PC1(0.75)

Total variance priors:
sqrt(V)[eps_a_b] ˜ PC0(3, 0.05)

Covariate priors: intercept ˜ N(0, 1000ˆ2), x ˜ N(0, 100ˆ2)

The names s1 and s2 are chosen by the user in the initial specification of the prior,
and can be any names that are not used for the data or eps which is reserved for
residuals. s1 and s2 will be changed automatically by make prior(), and are
only used as a link between the splits and priors. The order we list the children
for each split node in the tree argument decides which way we have shrinkage
with the PC priors. For s1 = (a, b), PC0(m) shrinks effect a (ω a

a+b
= 0 as

base model), PC1(m) shrinks effect b and PCM(m, c) gives shrinkage towards
ma + (1 − m)b. All three has median at ω a

a+b
= m. Note that PC0(m) on ω a

a+b

is equivalent to PC1(1 − m) on ω b
a+b

. Note that s1 and s2 have been changed to
a b and eps a b by the function.

All top nodes, singletons and split nodes without a specified prior will get
the default prior. The default settings in makemyprior are chosen based on the
findings of Fuglstad et al. (2020) to ensure robust inference:

• If no prior is specified (neither tree structure nor priors), the prior will
be a joint prior where all latent components (including a possible residual
effect) get an equal amount of the total variance in the prior through the
symmetric Dirichlet prior, and the default total variance prior.

• The default prior on the total variance (top nodes) varies with likelihood:

– Jeffreys’ prior for Gaussian likelihood for a tree structure with one
tree, PC0(3, 0.05) otherwise.

– PC0(1.6, 0.05) for binomial likelihood.
– PC0(1.6, 0.05) for Poisson likelihood.

• The default prior on an individual variance (singletons) varies with likeli-
hood:

– PC0(3, 0.05) for Gaussian likelihood.
– PC0(1.6, 0.05) for binomial likelihood.
– PC0(1.6, 0.05) for Poisson likelihood.
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• The default prior on a variance proportion (split node) is a Dirichlet prior
assigning equal amount of variance to each of the model components in-
volved in the split.

The reasoning behind these choices are as follows. For the variance propor-
tions, it can do more harm than it will be helpful to use a PC prior, and the
ignorant Dirichlet is chosen as the default. A standard Gaussian distribution
with mean 0 and variance 1 will have close to all the density mass between −3
and 3. To choose the default variance prior for other likelihoods, we have followed
the idea of Fong et al. (2010), and use a credible interval on some suitable scale.
The default prior for all variance parameters (both for top nodes and singletons)
in makemyprior for binomial and Poisson likelihoods is a PC prior with a 95%
credible interval between 0.2 and 5 for the multiplicative effect on the odds ratio
and risk, respectively. This is obtained with a PC0(1.6, 0.05) prior. We want to
emphasize that before selecting the default prior, both when using makemyprior
and otherwise, you should stop and think about whether or not it is suitable for
your model and data.

4.4 Performing inference

We include functions for inference that are compatible with the prior object
obtained from make prior (and makemyprior gui). Both Stan (Carpenter et al.,
2017) through rstan (Stan Development Team, 2020) and Integrated Nested
Laplace Approximations (INLA, Rue et al., 2009) through INLA (see www.r-inla.
org) can be used for the inference.

Stan is a probabilistic programming language, where Hamiltonian Monte
Carlo (HMC) is used to sample from the posterior distribution (Carpenter et al.,
2017). Stan implements HMC using the No U-Turn Sampler (NUTS, Hoffman
and Gelman, 2014). NUTS reduces the need for tuning of the sampler, making
it easy to use as no manual settings are needed for the algorithm to run, and the
user only needs to provide the joint prior and likelihood model, implemented in
a programming language similar to C++. We provide pre-compiled Stan-code for
fitting latent Gaussian models with certain likelihoods and latent effects. The in-
ternal parameterization in the provided Stan-code is log-variance, and the prior
is transformed from the parameterization given by the prior tree structure to
log-variances.

INLA is a non-sampling based method for doing fast and efficient Bayesian in-
ference on latent Gaussian models (Rue et al., 2009), utilizing Gaussian Markov
random fields (GMRFs) with sparse precision matrices, which gives computa-
tional benefits due to the Markov property. The INLA method approximates the
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posteriors by a mixture of Gaussian distributions and applies a skewness correc-
tion to the marginals (Rue et al., 2017). It is easy and straight-forward to use for
inference, and can fit models with a broad range of latent effects. The internal
parameterization of the model parameters in INLA is log-precision, and in the
same way as for the provided Stan-code the parameterization following the prior
tree is transformed to fit INLA.

Some common latent models are included in the code for the package: i.i.d.
("iid"), Besag ("besag"), random walk of first ("rw1") and second ("rw2")
order, and effects with structured covariance matrices ("generic0").

In Section 5 we show how the inference can be performed. Here we describe
the functions that can be used for inference.

4.4.1 Inference with Stan

Stan is a flexible tool for inference, however, it requires the user to write custom
code for the model that is to be fitted. makemyprior contains pre-written Stan-
code that can be used to do inference on latent Gaussian models with a selection
of latent models. We recommend to compile the Stan-code before doing inference
with Stan. This can be done with the following function:

compile_stan(save = FALSE, path = NULL)

where save indicates whether or not to save the compiled object (must be set
this to TRUE to avoid recompiling the code every time inference is performed).
path is only necessary if the default location for saving the compiled object is
not possible to use (see the documentation for details). For inference with Stan
we use the following function:

inference_stan(prior_obj, use_likelihood = TRUE,
print_prior = TRUE, ...)

The first argument is the prior object from make prior or makemyprior gui. The
user can specify whether to include the likelihood (use likelihood = TRUE) or
not (use likelihood = FALSE); in the latter case we sample from the prior dis-
tribution. print prior (TRUE by default) prints details about the chosen prior.
Additional arguments that is sent directly to the rstan function sampling() can
be specified for the inference. Useful arguments include iter (number of iter-
ations for each chain), warmup (number of iterations for the warm-up), chains
(number of chains), seed (for reproducibility), and control (for specifying algo-
rithm tuning parameters).
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The internal parameterization in the Stan-code included in the package is
log-variance, however, since Stan works with samples we can look at any pa-
rameterization we want by transforming the log-variances. For using other latent
models or more complex models than the ones provided in the included Stan-code
(see above), the user must write customized stan-code, see Section 4.6.

4.4.2 Inference with INLA

For inference with INLA we use the following function:

inference_inla(prior_obj, use_likelihood = TRUE,
print_prior = TRUE, ...)

The first three arguments are the same as in inference stan(). Additional
arguments can be fed to the INLA function inla(). Useful arguments include
Ntrials for the binomial likelihood, used to specify the amount of trials, where
the response is the number of successes.

4.5 Visualizing priors and posteriors

We offer several functions to visualize the prior and posterior distributions. The
prior distributions for the random effects on the tree structure parameterization
can be plotted with plot prior(obj) which take an object from make prior(),
makemyprior gui(), inference stan() or inference inla() as input.

The posterior distributions can be displayed with

plot_posterior_variance(obj)
plot_posterior_stdev(obj)
plot_posterior_precision(obj)

obj is an object from inference stan() or inference inla().
The posterior distributions of random effects from inference with Stan can be

plotted with:

plot_posterior_stan(
obj, param = c("prior", "variance", "stdev", "precision"),
prior = FALSE

)
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obj is an object from inference stan(), param specifies which parameterization
the plots should have where param = "prior" gives the posterior on the same
parameterization as the prior. prior indicates whether or not to plot the prior
together with the posterior for param = "prior". The total variance prior will
only be plotted if it is not Jeffreys’ prior. Fixed effect posteriors can be plotted
with plot fixed posterior(obj).

4.6 More complex models in Stan

Latent models may have parameters that are not variances, such as correlations.
These non-variance parameters are handled independently, and are not included
in the HD prior (Fuglstad et al., 2020). The Stan code included in makemyprior
is only applicable for certain latent models and likelihoods (see Section 4.4). We
provide a “skeleton” code and a description on how the user can write custom
Stan-code and include the joint prior created with make prior(). This can be
accessed with:

R> create_stan_file(location = "")

location is a string to a path where a folder with necessary files will be stored.
The user can edit the code and include custom latent components etc. We do
not include details on this, as it will be highly model specific and is merely an
offer to the users who want to apply the HD prior in more advanced models.

5 Using makemyprior: Examples

In this section we provide three examples where we use the makemyprior package
to construct priors and run inference. Two examples are with Gaussian responses,
and one with Binomial responses. We have used Stan for the inference (with
inference stan()), but the procedure is the same for inference with INLA (using
inference inla() instead).

5.1 Gaussian responses

5.1.1 Genomic selection in wheat breeding

This is an extended version of the model in Example 2.1. In addition to the
additive genetic effect a, we now also include two nonadditive effects: dominance
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d and additive-by-additive epistasis x. This example is taken from Hem et al.
(2021). The response yi is grain yield. We only consider how to utilize the
expert knowledge elicited from experts in the field, and create a prior distribution
reflecting this knowledge. We model the response as

yi = µ + ai + di + xi + εi, i = 1, . . . , 100 (5)

where µ is an intercept with default N (0, 10002) prior and εi is the resid-
ual effect, representing environmental noise. ai, di and xi are additive, domi-
nance and epistasis (additive-by-additive epistasis) effects, respectively. These
three add up to the genetic effect gi = ai + di + xi. We assume that a =
(a1, . . . , a100) ∼ N100(0, σ2

aA), d = (d1, . . . , d100) ∼ N100(0, σ2
aD), and x =

(x1, . . . , x100) ∼ N100(0, σ2
aX), and we use a sum-to-zero constraint on all ge-

netic effects. The covariance matrices A, D and X are computed from the single
nucleotide polymorphism (SNP) matrix with thousands of genetic markers, see
Hem et al. (2021) for details. This model has structured covariance matrices,
and we use the "generic0" latent model. This requires the argument Cmatrix,
which is the precision (inverse covariance) matrix Q∗ for the effect. With these
data, we get the following formula:

R> formula <- ~
+ mc(a, model = "generic0", Cmatrix = Q_a, constr = T) +
+ mc(d, model = "generic0", Cmatrix = Q_d, constr = T) +
+ mc(x, model = "generic0", Cmatrix = Q_x, constr = T)

We go through the reasoning behind a prior where we utilize all available prior
knowledge here, following the tree structure in Table 2.

The expert in genetics has information on the heritability, which is the amount
of total variance attributed to the genetic effects and on the distribution of the
genetic effect g to the additive, dominance and epistasis effects a, d and x. The
expert says the heritability is around 0.25, but that we want to avoid overfitting.
ω g

g+ε
∼ PC0(0.25) fits this desire. The additive, dominance and epistasis effects

have according to the expert a division of the genetic variance σ2
g that is around

(85, 10, 5)%. To achieve this, we must use two dual-splits to decompose the
genetic variation, and do this by splitting off the additive effect first, with a
PCM(0.85, 0.8) prior on ω a

g
. Then we attribute the remaining 15% of the genetic

variance to d and x with 67% to d with PCM(0.67, 0.8) on ω d
d+x

. We choose a
concentration parameter value of 0.8 because the expert is quite sure about the
(85, 10, 5)% division. This corresponds to having 75% of the density mass in
the interval [logit(m) − 1, logit(m) + 1]. The expert does not want to use expert
knowledge for the total variance σ2

a+d+x+ε, so we use Jeffreys’ prior.
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Tree structure Parameters, priors

a + d + x + ε

εa + d + x

a d + x

d x

σ2
a+d+x+ε ∼ Jeffreys′

ω g
g+ε

∼ PC0(0.25)
ω a

g
∼ PCM(0.85, 0.75)

ω d
d+x

∼ PCM(0.67, 0.75)

Table 2: Tree structures and the corresponding parameters for the genomic ex-
ample. gi = ai + di + xi.

We have simulated a dataset following the description in Hem et al. (2021)
(see also Gaynor et al., 2017; Selle et al., 2019), using the R package AlphaSimR
(Faux et al., 2016; Gaynor, 2019). The source code for simulating the dataset
is available in the Supplemental Materials in Hem et al. (2021) (Hem et al.,
2020). The dataset is included as wheat data in makemyprior. To incorporate
the expert knowledge in a unified way, we first scale the covariance matrices have
typical variance equal to 1 (for details, see Sørbye and Rue, 2017), using the
function scale precmat in makemyprior:

R> wheat_data_scaled <- wheat_data
R> wheat_data_scaled$Q_a <- scale_precmat(wheat_data$Q_a)
R> wheat_data_scaled$Q_d <- scale_precmat(wheat_data$Q_d)
R> wheat_data_scaled$Q_x <- scale_precmat(wheat_data$Q_x)

This model is implemented as follows:

R> prior <- make_prior(
+ formula, wheat_data_scaled, prior = list(
+ tree = "s1 = (d, x); s2 = (a, s1); s3 = (s2, eps)",
+ w = list(s1 = list(prior = "pcM", param = c(0.67, 0.8)),
+ s2 = list(prior = "pcM", param = c(0.85, 0.8)),
+ s3 = list(prior = "pc0", param = 0.25))))

We now do inference on this model and plot the results:

R> posterior <- inference_stan(prior, iter = 15000,
+ warmup = 5000, seed = 1,
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+ init = "0", chains = 1)
R> plot_posterior_stan(posterior, param = "prior", prior = T)

Tree structure: d_x = (d,x); a_d_x = (a,d_x);
eps_a_d_x = (eps,a_d_x)

Weight priors:
w[d/d_x] ˜ PCM(0.67, 0.8)
w[a/a_d_x] ˜ PCM(0.85, 0.8)
w[eps/eps_a_d_x] ˜ PC1(0.75)

Total variance priors:
V[eps_a_d_x] ˜ Jeffreys’

SAMPLING FOR MODEL ’full_file’ NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.000528 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition
would take 5.28 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 15000 [ 0%] (Warmup)
Chain 1: Iteration: 1500 / 15000 [ 10%] (Warmup)
Chain 1: Iteration: 3000 / 15000 [ 20%] (Warmup)
Chain 1: Iteration: 4500 / 15000 [ 30%] (Warmup)
Chain 1: Iteration: 5001 / 15000 [ 33%] (Sampling)
Chain 1: Iteration: 6500 / 15000 [ 43%] (Sampling)
Chain 1: Iteration: 8000 / 15000 [ 53%] (Sampling)
Chain 1: Iteration: 9500 / 15000 [ 63%] (Sampling)
Chain 1: Iteration: 11000 / 15000 [ 73%] (Sampling)
Chain 1: Iteration: 12500 / 15000 [ 83%] (Sampling)
Chain 1: Iteration: 14000 / 15000 [ 93%] (Sampling)
Chain 1: Iteration: 15000 / 15000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 31.2193 seconds (Warm-up)
Chain 1: 78.244 seconds (Sampling)
Chain 1: 109.463 seconds (Total)
Chain 1:

Figure 6 shows the prior and posterior together on the parameterization of the
prior (see Table 2).
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Figure 6: Prior and posterior distribution of the random effect parameters for
the genomic selection example.

We see that we do not have enough data to estimate the variance proportion
for the additive and nonadditive genetic effects; as the posterior distribution is
almost identical to the prior distribution. Hem et al. (2021) have conducted an
extensive simulation study on this and similar models. They saw a strong need for
robust prior distributions, which we also see in Figure 6, because the nonadditive
effects d and x are strongly confounded with the environmental effect ε, and the
number of observations is small compared to the number of generic markers that
needs to be estimated (Sorensen and Gianola, 2007).

5.1.2 Latin square experiment

We consider the latin square experiment in Example 2.2. In line with Fuglstad
et al. (2020, Section 5.2), we expand the model and assume the treatment effect
now consists of a smooth signal γ(1) = (γ(1)

1 , . . . , γ
(1)
9 ) ∼ (0, σ2

RW2Q−1
RW2) where

σ2
RW2 is the variance and Q−1

RW2 is the covariance matrix describing the intrinsic
second-order random walk (Rue and Held, 2005, Chapter 3), and random noise
γ(2) = (γ(2)

1 , . . . , γ
(2)
9 ) ∼ N9(0, σ2

t I9). Note that we focus on random effects and
exclude intercept and fixed effects. We remove implicit intercept and linear effect
by requiring

∑9
i=1 γ

(1)
i = 0 and

∑9
i=1 iγ

(1)
i = 0. To simplify the notation, we use

fi = αi + βi + γ
(1)
1 + γ

(2)
1 .
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Tree structure Parameters, priors

α + β + γ(1) + γ(2) + ε

εα + β + γ(1) + γ(2)

α β γ(1) + γ(2)

γ(1) γ(2)

σ2
α+β+γ(1)+γ(2)+ε

∼ Jeffreys′

ω fi
fi+ε

∼ PC0(0.25)
(
ω α

fi
, ω β

fi

, 1 − ω α
fi

− ω β
fi

)
∼ Dirichlet(3)

ω γ(1)

γ(1)+γ(2)
∼ PC0(0.25)

Table 3: Tree structures and the corresponding parameters for the prior used in
the latin square model. fi = αi + βi + γ

(1)
1 + γ

(2)
1 .

We show how to create the prior distributions in Table 3. We want to avoid
overfitting of the model, and use a prior with shrinkage towards the residuals
in the top split with median giving 75% residual effect. We do not have any
preference for the attribution of the row, column and treatment effects, and
use an ignorant Dirichlet prior for the middle split. In the bottom split we
again we want to avoid overfitting, and use a prior with shrinkage towards the
unstructured treatment effect and a median corresponding to 75% unstructured
treatment effect. At last we do not want to say anything about the scale of the
total variance, and use the default Jeffreys’ prior.

The dataset is included in makemyprior as latin data. It is a simulated
dataset, following Fuglstad et al. (2020, Section 5.2), where we have used σα =
σβ = σγ(2) = σε = 0.1 and true treatment effect γ

(1)
i = 0.02 · ((i − 5)2 − 20/3).

The following will fit this model and produce the plots in Figure 7:

R> formula <- ~ -1 + mc(row) + mc(col) + mc(iid) +
+ mc(rw2, model = "rw2", constr = T, lin_constr = T)
R> prior <- make_prior(
+ formula, latin_data,
+ prior = list(tree = "s1 = (rw2, iid); s2 = (row, col, s1);
+ s3 = (s2, eps)",
+ w = list(
+ s1 = list(prior = "pc0", param = 0.25),
+ s2 = list(prior = "dirichlet"),
+ s3 = list(prior = "pc0", param = 0.25))))
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Figure 7: Prior and posterior distribution of the random effect parameters for
the latin square example.

R> posterior <- inference_stan(
+ prior, iter = 15000, warmup = 5000, seed = 1, init = "0",
+ chains = 1, control = list(adapt_delta = 0.9))
R> plot_posterior_stan(posterior, param = "prior", prior = T)

Tree structure: iid_rw2 = (iid,rw2); row_col_iid_rw2 =
(row,col,iid_rw2); eps_row_col_iid_rw2 = (eps,row_col_iid_rw2)

Weight priors:
w[iid/iid_rw2] ˜ PC1(0.75)
(w[row/row_col_iid_rw2],

w[col/row_col_iid_rw2]) ˜ Dirichlet(3)
w[eps/eps_row_col_iid_rw2] ˜ PC1(0.75)

Total variance priors:
V[eps_row_col_iid_rw2] ˜ Jeffreys’

SAMPLING FOR MODEL ’full_file’ NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.00015 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition
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would take 1.5 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 15000 [ 0%] (Warmup)
Chain 1: Iteration: 1500 / 15000 [ 10%] (Warmup)
Chain 1: Iteration: 3000 / 15000 [ 20%] (Warmup)
Chain 1: Iteration: 4500 / 15000 [ 30%] (Warmup)
Chain 1: Iteration: 5001 / 15000 [ 33%] (Sampling)
Chain 1: Iteration: 6500 / 15000 [ 43%] (Sampling)
Chain 1: Iteration: 8000 / 15000 [ 53%] (Sampling)
Chain 1: Iteration: 9500 / 15000 [ 63%] (Sampling)
Chain 1: Iteration: 11000 / 15000 [ 73%] (Sampling)
Chain 1: Iteration: 12500 / 15000 [ 83%] (Sampling)
Chain 1: Iteration: 14000 / 15000 [ 93%] (Sampling)
Chain 1: Iteration: 15000 / 15000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 16.4578 seconds (Warm-up)
Chain 1: 37.089 seconds (Sampling)
Chain 1: 53.5468 seconds (Total)
Chain 1:

Figure 7 shows the prior and posterior together on the parameterization of the
prior. The posterior distribution of the bottom split, attributing the treatment
effect to the random noise and smooth signal, is only slightly different from
the prior, indicating that there is no strong signal about the smooth treatment
effect in the data. By using a prior with shrinkage towards only random noise
treatment effect, we avoid overfitting. The model has learned about the three
other variance proportions, and we see that even though the prior on the amount
of total variance going to the residual effect has shrinkage towards 1, the model
is not restricted by this.

5.2 Binomial responses: Neonatal mortality

This example is based on a study carried out by Fuglstad et al. (2020). Child
mortality is an important indicator of health and well-being in a country. We
define neonatal mortality as the number of deaths of infants the first month of
life per live birth, which can be estimated using national household surveys from
Demographic and Health Surveys (Kenya National Bureau of Statistics et al.,
2015). From such surveys we can extract the number of live births bi,j and the
number of neonatal deaths yi,j in cluster j in county i, and use an indicator xi,j
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Tree structure Parameters, priors

u + v + ν

u + v

u v

ν

σ2
u+v+ν ∼ PC0(3.35, 0.05)

ω u+v
u+v+ν

∼ PC1(0.75)
ω u

u+v
∼ PC0(0.25)

Table 4: Tree structures and the corresponding parameters for the neonatal mor-
tality model.

for classifying cluster j in county i as rural (xi,j = 0) or urban (1). We model
yi,j |bi,j , pi,j ∼ Binomial(bi,j , pi,j) with the linear predictor

ηi,j = logit(pi,j) = µ + xi,jβ + ui + vi + νi,j , i = 1, . . . , n, j = 1, . . . , mi, (6)

where vi ∼ N (0, σ2
v) and νi,j ∼ N (0, σ2

ν) are i.i.d. random effects for counties
and clusters, respectively, and u is a Besag effect on county with variance σ2

u and
a sum-to-zero constraint. In the Besag model, the spatial effect of each county
depends on the effects in the neighboring regions (see e.g. Besag et al. (1991)
for details), and when combining it with an i.i.d. effect on the same level in the
hierarchy, we get a BYM (Besag, York and Mollié) model (Besag et al., 1991).
We want to investigate whether or not there is a spatial effect present.

We simulated a dataset following the description in Fuglstad et al. (2020,
Section 6.2) with the 47 counties in Kenya (see Figure 9 for a map). We used
6, 7 or 8 clusters in each county which gave in total 327 clusters, and thus also
327 observations, bi,j = 25 live births in each cluster, and parameters µ = −4,
β = 0.1, σ2

ν = 0.2, σ2
v = 0.1, and σ2

u = 0.5.
This dataset is available in makemyprior as neonatal data, as well as other

necessary files for fitting the model.
We prefer coarser over finer unstructured effects, and unstructured over struc-

tured effects. That means that we prefer v over u and v +u over ν in the prior.
The BYM model is intuitively represented with a dual split in the prior tree,
where one leaf node represents a Besag effect and the other represents an i.i.d.
effect. We achieve this with a prior that distributes the between-county variance
with shrinkage towards the unstructured county effect, which gives the BYM2
model of Riebler et al. (2016), and the total variance towards the county effects.
Following Fuglstad et al. (2020), we induce shrinkage on the total variance such
that we have a 90% credible interval of (0.1, 10) for the effect of exp(vi +ui +νi,j).
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We use the function find pc prior param() in makemyprior to find the param-
eters for the PC prior:

R> set.seed(1)
R> find_pc_prior_param(lower = 0.1, upper = 10,
+ prob = 0.9, N = 2e5)

U = 3.353132
Prob(0.09866969 < exp(eta) < 9.892902) = 0.9

This gives a PC0(3.35, 0.05) prior. The tree structure and a summary of the prior
distributions can be found in Table 4. We fit the model with Stan:

R> graph_path <- paste0(path.package("makemyprior"),
+ "/neonatal.graph")
R> formula <- y ~ mc(nu) + mc(v) +
+ mc(u, model = "besag", graph = graph_path,
+ scale.model = TRUE)
R> prior <- make_prior(
+ formula, neonatal_data, family = "binomial",
+ prior = list(
+ tree = "s1 = (u, v); s2 = (s1, nu)",
+ w = list(s1 = list(prior = "pc0", param = 0.25),
+ s2 = list(prior = "pc1", param = 0.75)),
+ V = list(s2 = list(prior = "pc", param = c(3.35, 0.05)))
+ ))
R> posterior <- inference_stan(
+ prior, iter = 15000, warmup = 5000, seed = 1, init = "0",
+ chains = 1, control = list(adapt_delta = 0.85))

Tree structure: v_u = (v,u); nu_v_u = (nu,v_u)

Weight priors:
w[v/v_u] ˜ PC1(0.75)
w[nu/nu_v_u] ˜ PC0(0.25)

Total variance priors:
sqrt(V)[nu_v_u] ˜ PC0(3.35, 0.05)

SAMPLING FOR MODEL ’full_file’ NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.000567 seconds
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Chain 1: 1000 transitions using 10 leapfrog steps per transition
would take 5.67 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 15000 [ 0%] (Warmup)
Chain 1: Iteration: 1500 / 15000 [ 10%] (Warmup)
Chain 1: Iteration: 3000 / 15000 [ 20%] (Warmup)
Chain 1: Iteration: 4500 / 15000 [ 30%] (Warmup)
Chain 1: Iteration: 5001 / 15000 [ 33%] (Sampling)
Chain 1: Iteration: 6500 / 15000 [ 43%] (Sampling)
Chain 1: Iteration: 8000 / 15000 [ 53%] (Sampling)
Chain 1: Iteration: 9500 / 15000 [ 63%] (Sampling)
Chain 1: Iteration: 11000 / 15000 [ 73%] (Sampling)
Chain 1: Iteration: 12500 / 15000 [ 83%] (Sampling)
Chain 1: Iteration: 14000 / 15000 [ 93%] (Sampling)
Chain 1: Iteration: 15000 / 15000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 79.4016 seconds (Warm-up)
Chain 1: 157.281 seconds (Sampling)
Chain 1: 236.683 seconds (Total)
Chain 1:

Note that for inference with INLA, the Ntrials argument must be provided to
inference inla(). The following produce the plots in Figure 8 and gives some
key information on the posterior:

R> plot_fixed_posterior(posterior)
R> plot_posterior_stan(posterior, param = "prior", prior = T)
R> posterior

Model: y ˜ urban + mc(nu) + mc(v) + mc(u, model = "besag",
graph = graph_path, scale.model = T)

Tree structure: v_u = (v,u); nu_v_u = (nu,v_u)

Inference done with Stan.

Param. mean median sd
V[nu_v_u] 0.662 0.630 0.244
w[v/v_u] 0.655 0.715 0.263
w[nu/nu_v_u] 0.333 0.330 0.190
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intercept -4.157 -4.153 0.135
urban 0.469 0.469 0.169

Figure 9 shows the posterior spatial effect eui plotted in a map. We see a spatial
variation between the counties. The necessary data for creating the spatial map
are not included, but can be obtained from https://gadm.org/. The samples for
effects and variances can easily be extracted with extract posterior effects()
and extract posterior variance(), respectively, which both take the argu-
ments obj from inference stan() and the name of the effect effname:

R> u <- extract_posterior_effects(posterior, "u")
R> u_var <- extract_posterior_variance(posterior, "u")

We have only used u for the plot in Figure 9.
The fixed effects in Figure 8a show that the intercept is not contributing much

to the linear predictor, while the effect of urban/rural shows that there is a higher
mortality in urban areas (which is the case also for real data, see Kenya National
Bureau of Statistics et al. (2015)). From Figure 8b we see that the model has
learned about the total variance from the data and about the amount of total
(latent) variance to the cluster effect (ν), but there is not enough information in
the data about the amount of county variance to the unstructured county effect
(u). The following fits the model without the likelihood (sampling from the prior)
and produces the plots of the prior and posterior on standard deviation scale in
Figure 10:

R> prior_samps <- inference_stan(
+ prior, use_likelihood = FALSE, iter = 15000,
+ warmup = 5000, seed = 1, init = "0", chains = 1)
R> plot_several_posterior_stan(
+ list(Prior = prior_samps, Posterior = posterior), "stdev")

Tree structure: v_u = (v,u); nu_v_u = (nu,v_u)

Weight priors:
w[v/v_u] ˜ PC1(0.75)
w[nu/nu_v_u] ˜ PC0(0.25)

Total variance priors:
sqrt(V)[nu_v_u] ˜ PC0(3.35, 0.05)

SAMPLING FOR MODEL ’full_file’ NOW (CHAIN 1).
Chain 1:
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Chain 1: Gradient evaluation took 0.000118 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition
would take 1.18 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 15000 [ 0%] (Warmup)
Chain 1: Iteration: 1500 / 15000 [ 10%] (Warmup)
Chain 1: Iteration: 3000 / 15000 [ 20%] (Warmup)
Chain 1: Iteration: 4500 / 15000 [ 30%] (Warmup)
Chain 1: Iteration: 5001 / 15000 [ 33%] (Sampling)
Chain 1: Iteration: 6500 / 15000 [ 43%] (Sampling)
Chain 1: Iteration: 8000 / 15000 [ 53%] (Sampling)
Chain 1: Iteration: 9500 / 15000 [ 63%] (Sampling)
Chain 1: Iteration: 11000 / 15000 [ 73%] (Sampling)
Chain 1: Iteration: 12500 / 15000 [ 83%] (Sampling)
Chain 1: Iteration: 14000 / 15000 [ 93%] (Sampling)
Chain 1: Iteration: 15000 / 15000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 6.33609 seconds (Warm-up)
Chain 1: 19.7902 seconds (Sampling)
Chain 1: 26.1263 seconds (Total)
Chain 1:

From these graphs we see that the posterior of the standard deviations are clearly
different from the prior. We saw in Figure 8b that the model did not learn much
about the amount of county variation accounted for by the Besag effect (u), but
we cannot see this from plots of the posterior standard deviations, and they do
not show the whole picture. This is another advantage of the HD prior; it is easy
to see that even though we get the impression that the model has learned from
the data, that knowledge is not necessarily about the whole model. This shows,
as Fuglstad et al. (2020) points out, that one should be careful before drawing
conclusions on first impressions about the results, and more investigation should
be done.

6 Summary and discussion

The makemyprior package offers an intuitive and transparent way of choosing
and visualizing prior distributions. It is easy to utilize expert knowledge, and
clear what prior distributions are used, also when the default settings are chosen.
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(a) Posterior of the effect of urban/rural and the inter-
cept.

(b) Random effect parameters.

Figure 8: Prior and posterior distribution of a) coefficients of the fixed effects and
b) total variance and variance proportions of the random effects for the neonatal
mortality example.
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Figure 9: Posterior median of eui for each county in Kenya. Note that this is
based on simulated data.

Figure 10: Prior and posterior distribution for the neonatal mortality example
on standard deviation scale.
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There are naturally some limitations. The hierarchical decomposition (HD) prior
itself is restricted to latent Gaussian models (Fuglstad et al., 2020). makemyprior
only handles a selection of latent models, and it does not open for using models
that are specified by other parameters than variances, such as an auto-regressive
processes of order 1 with a correlation parameter. However, this is not a big
restriction, as other latent models and models with e.g. correlations can however
be implemented by the user with a custom Stan-code. Then the correlation
parameter can be assigned an independent prior (in the same way an individual
variance parameter or fixed effect get independent priors). The package is limited
to Gaussian, binomial and Poisson likelihoods, covering a range of applications,
and other likelihoods can be implemented in a custom Stan-code.

If the inference for a model is carried out with another software than INLA
and rstan, the makemyprior package is still useful. makemyprior computes the
hierarchical decomposition (HD) prior, and the usage of the prior is not limited to
inference carried out with rstan or INLA. The package can be used to investigate
the prior choices, and the user can simulate from the prior with Stan and look
at the prior distributions on different parameterizations. In this way, crucial
misunderstandings of what prior distributions are used can be discovered and
corrected, and thus increase the understanding and meaning of the prior.

To include fixed effects in the HD prior framework has been discussed by
Fuglstad et al. (2020), but has not yet been investigated or done. To see how the
individual fixed effects contribute to the total data variation would be interesting,
but fixed effects are often correlated, and the variance that is explained by each
single fixed effect is not well defined. The perhaps most intuitive way to include
fixed effects is to assign one variance parameter to each effect. However, this can
quickly increase the amount of variance parameters to a level where inference
become computationally hard. Gelman and Hill (2007) and Zhang et al. (2020)
have proposed prior distributions related to the coefficient of determination, R2,
which measures the amount of variance explained by the model. The general-
ized R2 proposed by Gelman and Hill (2007) measures this at each level in the
hierarchical model.

The idea behind the HD prior can be extended to models outside the class
of latent Gaussian models, or to models where the hyperparameters of the priors
will get prior distributions. This will however require further development of the
framework, and be highly computational expencive, as the penalized complexity
(PC) prior cannot be pre-computed in the same way as we do now with the
conditioning on the hyperparameters.

Other ideas include to open for customized specification of prior distribu-
tions, for both variance and variance proportion parameters, in the makemyprior
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package (the HD prior framework is already open for this). The PC prior can
be computationally hard to calculate for large models, and the possibility of in-
cluding for example customized beta distributions for each split could be helpful.
However, the prior is only computed once as we approximate it by conditioning
on the medians and base models for lower splits, and the model size will only
increase computation time in the computation if the prior, not during inference.
In addition, this will complicate the intuition behind the prior, and it will be
more difficult to use prior and expert knowledge in a transparent way. It will
require more thoughtful prior choices, and we lose one of the large advantages
with the easy-to-use and intuitive way of making priors with makemyprior, in
addition to the shrinkage properties of the PC prior. Including more latent mod-
els will increase the amount of applications the package can be used for directly,
without specifying custom Stan-code. To open for easy integration into other
softwares for inference, such as the Template Model Builder (TMB, Kristensen
et al., 2016), can be done, and can be useful for models that are very complex
and will be highly time consuming and difficult to fit with rstan or INLA.

In conclusion, makemyprior is a valuable addition to the range of packages
that can be used to carry out inference. It is easy to include prior knowledge in
an intuitive and transparent way, can be used to verify prior choices, and allows
direct inference in a simple way. It increases the awareness of what prior is used,
which is important when doing inference, to ensure that the model fitted is indeed
the intended one.

Computational details

The results in this paper were obtained with:

R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Package version of dependent, imported and suggested packages are:

ggplot2_3.3.2
Matrix_1.2.18
knitr_1.29
shiny_1.5.0
shinyjs_2.0.0
shinyBS_0.61
visNetwork_2.0.9
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rmarkdown_2.3
testthat_2.3.2
splines_4.0.2
MASS_7.3.51.6
ggpubr_0.4.0
rstan_2.21.2
INLA_20.3.17
ggplot2_3.3.2
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A Code

We include all R code used in the paper.

library(makemyprior)

#### Example model for Section 4 ####

formula <- y \texttildelow x + mc(a) + mc(b)

p <- 10
m <- 10
n <- m*p

set.seed(1)
data <- list(a = rep(1:p, each = m),

b = rep(1:m, times = p),
x = runif(n))

data$y <- data$x + rnorm(p, 0, 0.5)[data$a] +
rnorm(m, 0, 0.3)[data$b] + rnorm(n, 0, 1)

prior <- make_prior(formula, data, family = "gaussian",
intercept_prior = c(0, 1000),
covariate_prior = list(x = c(0, 100)))

new_prior <- makemyprior_gui(prior)

summary(new_prior)

prior <- make_prior(
formula, data,
prior = list(

tree = "s1 = (a, b); s2 = (s1, eps)",
w = list(s1 = list(prior = "pcM", param = c(0.7, 0.5)),

s2 = list(prior = "pc0", param = 0.25)),
V = list(s2 = list(prior = "pc0", param = c(3, 0.05)))

),
covariate_prior = list(x = c(0, 100)))

prior
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#### Genomic model for wheat breeding from Section 5.1 ####

library(makemyprior)

wheat_data_scaled <- wheat_data
wheat_data_scaled$Q_a <- scale_precmat(wheat_data$Q_a)
wheat_data_scaled$Q_d <- scale_precmat(wheat_data$Q_d)
wheat_data_scaled$Q_x <- scale_precmat(wheat_data$Q_x)

formula <- y \texttildelow
mc(a, model = "generic0", Cmatrix = Q_a, constr = T) +
mc(d, model = "generic0", Cmatrix = Q_d, constr = T) +
mc(x, model = "generic0", Cmatrix = Q_x, constr = T)

prior <- make_prior(formula, wheat_data_scaled, prior = list(
tree = "s1 = (d, x); s2 = (a, s1); s3 = (s2, eps)",
w = list(s1 = list(prior = "pcM", param = c(0.67, 0.8)),

s2 = list(prior = "pcM", param = c(0.85, 0.8)),
s3 = list(prior = "pc0", param = 0.25))))

# the first time you do inference with Stan, we recommend to run:
compile_stan(save = T)

posterior <- inference_stan(prior, iter = 15000,
warmup = 5000, seed = 1,
init = "0", chains = 1)

plot_posterior_stan(posterior, param = "prior", prior = T)

#### Latin square experiment from Section 5.1 ####

formula <- y \texttildelow -1 + mc(row) + mc(col) + mc(iid) +
mc(rw2, model = "rw2", constr = T, lin_constr = T)

prior <- make_prior(
formula, latin_data,
prior = list(tree = "s1 = (rw2, iid); s2 = (row, col, s1);

s3 = (s2, eps)",
w = list(
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s1 = list(prior = "pc0", param = 0.25),
s2 = list(prior = "dirichlet"),
s3 = list(prior = "pc0", param = 0.25))))

posterior <- inference_stan(prior, iter = 15000, warmup = 5000,
seed = 1, init = "0", chains = 1,
control = list(adapt_delta = 0.9))

plot_posterior_stan(posterior, param = "prior", prior = T)

#### Neonatal mortality from Section 5.2 ####

set.seed(1)
find_pc_prior_param(lower = 0.1, upper = 10, prob = 0.9, N = 2e5)

graph_path <- paste0(path.package("makemyprior"),
"/neonatal.graph")

formula <- y \texttildelow urban + mc(nu) + mc(v) +
mc(u, model = "besag", graph = graph_path, scale.model = T)

prior <- make_prior(
formula, neonatal_data, family = "binomial",
prior = list(tree = "s1 = (u, v); s2 = (s1, nu)",

w = list(s1 = list(prior = "pc0", param = 0.25),
s2 = list(prior = "pc1", param = 0.75)),

V = list(s2 = list(prior = "pc",
param = c(3.35, 0.05)))))

posterior <- inference_stan(prior, iter = 15000, warmup = 5000,
seed = 1, init = "0", chains = 1,
control = list(adapt_delta = 0.85))

plot_fixed_posterior(posterior)
plot_posterior_stan(posterior, param = "prior", plot_prior = TRUE)
posterior

u <- extract_posterior_effects(posterior, "u")
u_var <- extract_posterior_variance(posterior, "u")
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prior_samps <- inference_stan(prior, use_likelihood = FALSE,
iter = 15000, warmup = 5000,
seed = 1, init = "0", chains = 1)

plot_several_posterior_stan(
list(Prior = prior_samps, Posterior = posterior), "stdev")

####
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