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Preferential orientations of inertialess non-spherical particles are examined through 

three qualitatively different stages of a time-evolving Taylor-Green vortex flow. 

Despite an unexpected decorrelation between the vorticity vector and the direction of 

Lagrangian stretching, experienced by material fluid elements over a substantial time 

interval, prolate spheroids aligned with the Lagrangian stretching direction, whereas 

oblate spheroids aligned with the Lagrangian compression direction. We therefore infer 

that spheroidal tracers orient themselves relative to the Lagrangian history of the 

velocity gradients, defined by the left Cauchy-Green deformation tensor, rather than 

with the fluid vorticity vector. This preferential alignment persists all throughout the 

statistically unsteady flow field, and even in the inviscid and non-turbulent early stage 

of the time-dependent vortex flow. This explains the observed preferential spinning of 

rods and tumbling of disks, similarly as in homogeneous isotropic turbulence, even at 

the early stage when the flow is anisotropic and laminar. These preferred modes of 

particle rotation prevail all through the evolving flow, despite a surprisingly long time 

interval, during which the fluid vorticity decorrelates from the direction of Lagrangian 

stretching.  

 

INTRODUCTION  

The presence of small non-spherical particles in a viscous fluid can be observed in both industrial 

processes and in our environment [1]. Notable examples are pulp- and paper-making, combustion 

systems, ice crystals in clouds, marine snow, and transport of plankton in the ocean. How and why 

the particle orientates are of major concern. Particle orientation, for instance, influences the settling 

of tiny ice crystals in clouds, thereby affecting their collision and aggregation rates [2, 3]. 

Similarly, the ability of plankton to feed and reproduce is affected not only by oceanic turbulence 

but also by their shape through natural selection [4].   

Particles without inertia passively follow the translational fluid motion, but unlike spheres, non-

spherical tracers do not rotate passively with the fluid vorticity. The particle shape influences the 

orientation by preferential alignment relative to the local velocity gradient tensor in different flow 

systems, like in Homogeneous Isotropic Turbulence (HIT) [5] and turbulent channel flow [6]. 

These tendencies were recently associated with deformations of Lagrangian fluid elements. The 
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preferential alignment of rods and disks with Lagrangian stretching and compression directions, 

respectively, was first reported in HIT [7] and subsequently in wall turbulence [8, 9]. 

Computational [10, 11] and experimental [12, 13] studies have confirmed the role of the 

preferential alignment on the rotational particle behavior, such as spinning of rods and tumbling 

of disks.  

The intricate behavior of non-spherical particles in three-dimensional flow fields has been studied 

in HIT [5, 7, 10] as well as in wall turbulence [6, 9, 14]. These studies have all been carried out in 

statistically steady flow fields. Particle velocity and acceleration statistics were recently studied in 

a statistically steady forced Taylor-Green flow [15]. The statistically unsteady Taylor-Green 

vortex (TGV) flow offers a different and unique environment where the orientation and rotation 

of non-spherical particles can be explored in an evolving flow field, in which the characteristic 

length and time scales vary continuously in time. An open question is how different, as compared 

to the already known behavior in HIT, tracer spheroids orient and rotate in the statistically 

developing TGV flow, especially in the earliest laminar stage of the evolving flow.   

The TGV flow represents a relatively simple system, in which an initially smooth and anisotropic 

array of regular large-scale vortices evolves through a sequence of different flow stages. The 

essentially inviscid laminar flow in the earliest stage is subjected to vortex stretching and period-

doubling [16, 17, 18], which gradually produce smaller flow structures and enhance the viscous 

energy dissipation.  The accompanying enhancement of the enstrophy represents a measure of the 

strength of the vortex stretching [17] and reaches a maximum at a Reynolds-number dependent 

time tmax. The subsequent reduction of kinetic energy and enstrophy reflects the overall decay of 

the flow by viscous damping [17].  

The unsteady TGV flow constitutes an attractive vehicle for assessment of the behavior of non-

spherical particles in a statistically unsteady flow field. The continuously evolving vortex flow is 

distinctly different from the frequently studied channel-flow turbulence and HIT. We aim to 

explore how non-spherical particles orientate and rotate in the three-dimensional vortex field with 

the view to address the following questions: Do spheroidal particles orient preferentially in the 

evolving TGV flow? Do preferential spinning and tumbling, as known from isotropic turbulence, 

also occur in the anisotropic non-turbulent flow in the early laminar stage of the TGV-flow? Can 

it be that the fluid vorticity does not align with the Lagrangian stretching direction of the fluid 

elements through all stages of the evolving TGV flow? And, if so, can any preferential particle 

orientations be associated with Lagrangian coherent structures [7] even in an unsteady flow field 

where the fluid vorticity not necessarily orients with the Lagrangian stretching direction? The 

answers to these questions are of uttermost importance since any preferred particle orientation is 

believed to have a deciding influence on the particle rotation. 

In this paper, we examine the behavior of inertialess spheroids in an evolving TGV flow through 

three qualitatively different stages of the flow. We focus on how particle shape, both oblate and 

prolate, affects the rate of particle rotation as well as the particle’s rotation mode. To this end we 

also explore if and how tracer spheroids align themselves relative to the Lagrangian stretching and 

compression directions of the evolving flow field.   
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METHODOLOGY 

The evolving TGV flow has proved successful for testing of numerical and perturbation methods 

for solving the time-dependent Navier-Stokes equations [16, 19, 20]. An unsteady TGV flow is 

realized in a Direct Numerical Simulation (DNS) where the incompressible Navier-Stokes 

equations are solved in a cubical box with sides 2𝜋𝐿 and with periodic boundary conditions in all 

three coordinate directions. The three-dimensional flow field illustrated in Fig. 1(a) evolves from 

the two-dimensional initial field 𝑢 = 𝑉0 sin (
𝑥

𝐿
) cos (

𝑦

𝐿
) cos (

𝑧

𝐿
),  𝑣 = 0 , and 𝑤 =

− 𝑉0cos (
𝑥

𝐿
)cos (

𝑦

𝐿
)sin (

𝑧

𝐿
), where 𝑉0 and 𝐿 are the initial velocity and length scales, respectively. 

The Reynolds number 𝑅𝑒 = 𝑉0𝐿/𝜈 = 1600, where 𝜈 denotes the kinematic viscosity of the fluid. 

The numerical solution algorithm is described in Refs [21, 22]. The preceding analysis of 

clustering of inertial spheres by Jayaram et al. [22] was based on a simulation with 1283 grid points, 

whereas the current simulation of inertialess spheroids uses 256×256×512 grid points. Pseudo-

spectral integrations are performed in two of the coordinate directions. Twice as many grid points 

are used in the 𝑧-direction to compensate for the lower accuracy of the second-order finite-

difference discretization in that direction. 
 

Swarms of  2 × 106 non-interacting and passive spheroids with some different aspect ratios 𝜆, are 

injected at random positions with random orientations at 𝑡 = 0  and tracked using the same 

Lagrangian approach as in our earlier studies [8, 23]. The point-particle treatment is justified since 

the particle dimensions are smaller than the smallest length scales of the flow. When particle inertia 

is absent or negligibly small, the tracer spheroids translate with the local fluid velocity while 

experiencing zero force, and they rotate with zero torque due to the non-zero elements of the strain-

rate tensor. With the Jeffery-torques [24] equated to zero, the particle rotation vector 𝝎′ becomes 

𝜔𝑥
′ = −Λ𝑆𝑦𝑧

′ + Ωx
′ /2 , 𝜔𝑦

′ = Λ𝑆𝑥𝑧
′ + Ωx

′ /2,  and 𝜔𝑧
′ = Ωz

′ /2. Here,  Ωi
′/2 is the fluid rotation-rate 

vector and 𝑆𝑖𝑗
′  is the fluid strain-rate tensor in the particle frame of reference 𝑥𝑖

′ = < 𝑥′, 𝑦′, 𝑧′ >, 

with origin at the particle center of mass; see Fig. 1(b). The shape factor Λ = (𝜆2 − 1)/(𝜆2 +

1)  measures the degree of asphericity of the prolate (𝜆 > 1) and oblate (𝜆 < 1) spheroids. Note 

that spherical tracers (λ = 1, Λ = 0) adapt to the fluid rotation. 

We speculate that inertialess spheroids might align with the stretching or compression directions 

of material fluid elements also in the non-turbulent but unsteady stages of the evolving TGV-flow. 

To this end we follow Ni et al. [7] and compute the three eigenvectors (𝑒𝐿1, 𝑒𝐿2, 𝑒𝐿3) of the left 

Cauchy-Green strain tensor 𝐶𝐺𝑖𝑗
𝐿 = 𝐹𝑖𝑘𝐹𝑗𝑘, where 𝐹𝑖𝑗 denotes the deformation gradient tensor. The 

time evolution of 𝐹𝑖𝑗  is obtained by integrating 𝑑𝐹𝑖𝑗/𝑑𝑡 = 𝐴𝑖𝑘𝐹𝑘𝑗(𝑡) , where 𝐴𝑖𝑘  is the 

instantaneous velocity gradient, along Lagrangian trajectories with initial condition 𝐹𝑖𝑗(𝑡0) = 𝛿𝑖𝑗; 

see [7, 8] for details.   

As demonstrated by Ni et al. [7], the deformation gradient tensor 𝑭 can be decomposed as 𝑭 =

𝑽𝑹, where 𝑽 is the left stretch tensor and 𝑹 is an orthogonal rotation tensor, representing the rigid-

body rotation of the fluid element. Therefore, the left Cauchy-Green tensor is expressed as 𝑪𝑮𝐿 =

𝑭𝑭𝑻 = 𝑽𝑹𝑹𝑻𝑽𝑻 = 𝑽𝟐 . The rotation tensor 𝑹  is excluded in 𝑪𝑮𝐿 , which only represents the 
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stretching properties of the fluid elements through the tensor 𝑽. We are thus able to utilize the left 

Cauchy-Green tensor 𝑪𝑮𝐿, to examine particle alignments relative to the directions of local fluid 

stretching/compression in a Lagrangian approach. This approach provides information about how 

efficiently prolate and oblate spheroids respond to Lagrangian deformations of the local fluid 

elements, as already utilized to explain particle alignment in HIT and turbulent channel flow by 

Ni et al. [7] and Zhao & Andersson [8]., respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (a) The initial flow field in the cubical domain visualized by means of 𝛺𝑥 where the two different 

colors distinguish between positive and negative values of 𝛺𝑥;   (b) Illustration of the particle frame 𝑥𝑖
′ =

 < 𝑥′, 𝑦′, 𝑧′ > with its origin in the center of a prolate spheroid together with the inertial frame  𝑥𝑖 = < 𝑥 ,

𝑦, 𝑧 > in which the DNS is performed. Note that the 𝑧′-direction is along the symmetry axis of the 

spheroid. 

 

RESULTS AND DISCUSSION 

A. Evolving Taylor-Green vortex (TGV) flow 

The TGV flow is characterized by the time evolution of the volume-averaged kinetic energy Ek 

and viscous energy dissipation rate 𝜖. While Ek decays monotonically in time, 𝜖 first exhibits a 

substantial increase until time t = tmax ≈ 9L/V0, from when a monotonic decay sets in [16, 18, 20, 

22]. The energy dissipation rate 𝜖 shown in Figure 2(a) compares favorably with DNS data of 

Dairay et al. [19] at exactly the same Reynolds number. The volume-averaged enstrophy ⟨ 휁 ⟩, 

where 휁 = 𝜴 · 𝜴 is a scalar measure of the strength of the local vorticity vector Ω, is seen to 

overlap with 𝜖 . Although the viscous dissipation rate is locally different from the enstrophy, 

volume-averaging over a homogeneous flow domain gives that 휀 = 2𝜈⟨ 휁 ⟩ [25].  
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The initial flow field is essentially inviscid and the large-scale Taylor-Green vortices remain 

almost two-componential during the first stage of the flow development dominated by advection 

(𝒖 ∙ ∇)𝜴 and stretching (𝜴 ∙ ∇)𝒖  of vorticity [18]. Non-linear vortex stretching 𝛺𝑗 𝜕𝑢𝑖 𝜕𝑥𝑗⁄  (i = j) 

becomes increasingly important from time t ≈ 3L/V0 and the stretching of vortex lines gives rise to 

smaller-scale flow structures and therefore also to increasing dissipation 𝜖. At the same time, the 

regular vortices in the earliest stage begin to deform as a result of bending of vortex lines through 

the non-linear term 𝛺𝑗 𝜕𝑢𝑖 𝜕𝑥𝑗⁄  (i ≠ j) in the vorticity equation which transfers vorticity from the 

xj to the xi-direction.   

 

Figure 2: Time evolution of the TGV flow. (a) Viscous energy dissipation rate 𝜖 and enstrophy 휁, (b) RMS 

of velocity components ui and (c) RMS of vorticity components Ωi. The red cross and black dashed line in 

(a) denote the dissipation 𝜖  obtained with the present mesh and the coarser mesh [22], respectively, 

compared with 𝜖 (blue line) found by Dairay et al. [19]. The blue circles are volume-averaged enstrophy 

⟨ 휁 ⟩.   

 

The vorticity field Ωi soon becomes isotropic, as shown in Figure 2(c). The velocity field ui in 

Figure 2(b), however, gradually tends towards isotropy until the energy dissipation and the 

enstrophy peak at time t ≈ tmax, but still remains somewhat anisotropic throughout the entire 

simulation. The early isotropization of the vorticity field is a result of vortex-tilting and consistent 

with the idea of a local equilibrium of the small-scale eddies [16]. The remaining coherence of the 

quasi-isotropic flow breaks down along with the gradually decaying enstrophy [18, 20, 22], 

thereby suggesting a resemblance with decaying HIT. 

Figure 3 shows how the fluid vorticity vector 𝜴 aligns with the three eigenvectors 𝒆𝐿𝑖  of the left 

Cauchy-Green strain tensor CGL. The vorticity immediately starts to align with the strongest 

Lagrangian stretching direction 𝒆𝐿1  and their correlation soon exceeds the plateau level 0.6 

obtained in HIT [7] and 0.57 in the almost isotropic center of a turbulent channel flow [8]. This 

finding suggests that this early stage of the flow is dominated by intense vortex stretching even 

though the flow field remains laminar [18, 26]. Contrary to the earlier studies, in which the 

correlation ⟨(𝒆𝐿1 ∙ 𝜴)𝟐⟩ monotonically increased until it saturated at a certain level, the present 

alignment first increases and then experiences a modest decline after time t ≈ 3L/V0. This 
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unexpected behavior is clearly associated with major structural reorganizations of the flow field, 

evidenced by the growth of enstrophy and viscous energy dissipation seen in Figure 2(a), 

associated with period-doubling, vortex stretching and bending [18]. The slight decorrelation 

between 𝜴 and 𝒆𝐿1 persists for about 10L/V0, thereafter the vorticity once again exhibits a slight 

increasing alignment with the Lagrangian stretching direction. The weakly resuming correlation 

from time t ≈ 14L/V0 somehow resembles the time evolution of the alignment reported in 

statistically steady HIT [7] and seems to saturate at ⟨(𝒆𝐿1 ∙ 𝜴)𝟐⟩  ≈ 0.55 after 20L/V0. Just as in 

HIT, this plateau arises when a dynamic balance between vortex stretching and viscous dissipation 

has been established.  

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                        

Figure 3:  Time evolution of the alignment of fluid vorticity 𝜴 relative to the three eigenvectors 𝒆𝐿𝑖 of the 

left Cauchy-Green strain tensor. Here, 𝒆𝐿1  and 𝒆𝐿3  are the maximum (stretching) and minimum 

(compression) eigenvectors, respectively, obtained by integrating from 𝑡0 = 0. The correlations (𝒆𝐿𝑖 ⋅ 𝜴)2 

are first evaluated at the particle positions and subsequently averaged over all particles in the cubical volume 

shown in Figure 1(a).   

 

B. Particle orientation and rotation  

The particle enstrophy, defined as the mean square rotation rate ⟨𝜔𝑖𝜔𝑖⟩, exhibits a non-monotonic 

time evolution similarly as that of the fluid enstrophy ⟨ 휁 ⟩ in Figure 2(a). However, shape has only 

a modest effect on the particle enstrophy in Figure 4(c). Nevertheless, shape has a considerable 

influence on the mode of rotation, i.e. whether the spheroidal particle spins about its symmetry 

axis (𝑧′) or tumbles about the two other axes (𝑥′and 𝑦′).  We observe from Figure 4(a) that disks 

tumble more than rods, whereas Figure 4(b) shows that rods spin more than disks. The preferential 

tumbling of disks and spinning of rods have been reported before in studies of statistically steady 

HIT [5, 10, 11, 27].  Now, although only the TGV flow field from t ≈ 15L/V0 and onwards 

resembles HIT, these preferred modes of rotation remain the same through all stages of the flow 

development, even at the still essentially inviscid and anisotropic early stage t = 3L/V0. The results 

in Figure 4 also suggest that spinning is more shape-dependent than tumbling. It is furthermore 
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interesting to observe that aspherical particles (λ ≠ 1) exhibit a somewhat lower rotation rate than 

spheres in the early stage of the flow evolution, whereas aspherical particles rotate faster than 

spheres at t = tmax ≈ 9L/V0. This peculiar phenomenon is caused by the fluid strain-rate 𝑆𝑖𝑗
′ , which 

is the only means that makes inertialess spheroids (λ ≠ 1) rotate differently than tracer spheres (λ 

= 1).   

 

 

Figure 4: (a) Tumbling ⟨𝜔𝑥′𝜔𝑥′⟩ + ⟨𝜔𝑦′𝜔𝑦′⟩,  (b) spinning ⟨𝜔𝑧′𝜔𝑧′⟩, and (c) total particle enstrophy versus 

aspect ratio 𝜆 at three different stages of the flow development. Star quantities are normalized by the 

corresponding values for spheres (λ = 1).  

 

Understanding how particle shape affects the rotation modes, as observed in Figure 4, requires 

examination of the particle orientation angle α relative to the fluid vorticity, where cosα is obtained 

from the dot product between the particle orientation unit vector p , aligned with its symmetry axis, 

and the local fluid vorticity vector 𝜴  [6]. Figure 5 shows that disks tend to align orthogonally to 

the fluid vorticity, which causes strong tumbling [6, 10].  In striking contrast to disks, rods are 

strongly aligned with the local vorticity and thus spin along with it. These alignment effects are 

consistently largest for spheroids with maximum deviation from sphericity. Surprisingly, similar 

alignments as those observed at the early stage t = 3L/V0 (fig. 5(a)) of the flow development are 

also observed much later at t = 9L/V0 (fig. 5(b)), although the flow field has undergone dramatic 

changes in between. This indicates that the large-scale and almost inviscid cellular vortex 

structures prevailing at the early stage of the evolving TGV flow orient the spheroids similarly as 

the turbulent-like smaller-scale vortices at later stages. This also explains why shape has 

qualitatively the same effects on the particle rotation mode through the different stages of the flow 

development. It is noteworthy that similar particle alignments with the fluid vorticity persists all 

through the evolving TGV flow, i.e. not only in the later turbulence-like regime, but also at the 

early laminar stage.  A deeper insight in the underlying alignment mechanisms will now be sought 

by means of an analysis of Lagrangian deformations of the fluid elements.     
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Figure 5: Probability density function of the direction cosine of the alignment 𝛼 of a spheroid with the 

local fluid vorticity. (a) t = 3L/V0; (b) t = 9L/V0. The broken line represents randomized alignment of 

spherical particles (𝜆 = 1).  

 

The time histories of the alignment of the particle orientation p with the three eigenvectors 𝒆𝐿𝑖 of 

the left Cauchy-Green strain tensor are presented in Figure 6 for flat disks (𝜆 = 0.1) and long rods 

(𝜆 = 10). The usefulness of correlations such as ⟨(𝒆𝐿𝑖 ∙ 𝒑)𝟐⟩ is appropriate only for particles with 

relatively large asphericity [7], such as the flat disks and the long rods examined in Figure 6. The 

long rods in Fig. 6(b) preferentially align with the maximum Lagrangian eigenvector 𝒆𝐿1,  i.e. in 

the extensional or stretching direction. The correlation  ⟨(𝒆𝐿1 ∙ 𝒑)𝟐⟩  increases monotonically in 

time and tends to unity, similarly as for long rods in HIT [7] and turbulent channel flow [8]. This 

contrasts, however, with the observed decorrelation between 𝒆𝐿1 and 𝜴, which sets in at t ≈ 3L/V0 

and persists until time t about 14L/V0, as seen in Figure 3. The almost negligible influence of the 

fluid viscosity during the early stage of the flow development makes the stretching of vorticity 

indistinguishable from the stretching of Lagrangian fluid lines [18, 26]. This explains the strong 

alignment of rods with both the Lagrangian stretching direction 𝒆𝐿1 and with the vorticity vector 

𝜴 at t ≈ 3L/V0. Although the flow field undoubtedly remains laminar, the latter alignment gives 

rise to the rapid spinning of long rods seen in Fig. 4(b). 

A further enhanced spinning of rods is observed at t ≈ tmax= 9L/V0, but this cannot be ascribed to a 

better unconditioned alignment ⟨(𝒆𝐿1 ∙ 𝜴)𝟐⟩. By conditioning on vorticity magnitude, however, Ni 

et al. [7] showed that stronger vorticity is better aligned with the largest Lagrangian stretching 

direction. Accordingly, we believe that the rapid spinning of rods at time tmax is caused by the 

tenfold increase of enstrophy ⟨ 휁 ⟩.  

The alignment trends of rods with 𝒆𝐿1  continue throughout the time span during which 𝜴 

decorrelates from 𝒆𝐿1. This can only be explained by the emerging influence of viscosity, which 

makes the fluid vorticity evolve differently than Lagrangian fluid line elements, which 
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asymptotically align in the direction of Lagrangian fluid stretching. Dynamically, this de-

alignment between p and 𝜴 reduces the spinning rate of the long rods at t = 15L/V0. Thereafter, 

however, the alignment ⟨(𝒆𝐿1 ∙ 𝜴)𝟐⟩ persists, which implies that the rod-like particles maintain 

their orientation along the vorticity vector 𝜴, which in turn promotes preferential particle spinning, 

similarly as in statistically steady HIT [7] and channel flow turbulence [8].  

Flat disks, on the other hand, preferentially align with the Lagrangian compression direction 𝒆𝐿3 

all through the flow development, analogously to observations in wall turbulence [8].  The vorticity 

vector 𝜴, however, rapidly de-aligns with 𝒆𝐿3 and the correlation ⟨(𝒆𝐿3 ∙ 𝜴)𝟐⟩ in Fig. 3 eventually 

decays almost to zero.  The inferred orthogonality between disks and the vorticity makes disks 

tumble rather than spin. The essentially monotonic de-alignment ⟨(𝒆𝐿3 ∙ 𝜴)𝟐⟩  in Figure 3 contrasts 

with the non-monotonous alignment ⟨(𝒆𝐿1 ∙ 𝜴)𝟐 ⟩. This suggests that the orthogonality between 

disks and vorticity is more modestly affected by the flow development. Indeed, the tumbling rate 

of disk-like particles remains almost constant after time t ≈ tmax= 9L/V0 in Figure 4(a).  

 

 

Figure 6: Time histories of the alignment ⟨(𝒆𝐿𝑖 ∙ 𝒑)𝟐⟩ of the orientation vector 𝒑 of spheroidal particles 

relative to the three eigenvectors 𝒆𝐿𝑖 of the left Cauchy-Green strain tensor. (a): Flat disks, 𝜆 = 0.1 (b): 

Long rods, 𝜆 = 10. 

 

CONCLUDING REMARKS 

From simulations of particle-laden Taylor-Green vortex flow, we have demonstrated that the 

evolving three-dimensional flow field constitute a new vehicle for explorations of particle 

additives in vortical flows. The early advection-dominated TGV flow transits through qualitatively 

different stages, first when non-linear vortex stretching and bending sets in, and later when viscous 

action comes into play. This gave rise to an unexpected decorrelation between vorticity 𝜴 and the 

Lagrangian stretching direction 𝒆𝐿1 over a 10L/V0 time interval. Such decorrelations have not been 

observed before in statistically steady flow fields, neither in HIT [7] nor in wall turbulence [8]. 
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We ascribe this phenomenon to an increasing influence of viscous action as the unsteady TGV 

flow evolves in time. 

We found that inertialess spheroids rotate in the three-dimensional vortex flow similarly as in HIT, 

even though the early and essentially inviscid stage of the TGV flow is laminar rather than 

turbulent. Nevertheless, prolate and oblate spheroids preferentially spin and tumble, respectively. 

These preferred modes of rotation persist all through the flow development, despite the substantial 

time interval during which the vorticity decorrelates with the Lagrangian stretching direction.  

Nevertheless, prolate and oblate spheroids persistently align in the stretching 𝒆𝐿1 and compression 

𝒆𝐿3  directions, respectively, all through the qualitatively different stages of the simulation. 

Contrary to in steady HIT, in which rods and vorticity independently align with 𝒆𝐿1 and therefore 

with each other [5, 7], prolate spheroids preferentially align with 𝒆𝐿1  even though they 

unexpectedly de-align with Ω during a substantial period of the flow development. Finally, the 

present results give further support to the hypothesized [7, 8] universality of preferential alignment 

of rods and disks with the Lagrangian stretching and compression directions, respectively. Herein, 

the preference is demonstrated to apply also in the inviscid and non-turbulent stage of the evolving 

TGV-flow.  

The evolving TGV flow has enabled us to investigate the preferential alignment and the 

accompanying modes of rotation of inertialess spheroids through the qualitatively different stages 

of the flow. Inertialess particles distribute themselves evenly throughout the flow field, whereas 

inertial particles are known to concentrate preferentially, as already shown for inertial spheres by 

Jayaram et al. [22]. Particle inertia is moreover known to make spheroidal particles orient and 

rotate completely different from tracer spheroids with the same aspect ratio 𝜆; see e.g. Zhao et al. 

[6, 14]. The conclusions drawn from the present investigation of inertialess spheroids are therefore 

not valid for inertial particles, unless the particle inertia is negligibly small, i.e. unless the effective 

Stokes number is well below unity. 

The present analysis of preferential orientation of inertialess spheroids benefited from the usage 

of the Lagrangian deformation directions of the local fluid elements, as deduced from the left 

Cauchy-Green tensor. This approach can be further extended to include also the solid-body 

rotation of the eigenvectors of the Cauchy-Green tensor. In that way, we believe that the rotation 

of the eigenvectors can be associated with particle rotation. It should anyhow be recalled that the 

Cauchy-Green tensor-based approach to study particle alignments has been restricted to inertialess 

particles [7, 8], for which the trajectories of the tracer particles coincide with the trajectories of the 

infinitesimal fluid elements. The trajectory of an inertial particle, however, will inevitably depart 

from the path followed by an initially co-located fluid element and thereby prohibit straightforward 

computations of such correlations as shown in Figure 6.   
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