
Eivind Lekve Bjelle
D

octoral theses at N
TN

U
, 2021:210

ISBN 978-82-326-6466-5 (printed ver.)
ISBN 978-82-326-6961-5 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

D
oc

to
ra

l t
he

si
s Doctoral theses at NTNU, 2021:210

Eivind Lekve Bjelle

Advancements in 
environmentally extended 
multiregional input-output 
analysis: modeling drivers, 
pressures, and impacts

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Th

es
is

 fo
r 

th
e 

de
gr

ee
 o

f 
Ph

ilo
so

ph
ia

e 
D

oc
to

r
Fa

cu
lty

 o
f E

ng
in

ee
ri

ng
 

D
ep

ar
tm

en
t o

f E
ne

rg
y 

an
d 

Pr
oc

es
s 

En
gi

ne
er

in
g



Advancements in 
environmentally extended 
multiregional input-output 
analysis: modeling drivers, 
pressures, and impacts

Thesis for the degree of Philosophiae Doctor

Trondheim, June 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Energy and Process Engineering

Eivind Lekve Bjelle



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Engineering
Department of Energy and Process Engineering

© Eivind Lekve Bjelle

ISBN 978-82-326-6466-5 (printed ver.)
ISBN 978-82-326-6961-5 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

Doctoral theses at NTNU, 2021:210

Printed by Skipnes Kommunikasjon AS 

NO - 1598



i 

Preface 

This thesis has been submitted to the Faculty of Engineering (IV) at the Norwegian 

University of Science and Technology (NTNU) as a partial fulfilment of the requirements for 

the degree of Philosophiae Doctor. The work was carried out at the Industrial Ecology 

Programme (IndEcol), Department of Energy and Process Engineering (EPT), under the 

supervision of Professor Richard Wood and co-supervision of Dr. Kirsten S. Wiebe and Dr. 

Konstantin Stadler. 

Eivind Lekve Bjelle 

Trondheim, March 2021 



 

  ii 

 

  



 iii 

Abstract 

We increasingly need to rely on demand side changes to complement technological 

improvements to mitigate environmental impacts such as global warming and loss of 

biodiversity. To do so we must better understand how different types of consumers vary in 

their impact on the environment and to understand the role of consumer behavior in impact 

mitigation. 

The drivers-pressures-states-impact-response (DPSIR) framework describes the interactions 

between the human and natural systems. As the pressures, states, and impacts components 

of DPSIR are used to inform environmental policy making, it is crucial to both accurately 

account for, and to understand the linkages between these components and the underlying 

drivers. This thesis contributes to better understating of drivers (D), pressures (P) and 

impacts (I). The first contribution is made by estimating how changes in household income 

affect greenhouse gas emissions across a range of regions (drivers). By linking a demand 

system to the multiregional input-output model EXIOBASE 3, results show that by 2030 

changing consumer preferences triggered by changes in household income lead to a 1% 

decrease in global warming from greenhouse gas (GHG) emissions globally compared to 

static consumer preferences. The largest contributors to this relative decrease in emissions 

are developing regions driven by lower preference of certain emission intensive food 

products, while the income effect on emissions of developed regions remain relatively 

unchanged. However, large expected population and affluence increases in developing 

regions more than cancel out the small negative effect of a modified consumption structure. 

Secondly, accuracy of environmental footprint studies is improved by increasing the regional 

resolution in a multiregional input-output (MRIO) model (pressures). Using a regionally 

extended version of EXIOBASE with detailed land use extensions, results show that regional 

aggregation errors are introduced when countries are aggregated to rest-of-the-world regions 

in the MRIO. Aggregate land use embodied in imports of regions differs by up to 68%, while 

individual sector-level flows differ by up to 600% when using rest-of-the world regions 

compared to treating countries explicit. 

Finally, by linking biodiversity characterization factors of land use to the new EXIOBASE 

version, biodiversity footprints for numerous new regions are estimated (impacts). 

Biodiversity footprints have globally increased by 5-6% between 1995 and 2015. Countries 

rich in biodiversity, and not necessarily affluence, have the highest footprint per capita. 
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However, looking at trends over time, a one percent increase in income leads to a more than 

one percent increase in biodiversity footprint across all consumption categories for the 

average consumer in the most affluent countries, while this is not found for developing 

countries. 

The subsequent discussion shows that the potential is large for extending on the work in this 

thesis by further developing the database for understanding how demand-side changes and 

consumer behavior can contribute to reaching environmental mitigation goals. 
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1 Introduction 

Rising wealth and population growth are causing increasingly more stress on our 

environment beyond the planetary boundaries (Hoekstra and Wiedmann, 2014) , and our so 

far limited ability to mitigate these impacts has caused consequences that are likely or most 

certainly irreversible (IPCC, 2018). At the same time there is reason for optimism as 

humanity is now in a historically unique position where we have more knowledge than ever 

before on what needs to be done, how much our actions contribute, and when we need to act. 

As technology advancements are not progressing rapidly enough to do the work required for 

us, we need to supplement with demand-side actions to avoid environmental degradation 

(Alfredsson et al., 2018, Wiedmann et al., 2020, Creutzig et al., 2018). 

1.1 Human impact on the environment 

In the following sections (chapters 1.1 to 1.4) I introduce frameworks that link human 

activities to environmental impacts. These are referred to later in the thesis to pinpoint where 

the different pieces of work fit into the more general frameworks, and how the work 

contributes to increased understanding of these different components. 

The most famous concept developed to explain the human impact on the environment is the 

IPAT equation (Ehrlich and Holdren, 1971). Here, impact (I) is a function of affluence (A), 

human population (P), and technology (T). While the technological solutions to mitigating 

environmental impacts are covered by the T, the key to demand-side solutions are found in 

the A. The IPAT equation handles the human drivers of environmental impacts, but it does 

not describe the effects these drivers have on ecosystems and the actions we can take to 

mitigate our impacts. This full interaction chain between the human and natural systems is 

given in the DPSIR framework (Figure 1) (Smeets and Weterings, 1999).  
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Figure 1: The DPSIR framework (De Gisi et al., 2021)  

Drivers (D) such as social and economic developments exert pressures (P) on the 

environment, which consequently changes the state of the environment (S) such as 

biodiversity and resource availability. Finally, this leads to Impacts (I) as biodiversity loss or 

impacts on human health, which again evokes social responses (R) such as taxes or 

environmental laws. 

1.2 Drivers of environmental impacts 

Handling the link between drivers and pressures, the environmental Kuznets curve (EKC) 

theory links affluence to environmental footprints. It can be traced back to the 1950s and 

Simon Kuznets’ work on the relationship between income inequality and economic 

development (Kuznets, 1955). Later this was adapted to environmental impacts, and here the 

hypothesis is that environmental pressures per capita increase up to a certain level as income 

increases, before declining when countries reach later stages of industrialization (Dinda, 
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2004). Although the story is appealing, such a relationship has rarely been found to exist, 

except for some local air pollutants (Dinda, 2004) and the theory has been heavily criticized 

for lack of empirical foundation (Stern, 2004, Dasgupta et al., 2002). 

1.2.1 Accounting principles 

The idea of the existence of environmental Kuznets curves became even more distant as 

consumption-based (CB) accounting of environmental impacts came into play (Rothman, 

1998, Suri and Chapman, 1998, Peters and Hertwich, 2008a). In the Kyoto protocol from 

1997 countries obliged to reduce their GHG emissions. Here the traditional production-based 

(PB) approach that accounts for impacts occurring within a country’s border was applied. 

However, using this approach countries could achieve their GHG emission reduction targets 

by moving polluting industries to other countries, a phenomenon known as carbon leakage. 

This triggered a discussion about how environmental impacts should be accounted for 

(Babiker, 2005), and the consumption-based (CB) approach was put forward as an alternative 

(Peters and Hertwich, 2008b). In the CB approach all environmental impacts throughout the 

supply chain are allocated to the consumer of a good, including those impacts embodied in 

imports. 

1.2.2 Telecoupling and MRIO 

Telecoupling describes the environmental and socioeconomic interactions between human 

and natural systems over distances (Liu et al., 2013). In recent years the spatial disconnect 

between production and consumption has rapidly increased (Kastner et al., 2014a) and this 

increase is strongly linked with expansions in global trade (Schaffartzik et al., 2015, Bruckner 

et al., 2015). A CB accounting framework that can trace goods and services and associated 

environmental impacts across country borders from the point of resource extraction, through 

the supply chain, and finally to the consumer has thus become increasingly relevant. This has 

become possible with the development of several environmentally extended multiregional 

input-output (MRIO) databases in the last 10-15 years. These MRIOs combine national input-

output (IO) tables with bilateral trade data and environmental satellite accounts to describe 

the flows of goods and services in the economy and their associated environmental impacts. 

Today, MRIO has become the standard tool for studying the CB environmental impacts of 

GHG emissions, energy use, water use, land use, material use, and several other pressures 

(Wiedmann, 2009, Hoekstra, 2010, Tukker et al., 2018, Lenzen et al., 2012a). 
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1.2.3 Affluence 

Despite being the main driver of several environmental impacts (Ivanova et al., 2016, 

Hertwich and Peters, 2009), households are represented with very little detail in MRIOs. The 

consumption of households usually is represented by one consumption vector describing the 

average consumer of a country although recent findings suggest that different types of 

consumers substantially vary in environmental pressures resulting from their consumption 

(Moran et al., 2018, Sommer and Kratena, 2017, Steen-Olsen et al., 2016). The top income 

decile drives 30-45% of GHG emissions (Chancel and Piketty, 2015, Hubacek et al., 2017, 

Moran et al., 2018), while the richest percent of consumers in the EU are found to have a 

carbon footprint 22 times beyond the limit for mitigating global warming to 1.5-2°C (Ivanova 

and Wood, 2020). 

Mapping out environmental impacts for different types of consumers as in the above 

examples is essential for focusing effort on environmental impact mitigation, but further 

insight can be gained from also studying the underlying mechanisms of consumption (D in 

DPSIR of Figure 1). In the economics literature on demand systems, changes in consumption 

patterns are related to changes in income and relative prices. The idea that consumers adjust 

their preferences for goods with changes in household income can be traced back to Engel 

(1895) who noticed that the expenditure share on food decreased as income increased in a 

given population (Chakrabarty and Hildenbrand, 2016). This concept has been transferred to 

the environmental impacts literature where both within nations (Weber and Matthews, 2008, 

Jones and Kammen, 2014, Lenzen et al., 2006) and among nations (Hertwich and Peters, 

2009) affluence is found to be a strong predictor of carbon footprint and other environmental 

impacts, but the increase seems to be less than proportional to the increase in 

income/expenditure (Sommer and Kratena, 2017, Tukker et al., 2010, Lenzen et al., 2006, 

Weber and Matthews, 2008). 

The sensitivity of CB environmental impacts to changes in income has become known as the 

income or expenditure elasticities of footprint and these describe the links between consumer 

preferences, income, and environmental impact intensities of goods and services. The concept 

has been applied to carbon footprint (Steen-Olsen et al., 2016, Hertwich and Peters, 2009), 

energy use (Oswald et al., 2020) and eutrophication (Hamilton et al., 2018) in the MRIO 

literature. These elasticities differ from conventional income/expenditure elasticates of 

demand. For example, comparing services and transport that both typically are luxury goods 

with an income/expenditure elasticity of demand higher than one, but might have highly 
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differing income/expenditure elasticities of carbon footprint due the a lower GHG emission 

intensity of services compared to transport (Hertwich and Peters, 2009, Steen-Olsen et al., 

2016).  

Beyond estimating income/expenditure elasticities of footprint, the role of consumer 

preferences in mitigating environmental impacts have in MRIO studies received limited 

attention as studies have generally focused on past events. However, a framework for 

studying how income changes over time affect environmental impacts is readily available as 

all the MRIOs with global coverage now cover several years, and new versions are 

continuously being published with further extensions of the time series (see e.g. Stadler et al., 

2020). 

1.3 Land use pressures 

Moving focus from drivers to pressures in DPSIR (Figure 1), these are in environmentally 

extended MRIO covered by satellite accounts of environmental pressures per economic 

sector. The details of these accounts are limited to the sectoral, spatial, and temporal details 

of the MRIO system. Aggregation of regions, sectors, and environmental satellite accounts is 

present in all MRIOs for various reasons. The effects of aggregation of regions (Su and Ang, 

2010, Andrew et al., 2009, de Koning et al., 2015, Bouwmeester and Oosterhaven, 2013), 

environmental satellite accounts (Lenzen, 2011, Steen-Olsen et al., 2014), and particularly 

economic sectors (Piñero et al., 2015, Steen-Olsen et al., 2014, Andrew and Peters, 2013, 

Wood et al., 2014, Park and Gordon, 2005, de Koning et al., 2015, Su et al., 2010, Miller and 

Shao, 1990, Bouwmeester and Oosterhaven, 2013) are well covered in the literature. In 

general findings show that aggregation of satellite accounts to fit a sectoral classification 

might lead to aggregation of highly heterogeneous environmental multipliers (Steen-Olsen et 

al., 2014, de Koning et al., 2015) and the preferred approach is disaggregation of economic 

sectors, even based on few data points (Lenzen, 2011).  

Due to lack of data, several regions in MRIOs are typically gathered in rest-of-the-world 

(RoW) regions to ensure that supply-chains are not cut off. However, as these countries can 

differ substantially in terms of economic structure and environmental accounts, they matter 

for environmental analyses. Of environmental satellite accounts, particularly natural land 

stands out as having a high share located in RoW regions (Stadler et al., 2014). 

Natural land is a scarce, limited, and immobile resource, and about 60-85% of forests and 70-

90% of other natural ecosystems are today affected by human use in some degree. Its use for 
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anthropogenic purposes in the agriculture, forestry and other land use sectors contributes to 

23% of total human-induced GHG emissions (IPCC, 2019). Available land area is further put 

under pressure by an increasing human population and an increase in calory uptake per capita 

(IPCC, 2019). At the same time, consumption in developing countries is causing an 

increasing displacement of land use, and rich countries’ food consumption in some cases 

require an arable land area larger than the total available arable land area of some of these 

rich country (Lambin and Meyfroidt, 2011). In developed countries with limited land 

resources such as the Netherlands (Wiedmann, 2009) and Japan (Yu et al., 2013) over 90% of 

the land use area required for domestic consumption is located outside the country borders. 

1.4 Impacts on biodiversity 

While land use or GHG emissions are useful for quantifying the environmental pressures of 

human activity, they do not inform about the consequences for ecosystems. In light of the 

trend in recent years to have environmental policy making to be based more on consequences 

(I in DPSIR in Figure 1) instead of pressures (P in DPSIR) (see e.g. Verones et al., 2017) it 

has become increasingly relevant to link consumption to impacts on biodiversity. 

Furthermore, the difference in using pressures versus impacts as indicator can be large. In 

Verones et al. (2017) for example, they found that 11.5% of total land pressure embodied in 

trade comes from China, while the equivalent value for total biodiversity impact embodied in 

trade was only 3.7%. 

Today, 28% of all species are threatened by extinction (IUCN, 2020) with few indications of 

the rate of biodiversity loss slowing down despite targets being set to reduce this rate 

(Butchart et al., 2010). Land use and land use change are the main drivers of biodiversity loss 

(Souza et al., 2015, Baillie et al., 2004, Verones et al., 2017, Sanderson et al., 2002, 

Chaudhary et al., 2016) and human use of land has caused an 11-14% decrease in 

biodiversity (IPCC, 2019). 

The link between biodiversity impacts and affluence as a driver was made by McLellan et al. 

(2014), but using PB accounting. Efforts to analyze this using CB accounting has only in the 

last 2-3 years been covered in the literature. These findings show that the relatively larger 

increase in GDP compared to biodiversity impacts leads to a relative decoupling of 

biodiversity impacts from economic growth (Marques et al., 2019, Koslowski et al., 2020, 

Wilting et al., 2017). On a per capita level, the link between affluence and biodiversity 

impacts is less clear. Conclusions from studies on European countries are somewhat 
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deviating (Wilting et al., 2021, Koslowski et al., 2020), while studies on a global level find a 

positive correlation between GDP per capita and biodiversity footprints overall (Wilting et 

al., 2017) and that affluence is the largest contributor to increasing biodiversity impacts of the 

components in the IPAT framework (Marques et al., 2019). However, the studies vary in 

terms of years, regions, pressures, and sectors covered, in addition to differences in unit of 

biodiversity impacts, MRIO and biodiversity impact datasets they apply. In addition, recent 

work has questioned the appropriateness of using RoW regions in MRIOs, finding that 

biodiversity loss footprint in the EU might be significantly underestimated due to aggregation 

into RoW regions (Cabernard and Pfister, 2021). 

1.5 Research Gap and overall objective 

Given the important role of demand-side changes in mitigating environmental impacts there 

is potential for improved understanding of the role of consumer behavior and demand-side 

changes in environmental MRIO studies. 

While some studies exist on the sensitivity of changes in income on environmental impacts in 

form of income elasticities of footprints, a framework that also controls for how consumers 

respond to other factors that might affect consumption decisions, such as price changes, is 

still lacking for all regions represented in MRIOs. 

Given that recent findings suggest that the use of RoW regions in MRIOs can introduce 

aggregation errors for estimating certain environmental impacts, there is both a need to 

explicitly cover the countries embodied in RoW regions, and to understand the effects of 

regional aggregation on a larger number of relevant environmental indicators. RoW regions 

in MRIOs represent a large share of global natural land area. Still, studies exploring the 

effects of regional aggregation in MRIOs have focused on other pressures and are yet to 

investigate the consequences of spatial aggregation on land use footprints.  

The literature that links changes in affluence to changes environmental impacts have mainly 

so far focused on GHG emissions, while the link between affluence and biodiversity impacts 

have been studied from a PB perspective and more recently from a CB perspective, but 

globally or for broad world regions covering often only one year. The availability of MRIOs 

in increasingly longer time series facilitates exploring how impacts develop over time and 

with changes in affluence. With recent studies suggesting that the spatial resolution in MRIOs 

can also introduce potential errors in biodiversity footprints, there is room for improvements 

in both the temporal and spatial dimension of accounting for CB biodiversity impacts. 
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1.6 Thesis structure 

In the remaining sections I provide a more thorough overview of environmental MRIO 

analysis and how the research gaps fit with the state of the art (chapter 2) before describing 

the contributions of the thesis and the thesis objectives (chapter 3). The paper summaries are 

given in chapter 4. Finally, the limitations and potential for further work are discussed in 

chapter 5. The papers are found in the appendices of the thesis. 
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2 Background 

A crucial step to answer to these research objectives has been to develop a regionally 

extended version of the MRIO EXIOBASE. This section therefore gives a thorough 

background consisting of the basic components of environmental IO analysis, an overview of 

MRIO, MRIO development, and its application to environmental analyses. 

2.1 The building components of IO 

The core piece of data for IO analysis is the supply-use framework (Figure 2). 

 

Figure 2: Supply-use framework (Eurostat, 2008) 

The supply- and use framework comprises the matrix of industries supplying products 

(supply table), the matrix of products used by industries (use table), the value added 

vector/matrix (𝐕) by industries containing compensation of employees, taxes etc., the vector 

of total imports of products, as well as the final demand matrix (𝐘) by final users of products. 

To transform supply-use tables to symmetric input-output tables some assumptions must be 

applied depending on whether the IO tables is to be a product-by-product table or an 

industry-by-industry table. For a product-by-product symmetric IO table, these assumptions, 

or constructs, deal with the off-diagonal entries of the supply tables (some industries produce 

more than one product). Without going too much into detail, the most commonly used 

(Eurostat, 2008) are the industry-technology and the product technology constructs (see 

Jansen and Raa (1990) for a more detailed discussion of constructs). 
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The result is a symmetric IO table (product-by-product)  

Table 1: Symmetric IO table, adapted from (Eurostat, 2008) 

 Products Final demand Total use 

Products 𝐙 𝐘 
Total use by 

products 

Value 

added 
𝐕   

Imports 𝐢𝐦𝐩𝐨𝐫𝐭𝐬   

Supply Total supply 
Final use by 

category 
 

 

A fundamental identity of input-output tables is that total supply by product = total use by 

product (Eq. 1) 

 𝐙𝐢′ + 𝐕𝐣 + 𝐢𝐦𝐩𝐨𝐫𝐭𝐬 = 𝐙𝐢 + 𝐘𝐢   (1) 

 

Where 𝐙 is the matrix of flows between sectors, 𝐢 is a row vector of length equal to the 

number of products (n), 𝐣 is a column vector of length equal to the number value added 

categories and ′ denotes the transpose. 

The total output (𝐙𝐢 + 𝐘𝐢) from Eq. 1 is from here on referred to as 𝐱. 

From these components we can derive the technical coefficient matrix (𝐀) containing the 

“production recipe” for each product or industry as: 

 𝐀 = 𝐙 𝐱̂−𝟏 (2) 

Where 𝐱̂ is the diagonalized version of vector 𝐱. 

Based on Eq. 1 and Eq.2 we can rewrite this as: 

 𝐱 = 𝐀𝐱 + 𝐲 (3) 

 

Where 𝐲 = 𝐘𝐢. 
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Which simply states that total output is the sum of intermediate demand and final demand.  

The Leontief inverse (𝐋) can then be written as: 

 𝐱 = (𝐈 − 𝐀)−1𝐲 = 𝐋𝐲 (4) 

 

Where the 𝐋 matrix gives the requirements, both direct and indirect through the value chain, 

needed to produce one unit of final demand. 𝐈 is an identity matrix of size n. 

In the MRIO model, Eq. 3 is expanded with data on multiple countries. Letting c be the 

number of countries, we can illustrate the MRIO framework as: 

 [

𝐱1

𝐱2

⋮
𝐱n

] = [

𝐀11 𝐀12 ⋯ 𝐀1𝑐

𝐀21 𝐀22 ⋯ 𝐀2𝑐

⋮ ⋮ ⋱ ⋮
𝐀𝑐1 𝐀𝑐2 ⋯ 𝐀𝑐𝑐

] [

𝐱1

𝐱2

⋮
𝐱n

] + [

𝐘11 𝐘12 ⋯ 𝐘1𝑐

𝐘21 𝐘22 ⋯ 𝐘2𝑐

⋮ ⋮ ⋱ ⋮
𝐘𝑐1 𝐘𝑐2 ⋯ 𝐲𝑐𝑐

] [

𝐢
𝐢
⋮
𝐢

]  (5) 

 

For region number 1 in Eq. 5, the output 𝐱1 is now equal to the domestic intermediate 

demand 𝐀11𝐱1 plus the intermediate demand from abroad [𝐀12 𝐀13 ⋯ 𝐀1c]𝐱1 plus the 

final domestic demand 𝐘11 plus the final demand from abroad [𝐘12 𝐘13 ⋯ 𝐘1c]. The 

procedure for getting the Leontief inverse (𝐋) is the same as described in Eq. 4.  

To enable environmental analyses with the MRIO system, environmental extensions or 

satellite accounts must be added for each of the regions and relevant sectors of the MRIO. 

Letting 𝐅 represent the total environmental impacts per industry, region, and category of 

environmental impacts (Stadler et al., 2018), we can then calculate the environmental impact 

multipliers 𝐒 as: 

 𝐒 = 𝐅𝐱̂−𝟏 (6) 

 

And finally, the consumption-based impacts (𝐄) by environmental impact category and final 

demand category are given by: 

 𝐄 = 𝐒𝐋𝐘 (7) 
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In addition to the impacts from industries accounted for in 𝐅, impacts directly caused by 

households, such as GHG emissions from driving or from heating using a fireplace, are 

accounted for in 𝐅𝐡𝐡. 

Production-based impacts are then given as 𝐅 + 𝐅𝐡𝐡 while consumption-based impacts are 

given as 𝐄 + 𝐅𝐡𝐡. The difference between them gives the net impacts embodied in trade. The 

equations presented above compose the framework for all environmental MRIO analysis. 

Depending on the research question, the impacts can be traced through value chains, 

decomposed per sector and region, and differences across time can be analyzed if the MRIO 

exists in a time series. 

2.2 Available MRIOs and their uses 

Using input-output (IO) for environmental analyses escalated after 1995, whereas the focus 

on impacts embodied in trade came later and after 2005 (Hoekstra, 2010 as cited in , Tukker 

and Dietzenbacher, 2013). Since these distinguished developments, MRIOs used for 

environmental- and socioeconomic analysis have developed rapidly towards greater regional, 

temporal, and sectoral coverage as well as a richer coverage of satellite accounts. 

Available multiregional input-output databases (MRIOs) all vary in level of detail in covered 

sectors, economic and environmental satellite accounts, years, and regions. Although the 

development of the individual MRIOs point towards increased level of detail in all these 

domains, different MRIOs are still applicable for different types of analyses. Eora (Lenzen et 

al., 2013, Lenzen et al., 2012a) was constructed with the idea of not diverging from the 

original data (Tarne et al., 2018), and thus has a mixed sector classification IO tables due to 

different classifications in the national IO tables. It comes in a time series (1990-2015) and 

has a high regional level of detail with 189 countries represented but linking flows that go 

across country borders to specific sectors can be challenging unless using the harmonized 26-

sector version of the database (Eora26). The OECD inter-country input-output (ICIO) tables 

(OECD, 2021) comes in a time series from 2005-2015, has 34 sectors, 64 regions, and CO2 

emissions connected to the database where the IEA CO2 fuel combustion data is largely 

directly allocated to the industries and regions (Tukker et al., 2020). The Global Trade 

Analysis Project (GTAP) database (Aguiar et al., 2019) includes in its 10th version 141 

regions and 65 sectors for four years (2004, 2007, 2011, and 2014). The agriculture and food 

sectors are well covered, while other sectors of the economy are quite aggregated (Aguiar et 

al., 2019, Tarne et al., 2018). It has become the standard underlying database in applied 
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general equilibrium models (Aguiar et al., 2019). The World Input Output Database (Timmer 

et al., 2015) is more aggregated on both the regional (43) and sectoral (35) level, but has 

harmonized sectors and also comes in a time series (1995-2011). It is tailored to economic 

trade analysis rather than environmental analysis like GTAP, EXIOBASE, and Eora (Tarne et 

al., 2018). EXIOBASE 3 (Stadler et al., 2018) contains 163 industry sectors and 49 regions 

and comes in a time series (1955-2011). The historically strong focus on European regions 

(Tukker et al., 2013, Wood et al., 2015) is still evident in the database, where large 

economies like Saudi Arabia, Thailand, Iran, and Argentina are aggregated to rest-of-the-

world (RoW) regions. 

2.3 Challenges in MRIO development 

MRIO developers face numerous challenges along the way that complicates the development 

steps outlined above. MRIOs cover the majority of global GDP (Tarne et al., 2018) and 

should cover the entire global economy in order to ensure that global supply chains are not 

cut off (Stadler et al., 2014). By disrupting supply chains through ignoring RoW regions, 

ignoring imports, and using average environmental impacts, research has shown that not 

including the full global economy can lead to significant errors in environmental results from 

MRIOs (Andrew et al., 2009, Xu and Dietzenbacher, 2011). 

However, supply- and use tables (SUTs) (Figure 2) are only available for selected countries 

and years. In addition, different countries use different product/industry classifications (see 

Supporting Information 1 of Stadler et al. (2018) for the data sources of SUTs used to build 

EXIOBASE 3). Estimating missing country data can be solved by either using proxy 

countries with thought similar economic structure (approach used in Eora and GTAP) or by 

compiling countries with poor data in RoW-regions (approach used in WIOD and 

EXIOBASE) (Stadler et al., 2014). 

For the construction of MRIOs in time series, technical coefficients (𝐀) for missing years can 

be estimated using a linear interpolation routine for data missing between years with 

available data or an extrapolation routine based on average annual change in coefficients for 

missing start year and end year (see Supporting information 1 of Stadler et al., 2018 for the 

routine applied for EXIOBASE 3).  

For different sector classifications a range of concordance tables converting between 

classifications can be applied. The different MRIOs have here adopted widely different 

strategies (Owen, 2015). Eora has non-harmonized sectors kept to the original classifications 
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of the countries to avoid the unwanted error potentially introduced by switching between 

sector classifications. In WIOD sectors are aggregated to a classification in the country with 

the lowest sectoral resolution. In GTAP and EXIOBASE harmonization of sectors through 

disaggregation is applied. Concordance matrices were developed for EXIOBASE to 

disaggregate the monetary SUTs (see Wood et al., 2014 for a detailed desciption of the 

routine applied). In GTAP the IO tables of other regions (belonging to the same regional 

group) are used to disaggregate a country’s non-agricultural sectors, while data from the Food 

and Agriculture Organization of the United Nations (FAOSTAT) is used to disaggregate the 

agriculture sectors (Owen, 2015). 

Each approach has its advantages and disadvantages. Eora’s non-harmonized sector 

classifications stays close to the raw data, which likely reduces uncertainty. Eora also allows 

for analyses on detailed sectors for the countries with a high sector resolution but is limited 

and requires more work on the traded components. The OECD-ICIO closely follows the 

sectoral detail of the CO2 emissions raw data, but low sectoral detail might introduce larger 

aggregation errors if the database is extended with other environmental impacts such as land 

use, material use, and water (Tukker et al., 2020). WIOD stays close to the raw data by 

avoiding disaggregation, and harmonized sectors allow for analyses of flows across country 

borders. However, it is limited by the number of sectors, and aggregation of environmental 

extensions can therefore be a source of uncertainty (Lenzen, 2011). This uncertainty is 

arguably reduced in EXIOBASE and GTAP given the higher detail of sectors. EXIOBASE 

was tailored for environmental analyses and to avoid errors introduced by aggregating 

environmental accounts (Wood et al., 2014) as highlighted by Lenzen (2011). However, 

disaggregation of sectors can also be a source of uncertainty (Wood et al., 2014).  

2.4 Differences between MRIOs 

In 2013, which marked the 25th anniversary for the International Input-Output Association, 

Dietzenbacher et al. (2013) looked into the next 25 years of IO analysis. Here, they foresaw a 

future where all countries are included separately in a global MRIO to enable analyses on 

impacts from resources that are extracted at a few locations, such as scarce metals. Since then 

the development has gone in this direction, facilitated by the simultaneous increase in 

computational power and better data availability. 

Dietzenbacher et al. (2013) further foresaw the establishment of a global statistical office by 

2019 that would start the work towards “harmonization of data, classifications, and 
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accounting standards amongst statistical agencies across the world” which by 2023 combines 

the Systems of National Accounts (SNA) and System of Environmental Economic 

Accounting (SEEA) guidelines into one framework. With 2019 out of the way and 2023 

approaching, we are certainly more than a few steps away from the path to such a 

development. MRIO developers still do not have access to such a database, and much of the 

time spent on constructing an MRIO is allocated to processing some form of raw data (or 

missing raw data) into the final format of the MRIO. 

MRIOs increasingly rely on large amounts of data, and the unavailability of data has held 

back the IO literature (Hoekstra, 2010). MRIO developers have therefore developed 

sophisticated methods for data extrapolation to deal with low data availability. However, the 

efforts have been considered worthwhile as particularly for environmental analysis using 

MRIO, even small amounts of proxy information and additional geographical and sector 

detail improves the reliability of these analyses (Tukker and Dietzenbacher, 2013, Lenzen, 

2011). 

Due to differences in raw data applied, classification schemes, and types of analyses for 

which the database is tailored, there is no standardized approach for data processing and 

balancing between the MRIOs. Different routines are applied in the choice of supporting 

data, set-up of the initial estimate, optimization methods, and number of partitioning and 

optimization steps (Lenzen et al., 2017). In addition, numerous assumptions must be applied 

in different stages of the MRIO construction. These include, but are not limited to, choosing a 

representative country for the RoW region, converting to basic prices, disaggregating the 

trade vectors, and assigning emissions to each sector (Owen and Barrett, 2013). 

These differences in approach unfortunately also cause differences in the final environmental 

results between the MRIOs (Tarne et al., 2018, Moran and Wood, 2014, Wieland et al., 2018, 

Owen et al., 2016, Arto et al., 2014, Owen et al., 2014), which again harms the policy uptake 

(Moran and Wood, 2014, Owen et al., 2016, Giljum et al., 2019). Considerable amounts of 

literature have tried to pinpoint the causes of these MRIO differences. 

Some studies try to identify the parts of the MRIO structure causing differences, where often 

structural decomposition analysis (SDA) or structural path decomposition (Wood and 

Lenzen, 2009) are applied. These studies identify key countries and sectors for the difference 

in environmental impacts (Wieland et al., 2018, Owen et al., 2014, Owen et al., 2016, Moran 

and Wood, 2014, Arto et al., 2014). Most studies point to the emission accounts as the main 
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cause of discrepancies in results between the MRIOs. Authors point to disparity in accounting 

(Owen et al., 2014, Owen et al., 2016) and deviations from the SEEA principles of emissions 

accounting (Usubiaga and Acosta-Fernández, 2015) as the causes of differences. Carbon 

footprint results are for example found to converge after harmonizing emission accounts 

(Moran and Wood, 2014). Other studies assess whether the traded or domestic blocks of the 

MRIO system are more important for differences in carbon footprint, but these results point 

in different directions (Wieland et al., 2018, Moran and Wood, 2014). The fact that 

developers of different MRIOs prioritize different data in MRIO constructions (trade versus 

domestic) could also be a cause of discrepancies (Arto et al., 2014).  

Another approach to identifying discrepancies is to exchange parts of the construction 

process and constraints datasets between the MRIO production pipelines to estimate the 

effect these routines have on the resulting MRIO (Geschke et al., 2014). These results 

indicate that with a well-constructed initial estimate and set of constraints, balancing routines 

can be exchanged between EXIOBASE and Eora without large impacts to the original 

database. 

2.5 Level of detail as cause of uncertainty 

While increasingly finer splits are viewed as a positive and necessary development for 

MRIOs, it comes with potential costs of increased uncertainty, and balancing of conflicting 

information (Andrew and Peters, 2013). Although results indicate that a medium high 

coverage of sectors (approximately 50) can be enough to avoid large aggregation errors at a 

national footprint level (Su et al., 2010, de Koning et al., 2015, Bouwmeester and 

Oosterhaven, 2013), this can highly differ depending on indicator chosen with outlier regions 

deviating by 30-50% (de Koning et al., 2015, Wood et al., 2014). Yet, due to the potential 

aggregation of heterogeneous environmental multipliers, disaggregation of sectors is in 

general recommended over aggregation of satellite accounts (Steen-Olsen et al., 2014, 

Lenzen, 2011), and particularly when studying results at a detailed sectoral level. 

The less studies regional aggregation has previously been understood as having a smaller 

effect on national footprints than sectoral aggregation (de Koning et al., 2015, Miller and 

Shao, 1990), and it has been shown that a limited resolution of regions are needed to 

approximate the carbon footprint embodied in trade of certain countries (Andrew et al., 

2009). However, the effects of regional aggregation had not been explored for the full range 

of environmental indicators until Stadler et al. (2014) pointed to significant sensitivity of 
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choice of proxy information for estimating the RoW for environmental impacts that are 

associated with specific parts of the economy, such as land use. This is further underpinned 

by recent findings that show that the use of RoW regions significantly affects national water 

stress and biodiversity footprints (Cabernard and Pfister, 2021). 

2.6 Affluence and footprints 

Moving from the level of detail in environmental MRIO analysis, which concerns the 

accuracy of accounting for pressures in DPSIR (Figure 1), I now turn to the drivers of DPSIR 

and how these have been covered in environmental MRIO studies. 

The terms of the IPAT equation can be related to each of the terms in Eq. (7) as: 

 

Figure 3: IPAT in MRIO 

 

Total environmental impact (𝐼 and 𝐸) is a function of population (𝑃), which in MRIOs are 

embedded in total final demand (𝑌), affluence (𝐴), which is also part of  𝑌 as consumption 

per capita, and technology (𝑇) composed of the economic multipliers (𝐿) and the 

environmental impact multipliers per monetary unit (𝑆). 

SDA is often used to decompose the changes in a variable over time into the changes in its 

determinants (Dietzenbacher and Los, 1998) and has been applied to study the drivers of 

GHG emissions (see e.g. Munksgaard et al., 2000, Roca and Serrano, 2007, Wood, 2009), but 

has also to material (Wood et al., 2009), water (Zhang et al., 2012), biodiversity (Marques et 

al., 2019) and energy footprints (Lan et al., 2016). All these studies show that scale increases 

on the demand side have offset technological improvements.  

While the purpose of SDA is to decompose the drivers of environmental impacts, 

environmental elasticities look at the sensitivity of environmental impacts to changes in 

consumption. Extensive studies on the sensitivity of environmental impacts to changes in 

other variables such as income has been covered in the economic literature before the arrival 
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of MRIOs  (see e.g. Stern, 2010, Soytas et al., 2007, Hatzigeorgiou et al., 2008). However, 

the strength of MRIO in accounting for impacts embodied in trade and allocating supply 

chain impacts to the good or service consumed provides a significant improvement over these 

previous studies. The underlying data can be temporal or cross-sectional, or a combination of 

the two. Data can be cross-sectional of different countries (Hertwich, 2011, Hamilton et al., 

2018), based on consumer expenditure data (Steen-Olsen et al., 2016) or panel data on 

average consumers in different countries over time (Hamilton et al., 2018), and sometimes in 

addition, households are broken down into income quantiles (Sommer and Kratena, 2017). 

There are two components affecting the income/expenditure elasticities of footprint. First, the 

income/expenditure elasticity of demand (although they might not be explicitly estimated), 

and secondly the environmental impact multiplier. The environmental impact multiplier is 

affected by technological advancements that typically over time lower the environmental 

impacts per monetary output produced (𝐒 in Figure 3), changes in the production recipe (𝐋 in 

Figure 3), as well as changes in the import structure (both intermediate and final demand). 

Thus, a low income/expenditure elasticity of footprint for a specific product can be a result of 

the good or service being an inferior good (has a low income/expenditure elasticity of 

demand), a result of changes in the factors affecting the environmental impact multipliers or a 

combination of the two. In some cases, the two components can pull in opposite direction, 

resulting in a normal income/expenditure elasticity of footprint. 

2.7 Environmental impacts of types of consumers 

Given the increasing recognition that consumers play an important role in mitigating 

environmental impacts (Creutzig et al., 2018, Intergovernmental Panel on Climate Change, 

2019) and the fact that consumers differ in their pattern and level of consumption depending 

on factors such as income level, household size, education level, etc. (Lenzen et al., 2006, 

Ivanova and Wood, 2020, Steen-Olsen et al., 2016) there is a need to distinguish the 

environmental impacts of different types of consumers. To address consumer heterogeneity in 

environmental analyses, MRIO studies disaggregate the household consumption vector by 

linking to external consumption data, often from consumer expenditure surveys (Steen-Olsen 

et al., 2016, Mongelli et al., 2010, Koslowski et al., 2020, Kim et al., 2015), requiring 

assumptions to ensure balancing and harmonization of data (Di Donato et al., 2015, Ivanova 

and Wood, 2020). Several recent MRIO studies find that different types of consumers within 

the same country highly differ in their environmental footprints (Moran et al., 2018, Sommer 

and Kratena, 2017, Steen-Olsen et al., 2016)  and particularly so with respect to differences in 
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income (Chancel and Piketty, 2015, Hubacek et al., 2017, Moran et al., 2018, Ivanova and 

Wood, 2020). 

2.8 Demand Systems to model consumer behavior 

Income/expenditure elasticities of footprint to link between affluence and environmental 

impacts do not consider how consumers respond to price changes, while this is accounted for 

in demand systems. In the 1950s full-fledged demand systems consistent with utility 

maximization were developed (Stone, 1954) and later in the 1970s, 1980s and 1990s more 

complex demand systems materialized as computational power increased (see e.g. Deaton 

and Muellbauer, 1980, Pollak and Wales, 1978, Banks et al., 1997, Almon, 1998). 

Integrating a demand system into an MRIO opens possibilities for new types of analyses like 

studying the effects of a policy measure as a CO₂-tax on production (Mongelli et al., 2010) 

that changes the relative prices consumers are faced with, and in turn the consumption 

decision taken by the consumer and the resulting consumption pattern. A second strand of 

literature linking MRIO and demand systems looks at predicting how environmental impacts 

develop given exogeneous scenarios of changes in GDP per capita and variables relating to 

technical changes, such as the International Energy Agency’s Energy Technology 

Perspectives (IEA ETP) scenarios (used in Wiebe et al., 2018) or the shared socioeconomic 

pathways (O’Neill et al., 2014) (used in Xu et al., 2020, Chen et al., 2019). 

When linking the demand system to MRIO data, an important question is what level of sector 

detail to use. EXIOBASE with its 200 products is too detailed as several of the products are 

irrelevant to household consumption. In addition, some products might have very low levels 

of consumption, and changes in consumption through the time series might cause problems 

(Blundell and Robin, 1999, Bardazzi and Barnabani, 2001) such as large effects in income- 

and price elasticities. In previous studies using demand systems, a resolution of between 5 

and 22 has been used (Sommer and Kratena, 2017, Bardazzi and Barnabani, 2001, Blundell 

and Robin, 1999, Banks et al., 1997, Almon, 1998, Deaton and Muellbauer, 1980, Golan et 

al., 2001, Meade et al., 2014, Mongelli et al., 2010) and generally when multiple countries 

are used in the demand systems a lower product resolution is used. The highest resolution is 

often in food categories. In this regard EXIOBASE is a good choice with the highest 

harmonized product resolution of all MRIOs for food products (Tarne et al., 2018). WIOD 

and the harmonized Eora have sector resolutions that almost match the upper limit of what is 
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used in demand systems, but they lack detail in key household consumption areas such as 

food and services. 

2.9 Land use 

Switching from how drivers of environmental impacts in general have been covered in MRIO 

analysis, I now switch focus to land use as a pressure and its link to biodiversity impacts. 

MRIO provides a framework for accounting for the ever-increasing distance between the 

location of the land used to produce a good and the location of the consumption of this good 

(Seto et al., 2012), and has in recent years been used to calculate land use footprints of 

consumption activities (Steen-Olsen et al., 2012, Weinzettel et al., 2013, Weinzettel et al., 

2014, Yu et al., 2013, Ivanova et al., 2016). 

As much as 70% of land use can be traced to household consumption (Ivanova et al., 2016) 

and differences in availability of both area and type of land between countries and increases 

in global trade, cause countries’ territorial and consumption-based land use impacts to highly 

differ (Ivanova et al., 2016, Wiedmann, 2009, Steen-Olsen et al., 2012, Yu et al., 2013). 

When comparing land use results based on MRIO with other methods, deviations in results 

led some researchers to question the applicability of MRIO for land use studies (Weinzettel et 

al., 2014, Bruckner et al., 2015, Kastner et al., 2014b). This has been connected to a low 

sectoral resolution, particularly for food sectors, as well as the process of attributing land use 

data to monetary production data (Weinzettel et al., 2014, Bruckner et al., 2015). Even at a 

quite aggregated level, not split by sector, contradicting results have been found for land 

embodied in trade when comparing MRIO studies to physical trade accounting studies 

(Kastner et al., 2014b). These discrepancies in results have later been linked to differences in 

system boundaries, where MRIO is suggested for looking at total land embodied in trade and 

drivers of land use, while physical trade accounting is suited for looking at flows of specific 

primary food products among countries (Hubacek and Feng, 2016). 

Nevertheless, MRIO stands out as the method of choice for studying CB land use impacts. 

There is significant improvement potential in allocating land use to areas where it has the best 

global benefits. Natural climate solutions such as reforestation and avoided forest conversion 

could for example contribute to 20-39% of the needed mitigation in global carbon emissions 

to reach the 2°C target of global warming (Griscom et al., 2017). This requires that 

consumption in the global North takes into consideration the stress it is causing on natural 

resources in the global South such as degradation of arable land in Africa (see e.g. the 
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discussion in Yu et al. (2013)). However, studying the drivers of damaging land use requires 

a regional resolution that is not found in many MRIOs today. The considerable share of 

global land area existing in RoW regions (Stadler et al., 2014) is a clear limitation. This for 

example means that land used in Vietnam cannot be distinguished from that used in Thailand, 

which makes it difficult to tell if consumption of a food product in Europe requires land area 

on a piece of land in a country that is prone to degradation or not. It can only show that the 

piece of land used exists somewhere within the RoW region. 

2.10 Land use-induced biodiversity loss 

Regional resolution in MRIOs has relevance for land-use induced biodiversity loss given the 

strong link between the human use of land and negative biodiversity impacts (see chapter 1). 

Efforts on mapping land used for human purposes and its effects on biodiversity have been 

pursued for a few decades (see e.g. Hannah et al., 1995), but the availability of global maps 

of land use, human infrastructure, and human population density, as well as development in 

geographic information systems is what enabled mapping of the human footprint on land area 

(Sanderson et al., 2002). Today, methods that estimate species loss from different types of 

land use on a highly detailed (5 min x 5 min grid) level have been developed (Chaudhary et 

al., 2016). In other words, the S (Status) and I (Impacts) in the DPSIR framework (Figure 1) 

have been covered thoroughly. However, the link to D (driving forces) is yet to be explained 

in these models, and such studies have pointed to MRIO as the tool to make this link 

(Chaudhary et al., 2016, WWF, 2018, Marques et al., 2017, Moran et al., 2016). 

The first study to make the link between consumption and biodiversity impacts was Lenzen et 

al. (2012b) who associated 25 000 threatened species to more than 15 000 goods in 187 

countries and found that 30% of species threats are due to international trade. Furthermore, 

consumption of goods and services in developed countries in several cases was found to 

cause a biodiversity footprint that was larger abroad than at home. The first work on 

biodiversity impacts using MRIO directly linked threatened species to economic sectors 

(Moran and Kanemoto, 2017, Lenzen et al., 2012b), and thus skipping the pressures (e.g. 

land) in the DPSIR framework (Figure 1). These studies inspired several others to further 

investigate biodiversity impacts by also including the pressure pathway using MRIO (Wilting 

et al., 2017, Marquardt et al., 2019, Marques et al., 2019, Koslowski et al., 2020, Verones et 

al., 2017, Moran and Kanemoto, 2017, Wilting et al., 2021, Kitzes et al., 2017, Cabernard and 

Pfister, 2021) and combining ecological models with biophysical trade flows (Chaudhary and 

Kastner, 2016). 
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Some of these studies use an MRIO with high regional resolution (Lenzen et al., 2012b, 

Moran et al., 2016, Verones et al., 2017, Wilting et al., 2017, Marques et al., 2019, Kitzes et 

al., 2017), some break down the footprint into consumption categories (Koslowski et al., 

2020, Marques et al., 2019, Wilting et al., 2017), for a specific year (Lenzen et al., 2012b, 

Koslowski et al., 2020, Wilting et al., 2017, Verones et al., 2017), and sometimes including 

temporal trends (Marques et al., 2019), but no studies combine all of these aspects. 
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3 Thesis contribution and objectives 

The main work has consisted of building EXIOBASE 3rx based on the production pipeline of 

EXIOBASE 3. The papers coming out from the work of this PhD represent stages in the 

development of EXIOBASE 3rx, from analyses using the previous versions of the database 

(paper II in addition to paper IV-VII), to describing the methods used to develop EXIOBASE 

3rx along with improvements compared to the previous database version (paper I), and finally 

to expanding into new types of analyses enabled by the newly developed database (Paper III). 

In the second version of EXIOBASE several improvements were made (Wood et al., 2015). 

The base year was updated to 2007, one RoW region was split into five, and the number of 

sectors and environmental accounts increased. The main update in EXIOBASE 3 was the 

time series covering 1995-2011 (Stadler et al., 2018). In EXIOBASE 3rx, all countries which 

in EXIOBASE 3 were part of rest-of-the-world (RoW) regions are disaggregated and 

represented as separate regions. 

Following this development, the objectives of the work in this thesis are: 

O1: To increase coverage of CB accounting in the developing world for environmental 

analyses 

None of the available MRIO databases couple a high level of harmonized sector detail with a 

detailed country resolution. Developing such an MRIO contributes to increasing the coverage 

of countries in the developing world for CB environmental impact analyses in addition to 

decreasing uncertainty for CB environmental impacts in the developed world. The resulting 

MRIO (EXIOBASE 3rx) is the most detailed published to date and the process of producing 

this database is described in paper I. 

O2: To investigate the effects of regional aggregation for CB land use impact embodied 

in bilateral trade. 

The analysis in paper I continues by estimating the effects of using RoW regions in previous 

versions of EXIOBASE for land use embodied in trade. Land use extensions are processed 

for all 214 regions of EXIOBASE 3rx for over 40 land use types. This contributes to 

improving the accuracy of land use studies using MRIO. Key regions that should be treated 

explicitly in MRIOs will be identified, but also how aggregation errors are introduced for 

land embodied in imports, both in terms of regions and sectors.    

O3: To study the effects of changes in household income on GHG emissions 
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Previous MRIO studies looking at income effects on environmental impacts have not 

adjusted for factors such as price changes. This is studied in Paper II by developing a demand 

system based on EXIOBASE 3 data. The paper contributes to understanding the effect altered 

consumer preferences triggered by future changes in income has on GHG emissions. This is 

done by linking demand system results to exogeneous future scenarios of GDP and 

population. This is the first study to link a demand system to all regions covered in an MRIO.  

O4: To determine if there is a link between affluence and CB land use related 

biodiversity impacts 

Studies linking biodiversity impacts and affluence are limited by lack of regional detail or do 

not study how impacts change over time from a CB perspective. In Paper III land use data 

from EXIOBASE 3rx covering 1995-2015 is coupled with characterization factors of 

biodiversity impacts from land use to study how biodiversity footprints develop over time at 

different levels of income. This work contributes to mapping biodiversity footprints across 

sectors and regions at the most detailed level published to date and to understand the role of 

affluence by developing expenditure elasticities of biodiversity footprint. Hotspots of 

biodiversity impacts are identified by tracing impacts through supply chains to guide policy 

making aimed at mitigating biodiversity loss. 
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4 Summary of papers 

4.1 Paper I: Adding country resolution to EXIOBASE: impacts on land use embodied 

in trade 

The goal of this paper was to assess the effects of using RoW regions for land use embodied 

in trade. AS mentioned in the introduction 40% of global natural land exists in RoW regions 

of EXIOBASE and there is potential large sensitivity to choice of proxy information used to 

build the RoW for land use results (Stadler et al., 2014), but the effects of using RoW regions 

for land use studies are yet to be quantified. Merely a high share of global natural land does 

not mean that there is a high regional aggregation error. A regional aggregation error only 

arises if there are large differences between the land use intensity per monetary unit within 

the RoW region which affects the land use embodied in imports of countries outside the 

specific RoW region. 

This analysis was enabled by developing EXIOBASE 3rx. Although the development of 

EXIOBASE 3rx follows the production pipeline in EXIOBASE 3 there was a considerable 

amount of work needed to disaggregate individual countries from RoW regions. We 

processed raw data individually for each country that previously were part of RoW regions 

which involved disaggregation, aggregation, and filling gaps were necessary. The supply and 

use tables of each country and year were balanced individually based on the country-specific 

raw data and information from the previous RoW regions. Conflicting constraints sometimes 

caused infeasible solutions in the optimization routine applied and identifying the cause of 

the issue often meant going back to the raw data to pinpoint inconsistencies. 

Using the new database with 214 regions and updated to 2015, we found that cropland 

footprint per capita was largest in Monaco (24 700 m2/cap) followed by Luxembourg (19 100 

m2/cap) and the United Arab Emirates (9 100m2/cap) and lowest in Timor-Leste (257 

m2/cap), Bermuda (336 m2/cap), and Zanzibar (353 m2/cap). 

Aggregating to RoW regions introduced errors in countries’ balance of land embodied in 

trade up to 6% and up to 68% in total land embodied in imports of countries. By ranking the 

top land use flows by aggregation error, we found a high concentration around imports to 

Asian countries originating in RoW Asia and RoW Africa and a handful of sectors with high 

biomass demand such as forestry and food products. For land use studies using MRIO, the 

countries embodied in these RoW regions should be included as separate regions in an 

MRIO. The hotspots for aggregation errors we identified compared with previous findings 



 

  26 

 

show that errors differ depending on environmental indicator chosen. Mapping out these 

hotspots for all environmental impact categories will give important guidelines to future 

MRIO developers and EXIOBASE 3rx provides the appropriate framework to study this as 

new environmental and socio-economic extensions in the future are added to the database. 

4.2 Paper II: The income effect on greenhouse gas emissions 

Here we link a demand system based on consumption and price data for 49 regions in the 

period 1995-2011 using EXIOBASE 3 to study the future effects of household income 

changes on carbon footprint. Previous studies have included the income effect on 

environmental impacts, while we also adjust for changes in consumer preferences triggered 

by price changes. The demand system is developed for all regions in EXIOBASE 3 and thus 

contributes with a framework for assessing environmental impacts for each of the 49 regions. 

We combine the demand system results with exogenous scenarios of GDP and population to 

project GHG emissions up until 2030 and to study the income effect on GHG emissions for 

each region, keeping prices, GHG emission intensity, as well as the MRIO structure 

unchanged. 

Compared to a scenario where consumption patterns remain unchanged, there is a global 

decrease in GHG emissions by 1% when considering how consumer preferences change with 

income in 2030 compared to 2011. However, regions differ substantially, with the BRICS 

(Brazil, Russia, India, China, and South-Africa) and RoW regions as main contributors to the 

global reduction due to a move away from consumption of food products with a high GHG 

emission intensity towards services with lower GHG emission intensities. For developed 

regions however, GHG emissions slightly increase compared to the baseline scenario. This is 

mainly attributed to increased consumption within transport. 

This clearly reflects that countries are at different stages of development. While developing 

regions still have potential for less polluting consumption patterns by moving away from 

necessities such as food, towards luxuries such as services, this potential has already been 

tapped in developed regions. As countries develop, it is not the composition of consumption 

that is causing increases in GHG emissions, but the BRICS and RoW regions are expected to 

respectively see a 12% and 35% increase in population and 60% and 90% in expenditure 

levels between 2012 and 2030, causing a substantial total increase in emissions. Considering 

this, we identify key areas of focus for policy makers, highlighting consumption relating to 
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housing, transport, and some types of food as critical due to a high GHG emission intensity 

and increasing future demand in RoW and BRICS. 

4.3 Paper III: Trends in national biodiversity footprints of land use 

In this paper we explore the link between biodiversity impacts and affluence using land use 

data from EXIOBASE 3rx coupled with characterization factors of biodiversity impacts from 

land use from LC-impact. Studies are yet to cover how changes in affluence over time affect 

biodiversity impacts. We assess the CB and PB impacts by grouping regions by their income 

per capita level. Globally land use-induced biodiversity footprint increased by 5-6% from 

1995-2015 while population has increased much more, resulting in a decrease in per capita 

biodiversity footprint of 16%. From a PB perspective, the high-income group has lowered its 

total biodiversity footprints by 4-5% in the period. From a CB perspective on the other hand, 

footprints increased by over 25 % up until 2005 before lowering and stabilizing around 1995 

levels in 2015. Footprints per capita decreased in all regions, except for the high-income 

group from 1995-2005. We find relative decoupling of biodiversity from economic growth in 

all grouped regions, but strongest in the low- and middle-income groups. Food consumption 

makes up the largest component (40-61%) of per capita footprints in all regions, while the 

effect of increased expenditure on services on biodiversity footprint in the low and middle-

income groups is small due to decreasing biodiversity footprint intensity. 

We estimate the sensitivity of biodiversity impacts to changes in expenditure using the 

average consumer’s biodiversity footprint and expenditure for each country and year as 

observations in a panel regression. The high-income group has on average the highest per 

capita footprint and the expenditure elasticity of biodiversity footprint is larger than one for 

all consumption categories in the high-income group, and lower than one for all consumption 

categories in the low- and middle-income groups. This shows that in rich countries, increased 

affluence is associated with a higher per capita biodiversity footprint for the average 

consumer. 

We rank footprints per capita per country and find that the top-ranking countries are not the 

most affluent, but small biodiverse island states such as New Caledonia, Seychelles, and 

Dominica indicating that location at biodiversity hotspots is the most important driver for 

high biodiversity footprint, which highlights the need for using a regionally detailed database 

for biodiversity footprint studies. 
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In the discussion we show how biodiversity footprints embodied in trade is increasing, which 

highlights the importance of using a CB perspective. Further, we trace the increase in CB 

footprint of the high-income group through the supply chain to imports of forestry products 

from Indonesia, Malaysia, Philippines, and Papua New Guinea. For policy making, we 

discuss how the elasticities of footprint and tracing of footprints to the place of impact can 

inform about where efforts to mitigate biodiversity impacts should be made. 

4.4 Paper IV: Climate change mitigation potential of Norwegian households and the 

rebound effect 

In addition to the three main papers above, the thesis includes a supporting paper 

investigating the potential for carbon footprint reductions triggered by a shift to a green 

lifestyle for Norwegian households. As the lifestyle shift consisting of 34 behavioral actions 

comes with a significant cost reduction for the households, rebound effects when the savings 

are re-spent are of high importance. We find that an initial 58% reduction in carbon footprint 

of the lifestyle shift is reduced to 24-35% when households re-spend the money. In addition, 

we show using an optimization routine, that total reductions (including rebound effects) in the 

order of 35-45% can be achieved by restricting re-spending to specific goods and services 

associated with low greenhouse gas emissions. 
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5 Discussion 

The contributions of this thesis have been to improve and widen the range of analyses that 

can be performed within environmental impacts of consumption using MRIO, and to shed 

light on the advantages of explicitly cover individual countries as separate regions in the 

MRIO versus aggregating to RoW regions (paper I). To do so involved developing the most 

detailed MRIO with global coverage published to date (paper I), to integrate a demand 

system into an MRIO that enabled investigating future income effects on environmental 

impacts (paper II), and to couple land use data from an MRIO with a database of land use-

induced biodiversity loss characterization factors (paper III).  

This has contributed to increasing the number of countries that an environmental footprint 

analysis can be applied to (paper I) and to highlight that the use of RoW regions introduces 

errors in land use embodied in trade (paper I). Changes in consumption patterns triggered by 

changing income levels do not significantly affect GHG emissions globally but do so on a 

regional level (paper II). Decoupling of biodiversity footprint from economic growth is 

largest for developing regions, while the biodiversity footprint for the average consumer in 

affluent countries increases more than 1% per percentage increase in expenditure (paper III).  

There are limitations of the work pertaining to the development of EXIOBASE 3rx and 

coupling of EXIOBASE 3rx with other databases and model systems. These are discussed in 

the following section. Finally, potential for further work to build on the work done in this 

thesis is discussed in the ending section. 

5.1 Limitations 

5.1.1 Balancing an MRIO versus staying close to raw data 

There are several stages of data uncertainty involved in building an MRIO (Wiedmann, 

2009). These range from uncertainties introduced in raw data processing, balancing and 

aggregation in the regional IO tables used to build the MRIO, to uncertainties introduced 

when combining the regional IO tables in the construction of the MRIO such as converting to 

a common sectoral classification, monetary exchange rates, balancing trade data, adding 

satellite accounts to mention some of the most prominent ones. Even if IO tables had been 

available for all the regions and years in EXIOBASE 3rx, the MRIO developer is faced with 

this challenge, unless data had been perfectly balanced and standardized between regions. For 

the regions in EXIOBASE 3rx that lack national IO tables, the corresponding RoW region’s 
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table is used and adjusted according to available raw data as described in paper I and Stadler 

et al. (2018) to get a first estimate that later goes through a balancing routine. This is a way of 

imitating the process of compiling regional IO tables by using the raw data available but 

backed up by the RoW IO tables. The MRIO developer does not have to rely on perfect data 

availability to build the MRIO, but it can mean that IO tables of countries with limited raw 

data available are built on few pieces of information. This can again affect e.g. the 

consistency of a detailed flow such as the environmental footprint of a particular food product 

if tracked over time. Despite this, I argue that the pros of building the MRIO by far outweighs 

the cons of data uncertainty based on the potentially large errors introduced by regional 

aggregation identified in paper I and previous findings suggesting even small amounts of 

information improves reliability of environmental MRIO results (Tukker and Dietzenbacher, 

2013, Lenzen, 2011). In addition, developing an MRIO is an iterative process where priority 

should be to get the MRIO operational based on the raw data available. As new data becomes 

available, this is used to update the MRIO and reduce data uncertainty. EXIOBASE 3rx is 

built with this in mind, and principally follows the same pipeline as EXIOBASE 3 that has 

been updated numerous times since its first launch in 2016. 

5.1.2 Alternatives to inverting matrices 

Previous versions of EXIOBASE had an MRIO system where calculations could be handled 

by normal desktop computers. When RoW regions were disaggregated for EXIOBASE 3rx, 

carrying out operations such as inverting an A-matrix of size 42 800 by 42 800 became too 

large to handle using the programming language MATLAB without using supercomputers or 

similar. This was handled in two different ways in the thesis. In paper I the emissions 

embodied in bilateral trade (EEBT) approach was applied. This is a widely used approach in 

the MRIO field the last 10-15 years, where the traded parts of impacts are calculated using 

monetary bilateral trade statistics (described in Peters, 2007, Peters, 2008). In paper III a 

network-based approach (Rodrigues et al., 2016) was applied that gives a good estimate of 

the inverted A-matrix, and is computationally much less demanding. 

The EEBT approach has limitations in terms of applications, as imported goods that are used 

for intermediate production and later used is exported to a different country for final demand 

cannot be calculated. However, the EEBT approach is suitable for estimating total impacts 

embodied in imports and exports of nations (see Peters (2007) for a thorough discussion of 

this). In paper I, land use embodied in trade results were compared using two differently 

estimated databases to show the benefit of the added regional detail in EXIOBASE 3rx. The 
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land footprints are calculated using the EEBT approach, and these can somewhat deviate 

from corresponding footprints using the conventional A-matrix inversion. The advantages of 

the EEBT approach are that it is more accessible, comprehensible, and is less time consuming 

to implement. The network approach, though arguably less intuitive and more time-

consuming to implement has as broad application area and gives a good estimate of the full 

MRIO approach. A third alternative is using supercomputers that are powerful enough to do 

the full A-matrix inversion. This approach requires the least implementation time and is the 

most intuitive for researchers familiar with IO analysis, but availability of supercomputers is 

a limitation for users. 

5.1.3 Lag in published raw data 

Strongly contributing to the historically limited policy relevance of MRIO is the lag in 

publishing raw data used for building the MRIOs. IO tables and auxiliary raw data are often 

published some years after the actual flow or transaction occurs. The first version of 

EXIOBASE 3 (Stadler et al., 2018) contains data including 2011. For EXIOBASE 3rx the 

time series has been expanded to 2015, a lag of five years compared to the time of publishing. 

In EXIOBASE 3 (version 3.8) published in November 2020 (Stadler et al., 2020) the issue 

has been resolved by using auxiliary trade and macro-economic data and the International 

Monetary Fund expectations to expand the time series up until 2022. This represents a 

development where MRIOs are less dependent on national statistical offices to publish IO 

tables and on organizations to publish auxiliary data. Instead MRIO developers can use 

source data such as company data directly to imitate the assembly process of national IO 

tables when needed. EXIOBASE already makes use of auxiliary datasets (e.g. IEA and 

FAOSTAT) to support creating the national supply and use tables but has yet to use company 

data in the production pipeline. 

5.2 Further work 

5.2.1 Environmental extensions 

Priority of further work should be to add other socioeconomic and environmental extensions 

to EXIOBASE 3rx. This is important not only to extend the application of EXIOBASE 3rx to 

other types of environmental studies, but also to continue identifying hotspots of sectoral and 

regional aggregation errors for other environmental indicators.  

Some of the extensions can more easily be added than others. Biodiversity impacts of land 

use can after the work in this thesis easily formally be added to the database as part of a 
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characterization matrix equivalent to the one processed for EXIOBASE 3. GHG emissions 

should be the next priority both due to the increasing future relevance of GHG emissions to 

policy making and due to being the historically most studied environmental indicator in IO 

studies (Hoekstra, 2010). In addition, carbon footprint value chains need unraveling to 

mitigation climate change. A much smaller share of global PB GHG emissions occur in RoW 

regions than the equivalent share for natural land (Stadler et al., 2014), while the impact 

embodied in trade of the global total is similar (Peters and Hertwich, 2008a) or a bit lower 

(Hou et al., 2020) than that of land use at about one quarter of global impacts. Studies using a 

high regional resolution (Our World in Data, 2021, Wiebe and Yamano, 2016) show that the 

link between GHG emissions and affluence is stronger (affluent countries rank highest) than 

the link between affluence and land use and biodiversity footprints, but also less affluent 

countries such as Brunei, Estonia and Trinidad and Tobago (Our World in Data, 2021) and 

Israel (Wiebe and Yamano, 2016) rank high on carbon footprint per capita. Linking to the 

work in this thesis but using EXIOBASE 3rx with GHG emission extensions would augment 

the MRIO policy relevance for climate change in several ways. Further work on GHG 

emissions after added to EXIOBASE 3rx could explore value chains to uncover carbon 

footprint hotspots and linking this to trade data similar to paper III. A demand system for all 

214 countries could establish the connection between affluence and GHG emissions and build 

on the findings of previous studies. Is there a clear positive correlation, or is the picture more 

complex like for land use and biodiversity footprint as shown in this thesis? 

Adding GHG emissions also has relevance for biodiversity impacts. The contribution of 

GHG emissions to biodiversity impacts can be significant and globally contributes to about 

half of the impacts compared to land use (Wilting et al., 2017). A recent study (Arneth et al., 

2020) finds that proposed future biodiversity targets risk being severely compromised due to 

climate change, and calls for climate change-related risks to be addressed explicitly in 

biodiversity targets. Understanding the contributions of different causes of biodiversity loss 

and their underlying drivers will be increasingly important as climate change progresses. 

Some improvements in linking LC-impact and EXIOBASE 3rx for land use-induced 

biodiversity footprint analysis stand out. First, the total land area compiled in the satellite 

accounts of EXIOBASE 3rx is larger than total land area in LC-impact, even after excluding 

land with low use intensity. This was handled in the analysis by using relative changes 

instead of reporting absolute biodiversity impact values. The causes of this difference could 

be that land use data with low intensity is included in EXIOBASE 3rx but not in LC-impact 
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or that the LC-impact characterization factors of biodiversity impact from land use are 

overestimated if land use with low biodiversity impacts spread over a large area are excluded 

from the characterization factors. The LC-impact characterization factors are given relative to 

the natural state prior to human impact which could be different from the total land use in 

EXIOBASE 3rx. The characterization factors also reflect an increase in the risk of extinction, 

not an instantaneous biodiversity loss (Verones et al., 2020). After the discrepancies are 

identified and adjustments are made, the next step should be a full integration of LC-impact 

characterization factors into EXIOBASE 3rx linking directly to industrial activities instead of 

through intermediate land use accounts, which would simplify analyses on biodiversity 

footprints. 

A recent study by Cabernard and Pfister (2021) offers an alternative approach to achieving 

high regional detail for EXIOBASE 3. Here they integrate regional information from Eora26 

to disaggregate RoW regions in EXIOBASE 3 and apply the new MRIO (named R-MRIO) to 

study a wide range of environmental impacts. After new environmental extensions are added 

to EXIOBASE 3rx, an important task is to compare results from EXIOBASE r3x and R-

MRIO to assess uncertainty and identify future development steps for EXIOBASE. 

5.2.2 A demand system applied to EXIOBASE 3rx 

To further strengthen modeling of the links between drivers through pressures and to impacts 

in DPSIR (Figure 1) the analysis in paper II and paper III could be combined by integrating a 

demand system to EXIOBASE 3rx. The income elasticities of biodiversity footprint for 

example do not adjust for consumption shifts due to price changes. This would require price 

data, which in paper II was gathered from EXIOBASE 3 that has this readily processed. By 

processing price data for all regions in EXIOBASE 3rx, the analysis in paper II could be 

applied to the biodiversity impact analysis in paper III to estimate the income effect on future 

biodiversity footprints, while the income effect on GHG emissions in paper II could be 

expanded to 214 regions. This would signify an important improvement to the contributions 

of this thesis. 

5.2.3 Sectoral resolution 

There is also further potential for improvement in covering drivers and pressures through 

increased sectoral resolution in MRIOs. Lack of sectoral detail has been identified as a key 

limitation for MRIO analysis in general (Lenzen et al., 2013, Krey et al., 2014), and 

particularly so for MRIO land use studies (Bruckner et al., 2015, Weinzettel et al., 2013, 
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Steen-Olsen et al., 2012) as mentioned in chapter 2. However, exactly which sectors should 

be disaggregated depends on the direction of development of the database. If EXIOBASE 3rx 

is to be used as a tool for a broad range of analyses like the previous EXIOBASE versions, 

numerous sectors might need to be disaggregated. Carbon footprint analyses suffer from lack 

of detail in the electricity, energy, and transportation sectors, while material footprint 

analyses require a higher level of detail in the primary material extraction and subsequent 

processing sectors. As an alternative, EXIOBASE 3rx development could focus on selected 

environmental extensions such as land, biodiversity, and GHG emissions. This narrows down 

the sectors relevant for disaggregation to some degree. However, insight into consumer 

preferences (paper II) might require consumer-relevant sectors such as food, transportation 

and tourism that stand out in terms of income elasticities to be further disaggregated. The 

work in this thesis might therefore in total require increased resolution in food, agriculture, 

forestry, transportation, tourism, and some of the service sectors. This again requires 

processing, extrapolation and balancing of raw data. 

As mentioned in chapter 2, EXIOBASE was built specifically for environmental analyses and 

used a principle of avoiding aggregation of heterogeneous environmental accounts. However, 

environmental accounts are aggregated in EXIOBASE as well. An example is land use data 

that is provided on a fine product level in the raw data, such as the cropland data gathered 

from FAOSTAT (FAOSTAT, 2020). This is in EXIOBASE 3rx aggregated to 21 different 

economic sectors (see supporting information of paper I). The raw crops data from 

FAOSTAT consists of almost 200 different crops, and the total number of sectors in 

EXIOBASE 3rx would nearly double by keeping these accounts separate only considering 

cropland data. The MRIO system might consist of over 1000 sectors if the non-aggregation 

principle is followed for all environmental accounts, and the benefit is more than outweighed 

by the enormous amounts of work needed to develop such a database. Still there is potential 

for future work to investigate this. Specifically, this should involve identifying key sub-

sectors that should be separate due to heterogeneous environmental multipliers. Perhaps a 

handful of sub-sectors like this are found for cropland, and similar for other environmental 

satellite accounts. This could become an iterative process that is evaluated each time new 

environmental accounts are added to EXIOBASE and would further improve the accuracy of 

results.  
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5.2.4 How detailed should an MRIO be? 

Although there is still untapped potential in increased resolution in all domains (sectors, 

regions, years, and extensions) there perhaps is a limit to the need for adding increased detail. 

For example, adding a very specific crop that only grows and is consumed domestically in 

one small Pacific island to the harmonized sectoral classification in EXIOBASE 3rx might 

not warrant the additional data processing for an analysis on the carbon footprint of a Nordic 

country. Instead, maybe the role of the MRIO developer should be to provide supporting for 

the regions in the MRIO at the level of detail provided by the national statistics of that region 

(like the approach in Eora). The MRIO developer would then create a database structure 

where supporting data could easily be linked to the MRIO through concordances or 

balancing/reconciliation procedures and similar. The supporting data could consist of 

expenditure data for different consumer types (e.g. income levels as in Ivanova and Wood 

(2020)) or highly disaggregate IO tables both in terms of sectors and regions within a 

country. A researcher performing an analysis on a specific phenomenon in a specific country 

can then do so with the supporting data and procedures to link to the MRIO, at the same time 

as the MRIO developer saves time by not having to integrate the supporting data into the 

MRIO for all regions, data that might not exist for the other regions represented in the MRIO. 

The global MRIO lab (Lenzen et al., 2017) is a tool that represents a development in the 

direction sketched out here. 

5.2.5 Improved modeling of changes in consumption and consumer behavior 

Arguably the largest opportunities for further work is found in increased understanding of 

drivers and the role of consumer behavior in environmental impact mitigation. Here I outline 

a few key pieces of future developments in this area. 

The work in paper II is the first step towards fully integrating a demand system into an 

MRIO. A future full integration will allow studying the ripple effects in the economy 

resulting from price changes, changes in taxes, trade changes etc. and also capture important 

feedbacks such as rebound effects resulting from price or efficiency changes (see e.g. 

Brännlund et al., 2007). In the modelling of lifestyle changes for Norwegian households in 

paper IV, initial carbon footprint reductions were significantly curtailed due to rebound 

effects and including such effects can constitute a crucial part in accurately modeling 

consumer behavior. 
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The model in paper II has the necessary components for a full integration into the MRIO. An 

integration could be achieved by the use of the Leontief price model as in Mongelli et al. 

(2010) or by combining an IO model and a computable general equilibrium model as in 

Sommer and Kratena (2017). 

Relating to this is the circular flow of income in the economy which is not included in a 

demand system. This circular flow can be explained in the following steps (Mainar-Causapé 

et al., 2018) starting at the approach in paper II. The changes in consumption patterns 

influence production in the economy which again affects how producers employ factors from 

e.g. households. Employment generates income to households, and changes in employment 

therefore again modifies the consumption patterns.  

Extending the MRIO model with social accounting matrices (SAMs) offers a solution to 

accounting for such a circularity. This can be used to analyze social and economic policy 

better than the IO model by providing insight into the role of people and social institutions in 

the economy (Miller and Blair, 2009). In the environmental footprints literature SAMs have 

been used to determine whether changes in CO2-emissions can be attributed to levels of 

income, patterns of consumption, or to general decisions about consumption (Duarte et al., 

2010), to study the effect of income redistribution on environmental impacts (Lenzen and 

Schaeffer, 2004), or combined with structural path analysis to further analyze the 

transmission channels of carbon emissions in the economy (Li et al., 2018). 

Another key component is the role of consumer behavior. A first step here could be to 

disaggregate the household consumption matrix into different categories of consumers. In the 

outlook into IO analysis for the next 25 years (Dietzenbacher et al., 2013), disaggregation of 

household final demand into income or consumption categories was identified as a key future 

development in the field. Now that we have started the eighth of the 25 years, none of the 

MRIOs available have yet succeeded at this, despite the recent findings suggesting that the 

difference environmental impacts within countries is as important to unveil as across 

countries (see chapter 2). The main obstacle to achieve this is the lack of available data, and 

this has caused analyses on for example the environmental impacts by different income 

quantiles to be restricted to single regions with the necessary data available (see e.g. Steen-

Olsen et al., 2016), but recently progress has been made to undertake such studies on a 

multiregional level, such as for 26 European countries (Ivanova and Wood, 2020). Achieving 

this for regionally detailed MRIOs should be pursued since a key to mitigating environmental 
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impacts and at the same time achieving targets for equality and living withing our planetary 

boundaries might lie in the countries that rank highest on income inequality. Measured in 

terms of the Gini index (The world Bank, 2021), these are countries such as Namibia, 

Suriname, Zambia and Sao Tome and Principe which are all covered in EXIOBASE 3rx, but 

often not in other MRIOs. 

A more ambitious development in consumer behavior is to address the limitations of demand 

models. These models assume homogeneous, non-interacting and rational consumers that 

have perfect knowledge about the market and base their consumption decisions on rational 

behavior to maximize their own long-term profit. These assumptions are easily shown not to 

hold, and increasingly so in recent years with the emergence of single agents with vast power 

to influence other consumers through e.g. social media platforms. For example engagement 

in social media brand communities has been shown to increase expenditures and user-

generated content has been found to have a stronger influence on consumer demand than 

market generated content (Goh et al., 2013). Furthermore, the use of humor and emotion was 

found to lead to higher levels of consumer engagement than informative content like prices 

and deals (Lee et al., 2018). There is clearly a need for a method that can consider the effects 

of such interactions between different agents such as consumers and businesses. One such 

method is agent-based modeling (ABM). 

In agent-based modeling (ABM), agents (e.g. consumers) are represented as individual 

entities that act and interact according to agent states, and often simple rules of behavior 

(Axtell, 2000) and the limitations of demand systems as described above are overcome 

(Farmer and Foley, 2009). ABM is rapidly being applied to multiple research fields, and has 

in environmental analyses been applied to study for example consumer energy choices (Rai 

and Henry, 2016), landcover change (Evans and Kelley, 2004, Murray-Rust et al., 2014), 

climate policy (Gerst et al., 2013), and how food security decision-making affects water use 

and GHG emissions (Namany et al., 2020). However, within the industrial ecology field, 

agent-based models are not commonly used despite untapped potential to do so (Axtell et al., 

2001, Janssen, 2005). The analysis in paper II can be expanded with elements from ABM in 

several ways. Agents might for example change consumption choices when they observe the 

consequences of climate change as the years progress. Perhaps some agents have an inherent 

motivation to reduce their own carbon footprint, while others do not see the link between 

their own consumption and climate change at all. If people had full access to their own 

carbon footprint, some agents could be modeled to be motivated by having a lower carbon 
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footprint than their neighbor. Perhaps trends like switching to a vegetarian diet or slow travel 

or local travel will continue to increase in popularity. In addition, influence from other agents 

or social media could be incorporated in the consumption behavior. Targeted online 

advertisement based on purchase history affecting consumption decisions (the issue is 

discussed e.g. in Xu et al., 2015) or promotion of specific products by agents with a large 

number of followers in social media are examples of such aspects. 

A possible modeling framework incorporating ABM is given in Figure 4 where the demand 

system and MRIO database is given in the top half of the figure. Instead of having consumer 

preferences being fed directly back into the MRIO to calculate carbon footprint, the 

preferences go through an ABM (lower half of the figure).   

 

 

Figure 4: Demand model extended with elements from ABM (own work) 

The heterogeneous agents are informed about their own carbon footprint and agents interact 

and are influenced by other agents and targeted advertisement as outlined above. The agents 

are heterogeneous in attributes such as income, the size of their network, chance of 

influencing other agents, and basic needs that the consumption must satisfy. Based on a set of 

given (often simple) behavioral rules, the agents interact and the consumption pattern from 

the demand system changes. This is then fed back into the MRIO where carbon footprint is 

calculated, and information on agents’ carbon footprint, and the share of agents who have 

lowered their carbon footprint within the requirements of global warming targets can be fed 

back out to the agents. This ”query of the population” as named by Axtell et al. (2001) can 

again influence agents’ consumption decisions in the next model iteration (year). 
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In conclusion, including elements from ABM to improve modeling of consumer behavior and 

SAMs to include the circular flow of income are improvements that would strengthen the 

analysis of how consumption-side actions can contribute to reduced environmental impacts 

and the effects these actions will have on the economic system. 

5.2.6 Needed changes to reach environmental targets 

A relatively unexplored research area in this thesis is to study from a top-down perspective 

which changes might be necessary to live within our planetary boundaries. Paper IV is an 

example of such an analysis where an optimization routine was applied to study the 

modifications in household consumption needed to stay within the 2°C target of global 

warming. By using the income elasticities of demand from paper II to model household 

preferences, this analysis can be expanded globally. The contributions of this thesis to 

consumer preferences and increased regional detail in MRIO analysis enables a range of 

analyses on which consumption changes are needed to stay within the limits of our planetary 

boundaries (Rockström et al., 2009) along with studies on the associated costs or sacrifices of 

these changes for the consumers. Expanding on the analysis in paper IV, as more 

environmental extensions are added to EXIOBASE 3rx, a similar approach, but with multiple 

constraints reflecting the planetary boundaries can be applied. The regional detail in 

EXIOBASE 3rx can then be used to better reflect which countries and which consumers 

should bear the responsibility for the largest environmental impact reductions, and which 

should still be allowed to develop, and hence should be less constrained in their 

environmental impact reduction responsibility. 

Environmental impact mitigation potential from changing consumer preferences (paper II), 

imposed consumption changes (paper IV), or a bottom-up perspective with elements from 

ABM are just some examples out of a vast range of demand-side options that could be 

explored. Much is yet to be done to improve modeling the links between environmental 

drivers, pressures, and impacts. MRIO analysis can through further developments better 

model these links, and hereby guide demand-side policy making by pinpointing exactly 

which actions contribute to environmental impact mitigation and thus assist in focusing 

efforts to overcome the challenges we face ahead.  
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Adding country resolution to EXIOBASE: 
impacts on land use embodied in trade
Eivind Lekve Bjelle1*  , Johannes Többen1, Konstantin Stadler1, Thomas Kastner2,3, Michaela C. Theurl2, 
Karl‑Heinz Erb2, Kjartan‑Steen Olsen1, Kirsten S. Wiebe1,4 and Richard Wood1

1  Introduction
From the early developments of domestic input–output analysis starting with Leontief 
(1936), the scope has broadened, both to account for trade relationships across econ-
omies (Leontief and Strout 1963) and to extend the framework to enable the attribu-
tion of social and environmental impacts, domestic and abroad, to economic activities 
(Leontief 1970; Miller and Blair 2009). Multiregional input–output (MRIO) models 

Abstract 

Multiregional input–output (MRIO) databases are used to analyze the impact of 
resource use and environmental impacts along global supply chains. To accurately 
account for pressures and impacts that are highly concentrated in specific sectors or 
regions of the world, such as agricultural and land-use-related impacts, MRIO databases 
are being fueled by increasingly more detailed data. To date no MRIO database exists 
which couples a high level of harmonized sector detail with high country resolution. 
Currently available databases either aggregate minor countries into rest-of-the-world 
(WIOD and EXIOBASE 3), or the high country resolution is achieved at the cost of non-
harmonized or lower sectoral detail (Eora, OECD-ICIO or the GTAP-MRIO). This aggrega‑
tion can cause potentially significant differences in environmental and socioeconomic 
impact calculations. In this paper, we describe the development of an EXIOBASE 3 
variant that expands regional coverage from 49 regions to 214 countries, while keeping 
the high and harmonized sectoral detail. We show the relevance of disaggregation 
for land-use accounting. Previous rest-of-the-world regions supply one-third of global 
land, which is used to produce a large range of different products under very different 
levels of productivity. We find that the aggregation of regions leads to a difference in 
the balance of land embodied in trade of up to 6% and a difference of land embodied 
in imports of up to 68% for individual countries and up to 600% for land-use-relevant 
sectors. Whilst the database can still be considered experimental, it is expected to 
increase the accuracy of estimates for environmental footprint studies of the original 
EXIOBASE countries, and provides the first estimates for the countries in the previous 
rest-of-the world.
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have been widely used in carbon footprint calculations as they provide an appropriate 
methodological framework for calculations at the national, international and global level 
(Wiedmann 2009b). In later years, MRIO applications have extended to a wide range of 
footprint analyses, such as material (Wiedmann et al. 2015; Ivanova et al. 2016; Bruck-
ner et  al. 2012; Wiebe et  al. 2012), land (Ivanova et  al. 2016; Steen-Olsen et  al. 2012; 
Weinzettel et al. 2013), biodiversity (Verones et al. 2017; Lenzen et al. 2012; Wilting et al. 
2017, Többen et al. 2018; Marques et al. 2019), labor (Alsamawi et al. 2014a; Simas et al. 
2014), income inequality (Alsamawi et al. 2014b) and energy (Wiedmann 2009a; Owen 
et al. 2017).

The strength of MRIO analysis as a methodology for environmental impact assess-
ment is its ability to trace the impacts of products through the whole supply chain and 
attribute the impacts at different stages of production to final consumers (Moran and 
Wood 2014). This enables MRIO analysis to trace increasingly fragmented international 
supply chains across primary, secondary and tertiary producers, to give a more complete 
picture of the impacts of final consumption of nations, in comparison to biophysical 
accounting methods purely based on physical data (Bruckner et al. 2015). A drawback of 
MRIO analysis in environmental impact studies is the lacking resolution to trace specific 
products and/or materials (Schaffartzik et al. 2015) or differentiate production technolo-
gies in detail. In addition, the efforts to harmonize sectoral and regional data and satel-
lite accounts may require additional aggregation that can compromise the accuracy of 
environmental and socioeconomic results (Steen-Olsen et al. 2014; Lenzen 2011).

Today several global MRIO databases exist, such as Eora (Lenzen et al. 2013), WIOD 
(Timmer et al. 2015), GTAP-MRIO (Aguiar et al. 2016), the OECD-ICIO (Yamano and 
Webb 2018), and EXIOBASE (Tukker et al. 2013). Ideally, a global MRIO is as detailed as 
possible on both the product/industry resolution as well as on the number of explicitly 
represented countries. In addition, the ideal MRIO should be available as a consistent 
long and up-to-date time series and provide detailed socioeconomic and environmen-
tal extensions (Tukker and Dietzenbacher 2013). In order to have a consistent data-
base between different world regions, MRIO developers necessarily need to deal with 
aggregations of extensions, regions and sectors into a standardized classification system 
(Lenzen 2011). Due to lack of easily available data for many countries, the approach 
sometimes used to reach global coverage is by estimating “rest-of-the world regions” 
(RoW), which typically consist of the remaining countries that are not explicitly cov-
ered in the database. In EXIOBASE and WIOD, RoW regions comprise over one-third 
of the world population and 33–44% of global land use, and the aggregation of countries 
into regions can potentially underestimate impacts embodied in trade, in particular for 
highly localized pressures such as land use (Stadler et al. 2014).

Discrepancies in environmental impact results across MRIOs are well-documented 
(Giljum et al. 2019; Owen et al. 2014, 2016; Wieland et al. 2018) and hamper the policy 
uptake of MRIO results (Moran and Wood 2014; Peters 2007). The robustness of MRIO 
compared to other methods for estimating sector-specific environmental impacts such 
as for land use is disputed in the literature. For instance, Schaffartzik et al. (2015) com-
pared biophysical methods and MRIO studies on land use and found a high correlation 
in regional results for various land use types per capita, except for a few outliers. On 
the other hand, when trying to interpret MRIO results in comparison to physical trade 
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results, Kastner et al. (2014) found that China is a major net importer of cropland prod-
ucts and embodied cropland in MRIO studies, while physical trade analyses show the 
opposite. Hubacek and Feng (2016) argue that part of this discrepancy in results between 
analyses based on MRIO and physical trade balances can be attributed to the differenc-
ing system boundaries and conceptual differences, and thus the methods tackle differ-
ent research questions. Bruckner et al. (2015) summarize the conceptual challenges of 
using MRIO for attributing land use impacts, especially where aggregation is performed 
due to lack of product detail (Weinzettel et al. 2014) and regional detail (Stadler et al. 
2014). In terms of robustness of impact assessment results from MRIOs, Su et al. (2010) 
find that around 40 sectors are sufficient to avoid large uncertainties in CO2 emissions 
embodied in exports. Comparing the impacts embodied in exports by disaggregating the 
SUTs of EXIOBASE at a detail of 59 sectors versus 129 sectors, Wood et al. (2014) found 
differences in the order of maximum 5% for labor and compensation of employees, 
while CO2 impacts differed up to 50%. Steen-Olsen et al. (2014) further investigated the 
effect of sector aggregation on CO2 multipliers (kg CO2/$) in different MRIO databases. 
Similar to Wood et  al. (2014), they found that aggregating sectors of different MRIOs 
to 17 sectors significantly changed the CO2 multipliers, and that the multiplier errors 
increased with increased sectoral detail in the original database. Similarity in economic 
input structures among sectors did not imply similarity in terms of emission profiles. 
This advocates for high sectoral detail despite the potentially much larger compilation 
effort when building MRIOs. This view is supported by Lenzen (2011) who proposed 
that aggregating environmental extensions to sectors is a large source of uncertainty as 
they can be highly heterogeneous. Consequently, Lenzen (2011) proposed disaggregat-
ing input–output structures to match the detail of the environmental extensions as the 
best option for estimating input–output multipliers and reducing uncertainties.

The effects of regional aggregation in MRIOs were studied by Bouwmeester and Oost-
erhaven (2013). Using EXIOBASE, they find large deviations in regional CO2 footprints 
(up to 22%) and water use (up to 84%) when aggregating 43 regions to four broad regions 
and one rest-of-the-world region. Su and Ang (2010) find that energy-related CO2 emis-
sions are highly dependent on regional aggregation when using an MRIO of China, com-
paring China as a single region versus split into eight regions. Nevertheless, an earlier 
paper by Miller and Shao (1990) using an US MRIO model suggests that regional aggre-
gation leads to smaller uncertainties than sectoral aggregation. In part, this is supported 
by de Koning et al. (2015) who found the aggregation of extensions to be more important 
than regional and sectoral aggregation for absolute material footprints. Although, due 
to a significant share of global material extraction in the global south, a more detailed 
regional coverage of this region in EXIOBASE has been called for by Wiebe et al. (2019). 
The study of regional aggregation effects due to the RoW aggregation by Stadler et al. 
(2014) showed that the RoW regions’ share of global land use (33–44% of the global 
total) are much larger than the equivalent share of global warming potential (17–22%). 
Furthermore, Stadler et al. (2014) found that 38% of global land exports originate in the 
RoW regions, underlining the need for a higher country resolution to reduce uncertain-
ties in estimating land use embodied in trade.

In terms of available MRIO databases, EXIOBASE has the highest consistent sector 
resolution of the available MRIO databases, but is limited in regional resolution. Eora 
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has high country coverage and higher sector detail for some counties, but as the level of 
detail varies from region to region, this complicates the between-region comparison of 
impacts on a sectoral level. For example, Eora has only one sector aggregating all agri-
cultural, forestry and fishing activities for most countries in the world. The GTAP-MRIO 
probably has the best compromise of sectoral resolution (57 sectors) and country (140 
regions), but is currently not available as a time series, and has limited sectoral resolu-
tion outside the agricultural and food sectors. Ideally, there would be a MRIO database 
with high sector resolution, individual country coverage and a full time-series.

The aim of this paper is to describe the steps towards such an improved MRIO, by 
increasing the country resolution of EXIOBASE 3 to explicitly including all domestic 
economies registered in the UN main aggregates database (214 countries, see below).

We use this extended EXIOBASE (named EXIOBASE 3rx) to show the relevance of 
additional regional disaggregation to estimate land use embodied in trade. We study 
the degree of regional aggregation errors on both a regional and on a harmonized and 
detailed product level.

In the following method section, we describe the development of EXIOBASE 3rx and 
present its methodological building blocks, describe the processing of land use exten-
sions, and the method for comparing the two databases with different regional resolu-
tion. In the result section, we present land footprints and explore the degree of regional 
aggregation errors for land use embodied in trade. To isolate the effect of regional aggre-
gation on land use, we compare an EXIOBASE version where the MRIO structure is 
pre-aggregated (aggregation of IO data before calculation of coefficients and results), 
referred to from now on as the aggregated database, with EXIOBASE 3rx, where the 
land use results of the full detailed database are aggregated to 49 regions. The implica-
tion of this work is further picked up in the next section, where we discuss our results 
for both MRIO development and the use of MRIO for land use studies now and in the 
future.

2 � Methods
2.1 � Building EXIOBASE 3rx

The approach to building the monetary supply–use tables for EXIOBASE 3rx (Fig.  1) 
closely follows previous approaches establishing EXIOBASE 3 and EXIOBASE 2 (Wood 
et al. 2015, Stadler et al. 2018). Deviations from the EXIOBASE 3 workflow can be found 
in Additional file 1: S1. In EXIOBASE 3, the economic structures of 44 regions are avail-
able in the form of (aggregate) supply–use tables (SUTs). These SUTs are both disaggre-
gated and balanced to product, industry, and trade data. From the SUTs, a trade-linking 
procedure (Wood et al. 2015) and application of an IO construct (Majeau‐Bettez et al. 
2014) is applied to obtain square MRIO tables. In order to estimate the SUTs for the 
RoW regions in EXIOBASE2 and 3, global average coefficient data was reconciled with 
product output, industry and trade data (see Stadler et al. (2014) for more information). 
EXIOBASE 3 adds top-level constraints of macroeconomic data to ensure consistency 
between regions and over time at a highly aggregate level.

EXIOBASE 3 had a strong European focus (28 EU member states, 16 major econo-
mies) and 5 RoW regions (RoW Asia and Pacific, RoW Europe, RoW Africa, RoW Amer-
ica, RoW Middle East). In this work, we extend the procedure used in estimating RoW 
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regions in EXIOBASE 3, but apply it to individual countries in order to expand the num-
ber of regions from originally 49 to 214 (Additional file 2). As SUT data are not com-
monly available for the countries in the RoW regions, we follow the regional approach 
where we use proxy data in the form of generic estimates of coefficients of the supply 
(i.e., market share relationships) and use matrices (intermediate use and final demand 
coefficients) to give an initial estimate of the product/industry transactions. The coeffi-
cients are then reconciled to globally balanced estimates of trade data, estimates of prod-
uct outputs for every country and macroeconomic data on value added, taxes, exports, 
imports, final consumption and gross capital formation (for an overview of regional data 
sources, see Additional file 1: S2). The macroeconomic data serve as the top-level data 
towards which all the other data are balanced. The number of countries is based on the 
available macroeconomic data from the UN National Main Aggregates Database (United 
Nations 2018a). Additionally, we estimate land use extensions for all 214 countries (more 
info in Additional file 1: S11).

2.2 � Trade estimates and reconciliation

In order to process the country-specific trade data, we combine data from three data 
sources when compiling the trade estimates. The BACI database is the main data source 
(balanced product trade data based on the UN Comtrade database, for more informa-
tion see Gaulier and Zignago (2010)), while the UN services trade database (United 
Nations. 2018b) and the IEA database (International Energy Agency 2018) provide data 
for services and energy products/services, respectively. Re-exports are estimated in the 
same way as EXIOBASE 2 and 3 (based on SUT data for re-exports where available, and 
extrapolated based on Comtrade data).

After compiling the initial estimate of the trade data, this is reconciled against the 
top-level macroeconomic trade data in current price obtained from the UN National 
Accounts Main Aggregates Database. Here, we replace the quadratic programming 

Fig. 1  EXIOBASE 3rx: compilation steps for monetary supply use tables. Approach based on figure in Stadler 
et al. (2018)
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approach with an information theoretical approach. We minimize cross-entropy (CE), 
also known as Kullback–Leibler Divergence (Kullback and Leibler 1951), between the 
final trade flows of product i from country r to country s , prsi  , and their initial estimate 
qrsi , subject to constraints requiring that total export and import values from the UN 
National Main Aggregates Database, EXr and IMs , are met. In addition to the constraint 
that total exports by country and product are less than gross output, xrmaxi

 . For the gen-
eral methodology, see Golan and Vogel (2000). As in Többen and Schröder (2018), we 
implement the computationally much more efficient unconstrained dual of the minimal 
cross-entropy problem. In the dual version, the cross-entropy model takes the form

where �r1 and �s2 are Lagrangian multipliers referring to the equality constraints. Follow-
ing the approach of Kazama and Tsujii (2005), the inequality constraints are formulated 
as lower and upper bounds with �rmaxi

 and �rmini
 being the Lagrangians and xrmaxi

 and xrmini
 

being the bounds. In this application, the lower bounds are equal to zero, whereas the 
upper bounds are equal to gross output by country and product.

From the Lagrangians maximizing D , the final trade flows can be computed by

2.3 � Estimating product output

Product output estimates were processed in EXIOBASE 3 (Stadler et  al. 2018) and 
combines data from several national account databases, FAOSTAT (2014), IEA energy 
balances (IEA 2015) and product output from EXIOBASE 2 (for more information 
see Additional file 1: S1 and S9 in Stadler et al. (2018)). The main difference is that for 
EXIOBASE 3rx we process the raw data on an individual country level also for all former 
RoW countries. In the next step, these data sources served to disaggregate the UN mac-
roeconomic industry output data (United Nations. 2018a), which consists of gross value 
added from seven aggregated industries. By applying a concordance matrix between the 
seven UN industries and the 163 EXIOBASE industries (Additional file  1: S3) and by 
assigning a quality index to the different data sources based on their closeness to raw 
data, the routine disaggregates the UN industry data. The disaggregation is based on the 
values in the chosen raw data source. The result is product output at the level of the 
163 industries and 200 products of EXIOBASE. In general, this procedure should give 
reasonable estimates for agricultural, food and energy products, whilst missing detailed 
country-specific data on manufactured products and services.
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2.4 � Initial estimates of the input–output structure

For the 44 countries that exist in EXIOBASE 3, the coefficients are used directly as initial 
estimates in EXIOBASE 3rx. For each of the 170 RoW countries, we use the coefficients 
from the respective RoW region from EXIOBASE 3. If EXIOBASE 3 coefficients caused 
balancing problems—such as conflicting constraints between the initial estimate of the 
SUT and the top-level macroeconomic data, we used EXIOBASE 2 coefficients instead.

2.5 � Balancing supply–use tables

The monetary SUT balancing routine applies an algorithm similar to the approach in 
Stadler et al. (2018) using a quadratic programming target function. One important differ-
ence here is that, due to lack of data on a detailed country level, taxes, trade and transport 
margins are not estimated as explicit layers in our approach. Hence, our system is an MRIO 
in basic pricing only. The results are monetary SUTs estimated for every country and year 
independently for a time series from 1995 to 2015 for 214 countries. The balancing routine 
was unable to find a solution for a few countries, about 3.3% of all cases through the time 
series. See an overview in Additional file 1: S5 of the unbalanced countries.

2.6 � Converting from monetary SUTs to IO tables

To go from individual SUTs to analytical IOTs, we stop at the step before creating fully 
detailed multiregional input–output tables (see Peters et  al. 2011), and instead aim 
for trade-linked IOTs. This gives us the possibility to apply bilateral trade approaches 
rather than full MRIO approaches (Peters 2008, and see below). Due to the approach 
outlined above (balancing trade first, and not changing it in the SUT balancing), we 
ensure that the final SUTs are globally consistent (i.e., that imports and exports match 
for trading partners). The result is hence a fully trade-linked SUT system. In the final 
step, SUTs were converted to IO tables using the procedure described in EUROSTAT 
(2008). The industry technology construct is applied to deal with co-production. Using 
this approach, we avoid the problem of negative coefficients that could be faced when 
applying, e.g., the commodity technology construct (Jansen and Raa 1990). The choice 
of producing trade-linked IO tables rather than fully compiled MRIO tables (as per 
EXIOBASE3) was due to the significantly lower loading and running time, and does not 
constitute a loss of data (we had no additional data to inform the trade relationships). 
Normal desktop computers are not able to handle the memory requirements of a fully 
complied MRIO system of the size of EXIOBASE 3rx, but can easily handle the trade-
linked system. Because of the trade proportionality assumption over the import use esti-
mates, if a full MRIO system is desired, either the approach of Peters et al. (2011) could 
be followed if no memory constraints exist, or topological transformation of the data 
could be applied as explained in Rodrigues et al. (2016).

2.7 � Compiling the land use data

To obtain land use data at the sectoral resolution of EXIOBASE, we followed a two-step 
procedure: First, we created spatially explicit maps for major land cover types based 
on publicly available state-of-the-art datasets. The data were harmonized following a 
closed-budget mapping approach (Erb et al. 2007), i.e., the sum of all layers will add up 
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to 100% or the available land area for each specific grid cell. In a second step, we utilized 
information from census statistics (FAOSTAT) to further disaggregate the data to closely 
match the EXIOBASE sector classification (in table format). See Additional file 1: S11 
for a detailed description of establishing the land use dataset.

The land use extensions comprise 207 countries, which cover most of the countries in 
EXIOBASE 3rx. For the remaining seven countries, mainly Island states like Palau and 
Nauru, we use the land area variable from FAOSTAT (2019) to estimate the land use 
accounts of the missing countries. We first choose a country (country A) with existing land 
use data and geographical proximity to the country with missing data (country B). Next, the 
land use extensions of country B are estimated by scaling the data of country A based on the 
land area variable of country B relative to that of country A. Next, we remap the land use 
data into EXIOBASE 3rx format. Here, we follow the same procedure as in EXIOBASE 3, 
and therefore refer the reader to S6 of Stadler et al. (2018). The resulting 40 land use exten-
sions consist of land used by the EXIOBASE 3rx production sectors (F) and land directly 
allocated to households (F_hh).

2.8 � Estimating land footprints

Due to the large size of EXIOBASE 3rx (e.g., the coefficient matrix (A) has 42,800 × 42,800 
data points), most of the arrays are saved in a sparse format in MATLAB to reduce disk stor-
age requirements. The sparse format database for one year is approximately 60 megabytes.

We used the emissions embodied in bilateral trade (EEBT) approach (Peters 2007, 2008) 
to do land use calculations using EXIOBASE 3rx rather than calculating impacts from 
the MRIO system directly. The main difference is that we do not account for intermedi-
ate demand of imports that go to industries to produce exports. Hence, a limitation is that 
imports that are used for intermediate production, that later end up as exported goods are 
not accounted for. However, as we are studying aggregate land embodied in trade, and not 
that resulting from a particular final demand, the EEBT approach is suitable as discussed in 
Peters (2007). The basic principles of the EEBT approach are explained in S12. Stadler et al. 
(2014)’s additional information explains the EEBT approach in detail.

2.9 � Analyzing the effect of regional aggregation

To enable comparison of the pre-aggregated database and EXIOBASE 3rx for land use 
results, we aggregate the inter-industry flow matrix (Z), the final demand matrix (Y), 
the total land use of production (F), and land directly allocated to households (F_hh) to 
49 regions using a regional bridging (Additional file 2). Next, we calculate the coefficient 
matrix (A) and the land use multipliers (S) per monetary unit. We refer to this as the aggre-
gated database from now on. Note that we do not compare land use results of EXIOBASE 
3rx and EXIOBASE 3 directly as it would be difficult to distinguish the effect of regional 
disaggregation to effects arising from other changes (see Additional file 1: S1 for an over-
view of the differences in workflows between the databases). Two of the most prominent 
changes to the workflow are the mentioned updated trade processing and reconciliation, 
and re-processed and more detailed land use extensions. In addition, the land use dataset 
was newly established specifically for EXIOBASE 3rx.
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For comparing the land embodied in trade between the EXIOBASE 3rx and the aggre-
gated database, we define the aggregation error as the sum of the absolute difference of the 
traded land in question:

where T  is a three-dimensional array of land embodied in imports or exports with 
dimensions imports/exports ( q ) by trade partner ( r ) by product ( p ). s corresponds to 
the summed-over dimension(s) and n is the number of data points in the summed-over 
dimension(s). n varies according to the type of aggregation error in question. We exam-
ine aggregation errors of imports and exports of products, between regions, and specific 
product–region combinations. Hence, for, e.g., the product aggregation error of imports, 
we sum over q, r—exporting and importing countries. Similarly, for the aggregation error 
of exports of specific goods originating in specific countries, we sum over r—importing 
countries. Note that we exclude intra-RoW trade in EXIOBASE 3rx aggregated to 49 
regions for the sake of comparison with the aggregated database, where intra-RoW trade 
is part of domestic demand.

“Aggregation error” refers to the difference in results between those from one input–
output table and those from a pure aggregation of the same input–output table prior to 
calculations (as per literature, e.g., Gibbons et al. (1982)). It must be noted that input–
output tables are always estimates of actual transactions and the more disaggregated 
an input–output table is (especially in the case at hand where there is very poor sta-
tistical coverage of some countries) the higher the level of uncertainty of these trans-
actions. Most literature (e.g., Lenzen (2011)) point to the benefit of disaggregation for 
reducing the uncertainty of footprint calculations, but we do not explore that here. As 
such, it must be remembered that uncertainty related to disaggregation, and the concept 
of aggregation error are related, but different concepts. We expect, but cannot measure 
whether the accuracy of our results will increase by disaggregating EXIOBASE3, whilst 
we can measure the aggregation error between the disaggregated database and a pure of 
aggregation of the same database.

Using Eq. 3 we define the aggregation error score ∈s as the aggregation error divided 
by the export/imports of the region, product or product–region combination in the 49 
region version of EXIOBASE 3rx:

3 � Results
The results of the construction process for EXIOBASE 3rx are available at https​://doi.
org/10.5281/zenod​o.26544​60. Country SUTs are available as well as IOTs and land 
extensions. Furthermore, in Additional file  3 we provide compiled production, con-
sumption and trade-related results for land use. Here, we proceed with an analysis of 
these results, and the differences introduced by regional disaggregation.
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.
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3.1 � Trade comparisons

The added regional detail changes the trade structure of EXIOBASE 3rx compared to 
the aggregated database and EXIOBASE 3. In EXIOBASE 3, intra-RoW trade flows 
are treated as “domestic” flows, while they are treated as inter-country trade flows in 
EXIOBASE 3rx. In 2015 intra-RoW trade (as classified in EXIOBASE 3) is the largest or 
second largest export destination of each continental region (Table 1).

This has relevance to the regional disaggregation of EXIOBASE 3 for footprint analy-
ses both for the countries within the RoW region and for the trade partners importing 
from the RoW region. In the former case a footprint resulting from a demand for an 
imported good from, e.g., Thailand to the Philippines would be treated as domestic in 
EXIOBASE 3 with the land use (or emission) intensity equal to the RoW region, while in 
EXIOBASE 3rx the footprint is treated as imports using the land use intensity of Thai-
land, which can lead to highly differing results as discussed in the introduction. In the 
latter case, a final demand of imports from a RoW region with destination in a region 
outside the RoW region will in both EXIOBASE 3 and EXIOBASE 3rx be treated as an 
import, but the emission intensity will differ. In EXIOBASE 3 the RoW land use intensity 
of production is used, while in EXIOBASE 3rx the land use intensity of production of 
the region now disaggregated from the RoW region forms the basis of the footprint.

3.2 � Land footprints

The cropland footprints per capita for all 214 regions in 2015 are presented in Fig.  2 
(see Additional file 1: S10 for figures on other land use types and Additional file 3 for 
per capita footprints for individual land use types and aggregated across all land use 
types). Monaco has the largest cropland footprint per capita (24,700 m2/cap) followed 
by Luxembourg (19,100 m2/cap) and the United Arab Emirates (9 100 m2/cap). The low-
est footprints are found in Timor-Leste (257 m2/cap), Bermuda (336 m2/cap), and Zan-
zibar (353  m2/cap). Large economies such as the United States (3620  m2/cap), Russia 
(5250 m2/cap), Germany (3260 m2/cap) and France (3330 m2/cap) have cropland foot-
prints per capita well above the global average of 2130  m2/cap, while those of China 
(1710  m2/cap) and India (1260  m2/cap) are below the global average. In general, the 
highest per capita footprints are in Europe, the Middle East, Eastern and Northwestern 
parts of Asia and a few scattered African countries. The import share of total cropland 
consumed highly varies between countries (see Additional file 3). With countries in the 
Middle East, some island states and Eastern parts of Asia, having import shares of 100%, 
while particularly several African countries import less than 5% of the land area needed 

Table 1  Percentage of intra-RoW region exports for year 2015

% of exports within region Rank 
export 
partners

RoW Asia and Pacific 22.2 1

RoW Europe 8.6 2

RoW Middle East 15.4 1

RoW America 26.2 1

RoW Africa 11.9 2
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to satisfy their cropland consumption. For EXIOBASE 3rx, the global import share of 
cropland consumption increased from 20.9% in 1995 to 42.7% in 2015.

The global consumption-based per capita forest footprint is 3650  m2, with the larg-
est values found for Finland (68,100 m2) and New Caledonia (49,300 m2), and smallest 
for Palestine (82.4 m2) and Yemen (146 m2). The global imported share of total forest 
consumption is 36.0%. The global per capita grazing land footprint is 3650 m2 with an 
import share of 21.3%. Mongolia (1,34,000 m2) and Botswana (97,500 m2) have the high-
est values and North Korea (99.5 m2) and Bangladesh (113 m2) have the lowest per capita 
values. The British Virgin Islands (1650 m2) and Australia (1500 m2) have the highest per 
capita infrastructure footprints, well above the global average of 185 m2. The total land 
use summed across all land types has grown by 1.6% from 1995 to 2015. On a per capita 
basis, global land use has decreased from 15 600 m2 ha/capita to 12 300 m2/capita (27%) 
from 1995 to 2015. This is driven by a moderate decrease in consumption-based land 
use in populous countries such as India, Brazil and the United States, and a stronger 
decrease in several African countries. Increases in countries such as China, Germany 
and the Netherlands partly offset the effect.

Overall there is a factor of 2.20 increase of land embodied in trade from 1995 to 2015. 
This increase is driven by a growth in exports from geographically large countries such 
as Russia, Australia and Brazil. China has largely single-handedly driven the global 
increase in imported land, from 2.3% of the global total in 1995 to 27.4% in 2015. At the 
same time, the global share of imported land has decreased particularly for Japan (9.5% 
in 1995 and 3.6% in 2015) and the United States (11.5% in 1995 and 8.4% in 2015).

3.3 � Comparison of regional disaggregation

EXIOBASE 3rx shows global land embodied in trade as 25.8% of global land use, com-
pared to 24.2% in the aggregated database (Table 2) (For equivalent results for all coun-
tries in EXIOBASE 3rx, see Additional file  1: S13.) Comparing country-specific trade 
balances of land for the databases, there is consistency in which countries are net 

Fig. 2  Map of cropland footprints per capita for year 2015 for 214 countries. Unbalanced countries in dark 
gray (Comoros, Haiti, Liechtenstein, South Sudan and Sudan)
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importers and exporters, but there is a difference of up to 5.9% in the balance of land 
embodied in trade between the databases.

The top 20 products (global aggregation of results across all countries) ranked 
according to aggregation error of land embodied in imports are displayed in Table 3. 
Remembering that the impacts embodied in imports originating in the non-RoW 
regions are identical in the aggregated and disaggregated database, these results 
reflect the effect of disaggregation purely of the EXIOBASE 3 RoW regions. The land 
embodied in imports associated with “Products of forestry, logging and related ser-
vices (02)” is the single largest product group, with 66,10,000 km2 or 30.2% of total 
global land use embodied in imports. This product group is somewhat susceptible to 
regional aggregation error, with a summed difference between the aggregated and dis-
aggregated database of 6,60,000 km2 or 19.4% of the total aggregation error observed 
between the models. In contrast, for “Meat animals nec” and “Hotel and restaurant 
services (05) “the share of land use embodied in exports is only in the range of 1–2%, 
but the aggregation error of the product relative to the flow (shown by the “error 
score”) is much higher at 64% and 95% of the value of the estimated flow, respectively. 
This suggests a large degree of uncertainty due to regional aggregation in the aggre-
gated database. The last column of Table 3 shows that the aggregation can change the 
value of the flow by a factor of over five (“Copper ores and Concentrates”) where the 
value in the aggregated database is 17% of the corresponding value in EXIOBASE 3rx.

The aggregation error for land embodied in imports for regions sorted by regional 
error score (Table  4) shows that the countries with the largest scores, such as Aus-
tralia and Malta, have a low share of global imports, although the net effect of the 
aggregation error for the countries is significant. Countries with a low import share 
out of total consumption of land, such as Russia, Brazil and Australia (Table 2) have 
the largest aggregation errors. In addition, these countries stand out with a high pro-
portion of land originating in EXIOBASE 3 RoW regions. A large share of the regional 
aggregation error is centered in Asia due to Taiwan and Japan having relatively larger 
aggregation error shares than land import shares, combined with China dominating 
land imports (although the aggregation error is relatively lower).

Digging deeper into the land embodied in imports by also showing the traded 
product (Additional file 1: Table S1), we find that the six largest product- and region-
specific aggregation errors are due to imports for Taiwan, China and India. Together, 
they make up about 19% of global aggregation error of land embodied in imports. 
Asian countries dominate the top 20 list. We also notice that certain items, such as 
imports of “Hotel and restaurant services (55)” to China and “Meat animals nec” to 
Japan have significant aggregation error scores. The net effect of the aggregation can 
change results by up to an order of magnitude (“Chinese imports of Hotel and restau-
rant services (55)”).

By also including the origin region of the imported good, the concentration of the 
aggregation error around Asian regions and “Products of forestry, logging and related 
services (02)” becomes even more apparent (Additional file 1: S8). The total global aggre-
gation error is concentrated on a few flows, with the top 20 contributors to the error 
summing up to 25% of the global total error. 12 of the top 20 flows are imports originat-
ing in RoW Asia.
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Table 4  Land embodied in imports and aggregation error of 49 regions (2015)

Region Total land area 
of flow (km2)

Share of global 
land area 
(km2), %

Aggregation 
error (km2)

Error score (ε) Share of total 
aggregation 
error, %

Difference 
between databases 
(100 is equal 
to no difference), %

AU 92,300 0.4 67,400 0.73 2.0 168

MT 3620 0.0 2050 0.57 0.1 141

BR 203,000 0.9 83,100 0.41 2.4 70

RU 350,000 1.6 143,000 0.41 4.2 69

FR 442,000 2.0 161,000 0.37 4.7 95

ZA 99,900 0.5 35,600 0.36 1.0 84

CH 54,400 0.2 18,000 0.33 0.5 112

GB 321,000 1.5 100,000 0.31 2.9 121

HR 10,000 0.0 3010 0.30 0.1 107

IN 614,000 2.8 183,000 0.30 5.4 107

ES 217,000 1.0 63,400 0.29 1.9 113

RO 32,300 0.1 9200 0.28 0.3 108

PT 127,000 0.6 34,900 0.27 1.0 87

LU 26,200 0.1 7030 0.27 0.2 99

BE 217,000 1.0 57,600 0.27 1.7 87

SI 14,200 0.1 3740 0.26 0.1 91

GR 48,600 0.2 12,700 0.26 0.4 99

TW 1,210,000 5.6 315,000 0.26 9.2 80

NO 71,700 0.3 16,900 0.24 0.5 97

TR 310,000 1.4 72,500 0.23 2.1 96

DK 53,200 0.2 12,200 0.23 0.4 102

LT 29,900 0.1 6730 0.23 0.2 84

NL 325,000 1.5 71,600 0.22 2.1 111

IT 351,000 1.6 75,200 0.21 2.2 99

DE 573,000 2.6 112,000 0.19 3.3 103

JP 834,000 3.8 160,000 0.19 4.7 117

IE 45,900 0.2 7890 0.17 0.2 110

HU 30,300 0.1 4930 0.16 0.1 97

WM 1,350,000 6.2 213,000 0.16 6.2 99

BG 14,600 0.1 2210 0.15 0.1 108

PL 114,000 0.5 16,800 0.15 0.5 97

WE 100,000 0.5 14,600 0.15 0.4 92

CY 4460 0.0 636 0.14 0.0 106

AT 78,000 0.4 10,900 0.14 0.3 101

US 1,950,000 8.9 252,000 0.13 7.4 110

KR 626,000 2.9 76,700 0.12 2.3 106

LV 30,200 0.1 3530 0.12 0.1 90

ID 639,000 2.9 73,800 0.12 2.2 107

CZ 48,000 0.2 5400 0.11 0.2 102

CN 6,360,000 29.1 677,000 0.11 19.8 98

EE 11,500 0.1 1180 0.10 0.0 98

SK 22,600 0.1 2280 0.10 0.1 105

SE 182,000 0.8 16,400 0.09 0.5 104

WF 530,000 2.4 46,700 0.09 1.4 100

CA 296,000 1.4 23,700 0.08 0.7 105

WA 1,580,000 7.3 100,000 0.06 2.9 100

MX 298,000 1.4 14,200 0.05 0.4 103

FI 284,000 1.3 5690 0.02 0.2 100

WL 622,000 2.8 12,200 0.02 0.4 101
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4 � Discussion
4.1 � Hotspots for aggregation errors of land embodied in trade

Countries such as China show sharp trends of rapid increases in imports in the later 
years, and as such also become the main importers of traded land (see Additional file 3). 
Results show that there is a need for the integration and calculation of a high level of 
regional detail in these countries’ trade partners to avoid regional aggregation errors. We 
find that the import aggregation errors of Asian countries such as China, India, Taiwan 
and Japan make up a large share of the global total error (Table 4). Although RoW Asia 
contributes to only 7.2% of global exported land, the contribution to the export aggrega-
tion error is 47.9% (Additional file 1: S8).

The effect of regional aggregation on land embodied in trade by products shows a 
large concentration of both land embodied in trade and aggregation errors around a 
handful of products (Table 3). The products are mostly part of the forestry and agricul-
tural sectors, with a few outliers in the service sectors such as “Hotels and restaurant 
services (55)”, “Other business services (74)” and “Real estate services (70)”. These outli-
ers are characterized by low shares of total land embodied in trade, but relatively larger 
shares of aggregation errors. The same is the case for some of the more disparate prod-
ucts groups (those in the not elsewhere classified groups). These later results indicate the 
need for also more detailed sectoral resolution (see below).

The regions and products prone to aggregation errors depend on the year chosen. We 
chose to present results for 2015 in this paper, as this is the most recently available data 
in EXIOBASE 3rx. A look into the aggregation errors summed together across the whole 
time series (Additional file 1: S8, and S9 for 2015) reveals that 37.4% of the export aggre-
gation error now comes from RoW Africa (27.1% in 2015), while RoW Asia is respon-
sible for 45.6% of the global total (47.9% in 2015). The import aggregation errors for 
regions show the same trends, except for Portugal that now ranks third when sorting 
by regions. The products most heavily affected by the aggregation throughout the time 
series show similar trends to the equivalent 2015 result, but even more concentrated 
around products of forestry, logging and related services (02) which accounts for 25.9% 
of the total aggregation error across the full time series (19.4% in 2015). Including the 
origin and destination of imports reveals that the top four flows, making up 12% of the 
total aggregation error, are “Products of forestry, logging and related services (02)” from 
RoW Africa to China, Portugal, India and France.

Compared to other works, Kastner et  al. (2014) found that MRIO studies on crop-
land embodied in Chinese trade diverged from studies using other methods. We find 
that China’s balance of land embodied in trade for all land types (Table 2) did not sig-
nificantly differ between the two levels of regional aggregation. Despite not finding an 
aggregation effect, we find a significant change in China’s balance of cropland embodied 
in trade from 1995 to 2015 (Additional file 1: S6). From 1995 to 2000 China was a net 
exporter of cropland, while from 2001 to 2015 there is a shift to becoming a net importer 

Table 4  (continued)
Sorted by aggregation error score. The error score is relative to the total value of the specific flow of imports. The share 
of total aggregation error refers to the aggregation error summed across all flows (i.e., global). The difference between 
databases shows the value of the flow in the aggregated database compared to that in EXIOBASE 3rx
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and increasingly so as we approach present time. Although our results use monetary 
values for the trade allocation, while studies using other methods typically use physical 
properties, the time trend we find should be interesting for future research looking at 
the deviations in results between methods.

Given that a few countries import a large share of globally traded land, we find it is 
particularly important to have their trading partners represented as individual regions 
in MRIOs. Similarly, key exporting regions not currently included, such as Argentina, 
should be represented, and large countries (such as China) can even be split into sub-
regions as suggested by Su and Ang (2010) to minimize aggregation errors.

4.2 � Challenges and limitations

The inclusion of 214 countries in a single database comes with a trade-off in terms of raw 
data availability and uncertainty. Whilst country-specific land use, production, and trade 
data are used (for an overview of the regional data availability in the raw data, see Addi-
tional file 1: S2), a lot of data estimation is undertaken, especially for the countries not 
originally in the EXIOBASE dataset. For the 44 countries originally in the EXIOBASE 
3 dataset, it would be expected that the additional disaggregation of the rest-of-the-
world regions would improve accuracy. However, for the remaining countries, it must 
be expected that the uncertainty of individual country estimates are high. Especially 
when disaggregating small (and trade-exposed) countries the expectation of accuracy is 
low. It is common in all input–output studies (and all statistical data) to find a declining 
relationship between accuracy and volume (whether expressed as GDP, output, or key 
coefficients) (see for example (Lenzen et  al. 2010, Karstensen et  al. 2015, Wood et  al. 
2019)) for one reason because of the laws of error propagation (Imbeault-Tétreault et al. 
2013). Whilst further work could see the replacement of generic data with more coun-
try-specific data, it is still likely that the uncertainty levels of individual countries in the 
disaggregated database will be high, and it is anticipated that the further development 
of single-country national account consistent procedures are further developed in order 
to undertake county specific analysis (see, e.g., Edens et  al. (2015); Palm et  al. (2019); 
Hambÿe et al. (2018)).

In terms of empirical validation of results as presented, there are sudden jumps in 
per capita land footprint results, particularly for small economies such as Aruba, San 
Marino, Bermuda, the Cayman Islands and the British Virgin Islands (as can be seen in 
Additional file 1: S6). In addition to being small economies, several of these countries 
heavily rely on imports with import shares in the range of 95–98% of the total consump-
tion-based land footprints, except for the British Virgin Islands and the Cayman Islands 
where this value is 43.0% and 50.7%, respectively (see Additional file 1: S13). When there 
is a jump in land footprint, we do note that that there are sudden changes in the import 
structure for the specific years (see https​://oec.world​/en/ (Simoes and Hidalgo 2011) 
for a visualization of trade data). Aruba has a drastic increase in imports of cattle from 
Sudan (2010), Bermuda and the British Virgin Islands import crude petroleum from 
Kazakhstan (2000–2003), San Marino imports raw fur skins from Russia (2006), while 
the Cayman Islands import soybeans from Paraguay (2001–2007). Drastic increases 
in imports of these specific products from countries with high use of land area per 
monetary output, combined with high import shares drastically change the per capita 
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footprint of these countries using the EEBT approach. The EEBT approach however, 
does not allow us to determine whether these imports are used for domestic consump-
tion, or intermediate production that is later used for exports and therefore should not 
be counted in that country’s consumption-based footprints.

In terms of data reconciliation issues, most of the challenges in building EXIOBASE 
3rx were related to the SUT balancing where there were contradictions between the 
initial estimates and the macroeconomic data. Several of these issues were resolved by 
changing options in the balancing routine that increased the accepted level of deviation 
(which was set to a cap in the balancing) from the initial estimated SUTs. If this did 
not work, we used initial technical coefficient estimates from EXIOBASE 2. In several of 
the remaining unbalanced cases (Additional file 1: S5), the issue is negative value added 
from the macroeconomic data specifically for International Standard Industrial Classifi-
cation C and E from the UN National Main Aggregates Database. Resolving this issue is 
a work in progress. There are a total of 151 cases with a non-optimal solution in the SUT 
balancing over the time series (3 cases for year 2015). Data for these cases are set to zero 
and sum up to 0.15% of global GDP through the time series, hence it should not signifi-
cantly influence the overall results. To resolve the balancing issues would require more 
detailed and reliable raw data, which again would manifest in the balancing routine devi-
ating less from the initial estimated SUTs.

Setting the unbalanced countries to zero lead to a slight imbalance in land footprint 
results (see Table 2). This is one of several ways of dealing with such imbalances. In Eora, 
this has been handled by compiling the unbalanced regions in a Rest-of-the-world region 
(Lenzen et al. 2013). As setting the values of the environmental extensions matrix (F) to 
zero for an unbalanced country A means neglecting the land use embodied in imports of 
a country B from country A, there is a slight underreporting of land use in EXIOBASE 
3rx. In 2015, Puerto Rico and the Dominican Republic are the countries whose total land 
footprints are affected the most by this, with an underreported footprint of 0.86%. For 
the aggregated database this effect has different distributional impacts as it affects all 
countries that import from the RoW region that country A is aggregated to. In addition, 
it affects the domestic part of the RoW region’s footprint as there is not a one-to-one 
relationship between the output of country A and the land use per unit of output (S). 
RoW America’s land footprint is affected heaviest by this with a change of 0.25%. In the 
49-region version of EXIOBASE 3rx, the change is largest in Latvia (0.08%). Resolving 
the issue with unbalanced regions in EXIOBASE 3rx is a work in progress.

Using the EEBT approach, we do not distinguish between intermediate and final use 
of traded products. The approach fits with the scope of this paper as we look at the land 
embodied in aggregated imports and exports. The EEBT approach is also argued to 
be more relevant for global trade-related policy (Peters 2007). However, when allocat-
ing impacts to categories of final demand, the EEBT approach will give different results 
compared to the Leontief approach due to different allocation of impacts, although the 
global total impact is the same. For a country, imported goods that are used for interme-
diate production, and later exported are in the EEBT approach accounted as part of the 
imported footprint, while in the MRIO approach, they are not. The implications of this 
are discussed in Peters (2007). The extent of the difference between the two approaches 
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is unexplored in this paper, although previous studies indicate that this difference could 
be significant (Su and Ang 2011).

In terms of land use data, other types of area use such as ocean are sometimes included 
in land use studies (e.g., Weinzettel et al. (2013)). This could alter the regional results, 
the land embodied in trade, and most likely the hotspots for large aggregation errors, 
through, e.g. consumption of fish (Weinzettel et  al. 2013). It is important to be aware 
that the effects due to regional aggregation are sensitive to the types of land included in 
the study. Similarly, the picture would likely look different in terms of regions and sec-
tors sensitive to aggregation errors when studying other types of environmental impacts. 
For example de Koning et  al. (2015) found that regional aggregation had small effects 
on overall carbon and material footprints. Bouwmeester and Oosterhaven (2013) on the 
other hand find large, and what they refer to as unacceptable aggregation errors for par-
ticularly water use, but also for CO2 emissions, although their regional aggregation is 
more drastic with aggregating 43 regions to five and two regions. The deviating conclu-
sions on the effect of regional aggregation in other papers suggest that there is still need 
for further research on both the underlying causes of differences in these results, as well 
as identifying regions that are sensitive to aggregation errors. Although de Koning et al. 
(2015) look at different indicators, our findings coincide in the sense that when looking 
at the footprint of a country, the net effect of a regional aggregation is not drastic, but 
when exploring products traded and trade partners in more detail we find large effects of 
aggregation. This could also manifest in larger deviations when aggregating to very few 
regions, as in Bouwmeester and Oosterhaven (2013).

4.3 � Further work

The results at hand are the first published results using EXIOBASE 3rx. We restrict 
our scope to the effect of regional aggregation of land use embodied in trade. However, 
with the limitations related to the EEBT approach and unbalanced countries in mind, 
there is still unexplored potential in using the database for land use studies in its current 
form. Firstly, there are multiple land use extensions available, which allows for study-
ing different land types embodied in trade. Secondly, land use embodied in trade can be 
studied on a sectoral level as the database includes 200 products harmonized across all 
regions. Thirdly, the database is a time series from 1995 to 2015 which allows for study-
ing the drivers of land use in form of panel regressions or similar methods. This creates 
opportunities for following up literature findings that suggest some degree of correlation 
between income and land use (Weinzettel et al. 2013; Ivanova et al. 2016). Panel regres-
sion studies using MRIO time series data also enable predictions into the future, which 
could help overcome the retrospective scope that is identified as a limitation of MRIO 
studies, which again could increase policy relevance (Axtell et al. 2001).

Currently only land extensions are processed for EXIOBASE 3rx. However, adding 
other environmental extensions to the database is a work in progress. More immediately, 
we chose land use as it is a simple and key indicator of agricultural related impacts. The 
application of biodiversity characterization factors (Verones et al. 2017) and net-primary 
productivity (Kastner et al. 2015; Weinzettel et al. 2019) are simple extensions to obtain 
more policy-relevant work. Furthermore, the correlation (Silva Simas et al. 2017) of land 
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use with other agricultural impacts such as blue water consumption (Lutter et al. 2016) 
and eutrophication (Hamilton et al. 2018) gives a good basis for further extension.

Regarding resolution, the sectoral resolution in EXIOBASE is one of the most detailed 
in the available MRIOs (Steen-Olsen et al. 2014). However, despite the comparably high 
sectoral resolution of EXIOBASE 3rx, the sectoral resolution is a main point of criticism 
and source of error of land use studies using MRIO (Bruckner et  al. 2015; Weinzettel 
et  al. 2013; Steen-Olsen et  al. 2012). Disaggregation of sectors is argued by Weinzet-
tel et al. (2014) to be an important future development of MRIOs, and can replace the 
hybrid approaches applied to overcome this limitation today. Already we are seeing the 
linking of detailed FAO production and use data to both aggregated and disaggregated 
MRIO tables (Weinzettel et  al. 2019) and even the construction of country-specific 
physical input–output tables (Bruckner et al. 2019).

In terms of methods, there is further work on expanding the cross-entropy model 
(Többen and Schröder 2018) used for reconciling the bilateral trade data with main 
aggregates of national accounts and estimates of product output, first, to the balancing 
of the SUTs and, later, to the simultaneous reconciliation of bilateral trade, SUTs and the 
physical extensions. The main challenges for the practical implementation of such a con-
cept are the computational requirements due to the enormous size of the database (see 
the method section for a brief overview of the size of EXIOBASE 3rx). However, recent 
theoretical work on topological transformations (Rodrigues et al. 2016) and maximum 
entropy models to reconcile data in physical and monetary units simultaneously (Töb-
ben 2017) constitute first theoretical steps to solve this issue.

5 � Conclusion
With divergence in environmental results between MRIOs hampering the policy rele-
vance of MRIO studies, it is important to both develop more detailed models, and to get 
a systematic understanding about the underlying sources of these differences. We have 
developed a regional extension of EXIOBASE 3 called EXIOBASE 3rx and studied the 
effect of regional aggregation on land use embodied in trade by comparing results to an 
aggregated version of the same database consisting of 49 regions. Whilst the disaggre-
gated database is experimental in that a lot of structural economic data are estimated, 
country-specific data on agricultural and resource output, as well as trade are included. 
We find that the regional aggregation error for land use embodied in imports on a sec-
toral level is highly concentrated on sectors with high biomass demand, such as forestry, 
meat from animals, wood products and hotels and restaurant services. The effect on 
regions shows that the balance of land embodied in trade differs with up to 6% between 
the aggregate database and EXIOBASE 3rx, while the net aggregation error of land 
embodied in imports for some of the 49 EXIOBASE regions differ up to 68% between 
the databases. The largest absolute aggregation errors for land embodied in imports are 
found for Asian imports particularly originating in RoW Asia and RoW Africa.

Our findings have two important implications regarding the use of MRIOs for land 
use studies. Firstly, regions in Asia and Africa should be represented in detail, and 
higher sectoral disaggregation is necessary for a handful of key sectors. Secondly, we 
suggest that MRIO developers are aware of the potentially significant effects of regional 
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aggregation and build MRIOs that find the right balance between number of regions and 
sectors for their studies, while at the same time acknowledging the potential uncertainty 
introduced by assumptions aimed at closing data gaps in raw data. Further research is 
needed to identify key sectors and regions vulnerable to aggregation errors. If these are 
found to converge across environmental and socioeconomic extensions, MRIO systems 
can be built that find the right level of detail without becoming unnecessarily large. We 
believe that this is an important step in finding the sources of intra-MRIO result discrep-
ancies and could increase the policy uptake of MRIO studies.
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The scale and patterns of household consumption are important determinants of environmental impacts.Whilst
affluence has been shown to have a strong correlation with environmental impact, they do not necessarily grow
at the same rate. Given the apparent contradiction between the sustainable development goals of economic
growth and environmental protection, it is important to understand the effect of rising affluence and concurrent
changing consumption patterns on future environmental impacts. Here we develop an econometric demand
model based on the data available from a globalmultiregional input-output dataset. Wemodel future household
consumption following scenarios of population and GDP growth for 49 individual regions. The greenhouse gas
(GHG) emissions resulting from the future household demand is then explored both with andwithout consider-
ation of the change in expenditure over time on different consumption categories. Compared to a baseline sce-
nario where final demand grows in line with the 2011 average consumption pattern up until 2030, we find
that changing consumer preferences with increasing affluence has a small negative effect on global cumulative
GHG emissions. The differences are more profound on both a regional and a product level. For the demand
model scenario, we find the largest decrease in GHG emissions for the BRICS and other developing countries,
while emissions in North America and the EU remain unchanged. Decreased spending and resulting emissions
on food are cancelled out by increased spending and emissions on transportation. Despite relatively small global
differences between the scenarios, the regional and sectoralwedges indicate that there is a large untappedpoten-
tial in environmental policies and lifestyle changes that can complement the technological transition towards a
low-emitting society.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Households in particularly wealthy countries are causing environ-
mental pressures due to their high demand for goods and services.
Globally, households represent about two-thirds of the demand for

rawmaterials and land as well as the waste flows mobilized by produc-
tion activities, and their attendant environmental loads (Munksgaard
et al., 2000, Weber and Matthews, 2008, Steinberger and Roberts
2010, Ivanova et al., 2016). Technology improvements and changes in
production are expected to play vital roles inmitigating climate change,
but an increasing number of studies suggest that avoiding environmen-
tal degradation will not be possible without significant contributions
from the consumption side (van Sluisveld et al., 2016, Dietz et al.,
2009, Creutzig et al., 2018, Intergovernmental Panel on Climate
Change, 2019). Sustainable consumption is part of the UN Sustainable
Development Goals (SDG121) and can be achieved by either shifting
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the pattern of consumption or lowering total consumption. Several
studies suggest that there is a large untapped potential for climate
change mitigation in consumption side changes (Dietz et al., 2009,
Girod et al., 2014, Vita et al., 2019, Lekve Bjelle et al., 2018, Wynes and
Nicholas, 2017,Moran et al., 2018) and that some policies aimed at con-
sumer choices have the benefit of low implementation costs (Allcott
and Mullainathan 2010).

Due to the ability to allocate indirect environmental impacts to the
final consumption activities they serve, environmental extendedmulti-
regional input-output (MRIO) models are useful for ranking types of
consumption in terms of total environmental impacts, thus potentially
allowing prioritization of areas with the greatest improvement poten-
tial with respect to sustainable consumption (Lorek and Spangenberg,
2001, Tukker et al., 2006). In addition to the common carbon footprint,
MRIOmodels are being applied to study a wide range of other environ-
mental impacts, such as smog formation, acidification and eutrophica-
tion (Kerkhof et al., 2009b, Hamilton et al., 2018), material use
(Muñoz et al., 2009, Bruckner et al., 2012), water use (Mekonnen and
Hoekstra, 2012), land use (Ivanova et al., 2016), solid waste (Tisserant
et al., 2017) and the Ecological Footprint (Wiedmann et al., 2006).

There are several cross-sectional studies that investigate the rela-
tionship between income and demand for products and the associated
environmental impact of consumption for a single country and year
(Wier et al., 2001, Weber and Matthews, 2008, Kerkhof et al., 2009b,
Duarte et al., 2010, Steen-Olsen et al., 2016). Kerkhof et al. (2009a)
find that for the UK and the Netherlands, per capita GHG emission is
higher than for Sweden and Norway. However, the GHG intensity of
consumption decreases with increasing affluence in the Netherlands
and the UK but grow in Sweden and Norway. Levinson and O'Brien
(2015) found that richer households in the US are responsible for
more pollution, butwith an income elasticity of less than one. They con-
clude that the observation of decreasing pollution per dollar of expendi-
ture with rising income comes from both lower consumption per
additional dollar earned and the fact that households consume goods
that pollute less in 2012 than 1984. In a cross-country analysis,
Hertwich and Peters (2009) show that services have the highest expen-
diture elasticity, while having one of the lowest GHG emission elastici-
ties. This indicates that changes in consumption patterns are
important to consider for rebound type calculations which concern
the environmental implications of re-spending of savings from either
technological improvements or reduced consumption on particular
goods (Lekve Bjelle et al., 2018, Thiesen et al., 2008, Tukker et al., 2013).

1.1. Towards combined MRIO-demand systems

Growing affluence brings about both increases in consumption and
changes in consumption patterns, as spending does not increase uni-
formly across all products. This effect was first noticed by Engel in
1895 who observed that the share of expenditure on food decreases
with increasing income in a given population (Engel's Law) (Engel
1895, Chakrabarty and Hildenbrand 2016). The relationship between
changes in consumption patterns with changing income are typically
shown using income elasticities or Engel curves. The income elasticity
measures the percentage change in demand given a change in income
and correspond to linear Engel curves that graphically show the rela-
tionship between levels of demand and income. The existence of linear
Engel curves across all goods and services is highly unlikely (Blundell
and Ray, 1984, Banks et al., 1997), particularly for cross-sectional data
(Blundell and Ray, 1984) and implies that goods are not permitted to
be luxuries at some income levels and and necessities at others (Banks
et al., 1997).

In the 1950s and onwards came models of complete demand sys-
tems that describe consumer behavior by specifying both Engel curves
and effects of changes in prices consistent with utility maximization
(Banks et al., 1997) and represent the decision process faced by a

rational representative consumer (Deaton and Muellbauer, 1980).
Some of themost prominent models are the Linear Expenditure System
(Stone 1954), the Quadratic Demand System (Pollak andWales, 1978),
the Almost Ideal Demand System (Deaton and Muellbauer, 1980), the
Quadratic Almost Ideal Demand System (Banks et al., 1997) and the Per-
haps Adequate Demand System (PADS) (Almon 1998).

Implementation of demand systems in micro-economic analysis is
now common, and they are also used in macro-economic models that
consider technological change in the economy integrated with changes
in consumption, investments and government expenditure (e.g.
Sommer and Kratena, 2017). Several macro-econometric input-output
models that estimate environmental impacts under different scenarios
exist today, such as E3ME (Barker 1999), GINFORS (Lutz et al., 2009,
Distelkamp and Meyer, 2019, Meyer and Ahlert, 2019, Wiebe 2016)
and the World Trade Model combined with MRIO (Duchin and Levine
2016). These models focus on the impact of future changes in trade pat-
terns, technology, future impacts under different scenarios of taxations,
or a top-down approach where they investigate how future emission
targets can be met. Importantly, they are able to include the modelling
of macro-economic feedbacks (price effects, economies of scale, etc.)
between producers and consumers, however, it then becomes difficult
to isolate the impact of specific agents (such as households), due to
the endogeneity of modelled change.

Using, such approaches, Kim et al. (2015) studied the impact of fu-
ture changes in demographic variables (income and age) on consump-
tion patterns, but only for a single region and without considering
associated environmental impact. They did this by integrating an almost
ideal demand system (AIDS) model based on consumer expenditure
survey (CES) data into a regional input-output model. Mongelli et al.
(2010) used data from a CES to compute their AIDSmodel tomodel sus-
tainable consumption. Their motivationwas to extend IOmodels with a
more accurate representation of household demand to study the re-
sponse of household consumption to policy interventions. Although
their paper focuses on themethodological linking between IO databases
and CES data, they include a scenario on the emission effects of a CO2 tax
levied on industries. After running the IO calculations, the consumers
are then faced with a price change and a change in final expenditure
which are modelled using the demand system. In a slightly different
vein of research, but ignoring endogenous feedbacks, Wiebe et al.
(2018) estimate climate change scenarios in a forward-looking version
of EXIOBASE,where future consumption changeswere estimated by the
use of a demand system, in addition to including scenarios of future
technological changes that were determined by exogenous estimates
of change.

None of these approaches, however, isolate the effect that future
growth in income will have on changing consumption patterns and as-
sociated carbon footprints. The work of Sommer and Kratena (2017)
probably comes closest, but it focuses on the cross-sectional distribution
(by quintile) and related carbon footprints for Europe. Hence in order to
better understand the relation between the dynamics of household de-
mand and embodied emissions at the global scale, we link a demand
system model with multiregional input-output data. We use this to es-
timate the effect of increasing income on changes in consumption pat-
terns for 49 regions from the EXIOBASE dataset (Section 2). We then
compare the GHG emissions of two scenarios of future consumption
(Section 3). The scenarios are driven by increasing affluence and popu-
lation but differ in the way demand for goods and services grows. The
‘static’ scenario distributes expenditures according to the 2011 prod-
ucts' share of expenditure, while the Quadratic Almost Ideal Demand
System (QUAIDS) scenario uses regression results to forecast demand
for products.We calculate the direct and indirect GHGemissions associ-
ated with household consumption assuming 2011-constant emission
multipliers and constant economic structure, thus isolating the effect
of shifting consumption patterns. We supply a framework for global
comparison of the effect of affluence on environmental impacts that
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can be used as a guide to policy makers to lower future emissions from
household consumption and provides possibilities for analyses beyond
what is explored in this paper. We aim at increased understanding of
how changed affluence may affect future emissions globally.

2. Methods

2.1. EXIOBASE database

EXIOBASE is an MRIO database with environmental and socioeco-
nomic extensions. Version 3 of the database used in this article consists
of 44 countries and 5 rest-of-the-world (RoW) regions at a level of 163
industries and 200 products. EXIOBASE 3 provides a time series of
MRSUT from 1995 to 2011, from which symmetric product-by-
product MRIO tables are formed. For a more detailed description of
the database and its sources we refer the reader to Wood et al. (2015),
and Stadler et al. (2018). GHG emissions available in EXIOBASE allo-
cated to industrial sector and final productswere used in thiswork, cov-
ering six major greenhouse gases (CO2, CH4, N2O, SF6, HFCs and PFCs),
and using the IPCC, 2007 Global Warming Potential (GWP) 100 metric.

Total household consumption data in basic pricing was retrieved
from the household consumption vector in EXIOBASE 3, including
both imported and domestically demanded goods. The current price
household expenditure data was first aggregated by collapsing
imported and domestically consumed goods. Next, the expenditure
data was deflated using the product-level deflators described in
Stadler et al. (2018) with base year in 2011. Both the current price ex-
penditure data and the deflated expenditure data were then aggregated
to the 15 product groups of the demand system, and price indices were
estimated as the current price expenditure divided by the deflated ex-
penditure. Expenditure shares were extracted from the current price
expenditure data.

As EXIOBASE has a high product resolution of 200 products, there are
productswithnohouseholdconsumption, insomeorall regionsof theda-
tabase. Particularly, we found only 42 sectors in EXIOBASE 3 with non-
zero household expenditure data for all years and regions. Zero expendi-
ture can cause problems in the estimations of demand systems (Blundell
and Robin 1999, Bardazzi and Barnabani, 2001). When projecting de-
mand, such low or zero expenditures can cause unrealistic shifts in con-
sumption patterns. These shifts can be amplified for emissions if
observed for product groups with particularly high carbon intensities
permonetaryunit.Hence,weperformed theanalysis at a levelof 15prod-
uct groups (seeS1 for theproduct concordance), after several iterationsof
the product aggregations to avoid lowexpenditure shares and unrealistic
projected expenditure due to large jumps in historic sectoral data.We set
the lower limit for historic expenditure shares at 0.3% to avoid themen-
tioned problems caused by low shares. Our product resolution is at the
upper end of what we found in the demand system literature.

2.2. Estimating demand systems

Demand systems estimate absolute values of consumption (e.g.
PADS) or household budget shares (e.g. AIDS) through prices of goods,
household income and a price index. Some models also include some
formof time trend (e.g. PADS) or a quadratic income term (e.g. QUAIDS).
These models are often expanded with demographic variables such age
or household size. Different constraints from demand theory are put on
the parameters. In the most widely used demand system, AIDS (Deaton
and Muellbauer, 1980), these include the adding up constraint (the
sum of all budget shares add up to one), homogeneity of degree zero in
prices and total expenditure taken together, and Slutsky symmetry.

We estimate the Quadratic Almost Ideal Demand System due to its
ability to allow for non-linear Engel curves through a quadratic income
term. Non-linear Engel curves have been proven to exist for certain
commodities (Banks et al., 1997). They allow the representation of
goods as luxuries or necessities at different expenditure levels. We

choose the QUAIDS model given our large range of income levels, and
our focus on the changing nature of consumption in comparison to in-
come for a range of carbon intensive goods such as transport, food and
housing, which can be seen as both necessities and luxuries at different
income levels. In S11we plot Engel curves for selected key regions. Non-
linear curves can be observed across several of the product groups, and
particularly for “restaurants and hotels”, “clothing”, “tobacco and bever-
ages”, and the housing and food product groups. In addition to the qua-
dratic income term, we include country-specific intercepts. The number
of observations per product group in the demand system is yearly data
(17 years) for the 49 regions of EXIOBASE.

The QUAIDS specification is given by:

witc ¼ αic þ∑
n

j¼1
ζ ij lnpjtc þ βi ln

Ytc

Ptc

� �
þ γi

∏
n

j¼1
p
βj

jtc

⁎⌊ ln
Ytc

Ptc

� �
⌋2 þ εitc ð1Þ

The notation is as follows:

– i, j (Product groups)
– n (Number of product groups)
– c (Country index)
– t (Time index)
– P (Stone price index)
– α, γ, β, ζ (Regression coefficients)
– Y (Total expenditure per capita)
– w (Budget share)
– p (Prices)
– ε (Error term)

P is usually given by the Translog price index (Cranfield et al., 2003),
but can be linearly approximated by the Stone price index (Deaton and
Muellbauer, 1980), which is what we do here as well. This approxima-
tion is applied also for QUAIDS (Jones and Mazzi, 1996, Mittal 2010).

The usual restrictions on additivity, symmetry and homogeneity are
applied as constraints in the model (see Eqs. (8)–(10)).

Following the approach in Banks et al. (1997) the income and price
elasticities are calculated by first differentiating Eq. (1) with respect to

ln Yc and ln pjc respectively, where Yc ¼ 1
yrs ⁎∑

yrs

t¼1
Ytc

pjc ¼
1
yrs

⁎∑
yrs

t¼1
pjct

yrs is the number of years.

uic ¼ βi þ
2γi

b pð Þc
⌊ ln

Yc

Pc

 !
⌋ ð2Þ

uijc ¼ ζ ij−ui αjc þ∑
n

k¼1
ζ jk lnpkc

� �
−

γiβi

b pð Þc
⌊ ln

Yc

Pc

 !
⌋2 ð3Þ

Where b pð Þc ¼ ∏
n

j¼1
pjc

βj

h i
and Pc ¼ 1

yrs ⁎∑
yrs

t¼1
Ptc:

The income elasticities are then given by:

eic ¼ uic

wic
ð4Þ

Where wic ¼ 1
yrs ⁎∑

yrs

t¼1
witc

And the uncompensated price elasticities are given by:

euijc ¼
uijc

wic
−δij ð5Þ

Where δij is the Kronecker delta.
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Demand systems typically violate standard assumptions required for
OLS being BLUE (best linear unbiased estimator) and, therefore, in these
cases, require specific estimation strategies. For this reason we use the
single-stage Generalized Maximum Entropy (GME) estimator devel-
oped in Golan et al. (2001), which is shown to be robust, consistent
and efficient even under non-normal errors and correlated independent
variables.

In the QUAIDS model, the estimates of the parameters αic, ζij, βi and
γi are found by solving the non-linear program:

maxS πα
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In the reparametrized version of the QUAIDS Eq. (1), the parameters
αic, ζij, βi and γi are replaced by linear combinations of M supports zαicm ,
zβi
m, zζijm , and zγi

m, which are discrete points that span uniform intervals,
symmetrical around zero that contain all possible values the parameters
can take, and weights to be estimated that add up to one, παicm , πζijm , πβim,
and πγim. Likewise, the error terms εitc are replaced by a linear combina-
tion of the supports σitc

n and weights φitc
n . We follow the approach of

Golan et al. (2001) and define M = 3 supports for each parameter,
namely lower and upper bounds and zero. According to the principle
of maximum entropy, maximizing (6) yields the most uniform weights
that are consistent with the empirical model subject to the condition
that they constitute proper probabilities (i.e. add up to one).

The non-linear program (6) is implemented in GAMS and solved
using the non-linear solver CONOPT. The supports for each parameter
of the demand system are specified such that their value exceeds the

Table 1
Parameter values for the QUAIDSmodel. Values marked in green are significant at level v= 0.05with degrees of freedom= (yrs ∗ nC)− 1: and critical value tcrit, 0.05= 1.963. yrs and nC
are the number of years and regions in the input data respectively.
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Table 2
Income elasticities for the 49 regions and 15 products. Top and bottom three values per region marked in green and red colors respectively.
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estimates of the corresponding parameter typically found in empirical
applications by several orders of magnitude.

The ζ, β, and γ parameters from Eq. (1) are presented in Table 1 (All
elasticities and regression coefficients are available in S10).

The t-tests on regression coefficients in the full QUAIDSmodel show
that 216 out of 225 (96%) of the ζij, all 15 of theβi, and 14 out of 15 (93%)
of the γi are significantly different from zero.

The estimated income elasticities are displayed in Table 2.)
The elasticities show clear trends of which products are necessities

and luxuries, indicated by the number of red and green values per col-
umn. “Communication services”, “Transport services and fuels nec”,
and “restaurants and hotels” are luxury goods, while “food nec”, “fish,
meat, and dairy” and “tobacco and beverages” are necessities. Interest-
ingly, “vegetables, fruit, nuts, rice, and crops” and “clothing” show a
clear distinction of being necessities in developing regions and luxuries
in developed regions.

All own-price elasticities are negative (Table 3) and hence the con-
cavity of the underlying expenditure function is fulfilled.

“Vegetables, fruit, nuts, rice, and crops”, “clothing” and “miscella-
neous goods and services” stand out as product groups that are sensitive
to increasing prices, while consumption of “tobacco and beverages” and
“restaurants and hotels” are affected less by a price increase. Regional
differences are apparent for “housing, real estate, water, gas, electricity
and other fuels”, where consumption is less affected by a price increase
in developing regions than developed ones.

2.3. Statistical tests

We assess the QUAIDS model's goodness of fit by estimating the in-
formation inaccuracy (IIA) for the demand system and root mean
squared error (RMSE) measures by region, product and for the whole
demand system equivalent to the approach in Cranfield et al. (2003).
Furthermore, as shown in Golan et al. (2001), the GME estimator is con-
sistent and asymptotically normal. Hence, we perform t-tests on the re-
gression coefficients to testwhether they are significantly different from
zero. For the goodness of fit measures and t-tests we compare the
QUAIDS model with nested models that include different variations of

the regression coefficients in Eq. (1). We also compute the log-
likelihood ratio statistic to test the significance of the quadratic income
term in Eq. (1). For a full overview of the model comparisons, and the
calculations of the statistical measures, see S9.

As a justification for using the QUAIDS versus the AIDS specification,
we tested the significance of the quadratic income term by checking the
log-likelihood ratio statistic (S9 eq. S17) against the critical value in the
χ2-distribution. We find that the quadratic term is significant at level
v = 0.01 (see S9 for calculation steps and test values). The IIA and
system-wide RMSE results show that the full QUIADS model performs
best, which corresponds well with the equivalent findings in Cranfield
et al. (2003). For the product-wise RMSE, the full QUAIDS model per-
forms best (9 of 15 cases), while the model where the price terms (ζij)
are restricted to zero and the model with the quadratic income term
(γi) restricted to zero perform second best of all the models (best in 2
out of 15 cases each). For regional RMSE, the full QUAIDS model again
performs best (15 out of 49 cases). Second are the model with the qua-
dratic income term (γi) removed and the model with all terms except
the intercept (αic) restricted to zero (best in 6 out of 49 cases each).
From this we conclude that allowing for non-linear Engel curves overall
improves the model performance, with a few exceptions in some re-
gions. The good performance for some products using the specification
without price terms (price terms set to zero) can be related to the un-
certainty in the price information used in EXIOBASE 3,which is gathered
from several different data sources (Stadler et al., 2018).

2.4. Forecasting total household demand/expenditure

Based on the regression results, scenarios of changes in consumption
are constructed consistent with exogenous scenarios of population
growth and affluence growth. Projections of population are based on
the Medium Variant projection from the 2015 Revision of population
projections made by the United Nations (UN, 2015). The population
projections for 230 countries are available, andwere aggregated accord-
ing to the EXIOBASE region definition, from which population growth
rates are calculated.
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Table 3
Own-price elasticities for the 49 regions and 15 products. Top and bottom three values per region marked in green and red colors respectively.
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Wemodel growth in affluence using the projections of economic in-
dicators from the International Energy Agency's Energy Technology Per-
spectives, IEA ETP (IEA, 2015).2 It provides long-term compound
growth rate projections of GDP for the World, OECD countries, Non-
OECD countries, ASEAN, Brazil, China, European Union, India, Mexico,
Russia, South Africa and the United States (see S6). For the years up to
2022, the IMF medium term forecast has been used for the all regions
in EXIOBASE. For the years after, the relative distance between the
region's growth rate in 2022 and the average annual growth rate of
the corresponding region in the IEA ETP data for the years 2020–2030
has been used.

GDP is ameasure of the output of a country but does not fully repre-
sents that country's consumption as it includes exports and excludes
imports. Therefore, we estimate household consumption development
relative to GDP using simple ordinary least squares regressions (S5).
In a last step, we apply the obtained growth rates in future consumption
to the consumption data of 2011 from EXIOBASE 3 to ensure consis-
tency with historic data when projecting into the future.

2.5. Calculating scenarios of GHG emissions based on forecasted demand

Impacts (I) of changing population (P), affluence (A) and technolog-
ical change (T) on the environment are often modelled using the IPAT
concept (Ehrlich and Holdren, 1971). Here we focus only on the effect
of changes in affluence on consumption and through this, the impact
on the environment. In the static scenario, we assume no changes in
household preferences by projecting the 2011 EXIOBASE expenditure
shares. In the QUAIDS scenario we estimate the QUAIDS model
(Eq. (1)) to calculate the projected expenditure shares. Note that all sce-
narios are based on the same forecasted population and expenditure. To
isolate the effect of changing consumption structure on environmental
impacts, we use 2011 Leontief multipliers (which show impact per
unit of final consumption) for all projections. These product-specific
multipliers are calculated to include direct household emissions (by
product) as well as the indirect emissions via the Leontief inverse as is

common in the calculation of carbon footprints (Ivanova et al., 2016).
Therefore, our scenarios are purely based on the sensitivity of different
ways to attribute increasing consumption to categories of products:
no technological change, price responses, divestment from fossil fuels
or energy efficiency improvements are considered.

For calculating total environmental impacts of household consump-
tion, we firstly estimate the 2011 multiplier for each country c of the
model individually to include both indirect emissions and direct house-
hold emissions (see below for nomenclature):

qc
2011 ¼ b⁎ S⁎Lð Þ þ Shhð Þ⁎dymr

hh,c

� �
⁎G

h i
⁎

d
ymr
hh,c⁎G

� �−1
ð16Þ

Whilst the equation looks complex compared to a conventionalmul-
tiplier calculation, it is simply keeping the detail on products consumed
by households for the region of consumption, and creates weighted av-
erage multipliers of goods consumed by that region – that is, it aggre-
gates the multi-regional dimension of the multipliers. Hence Eq. (16)
shows a diagonalization of the footprint calculation in order tomaintain
the product disaggregation, followed by an aggregation of the footprint,
before division by the expenditure on each product group (also aggre-
gated to remove the regional dimension). Eq. (16) also includes intensi-
ties for household emissions (such as household use of a vehicle) which
are obtained by dividing the fuel use emissions of a certain good by the
expenditure on that good.

We then estimate the carbon footprint3 for different countries c and
years t using the projections of per-capita expenditure Ytc from the GDP
regressions (Section 2.4) and estimated household budget shares wtc

from the demand model (Section 2.2) as:

etc ¼ qc
2011⁎dwtc⁎Ytc

� 	
⁎poptc ð17Þ

2 https://www.iea.org/etp/etpmodel/assumptions/

3 The carbon footprint (CF) is the weighted sum of GHG emissions according to their
global warming potential. From the result section and onwards, results are shown as car-
bon footprints, not the individual GHGs. The terms CF and GHG are both used but refer to
the same unit of measurement.
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Letting nG, nC and nS represent the number of GHGs, regions, and
sectors respectively, in EXIOBASE, whilst nAggS represents the 15 prod-
uct groups used in the demand model, the nomenclature is:

etc vector of total environmental carbon footprint by product for
each country c and year t [1 x nAggS]

b vector of characterization factors linking the global warming po-
tential of different GHGs to carbon footprint in CO₂-equivalents [1 x nG]

S matrix of GHG emission per unit of production [nG x nC*nS]
L Leontief inverse matrix [nC*nS x nC*nS]
shh vector of GHG emission per unit of household expenditure di-

rectly emitted by households. [nG x nC*nS]
G Binary aggregation matrix to aggregate both the region of pro-

duction of goods as well as from the EXIOBASE classification to the 15
sectors used in the demand model [nC*nS x nAggS]

yhh,cmr vector of household consumption from EXIOBASE (showing
goods produced in any region, but consumed in country c) [nC*nS x 1]

qc
2011 vector of GHGmultipliers (emissions per unit offinal expen-

diture) based on the Leontief production function for 2011 in country c,
aggregated to nAggS products consumed in the country. [1 x nAggS]

poptc the population projection for year t and region c [1 × 1]
The “hat” means diagonalization of a vector.
This derivation implies that elements in Eq. (17) change according to

the population and affluence projections, as well as the difference inwtc

between the scenarios we investigate (QUAIDS and static), while
qc

2011remains unchanged. Furthermore, the traded expenditure of yhh,
c
mr and the shares of sub-products contained in the same product
group in the QUAIDSmodel remain equal to the 2011 values in the pro-
jections. Further analysis on these points is in the discussion. More de-
tails about MRIO methods and calculations can be found in S7.

In the future scenarios the new total expenditure per region ob-
tained from the exogeneous projections is applied to Eq. (1) with prices
assumed to be constant (i.e. equal to 2011 prices = 1 for future years).
Then the carbon footprints are calculated in Eq. (17) The modelling
steps described in the sections above are illustrated in Fig. 1.

3. Results

The income elasticities for the 15 products in Table 2 are presented
in Fig. 2 according to the expenditure per capita of each of the 49 regions
(bubble size) and the global average elasticityweighted byeach region's
share of global expenditure in 2011 (black horizontal lines).

The difference between developing and developed regions for cer-
tain product groups discussed under Table 2 become evident for addi-
tional product groups such as “motor vehicles” and “furniture and
household goods”. The degree of variance between regional elasticities
highly varies. “Vegetables, fruit, nuts, rice and crops” has the highest
variation between 0.1 (RoW Asia) and 2.4 (USA). The preference for
“health, education, insurance, and social security” is quite uniform be-
tween 1.0 (USA) and 1.2 (Turkey). “Housing, real estate, water, gas,
electricity and other fuels” is even less elastic with values between 0.9
(India) and 1.0 (USA). The highest global weighted average elasticity
is found for “transport services and fuels nec” (1.4) and is the results
of large elasticities for regions contributing to a large share of the global
total expenditure such as the US (1.6), Great Britain (1.5) and China
(1.4). “Fish, meat, and dairy” has the lowest global weighted average
elasticity value (0.6) with countries such as Switzerland (−0.7) and
USA (0.1) contributing to the low value.

When ranking the top and bottom three regional elasticities per
product group, some regions show consistently more extreme elastici-
ties than others. The US has bottom three elasticities for seven of the
product groups, and top three elasticities for two product groups.
India has five product groups that rank in the top three and one in the
bottom three. China has one bottom three elasticity and four top three
ones. Switzerland has two top three elasticities and six bottom three

ones. RoW Africa has three top three elasticities and one ranking in
the bottom three.

Future population, expenditure per capita, and the GHG intensity of
consumption for six aggregate regions (See S1 for regional aggregation)
are displayed in Fig. 3.

Population is expected to increase by over 30% for the RoW region,
with more moderate growth in the other regions, and even decline in
Rest of EU by 2030 (Fig. 3A). The BRICS (Brazil, Russia, India, China
and South Africa) and RoWhave the highest expected growth in expen-
diture per capita. The already affluent regions EU15 + NO, North
America, and other OECD have lower expected expenditure growth at
10–15% over 2011 values (Fig. 3B). The GHG intensity of consumption
(Fig. 3C) increases themost for Other OECD and BRICS, while it remains
constant or slightly decreases for RoW and EU15 + NO.

Fig. 4 shows the forecasted GHG emissions per capita (Fig. 4A) for
the static scenario (dashed lines) and the QUAIDS scenarios (solid
lines), and cumulative total emissions (Fig. 4B) for six aggregate regions
for the QUAIDS scenario compared to the static scenario.

The largest relative difference in emissions between the scenarios
are in the RoW and the BRICS regions, where the QUAIDS scenario re-
sults in lower emissions than the static scenario. These two regions
also have the lowest emissions per capita. The QUAIDS scenario results
in a cumulative 1% lowerGHGemissions compared to the static scenario
by 2030 globally (Fig. 4B). The differences in cumulative emissions in
the populous BRICS and RoW are 1.5–2% lower in the QUAIDS scenario,
which largely explains the cumulative lower global emissions in the
QUAIDS scenario. The causes of these declining trend in emissions are
further explored in Fig. 5 and Fig. 6.

Fig. 5 shows the relative difference in GHG emissions of the QUAIDS
scenario compared to the static scenario per product group.

Globally (global expenditure and GHG emissions in S3) there is rel-
atively higher demand and resulting GHG emissions4 of particularly
“Railway-, air-, and other transportation services” in the QUAIDS sce-
nario. Demand and emissions for “vegetables, fruit, nuts, rice and
crops” and “fish, meat and dairy” is however about 20% lower than
in the static scenario. The direction of the graphs directly follows the
trends observed in Fig. 2, and thus the GHG emissions (and expendi-
ture shown in S4) are increasing for “communication services” and
“transport services and fuels nec” that have income elasticities above
unity in all regions. Compared to the static scenario, “transport ser-
vices and fuels nec” is the product group with the largest increase in
RoW Other OECD, and Rest of EU, while “communication services” in-
crease the most in BRICS in the QUAIDS scenario. Similarly, income
elasticities lower than unity in almost all of the 49 regions lead to de-
creasing GHG emissions in all aggregate regions for “tobacco and bev-
erages” and “fish, meat, and dairy”. In the QUAIDS scenario compared
to the static scenario. The highly varying trends in income elasticities
for “vegetables, fruit, nuts, rice, and crops” observed in Fig. 2 results in
highly differing trends in future GHG emissions between regions in
the QUAIDS scenario. While the GHG emissions are lower in RoW,
BRICS, and Rest of EU, it is the product group that sees GHG emissions
increase the most in North America and EU15 + NO in the QUAIDS
scenario relative to the static scenario. Globally however, “vegetables,
fruit, nuts, rice, and crops” is the product group with the largest de-
crease in both expenditure and emissions in QUAIDS compared with
the static scenario, suggesting that the large populations in particu-
larly BRICS and RoW more than cancels out the increasing trends ob-
served for EU15 + NO and North America. The contribution of
different product groups is further explored in Fig. 6 which shows

4 Note that on a global and aggregated regional level, the observed difference between
the expenditure graph (S3) and the GHG emission graph (Figure 5) for a particular prod-
uct group is purely due to the fact that the sumof all household expenditure in a particular
region differs between regions. For a single region, a 1% increase in expenditure on a spe-
cific product group will always correspond to a 1% increase in GHG emissions for that
product group.
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Fig. 1. Overview of the model.

Fig. 2. Value of income elasticities (vertical axis) for the 15 product groups (horizontal axis) and the 49 regions with bubble sizes representing the 2011 expenditure/cap value of each
region. The global average elasticity weighted by regional share of global expenditure in 2011 is indicated by black horizontal lines for each product group.
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the relative contribution of product groups to total emissions in 2030
for the six regions and the 15 product groups used as input to the de-
mand system.

Although the relative difference in GHG emissions between the sce-
narios is large for e.g. “Transport services and fuels nec” in the BRICS and
RoW regions, the contribution to total GHG emissions is quite small. On
the other hand, in both RoW and BRICS the decrease in emissions from
“vegetables, fruit, nuts, rice, and crops” and “fish, meat, and dairy” is
substantial in the QUAIDS scenario relative to the static scenario. This
decrease is significant in explaining the declining trend in emissions ob-
served for these regions in Fig. 4B. For North America and EU15, the rel-
ative increase in emissions in QUAIDS compared to the static scenario
for “vegetables, fruit, nuts, rice, and crops” has small absolute effects
on total emissions due to small budget shares in 2011. Overall, the
lower emissions from the food product groups in these two regions
are cancelled out by higher emissions in the transportation product
groups. For all regions, “housing, real estate, water, gas electricity and
other fuels” is the largest contributor to emissions. This product group
is the most inelastic to changes in expenditure levels (see Fig. 2), ob-
served through small changes in absolute emissions between the sce-
narios for all regions.

Country and product comparisons for employment, water consump-
tion,material extraction, energy use and land use are available in S2.We
find that the QUAIDS scenario results in lower impacts in all regions in
four out of these five categories. Only energy use is higher in the static
scenario. The largest deviations between the two scenarios are again
found for the RoW and BRICS regions, and all regions show the same
trend within each product group (i.e. lower impacts for all regions in
four out of the five impact categories except for energy use).

We suggest policy recommendations in the form of focal areas of
household consumption with the aim of lowering household carbon
footprint (CF) based on the outcome of the projections in the QUAIDS
scenario Table 4. We investigate the CF share and the CF intensity per
monetary unit in 2012 compared to the CF share and intensity of an av-
erage product group in the same year. In addition, we look at the
changes in household demand in 2030 relative to that in 2012. Hence,
a high increase in demand by 2030 combinedwith a high GHG intensity
and share is an indication of important focal areas for lowering
consumption-based emissions.

The expected increase in affluence for the developing RoW and
BRICS regions are clearly seen with sharp increases in demand per
capita from 2012 to 2030 for most product groups (for equivalent
country-specific results, see S8). Policies for reducing household emis-
sions in these regions should focus on the “housing, real estate, water,
gas, electricity, and other fuels” product group, but also “transport ser-
vices and fuels nec” and “food nec” due to high GHG intensity and
sharp increases in future demand. In North America, demand per capita
is expected to increase for all product groups, but the development is
most critical regarding emissions from “transport services and fuels
nec” with sharp increases in demand, high GHG intensity and high
GHG shares. The second product group to focus on in North America is
“housing, real estate, water, gas, electricity and other fuels”, but this
product group has a somewhat lower GHG intensity. These two product
groups are essential also in EU15+NO. Although the expected demand
increase is not as high as in North America, the high CF share and inten-
sity indicates that they are key to reducing household impacts. For
EU15 + NO and Other OECD there is an expected decrease in demand
per capita for someof the product groups, particularly for the food prod-
uct groups as the previous results (Fig. 5 and Fig. 6) also indicate.

4. Discussion

4.1. Policy implications

Understanding and projecting possible futures is one of themost im-
portant tasks in sustainability science and policies as stated in the IPCC
Fifth Assessment Report (Edenhofer et al. 2014) and the Shared Socio
economic Pathways (Riahi et al., 2017). Given the rise in global wealth,
and the strong correlation between wealth and emissions, it is funda-
mental to understand the potential changes in consumption and its ef-
fects on global emissions. Households contribute to the majority (60%)
of global GHGemissions (Ivanova et al., 2016),whichunderlines the im-
portance of understanding how households in countries in different
stages of development change their consumption habits as their income
changes.We complement the existing forecasting tools by only focusing
on the impact of future household preferences on GHG emissions using
historic expenditure data from EXIOBASE 3.

Fig. 3. Evolution of future (A - left) population, (B - middle) expenditure/cap and (C - right) GHG intensity of consumption for the QUAIDS scenario.
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On a global level (see S3), we find a clear tendency towards lower
demand and associated impacts for the food product groups in the
QUAIDS scenario. Lower-than-unity elasticities for food has strong sup-
port in the literature (see e.g. Seale Jr. et al. (2003), Almon (1998),
(Muhammad et al., 2011)). Like Almon (1998), we find strong income
effects on expenditure for transport, communication, and restaurants
and hotels (Fig. 2). The “housing, real estate, water, gas, electricity and
other fuels” and “transport services and fuels nec” product groups
alone make up about 50% of the global household carbon footprint in
2012 (S3), but add up to less than 30% of household expenditure in
2012, which indicates a high emission multiplier per monetary unit as
verified in S3. This contrasts with “health, education, insurance, and so-
cial security”, which makes up 13% of expenditure in 2012, but only 4%
of emissions. The “transport services and fuels nec” product group glob-
ally have high income elasticities,while “housing, real estate, water, gas,
electricity, and other fuels” behaves like a normal good with an income
elasticity around one (see Fig. 2, Fig. 5 and S3), which also has support in
the literature (Muhammad et al., 2011). The emission intensities of the
three food product groups are all among the highest five out of the 15
product groups globally in 2012 (S3). The combination of low income
elasticities and significant share of total household GHG emissions
(21%) makes these the main drivers for lower global GHG emissions in
the QUAIDS scenario compared to the static scenario. The product
group that contributes most to lower relative emissions in the QUAIDS
scenario is “vegetables, fruit, nuts, rice and crops”.

Our results indicate that accounting for household preferences for
products in emission forecasting can have a negative impact on cumula-
tive GHG emissions of up to 2% by 2030 for some of the aggregate re-
gions (Fig. 4) and up to 4% for the individual regions of EXIOBASE
(S8). Considering these results, we argue that regional-specific policies
aimed towards household consumption can be an important contribu-
tion in mitigating global warming. In Table 4 and S8 we provide a
guide for policy makers on areas of prioritizing based on our results
for the six aggregate regions and each of the 49 regions respectively.
The cumulative emissions by 2030 (Fig. 4) shows that the difference
in total emissions for developed regions isminimal between the scenar-
ios, while the largest relative decrease in emissions is found in develop-
ing regions. From S8 we see that the largest relative cumulative

decreases compared to the static scenario are found in India (95.8%),
RoW Asia (97.0%) and RoW Africa (98.1%).

Given the rapid changing technology of the last decades, we expect a
decrease in theGHGemission intensity ofmost consumption categories.
These technology improvements will have differing effects on the GHG
intensity of consumption for different product groups. The electricity
sector is in general considered a sector that is relatively easy to decar-
bonize compared to other sectors, and one which is expected to play a
vital role in climate change mitigation (de Sisternes et al., 2016). The
transport sector is expected to be more difficult to decarbonize
(Kriegler et al., 2014). The same holds for the food sector, which is less
dependent on energy and therefore expected to benefit less from the
energy transition. Such “hard-to-abate” sectors depend on efficiency
improvements or demand side changes to achieve emission reductions.
Our results indicate that the relative contribution of food consumption
to total emissions is less prominent in the future, which indicates
some decarbonization on the demand side. In contrast, the transport
sector is expected to have a more significant contribution to total emis-
sions in most countries when considering household preferences (S8).
As efficiency improvements, particularly in the energy sector, are sus-
ceptible to rebound effects (Sakai et al., 2018, Sorrell, 2014), demand
side changes are likely to play a much more prominent role in climate
change mitigation in the future.

Our results shed light on the untapped potential of environmental
taxation (OECD 2015). Countries that enforce higher environmental
taxation as share of GDP, such as Denmark and the Netherlands
(OECD 2019) are indeed among the countries in which we have seen
the largest decrease in carbon footprint per capita throughout the
time series of EXIOBASE (S8). Our results on consumer preferences
combined with environmental intensities provide a suitable tool for
predicting the effectiveness of environmental taxation which will have
different distributional impacts when applied to different goods. Taxes
applied for example to domestic heating and electricity are typically
found to be regressive, while transport-related taxes are found to be
less regressive or even progressive (Milne and Andersen, 2012). Knowl-
edge about this could direct taxation towards largest emission reduc-
tions without burdening low-income households (Milne and
Andersen, 2012).

Fig. 4. A (left): Future GHG emissions per capita for the static scenario (dashed lines) and the QUAIDS scenario (solid lines). B (right): Relative deviation from the static scenario (equal to
one) for cumulative GHG emissions from 2011 per region for the QUAIDS scenario. Global emissions in dashed lines.
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4.2. Limitations and future developments

The principal aim of this paper was to study the impact of income
changes on consumption, and how this will translate to change in car-
bon footprints. To isolate this effect, we assume that economic structure
and technology will not change in the future, even with respect to the
changing demand from the demand system (i.e. we use Leontief

production functions). It is well known that Leontief production func-
tions are a gross simplification for modelling long-term changes in the
economy, but our principal aim here is to isolate the income effect on
consumption, rather than the broader economic response. In order to
model the full macro-economic ramifications of demand-side and tech-
nological changes, a completemacro-economicmodel would be needed
(e.g. GINFORS (Lutz et al., 2009) and E3ME (Barker 1999)), but it would

Fig. 5. Comparison of GHG emissions for the QUAIDS scenario relative to the static scenario for six regions and 15 product groups.
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then not be possible to isolate the income-consumption effect directly.
In reality, several structural changes will occur in the economy over
the time-horizon that we model, and assuming that these tend to
lower the carbon intensity of production, it would be expected that
Leontief multipliers based on future IO tables would be considerably
lower (depending on how successful international policy is) than today.

Although it is outside the scope of our study, the price and income
elasticities estimated from the demand system provide possibilities for
analyses beyond what we have shown in this paper, such as to study
how households distribute money saved due to efficiency gains,
cheaper renewable energy or consumption changes across goods and
services (Freire-González 2011, Thomas and Azevedo, 2013, Font
Vivanco et al., 2014, Grabs, 2015, Chitnis and Sorrell, 2015).

For stronger analyses on income inequality, an important future im-
provement to the IO and the System of National Accounts framework is
to add more household detail. The OECD already started this discussion
(Fesseau et al., 2013, Fesseau andMattonetti, 2013). Reconciling house-
hold budget surveys and national accounts data is challenging and a po-
tential source of uncertainty per se (Robilliard and Robinson, 2003).
However, there is still potential in adding resolution to the sector for un-
derstanding distributional issues related to the environment. This could
be achieved by splitting household consumption into income quantiles
as was done in Sommer and Kratena (2017). A further step could be to
incorporate Social Accounting Matrices into IO models. These enable

studying the complete cycle of income, from consumption to income
generation and re-spending, and allow for a better understanding of
the interactions between social and environmental aspects (Lenzen
and Schaeffer, 2004).

At least two points are relevant to discuss in relation to the projec-
tion of future household expenditure. First, we assume that a change
in income is equivalent to a change in expenditure, implicitly assuming
household saving patterns are similar in the projections as in 2011. The
consumption-savings decision has been frequently discussed in the de-
mand system literature (see e.g. Lluch (1973)) and is something that
could be explored further. However, as we are not analyzing different
types of consumers, but rather the average consumer in each region
over time, it is reasonable to assume that over the time period
(2011–2030) income and expenditure are similar, although they
might differ from one year to the next. Second, when projecting expen-
diture from diverse regions, there are likely to be inter-regional differ-
ences in terms of collective service provision and governmental
spending. Countries with provision of social services would likely re-
quire lower household spending. This in turn can affect the projected
expenditure as an observed lower preference for a good with rising
household income can be the result of increased provision of social ser-
vices rather than decreased preference for that good. This is particularly
a concernwhen using time series data, as governmental policies regard-
ing social services likely changes with time.

Fig. 6. Contribution to total GHG emissions for 15 product groups by six aggregate regions for the QUAIDS scenario and the static scenario.
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Table 4
Policy recommendations for six regions based on the 2030 projections from the QUAIDS scenario.
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We aggregate the sectors of EXIOBASE into 15 product groups. The
reasoning behind this is discussed in Section 2.1. Another reason relates
to the underlying MRIO data. Creating anMRIO database involves mak-
ing assumption, and balancing and interpolating data, particularly for
the RoW regions where data availability is limited. Thus, MRIO house-
hold expenditure data necessarily deviates from actual expenditure
data. By aggregating household expenditure to the level chosen in this
paper, we avoid jumps in data points from year to year that could be a
result of these mechanisms.

There is a variety of ways to forecast future consumption, all of
which come with a set of limitations and assumptions. Beside the chal-
lenges related to using household consumption data from IO models,
there are limitations related to the demand model used in this paper.
Demand models assume homogenous, non-interacting and rational
consumers, a criticism of neoclassical economic models in general
(Axtell et al., 2001, Veblen 1898, Colander et al., 2004). A possible way
to overcome this is to include elements of e.g. agent-based modelling
(ABM). In ABM, these limitations are overcomeby letting individual, au-
tonomous agents interact. These interactions are determined on the
basis of the agents' states and rules of behavior (Axtell 2000), which
can for example be based on microdata from consumer expenditure
surveys. This approach also enables the inclusion of consumers taking
environmental considerations into their consumption decisions.

5. Conclusion

In this work we looked at the specific contribution that the income
effect will have on global GHG emissions, everything else being equal.

We forecasted household consumption to 2030 in two different sce-
narios based on expenditure data from an MRIO database (EXIOBASE)
in the period 1995–2011. In the first static scenario, consumption is
forecasted using the 2011 household consumption shares of 15 aggre-
gated product groups. In the second (QUAIDS) scenario, we use a de-
mand system to incorporate changes in household preferences as their
income changes. By applying population and GDP per capita projec-
tions, we compare the resulting GHG emissions up until 2030 to isolate
the effect of income changes. Globally, we find a small 1% reduction in
cumulative GHG emissions of the QUAIDS scenario compared to the
static scenario. This result is mainly driven by lower emissions in the
BRICS and rest-of-the-world regions. On a product level, we find lower
emissions from particularly food product groups in developing coun-
tries, while emissions related to transport and services contribute to
higher emissions in the QUAIDS scenario.

To further develop MRIO databases as a tool for studying future
emissions from household consumption, we call for two areas of im-
provement. The first is a disaggregation of the household consumption
vector, at least into income quantiles, which would facilitate analyses
of income inequality as well as the distributional effects of the imple-
mentation of policy instruments such as environmental taxation. The
second relates to disaggregation of sectors and regions. A greater detail
of household consumption-relevant sectors, such as food and transport
would improve the representation of household preferences in demand
system analyses. A disaggregation of regions would reduce uncertainty
in emissions embodied in traded goods due to high variability in GHG
emission intensities among different countries aggregated in the same
region.

Although there is a slight optimism in lower emissionswhen consid-
eringhousehold preferences as income changes, the overall effect is lim-
ited. As a guide to policy makers we provide focal areas to reduce
emissions from household consumption for 49 regions. Given that the
ease of decarbonization highly differs between sectors, such a guide
can be an important tool in the undoubtedly challenging decision-
making faced with mitigating emission in the years to come.
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A B S T R A C T   

Rising incomes (and associated expenditures) have been shown to be a major driver of environmental problems. 
Lately, several studies have pointed to a break between the income driver and biodiversity loss on a per-capita 
level. The increase in land-use efficiency is pointed to as a key factor in this decoupling. However, a lot of the 
previous work on biodiversity footprints has been cross-sectional and there is limited analysis with a temporal 
perspective. In this work, we couple a database that links land use to potential biodiversity impacts for ecor
egions, with a multiregional environmentally-extended input-output database available in a time series, with 
high regional detail. We perform a panel regression analysis for three regional quantile groups and six con
sumption categories that links trends in affluence to trends in biodiversity loss. The findings suggest that high- 
income regions from 2005 to 2015 have an income elasticity of biodiversity footprint higher than one, while the 
production-based accounts show that high-income countries have a declining impact on biodiversity in the time 
period, suggesting a strong outsourcing of biodiversity loss to low-income countries. In the early 2000s a peak in 
biodiversity footprint for the high-income region is not explained by increasing income, but rather consumption 
of traded goods associated with land use in countries in South East Asia prone to biodiversity loss. On a product 
level we find that although food consumption is causing the largest share of biodiversity footprints in all regional 
groups, manufacturing products, shelter, and clothing and footwear have the strongest income elasticity of 
footprint in high-income countries, suggesting that these are consumption areas to focus on as affluence grows, 
particularly in developing regions.   

1. Introduction 

Biodiversity loss is a major concern for the welfare of our ecosystems. 
Extinction rates are currently about 1000 times higher than the back
ground rates (Pimm et al., 2014). Vertebrate species populations have 
declined overall by 60% since 1970 (WWF, 2018) and approximately 
25% of the species (in the well-studied taxonomic groups) are currently 
threatened with extinction according to the International Union for 
Conservation of Nature’s (IUCN) Red List criteria (IUCN, 2019). Land 
use, resulting in habitat loss and degradation, is the pressure with the 
largest relative impact on ecosystems (Millennium Ecosystem Assess
ment, 2005; IPBES, 2019; WWF, 2018). Seventy-seven percent of the ice- 
free landcover has been affected directly by humans (Watson et al., 
2018; Allan et al., 2017), mostly due to agricultural activity (Ellis and 
Ramankutty, 2008), and reduction in the current global forest cover, 
which is estimated to be only 62% of the area it covered prior to humans 
(Steffen et al., 2015). 

Although land use negatively affects ecosystems globally, the effect 
of this land use on ecosystems, as well as the ecosystem responses (and 
hence biodiversity impacts) are not uniform across the globe (WWF, 
2018). While local studies of biodiversity loss and extinctions can resort 
to individual field studies, this is not possible on a global scale. In the 
global Life cycle assessment (LCA) models, species richness is therefore 
used to indicate the potential for species extinctions. The resulting 
biodiversity impacts are measured as “potentially disappeared fraction 
of species“ (PDF) (Verones et al., 2017a). Species-area relationships are 
commonly used to estimate the effects of land use on species richness (e. 
g., Chaudhary and Brooks (2018)). Chaudhary et al. (2015) developed 
land use impact factors estimating the PDF (bird, mammal, amphibian, 
reptile, and plant) per area occupied by specific land use types. These 
species thus act as a proxy for the entire “biodiversity”. This is a 
simplification, of course, as is the assumption that species are equally 
distributed throughout a terrestrial ecoregion. However, the advantage 
of the approach is that it provides a comparable model across the world 

Abbreviations: CB, Consumption-based; LCA, Life Cycle Assessment; LPI, Living Planet Index; PB, Production-based; PDF, Potentially disappeared fraction of 
species; RoW, Rest-of-the-world. 
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that is easy to communicate to stakeholders and is based on relatively 
easily available data. The method of Chaudhary et al. (2015) is incor
porated in the standardized life cycle impact assessment (LCIA) method 
LC-IMPACT) and includes regionalization at a rather fine level, i.e. it 
contains information about potential biodiversity impacts for every 
ecoregion. Moreover, it takes the vulnerability of species into account in 
that it tries to consider the fact that some species might be widespread, 
while others are endemic and at higher risk of being pushed to extinction 
(Verones et al., 2020). 

Studies on biodiversity trends indicate that biodiversity continues to 
deteriorate, although at a decreasing rate (Butchart et al., 2010; WWF, 
2018). In the literature, the temporal effects have often been analyzed 
through the perspective of the link between affluence and biodiversity 
loss. However, key policy documents on biodiversity conservation often 
have ambiguous views on the relationship between biodiversity loss and 
economic growth, or neglect the link altogether (Otero et al., 2020). 

An example of an indicator that has linked the state of biodiversity to 
levels of affluence in a temporal dimension is the living planet index 
(LPI) (McLellan et al., 2014). The LPI is an indicator for the global state 
of biodiversity measuring average change in vertebrate population sizes 
(n = 16,704 representing 4005 species) relative to 1970 (WWF and ZSL, 
2018). In the 2014 Living Planet Index, McLellan et al. (2014) used three 
country income groups, finding that low-income countries display 
sharper declines than middle-income countries, while high-income 
countries even had a slightly increasing index compared to the 1970 
baseline. We should, however, be aware that high-income countries 
have caused a substantial part of their biodiversity impacts pre-1970, 
thus the increasing trendline only shows a relative change. However, 
it may also reflect the ability of the high-income countries to pay for 
species conservation, or due to their production-based (PB) approach, it 
might reflect that high income countries have had a less harmful do
mestic biodiversity impact development from 1970 to 2011 compared to 
low- and middle-income countries. PB accounts neglect the biodiversity 
impacts embodied in trade, which can comprise a significant proportion 
of the total biodiversity impact (Lenzen et al., 2012; Moran et al., 2016; 
Marques et al., 2019). As such, the drivers of land use and subsequent 
biodiversity loss are nowadays often remote, “tele-coupled” by global 
value chains, and can be traced to consumption, often in Western 
countries, far from the actual impact on biodiversity. 

In order to provide consumption-based (CB) assessments that solve 
the issues of the PB approach, a range of analyses on the impact that 
trade has on biodiversity has been attempted, some through detailed 
investigation of production areas and traded goods (Chaudhary and 
Kastner, 2016; TRASE, 2020), and some through multi-regional input- 
output (MRIO) analysis (Lenzen et al., 2012; Marques et al., 2019). 
MRIO tables describe the production of goods and services in different 
regions of the world and have trade-linked tables showing the import of 
products as both intermediate and final goods. MRIO analysis compared 
to physical trade approaches has the advantage of modelling multiple 
supply-chain steps but has the disadvantage of often lower sectoral and 
regional detail. Due to the possibility to use MRIO tables to model 
increasingly complex supply chains linked to consumer demands, it has 
been suggested as an appropriate tool to calculate biodiversity footprints 
(i.e., biodiversity loss induced by consumption) (WWF, 2018; Moran 
et al., 2016; Marques et al., 2017). 

MRIO databases such as EXIOBASE (Wood et al., 2015), Eora (Len
zen et al., 2013), and GTAP (Aguiar et al., 2016) have been already 
connected to measures of biodiversity loss in order to give insight into 
these trade (Lenzen et al., 2012) and consumption effects (Marques 
et al., 2019; Marquardt et al., 2019). In the first work on biodiversity 
modelling, Lenzen et al. (2012) connected the IUCN red list of endan
gered species to Eora, which was further refined through a spatialized 
model in Moran et al. (2016). Other attempts have used a pressure- 
impact relationship by characterizing the effect land use has on biodi
versity through eitherPDF (Koslowski et al., 2020; Verones et al., 
2017b), bird species lost (as an indicator of overall biodiversity loss) 

(Marques et al., 2019), or mean species abundance (Wilting et al., 2017; 
Koslowski et al., 2020). 

MRIO analysis has further been used to study biodiversity footprints 
in order to understand the link to affluence and associated consumption, 
by time series work (Marques et al., 2019), by use of cross-sectional 
consumer expenditure survey data (Koslowski et al., 2020), and by 
specific analysis on the effects of consumption (Marquardt et al. (2019). 
Although Koslowski et al. (2020) found there was a correlation between 
affluence and biodiversity loss based on cross-sectional data, they 
observed a decline of 10% in the European per capita footprint between 
the two years included in their study (2005 and 2010). Hence, whilst 
they indicate a decoupling of biodiversity loss from affluence, their 
approach is limited by the years covered in the study. 

In their study with global coverage in the time period 2000–2011, 
Marques et al. (2019) found that increasing population and economic 
growth resulted in increasing impacts on bird diversity, but that the 
impact per unit of GDP decreased between 2000 and 2011. This trend 
was found for all world regions in the study. Further, they found for 
high-income regions such as Western Europe and North America a 
decrease in both PB and CB biodiversity- and ecosystem services impacts 
per unit of GDP, attributing this to one or both of reduced consumption 
within the regions and/or increased efficiency in the origin-regions of 
their imported goods. A decrease in per capita CB biodiversity impacts 
was attributed to decrease in impacts from food consumption in hotels 
and restaurants, and clothing, as well as reduced activity in the con
struction sector, all resulting from the financial crisis. 

Marquardt et al. (2019) compared four types of biodiversity footprint 
indicators using the GTAP database. Three of these were alpha diversity 
indicators which measure local diversity within a site, while the last was 
a gamma diversity indicator which measures global biodiversity. They 
found that household expenditure was positively related to the three 
alpha indicators, while the link to the gamma indicator was weakly 
positive and highly uncertain. In addition, using the gamma indicator, 
they found that human consumption patterns particularly threaten 
tropical biodiversity. 

The existing literature using MRIO to study biodiversity loss have 
largely been descriptive, such as studying the state of biodiversity loss 
for one specific year (Lenzen et al., 2012; Koslowski et al., 2020; Wilting 
et al., 2017; Moran et al., 2016). Some studies break down biodiversity 
impacts into consumption categories, but do not investigate the tem
poral trends in biodiversity loss for different regions (Wilting et al., 
2017; Moran et al., 2016; Marquardt et al., 2019). Marques et al. (2019) 
investigate the temporal changes in biodiversity loss broken down into 
consumption categories for different world regions. In many ways our 
study seeks to verify the findings of Marques et al. (2019) who found 
strong evidence of decoupling, as well as that of McLellan et al. (2014)’s 
production-based approach. In addition, we seek to further Marquardt 
et al. (2019)’s findings which revealed ambiguous results for the gamma 
(global) biodiversity indicator’s correlation with expenditure. We 
expand on Marquardt et al. (2019)’s work by exploring the temporal 
trends in biodiversity loss on an even more detailed regional level. We 
are able to go to a much higher regional detail than Marques et al. 
(2019) and Marquardt et al. (2019) by using EXIOBASE 3rx, a newly 
developed extension of the MRIO database EXIOBASE, where the 
countries previously part of rest-of-the-world (RoW) regions are 
explicitly covered, with a total of 214 regions. It was created based on 
the wish to explicitly cover the extent and diversity of land use for 
countries within the RoW regions, thus the database is tailored for an 
analysis linking biodiversity impacts to land use directly. 

Building on this previous research, we seek to answer the question of 
whether there is a strong link between affluence and biodiversity loss 
from a consumption-based perspective. We aim to capture differences in 
development status of countries and to specifically provide insights into 
product level drivers. With globally applicable methods and metrics to 
quantify biodiversity loss being called for (Chaudhary and Kastner, 
2016), we approach this by linking EXIOBASE 3rx to a database of 
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characterization factors (LC-IMPACT) with a similar regional coverage 
as EXIOBASE 3rx. Unlike the LPI, our analysis is on an extinction level (i. 
e., potential species loss), not a population level (i.e., abundance of in
dividuals). Supply-chain impacts are identified in the input-output cal
culations to investigate the difference between CB and PB impacts for 
each region. To investigate the extent of a decoupling between affluence 
and biodiversity impacts, we first examine the trend in biodiversity 
impacts from both a PB and CB perspective in the years covered in 
EXIOBASE 3rx (1995–2015) and then run panel regressions with 
country-fixed effects for six groups of consumption categories (plus total 
consumption) and regions split into three income quantiles. The 
following results are then compared with similar literature findings, 
along with a discussion of limitations and uncertainties. Finally, we 
discuss how these results can be used to mitigate future biodiversity loss. 

2. Methods 

The two data sources used for biodiversity impact calculations are 
the MRIO EXIOBASE 3rx which provide the economic and land use data, 
and the life cycle impact method LC-IMPACT providing characterization 
factors of biodiversity impacts from land use. In the following section we 
explain how the two data sources are combined and how the PB and CB 
biodiversity impacts are calculated. Next, we explain the approach taken 
for measuring decoupling, and finally the approach for the panel 
regression analysis. In this analysis yield is an independent variable, 
which is acquired from the crops data from FAOSTAT (2020). 

Here we take a MRIO approach, using the regionally extended 
version of EXIOBASE 3 (Stadler et al., 2018) called EXIOBASE 3rx (Bjelle 
et al., 2020). The database contains data on 200 sectors and 214 coun
tries describing production requirements and demand. Whilst official 
input-output tables are not available for many of these countries, in 
EXIOBASE 3rx proxy estimates were made based on technology data, 
estimated outputs and trade data. The database contains extensions for 
six land use types (available as 40 detailed land use types upon 
reasonable request) and is available online at DOI: https://doi.org/10. 
5281/zenodo.2654460. 

In previous work (Bjelle et al., 2020), a bilaterally trade-linked 
approach was used to link domestic input-output tables (as per emis
sions embodied in bilateral trade approaches described in Peters et al. 
(2012)). In this paper, we extend that work by using a MRIO approach, 
but through a network-based procedure rather than with fully populated 
tables (Rodrigues et al., 2016). The MRIO and network approaches give 
exactly the same result, but the network approach is computationally 
much less demanding. Full details are in Rodrigues et al. (2016) and not 
repeated here. The advantage of the MRIO approach compared to a 
bilateral trade approach is that full global supply-chains (covering 
processing in multiple countries) are covered in assigning biodiversity 
impacts to final consumers. 

Letting matrices be identified by bold-upper case letters, vectors by 
bold lower-case letters, and scalars by normal lower-case letters, the 
standard environmental CB impact calculations for a specific year using 
EXIOBASE 3rx are given by: 

E = SLY (1) 

Letting r, q and g represent the number of regions, sectors, and 
environmental impact categories (e.g. types of land use) respectively, 
the variables are: 

E: Total impacts (e.g. land use or biodiversity footprint) with di
mensions g by r 

S: The impact multipliers per monetary unit (e.g. km2/million Euro 
for land use) with dimensions g by (r * q) 

L: The Leontief inverse matrix describing the production re
quirements per unit of final demand with dimensions (r * q) by (r * q) 

Y: Final demand given in million euros (current year pricing) with 
dimensions (r * q) by r 

In the multiregional input-output system the diagonal blocks of the 

S, L and Y matrices represent the domestic systems, while the off- 
diagonal blocks represent the traded parts of the systems (the off- 
diagonal parts of the S matrix are zero as there are no traded impact 
multipliers of production). To distinguish between impacts associated 
with specific sectors of consumption or domestic vs. traded consump
tion, the Y matrix can be aggregated, split or diagonalized according to 
the specific impact in question. 

As the inverse of such a large matrix is computationally demanding, 
we use the Taylor series expansion instead: 

E = S
(
I+A+A2 +A3 +A4 +…

)
Y (2) 

A: The coefficient matrix with dimensions (r * q) by (r * q) showing 
domestic and import input-output tables, trade-linked by bilateral trade 
flows as described in Rodrigues et al. (2016). 

Taylor series expansion should theoretically be infinite but con
verges quickly (all elements of A are less than 1), and the calculation was 
cut off at 20 orders here. The PB impacts are similarly calculated as: 

E = Sx̂ (3) 

x̂: The diagonalized vector of total output from EXIOBASE 3rx in 
million Euros (current year pricing) with dimensions (r * q) by (r * q) 

EXIOBASE 3rx includes land use directly caused by households. 
These land uses have varying intensity, but are mainly the subsistence 
use of forest land with very low intensity (see the supporting informa
tion of Bjelle et al. (2020)). Including them in the analysis will likely lead 
to an overestimation of biodiversity impacts since the characterization 
factors do not adjust for these low land use intensities. In addition, direct 
household use is not linked to expenditure on goods and services, which 
complicates the analysis of the link between affluence and impact. For 
these two reasons, we exclude these land uses from the analysis. 

The sections above explain the framework for calculating CB and PB 
land use footprints, but the link to biodiversity impacts is still missing. 
This link and the needed modifications to the framework is explained in 
the following paragraphs. 

Natural systems respond to human pressures in various ways, making 
it difficult to quantify and compare impacts on ecosystems. Biodiversity 
indicators, reflecting biodiversity aspects in simple metrics, can be 
helpful tools to measure changes in natural systems resulting from 
human pressures (WWF, 2018). The use of standardized indicators eases 
the interpretation of nature’s responses to human activity, allows to 
track changes over time, and facilitates consistent comparisons. 

LC-IMPACT is a life cycle impact assessment method combining 
impacts for human health, ecosystem quality and resources. It is freely 
available on www.LC-IMPACT.eu and described in Verones et al. 
(2020). 

Impacts from land use are modelled in LC-IMPACT for land occu
pation (use) and land transformation, but only land use was applied in 
this work. The model is based on the countryside species-area rela
tionship (SAR), taking into account that species may be able to survive in 
the absence of natural habitat, i.e. live in human-modified land only 
(Verones et al., 2019; Chaudhary et al., 2015). Land use impacts are 
modelled for mammals, birds, amphibians, reptiles and plants individ
ually for local losses and then adapted with a “vulnerability score” to 
transform local losses to global species extinction (for more detailed 
information see Verones et al. (2019) and Chaudhary et al. (2015)): 

The countryside SAR predicts how many species are lost (Plost, u, j) of 
taxonomic group u in ecoregion j if the area available changes (from Borg 
to Bnew). It takes the habitat affinity hu, i, j (where land use types are 
represented by i) of species in different habitats into account (based on 
local characterization factors. See De Baan et al. (2013) for more 
details). 

Plost,u,j = Porg,u,j∙

⎛

⎝1 −
Bnew,j +

∑

i
hu,i,j∙Bi,j

Borg,j

⎞

⎠ (4) 
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The average characterization factor per ecoregion and taxon is then 
calculated as: 

CFu,j =

Plost,u,j∙bi,j
Bi,j
∙VSu,j

N∙Pu,world∙VSu,world
(5) 

b is the allocation factor for each land use type i in each ecoregion j 
and VS the vulnerability score for each taxon. N is the number of taxa 
and P and VSu, world are the number of species in taxon u globally and the 
global vulnerability, respectively. Details about the vulnerability score 
are presented in Verones et al. (2019). The CF for animal taxa and for 
plants is the aggregated with a weight of 50% each. Aggregation to 
countries is made based on area-weighted averages over land use type. 

The characterization factors indicate the per unit of area potentially 
disappeared fraction of species (PDF/m2) due to current land use (Bnew) 
relative to the natural state (Borg; i.e., the unimpacted state prior to 
human influence). Biodiversity impacts are calculated by multiplying 
the characterization factors (PDF/m2) with land use data (m2/year) and 
indicate the biodiversity impacts at a certain point in time (PDF/year) 
relative to a hypothetical natural state without any human land use. This 
means that the biodiversity indicator used here represents a snapshot of 
the biodiversity footprint of global land use in a certain year relative to 
the natural state, rather than accounting for the cumulative biodiversity 
impacts of land use over several years. The exposure duration is usually 
included in the characterization factors, reflecting the fact that land 
occupation will most likely not lead to immediate species loss, but a 
potential species extinction over time. As pointed out in Verones et al. 
(2020), these indicators are rather reflecting an increase in the risk of 
extinction rather than an instantaneous loss. 

The regional coverage of global characterization factors of biodi
versity loss in LC-IMPACT makes it a suitable match for EXIOBASE 3rx. 
Most of the regions covered in EXIOBASE 3rx overlap with the LC- 
IMPACT regions. Where the EXIOBASE 3rx country is not covered in 
LC-IMPACT, we use LC-IMPACT values from similar countries to 
approximate the missing country’s characterization factor (e.g. 
Tanzania as a proxy for Zanzibar and China for Taiwan) See SI1 for a full 
overview of the regional bridging. Some countries in LC-IMPACT have 
values equal to zero for certain land use types. This is either due to no 
area being registered for that land use type or missing taxonomic 
coverage. To ensure consistency with EXIOBASE 3rx in that all land use 
is associated with biodiversity loss values, we replace zero-values with 
the smallest recorded value for that specific land use type across all 
regions in LC-IMPACT. As can be seen in SI2 these are mostly tropical 
island states (and Greenland), regions which typically do not contain the 
types of land for which there are zero-values in LC-IMPACT. 

The land use intensities (Sl) for EXIOBASE 3rx are given in km2/ 
Million Euro, while the LC-IMPACT global biodiversity loss character
ization factors (CF) are in PDF/m2. To arrive at biodiversity loss in
tensities (Sb), the total land use associated with production in each 
sector and country of EXIOBASE 3rx (Fb) must first be aggregated to the 
six land use types in LC-IMPACT (See SI1 for aggregation), which are 
annual crops, permanent crops, intensive and extensive forestry, urban 
area, and pasture. These land use types can exist side-by-side and do not 
overlap. Characterization factors per taxa are different for the land use 
types in each country due to the different area shares present, but more 
importantly also due to the species and habitat affinity of species living 
in these areas. 

Next, we replace the land use intensities associated with production 
in each region in EXIOBASE 3rx with biodiversity loss intensities: 

Sb =
106*(Fl*CF)

x
(6) 

Fl: Total land use from EXIOBASE 3rx aggregated to the six LC- 
IMPACT land use categories 

x: Total output from EXIOBASE 3rx in Million Euros. 
In the last step, we calculate the biodiversity footprints using Eq. (2), 

replacing S with Sb. The biodiversity footprint results for the 200 sectors 
in EXIOBASE 3rx are aggregated to six categories of consumption ac
cording to the aggregation key found in SI1. We use biodiversity foot
prints as term for the consumption-based (CB) impacts and refer to the 
production-based (PB) impact as the PB results. 

Some countries are merged or split (e.g. Netherlands Antilles and 
Serbia) throughout the time series of EXIOBASE 3rx. This causes issues 
for time series analysis on individual countries, but not on aggregated 
regions as we use in this work. However, a total of 16 countries have 
unbalanced supply-and use tables for some years (see overview in SI3) 
due to poor raw data availability, or inconsistencies in raw data causing 
the procedure that balances supply-use tables to not find an optimal 
solution. In addition, the macroeconomic data for Sudan and South 
Sudan is inconsistent across the time period. To keep the time series 
figures consistent (to avoid sudden jumps or drops in the figures), we 
exclude these countries from the analysis. For the regression analysis, 
only the specific years with inconsistent data are excluded (reported in 
SI3). 

We measure decoupling (OECD, 2002) of biodiversity impacts as: 

D =

bf t/bf 1995

GDPt/GDP1995

(7) 

D: Decoupling ratio 
bf: Biodiversity footprint or PB impacts 
GDP: The GDP of the region in constant 2005 Euro 
t: year 
Absolute decoupling occurs when the biodiversity impact reduces in 

absolute terms, irrespective of change in GDP, and relative decoupling 
occurs when the biodiversity impact increases, but at a slower rate than 
GDP. 

We follow a similar approach to earlier papers in estimating income 
elasticities of footprint (a modification of income elasticities of demand, 
but the dependent variable being the footprint of a consumption cate
gory rather than the actual consumption), see e.g. Hamilton et al. 
(2018). Instead of arriving at global income elasticities of footprint, we 
build on the findings in McLellan et al. (2014) and group the countries in 
EXIOBASE 3rx into three income quantiles based on their average GDP/ 
cap measured in constant 2005 Euro calculated for EXIOBASE 3 (Stadler 
et al., 2018). Thus, we arrive on region group-specific income elasticities 
of biodiversity footprint. If this elasticity is larger than 1 the interpre
tation is that a 1% increase in GDP/cap leads to a larger than 1% in
crease in biodiversity footprint. The possible mechanisms behind this 
value are explained in the discussion section. 

For testing the robustness of our model, and due to the potential 
explanatory effect of changes in land use efficiency as identified by 
Marques et al. (2019), we include country-specific crop yields as an 
independent variable. This data was gathered from FAOSTAT’s crop 
data that covers the physical production and area harvested for 173 
products for all years of our analysis (1995–2015) (FAOSTAT, 2020). 
The yield was calculated by aggregating over all products to arrive at a 
measure of production (in tons) per area harvested (in hectares). The 
regression function is thus given by: 

ln(bf ct) = αc + β0 + β1(lnGDPpcct)+ β2(lnyieldct)+ ϵct (8) 

α: Time-invariant unobserved heterogeneity (country-fixed effects) 
β0, β1, β2: Regression coefficients 
bf: Biodiversity footprint per capita (in PDF) 
c: Region 
t: Year 
GDPpc: GDP per capita in constant 2005 Euro 
yield: Crop yields 
ϵ: Error term 
We perform the Hausman’s test (Hausman, 1978) to choose between 

a random- or fixed-effects regression model. We check the resulting test 
statistic against the critical value in the chi-squared distribution with 
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two degrees of freedom: χ0.95
2 (2). If the test statistic is larger than this 

critical value, we conclude that only the fixed effects estimation is 
consistent, otherwise both the random effects and fixed effects are 
consistent, but random effects is more efficient. 

We perform tests of model fit to support our choice of random vs. 
fixed effects. These tests are the log-likelihood ratio, Akaike information 
criterion (AIC), Bayesian information criterion (BIC), and root mean 
squared errors. We also perform the Durbin-Watson test to detect 
autocorrelation at lag 1 in the residuals. All model statistics, model fits, 
and country-fixed effects (and their significance) can be found in SI9–12. 
SI9 shows that 77% of the country-fixed effects are significant at level 
0.10. The low R2-values observed for the model with country-fixed ef
fects (SI10) versus the high R2-values for the model with dummy vari
ables explicit for the countries (equivalent to the country-fixed effects 
model) (SI12) indicate that most of the variance is explained by the 
country-fixed effects, rather than the other variables in Eq. (8). 

3. Results 

The global biodiversity footprint has increased by 5–6% from 1995 
to 2015 (Fig. 1 - black dotted line in first column).1 The increase in 
impact is largest in low-income countries (PB account), with a 14% in
crease over the time period, compared to a 3% increase for middle in
come and a 4% decrease for high income. High-income countries have in 
other words managed to achieve absolute decoupling from a PB 
perspective over the last 20 years. In the CB results (second row of 
Fig. 1), biodiversity impacts embodied in imports are accounted for, and 
thus show highly differing trends compared to the PB results. Whilst 
from beginning to the end of the period, we see similar results to the PB 
accounts, there are large intermediary changes. Low-income countries 
have increased footprints by roughly 20% over the period, while the 
middle- and high-income regions have seen a 2% increase – i.e. the 
absolute decoupling does not occur for high income countries in the CB 
account. However, the results are affected by a large spike in the CB 
account for high-income countries around year 2000. This is coupled 
with a reduction in the CB account in low- and middle-income countries 
in similar years, before the trends invert around 2005. 

From a per-capita perspective, the footprint has decreased by 16% 
globally (Fig. 1 - black dotted line in the middle column). The low- 
income region has the largest decrease (18%) which illustrates that 
population growth drives the increased biodiversity impacts in this re
gion. The per capita footprint in the high-income region has decreased 
by 11%. However, up until 2005, the footprint is increasing. To under
stand what is causing the discrepancy between the PB and CB results, 
impacts need to be examined at a product level (which we return to in 
Fig. 2) and the country-level origin and destination results (see SI4). It 
appears that there was a large increase in trade of wood-based materials 
from biodiversity hotspots such as Indonesia, Malaysia, and Papua New 
Guinea to high-income countries such as the United States and Japan. 
This trade subsequently declined in the mid-2000s. It is clear that the CB 
footprint in the high-income region is heavily affected by impacts 
embodied in trade with the low-income region from 1995 to 2005 
(comparing the PB results to the simultaneous increase in absolute CB 
footprint for the high-income region and decrease in CB footprint for the 
low-income region). 

Given the much larger relative increase globally in GDP per capita 
than biodiversity footprint per capita from 1995 to 2015, the decoupling 
index in Eq. (7) is expected to decrease over time. However, the trends 
highly differ for the three region groups. Looking at the decoupling 
figures (right column of Fig. 1), there is a strong relative decoupling 

globally between impact and GDP throughout the time period (D = 0.6). 
Again, the exception is the high-income region from 1995 to 2005, 
where the decoupling is close to unity for the CB-decoupling metric. This 
trend is caused by the sharp relative increase in the CB biodiversity 
footprint per capita in the same period, which increases similarly to the 
GDP per capita in relative terms in this region. The same is not found for 
the PB decoupling as the PB per capita impact stays relatively un
changed in the same period. This suggests increased consumption in the 
high-income region of goods that are produced in biodiversity hotspots. 
Decoupling in the low-and middle-income regions (D = 0.4) is much 
stronger than in the high-income region (D = 0.7) when considering the 
full time period (1995–2015). The decoupling seems to be flattening out 
in all regions for both PB impacts and biodiversity footprints around 
2010 after a rapid decline from 2003 to 2008. After 2010, the decreasing 
trend resumes. 

Whilst the low- and middle-income groups have shown a consistently 
declining trend in the per capita footprint in the time period (Fig. 1 
(middle column) and Fig. 2), total per capita consumption has increased 
(Fig. 2). Increase in consumption largely is due to increases in “Mobility” 
and “Manufactured products”, which are associated with low footprint 
intensities. Consumption of product groups with high footprint in
tensities such as “Food”, and partly “Shelter”, remain relatively un
changed in 2015 compared to 1995. Food consumption makes up the 
largest component (40–61%) of per capita footprints in all regions. 
“Services”, which makes up the main component of consumption in the 
high-income region, has a low footprint intensity, resulting in a rela
tively lower share of the total footprint. From 2004 to 2015, decreasing 
footprint intensities for “Shelter” and “Food” is largely causing the 
downward trend in the per capita footprint. The footprint intensities are 
declining for most consumption categories in all three regions, but 
particularly so for “Food” that is by far the most footprint-intensive 
product group. 

To better understand the relationship between biodiversity footprint 
and affluence, we perform a panel regression analysis where the average 
consumer in each country is represented by a data point over the time 
period (1995–2015). Based on Hausman’s test showing that only the 
fixed effects estimation is consistent in 11 out of 18 cases (see SI11) and 
the focus on temporal changes in footprint in our analysis we chose a 
model with fixed effects. Data points on average consumers are observed 
for the biodiversity footprint and GDP per capita. In addition, we include 
the crop produced per land area for each country. In Fig. 3 these metrics 
are shown as natural logarithms split into the three regions (represented 
by different colors) with linear regression model fits for each year and 
region group (off-diagonal) along with kernel density estimation plots 
on the diagonals. 

The peak of the kernel density estimation plot of the biodiversity 
footprint per capita (first row, first column plot) for the high-income 
region (black graphs) indicates that generally the footprints per capita 
are found at a value somewhat higher than those for the low-income 
group (red graphs), the middle-income group, however, has two 
distinct peaks, one of which are to the right of the high-income group, 
indicating that these observation have a higher biodiversity footprints 
per capita than the distinct peak of the high-income group. 

The scatter plots reveal that apart from a few outliers that indicate 
that the highest footprints are found in the high-income group, while the 
lowest footprints are found in the low- and middle-income groups, there 
is no clear positive correlation between per capita GDP and per capita 
biodiversity footprint. The per capita footprint seems to be decreasing in 
the low-income group with increasing affluence and time (third row, 
first column plot), indicated by increasing color saturation towards the 
top-left corner of the graph. The same is not evident for the two other 
income regions. The efficiency metric (yield) shows a clear trend of in
crease with rising affluence in all income groups (third row, second 
column plot). 

The income elasticities of biodiversity footprint derived from the 
country-fixed panel regressions reveal highly differing trends between 

1 There is a slight difference between the PB- and CB graphs caused by small 
mismatches between production and land-use values in 1995 (the base year for 
this figure) due to imbalances in the data but is within the expected error range 
(about 1%). 
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the regions (Table 1). 
Table 1 is based on results for 2005–2015 to get the most recent 

trends in the income elasticities of footprint (see SI5 for equivalent re
sults for 1995–2004 and 1995–2015). The time period covered in 
Table 1 includes the financial crisis and therefore is particularly inter
esting for studying the response of environmental footprints to changes 
in affluence. For the high-income group, all elasticities are higher than 
one (see explanation on meaning in methods and discussion). As such, 
for the average consumer in high-income countries, there is a distinct 
positive relationship between affluence and biodiversity footprint per 
capita that is not captured for the overall regional average consumer 
(Figs. 1 and 2). For the low- and middle-income groups, most values are 
non-significant, except for “Manufactured products” in both groups, 
“Shelter” in the middle-income group and the negative elasticity for 
“Food” in the low-income group. “Manufactured products” makes up a 
relatively small, but increasing share of the total footprint (Fig. 2), but 
the high- and significant income elasticities of footprint indicate that as 
affluence grows in the future, this consumption category is a concern for 
biodiversity loss. The yield (Eq. (8)) was found to be significant at level 
0.05 for four of the product groups in the middle income region, and not 
significant otherwise (see SI10). 

4. Discussion 

Assuming that the metric in LC-impact, which measures probability 

of extinction is comparable to the metric in the 2014 Living Planet Index 
(McLellan et al., 2014) that estimaes the state of global biodiversity, we 
can compare the trends in the two metrics broken down into three 
regional groups from 1995 and onwards. There are at least three distinct 
similarities in trends of our PB results (Fig. 1) and the 2014 LPI. Firstly, 
the high-income group’s total impact is quite stable, with even a bet
tering state for biodiversity from the early 2000s and onwards. Sec
ondly, in both the middle-income and low-income groups the 
biodiversity has declined, and thirdly, the largest decline is found in the 
low-income group. Although our results do not capture the slight in
crease in biodiversity in the 2014 LPI observed in the period in the mid- 
2000s for the low- and middle-income regions, the similarity in the 
general trend in both sets of results serve as a first robustness check for 
the results at the level of detail presented in our work. The difference 
between PB impacts and CB footprints in Fig. 1 shows the importance of 
both assessing where the biodiversity impact is taking place, and who is 
responsible for the biodiversity impact. Our results show that the 
increasing biodiversity footprints in in the period 1995–2005 is fully 
caused by the high-income consumers, while the two other income 
groups largely cause the increasing impacts after 2006. A comparison 
between CB and PB impacts for the LPI could be a valuable future 
improvement for further robustness checks. 

We show the country-specific biodiversity footprints per capita for 
2015 in SI13. These results largely coincide with findings in the litera
ture. Marquardt et al. (2019) identified Caribbean states, Madagascar 

Fig. 1. Footprints development, total (left) and per capita (middle), as well as decoupling of biodiversity impacts from GDP (right) for PB (top row) and CB (bottom 
row) accounts. Values are relative to 1995. The colors represent the regions grouped by income quantile. CB: Consumption-based, PB: production-based. Global 
values in black dotted line. 
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and Brazil as countries with high per capita footprints and Pakistan, 
Mongolia and Bangladesh as countries with low per capita footprints. 
Our results confirm these trends. Koslowski et al. (2020) found a strong 
relationship between affluence and biodiversity footprints in European 
countries and identified Luxembourg as the country with the highest per 
capita footprint. Of the countries covered explicitly in their study, 
Luxembourg is also the country with the highest per capita footprint in 
our results, although it ranks as low as 44 in our list of all countries. 
Compared to these studies, our results show the significance of per
forming the analysis on a finer regional detail. The top countries ranked 
by biodiversity footprint per capita in our results are small island states 
such as New Caledonia, Seychelles and Dominica that are not explicit in 
Marquardt et al. (2019), but rather aggregated to larger regions. A 
second consequence of finer regional detail is that the relationship be
tween affluence and per capita footprint is more ambiguous in our re
sults compared to Koslowski et al. (2020)’s European results. The top- 
ranking countries in our results are mostly less affluent than European 
countries. Although, we can confirm the trend in European per capita 
footprints with rich countries such as Monaco ranking first, Luxembourg 
second and Liechtenstein third of all European countries (Monaco and 
Liechtenstein are not covered explicitly in their study). 

Our results show on an aggregate regional level a relative decoupling 
of biodiversity loss from affluence (Fig. 1) for all regions (except for the 
high-income from 1995 to 2005). On a global level (SI7), our findings 
share high similarities with Marques et al. (2019). The regression results 

however (Table 1) indicate no sign of decoupling in the high-income 
region. A likely explanation for this is that the high-income region is 
composed of several countries with small populations and high levels of 
affluence. Population differences are not accounted for in the regression 
analysis, meaning e.g. that an average consumer in the US is weighted 
equally to an average consumer in Norway. Thus our regression results 
confirm the trend found by Koslowski et al. (2020) suggesting a high 
correlation between per capita biodiversity footprint and affluence for 
high-income regions. We find a much stronger decoupling for devel
oping regions that typically have seen a great development in land use 
efficiency in the time period covered in our analysis, while the richest 
countries already reached high land use-efficiency pre-1995. 

Food consumption is the main component of the biodiversity foot
print (Fig. 2). The “Food” share makes up half of the footprint globally 
(SI4), compared to 40% found by Wilting et al. (2017). However, “Food” 
has the lowest income elasticity of footprint of all consumption cate
gories in all regions (Table 1). Consumption on “Shelter” is responsible 
for the second highest global share of total biodiversity footprint 
(20.3%) and has an income elasticity of footprint above one for the high- 
income group, but below one for the two other groups. “Services” rank 
third (16.0%) and the income elasticities of footprint is in the middle 
range of all consumption categories in all regions. The two highest in
come elasticities of footprint in the high-income group are for “Clothing 
and footwear” (1.37) and “Manufactured products” (1.94). The share of 
total footprint is increasing for “Manufactured products” for the high- 

Fig. 2. Biodiversity footprint, consumption, and footprint intensities (PDF/EUR) for six consumption groups and the three income groups.  
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and middle-income regions and make up 14.0% and 9.4% of the total 
footprint in the two regions respectively. 

Wilting et al. (2017)’s cross-sectional analysis on the relationship 
between the per capita biodiversity footprint and affluence is compa
rable with our results for the high-income group as they use the MRIO 
database WIOD, which has mostly high-income countries explicit (along 
with five RoW regions). Our results correspond well with their findings 
for “Food”, “Manufactured products” (their category is called “Goods”) 
and “Shelter” (“Housing” in their work). The findings differ for “Ser
vices”, where they find a strong positive relationship between affluence 
and biodiversity footprint. Differences in findings can be due to differ
ences in data (they use cross-sectional data), regional aggregation, dif
ferences in biodiversity footprint metric, and the use of RoW regions. 

Income elasticities of biodiversity footprint as we report here, has to 
our knowledge not been investigated in the MRIO literature. A similar 
metric was reported by Clausen and York (2008), who used cross- 
sectional data for 140 countries on the number of threatened marine- 
and freshwater fish species. Their “income elasticity of biodiversity 
footprint” was in the range of 0.06–0.12, which is at the lower end 

compared to our results, except for the low-income region. 
The significance for several of the income elasticities of footprint are 

low (Table 1), so they should be interpreted with caution. We find 
particularly low elasticities for “Food”, while elasticities for “Shelter”, 
“Services”, and “Manufactured products” are high. “Clothing and Foot
wear” has a high elasticity in the high-income region and low elasticities 
in the two other regions. The relationship between income elasticities of 
demand and income elasticities of biodiversity footprint is not neces
sarily straightforward (We report the income elasticity of demand for 
2005–2015 in SI6). Three points below illustrate the connection be
tween income elasticities of demand and income elasticities of biodi
versity footprint and how to interpret the income elasticities of 
biodiversity footprint. Firstly, income elasticities of demand are ex
pected to be close to one since total demand and income have a close to 
one-to-one relationship. This is not the case for the biodiversity foot
print, where global total biodiversity loss has increased by 6.9% from 
1995 to 2015 whilst GDP has increased by about 80% (in constant pri
ces). The income elasticity of biodiversity footprint is in addition to 
being influenced by preferences (also captured in the income elasticity 

Fig. 3. Scatter plots of individual countries with linear regression model fits (off-diagonal) and kernel density estimation (diagonal): Natural logarithms of GDP per 
capita (in 2005 constant Euros), biodiversity footprint per capita (in PDFs), and efficiency (crop per land area). Years are represented with increasing color saturation 
approaching 2015. 

Table 1 
Income elasticities of biodiversity footprint by consumption categories (2005–2015).   

Shelter Food Clothing and Footwear Mobility Manufactured products Services Total 

high 1.18 (***) 1.02 (**) 1.37 (**) 1.25 (**) 1.94 (***) 1.34 (***) 1.3 (***) 
(0.48 1.88) (0.16 1.87) (0.05 2.69) (0.16 2.35) (1.2 2.69) (0.62 2.07) (0.63 1.97) 

middle 0.92 (*) 0.3 () 0.56 () 0.46 () 0.98 (**) 0.77 () 0.62 () 
(− 0.13 1.96) (− 0.53 1.13) (− 0.54 1.66) (− 0.55 1.48) (0.12 1.85) (− 0.78 2.33) (− 0.37 1.6) 

low 0.14 () ¡0.31 (**) 0.19 () 0.14 () 0.38 (**) ¡0.05 () ¡0.0 () 
(− 0.1 0.38) (− 0.56–0.05) (− 0.13 0.5) (− 0.3 0.59) (0.05 0.7) (− 0.34 0.24) (− 0.22 0.21) 

Significance levels: *: p < 0.10 **p < 0.05 ***p < 0.01. 95% confidence intervals in parenthesis. 
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of demand), heavily influenced by the footprint intensity (PDF/EUR), 
which again is dependent on the origin of the biodiversity impact since 
characterization factors greatly vary between regions. Secondly, the 
small changes in per capita biodiversity footprint for the low- and 
middle-income countries in the time period covered are causing several 
of the income elasticities of biodiversity footprint to become non- 
significant. Thirdly, the differences in impact intensities (as discussed 
above) are highlighting some of the focal areas for biodiversity loss 
mitigation through the income elasticities of biodiversity footprint. Ex
amples include “Manufactured products” and “Clothing and footwear” 
for the high-income region. 

The distributional effects of increased land use efficiency on biodi
versity footprint also depends on the impacts embodied in trade. We find 
that the traded part of the biodiversity footprint globally has risen from 
19% in 1995 to 33% in 2015 (SI4), which is in line with other findings 
(Marques et al., 2019; Wilting et al., 2017; Wood et al., 2018), but does 
not correspond with Verones et al. (2017b)’s findings, particularly for 
high-income countries. In 2012 we find the traded share of the footprint 
of the high-income region to be 68%, compared to 6% in Verones et al. 
(2017b). This can in part be explained by their split into four income 
regions, but most likely the difference is caused by their inclusion of the 
biodiversity impact of GHG emissions and water consumption in addi
tion to land use. 

Our results show that the imported share of the footprint is rapidly 
increasing in the low-income (374% increase) and middle-income 
(327% increase) groups, while the increase in the high-income group 
is modest (26% increase). However, the regions differ significantly in 
the imported share of total footprint, with 17%, 24% and 72% for the 
low-, middle-, and high-income groups respectively in 2015. Other 
studies (Marques et al., 2019; Wilting et al., 2017) have focused on the 
high import share of total footprint, but the temporal development in 
our results, showing such a rapid development for the populous devel
oping regions, highlights the importance of also addressing strategies for 
consumption to mitigate biodiversity loss in the future. 

The amount of land use and the geographical location of the land 
used are the dominant drivers for the biodiversity footprint. The 
differentiated response to land use is reflected by distinct species vul
nerabilities to land use types and the importance of some regions for 
global biodiversity (Chaudhary et al., 2015). For this reason, the 
biodiversity footprint in Russia (0.5% of global total) is substantially 
smaller than that of Madagascar (5.9% of global total), even though the 
amount of land use is higher in Russia (4.9% of global total vs 0.7% for 
Madagascar) (SI13). Generally, biodiversity impacts per area land use 
are highest in tropical regions and especially in islands due to higher 
species richness and numbers of endemic species, and highlights the 
importance of where imported products are sourced (Chaudhary and 
Kastner, 2016; Chaudhary and Brooks, 2017). The origin country of the 
biodiversity footprint (see SI4) reveals some interesting trends. For 
example, the growth in footprint for the high-income region observed in 
Fig. 1 can largely be traced back to an increase in footprints sourced 
from low-income countries. Looking at the trends for the high-income 
region’s footprint originating in Indonesia, Malaysia, Philippines, and 
Papua New Guinea we see that in 2005, 17.5% of the high-region’s 
biodiversity footprint can be traced back to these four countries. The 
equivalent share was 14.6% in 1995, and 10.2% in 2013. In addition to 
being highly relevant for outsourcing of biodiversity footprint, it is a 
highly plausible explanation for the differing income elasticities of 
biodiversity footprint observed for the high-income region using 
2005–2015 data (Table 1) compared to using 1995–2004 data (SI5). For 
1995–2004 the origins of the imports are causing the increase in 
biodiversity footprint in the high-income group (Fig. 1). We see a 
distinct break in trends in the high-income group where the location of 
imported land is driving biodiversity loss up until 2005, while income is 
the main driver after 2005. 

In SI4 we trace the footprint sourced from the four countries 
(Indonesia, Malaysia, Philippines, and Papua New Guinea) to the high- 

income region (sheet name: driversFootprint) to the underlying bilateral 
trade data (sheet name: driversTrade), on a detailed sectoral level (the 
200 EXIOBASE sectors). This exercise is a test of validity of our results. 
Trends in footprints should follow the trends in trade for products that 
use resources (in our case land area) in the source country and end up as 
final consumption in the destination country. This is not necessarily the 
case for goods and services that require land use in the source country, 
that is then exported to an intermediate country, goes through pro
cessing, and end up as a final good ultimately consumed in the desti
nation country. Particularly “Products of forestry, logging and related 
services (02)” and “Construction work (45)” show trends of increasing 
share of the high-income region’s total footprint originating in these 
four countries. While similar trends are clearly found in the bilateral 
trade data for the four countries for “Products of forestry, logging and 
related services (02)”, the trend is less distinct for “Construction work 
(45)” in the bilateral trade data, but this would largely be due to 
“Construction work (45)” being an (non-traded) item of final con
sumption that has significant trade of forestry products in its supply- 
chain. For other products, the footprint data show such trends for only 
certain of the four countries. For example, “Oil seeds” originating in 
Malaysia clearly show a peak in 2005 for both bilateral trade and 
footprints. The same is true for “Food products nec” from the Philippines 
in 2001. On the other hand, some of the services, such as “Health and 
social work services (85)” that show a peak in footprints from all four 
countries in 2002, do not show the same trends in the bilateral trade 
data. These examples show that for products that have a short supply 
chain from use of land to consumption, trends in the bilateral trade data 
and footprint data correlate well, while for goods with a longer supply 
chain, the input-output approach is needed to capture the indirect ef
fects of traded goods. 

In SI13 we show the effect of using biodiversity footprint as a metric 
compared to land use when applying a MRIO with high regional detail, 
such as EXIOBASE 3rx. The discussion on pressure footprint (e.g. land 
use) vs. impact footprint (e.g. biodiversity loss) is well covered by Ver
ones et al. (2017b) who use Eora coupled with LC-IMPACT to calculate 
biodiversity footprints. For country-specific results, they find that Brazil 
has a relatively higher impact footprint compared to pressure footprint, 
while the opposite is true for countries such as China and Russia. 
Comparing the land use share and the biodiversity footprint share out of 
the global total, we find similar trends for these countries, although less 
distinct for Brazil, and more distinct for Russia. There are several dif
ferences in approaches between our work and the work of Verones et al. 
(2017b). Although Eora and EXIOBASE 3rx are similar in terms of a 
detailed regional coverage which make them suitable for analyses where 
spatial detail is important, such as for biodiversity, the difference in 
approaches highlight the difference between the databases and show 
how they suit different purposes. Firstly, Eora includes other pressures, 
such as GHG emissions and water that are currently not available for 
EXIOBASE 3rx. Secondly, because of a consistent sectoral classification 
in EXIOBASE 3rx across countries (compared to a variable sector clas
sification for Eora), EXIOBASE 3rx is better suited for analyses on con
sumption categories, such as studying the per capita biodiversity 
footprint drivers. 

In terms of policy implications of our results, there are many aspects 
that could, and should, be taken up in policy design. Firstly, at the 
highest level, we show a strong relationship between affluence and 
biodiversity impact for high-income countries. Thus, policy design must 
effectively engage with this driver. Either we need a systematic shift of 
our view on affluence and its link to consumption (Wiedmann et al., 
2020), or there needs to be significant efforts to offset the effect. As most 
biodiversity loss occurs in low to middle income countries, there are 
obvious implications for consideration of aid directed at biodiversity 
preservation, as well as the instigation of trade-related measures to 
protect or value the biodiversity. In some ways, none of these insights 
are new, although our results do highlight the importance that trade can 
have, especially in driving the spike in the biodiversity footprint of high- 
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income countries during the trade expansion of the 1990’s and early 
2000’s. Considering the increase in deforestation in places like Brazil 
linked to the import of soy and beef cattle products into high income 
countries (Pendrill et al., 2019), there is clearly a stronger need for 
addressing these trade flows and “hidden impacts”. Lessons from inter
national efforts on climate change mitigation may be relevant here, 
including the imposition of border tax adjustments, more recently pro
posed to be in relation to mitigation efforts, membership of “climate 
clubs”, and imposition of effective costing of the externality of climate 
impacts. For biodiversity, similar efforts could be done to offset the price 
signal of importing cheap goods from regions that do not adequately 
price in ecosystem protection. The product group results in our analysis 
reaffirm the importance of the focus on food and forestry products – 
areas where price signals are likely to have significant impacts in the 
global trade market. Alternative options may consider focusing on in
formation to drive changes in consumer choices. Labelling systems here 
have perhaps had mixed levels of success. Certification schemes are now 
common, and ideally would consider the full life-cycle impacts of 
products being labelled, whilst quantitative measures geared towards 
influencing consumer choice through things like biodiversity (or car
bon) footprint indicators on products has arguably had less success. One 
would hope that without blaming consumers, the availability of this type 
of information will better enable consumers in high income countries to 
consider the totality and connection of their choices to global environ
mental issues. 

4.1. Limitations 

Due to low data availability, particularly for developing countries 
and small economies, the supply- and use-tables in EXIOBASE 3rx for 
several of these countries have been estimated using generic coefficients 
(originally from the RoW regions the country belongs to in EXIOBASE 3, 
see Bjelle et al. (2020) and Stadler et al. (2018) for details on compila
tion of the databases). The economic structures of these countries are 
then updated with available raw data on product output (mainly agri
cultural and energy production) and trade, and then re-balanced based 
on country-specific macroeconomic data. This approach is common in 
the MRIO field, as representing the countries is important to ensure 
supply chains are not cut off (Stadler et al., 2014). Representing coun
tries individually is particularly important for biodiversity loss analyses 
because of the high share of global land embodied in the RoW regions 
(Stadler et al., 2014). 

However, there is a high variance in the per capita footprints for 
several of the top-ranking countries. In SI8 the biodiversity footprints 
per capita for all countries and years are shown as boxplots. Unsur
prisingly, island states (particularly in the middle- and low-income 
groups) such as New Caledonia, Vanuatu, Samoa, Dominica, Solomon 
Islands, Sao Tome and Principe, and Madagascar are showing large 
variations in per capita footprint. Tropical island states are expected to 
have a larger spread in per capita footprint because of high character
ization factor values in LC-IMPACT but are in addition among the 
countries with poor raw data availability in EXIOBASE 3rx. Generally, 
the uncertainty in MRIO studies becomes higher as the scope becomes 
more narrow (Moran et al., 2016), which applies to both the sectoral, 
and regional level in our analysis. 

The LC-IMPACT characterization factors are designed to reflect im
pacts of marginal changes in land use and are not balanced at the global 
scale. Hence, when used in combination with global land use data, the 
sum of the country footprints may be higher than expected (see SI4). The 
results represent relative differences between countries and over time, 
but the sum of the country-based impacts does not add up to the actual 
number of global species extinctions. However, this is an issue of scaling 
due to much larger land use area included in EXIOBASE 3rx than in LC- 
IMPACT. Our values are in the same order of magnitude as Marquardt 
et al. (2019) who used a similar approach. 

On the other hand, intensification levels of land use are likely to be a 

source of uncertainty in our results (Marques et al., 2019; Marques et al., 
2017). The land area in EXIOBASE 3rx includes area that is used less 
intensively and should possibly be assigned a lower PDF value than what 
we apply (see the supporting information of Bjelle et al. (2020) for an 
overview of land use types in EXIOABSE 3rx). In this case, the PDF 
values applied will vary based on intensification level of land use, which 
will have distributional impacts that we do not account for. Ensuring 
matching of land use area and intensification level of land use in MRIOs, 
such as EXIOBASE 3rx, and biodiversity loss databases, such as LC- 
IMPACT, is a future improvement that is critical for sound analyses 
using MRIOs for studying biodiversity impacts of consumption. 
Furthermore, the characterization factors do not comprehensively 
differentiate between land use intensities, potentially missing increased 
impacts due to increasing land use efficiencies (and related intensities). 
In addition, there are factors that we do not include that are likely to 
influence biodiversity footprint results, such as the introduction of 
invasive species (Otero et al., 2020) and overexploitation (Marques 
et al., 2017). Although land use is the most important stressor for 
biodiversity, other stressors we do not include, such as GHG emissions, 
can constitute a significant portion of the biodiversity footprint (Wilting 
et al., 2017). Considering multiple stresses together (Oliver and Mor
ecroft, 2014; Haberl et al., 2009) is vital since species extinctions are 
rarely (though occasionally) caused by a single stressor (Verones et al., 
2017b). 

Based on the discussion above we suggest three future improvements 
to increase robustness of biodiversity impact analyses using MRIO. First, 
a high regional detail in MRIOs to account for highly differing charac
terization factors in different ecoregions. Second, to account for all 
stressors including land use, GHG emissions, and water use. Third, to 
align the land use data used in MRIOs to equivalent data in biodiversity 
impact databases such as LC-IMPACT. This includes accounting for 
different land use intensities and to ensure that total land areas match. 

5. Conclusion 

In this work we investigate the changes in drivers of biodiversity loss 
by coupling biodiversity loss characterization factors of land use from 
LC-IMPACT with consumption data from the multiregional input-output 
database EXIOBASE 3rx. We assess the country total biodiversity foot
print, the per capita biodiversity footprint, and the average consumer’s 
footprint over the time period 1995–2015, using a measure of the 
potentially disappeared fractions of species (PDF). Overall, there is a 
6–7% increase in global biodiversity footprint measured in PDF over the 
time period, which gives a relatively strong decoupling of biodiversity 
footprint from growth in affluence. Grouping countries into three 
quantiles according to average income per capita, we find the decou
pling is strongest in the low-income group and weaker in the high- 
income group for biodiversity footprints. The per capita footprints per 
consumption category show overall decreased trends due to decreasing 
footprint intensity per monetary unit, while food consumption is the 
largest component of the footprint as a result of a high footprint intensity 
per monetary unit. The footprint share caused by consumption of 
manufactured products is increasing rapidly in wealthier countries. The 
panel regression analysis shows that the average consumers in the 
richest countries have an income elasticity of biodiversity footprint 
above unity. High elasticities particularly for manufactured products, 
clothing and footwear, and shelter in the high-income region give in
dications about areas of focus for mitigation strategies targeted at con
sumers in high-income countries. A peak in the high-income group’s 
biodiversity footprint in the early 2000s was caused by land embodied in 
imports rather than increasing income, showing the importance of 
addressing trade in policy design. 
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a b s t r a c t

An increasing number of studies show that efficiency improvements alone will not be sufficient to attain
the substantial emission reductions needed to mitigate global warming to a target of 2 �C. Consumption
side changes are likely to be needed to achieve sufficient emission reductions. The United Nations
emphasize the importance of developed countries taking the lead in lowering emissions to achieve the
sustainable development goals. This paper assess to what extent Norwegian households can lower their
carbon footprint consistent with territorial emission reductions towards the 2 �C target of global
warming through implementing a set of behavioral actions. We evaluate the efficacy of the set of actions
both initially and after considering rebound effects. A multiregional environmentally extended input-
output database is linked with the Norwegian consumer expenditure survey to analyze both average
and marginal expenditure per unit of increased income. Further, linear programming is applied to
examine the changes needed by households to reach different emission reduction targets. We find that
households implementing the full set of actions without re-spending can obtain a 58% decrease in their
carbon footprint. When accounting for the effect of re-spending, this reduction drops to 24e35%, which
is not within the requirements of the 2 �C target. The optimization analysis suggests households can
achieve reductions up to 45% by restricting re-spending to specific goods and services. This indicates that
curbing the rebound effect is key to achieving real reductions in household carbon footprints. We show
that changing consumption patterns can significantly contribute to lowering anthropogenic greenhouse
gas emissions without compromising the level of economic activity.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Intergovernmental Panel on Climate Change report of 2014
states that a 40e70% reduction in anthropogenic GHG emissions
between 2010 and 2050 are needed to limit global warming to 2 �C
above pre-industrial levels (Pachauri et al., 2014). The recent Paris
Agreement calls for signatories to pursue efforts towards the even
more ambitious goal of 1.5 �C to significantly reduce the risks and
impacts of climate change. Recent studies show that it is becoming
increasingly difficult to attain these goals through technical solu-
tions alone (van Sluisveld et al., 2016). Historically, technological
improvements have not outweighed the growth in impacts due to
increased consumption (Wood, 2009). This underlines the need for
a broader set of mitigation options, including on the consumption
side (Davis and Caldeira, 2010).

A key challenge to limiting anthropogenic GHG emissions is to
combine eco-efficiency on the production side with consumer ef-
ficiency on the consumption side (Throne-Holst et al., 2007). The
12. Sustainable development goal of the United Nations “ensure
sustainable consumption and production patterns” makes the link
explicit (United Nations, 2015). Optimal benefits are historically not
achieved because the environmental gains from cleaner production
(efficiency improvements and innovations) are offset by demand
side aspects such as population growth and increased consumption
and standards of living (Clark, 2007). Little agreement on strategies
to approach sustainable consumption, such as focusing on eco-
efficiency versus sufficiency measures and greening of markets
versus awareness raising have further delayed progress in sus-
tainable development (Mont and Plepys, 2008). Strategies to realize
this potential includes “reasonable” consumption through chang-
ing consumption patterns complemented by “reasonable” pro-
duction strategies (Kronenberg, 2007) and interfering more with
consumer choices and markets, instead of a pure focus on greening* Corresponding author.
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production and products (Tukker et al., 2008).
Consumers have two options to reduce consumption-driven

greenhouse gas (GHG) emissions. The first is to reduce overall
consumption, which several studies find to be an important step in
climate change mitigation (Garnaut, 2008; Ivanova et al., 2016;
Stern, 2007), but which often has negative effects on economic
growth (Silva Simas et al., 2017). The second option is to shift the
pattern of consumption towards goods and services that are less
GHG emission intensive (Throne-Holst et al., 2007). Some studies
find that the contribution to climate mitigation of such changes in
consumption patterns can be significant. Gardner and Stern (2008)
found energy savings in the range of 30e58% studying the impacts
of lifestyle change. Druckman and Jackson (2010) report 37% lower
GHG emissions in a reduced consumption scenario, while
Alfredsson (2004) found a 30% reduction in CO2 by adopting a
“green” consumption pattern.

However, it is often not realistic to consider lifestyle changes
without regarding impacts on the household budget. If households
for example reduce their car travel to lower their environmental
impact, this will both reduce costs and GHG emissions. However,
rebounds occur when consumers re-spend1 this saved money from
driving less on a vacation by airplane to a faraway destination. This
produces additional GHG emissions that offset the initial emission
reductions. This mechanism is known as the rebound effect, first
described by Jevons (1866) and later by Saunders (1992) and the
Khazzoom-Brookes Postulate which states that increased energy
efficiency leads to increased energy consumption. The rebound
effect has been seen in practice in car-free households in Vienna
(Ornetzeder et al., 2008).

Rebound effects can arise either from efficiency improvements
that make a good or service cheaper or from changing the pattern
of consumption leading to lower costs, known as sufficiency stra-
tegies. There are three main types of rebound effects; direct (re-
spending on the same good or service as the one where money is
saved), indirect (re-spending on other goods and services) and
various macroeconomic effects (how the effect of the efficiency
improvement or changed consumption distributes throughout the
economy) (Greening et al., 2000).

Since Jevons (1866), researchers have known that efficiency

improvements are subject to rebound effects. However, recent
studies have shown that sufficiency strategies also are subject to
rebound effects (Figge et al., 2014). In the discussions of a transition
to a circular economy, overcoming rebound effects of efficiency and
sufficiency strategies is pointed out as a key challenge (Ghisellini
et al., 2016). If rebound effects are not overcome, the last resort is
to reduce economic activity on the macro level (Figge et al., 2014).

Previous rebound effect studies often analyze the impacts of one
or a few behavioral actions, rather than lifestyle changes. Grabs
(2015) found GHG emission rebound effects of 49% from changing
to a vegetarian diet. Briceno et al. (2005) found indirect rebound
effects of 42e49% from car-sharing schemes. Chitnis et al. (2013)
found direct and indirect rebound effects in the range of 5e15%
from energy efficiency improvements by UK households. Font
Vivanco et al. (2014) found rebound effects in the range of 3e5%
when changing from a conventional car to a plug-in hybrid electric
passenger car. Chitnis and Sorrell (2015) found combined direct and
indirect rebound effects of energy efficiency improvements by UK
households to be 41%, 48% and 78% for measures involving do-
mestic gas use, electricity use and vehicle fuel use respectively.

Studies on rebound effects from complete lifestyle changes are
less common. Chitnis et al. (2014) found combined direct and in-
direct rebound effects of 15e35% for different combinations of
household actions. Rebound effects were lowest for measures
affecting domestic energy use and largest for reducing food waste.
Druckman et al. (2011) found combined indirect and direct rebound
effects from three efficiency measures to be 34%, which dropped to
12% when restricting re-spending to goods and services with low
GHG intensities. Alfredsson (2004) found CO2 rebound effects of
238% for “green” food consumption, 12% for “green” travel and 19%
for “green” housing. An overall “green” consumption pattern
resulted in 14% rebound using a “green” re-spending scenario.
Murray (2013) found effects in the range of 9e12% for combined
sufficiency measures concerning vehicle fuel and household
electricity.

This paper investigates consumption side changes as a com-
plementary strategy to efforts to decarbonize the production side to
achieve sufficient emission reductions. We assess to what extent
households can contribute to CF (carbon footprint) reductions on
the scale of what is needed to keep to the 2 �C target of global
warming. The 2 �C target is translated to a required per-capita
emissions reduction of 40% for Norway (Norwegian Ministry of
Climate and Environment, 2015). An equivalent per-capita reduc-
tion from the consumption side is then taken (to cover the fact that
a large proportion of Norway's CF is embodied in imports). A set of
actions is suggested that reduce GHG emissions in line with this
target. Only consumption side changes are considered here,
whereas (as discussed above), these will need to complement
production side changes.We build on existingwork as well as novel
linear programming approaches to develop a framework to inves-
tigate rebound effects of different scenarios of fully re-spending the
savings (Section 2). We explore differences between average and
marginal spending patterns, as well as a constrained “green”
spending pattern. We then calculate the possible reduction in
household CF when including rebound effects and relate results to
methodological choices of the analysis (Sections 3 and 4), before
concluding and assessing the implications of the results in the final
section.

2. Methods

2.1. Norwegian carbon footprints

The CF is calculated using the input-output framework devel-
oped by Wassily Leontief in the 1930s (Leontief, 1936). A basic

Abbreviations

APP Absolute purchasing power
CF Carbon footprint
COICOP Classification of Individual Consumption According

to Purpose
GHG Greenhouse gas
GWP Global warming potential
ICEV Internal combustion engine vehicle
IPCC Intergovernmental Panel on Climate Change
MDF Medium-density fiberboard
MPC Marginal propensity to consume
MRIO Multiregional input-output
NOK Norwegian krone
pkm Passenger-kilometer
RPP Relative purchasing power
SCP Sustainable consumption and production

1 Full re-spending in this paper relates to first implementing a behavior that saves
money, and then spending an equivalent amount of money on one or several
alternative goods or services.
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input-output model consists of a system of linear equations, where
each equation describes the distribution of an industry's product
throughout the economy. It considers flows of products from in-
dustrial sectors (producers) to other sectors (consumers), and thus
describes the composition of inputs required by a particular in-
dustry to produce its output (Miller and Blair, 2009). For a deriva-
tion of the input-output framework, see S2. The framework has
been applied extensively to looking at CFs of domestic consumers
(Wood and Dey, 2009).

Total (directþ indirect) emissions per unit of expenditure, called
emission multipliers, were obtained using the multiregional envi-
ronmentally extended input-output database EXIOBASEv2, which
includes information on 48 regions and 200 products for the
reference year 2007 (Wood et al., 2015). The database provides high
detail on greenhouse gas emission intensive products (Wood et al.,
2014). All major forms of greenhouse gas emissions (CO2, CH4, N2O
and SF6 using IPCC emission factors (Solomon et al., 2007)) are
included. EXIOBASE provides emission estimates for each sector in
each region as well as for direct emissions by households. The
number of Norwegian households was obtained from Statistics
Norway (2014).

In this work we further utilize spending pattern data by con-
sumer group from the Norwegian Consumer Expenditure Survey of
2012 (Statistics Norway, 2013). Both handling of under-reporting
and conversion of the data from COICOP (Classification of Individ-
ual Consumption According to Purpose) classification to the
EXIOBASEv2 classification and pricing was dealt with using the
framework of Steen-Olsen et al. (2016).

2.2. Cost and emission savings of household actions

After screening the Norwegian household CF, we assess the GHG
reduction potential and the direct economic impacts of 34 house-
hold actions. The base scenario is the average Norwegian house-
hold's current pattern of consumption. A literature survey is used to
obtain the needed data on each action in sufficient detail. GHG
emissions and direct economic impacts of the actions are calculated
by comparing a current type of consumption behavior to an envi-
ronmentally better performing alternative, before scaling up to
yearly savings per household.Where the literature presents relative
savings from actions, absolute savings are calculated based on the
current average consumption in EXIOBASEv2. The 34 actions are
distributed among seven sectors of household consumption:
transport, shelter, food, clothing, furniture, paper and plastic (see
S1 for detailed calculations and data sources). Consumer price
indices and exchange rate data (Statistics Norway, 2015) are used to
convert to 2007 costs in Norwegian kroner2 (NOK), and further to
basic prices for later connection to the input-output modelling in
the rebound framework (S2 and Section 2.4).

2.3. Adjusting for double counting

Since some of the actions cover the same household activities,
the degree to which actions overlap must be evaluated to deter-
mine the cumulative effects of implementing several actions
simultaneously. This potential double counting is accounted for by
introducing an actions-activity matrix (S3). In this matrix, we for
example distribute travels within a specific distance range among
six transport modes to cover the total yearly distance traveled. Net
savings in emissions and costs are multiplied by the number of
units available for each activity to obtain the total cost and emission
reduction structure of that combination of actions. The actions-

activity matrix serves as the basis for further calculations, but it
enables several other scenarios.

2.4. Rebound effect framework

The rebound effect framework builds on the assessment of the
Norwegian household footprint, but integrates the household ac-
tions and the rebound effects. We look purely at Norwegian con-
sumption irrespective of region of origin by aggregating across
exporting regions and dividing by product level expenditure to give
weighted emission multipliers per unit demand for the 200 prod-
ucts detailed in EXIOBASE (see S2 in supporting information).

The relative environmental rebound effect (Druckman et al.,
2011) is defined as:

rebound effect ¼ ðpotential savings� actual savingsÞ
Potential savings

A redefinition of this is:
Dh ¼ Expected reduction in GHG emissions.
Dg ¼ GHG emissions associated with re-spending.
This gives the actual emission reduction: Dh� Dg.
The rebound effect ðreÞ is then

re ¼ Dh� ðDh� DgÞ
Dh

¼ Dg
Dh

(1)

where Dh is determined based on literature findings (S1 and Sec-
tion 2.2).

For Dg direct emissions from households ðfhhÞ are added to the
weighted multiregional emission multipliers for Norwegian con-
sumption from EXIOBASEv2 (see S2 in supporting information) to
give emission multipliers mtot that include both direct and indirect
emissions per unit of expenditure.

Full re-spending of the saved money according to different
scenarios ðyreÞ is then:

yre ¼
X34
1

ðysav*B*qÞ*ysp (2)

ysav is the direct financial savings from the 34 actions not adjusted
for double counting.B is the matrix adjusting for double counting.q
is the vector of total number of units per action.ysp is the scenario of
re-spending.

Re-added GHG emissions ðDgÞ due to re-spending are then
given as:

Dg ¼ mtot*yre (3)

Finally, Dg from Eq. (3) is inserted into Eq. (1) to calculate the
rebound effect

re ¼ Dg
Dh

¼ mtot*yre
Dh

(4)

2.5. Spending patterns

After finding rebound effects using the framework above, the
next step is to look into the development of the re-spending sce-
narios ðyreÞ to assess the impact of re-spending on rebound effects.
We examine three scenarios: average, marginal and green re-
spending. While the average and marginal approaches are com-
mon in the literature, the green scenario is developed for this study.2 In 2007, 1 V was equivalent to around 8.02 NOK.
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2.5.1. Average
The average spending pattern is the shares of total consumption

for each product group converted to the EXIOBASE classification. All
savings are re-spent across products in the same proportions as the
current average household expenditure.

2.5.2. Marginal
In the marginal scenario, it is assumed that households change

their spending pattern towards that of higher income groups as
income increases.

There are multiple approaches to calculating marginal spending
patterns (Font Vivanco et al., 2014). Our approach builds on Thiesen
et al. (2008) who comparted consumption patterns across income
brackets using cross-sectional data. We obtain detailed data on
household consumption patterns (COICOP Level 2 classification)
broken down into six income brackets consisting of income deciles
1, 2-3, 4-5, 6-7, 8-9, and 10 (Statistics Norway, 2013). This is used to
calculate a weighted average distribution of an incremental in-
crease in income.

The marginal propensity to consume ðMPCÞ from one income
group to the adjacent one is found as:

MPCn;i ¼
vQ i

vi
¼ Q inþ1

� Q in
inþ1 � in

(5)

In Eq. (5), in is the average income of income group n, while Q i is
demand for product group i. This gives the marginal propensity to
consume product i when moving from income group n to income
group nþ 1.

Next, the relative purchasing power of each of the six income
groups is calculated:

rppn ¼ appnP6
i¼1appi

(6)

appn is the absolute purchasing power of income group n.rppn is
the relative purchasing power of income group n.

The weighted relative purchasing power ðrppwnÞ when moving
from one income group to the adjacent one is then:

rppwn ¼ 0:5*rppn þ 0:5*rppnþ1 (7)

Eq. (7) is used for all income groups, except the lowest and
highest which are assigned a weighting factor of one as these in-
come groups are counted only once.

Finally, the marginal spending pattern is given as:

mspi ¼
X5
i¼1

�
MPCn;i*rppwn

�
(8)

where mspi is the marginal spending on product group i.

2.5.3. Green
We further develop the green spending pattern based on the

marginal spending pattern. The idea is that environmentally aware
households avoid re-spending on goods and services with high
emission multipliers. Selected goods and services eliminated from
additional spending in this pattern have a combination of large
GHG intensity and a large share of total consumption (selected
commodities in S4). Shares of the deducted product groups are
reallocated to the remaining groups as:

aiG ¼ aiM þ
 

aiM
1�Pd

j¼1ajM

!
*
Xd
j¼1

ajM (9)

aiG is the relative share of product i in the green consumption
vector. aiM is the relative share of product i in the marginal con-
sumption vector. ajM is the relative share of product j (deducted
product) in the marginal consumption vector. d is the number of
deducted product groups.

2.6. Optimizing pattern of re-spending

We introduce optimization methods in the analysis to investi-
gate the potential of altering the pattern of re-spending. This en-
ables studying the degree towhich households must adapt their re-
spending to achieve different reductions in their CF. Linear pro-
gramming finds an optimal solution that minimizes or maximizes
an objective function, subject to one or several linear constraints.
These constraints can be limitations on materials or factor re-
sources, such as capital or labor. Several multiregional input-output
(MRIO) studies within the input-output field use linear program-
ming techniques, but usually employed for choice of technology.
Examples are the World Trade Model that determines world prices,
scarcity rents, and international trade flows based on comparative
advantage in a world economy, described in Duchin (2005) and
further developed to include bilateral trade in Hammer Strømman
and Duchin (2006). The World Trade Model with Bilateral Trade
builds on the logic of comparative advantage (Duchin and Levine,
2015). This often leads to complete specialization in production
as the optimal solution, which is considered an important limita-
tion of linear programming (Ten Raa and Shestalova, 2015).

In comparison to that work, we are interested in seeing whether
it is possible to look at linear programming from a consumption
basis. Whilst earlier works study possibilities for alternate tech-
nologies, or substitution at the industry level, this analysis is purely
limited to what households can do in terms of spending patterns.
As such, we are interested in what mixture of spending will yield
optimal environmental effects. Whilst the realization of
an «optimal spending pattern» is subject to many constraints about
basic versus discretionary spending, as well as localized re-
quirements by households, the goal is to use linear programming to
inform the scale and rate of possible change. In the setup of the
linear program (S6.1), we start with the marginal re-spending
scenario as a default and then impose stepwise restrictions on
the minimum overall CF savings tolerated. The objective function is
set to minimize the change in re-spending compared to the default.

3. Results

To identify areas of large potential reductions in the CF of the
average Norwegian household, we look into updating the work of
Steen-Olsen et al. (2016) who ranked the goods and services ac-
cording to largest consumption share, GHG emissions, and emis-
sion multipliers. Consumption data is from the Norwegian
Consumer Survey of 2012 (Statistics Norway, 2013), while emission
multipliers and GHG emissions are calculated by Steen-Olsen et al.
(2016).

Several of the consumption groups with the highest emission
multipliers include fuel or passenger transport consumption. A
combination of high emission multiplier and large share of total
consumption results in a large CF. However, some consumption
with relative high expenditure shares have lower than expected
CFs. An example is electricity that accounts for 3% of total spending,
but is not included in the top 10 CF groups. This is likely due to a low
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emissionmultiplier, since electricity consumed in Norway is largely
hydropower-based.

3.1. Household actions

Table 2 shows the 34 actions chosen to reduce the household CF,
as well as corresponding GHG emission and cost savings potential
from implementing each action individually (for calculations see
S1). In Table 2 savings are shown for actions individually, dis-
regarding potential double counting issues.

Comparing Table 2 with Table 1, several interesting trends
appear. Large CF reductions for the transport actions are as ex-
pected based on large consumption shares and large emission
multipliers for transport related consumption. Food and shelter
actions also result in large CF reductions, but the reduction po-
tential of shelter actions is more a result of large share of total
expenditure than that of the food actions. Garments have in Table 1
the fifth highest CF. However, most of the clothing actions do not
contribute to large CF reductions, indicating that the CF of garments
is a result of a high household budget share. Reducing business
flights (one per month) results in the largest cost reduction, how-
ever it ranks fourth in largest GHG emission savings.

3.2. Spending patterns

Comparing the three approaches to calculating spending pat-
terns (Table 3) indicates how Norwegian households spend money
when income rises (average to marginal) and how households who

which to lower their CF could spend their money (marginal/average
to green).

The decrease in spending on particularly shelter (category 04)
and the increase in transport (category 07) from the average to the
marginal scenario indicates a low and a high income elasticity of
demand respectively for these consumption groups. The large
shares on miscellaneous goods and services and food in the green
scenario are due to constraining re-expenditure on products within
the other more environmentally impacting categories. The
miscellaneous goods and services category contains amongst
others insurance, financial services, personal care and social pro-
tection (United Nations Statistics Division, 2016).

3.3. Rebound effects for individual actions

The GHG emission savings including rebound effect in absolute
values (Table 2) are given as ðð1� % reÞ*original GHG savings Þ. The
green spending pattern achieves the best results in reducing GHG
emissions when including rebound. Actions with negative rebound
effects are a result of a cost increase of implementing the action.
Hertwich (2005) calls this a spillover of environmental behavior,
where environmentally aware households implement other types
of beneficial behavior, such as spending additional income on more
expensive organic food. Actions that backfire (over 100% rebound)
do so because of a high ratio of saved expenditures to reduced
emissions. However, these in general have low initial GHG emission
savings, resulting in small effects in absolute terms.

The set of actions includes both demand shifts (e.g. buying an

Table 1
Top 10 products groups by emission multipliers, total spending and carbon footprint for Norwegian household consumption.

Top 10 emission multipliers COICOP level 3 (2007)

Product Group Top 10 emission multipliers (gCO2-eq/NOK)

0734 Passenger transport by sea and inland waterway 486
0722 Fuels and lubricants for personal transport equipment 333
0453 Liquid fuels 223
0454 Solid fuels 161
0733 Passenger transport by air 118
0611 Pharmaceutical products 113
0613 Therapeutic appliances and equipment 95
0713 Bicycles 95
0612 Other medical products 90
0431 Materials for the maintenance and repair of the dwelling 87

Top 10 household spending COICOP level 3 (2007)

Product Group Percent of total

0421 Imputed rentals of owner-occupiers 12%
0711 Motor Cars 8%
0431 Materials for the maintenance and repair of the dwelling 4%
0312 Garments 4%
0451 Electricity 3%
0722 Fuels and lubricants for personal transport equipment 3%
1111 Restaurants, caf�es and the like 2%
0112 Meat 2%
0411 Actual rentals paid by tenants 2%
0511 Furniture and furnishings 2%

Top 10 CF COICOP level 3 (2007)

Product Group Percent of total

0722 Fuels and lubricants for personal transport equipment 19%
0711 Motor Cars 8%
0431 Materials for the maintenance and repair of the dwelling 7%
0421 Imputed rentals of owner-occupiers 5%
0312 Garments 3%
0960 Package holidays 2%
0734 Passenger transport by sea and inland waterway 2%
0112 Meat 2%
0511 Furniture and furnishings 2%
0611 Pharmaceutical products 2%
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electric car) and reduced consumption (e.g. reducing indoor tem-
perature by 1 �C). The aim is to exclude technological improve-
ments not currently available to the consumer. Possible exceptions
to this are some actions within the clothing sector that require
changes on the production side, such as eco-efficiency across the
supply chain.

3.4. Cumulative rebound effects

Relative and absolute CF reductions for the three re-spending
scenarios are found using the actions-activity matrix that adjusts

for double counting (Table 4).
Transport, shelter and food actions result in the largest CF re-

ductions. Implementing the combined transport actions have large
rebound in all re-spending scenarios because of large financial cost
reductions. There is no rebound of the combined shelter actions,
since financial costs add to close to zero. CF reductions of the
furniture actions are enhanced since these come with a cost
increase.

The decrease in CF reduction from before re-spending (58%) to
after re-spending (24e35%) underlines the importance of including
rebound effects. The goal of reducing anthropogenic GHG

Table 2
Household actions with according GHG emission and financial savings from implementing each action individually including rebound effects of different spending pattern
scenarios (discussed in Section 3.3).

Household Actions Savings in NOK (2007 Prices) GHG savings (kg CO2-eq) Rebound Effects

Marginal Average Green

Switch to budget electric car 32,885 3685 62% 48% 42%
Switch to top of the line electric car �23,233 2760 �58% �45% �40%
No trips by car under 3 km 688 150 32% 25% 22%
Only bus transport 14,312 4863 20% 16% 14%
Car-pooling for work under 10 km 474 103 32% 25% 22%
Only train transport 14,312 4973 20% 15% 14%
Walk instead of train (9.4 km) 12,030 183 456% 353% 311%
Reduce business flights (one per month) 71,344 3112 159% 123% 108%
Eliminate long-distance flight for vacation 8202 2629 22% 17% 15%

Reducing indoor temperature by 1 �C 472 92 35% 27% 24%
Space and water heating 920 1333 5% 4% 3%
Appliances and other �843 174 �34% �26% �23%

Green Diet 11,853 1854 38% 29% 26%
Eliminating food waste 17,384 1020 100% 78% 68%
Organic Green diet �23,706 2039 �68% �53% �47%
Other measures (organic, local, composting) �15,804 695 �134% �103% �91%

Eco-efficiency across supply chain 0 57 0% 0% 0%
Design for durability �1649 107 �90% �70% �62%
Market shift to more synthetic fibers 330 6 348% 269% 237%
Clean clothing less 660 36 107% 83% 73%
Wash at lower temperature 660 20 199% 154% 136%
Increase size of washing and drying loads 330 20 99% 77% 68%
Use the tumble dryer less 660 15 253% 196% 173%
Dispose less - reuse more 989 10 597% 461% 407%
Start closed loop recycling of synthetic fibers 0 13 0% 0% 0%
Dispose less - recycle more 0 7 0% 0% 0%
Reduce clothing purchases by 20% 6597 279 139% 108% 95%

Average of changing 6 pieces of furniture �3070 96 �223% �172% �152%
Increase lifetime by 20% 2333 116 119% 92% 81%
Buy furniture with 20% recycled MDF �1166 73 �94% �73% �64%

Eliminating unsolicited mail 0 39 0% 0% 0%
Reduced printing 246 17 104% 80% 71%
e-papers and e-books 1970 26 525% 405% 358%

Reducing plastic waste by 30% 191 14 95% 73% 65%

Table 3
Comparing spending patterns (COICOP Level 1 classification).

Product Groups Average Marginal Green

01 Food and non-alcoholic beverages 12% 11% 18%
02 Alcoholic beverages and tobacco 3% 1% 1%
03 Clothing and footwear 5% 8% 1%
04 Housing, water, electricity, gas and other fuels 31% 24% 9%
05 Furnishings, household equipment and routine household maintenance 6% 7% 11%
06 Health 3% 1% 3%
07 Transport 19% 24% 8%
08 Communication 2% 1% 3%
09 Recreation and culture 10% 11% 9%
10 Education 0% 0% 0%
11 Restaurants and hotels 4% 4% 6%
12 Miscellaneous goods and services 6% 8% 30%
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emissions by 40% (10.9 tons CO2-eq per household) is not achieved
with this set of actions when including rebound effects. However,
households can achieve further reductions through changing,
adding or eliminating actions. Such scenarios can be explored by
using optimization approaches.

3.5. Optimization of re-spending

In the final part of the assessment, we use linear programming
to explore how the rebound effect can be reduced through changes
in re-spending patterns. We impose stepwise restrictions on the
minimum overall CF savings tolerated, starting from the default
marginal re-spending pattern (24% overall CF reduction) and
moving towards the theoretical maximum (58% reduction, equal to
no re-spending) (Fig. 1). The objective is to achieve specific emis-
sion reductions while minimizing the change in the consumption
pattern. Whilst linear programming approaches give only indica-
tive results, as determined by the extent of the constraints applied,
they do allow for visualizing the scale of change required.

The results show that households can achieve up to 35e45% CF
reductions with moderate changes in their pattern of re-spending.
Strict re-spending on goods and services with low GHG intensities
for reductions above 35e45% makes the practical implementation
of this re-spending questionable. This is seen by the rapid increase
in the change in pattern of consumption for reduction targets over
40% (S6.4). The total financial savings is about 150,000 NOK, or
about 35% of total expenditures (Statistics Norway, 2013). Although
requiring careful re-spending considerations, changing only 35% of
total expenditure seems feasible.

The increased re-spending on “Housing, water, electricity, gas,
and other fuels” for large CF reductions is different from the green
spending pattern (Table 3) that showed an increase in consumption
on “Miscellaneous goods and services” and a decrease in “Housing,
water, electricity, gas, and other fuels”. However, since the linear
program's objective is to minimize change in consumption
compared to the marginal scenario, consumption will not simply
move towards consumption groups with the lowest emission
multipliers. Instead, it will choose consumption groups with a
combination of large consumption shares and low emission mul-
tipliers. A disaggregation into 25 consumption groups reveals a
heavy move towards “Shelter: Electricity” for larger CF reductions
(S6.3), which could be considered an anomaly for Norway in the
international context because of the low-carbon electricity mix.
The emission multiplier of electricity by hydro is actually the fourth
lowest of all 200 product groups for final consumption expenditure
by Norwegian households in EXIOBASEv2 (S7). A second analysis
available in the SI, that excludes the impact of margins on different
products, instead shows a shift to services rather than electricity

(S6.5). The message is the same however e there are radical shifts
in consumption patterns at around 40% reduction.

4. Discussion

Most of the scenarios in this paper show CF reductions that are
not within the minimum 40% reduction in anthropogenic GHG
emissions needed to stay within the 2 �C target of global warming.
Only scenarios of moderate to large changes in household con-
sumption show CF reductions above this. However, the potential
reductions are larger when including future efficiency improve-
ments in production and optimal collaboration between producers,
consumers and policy makers. It is also important to consider that
the household CF tells only part of the story on the demand side.
Similar large reductions in emissions related to government and
capital consumption are also required.

4.1. Re-spending

Further CF reductions can be achieved by relaxing the constraint
of total re-expenditure and including technological improvements.
Considering less than total re-spending could have negative effects
on economic growth through deferred or reduced overall con-
sumption. Deferred consumption have potential negative short-
term consequences, while reduced overall consumption can of
course, lead to recession or “de-growth”. The implications of this is
not considered in the scope of this work.

The green re-spending scenario does not consider whether the
goods and services eliminated from re-spending are basic or
discretionary. Purchasing an electric car might for example be
incompatible with eliminating re-spending on electricity from
sources such as coal, gas, and biomass and waste, unless replaced
with electricity from other sources. However, the re-spending af-
fects only 35% of total household expenditure.

4.2. Rebound effects

The large number of actions should indicate that the rebound
effects of 40e59% are less sensitive to changing, eliminating, or
adding actions. These results are, however, generally higher than
those found in other similar studies. Druckman et al. (2011) found
effects of 12e34%. However, in the 12% scenario all re-spendingwas
in the least GHG intensive category. This is a stricter re-spending
than the green re-spending scenario. Of other similar studies,
Alfredsson (2004) found rebound effects of 14% for an average re-
spending scenario, Murray (2013) found effects of 12e14% for a
marginal re-spending scenario, while Chitnis et al. (2014) found
effects of 15% from combined efficiency measures and 35% from

Table 4
Sectoral and total rebound results and GHG emission savings including rebound adjusted for double counting.

Household Actions Original GHG savings (kg CO2-eq) Rebound effect in percent

Marginal Average Green

Transport 9847 83% 64% 57%
Shelter 1383 0% 0% 0%
Food 3587 16% 13% 11%
Clothing 569 89% 69% 61%
Furniture 284 �51% �39% �35%
Paper 81 190% 147% 129%
Plastic 14 95% 73% 65%

Total of all actions combined 15,766 59% 46% 40%

Original CF of households 27,170

Reduction in CF 58% 24% 32% 35%
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combined sufficiency measures. However, in these three studies
households implement only a handful of actions, making rebound
results dependent on the choice of actions. Our results are however
comparable to those in Freire-Gonz�alez (2011) with rebound effects
of 56e65%, but that study only looks at rebound effects from energy
efficiency improvements in the use of energy in the household.

Rebound effects are primarily indirect as the scenarios include
re-spending across most goods and services. However, as re-
spending on the same good or service as that of the behavioral
action is included, a small portion of the total is direct rebound.
Disaggregating types of rebound effects is outside the scope of this
study.

Considering the validity of the different re-spending scenarios is
important. The large cost decrease of 150,000 NOK from the current
lifestyle change, justifies the use of the marginal pattern of re-
spending. If households continue on a similar consumption
pattern as before the lifestyle change, the average re-spending
could be a good choice. However, assuming that households take
CF considerations into their choice of re-spending, the green re-
spending scenario is plausible.

Large-scale implementation of the suggested lifestyle change
can drive production side changes through shifting demand. This
potential demand-shift needs attention (Alcott, 2008). The idea
behind restricting the analysis to consumption side changes is not
to ignore the modifications on the production side, but rather to
allow household changes to drive production side changes that
generate further GHG emission reductions.

4.3. Optimization

Electricity by hydro had an unrealistically large share of re-
spending found in the optimization results. The focus should
rather be to re-spend saved money on goods and services that are
both fulfilling and have low emission multipliers. Consumption
groups that could provide both environmental and personal

benefits include education services, printed matter, and recorded
media, as well as recreational, cultural, and sporting services.

Under the assumption of stable or even increased consumption
levels, households should focus their re-spending on higher quality
goods and services, such as organic food or durable electronic
products to curb the rebound effect as these goods have low
emission multipliers.

4.4. Limitations and uncertainties

Practical difficulties in implementing the suggested lifestyle
change because of considerations like infrastructure, urban versus
rural area and access to appliances and products (e.g. organic food
or special types of furniture) are likely. This is particularly relevant
for actions requiring access to specific transport modes. As such, the
current setup fits a scenario of multiple households implementing
the actions, as relatively low shares are assigned to bus and train
transport for the travel distances.

One return business flight per month per person at a first glance
seems overestimated. However, it should rather be interpreted as
an example of how frequent flying affects the household CF. The
flight distance used for this action is rather short, so one or several
long-distance flights within a year are comparable to the GHG
emissions and costs associated with multiple return business
flights. In Norway, air transport now accounts for almost half of all
work related travels (Denstadli and Rideng, 2012). Exact data on air
transport per person in Norway were scarce, but Denstadli and
Rideng (2012) suggest Norwegians travel 0.4 trips per person by
plane per month.

The optimization approach is highly stylistic in changing the
pattern of re-spending to reduce the household CF, and does not
consider household intuition of the GHG intensities of goods and
services. The objective of minimizing absolute change in con-
sumption pattern compared to the marginal scenario is quite ab-
stract. Further research could focus on measures that are more

Fig. 1. Pattern of re-spending for different CF reduction targets (COICOP level 1).
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intuitive, such as the behavioral costs associated with achieving
GHG emission reduction targets.

The purpose of the actions-activity matrix is to account for
double counting; however, complete elimination is unlikely. Dou-
ble counting related to the transport actions involving daily travel is
accounted for by setting a limit to the total distance travelled within
each distance range. Other actions are however, more entangled.
Eliminating food waste for example depends on the diet choice.
Here, the original scenario is used as a reference, but the foodwaste
will depend on the choice of diet. Buying furniture with 20%
recycled MDF (medium-density fiberboard) follows a similar
argument as it depends on the type and lifetime of the furniture.
Some actions in the clothing sector, and reading e-newspapers and
e-books are linked to the mitigation potential of “appliances and
others”. However, we believe that these instances of double
counting should not change the results significantly.

5. Conclusion

This study examines the potential CF reduction of changing
household consumption. We propose an ambitious lifestyle change
consisting of 34 behavioral actions and investigate to what extent
the average Norwegian household can achieve sufficient reductions
in their CF in line with a 2 �C target of global warming, and what
impact rebound effects will have. Implementing the lifestyle
change would imply considerable behavioral changes, but most of
these also equate to substantial financial savings. Under the
assumption that total expenditure levels stay unchanged, how
households re-spend these savings is crucial to the overall CF
reduction. The analysis includes the common average and marginal
scenarios of re-spending, implementing a green re-spending sce-
nario, as well as finding required re-spending to meet different
reduction scenarios using linear programming. An initial reduction
of 58% in household CF dropped to 24e35% for the re-spending
scenarios when including rebound effects. To lower the rebound
effect, households should eliminate re-spending on goods and
services with high GHG intensities. Given the importance of the
pattern of re-spending, the linear programming approach shows
that CF reductions of 35e45% can be achievable without massive
changes in expenditure habits. Particularly, households should
curtail re-spending on goods and services associatedwith fossil fuel
use, such as mobility, and production processes demanding heavy
use of resources, such as clothing and certain manufactured prod-
ucts. For emission reductions within the 40% official reduction
target of the Norwegian government by 2030, re-spending must
largely shift towards services associated with a low GHG intensity.

If we are to limit global warming to the 2 �C target, action is
needed now rather than later. We should not rely entirely on future
technology improvements to do the job, but complement them
with changes on the consumption side. To acquire sufficient CF
reductions before re-spending, changes are not limited to con-
sumption of products associated with high GHG intensity per unit
of expenditure. Since the ratio of the average GHG intensity asso-
ciated with the lifestyle change compared to that of the re-
spending determines the rebound effect, a comprehensive con-
sumption change will necessarily result in larger absolute rebound
than small changes. The rebound results in this study are therefore
large compared to other similar studies.

Ignoring the rebound effect is equivalent to assuming decreased
total expenditure, which could severely compromise economic
activity. This calls for a larger focus on rebound effects and factors
that determine re-spending in discussions on sustainable devel-
opment and the transition to a circular economy.

Further research on the willingness and behavioral costs of
implementing different actions that reduce CF could provide

understanding of the best ways to reduce CF on the consumption
side. Studying the effect of investment instead of total re-spending
can give useful insight to ways of curtailing the rebound effect.

Large-scale implementation of the set of actions can drive pro-
duction changes through shifting demand towards goods and ser-
vices associated with low GHG intensities. The production side can
respond to this demand shift by production of environmentally
better performing products, leading to further emission reductions.
Further studies on how lifestyle changes and production side
changes can benefit from influencing each other to lower GHG
emissions will offer increased understanding on how to achieve the
emission reductions needed to reach the 2 �C target of global
warming.
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