
RESEARCH ARTICLE

Exploring the diagnostic potential of adding

T2 dependence in diffusion-weighted MR

imaging of the prostate

Ingrid Framås SyversenID
1*, Mattijs Elschot2,3, Elise Sandsmark3, Helena Bertilsson4,5,

Tone Frost BathenID
2, Pål Erik Goa6

1 Kavli Institute for Systems Neuroscience, NTNU, Norwegian University of Science and Technology,

Trondheim, Norway, 2 Department of Circulation and Medical Imaging, NTNU, Norwegian University of

Science and Technology, Trondheim, Norway, 3 Department of Radiology and Nuclear Medicine, St. Olavs

Hospital, Trondheim University Hospital, Trondheim, Norway, 4 Department of Urology, St. Olavs Hospital,

Trondheim University Hospital, Trondheim, Norway, 5 Department of Clinical and Molecular Medicine,

NTNU, Norwegian University of Science and Technology, Trondheim, Norway, 6 Department of Physics,

NTNU, Norwegian University of Science and Technology, Trondheim, Norway

* ingrid.f.syversen@ntnu.no

Abstract

Background

Magnetic resonance imaging (MRI) is essential in the detection and staging of prostate can-

cer. However, improved tools to distinguish between low-risk and high-risk cancer are

needed in order to select the appropriate treatment.

Purpose

To investigate the diagnostic potential of signal fractions estimated from a two-component

model using combined T2- and diffusion-weighted imaging (T2-DWI).

Material and methods

62 patients with prostate cancer and 14 patients with benign prostatic hyperplasia (BPH)

underwent combined T2-DWI (TE = 55 and 73 ms, b-values = 50 and 700 s/mm2) following

clinical suspicion of cancer, providing a set of 4 measurements per voxel. Cancer was con-

firmed in post-MRI biopsy, and regions of interest (ROIs) were delineated based on radiol-

ogy reporting. Signal fractions of the slow component (SFslow) of the proposed two-

component model were calculated from a model fit with 2 free parameters, and compared to

conventional bi- and mono-exponential apparent diffusion coefficient (ADC) models.

Results

All three models showed a significant difference (p<0.0001) between peripheral zone (PZ)

tumor and normal tissue ROIs, but not between non-PZ tumor and BPH ROIs. The area

under the receiver operating characteristics curve distinguishing tumor from prostate voxels

was 0.956, 0.949 and 0.949 for the two-component, bi-exponential and mono-exponential
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models, respectively. The corresponding Spearman correlation coefficients between tumor

values and Gleason Grade Group were fair (0.370, 0.499 and -0.490), but not significant.

Conclusion

Signal fraction estimates from a two-component model based on combined T2-DWI can dif-

ferentiate between tumor and normal prostate tissue and show potential for prostate cancer

diagnosis. The model performed similarly to conventional diffusion models.

Introduction

Magnetic resonance imaging (MRI) has been essential in the detection and staging of prostate

cancer for several years [1, 2]. Different sequences are performed, where T2-weighted and dif-

fusion-weighted imaging (DWI) constitute the basis of such a diagnostic protocol [3]. Prostate

cancer is usually detected as homogeneous moderately hypointense focal areas on T2-weighted

images, with a relatively low apparent diffusion coefficient (ADC). The Prostate Imaging-

Reporting and Data System (PI-RADS) guidelines are used to detect clinically significant can-

cer, based on a combination of DWI, T2-weighted imaging and also dynamic contrast-

enhanced (DCE) MRI [3]. For peripheral zone (PZ) cancers, DWI is the dominant factor for

determining the PI-RADS score, while for non-PZ cancers, T2-weighted images are predomi-

nantly used. However, despite these standardized guidelines, the accuracy of detecting and

staging clinically significant cancer is still variable, and overtreatment is a major problem [4–

6]. Improved diagnostic tools are needed in order to better stratify patients to active surveil-

lance or radical treatment. In addition, it can be challenging to separate between non-PZ can-

cers and benign prostatic hyperplasia (BPH) with low ADC, as these have similar imaging

characteristics [7].

Low ADC in the prostate is commonly interpreted as restricted diffusion due to densely

packed cells in tumor tissue [8]. However, this simplification does not consider the different

mechanisms of the underlying tissue microstructure. One suggested extension to this is the bi-

exponential model, which consists of a slow diffusion component representing the restricted

diffusion within cells, and a fast diffusion component representing extracellular water [9]. This

model has shown promising results in previous studies [10, 11].

Another common assumption is that T2 values and ADCs are independent of each other.

However, studies have shown an interdependence of these parameters which appears to differ

between tumor, normal prostate tissue and BPH [12–14], which could potentially be exploited

for diagnosis. By performing DWI at different echo times (TE), it is possible to isolate the sig-

nal from subvoxel populations of water molecules with specific paired T2 values and ADCs

associated with different components of the prostate. A three-component model using this

principle has been suggested [15]. However, for such a model to be clinically feasible, it needs

to have a relatively short acquisition time and a low computational cost. A simpler two-

component model fulfills these requirements and would be consistent with a simple represen-

tation of the prostate: Water in the glandular lumen with long T2 and a high ADC, and water

inside the cells with a shorter T2 and lower ADC [12].

In this work, we estimate signal fractions in a slow and a fast diffusion component using

combined T2- and diffusion-weighted imaging (T2-DWI), and compare these between tumor,

normal tissue and BPH in order to investigate the diagnostic potential of the model.
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Materials and methods

Patients

76 patients underwent an extended MRI exam as part of the integrated cancer care pathway

following prostate cancer suspicion. Of these, 62 patients had post-MRI biopsy-confirmed

cancer and were assigned randomly to a training and a test set (see Table 1 for details). The

inclusion criteria were tumor in any prostate zone that both had a PI-RADS and a location-

matched Gleason score. The 14 included patients without detected cancer had BPH lesions,

characterized by visually low ADC and a negative biopsy. An overview of the patient and case

selection process can be found in the S1 Fig. The study was approved by the Regional Commit-

tee for Medical and Health Research Ethics Central Norway (identifier REK 2017/520), and all

participants provided written informed consent before enrollment.

MRI protocol

Imaging was performed on a 3T MRI scanner (Magnetom Skyra, Siemens Medical Systems,

Erlangen, Germany) using body surface coils. The combined T2-DWI was added at the end of

a clinical protocol.

Table 1. Summary of patient characteristics for the 62 included patients with biopsy-confirmed cancer.

Parameter Training set Test set

Number of patients 31 31

PSA level (ng/mL) 11.0 ± 8.6 11.4 ± 15.7

PI-RADS score

2 2 2

3 7 5

4 8 6

5 14 18

Gleason Grade Group

1 6 4

2 7 15

3 10 5

4 4 3

5 4 4

Cancer location

PZ 25 24

TZ 3 4

CZ 1 0

AFMS 2 3

Treatment

RARP 15 14

Radiation therapy 8 7

Hormone therapy 2 1

Active surveillance 6 9

PSA = prostate-specific antigen, PI-RADS = Prostate Imaging-Reporting and Data System, PZ = peripheral zone,

TZ = transition zone, CZ = central zone, AFMS = anterior fibromuscular stroma, RARP = robotic assisted radical

prostatectomy.

Note—Data are numbers of patients, except for PSA level which is given as mean ± standard deviation. There were 2

and 7 missing PSA values in the training and test set, respectively. The Gleason Grade Group is based on biopsy

scores after MRI, except for the patients who underwent RARP, where the histopathological Gleason Grade Group

was used. Note that the tumors might extend over multiple prostatic zones, and that the cancer location denoted is

the primary tumor location.

https://doi.org/10.1371/journal.pone.0252387.t001
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The transversal combined T2-DWI acquisition consisted of two fat-suppressed, single-shot,

monopolar spin-echo echo-planar imaging (EPI) sequences with TE = 55 and 73 ms, respectively.

Each of these sequences had repetition time (TR) = 4200 ms, b-values = 50 and 700 s/mm2 (three

directions; number of excitations (NEX) = 2 and 4, respectively), resolution = 2.0×2.0×3.0 mm3,

field of view = 256×256 mm2, imaging and reconstruction matrix = 128×128, 26 slices, generalized

autocalibrating partial parallel acquisition (GRAPPA) factor 2 and acquisition time 1:38 minutes.

The only differences between the sequences at the two TEs were the diffusion times and gradient

amplitudes: at TE = 55 ms, δ = 11.6 ms and Δ = 23.9 ms, while at TE = 73 ms, δ = 20.6 ms and

Δ = 32.9 ms. This protocol provides a 2×2 matrix of trace-weighted diffusion measurements

for each voxel, where each measurement is associated with a different combination of TE and

b-values.

Preprocessing

All analyses were performed using MATLAB (version R2019b, MathWorks, Natick, MA,

USA) unless stated otherwise. Code used for model fitting is available on GitHub at https://

github.com/ntnu-mr-cancer/T2-DWI.

The trace-weighted images at each TE and b-value were co-registered to the image with the

lowest TE and b-value with Elastix, using a multiresolution rigid registration scheme [16, 17].

The scanner’s autogenerated ADC map for TE = 73 ms was also co-registered to the same

image because the regions of interest (ROIs) were to be delineated on this map. To only correct

for potential motion of the prostate and not of other internal structures, a box-shaped ROI

covering the prostate was defined for each patient and used as a mask for the co-registration.

ROI delineation. For each cancer patient, one tumor ROI was manually delineated using

ITK-SNAP (www.itksnap.org) [18] on the scanner’s autogenerated ADC map for TE = 73 ms,

with corresponding T2-weighted images used for support. The delineation was performed

based on the clinical radiologist’s PI-RADS annotation and the tumor ROI was characterized

by focal low ADC under (or around) 1000 μm2/ms. All tumor ROI locations were confirmed

to be cancer by matching with biopsy reports in the patient journal, and cross-checked with

histology slides if available (n = 29). For the PZ tumor patients, one normal tissue ROI was

also delineated, characterized by visually high ADC in the PZ (around 2000 μm2/ms). For both

the tumor and normal tissue ROIs, respectively, only one tumor lesion or normal area were

considered per ROI. For each BPH patient, one ROI was manually delineated of one or more

proliferative BPH nodule(s) with visually low ADC (under/around 1000 μm2/ms) in the non-

PZ, also visible as a nodule on T2-weighted images. All ROIs were delineated by a basic scien-

tist (IFS, 1 year of experience in prostate MRI) and validated by a radiology resident (ES, 1

year of experience in prostate MRI, supervised by an experienced radiologist).

Two-component model

We modeled the MR signal as water in two separate components: a slow diffusion component

with low ADC and short T2, and a fast component with high ADC and long T2. Thus, the 2×2

matrix of signal intensities SI from the combined T2-DWI were fitted to the following equa-

tion:

SI
SI0

¼ SFslow exp �
TE

T2slow

� �

exp � b � ADCslowð Þ þ SFfast exp �
TE
T2fast

 !

exp � b � ADCfast

� �
; ð1Þ

where the subscripts “slow” and “fast” denote the values of slow and fast components, respectively.

SI0 is the signal intensity at TE = 0 and b = 0, SF is the signal fraction of the components, and
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SFslow+SFfast = 1. In order to reduce the number of free parameters in the model, ADCslow =

0.3 μm2/ms and ADCfast = 2.6 μm2/ms globally optimized for a biophysically similar bi-exponen-

tial model were used [19]. This results in four free parameters (SI0, SFslow, T2slow, T2fast) to the

four measurements.

T2slow and T2fast were then globally optimized for the entire population of voxels across all

patients in the training set by minimizing a global cost function while fitting the 2×2 signal to

Eq 1 using a range of T2 values determined from a previous preliminary study [20]. The cost

function was defined as the sum of the root-mean-square error (RMSE) of the fit of all

included voxels. By keeping T2slow and T2fast fixed for each iteration, only two parameters

were fitted for each voxel in this process. The optimal T2 values were then used for further

analysis, where the two remaining free parameters SI0 and SFslow were determined on a voxel-

by-voxel basis by fitting the 2×2 signal to the two-component model for all included patients.

All voxels inside the box-shaped ROIs were analyzed. The average size of the box ROIs was

approximately 167,000 voxels. However, to reduce noise effects, voxels were excluded that had

a value equal to or below three times the noise floor, defined as the average signal intensity of

background voxels. Voxels with an apparent negative ADC or T2 value were also excluded. On

average, approximately 10% of the voxels in the tumor, normal and BPH ROIs were excluded.

Bi-exponential model

For comparison, we also investigated a purely ADC-dependent bi-exponential model:

SI
SI0

¼ SFslow expð� b � ADCslowÞ þ SFfast expð� b � ADCfastÞ; ð2Þ

where SFslow+SFfast = 1, ADCslow = 0.3 μm2/ms and ADCfast = 2.6 μm2/ms as in the two-com-

ponent model [19]. SI0 and SFslow were fitted to the two b-value measurements at TE = 73 ms.

Mono-exponential ADC

Using

SI
SI0
¼ expð� b � ADCÞ; ð3Þ

SI0 and ADC were fitted to the two b-value measurements at TE = 73 ms.

An extended analysis with even more model comparisons can be found in the S1 Appendix.

Statistical analysis

The first part of the statistical analysis was divided into PZ and non-PZ tumors. Note that all

PZ analyses were performed on the test set only, while the non-PZ analyses were carried out

on all available patients due to the low sample size. For the PZ analyses, the Wilcoxon signed-

rank test was used to test for statistical significance between mean SFslow (for both the two-

component and bi-exponential models) and ADC of the tumor and normal tissue ROIs

(n = 24). For the non-PZ analyses, BPH ROIs from the BPH patients (n = 14) were used for

comparison with the non-PZ tumor ROIs (n = 13), and the Mann-Whitney U test was used to

test for statistical significance between these. All tests were two-sided. After a Bonferroni cor-

rection for 9 multiple comparisons (including the correlation described in the following para-

graph), p<0.006 was considered statistically significant.

The remainder of the statistical analyses were carried out on the whole test set with both PZ

and non-PZ tumors together. Voxel-wise receiver operating characteristics (ROC) analysis
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was performed comparing the SFslow and ADCs in the tumor ROIs with the rest of the area

inside the box-shaped ROIs. Note that although the ROC analysis was performed only on the

test set, the optimal threshold value was calculated from the training set and applied on the test

set in the calculation of sensitivity and specificity. Furthermore, the Spearman correlation

coefficient (ρ) was calculated between the mean SFslow and ADC of the tumor ROIs and the

Gleason Grade Group.

Results

The optimal T2 values for the two-component model were determined to be T2slow = 45 ms

and T2fast = 180 ms (Fig 1).

Box plots of estimated SFslow (for both the two-component and bi-exponential models) and

ADC for different ROIs are shown in Fig 2. In the PZ analyses, all metrics show a significance

between tumor and normal ROIs. In the non-PZ analyses, no metrics show a significant differ-

ence between the tumor and BPH ROIs, although the two-component model yields the lowest

p-value.

Fig 3 shows examples of calculated SFslow and ADC maps for PZ and non-PZ tumors

and BPH, as well as corresponding histology slides for the PZ and non-PZ tumors and a

T2-weighted image for the BPH case. SFslow (for both the two-component and bi-exponential

models) and ADC yield good tumor conspicuity for both tumor cases. In the BPH case, the

lesion is visible both on the SFslow maps and the ADC map, although with a slightly lower con-

trast than the tumors.

Fig 1. Surface curve showing the total root-mean-square error (RMSE) from fitting the two-component model with a

range of T2slow and T2fast values for the training set, scaled so that the highest RMSE equals 1. The total RMSE is at a

minimum for T2slow = 45 ms and T2fast = 180 ms.

https://doi.org/10.1371/journal.pone.0252387.g001
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ROC curves and results from the ROC analysis are shown in Fig 4 and Table 2, respectively,

and show that SFslow (for both the two-component and bi-exponential model) and ADC have

very good diagnostic performance. However, although the sensitivity, specificity and area

under the ROC curve (AUC) are very similar for all metrics, SFslow from the two-exponential

model yields slightly higher values than the other two, which are nearly identical to each other.

Note the very different optimal threshold values for SFslow from the two-exponential and bi-

exponential models of 0.67 and 0.42, respectively. This means that�67% and 42% of the voxels

should be in the SFslow components to be classified as tumor tissue. In the case of ADC, the

value needs to be under the respective optimal threshold to be classified as tumor.

In Fig 5, the mean SFslow and ADC from the tumor ROIs are plotted as a function of Glea-

son Grade Group. The Spearman correlation coefficient was found to be ρ = 0.370 (p = 0.040)

and ρ = 0.499 (p = 0.004) for SFslow for the two-component and bi-exponential model, respec-

tively, and ρ = -0.490 (p = 0.005) for ADC.

Discussion

In this study, 62 patients with prostate cancer and 14 patients with BPH underwent combined

T2-DWI. From this, signal fractions were estimated using a two-component model based on

both T2 and ADC dependence. The purpose was to investigate the diagnostic potential of this

model in comparison with results from conventional diffusion models. Our results show that

SFslow from the two-component model is higher in PZ tumors than in normal tissue, and in

non-PZ tumors than in BPH, although only significant in the former case. SFslow shows good

diagnostic properties and a fair correlation with tumor aggressiveness.

Fig 2. Box plots showing the distribution of mean SFslow (from the two-component and bi-exponential models) and ADC of the different ROIs. Upper row: PZ

tumors (n = 24) compared to normal tissue (n = 24). Bottom row: Non-PZ tumors (n = 13) compared to BPH (n = 14). p<0.006 was considered statistically

significant.

https://doi.org/10.1371/journal.pone.0252387.g002
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Global T2 optimization was performed both to reduce the number of free variables and to

isolate components with distinct, paired ADC and T2 values. Comparing the results with a

model fit with the T2 values as free variables (see S1 Table) showed the benefit of optimizing

the T2 values in advance. To further reduce the number of free variables, the ADCs were

adapted from a bi-exponential model [19]. The signal fraction estimates for the slow compo-

nent in that paper were markedly lower than our SFslow estimates from the two-component

model, but closer to the values obtained with our bi-exponential model, indicating a depen-

dence of SFslow on T2. This implies that the two-component and bi-exponential models do not

isolate identical subvoxel populations of water molecules, because the added T2 dependence

actively tunes the diffusion signal from the prostate tissue, in agreement with other studies per-

formed with combined T2-DWI [12–14]. A previous three-component model based on com-

bined T2-DWI estimated the T2 values of the epithelium, stroma and lumen to be 50 ms, 80

Fig 3. Examples of estimated value maps for three different patients. SFslow (from the two-component (TC) and bi-

exponential (BE) models) maps and corresponding ADC map are shown for a PZ tumor patient, a non-PZ tumor

patient and a BPH patient, respectively. For the tumor patients, histology slides are also shown for comparison, while a

corresponding T2-weighted image is shown in the BPH case as histology was not available for this patient. The lesions

are denoted on the ADC maps with red arrows. On the histology slides, the PZ tumor is denoted with a solid line,

while the non-PZ tumors are denoted with dotted lines. Example maps from more cases can be found in the S2 Fig.

https://doi.org/10.1371/journal.pone.0252387.g003
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ms and 665 ms, respectively [15], which would suggest that our slow component is approxi-

mately equivalent to the epithelium, whereas the fast component is a mixture of stroma and

lumen.

The two-component model performed similarly to the bi-exponential model and the

mono-exponential ADC. All three models showed a highly significant difference between PZ

tumors and normal tissue, and while no significant differences were found between non-PZ

tumors and BPH, the two-component model performed slightly better than the others in that

case. In the ROC analysis, where all three models showed an excellent diagnostic performance,

the two-component model also performed marginally better than the other two. However, the

bi-exponential model and ADC showed a somewhat better correlation with tumor aggres-

siveness, although none of them significant. Interestingly, in all the analyses, the bi-exponential

model and ADC both show very similar results that are slightly different from the two-compo-

nent model, which could suggest that our model extracts additional information from the

underlying tissue compared to the other models. Although our two-component model

Fig 4. ROC curves for SFslow (for the two-component model in green and for the bi-exponential model in yellow)

and ADC (in dashed purple). Voxels within tumor ROIs (n = 6569) were compared with voxels outside (n = 254,112).

https://doi.org/10.1371/journal.pone.0252387.g004

Table 2. Summary of Receiver Operating Characteristics (ROC) results.

Model AUC Optimal threshold Sensitivity (%) Specificity (%)

SFslow, two-component model 0.956 0.67 92.6 85.8

SFslow, bi-exponential model 0.949 0.42 92.3 85.4

ADC (μm2/ms) 0.949 1.17 92.3 85.4

AUC = area under curve, SF = signal fraction, ADC = apparent diffusion coefficient.

https://doi.org/10.1371/journal.pone.0252387.t002
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performed similarly to conventional models, and not significantly better, the method shows

diagnostic promise and should be further optimized and investigated in a larger number of

patients, in order to more rigorously evaluate its ability to predict tumor aggressiveness.

One reason for the similar performance between the two-component and bi-exponential

models and ADC could be that the tumor, normal tissue and BPH ROIs used in this study

were all delineated on ADC maps. Delineating the ROIs based on MR images and not histopa-

thology of prostatectomy specimens can give a bias in the results, such that it is more difficult

to see improvements in other models if ADC is used as a reference. Nevertheless, we chose to

use radiology for the delineation because including only prostatectomy patients would give a

bias towards highly aggressive cancer, as well as reducing the number of patients available.

Another reason that the models perform so similarly could be that the bi-exponential model

and ADC are calculated at the longest TE. Therefore, they are also implicitly influenced by the

T2 relaxation of the tissue to a higher degree than if the shorter TE was used. However, we

chose to use TE = 73 ms since this was TE closest to the one used in [19]. A calculation with

TE = 55 ms is carried out in the S1 Table for comparison.

We show that SFslow from the two-component model has diagnostic potential in prostate

cancer. Some might argue that a more complex model would give a better representation of

the underlying tissue microstructure, but our focus was to apply a model that would be feasible

in a clinical setting, where time is a limiting factor. Our T2-DWI protocol had a comparable

acquisition time to that of a standard clinical prostate DWI sequence, and there are only two

variables to be estimated, given fixed ADCs and T2 values of each signal component. However,

these values should be further optimized by exploring a wider range of TEs and b-values, in

order to potentially increase the diagnostic performance of the method. Furthermore, since

the main focus of our work was to investigate clinical feasibility of the two-component model,

we did not perform a thorough evaluation of repeatability and reproducibility, which should

also be addressed in the future.

Our study had some limitations. Firstly, the images were not corrected for geometric distor-

tions caused by the EPI sequence, although no severe distortions were noted during visual

inspection of the images. Secondly, the sequence parameters of the combined T2-DWI were

introduced to see whether there were any effects of varying the TE in DWI, and it was made as

short as possible to fit in at the end of a clinical protocol, with TEs and b-values close to clinical

DWI parameters. The low number and short range of these parameters limit the sensitivity of

the T2 values and ADC of the components. At last, because a standard vendor DWI sequence

Fig 5. Mean tumor ROI values plotted as a function of Gleason Grade Group (blue dots) for SFslow (from the two-component and bi-exponential models) and

ADC. The red line represents the least-square fit to the data.

https://doi.org/10.1371/journal.pone.0252387.g005
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was used for the combined T2-DWI, the acquisition at the different TEs had different diffusion

times (Δ and δ), which can also affect the apparent TE dependence of ADC [21]. This should

be addressed when designing new combined T2-DWI protocols.

In conclusion, signal fraction estimates from a two-component model based on combined

T2-DWI can differentiate between PZ tumors and normal prostate tissue and show potential

for prostate cancer diagnosis. The model performed similarly to conventional diffusion mod-

els. However, the method should be further optimized for clinical purposes and investigated in

a larger number of patients.
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