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An Interactive platform for low-cost 3D building modeling 
from VGI data using convolutional neural network
Hongchao Fan a, Gefei Kongb* and Chaoquan Zhanga*
aDepartment of Civil and Environmental Engineering, Norwegian University of Science and Technology, 
Trondheim, Norway; bSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 
China

ABSTRACT
The applications of 3D building models are limited as producing 
them requires massive labor and time costs as well as expensive 
devices. In this paper, we aim to propose a novel and web-based 
interactive platform, VGI3D, to overcome these challenges. The 
platform is designed to reconstruct 3D building models by using 
free images from internet users or volunteered geographic informa-
tion (VGI) platform, even though not all these images are of high 
quality. Our interactive platform can effectively obtain each 3D 
building model from images in 30 seconds, with the help of user 
interaction module and convolutional neural network (CNN). The 
user interaction module provides the boundary of building facades 
for 3D building modeling. And this CNN can detect facade elements 
even though multiple architectural styles and complex scenes are 
within the images. Moreover, user interaction module is designed 
as simple as possible to make it easier to use for both of expert and 
non-expert users. Meanwhile, we conducted a usability testing and 
collected feedback from participants to better optimize platform 
and user experience. In general, the usage of VGI data reduces labor 
and device costs, and CNN simplifies the process of elements 
extraction in 3D building modeling. Hence, our proposed platform 
offers a promising solution to the 3D modeling community.
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1. Introduction

3D building models play a significant role in designing urban 3D and virtual cities. They 
support a variety of applications in urban planning, environment analysis, virtual tourism, 
and augmented reality (Haala & Kada, 2010; Verma, Kumar, & Hsu, 2006). 3D building 
models are usually divided into five level of details (LoDs) (Biljecki et al., 2016) according 
to the CityGML 2.0 standard (Gröger, Kolbe, Nagel, & Häfele, 2012). LoD0 model means the 
footprint of a building; LoD1 model is represented as a cuboid by extruding the LoD0 
model. On the basis of LoD1, LoD2 model contains the roof shape of a building, and the 
semantic information of building elements. Compared with LoD2, LoD3 model is more 
complex and can be called as “architecturally detailed model”, which contains facade 
elements of a building, such as windows and doors. LoD4 model is more complete and 
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has both internal and external building elements. 3D building modeling in LoD1 and LoD2 
has had many mature approaches (Kim & Han, 2018; Li et al., 2019; Wu et al., 2017), and is 
a key focus for some platforms (Preka & Doulamis, 2016), but these fields actually prefer 
3D building models in LoD3 or higher.

Classic methods that can create highly detailed 3D building models usually adopt 
grammar and topology rules (Becker, 2009; Dehbi & Plümer, 2011). While their produc-
tions are stable and complete, only limited architectural styles can be covered. In recent 
years, with the development of algorithm, software and hardware in computer science, 
more studies focused on automatic 3D building modeling and achieved a great success 
(Agarwal et al., 2011), which can reconstruct 3D models in most scenarios. For instance, 
automatic methods based on point cloud data from laser or LiDAR (Yu, Helmholz, & 
Belton, 2017) not only guarantee very high modeling precision, but also eliminate the 
defects of limited architectural styles. However, these automatic methods need the 
assistance of professional and expensive devices to ensure the size and quality of data 
to obtain impressive results. All of these requirements lead to higher costs on labor and 
time. Moreover, they are sensitive to noise and thus easily lead to unstable and incom-
plete results. In other words, that means automatic methods are difficult to reconstruct 3D 
models effectively when lacking data or facing data noise, without the help from users.

To address these issues, some researchers tried to reconstruct 3D building models in an 
interactive way. Wolberg and Zokai (2018) proposed a photocentric 3D modeling plat-
form, and added user interaction capabilities to overcome the instability of automatic 
methods. Users firstly sketched the building’s walls. Then structure from motion (SfM) 
algorithm (Ma, Soatto, Kosecka, & Sastry, 2012) was used to generate point clouds in order 
to more accurately reconstruct building models. However, SfM needs many images that 
belong to the same building (more images, the better the result) and need to know 
image’s GPS location and camera internal parameters for camera calibration. In their 
experiment, it took them around 20 minutes to reconstruct two building models. That 
indicated its computational inefficiency and strong reliance on the number of images. 
Nishida, Garcia-Dorado, Aliaga, Benes, and Bousseau (2016) achieved highly detailed 3D 
building modeling with only single image by combining sketch-based and procedural 
methods. However, users were asked to draw windows and doors and select their 
corresponding styles. It is not friendly to non-expert users, as they are not familiar with 
it. In addition, they defined some patterns based on the buildings they previously used, 
and hence it might not be helpful to buildings with different styles. Although other 
interactive methods are able to reconstruct 3D building models from one image as well 
(Chen, Zhu, Shamir, Hu, & Cohen-Or, 2013; Zheng et al., 2012), they are dependent on 
accurate edge detection. They could be seriously affected by image’s luminance.

In short, many existing methods rely on the size of datasets and are time consuming. 
Methods with higher efficiency and less image data often require user sketching, which is 
not convenient and friendly for non-expert users. Methods based on multiple images are 
often influenced by data quality, such as illumination change, camera position change, 
and perspective distortion. The collection and processing of datasets consume 
a significant amount of time and labor as well. Methods based on point clouds are 
sensitive to noise points. Thus additional data processing is typically necessary to solve 
this issue. Finally, existing automated methods for building modeling are time consuming 
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because they usually have to estimate camera’s position and generate point clouds from 
a sequence of images.

Considering all the above shortcomings, a low-cost 3D building modeling method is 
necessary, and it can accept lower-quality images from various devices without additional 
information, such as GPS or camera parameters, which will reduce the cost of data 
collection. In addition, this method can reconstruct 3D building models with less image 
data. Hence, we designed an interactive platform (called VGI3D) based on volunteered 
geographic information (VGI) images for 3D building modeling. In our platform, we take 
VGI image data as input and all the facades prepared for modeling should be fully 
captured on an image. Users only need to simply outline the facade of a building, and 
then our platform will automatically detect and adjust the bounding boxes of facade 
elements. Finally, 2D locations of all the elements will be transformed into 3D coordinate 
system, and 3D model of this building will be shown to users in real time.

VGI employs tools to create, assemble, and disseminate geographic data provided 
voluntarily by individuals (Sangiambut & Sieber, 2016). With the development of WebGL 
and hardware, VGI data have played a more active role in geoinformation collection, 
especially in the collection of urban images. Although the quality of VGI images is difficult 
to guarantee and measure, the low-cost and high-richness of VGI image data can narrow 
existing research gaps to some extent. Furthermore, non-expert users modeling 3D 
buildings will be conducive to the development and spread of urban 3D modeling.

Compared to existing methods, the key contributions of our work are as follows:

(1) Low-cost data requirements: the input to our platform is VGI image data. These 
images are captured by non-expert users or volunteers who upload images to the 
VGI image platform. Compared to traditional methods of data collection, VGI image 
data have lower costs, and can cover larger areas. The use of VGI image data will 
significantly reduce the time and labor costs during the data collection process. 
Moreover, considering that the geolocations of VGI images are usually scattered 
and that these images are at a street level, only one or two views of a building can 
be obtained in many cases. Hence, our platform is designed to model simple 3D 
buildings using less than two images. This implies that the time required and cost 
incurred for 3D modeling are lower.

(2) Fast 3D building modeling: the algorithm for facade elements extraction 
embedded in our platform can automatically extract windows, doors and balconies 
within one second. Additionally, the entire workflow is completed in 30 seconds, 
which is faster than most existing automatic building modeling methods.

(3) Relatively High-quality modeling results: in a low-cost environment, our platform 
can obtain modeling results that are of relatively high quality. The modeling results 
will be complete and stable even on low-quality images. Meanwhile, semantic 
information, such as facades, windows, balconies, and roofs, will be obtained and 
shown to users.

The remainder of this paper is organized as follows. Section 2 describes the modeling 
workflow and detailed algorithms of our platform. Experimental results and a platform 
usability testing are going to present in Section 3. Section 4 provides the conclusions as 
well as future work.
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2. Methodology

2.1. Workflow

Considering the convenience and availability of the proposed method, we developed 
a web-based platform embedded with all the algorithms (as shown in Figure 1). First, our 
platform accepts building images uploaded by users. Then, users provide three pieces of 
information to our web platform in the way of interaction, including facades boundaries, 
roof type, and facades views of the building in images. Next, images from users are taken 
into the module of facade elements extraction to automatically obtain the locations of the 
windows, doors and balconies. In this module, the object detection network in facade 
elements extraction module automatically detects facade elements and gives them 
semantic labels. Finally, these locations in 2D are transformed into the 3D coordinate 
system to construct the 3D building model and show it on the Web in real time. The 
generated 3D model can also be downloaded for further research.

2.2. User interaction

Since most input VGI images are at a street level and only one or two facades of a building 
can be available, multi-view facades of a single building are difficult to obtain by non- 
expert volunteers. Actually, 3D building models for urban planning or virtual cities do not 

Figure 1. Framework of our platform. In the user interaction module, users provide the facades 
boundaries, roof type, and facade views of the building in images to our web platform. Then, images 
are fed into facade elements extraction module to automatically obtain the locations of the windows, 
doors and balconies. In the 3D building modeling step, the locations are transformed from 2D to 3D 
space. Then locations are rotated according to the information of facades views. Finally, the 3D 
building model is built and visualized to users.
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require over-detailed models. Hence, in the user interaction module, users only need to 
upload no more than two images of a building. Facade and side images for the same 
building can be uploaded together to obtain a more comprehensive model. The number 
of images was recorded as NI. In terms of the image requirements, there are no specific 
requirements regarding the cameras used or the overlap percentages. The only require-
ment is that users should ensure each image containing a complete facade of the 
building. Then, users draw the corners of the facade (XF, YF) in an image to create 
a corresponding facade boundary, where XF = {xF1, xF2, . . ., xFn} and YF = {yF1, yF2, . . ., yFn}, 
(XF, YF)∈{(XF, YF)} = {(XF, YF)ni | ni = 1, . . ., NI}. The corners are used to build 3D facade and 
correct the locations of the facade elements. Meanwhile, the roof type of the building 
should be selected to help reconstruct the roof. These images and facade boundaries will 
be sent to our facade extraction method for the preparation of 3D building modeling.

2.3. Extracting locations of facade elements

2.3.1. Detecting facade elements
In user interaction module, we have obtained images and locations of the building facades. 
Images from our user interaction module are usually at a street level with various complex 
scenes, such as multi-view scenes, complex illumination and background. Traditional methods 
cannot handle these scenes well. Existing methods of interactive modeling require users to 
draw facade elements, such as windows and doors, which is time-consuming and labor- 
intensive. In addition, the accuracy and completeness of facade elements cannot be ensured 
in user drawings. Hence, we want to use a convolutional neural network (CNN) for object 
detection or semantic segmentation, to extract facade elements. However, many windows 
and balconies are too small in street-level images, and might be difficult to be completely 
segmented by semantic segmentation network. CNNs for semantic segmentation are not 
suitable for extracting them. Hence, we chose an object detection CNN, YOLO v3 (Redmon & 
Farhadi, 2018), for detecting facade elements (Kong & Fan, 2020). YOLO v3 is a one-stage, fast, 
and highly accurate object detection neural network. It can maintain a significant balance 
between detection accuracy and speed. As Kong and Fan (2020) have done, the Darknet53 
was used as the backbone of YOLO v3. And the detection network was pretrained on our 
FacadeWHU dataset to detect windows, doors and balconies. Our dataset contains 900 street- 
level images (850 from Paris, France, and 50 from Trondheim, Norway) and corresponding 
annotations for semantic segmentation and object detection. These annotations contain six 
classes – window, door, balcony, roof, shop, and wall, which can meet the requirement of our 
facade elements detection. Uploaded images were detected directly by our trained model 
from Kong and Fan’s work (2020). Then, every location (which is also called “bounding box”) of 
windows, balconies, and doors was obtained and organized as (Ccnn1, Ccnn2, classcode) = ((xcnn1, 
ycnn1), (xcnn2, ycnn2), classcode) for correction. (Ccnn1, Ccnn2, classcode)∈{(Ccnn1, Ccnn2, class-
code)} = { Ccnn1,Ccnn2,classcodeð Þ

k,i
ni | k = 1, . . ., Nc; i = 1, . . ., nk; ni = 1, . . ., NI}, where Nc is the 

number of classes, nk is the number of facade elements in every class of a facade, and NI is the 
number of input images.

2.3.2. Correction and inference of locations of facade elements
The locations of the building facade and its elements are based on images. However, 
original VGI images commonly have perspective distortion, which distorts the shape and 
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layout of facade elements. Therefore, the locations of the facade and corresponding 
elements (windows, doors and balconies) cannot be directly applied to 3D building 
modeling. To solve this problem, we added a submodule for location correction. We 
considered the following measures to correct perspective distortion for the facade in 
every image:

(1) First, we calculated the aspect ratio rF ¼ hf=wF of the bounding box of every 
corresponding facade. hF and wF are the height and width of the facade bounding box 
from the user interaction module, respectively. They were calculated using Equation (1). 
At the same time, the facade height after perspective correction is defined as the image 
height hp, and the facade width after perspective correction is defined as wp ¼ hp=rF . 
Then, we obtained the bounding box of the facade after perspective correction, as ((0, 0), 
(wp, hp)), and the location of facade is denoted as (XpF, YpF) = ((0, 0, wp, wp), (0, hp, hp, 0)). 

hF ¼ max YFð Þ � min YFð Þ,wF ¼ max XFð Þ � min XFð Þ (1) 

(2) Second, we calculated a homography matrix, M, by the bounding box of facade 
before and after perspective correction as Equations (2)–(4). The homography matrix is 
regarded as a perspective transformation matrix and was used for perspective correction. 

x0

y0

w0

2

4

3

5 ¼ M
xF
yF
1

2

4

3

5 ¼

m11 m12 m13
m21 m22 m23
m31 m32 m33

2

4

3

5
xF
yF
1

2

4

3

5 (2) 

xp ¼
x0

w0
¼

m11xF þm12yF þm13

m31xF þm32yF þm33
(3) 

yp ¼
y0

w0
¼

m21xF þm22yF þm23

m31xF þm32yF þm33
(4) 

where (xF , yF) is a facade location from user interaction module input (XF, YF). (xp, yp) is the 
facade location after perspective correction.

(3) Then, the location of the facade and its elements were corrected using the 
perspective transformation matrix M. After this step, locations from user interaction and 
CNN, including (XF, YF) for the facade and {(Ccnn1, Ccnn2, classcode)ni} for facade elements, 
were corrected. And locations after perspective correction were obtained and denoted as 
(XpF, YpF) for the facade and {(Cp1, Cp2, classcode)ni} for facade elements, where every facade 
element’s location of this facade is organized as (Cp1, Cp2, classcode)ni = ((xp1, yp1), (xp2, yp2), 
classcode)ni; (Cp1, Cp2, classcode)ni∈{(Cp1, Cp2, classcode)ni}.

The perspective distortion of the locations has been corrected. However, the facade- 
element layout of the perspective-corrected locations were misaligned, which will still 
affect the 3D building modeling process. Hence, in this step, we proposed a layout 
correction method for facade elements in every image:

(a) For every facade, first, we reorganized locations of facade elements after perspec-
tive correction from xy-xy to xy-wh as {((xpc, ypc), (wep, hep), classcode)ni}. (xpc, ypc) is the 
center of every facade element, and (wep, hep) is the width and height of every facade 
element, respectively. Then, the locations were separated by classcode and output as 
{((xk

pc,yk
pc), (wek

p,hek
p), classcodek)ni}, where k = 1, 2, . . ., Nc, and Nc is the number of classes. In 
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the following steps, we corrected the layout of the facade elements of a facade in every 
class.

(b) Second, in every class, the new xy-wh locations were sorted by ypc. We calculated 
the height differences between two neighboring locations and obtained the result of 
every class as (hdiff

k
p, classcodek). 

hdiff
k,i
p ¼ yk,iþ1

pc � yk,i
pc

k ¼ 1,2, . . . ,Nc; i ¼ 1,2, . . . , nk � 1ð Þ
(5) 

where Nc is the number of classes, and nk is the number of facade elements in every class 
of a facade.

(c) Third, a cluster algorithm, k-means++ (Arthur & Vassilvitskii, 2007), was used to 
divide the height differences into two groups. One group Gs had small height differences, 
which refers to the height difference of the facade elements on a single floor. The other 
group Gl had large height differences, which refers to the height difference of the facade 
elements between neighboring floors. The number of floors, Nf, was obtained using Gl as 
Nf ¼ NGl þ 1. NGl is the number in group Gl.

(d) Fourth, the facade elements in every class were divided into Nf groups based on the 
value of Gl and yk

pc. Each group referred to one floor of the building. In every floor, we 

calculated the average y-center coordinate ykj
ac and average height hekj

a of the facade 
elements, j = 1, 2, . . ., Nf. The y-center coordinates of every facade element in every floor 

ykj
pc is corrected to ykj

ac, and the height of every facade element in every floor hekj
p is 

corrected to hekj
a .

(e) Fifth, the x-center coordinates of the facade elements also needed correction. 
Hence, we repeated steps (b) to (d). In these steps, the height differences, y-center 
coordinates and average height were replaced with width differences, x-center coordi-
nates and average width. Finally, the layout of the facade elements was corrected.

The locations of the facade elements after layout correction are denoted as {((xac, yac), 
(wea, hea), classcode)ni}. This xy-wh format cannot be used for 3D building modeling. 
Hence, we changed the xy-wh locations to xy-xy locations and obtained the location of 
every facade element as (Cl1, Cl2, classcode)ni = ((xl1, yl1), (xl2, yl2), classcode)ni.

Steps (1) to (3) and (a) to (e) in section 2.3.2 were repeated to obtain the locations 
of all facades {(XpF, YpF)}and locations of their facade elements {(Cl1, Cl2, classcode)}.

Then the location of roof was calculated based on the location of facade from the 
image in the front direction. In general, basic roof shapes are divided into five classes: flat, 
shed, gabbled, hipped, and berliner (Kada & McKinley, 2009). Hence, we set the basic roof 
types as these five types. After the users choose the corresponding roof type of the 
building from the five basic roof types in the user interaction module, we can reconstruct 
the roof based on the corrected facade corners. The group with corners on the top edge 
of the facade is selected and is regarded as the bottom edge of the roof. Then, the top 
edge of the roof is automatically calculated according to the roof type. The top and 
bottom edges of the roof were concatenated as the final roof location (XR, YR).

We grouped the locations of facades, a roof, and facade elements into NI groups 
according to the number of images, and then sent them to the 3D building modeling 
module for 3D modeling.
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2.4. 3D building modeling

After the location detection module, we obtained the locations of facades as {(XpF, YpF)}, 
the locations of windows, balconies, doors as {(Cl1, Cl2, classcode)}, and the location of roof 
as (XR, YR). The range of these locations except roof is from 0 to hp. hp is based on every 
image height, which varies depending on the image. Thus, the size of the building models 
cannot remain stable. Hence, it is necessary to normalize these locations to the same 
range based on the height of every facade.

For locations from every image ni, we normalized these locations from range (0, hp) to 
range (0, hth) in height, and from range (0, wp) to (0, hth=rF) in width as shown in Equation 
(6). hth is a constant and we defined it as 10 to ensure the same height of all images. 
Moreover, to obtain a better visualization result, the center of all locations will be moved 
to (0, 0) by location translation. 

xk,i
nr ¼ xk,i

l =wp � hth=rF �
1
2
ðhth=rFÞ,yk,i

nr ¼ yk,i
l =hp � hth �

1
2

hth

k ¼ 1,2, . . . ,Nc, i ¼ 1,2, . . . ,nk

(6) 

The location of the facade is recorded as (XnrF, YnrF), and the location of every facade 
element after normalization is recorded as (Cnr1, Cnr2, classcode)ni = ((xnr1, ynr1), (xnr2, ynr2), 
classcode), (Cnr1, Cnr2, classcode)ni∈{(Cnr1, Cnr2, classcode)ni}.

The normalized locations of facade and other elements are still in the 2D coordinate 
system. For 3D building models, these locations need to be transformed into a 3D 
coordinate system. Hence, we utilized an easy and lightweight JavaScript 3D library, 
Three.js (Dirksen, 2015), to address this problem. Three.js provides a modeling function, 
ExtrudeGeometry, to build 3D shapes from 2D polygons. This function is applied to our 
platform to transform the coordinate system. The 3D locations after transformation are 
recorded as ((X3D, Y3D, Z3D), classcode)ni. X3D = {X0

3D, X1
3D, . . ., XNbp

3D }, and Y3D, Z3D are the same 

as X3D; Xi
3D = (xi0

3D, xi1
3D, . . ., xi co� 1ð Þ

3D ). Nbp is the number of all the elements, which can be 

obtained by Nbp ¼ 1þ
PNc

k¼1
nk. “1” in this equation means a facade number. co is the 

number of corners for the facade and every facade element. For the image in the front 

direction, the location of roof needs to be considered, so Nbp ¼ 2þ
PNc

k¼1
nk , where “2” in 

this equation means the number of a roof and a facade, and co is the number of corners 
for facade, roof and every facade element when transforming locations from the image in 
the front direction.

We repeat the steps from section 2.4 for every input image and obtain the NI 3D 
location groups of one building as {((X3D, Y3D, Z3D), classcode)} ={((X3D, Y3D, Z3D), classcode)ni 

| ni =1, . . ., NI}. If NI>1, these 3D location groups represent different facades of one building, 
which have different directions in reality. However, because the final 3D location groups 
are obtained from 2D images without z-axis information before 2D-to-3D transformation, 
they will have the same direction after transforming the coordinate system. Hence, these 
location groups need to be rotated in order to maintain their relative direction for 3D 
modeling. The relative directions, D, of these images have been provided by users in user 
interaction step. And the angle of rotation can be obtained using Equation (7). 
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Angr Dð Þ ¼

0 D ¼ front
� π=2 D ¼ left
þπ=2 D ¼ right

π D ¼ back

8
>><

>>:

(7) 

In Three.js, it uses the right-handed coordinate system, and the y-axis is face-up. Hence, 
the rotation matrix Mr can be recorded as follows. 

Mr ¼

cos Angr Dð Þ 0 sin Angr Dð Þ
0 1 0

� sin Angr Dð Þ 0 cos Angr Dð Þ

2

4

3

5 (8) 

Then, the 3D location groups are rotated using Equation (9) and denoted as {((X3Dr, Y3Dr, 
Z3Dr), classcode)}. 

X3Dr
g Y3Dr

g Z3Dr
g½ �

T
¼ Mr X3D

g Y3D
g Z3D

g½ �
T

g ¼ 1, . . . ,NI
(9) 

The process of 3D transformation is visualized in Figure 2.
The final 3D model of this building was built based on 3D locations after rotation. The 

semantic information of models was based on the class code of every element and was 
visualized using different colors.

3. Experiments

3.1. Experiment environment

We developed a web-based interactive platform. For the front-end, we used Hyper Text 
Markup Language (HTML), JavaScript (JS), Cascading Style Sheets (CSS), and bootstrap 
templates. The 3D models were rendered in the front-end using the 3D JavaScript library – 
Three.js. We used Python and a lightweight web application framework, Flask, to build our 

Figure 2. The process of 3D transformation. First, the 2D locations of every facade and its facade 
elements are extruded using ExtrudeGeometry method from Three.js, to obtain the corresponding 3D 
locations group of the facade in (b); Then, Every 3D locations group is rotated using Equations (7)~(8) 
based on the facade direction from user interaction step; Finally, the 3D building model is obtained.
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algorithms and back-end. The convolutional neural network YOLOv3 was implemented 
with the open-source machine learning framework Pytorch (Paszke, Gross, Chintala, & 
Chanan, 2017). What’s more, our platform was deployed on a server equipped with an 
Intel Core i7-8700 K CPU, 16 GB memory, and an NVIDIA GTX 1080Ti GPU.

3.2. Experiment results

In this subsection, we discuss the results of two key points in our interactive platform: the 
locations of all the elements and the 3D building modeling. The extraction results of 
facade elements and the results of 3D building modeling are shown in Section 3.2.1 and 
3.2.2, respectively.

3.2.1. Extraction results of facade elements
In this paper, we used a pretrained model of YOLO v3 to extract windows, doors and 
balconies, which was trained on the Facade WHU dataset in Paris from Kong and Fan 
(2020). There are three subnetworks in Kong and Fan’s work, and we only chose the 
window/door/balcony detection network. This model used Stochastic gradient descent 
(SGD), with momentum = 0.97 and weight decay = 0.00045 as the optimizer. The 
weighted multipart loss is also used as the loss function. This model was trained on 
a computer equipped with two NVIDIA 1080Ti GPUs. In the Facade WHU dataset, we only 
used the annotations of window, door and balcony to train the facade elements detection 
network, and it achieved state-of-the-art results: mAP = 71.6% and F1 score = 67.3%, 
where mAP is the mean average precision of objects from the three classes. We followed 
the standard definition of F1 score, where F1 score = 2� Precision�Recall

PrecisionþRecall . In the F1 score, 
precision = TP

TPþFP , and recall = TP
TPþFN . Here, TP, FP, TN, and FN mean true positive, false 

positive, true negative, and false negative, respectively. The visualization results are 
shown in Figure 3.

3.2.2. Results of 3D building modeling
The pretrained model for facade elements extraction used 850 images in Paris, France 
from the Facade WHU dataset as training and test data. Hence, to ensure that our 
workflow can work in different architectural styles, we chose five buildings from 
Heidelberg, Germany, and five buildings from Paris, France as test data. These images 
were from open-source VGI platforms Mapillary (Mapillary, 2020) and Flickr (Flickr, 2020). 
We used three metrics to evaluate the results of 3D building modeling. These three 
metrics are component precision (Pc), component recall (Rc), and component integrality 
(Inc), where Pc and Rc follow their standard definitions in computer vision, and Inc is 
defined by ourselves. TPc, FPc, TNc, and FNc are defined as true positive, false positive, true 
negative, and false negative of facade elements in every class. 

Pk
c ¼ TPk

c= TPk
c þ FPk

c

� �
k ¼ 1,2, . . . ,Nc (10) 

Rk
c ¼ TPk

c= TPk
c þ FNk

c

� �
k ¼ 1,2, . . . ,Nc (11) 

where / is the division operator. The left side of the operator represents the number of 
corresponding objects, and the right side represents the total number of corresponding 
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objects. Nc is the number of classes. The number of facade elements in a building is usually 
less than 100, which means that a few false or missing detections will seriously affect the 
percentage of these three metrics. Hence, compared with the percent symbol, %, the 
division operator,/, can better represent the performance of 3D building modeling.

Unlike Pc and Rc for per-class evaluation, Inc is designed for comprehensive evaluation. 
In 3D building modeling, we are more concerned with the total number of correct objects 
that were actually retrieved than the correct objects among the whole retrieved objects. 
Hence, we define Inc as the ratio of the total number of the correct facade elements that 
were actually retrieved to the actual number of facade elements, which is similar to the 
definition of Recall. In the actual number of facade elements, the classes were not 
considered. Inc is presented as follows. 

Inc ¼
XNc

k¼1

TPk
c=Na k ¼ 1,2, . . . ,Nc (12) 

where Nc is the number of classes and Na is the actual number of facade elements.
The facade elements that are obscured by trees, people, and other foreground were not 

calculated in Pc, Rc , and Inc because the ground truth of these facade elements cannot be 
obtained. The statistical modeling results of the 10 buildings are shown in Table 1. The 
buildings from Heidelberg, Germany are numbered 1 to 5, and the buildings from Paris, 
France are numbered 6 to 10. From the table, we can see that the overall modeling integrality 
of our workflow Inc is higher than 75% in various complex scenes. When facing two complex 
tasks of street-level 3D building modeling, (1) buildings with complex illumination and serious 
perspective distortion such as No. 2, 4, 7, 8, and 10, and (2) buildings with many facade 

balcony doorwindow

Figure 3. Visualization results for extracting facade elements locations (Containing different views, 
lighting, and architectural styles).
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elements such as No. 1, 2, 3, 5, and 9, our workflow can achieve stable 3D building modeling 
results with the Inc higher than 85%. At the same time, our workflow achieves impressive 
performance in the modeling of the key class. For the key class window, both of component 
precision Pc and recall Rc, are higher than 67%. In the case of buildings with more than five 
windows, the Pc and Rc of window are even higher than 80%. Moreover, for the modeling 
results of buildings in Paris and Heidelberg, there are the similar Incs of building models in 

Table 1. Statistic modeling results of the 10 buildings.
Building No. 1 2 3 4 5

Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc

window 19/21 19/21 18/19 18/19 18/19 18/18 10/12 10/10 66/66 66/68
balcony 3/3 3/4 0/0 0/1 - - - - - -
door - - 1/1 1/1 1/1 1/1 1/1 1/2 2/5 2/2
Inc 22/25 19/21 19/19 11/12 68/70

Building No. 6 7 8 9 10

Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc

window 4/6 4/4 10/12 10/10 2/2 2/3 22/22 22/23 13/16 13/13
balcony 3/3 3/3 10/10 10/10 - - 19/19 19/20 2/2 2/4
door 0/0 0/1 3/3 3/4 1/1 1/1 1/1 1/1 0/0 0/1
Inc 7/8 23/24 3/4 42/44 15/18

balcony doorwindow roof

1

2

3

4

5

6

7

8

9

10

Figure 4. Qualitative result of 3D building modeling. The first and third columns are the original 
images of every building. The second and fourth columns are the 3D modeling results of every 
building through our workflow.
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both cities. Hence, our workflow can be used for buildings with different architectural styles 
without extra work. The qualitative results of 3D building models are shown in Figure 4.

3.2.3. Performance of the platform
In addition to evaluating the performance of building extraction and modeling in 
our interactive platform, we tested the performance of our entire workflow. The 
modeling time of our workflow, T, was used for evaluation. Modeling time refers to 
the running time from when the user saves their drawing to the 3D building 
model shown on our website. Except for the time of facade elements extraction 
and 3D building modeling, the I/O time between the front-end and back-end was 
planned to be included to offer a more comprehensive evaluation. Given the differ-
ent background of users, there usually is a big difference among them finishing 
user interaction, such as uploading images and drawing corresponding building 
facades. Hence, this time is not included in the modeling time T. Our platform was 
tested on a local area network (LAN). In our preliminary test, we found that the I/O 
time is less than 1 ms and can be ignored. The convolutional neural network takes 
most of the modeling time. Hence, in further tests, the I/O time was not taken into 
account, and the time taken by the convolutional neural network was tested in two 
different modes: GPU mode and CPU mode. In the GPU mode, we used an NVIDIA 
1080Ti GPU to test the modeling time. The average modeling time in GPU mode aTG 

= 2.03 s, and the maximum modeling time in GPU mode mTG = 6.62 s. In the CPU 
mode, we used an Intel 8700 K CPU to test the modeling time. The average 
modeling time aTC = 15.35 s, and the maximum modeling time mTC = 27.08 s. The 
modeling time of our platform in the GPU mode is much faster than that in the CPU 
mode. Even in the CPU mode, our interactive platform can still achieve the 3D 
modeling of simple buildings in 30 s, which is faster than most 3D building modeling 
methods.

Figure 5 illustrates our VGI3D platform. Users can upload images and draw facades of 
buildings using our website. The website for our platform is available at https://18.210.26. 
42:5002/facade/.

3.3. Usability testing

User interaction plays an important role in the interactive 3D modeling workflow. However, 
this is difficult to evaluate. Hence, we invited four students to experience and test our platform. 
Then user interaction module will be evaluated according to their feedback. Four students 
included two men and two women. One among them is an expert user of 3D city modeling, 
and the others are users focusing on other fields, such as spatial analysis. The usability testing 
didn’t follow any additional guidance from our development team. They were only told the 
purpose of the platform and the functions of every button and every workspace. Fortunately, 
we received positive responses from all four participants. In terms of user interaction logic, all 
the participants, both men and women, considered the interface to be clear and concise. As for 
3D modeling, our platform can model buildings at a rapid pace. The speed and completeness 
of the modeling were beyond their expectations. At the same time, the three participants 
without background in 3D city modeling were also able to construct 3D building models only 
with basic guidance as we mentioned before.
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4. Conclusions

In this study, we propose a new interactive platform, VGI3D, for 3D building modeling. This 
platform is mainly composed of user interaction, automatic facade elements extraction, 
automatic roof inference, and real-time modeling of 3D buildings. Our platform only uses 
one or two images and simple user sketching as input. The extraction of facade elements 
and building modeling are automatically achieved by an object detection network and 
inference in 30 s, leading the platform to realize fast and complete urban 3D building 
modeling with lower labor and time costs. The 3D modeling performance of our platform is 
evaluated on images captured by various mobile phones and basic digital cameras, in which 
buildings have different architectural styles. Our experimental results demonstrate the 
capability of our platform for lightweight 3D building modeling. We also conducted 
a usability testing by inviting four students to try our platform and then give feedback. 
Their feedback indicates that our platform is easy to use and the interface is user friendly.

For further progress on 3D building modeling, we have released our platform on 
https://18.210.26.42:5002/facade/. In the future, we will further improve our platform to 
model complex buildings with more facades, such as shopping complexes and museums. 
Moreover, we will try to support the geographical matching of building models in the 
platform to make it easier to apply to urban 3D and other fields.

(c) 3D building models(a) Our Platform

(b) Building parts extraction

Figure 5. Results of our platform. (a) Interface of our platform. (b) Result of facade elements extraction, 
which is a middle part of our workflow. (c) Final result of 3D building modeling shown on our website.
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