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Abstract

A uniform semiglobal exponential stability (USGES) proof for a time-varying

vector field guidance law used for path-following control of vehicles is presented.

A sliding mode control is introduced for heading autopilot design and Lyapunov

methods are used to derive the control law. The equilibrium point of the au-

topilot error dynamics is proven to be globally exponentially stable (GES). The

main result is a time-varying vector field guidance law in cascade with the au-

topilot. A theorem ensures that the equilibrium point of the cascaded system

is uniformly semiglobally exponentially stable. Both straight-line and curved-

path path following scenarios are considered in the presence of ocean currents.

Simulation studies are carried out to verify the theoretical results. The time-

varying guidance laws can also be applied to vehicles in general such as aircraft,

underwater vehicles, drones and autonomous vehicles.
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1. Introduction

Autonomous vehicles will have broad application prospects in the future

maritime industry. They are able to perform advanced operations and tasks

in dangerous or inaccessible places. Consequently, they have been widely used

both in navy applications and even some commercial applications such as marine5

survey, coast patrol, inspection and operation of underwater production system.

Guidance systems are critically important for the overall performance and safety

of autonomous vehicles [1], because they are concerned with the transient motion

behavior associated with the achievement of motion control scenarios such as

path following [2, 3], path tracking [4], and path maneuvering [5].10

For path-following control, the objective is to follow a predefined path, which

usually is specified by waypoints [6]. Raffo et al, [7] introduced a nonlinear

robust control strategy designed for underactuated mechanical systems for the

path tracking problem of a quadrotor unmanned aerial vehicle. Parametric

uncertainties of path-following control for articulated heavy-duty vehicles was15

studied by Barbosaet al, [8]. Zheng et al, [9], presented a novel path following

control method for autonomous airship and proved that the controlled closed-

loop system is asymptotically stable. Line-of-Sight (LOS) is a popular and

effective guidance law for autonomous marine vehicles and its properties have

been studied thoroughly in the literature, see [10, 11, 12, 13, 14, 15]. Classical20

LOS methods usually rely on a constant look-ahead distance by mimicking an

experienced sailor. LOS with a time-varying look-ahead distance, which depends

on the cross-track error was introduced by Lekkas et. al [16], and a dynamic

version of LOS can also be found in [17]. Recently, an integral LOS (ILOS)

has been proposed and extensively analyzed. It embeds an integral term that25

compensates the transverse disturbance [3, 18, 19, 20]. A conceptual new ILOS

based on adaptive control theory was proposed by Fossen and Lekkas in [2] and

it can compensate the drift forces effectively.

The stability analysis is an important and challenging topic for guidance and

control systems when used in autonomous marine vehicles. Do et al.,[21], pro-30
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posed a robust adaptive controller for underactuated ships. Stability analysis

and experiments of path-following for a underactuated ship were given in Refs.

[22, 23]. Global exponential stable (GES) is usually the most desired quality

of a closed-loop control system [24][25] since it guarantees additional robust-

ness and performance properties. However, it cannot be achieved for certain35

nonlinear system due to hard kinematic nonlinearities and singularities. For

LOS guidance problems, it is well known that the kinematics introduces satu-

ration through the trigonometric functions [26]. Global κ-exponential stability

as defined by Sørdalen and Egeland [27] was first proven for these problems and

later by Pettersen and Lefeber [28] who used a simplified vehicle model. This40

work has been further extended to a more complex ship model [29, 30]. More

recently, the stability results were strengthen to uniform semiglobal exponential

stability (USGES) by Fossen and Pettersen [26]. USGES is very important for

the robustness of a system with environmental disturbance. It is slightly weaker

than GES but stronger than global κ-exponential stability. Chaillet and Loria,45

[31], presented sufficient conditions for a cascade composed of nonlinear time-

varying systems that are uniformly globally practically asymptotically stable.

Lyapunov sufficient conditions for USGES of nonlinear time-varying systems

were presented by Fossen and Pettersen [26], and its robustness properties were

also discussed in [32].50

The vector field guidance law is a standard method and is widely used for un-

manned aerial vehicles (UAVs). In [33], global stability of a vector field guidance

law was proven using Lyapunov techniques. Global uniform bounded stability of

the vector field path-following system for arbitrary curves was presented in [34].

Nelson et al. [35] proposed a vector field guidance law for a small unmanned air55

vehicle and global asymptotic stability was proven. Recently, Xu and Guedes

Soares,[36] employed a vector field guidance law for path-following control of

underactuated marine vehicles, where the nonlinear maneuvering model was

estimated using system identification [37]. A comparison between the ILOS

guidance and the vector field guidance for an underwater vehicle was presented60

by Caharija et al. [38].
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The nonlinear controller for ship motion control was summarized in [39],

where a brief history of model based ship control system was presented. Re-

cently, many works on nonlinear controller for autopilot or motion control of

marine vessel have been reported. Oh and Sun [40] presented a model predic-65

tive control (MPC) for a way-point tracking of underactuated surface vessels.

Guerrero et al [41] employed an adaptive high order sliding mode controller for

trajectory tracking of autonomous underwater vehicle. Yu et al [42] used a fuzzy

adaptive control for bottom following of an autonomous underwater vehicle sub-

ject to input saturation. A review on fuzzy logic-based guidance and control for70

marine robotic vehicles was given by Xianget al,[43]. Sørensen and Breivik, [44]

evaluated the adaptive controllers for path-following control of marine surface

ship. Angelo et al [45] focused on the smooth behaviors when the autopilot of

a marine vessel switching among different controllers in a complex maneuvering

operation.75

The main contribution of this paper is to propose a novel time-varying vec-

tor field guidance law for which a proof is given that the equilibrium point of

the time-varying vector field guidance law in cascade with a heading autopilot

is USGES using cascaded theory. To the authors’ best knowledge only global

asymptotic stability of the vector field guidance law has so far been proven in80

the literature. The proposed vector field guidance law of this article is, however,

proven to yield USGES for straight lines and the result is also generalized to

curved paths. In order to obtain a cascaded system structure, a sliding mode

control is used for heading autopilot design. A Control Lyapunov Function

(CLF) is employed to derive the control law, which guarantees that the equilib-85

rium point of the subsystem is GES. Using cascaded theory, it is then possible

to show USGES of the whole system. Finally, in order to evaluate the perfor-

mance and robustness of the proposed time-varying vector field guidance law,

both straight-line and curved-line path following problems are studied under

the influence of ocean currents.90

The structure of this paper is as follows: Section 2 is a brief introduction to

the kinematics of path-following control problems. Section 3 offers a detailed
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description of a time-varying vector field guidance law. In section 4, a heading

autopilot using sliding mode control is presented, and the control law is derived

using a CLF and GES of the subsystem is proven. In section 5, a theorem is95

developed to guarantee USGES of the nonlinear time-varying cascaded system

and the detailed proof is also given in this section. Finally, in section 6 the

conclusions are presented.

2. Kinematics

A closed-loop guidance and control system for a marine craft is shown in100

Figure 1, where the crab angle β is directly measured [20]. The waypoints

are assumed to be specified by an operator. In this section, the kinemat-

ics of two-dimensional path-following guidance problems is briefly reviewed.

Two-dimensional path following is standard in the literature, because a three-

dimensional path-following problem can be solved independently in the hori-105

zontal and vertical planes. A marine craft is assumed to follow a predefined

straight or curved path as showed in Figure 2. Three frames are defined in Fig-

ure 2. For example, the curved path is defined in the North-East-Down (NED)

frame. The body-fixed frame is a moving coordinate frame that is fixed to the

craft. The origin of the body-fixed frame coincides with the centre of gravity.110

The path-tangential frame is a moving coordinate frame, whose origin is the

projection of the ship’s centre of gravity.

Waypoints
Generation

Guidance 
law

Autopilot
Marine 

craft

Operator input

Waves, wind and
Ocean currents

Figure 1: A typical guidance and control system for marine craft, where the crab angle β can

be compensated [20].
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Figure 2: Geometrical description of the path-following control problem.

2.1. Cross-track error

Consider a marine craft moving in a horizontal plane, a two dimensional

continuous C1 path was predefined as (xp(θ), yp(θ)), where θ is the variable. The

path is assumed to go through the predefined waypoints (xj , yj) for j = 1, ..., N .

The path variable θ propagates according to Fossen [6]:

θ̇ =
U√

x′p(θ)
2 + y′p(θ)

2
(1)

where, U is the speed over ground, U =
√
u2 + v2. the path tangential angle

γp(θ) is defined by (x′p(θ), y
′
p(θ)), as

γp(θ) = atan2(y′p(θ), x
′
p(θ)) (2)

where, (y′p(θ), x
′
p(θ)) is the first derivative at the point (yp(θ), xp(θ)). Hence,

the path-tangential reference frame can be found by rotating an angle γp(θ) in

NED reference frame using the rotation matrix:

R(γp(θ)) =

cos(γp(θ)) − sin(γp(θ))

sin(γp(θ)) cos(γp(θ))

 ∈ SO(2) (3)
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where, SO(2) is the special orthogonal group in dimension 2. By inspection of

Figure 2, the cross-track error can be calculated using (4): 0

ye

 = R(γp(θ))

x− xp(θ)
y − yp(θ)

 (4)

where (x, y) is the ship’s position, (xp(θ), yp(θ)) is the origin of the path-

tangential reference frame. Expanding (4) leads to the normal line:

y − yp(θ)
x− xp(θ)

= − 1

tan
(
γp(θ)

) (5)

and the cross-track error:

ye = −
(
x− xp(θ)

)
sin(γp(θ)) +

(
y − yp(θ)

)
cos
(
γp(θ)

)
(6)

As pointed by Fossen [2] and Samson [46], if the path is a closed curve, then

there will be infinite solutions of (5). Consequently, it is necessary to assume

that the path is an open curve. This means that the end point is different from

the initial point. A unique solution needs to be defined, for instance using the

result of Fossen and Pettersen [26].

θ∗ := arg min︸︷︷︸
θ≥0

{
U2

x′p(θ)
2 + y′p(θ)

2

}

Subject to (5)

(7)

This is a nonlinear optimization problem, which can be solved numerically. In

practice, the candidate that is closest to the previous θ∗, will be chosen from115

the all possible solutions θi(i = 1, ...,M) given by (5).

2.2. Kinematic equations

As presented in Chapter 2 of Fossen [6], the velocity of surge, sway and yaw,

(u, v and r) can be used to describe the kinematic equations of a marine vessel:

ẋ = u cos(ψ)− v sin(ψ)

ẏ = u sin(ψ) + v cos(ψ)

ψ̇ = r

(8)
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where ψ is the heading or yaw angle, which can be measured using a compass.

Differentiation of (6) yields:

ẏe = −
(
ẋ− ẋp (θ)

)
sin
(
γp (θ)

)
+
(
ẏ − ẏp (θ)

)
cos
(
γp (θ )

)︸ ︷︷ ︸
Term1

−
((
x− xp (θ)

)
cos
(
γp (θ)

)
+
(
y − yp (θ)

)
sin
(
γp (θ)

))
γ̇p(θ)︸ ︷︷ ︸

Term2

(9)

Hence, by substituting (5) into Term 2, the second line cancels. Term 1 can be

simplified due to the definition of γp(θ) in (2). Substitution of (8) into the time

differentiated cross-track error (9) gives:

ẏe = −ẋ sin
(
γp (θ)

)
+ ẏ cos

(
γp (θ)

)
= −

(
u cos (ψ)− v sin (ψ)

)
sin
(
γp (θ)

)
+
(
u sin (ψ) + v cos (ψ)

)
cos
(
γp (θ)

)
= U sin

(
ψ − γp (θ) + β

)
(10)

where the amplitude U =
√
u2 + v2 is the ground speed of a ship, which can be

directly measured using GNSS. The phase β = atan2(v, u) is recognized as the

crab angle. It is the difference in heading angle ψ and course angle χ. Moreover,

χ = ψ + β (11)

Finally, the differential equation for ye becomes:

ẏe = U sin
(
χ− γp (θ)

)
(12)

3. Time-varying vector field guidance law

The objective of this section is to propose a guidance law for accurate path

following for autonomous vessels. The vector field guidance law calculates a120

vector field around the predefined path to be tracked. Figure 3 provides an

illustration to understand how a vector field guidance law can be used for path

following control. In Figure 3, the vectors in the field are directed toward the
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East (m)

N
or

th
 (

m
)

Figure 3: Vectors around the path, generated by using the vector field guidance law.

path to be followed. They indicate the desired direction of vessel, and serve as

course commands to the autonomous vessel.125

The following time-varying vector field guidance law is proposed:

χd = ψd + β = γp − tan−1

(
sgn (ye)

(
|ye|
∆

)θ(t,ye)
)

= γp − sgn(ye) tan−1

((
|ye|
∆

)θ(t,ye)
) (13)

where, sgn(·) is the signum function. θ(t, ye) is a time-varying function to be

defined later and ∆ > 0 is a pre-defined constant. The course angle tracking

error satisfies:

χ̃ = χ− χd = ψ − ψd = ψ̃ (14)

Substituting (13) and (14) into (12) gives:

ẏe = U sin

ψ̃ − sgn(ye) tan−1

((
|ye|
∆

)θ(t,ye)
) (15)
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Using the property, sin(a+ b) = sin(a) cos(b) + cos(a) sin(b), gives:

ẏe = U sin
(
ψ̃
)

cos

tan−1

((
|ye|
∆

)θ(t,ye)
)

− sgn(ye)U cos(ψ̃) sin

tan−1

((
|ye|
∆

)θ(t,ye)
) (16)

which can be simplified by using the trigonometry equation, sin
(
− tan−1(x)

)
=

x/
√

1 + x2. Moreover,

ẏe = U sin(ψ̃)
∆θ(t,ye)√

∆2θ(t,ye) + |ye|2θ(t,ye)

− sgn(ye)U cos(ψ̃)
|ye|θ(t,ye)√

∆2θ(t,ye) + |ye|2θ(t,ye)

= −sgn (ye)
U |ye|θ(t,ye)√

∆2θ(t,ye) + |ye|2θ(t,ye)︸ ︷︷ ︸
f1(t,ye)

+ Uφ
(
t, ye, ψ̃

)
︸ ︷︷ ︸

g(t,ye,ψ̃)

ψ̃

(17)

where φ(t, ye, ψ̃) is defined as:

φ
(
t, ye, ψ̃

)
:=

sin
(
ψ̃
)

ψ̃

∆θ(t,ye)√
∆2θ(t,ye) + |ye|2θ(t,ye)

− sgn(ye)
cos
(
ψ̃
)
− 1

ψ̃

|ye|θ(t,ye)√
∆2θ(t,ye) + |ye|2θ(t,ye)

(18)

Assume that 0 < ∆min < ∆ < ∆max. Hence, the function φ(t, ye, ψ̃) ≤ c for all

ye and ψ̃, because
∣∣∣ sin(x)

x

∣∣∣ ≤ 1, and
∣∣∣ (cos(x)−1)

x

∣∣∣ ≤ 0.73 , then∣∣∣∣∣∣∣
∆θ(t,ye)√

∆2θ(t,ye) + |ye|2θ(t,ye)

∣∣∣∣∣∣∣ ≤ 1

∣∣∣∣∣∣∣
|ye|θ(t,ye)√

∆2θ(t,ye) + |ye|2θ(t,ye)

∣∣∣∣∣∣∣ ≤ 1

(19)

Consequently, it can be concluded that φ(t, ye, ψ̃) is upper bounded.
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4. Heading autopilot design

In this section, the nonlinear sliding mode controller is used for heading

autopilot design in order to obtain strong stability properties. The Nomoto

model is chosen because it is widely used for the describe the yaw dynamics of

a marine vessel [6, 47]. It was used to design the nonlinear ship steering system

[48]. Consider,

ψ̇ = r

T ṙ + r = Kδ + b0

(20)

where, T and K are the Nomoto time and gain constants, respectively. b0 ≤

bmax represents a bounded bias term due to environmental disturbance and

unmodeled dynamics. δ is the rudder deflection angle. Note that χ̃ = ψ̃ so it is130

sufficient to analyze the heading error dynamics, which is expressed in terms of

the sliding surface:

s :=
˙̃
ψ + 2λψ̃ + λ2

∫ t

0

ψ̃ (τ) dτ := ṡ0 + λs0 (21)

where s0 = ψ̃ + λ
∫ t

0
ψ̃(τ)dτ and λ is a design constant, which reflects the

bandwidth of the controller [6]. The error dynamics can be expressed in state-

space form as:  ˙̃
ψ

ṡ0

 =

−λ −λ

0 −λ


︸ ︷︷ ︸

A

 ψ̃
s0

+

1

1


︸︷︷︸

b

s (22)

Define the signal rr := r − s, and substitute into (20) gives:

T ṡ+ s = Kδ − T ṙr − rr + b0 (23)

Then the heading controller can be chosen as:

δ =
1

K

(
T ṙr + rr −Kds− ηsgn (s)

)
(24)

where Kd > 0 is the feedback control gain, which is used to speed up the

convergence of the tracking error s to zero. η ≥ bmax is a positive design gain,

which is determined by Lyapunov stability analysis [49]. It is well known that
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the switching term ηsgn(s) can lead to chattering. Hence, a signum function,

ηtanh(·), will used in Eq.24, as it serves as a low-pass filter and diminishes the

chattering. Consider the CLF

V2 = xTPx +
1

2
Ts2 (25)

where x = [ψ̃, s0]T and P = P T > 0 is given by

PA + ATP = −qI (26)

Here q > 0 is a specified constant. Hence, it follows that:

V̇2 = xT
(
ATP + PA

)
x + 2xTPbs

− (1 +Kd) s
2 + b0s− η|s|

≤ −q‖x‖2 + 2‖P ‖‖x‖|s| − (1 +Kd) s
2

(27)

From (27), the feedback control gain, Kd, need to be carefully chosen in order

to ensure that V̇2 < 0. Assume λmax(P ) is the maximum eigenvalue of P .

 q −λmax(P )

−λmax(P ) 1 +Kd

 > 0 (28)

Then the control gain can be defined as Kd > λmax(P )2/q − 1 > 0, which135

clearly implies that V̇2 is negative. Hence, the equilibrium point [ψ̃, s0]T = 0 is

GES (Theorem 4.10 in [24]). As shown by Bhat and Bernstein [50], mechanical

systems with rotational degrees of motion cannot be globally stabilized by con-

tinuous feedback due to the topological obstruction imposed by SO(3). Hence,

the GES property is based on the assumption that ψ̃ ∈ R and not (−pi, pi].140

However, if ψ̃ is mapped to (−pi, pi] when implementing the autopilot, this still

guarantees local exponential stability [51, 52]. As discussed in [2], it is practical

to treat Kd and η as tunable parameters, because it is easy to satisfy the gain

requirements for a marine craft described by the Nomoto model.

5. Stability of the nonlinear time-varying cascaded system145

The stability proof of the coupled guidance and control system is presented

in this section. As can be observed from Eq. (29), the ye dynamic equation is
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Figure 4: Error dynamics of the cascaded system, which is described by (29) and (31)

.

discontinuous. Non-smooth Lyapunov function are believed to be natural for

non-smooth dynamic systems [53], but, indeed, this will result a new source of

discontinuity, and complicate the stability analysis. Wu et al. [54] suggested to150

first consider the construction of smooth Lyapunov functions before resorting

to non-smooth ones. The smooth Lyapunov function also works for the present

dynamic equation, and more details can be found in Refs.[55, 56, 54] If the

guidance law (13) is chosen, the cross-track error (17) forms a nonlinear time-

varying cascaded system with the heading autopilot system in Section 3 as155

shown in Figure 4.

The overall system is a cascade system:

Σ1 :ẏe = −sgn (ye)
U |ye|θ(t,ye)√

∆2θ(t,ye) + |ye|2θ(t,ye)︸ ︷︷ ︸
f1(t,ye)

(29)

+ Uφ(t, ye, ψ̃)︸ ︷︷ ︸
g(t,ye,ψ̃)

ψ̃ (30)

Σ2 : ˙̃
ψ = f2(t, ψ̃) (31)

where f2(t, ψ̃) defines the heading tracking error dynamics as outlined in Section

4. The vehicle dynamics along with the heading controller is the driving system

Σ2 and the vehicle in combination with the time-varying vector field guidance

law constitutes the driven system Σ1. The yaw angle tracking error affects160

the convergence of the guidance system’s objective, which is to minimize the
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cross-track error ye.

Definition. The time varying function θ(t, ye) is non-decreasing and positive

semi definite, i.e. θ(t, ye = 0) ≥ 1. Furthermore,

θ′(t, ye) ≥ 0 (32)

Property. The time-varying function θ(t, ye) guarantees that the function g(t, ye) =

|ye|θ(t,ye)−1
is continuous positive defined and lower bounded. Moreover,

0 ≤ Cr ≤ g(t, ye) (33)

The main result of the paper is formulated in Theorem, which guarantees

that the cascade system (29)–(31) of the time-varying vector fields guidance law

and heading autopilot is USGES.165

Theorem. Assume the control law (24) is used to stabilize the system Σ2, and

that the guidance law (13) specifies the desired heading ψd angle for the system

Σ1. Then the equilibrium point (ye, ψ̃) = (0, 0) of the system (29)–(31) is US-

GES, if the function θ(t, ye) satisfies the Property, and the predefined parameter

∆ satisfies 0 < ∆min < ∆ < ∆max for speeds 0 < Umin < U < Umax.170

Proof. As shown in Section 3, the equilibrium point ψ̃ = 0 and thus χ̃ = 0 of

the heading autopilot system Σ2 given by (31) is GES. The nominal system (Σ1

system with ψ̃ = 0) is:

ẏe = −sgn (ye)
U |ye|θ(t,ye)√

∆2θ(t,ye) + |ye|2θ(t,ye)
(34)

The system (34) is nonautonomous since the function θ(t, ye) is time-varying.

Consider the CLF:

V1(t, ye) =
1

2
y2
e (35)

where V1(t, ye) > 0 if ye 6= 0. The time derivative is:

V̇1(t, ye) = −sgn (ye) ye
U |ye|θ(t,ye)√

∆2θ(t,ye) + |ye|2θ(t,ye)

= − U |ye|θ(t,ye)+1√
∆2θ(t,ye) + |ye|2θ(t,ye)

≤ 0

(36)
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since V1(t, ye) > 0 and V̇1(t, ye) ≤ 0, according to the Theorem 4.8 by Khalil

[24], the equilibrium point is uniformly stable. Moreover,∣∣ye(t)∣∣ ≤ ∣∣ye(t0)
∣∣ , ∀t ≥ t0 (37)

Rewriting (36) as in (39), and defining Φ(t, ye) as:

Φ(t, ye) :=
U |ye|θ(t,ye)−1√

∆2θ(t,ye) + |ye|2θ(t,ye)
(38)

gives

V̇1(t, ye) = −Φ(t, ye)y
2
e

(39)

For ∀ye ∈ Br, (where Br =
{
x ∈ Br : ‖x‖ ≤ r

}
), and from the Property it then

follows that:

Φ(t, ye) =
U |ye|θ(t,ye)−1√

∆2θ(t,ye) + |ye|2θ(t,ye)

≥ UminCr√
∆

2θ(t0,r)
max + r2θ(t0,r)

:= c(r)

(40)

Then

V̇1(t, ye) = −2Φ(t, ye)V1(t, ye) ≤ −2c(r)V1(t, ye),∀ye ∈ Br (41)

Considering (37), the above equation holds for all trajectories generated by the

initial conditions ye(t0). Using the comparison lemma (Lemma 3.4 by Khalil

[24]), Eq. (41) has the solution V1(t, ye) ≤ e−2c(r)(t−t0)V1(t0, ye(t0)). therefore,

ye(t) ≤ e−c(r)(t−t0)ye(t0),∀t ≥ t0 and∀ye(t0) ∈ Br (42)

Hence, it can be concluded that the equilibrium point ye = 0 of the nominal

system is USGES (Definition 2.7 by Loria [25]). Finally, under the Property, the

equilibrium point (ye = 0, ψ̃ = 0) of the cascaded system described by (29)–(31)

is USGES [26, 57, 58, 59].

Remark 1. The convergence parameter c(r) depends on the time varying func-175

tion θ(t, ye). The value of θ(t, ye) should increase with the cross-track error, ye.

This ensures that the system has a higher converging rate when the cross-track

error is large.
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Table 1: The principle particularities of “Esso Osaka” ship model .

Parameter Value Unite

Length Between perpendiculars 3.250 m

Breadth 0.530 m

Draft 0.217 m

Block coefficient 0.831

Number of rudder 1

Rudder area 0.0120 m2

Propeller area 0.0065 m2

Longitudinal CG 0.103 m

Displacement 319.40 kg

Remark 2. USGES is slightly weaker than GES, but in this case, GES cannot

be achieved due to the definition of the cross-track error dynamics (12), which180

is saturated due to the sinusoidal function.

6. Simulation study of an underactuated ship

In order to evaluate and compare the performance and robustness during

path following both straight lines and a curved path are used in the simulation

study. The ship considered is the 3-DOF (surge, sway and yaw) nonlinear math-185

ematical model of “Esso Osaka”. The scaled ship model is 3.25m length and

with one propeller and one rudder. It is a typical underactuated system. This

model is quite comprehensive and it gives highly realistic results [60]. System

identification method was used to estimate the hydrodynamic coefficients based

on manoeuvring tests[61][]. More details about the mathematical model and190

hydrodynamic coefficients can be found in [61].

The goal is to follow a trajectory, that is specified in terms of waypoints.

The waypoints are defined in Cartesian coordinates and their values are: wpt1 =

(40, 20), wpt2 = (120, 25), wpt3 = (160, 18), wpt4 = (200, 22), wpt5 = (280, 5),

16
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(b) Curved path case

Figure 5: Path following of the underactuated ship using time-varying Vector Field guidance

law in the presence of ocean currents. In this case, Uc = 0.4 m/s, β = 180 deg, and ∆ = 2Lpp.

wpt6 = (360, 20), and wpt7 = (440, 18) where the units are meters. The straight195

path is obtained by connecting the adjacent waypoints with a straight line di-

rectly, and the curved path is generated using cubic Hermite spline interpolation

(CHSI), see [20]. The geometrical information of the predefined paths and the

ocean current are presented in Figure 5. It is also seen that the curved path can

connect the predefined waypoints successfully. Without loss of generality, the200

initial position of the ship is assumed to be the origin. During the simulation,

the ship moves under the influence of an ocean current with constant magni-

tude and direction (Uc = 0.4 m/s and βc = 180 deg) in the NED frame. The

rudder saturation (δ ≤ 35 deg) and the initial conditions are given: U0 = 0.41

m/s, ψ0 = 26 deg and r0 = 0. The desired speed is kept constant during the205

simulation.

The heading controller parameters are selected: Kd = 0.4, η = 1 and λ = 0.1.

The time-varying function has been chosen as: θ(t, ye) = 0.4 |ye|+ 1, while the

17
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(b) Curved path case

Figure 6: Heading angle, Surge speed (desired versus true) and sway speed from the simula-

tions.

time-varying vector field guidance law is given by (43). The time-varying func-

tion increases with ye, and the function, g(t, ye) = |ye|θ(t,ye)−1
= |ye|0.4|ye| ≥

18
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(b) Curved path case

Figure 7: Course angle (desired versus true) and drift angle from the simulations.

e−
2
5/e ≈ 0.86 > 0. It is continuous, positive and globally lower bounded. Ob-

viously, the proposed time-varying vector field guidance law satisfies Property
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Figure 8: Cross-track error and rudder angle of the underactuated ship following the straight

path (blue) and curved path (red) in the presence of ocean currents. In this case, Uc = 0.4

m/s, β = 180 deg, and ∆ = 2Lpp.

and hence the system equilibrium point is USGES. The predefined parameter,

∆ = 2Lpp is chosen twice the ship length. When the ship is moving along

the straight-line path a switching mechanism for selecting the next waypoint is

needed. For this purpose a circle of acceptance with radius, R = 2Lpp around

the waypoints is chosen as suggested in reference [6].

ψd = γp − sgn(ye) tan−1

((
|ye|
∆

)0.4|ye|+1
)
− β (43)

Figure 5 shows the trajectory of the ship during path following for straight

lines and a curved path. As shown in the figure, the ship can follow the straight-

line path and curved path in the presence of an ocean current.

In Figure 6, the heading angle and surge speed (desired versus true) are210

presented. For both cases, the heading autopilot has excellent performance.

The sway speed is also shown in Figure 6, for curved-path path following, the

fluctuation of sway speed is smaller. The course angles (desired versus true) as

well as the crab angle, are plotted in Figure 7. For curved-path path-following,

20



the resulted crab angle is smoother and has smaller fluctuations compared with215

the straight-line path following. Figure 8 shows the cross-track errors and rud-

der angles during straight-line path following and curved path following. As

shown in the above figure, the curved path following controller has better per-

formance and resulted in smaller cross-track errors compared with the straight-

line path-following case, and a smoother rudder angle was deflected when the220

ship following the curved path.

7. Conclusions

This paper presented a nonlinear time-varying vector field guidance law for

path following, which is proven to be uniform semiglobal exponential stable

(USGES). The main result was formulated as a theorem, which uses nonlin-225

ear cascaded stability theory. In order to obtain a cascaded system structure,

a Lyapunov-based sliding mode control has been used for heading autopilot

design. The heading controller renders the equilibrium point of the heading er-

ror globally exponentially stable (GES). The heading autopilot system together

with the time-varying vector field guidance law forms a nonlinear cascade. Us-230

ing Lyapunov stability theory for nonlinear cascaded systems, we were then able

to show USGES.

To evaluate the performance and robustness of the total system, a 3-DOF

(surge, sway and yaw) nonlinear mathematical model of an underactuated tanker

was considered in a simulation study. For this purpose the mathematical model235

of the Esso Osaka was used. This ship has been modeled with great accu-

racy using model tests and this gave confidence in the results. The waypoints

were specified by the operator, and the desired paths were generated by con-

necting all the waypoints using straight line segments and cubic Hermite spline

interpolation, respectively. Both straight-line and curved-line path following240

in the presence of an ocean current were considered. The simulations showed

that the proposed time-varying vector field guidance law is capable of following

the predefined paths independent of if they are represented as straight lines or

21



curves. The time-varying guidance law can also be applied to other vehicles e.g.

autonomous vehicles such as unmanned ground vehicles (UGVs), autonomous245

underwater vehicles (AUVs), unmanned aerial vehicles (UAVs), just to mention

a few.
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