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Abstract

Following the introduction of image manipulation tools such as Adobe Photoshop
in the early 2000s, the public trust in image authenticity dropped and the need for
the development and deployment of image authentication techniques became ap-
parent. Recently, we face a similar situation for video content as photo-realistic
video manipulation tools like Deepfake are becoming available and within the
reach of the general public as well as bad actors. In human to human commu-
nication, face and voice modalities play a crucial role, and not surprisingly, the
same modalities are most under attack by forgers.

Historically, the task of audiovisual content authentication was the focus of the
field of multimedia forensics, with more than 15 years of accumulated literature.
Following the increase in the popularity of biometric systems in practice, these
systems have also faced similar challenges and felt the need for content authen-
tication. Consequently, the field of presentation attack detection is born to protect
biometric systems against fake biometric presentations. Due to the parallel nature
of the presentation attack detection problem, defined as protecting a biometric sys-
tem from presentation attacks, to the audiovisual content authentication problem,
defined as protecting the viewer from fake content, the field of biometric present-
ation attack detection can provide a solid basis for approaching the multimedia
authentication problem.

The primary objective of this thesis is to address the audiovisual content authen-
tication problem on the face modality by vulnerability assessment and mitigation
of detected vulnerabilities with reliance on biometric and presentation attack de-
tection knowledge. To this end, after producing a taxonomy of existing gener-
ation techniques, subjective tests are done to assess the vulnerability of viewers
to the most prevalent generation techniques with reliance on data collected from
the wild. Following this process, the generation techniques the viewers are most
susceptible to were identified. The discovered vulnerabilities are then mitigated
individually by the introduction of effective detection techniques that outperform
existing solutions. Furthermore, the vulnerability of existing general-purpose de-
tection methods was analyzed and it was discovered that these methods show lim-
ited generalization capacity when faced with new generation methods. To mitigate
this vulnerability, with reliance on an anomaly extraction approach, a generalizable
detection method is introduced and empirically evaluated against the state-of-the-
art methods. Additionally, all the datasets that are collected during the course of
this thesis work are made publicly available to stimulate further research on this
topic.
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Chapter 1

Introduction

The advent of deep learning-based generation techniques in recent years along
with the reduction in the cost of computation resulted in the feasibility of low-cost
photo-realistic video generation. The introduction of such methods as open-source
tools on the internet provided an opportunity for bad actors to weaponize them for
personal and political gain. Relying on the fact that the face is the main modality
of human communication in daily life, methods that can realistically produce fa-
cial videos have an immense potential for abuse. The infamous Deepfake1 is an
example of such tools that was initially shared on Reddit and used for the purpose
of generating fake pornography and later for fake news generation. These tech-
nologies have started to be seen as a big cyber threat against business, politics,
identity, national security, and democracy to an extent that a bill was passed in the
US senate2 to report at specified intervals on the state of digital content forgery
technology and some social media platforms announced that they would remove
these content in the wake of the 2020 US elections3. Consequently, it is paramount
to address the detection of newly introduced fake content to preserve trust in video
content. Historically, the detection of fake content has been the focus of the field of
multimedia forensics. However, the research community can benefit greatly from
the accumulated knowledge in relevant fields of biometric presentation attack de-
tection and machine learning.

Relying on the strong background of the Norwegian biometrics laboratory in the

1https://github.com/deepfakes/faceswap
2https://www.congress.gov/bill/116th-congress/senate-bill/2065
3https://www.reuters.com/article/us-facebook-deepfake/facebook-

to-remove-deepfake-videos-in-run-up-to-2020-u-s-election-idUSKBN
1Z60JV

3

https://github.com/deepfakes/faceswap
https://www.congress.gov/bill/116th-congress/senate-bill/2065
https://www.reuters.com/article/us-facebook-deepfake/facebook-to-remove-deepfake-videos-in-run-up-to-2020-u-s-election-idUSKBN1Z60JV
https://www.reuters.com/article/us-facebook-deepfake/facebook-to-remove-deepfake-videos-in-run-up-to-2020-u-s-election-idUSKBN1Z60JV
https://www.reuters.com/article/us-facebook-deepfake/facebook-to-remove-deepfake-videos-in-run-up-to-2020-u-s-election-idUSKBN1Z60JV
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field of biometrics and presentation attack detection, the research for this thesis
was initiated to utilize the knowledge towards the detection of fake audiovisual
content. This thesis aims to investigate the vulnerabilities of the viewers and the
existing detection techniques, and provides solutions for mitigation of the identi-
fied vulnerabilities.

1.1 Motivation and Problem Description
Methods for the generation of realistic image content have existed for decades and
the media environment, as well as individuals, have adapted to the presence of
these techniques. However, due to the complexity and cost of photo-realistic video
generation, a video has been considered a reliable medium and valid evidence by
society. Traditionally, realistic facial video manipulation has been challenging and
required sophisticated editing tools, complex and time-consuming processes, and
domain expertise. Early generation methods required a significant amount of data
from a target individual to only modify lip motion. The advent of deep learning
and the availability of low-cost computational resources has changed this situation
and the quality of synthesized materials that become available. Advancements
in data availability and the evolution of deep learning techniques resulted in new
methods for automated photo-realistic video synthesis as well as manipulation of
facial attributes and facial behavior. Open-source software such as Deepfake and
FaceSwap4 and even mobile applications such as Reface5 have been released fa-
cilitating the generation of fake videos without the requirement of experience and
expertise.

Many of the introduced generation methods are developed with the innocent pur-
pose of improving realism in movie production and video games by the enter-
tainment industry. These very same technologies, however, have been abused for
blackmailing people and producing fake content to spread misinformation and ma-
nipulate public opinion. These technologies have shown great potential for causing
significant damage to trust in society and fake videos depicting an individual have
become a great public concern. According to the visual threat intelligence service
Sensity, up until the writing of this thesis, more than 3, 000 public figures were
targeted using more than 80, 000 fake videos6. Furthermore, the number of Deep-
fakes online is roughly doubling every six months showing exponential growth7.

Consequently, the detection of fake audiovisual content has received significant

4https://github.com/MarekKowalski/FaceSwap
5https://reface.ai
6https://sensity.ai/
7https://sensity.ai/deepfake-threat-intelligence-a-statistics-s

napshot-from-june-2020/

https://github.com/MarekKowalski/FaceSwap
https://reface.ai
https://sensity.ai/
https://sensity.ai/deepfake-threat-intelligence-a-statistics-snapshot-from-june-2020/
https://sensity.ai/deepfake-threat-intelligence-a-statistics-snapshot-from-june-2020/
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attention from not only public institutes but also industry and big corporations.
Governmental bodies, as well as the news industry, are becoming aware of the po-
tential menace carried by these technologies. There is a growing interest in the
detection of this content demonstrated through the increasing number of dedicated
workshops in top conferences as well as international projects such as MediFor
project8 funded by Defense Advanced Research Project Agency (DARPA) and
competitions such as Media Forensics Challenge initiated by the National Institute
of Standards and Technology (NIST) and the recent Deepfake Detection Chal-
lenge9 organized by Facebook.

Traditional detection methods developed in the field of media forensics relied on
handcrafted methods using features such as in-camera fingerprints and out-camera
fingerprints. These methods are highly dependent on the specific recording con-
ditions and scenarios and are not robust against unseen conditions. Making the
matters worse, when audiovisual content is shared on the internet, they are often
automatically modified by the sharing platform via operations such as compres-
sion and resize, as well as meta-data removal, further reducing the effectiveness
of methods reliant on acute artifacts. Despite the continuous research and the
numerous tools that are developed by the forensics community in the past, the re-
cent changes in the generation techniques and sharing environment challenge the
existing forensic methods and demonstrates the need for further investment and
development of new and timely detection mechanisms. Even though deep learning
and low-cost computational resources provided the grounds for the development
of the generation techniques, the same advancements can also provide an oppor-
tunity for the development of more effective detection techniques. Large efforts
are being directed towards proposing new detection methods as well as improving
the existing solution.

In the arms race between the generation and detection technologies, it is crucial to
have a clear understanding of the vulnerabilities that exist on the detection side and
mitigate them accordingly. In contrast to the presentation attack scenario, where
the system to be protected was a biometric capture device of the biometric system,
humans have an innate acute ability to detect fake audiovisual content based on the
semantic and physical inconsistencies present in the video (55). This ability has
historically made photo-realistic generation a difficult problem, especially with re-
gards to the objects that humans are most familiar with such as the human face
(56). Therefore, detection methods need to complement the detection abilities of
humans rather than replacing them to be able to protect viewers from fake content.
Subsequently, an understanding of which generation techniques the viewers are

8https://www.darpa.mil/program/media-forensics
9https://www.kaggle.com/c/deepfake-detection-challenge

https://www.darpa.mil/program/media-forensics
https://www.kaggle.com/c/deepfake-detection-challenge
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most susceptible to is crucial. Another factor that limits the vulnerability surface
is the technological feasibility and cost of generation techniques. Without a clear
picture of which generation methods are widespread and what is possible with the
existing technologies, the scope on which a proposed detection method may be
effective can be limited, limiting its applicability in real life. Thus, this disserta-
tion work primarily focuses on discovering and addressing the vulnerabilities of
viewers and existing general-purpose detection solutions with reliance on a clear
understanding of the attack surface.

Video content provides a rich collection of information that can be used for de-
tection, including the visual, behavioral, and auditory modalities as well as the
correspondences between them. However, utilizing all the information available
simultaneously would require extensive investment in research in multiple direc-
tions and thus falls outside the limits of a Ph.D. thesis. Consequently, the strategy
taken in this thesis is to prioritize and invest in the most promising modalities for
detection. Despite the great developments in the field of speech synthesis, the pro-
gress has been much slower compared to the visual modality where dozens of new
generation techniques are introduced every year. For example, tools such as Deep-
fake which are at the center of attention only modify the visual modality. On the
other hand, realistic synthesis in the visual modality has been a much more chal-
lenging task due to the larger number of details that are required to be perfected.
As a result, it can be argued that detection based on the visual modality would
be the most promising direction for research as it both poses the major threat and
provides the biggest opportunity for detection. As such, in this thesis, similar to
the general trend in the community, the visual modality is focused on as the main
modality for detection.

1.2 Research Objectives
The research objectives of the thesis are to discover the vulnerabilities of the view-
ers and existing detection methods and mitigate them. To achieve this, the goal of
this thesis can be broken down into the following objectives:

1. A study on possible facial video generation methods with existing technolo-
gies needs to be conducted to serve as a basis for vulnerability assessment.

2. The vulnerabilities of the viewers need to be assessed against the most pre-
valent generation techniques.

3. New detection methods need to be proposed for the discovered vulnerabilit-
ies and their performance empirically proved in real-life scenarios.
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4. The vulnerabilities of the existing detection methods need to be assessed via
rigorous testing in real-life scenarios.

5. The discovered vulnerabilities need to be mitigated by the introduction of
new detection methods and their evaluation in realistic scenarios.

Based on these research objectives, the following research questions are formu-
lated:

RQ 1: What methods of photo-realistic facial video generation are feasible
with the existing technology and which ones are the most difficult to
detect by viewers? (Related chapters: 5, 6)

Following the introduction of Deepfakes, most of the existing literature has
a focus on the generative adversarial network (GAN) based facial video
generation techniques. However, GAN-based methods are not the only
methods of generation, and there is a much wider range of generation
methods evident from the various techniques used in the movie industry
before the introduction of Deepfakes. Neglecting other generation tech-
niques can result in the development of detection methods that have fun-
damental weaknesses against them. Thus, it is important to study possible
methods of generation to have a complete picture of the threats the viewers
may face in reality. Furthermore, as the viewers have a high sensitivity to
artifacts on a face image, methods that have not yet reached a sufficient
level of realism are easy to recognize as fake and thus do not pose a real
threat. For example, earlier subjective tests done on Deepfakes have shown
that the videos generated by this method can be detected by viewers with
high accuracy if the video quality is sufficient. Consequently, the purpose
of this research question is to study the threat environment by providing
a comprehensive overview of possible generation methods, and identifica-
tion of the methods which pose a real threat to the viewers, i.e. are hard
to detect by individuals. This could be achieved by an extensive review of
possible generation techniques and carefully designed subjective tests and
would provide a solid ground for tackling the detection challenge based on
empirical evaluation of the threat environment.

RQ 2: How can we detect the generation methods that the viewers are most
vulnerable to? (Related chapters: 7, 8)

After the identification of the most effective generation techniques, it is
crucial to propose an effective detection mechanism to mitigate the vul-
nerability. Otherwise, the results of the previous research question would
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serve as a mere guide for forgers on the vulnerabilities of the viewers. The
purpose of this research question is to measure the performance of the ex-
isting solutions for detection and introduce new detection methods that per-
form well in real-life scenarios. To this end, feature sets that have enough
discriminative capacity need to be found and new detection mechanisms
need to be introduced. The proposed methods must be evaluated quantitat-
ively in comparison to the existing solutions on datasets that represent the
deployment conditions.

RQ 3: Will the existing detection methods satisfy the requirements of detec-
tion in real-life scenarios? (Related chapter: 9)

In recent years, there has been a growing interest in general-purpose end-
to-end detection methods that provide a unified detection mechanism cap-
able of detecting various generation techniques simultaneously. For the
task of fake facial video detection, there has been a growing number of
such methods since the introduction of Deepfakes with near-perfect detec-
tion rates. Despite the appealing results, the performance of these methods
is often only evaluated on specific conditions and thus would not directly
signify their performance after deployment. One of the shortcomings of
these methods is their tendency to overfit the training conditions. The pur-
pose of this research question is to evaluate the performance of the existing
methods in a more realistic scenario where the detector is tasked with the
detection of fake videos collected from the wild. As a result, the specific
shortcomings of these methods can be discovered, paving the way for re-
search into more effective detection techniques.

RQ 4: How can we address the vulnerabilities of the existing methods and
improve the applicability in real-life scenarios? (Related chapters: 10,
11)

As general-purpose classification methods are tasked with optimizing their
performance on a specific training scenario, these methods would internally
extract discriminative feature sets that perform best for classification and
weight them according to their importance for detection to maximize their
objective function. However, if in testing conditions there is a mismatch
between the discriminative feature sets or their relative importance, their
performance can significantly drop. The purpose of this research question
is to answer this limitation by the introduction of methods robust to a mis-
match between training and test conditions. To this end, we probe into the
use of unbiased anomaly representations for one-class and two-class clas-
sification for detection. This approach would enable the preservation of a
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more complete feature set for detection, as well as the introduction of a
more robust importance weighting scheme.

RQ1

RQ2

RQ3

RQ4

Article 1
(Chapter 5)

Article 2
(Chapter 6)

Article 3
(Chapter 7)

Article 4
(Chapter 8)

Article 5
(Chapter 9)

Article 6
(Chapter 10)

Article 7
(Chapter 11)

Taxonomy
Subjective

Vulnerability
Assessment

Behavioral Face
Recognition

Frame Interpolation
Detection

Assessment of the
State-of-the-art

Generalizable Digital
Attack Detection

Generalizable
Presentation Attack

Detection

Figure 1.1: Research outline and published articles as per the research questions.

1.3 Research Methodology
Considering the aforementioned research questions as a basis, the following gen-
eral research methodologies are designed. These methodologies are used through-
out the thesis work and target achieving research objectives.

• Data Collection from the Wild
There is a lack of datasets in the literature that address the facial video au-
thenticity problem on various generation methods. The existing datasets
such as the Deepfake detection challenge (DFDC) dataset (17) often only
contain data from one generation technique or are small datasets collected in
a controlled environment and lack the variability observed in the real world.
Reliance on datasets without sufficient variability to represent real-life con-
ditions for the development of detection techniques may result in detectors
with low detection performance in deployment as shown in the results of
the DFDC challenge. To avoid such limitations, I relied on the most di-
verse datasets available and introduced large-scale datasets for cases where
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there is no such dataset in the literature. As a result, three datasets were in-
troduced in Chapters 7, 8, and 9 based on data collected from the wild. All
these datasets are based on videos collected from YouTube (a popular video-
sharing platform), and no unnecessary constraints were enforced during data
collection to preserve diversity.

• Vulnerability Assessment

Without a clear picture of the existing vulnerabilities, the allocation of re-
search effort can have a lesser impact on real-world applications. Con-
sequently, before investing research effort in the direction of detection of
specific generation techniques, a comprehensive vulnerability assessment
based on data collected from the wild is done to find the most immediate
threats that need to be addressed. Chapters 6 and 9 represent the vulnerab-
ility assessment studies. The first study is a subjective vulnerability assess-
ment study in the online form on participants’ personal devices to simulate
the conditions of real-world encounters. In the second study, the vulnerab-
ilities of a collection of existing detection methods are studied against test
conditions corresponding to the diversity that exists in real-world data.

• Feature-set Selection

Proper selection of feature sets form the basis of any detection mechanism
and is of utmost importance, as a limited feature set may lack enough dis-
criminative information needed for detection. Furthermore, the forgers are
actively working towards attacking the feature sets that are commonly used
by the viewers and the detectors to maximize their chance of success (11).
In chapters 7, 8, and 10, three novel feature sets were introduced based on
information that are commonly neglected in a video signal. These features
are in order, face behavioral biometric information, frame interpolation pre-
diction errors, and observation log-likelihood for individual pixel intensities.
Furthermore, it is shown that by the use of reliable feature sets, the detection
complexity is reduced significantly, and it becomes possible to use much
simpler detectors for detection. The introduced feature sets increase the bar-
rier for successfully bypassing the detector as the forger is required to invest
in attacking additional feature sets which are difficult to model.

• Detection Algorithms

After the selection of an appropriate feature set for detection, robust detec-
tion algorithms need to be introduced which can utilize them adequately.
Deep learning-based algorithms have consistently shown their superiority to
traditional handcrafted methods and thus are the machine learning method of
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choice throughout this thesis. In Chapter 7 the use of embedding spaces for
both features and identities is proposed by utilization of triplet loss objective
function and statistical pooling over time. In Chapters 8 10 the discriminat-
ive power of the selected features made it possible to perform detection with
primitive convolutional neural network (CNN) architectures. In Chapter 11
to simplify the detection network, a principal component analysis (PCA)
based dimensionality reduction scheme is introduced followed by a simple
deep neural network (DNN) for detection. Furthermore, assuming the ra-
tionality of the attacker, to achieve the objective of minimizing the error rate
for the most powerful attack, a new loss function is introduced which exag-
gerates the loss for most powerful attacks and suppresses the loss for easily
detectable samples. In all cases, due to the adequacy of the selected feature
set, it was possible to utilize smaller detectors compared to other methods in
the literature.

• Performance Metrics

In classification problems, the accuracy of classification is defined as the
percentage of correctly classified samples over all test samples. However, in
binary classification, this metric does not capture the whole picture, as the
accuracy depends on the decision threshold value. Consequently, the method
of choice for reporting the performance of these systems is the receiver oper-
ating characteristic (ROC) curves and their derivatives, notably the detection
error trade-off (DET) curve. These curves report the missed detection rate
and false alarm rates for every threshold value and make it possible to eval-
uate the missed detection rate of a system at any desired false alarm rate.
To represent the performance of a system in a single threshold independ-
ent value, the equal-error-rate (EER) measure is used which represents the
missed detection and false alarm rates on the point where these two values
are equal.

ISO-IEC 30107-3 (27) provides a set of metric definitions with the goal of a
unified metric vocabulary and improving the comparability of the proposed
methods in the field of presentation attack detection (PAD). Accordingly,
the terms attack presentation classification error rate (APCER) and bona fide
presentation classification error rate (BPCER) are used to report the missed
detection and false alarm rates of a PAD system respectively.
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1.4 List of Included Research Publications
The following publications are part of this dissertation:

1. A. Khodabakhsh, C. Busch and R. Ramachandra, "A Taxonomy of Audi-
ovisual Fake Multimedia Content Creation Technology," 2018 IEEE Confer-
ence on Multimedia Information Processing and Retrieval (MIPR), Miami,
FL, 2018, pp. 372-377.

2. A. Khodabakhsh, R. Ramachandra and C. Busch, "Subjective Evaluation of
Media Consumer Vulnerability to Fake Audiovisual Content," 2019 Elev-
enth International Conference on Quality of Multimedia Experience (QoMEX),
Berlin, Germany, 2019, pp. 1-6.

3. A. Khodabakhsh and H. Loiselle, "Action-Independent Generalized Beha-
vioral Identity Descriptors for Look-alike Recognition in Videos," 2020 In-
ternational Conference of the Biometrics Special Interest Group (BIOSIG),
Darmstadt, Germany, 2020, pp. 151-162.

4. T. Nielsen, A. Khodabakhsh and C. Busch, "Unit-Selection Based Facial
Video Manipulation Detection," 2020 International Conference of the Bio-
metrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2020, pp.
87-96.

5. A. Khodabakhsh, R. Ramachandra, K. Raja, P. Wasnik and C. Busch, "Fake
Face Detection Methods: Can They Be Generalized?," 2018 International
Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt,
Germany, 2018, pp. 1-11.

6. A. Khodabakhsh and C. Busch, "A Generalizable Deepfake Detector based
on Neural Conditional Distribution Modelling," 2020 International Confer-
ence of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Ger-
many, 2020, pp. 191-198.

7. A. Khodabakhsh, "Unknown Presentation Attack Detection against Rational
Attackers," arXiv preprint arXiv:2010.01592, 2020. (Submitted to IET bio-
metrics)



1.5. Scope and Outline of the Thesis 13

Additionally, during the course of the PhD, a number of other publications were
produced which are listed below:

1. A. Khodabakhsh, M. Pedersen, C. Busch, "Subjective Versus Objective Face
Image Quality Evaluation For Face Recognition," 2019 International Con-
ference on Biometric Engineering and Applications (ICBEA), Stockholm,
Sweden, 2019, pp. 36-42.

2. E. Haasnoot, A. Khodabakhsh, C. Zeinstra, L. Spreeuwers, R. Veldhuis,
"FEERCI: A Package for Fast Non-Parametric Confidence Intervals for Equal
Error Rates in Amortized O(m log n)," 2018 International Conference of the
Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2018,
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1.5 Scope and Outline of the Thesis
The main scope of this thesis is to investigate and effectively mitigate the vulner-
abilities of the viewers as well as the general-purpose detection methods against
various photo-realistic facial video generation techniques with reliance on compre-
hensive vulnerability assessment and robust deep learning based countermeasures.
The vulnerabilities of the viewers were evaluated through subjective tests on the
most prevalent generation techniques. The vulnerabilities of the existing detectors
were studied through rigorous tests on data from diverse generation techniques. To
this end, several datasets were produced and shared publicly using data collected
from the wild to address the lack of large public datasets on specific generation
techniques. Furthermore, for each discovered vulnerability, an appropriate feature
set is introduced and a detection mechanism is proposed for achieving accept-
able detection performance in real-life scenarios. With reliance on the distinction
between physical attacks (attacks generated before recording by a camera) and
digital ones (video editing or computer-generated), the thesis presents various ro-
bust machine learning countermeasures for each attack category via the use of
spatial and temporal features and proposes the utilization of complementary bio-
metric characteristics, prediction-based anomaly features, and reliable generation
artifacts to this end. The intended audience of the thesis is digital forensics and
biometric presentation attack detection professionals as well as researchers from
the fields of video processing and machine learning.
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This thesis is divided into three parts: Part I presents an overview of the thesis, Part
II presents the published articles with a focus on viewers’ vulnerabilities, and Part
III presents the published articles with a focus on detector generalizability. In Part
I, the first chapter discusses an introduction to the thesis by describing the motiv-
ation and problem description, followed by the research objectives and questions
as well as the methodology, list of published articles, and finally the scope of the
thesis. Chapter 2 provides a brief background on the subject to introduce the core
concepts relating to this study through explaining the related works to this thesis.
Chapter 3 provides a detailed summary of each of the research articles included in
this thesis and summarizes their contributions. Finally, Chapter 4 concludes this
part and provides a perspective for future research directions.

The research articles presented in Part II and III are reformatted versions of the
actual publications. Chapter 5 presents a taxonomy of facial video generation
techniques while Chapter 6 provides the results of the subjective tests designed
based on the taxonomy to evaluate the vulnerabilities of the viewers. Based on
the results of these articles, two generation techniques were identified and targeted
for the development of detection methods which are presented in Chapters 7 and
8. The proposed detection methods attempt to differentiate people based on their
facial behavior and detect inter-frame manipulations with reliance on frame in-
terpolation traces respectively. The weaknesses of the existing general-purpose
detectors are investigated in Chapter 9 through performance evaluation on data
collected from the wild. Based on the results of this study, efforts were concen-
trated on the development of a generalizable detection method based on anomaly
representations which are presented in Chapter 10 for digital attacks and Chapter
11 for physical attacks.



Chapter 2

Background and Related Work

A summary of the related work to this thesis is provided to give an overview of
the state of the matters at the time of the writing. First, the existing generation
techniques are summarized and organized into groups followed by a list of relevant
datasets in the literature. Afterward, detection techniques are described in relation
to generation techniques and the field of study they originated from. This chapter
provides the background necessary for understanding the concepts and methods
described throughout this document.

2.1 Generation Techniques
Generation techniques can be broadly categorized into physical and digital tech-
niques that take place before being recorded by a sensor (in this case a video cam-
era), and which take place on a recorded video by manipulation of the content or
outright synthesis respectively. Each category consists of widely different tech-
niques which are described briefly in this section. Furthermore, a summary of the
available datasets from both categories on the modality of the face is also provided.
For ease of interpretation, relying on the presentation attack detection terminology,
each generation technique is referred to as an attack. Furthermore, specific content
presented to the viewer would be called a probe.

2.1.1 Physical Attacks

Physical attacks can broadly fall into one of two subcategories, the attacks that
use a human or attacks that use an artificial object. Unfortunately, physical attacks
are understudied and the existing literature on physical attacks is limited to the
first article in this thesis (36). The use of artificial objects for realistic attacks is
infeasible with existing technology due to the complexity of recreating the com-
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(a) Real-F Mask (48) (b) Prosthetic Makeup1 (c) Video Rewrite (12) (d) Morph-cut (8)

(e) Video Face Replace-
ment (15)

(f) Face2face (74) (g) Synthesizing
Obama (73)

(h) VDub (21)

(i) RecycleGAN (7) (j) Every Smile is
Unique (80)

(k) Deep Video Portrait
(40)

(l) Dali Lives (45)

Figure 2.1: Examples of generation technologies.
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plex facial muscle configuration and movements, and no existing humanoid robot
has achieved a convincing behavioral and physiological resemblance to a target
individual. Consequently, existing attack methods are limited to the human cat-
egory, ranging from the use of look-alikes and identical twins to the application
of prosthetic makeup and masks. The use of look-alikes for deception has been
historically documented in cases such as the impersonation of a general during
World War II (14) as well as the use of political decoys by Adolf Hitler, Joseph
Stalin, Henry Kissinger, Saddam Hussein, and many others. Due to the difficulty
of finding cooperative look-alike actors for a specific individual, the application
of various levels of makeup can be used as a substitute to increase the likeliness
of an actor to a specific individual (65). For example, 3D masks (Figure 2.1(a))
can be built using soft materials with 3D printers and casting (25) and the cost of
creating such masks is getting lower. These methods are often publicly used for
political satire by actors such as Tracy Ullman in Tracey Breaks the News series1

(Figure 2.1(b)). These methods are also commonly used by government agencies
such as the FBI and CIA to infiltrate possible terrorist groups. As digital attacks
are becoming more cost-effective compared to physical ones, they are more likely
to be used in attacks.

2.1.2 Digital Attacks

Despite the availability of photo-realistic image editing tools, the application of
similar techniques for video editing has been too labor-intensive and thus limited
to high-budget applications. However, recently, thanks to the availability of higher
computational power and the advent of deep learning-based data-driven generation
techniques such as generative adversarial networks (GAN), many video-realistic
methods have been proposed in the last five years. For the purpose of this study,
a digital attack is defined as any digital process that alters content to change the
meaning conveyed by a video or outright synthesizes a video with a fabricated
meaning. Processes such as the application of imperceptible compression or cre-
ating a synthetic copy of an existing video are not considered attacks.

Traditionally, digital attacks were categorized as inter-frame and intra-frame tam-
pering as shown in Figure 2.2 where the former signifies temporal manipulation
and the later spatial manipulation. However, as new methods such as complete
synthesis and tampering by use of footage from different sources are introduced,
a new more representative categorization is needed to cover the whole range of
attacks. Tampering can be viewed as a spectrum according to their deviation from
the authentic sources as shown in Figure 2.3. Editing and inter-frame tamper-
ing can be used to cleverly change the order of frames to change the meaning

1https://www.imdb.com/title/tt6941630/

https://www.imdb.com/title/tt6941630/
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Figure 2.2: The traditional categorization of video tampering methods (31).

Figure 2.3: The spectrum of digital attacks (31)
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conveyed in footage to a desired one by an attacker in a seamless manner. Due
to the simplicity of these methods and their higher photo-realism, these methods
were explored for facial video synthesis early-on for applications such as audio-
visual speech synthesis and video dubbing (53). The first automatic face animation
technique (Figure 2.1(c)) was proposed in 1997 (12) where a dataset of visemes
was extracted from footage and concatenated by use of morphing to synthesize a
new sequence. Ezzat et al. (19) improved this method by proposing the use of a
single frame representation of visemes and pre-computed optical flow correspond-
ences to reduce the amount of data needed for synthesis. Recent methods such as
(8) provide higher flexibility by enabling the operator to manipulate the video by
simply editing the text transcript as well as a higher realism by using intermedi-
ate frame mining along with morphing (Figure 2.1(d)). Existing commercial video
editing tools such as Adobe Premiere Pro2 and Avid media composer3 rely on these
methods to provide a user-friendly interface for reordering frames as well as ad-
ministering invisible transitions to cover the scene cuts, mainly for the application
of video summarization.

Retouching and resampling attacks rely on the application of transforms or filters
on the pixel intensity values to cover the traces of manipulation as an anti-forensic
measure, and often happen after the application of a more severe attack. As an
example, color correction methods that exist in tools such as Adobe After Effects
can be used to blend videos that are recorded days apart. These methods can also
be used to alter the meaning in a video, for example by color histogram adjustment
to change the perception of the time of the day. Some compression methods can
also be used for covering traces as well as changing the meaning as they do not ex-
plicitly conserve the meaning of a video. Compression methods have been shown
to have a negative effect on the detection performance of detectors (67). Compres-
sion artifact removal (84) and video upscaling methods both in the spatial (70) and
temporal (29) domains can further be used to cover the manipulation traces.

Object forgery also known as intra-frame tampering or region tampering refers to
the removal and addition of objects in a video with the maintenance of temporal
coherence. As shown in Figure 2.2, these attacks are traditionally categorized as
copy-move, splicing, and retouching where the data used may come from two dif-
ferent videos. Face swapping is an example of direct application of object forgery
on facial videos, where the facial region of the video is replaced with another indi-
vidual’s face from another video. Video Face Replacement (15) is one of the first
automatic face swap methods that warps the source face to the target face based
on the corresponding 3D geometry (Figure 2.1(e)). A similar system is proposed

2https://www.adobe.com/products/premiere.html
3https://www.avid.com/media-composer

https://www.adobe.com/products/premiere.html
https://www.avid.com/media-composer
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in (22) where the original facial expression of the target is preserved by non-rigid
warping of the source. Object forgery can also be done to replace a part of a scene
with a synthetic image in order to reduce the computational and modeling costs
of the synthesis method. Deepfakes are an example of such methods as the face
region is replaced by a GAN-generated image where the behavior is kept intact
and the appearance is altered to another individual’s likeliness.

Style and motion transfer methods are a category of stronger attacks, where the
style or the motions in existing footage are manipulated to match that of another
footage. Face2face method (74) (Figure 2.1(f)) and synthesizing Obama (73) (Fig-
ure 2.1(g)) are examples of motion transfer where the behavior of the individual
in a footage is modified based on behavior from another source and an alternative
speech track respectively. For the Face2face method, the texture is further optim-
ized in (76) to improve realism, and the amount of required footage is reduced to a
single image in (6). In (21), the authors propose the use of a high-quality 3D face
capturing technique for altering the face of an actor to match the mouth movements
of a dubber (Figure 2.1(h)). Style transfer methods such as (7) and (78) achieve a
similar effect by treating the likelihood of the individual as the style and generating
photo-realistic face images from semantic segmentation masks (Figure 2.1(i)).

Synthesis of the whole video in a photo-realistic manner is a challenging task due
to the number of details that are needed to be considered as well as the acute
sensitivity of humans to synthesis artifacts also expressed by the concept of the
uncanny valley (56). Despite this, there has been incremental progress in realistic
synthesis in recent years. In (80), the authors generate a photo-realistic smile
sequence from a single aligned face image using a series of conditional long short-
term memory (LSTM) networks (Figure 2.1(j)). Image-to-image translation has
been used in (40) to convert computer graphic rendering of faces to real images
(Figure 2.1(k)). In (28) conditional adversarial networks are used to translate facial
landmarks into a realistic video. The use of frame prediction is investigated in
(50) where CNN, LSTM, and deconvolutional neural networks were used together
for the generation. More recently, the Salvador Dalí Museum created a realistic
appearance of the painter himself (Figure 2.1(l)) in an exhibition called Dalí Lives
using archival footage from interviews (45).

2.1.3 Datasets

There are very few datasets in the literature that can be used for the objective
of physical attack detection. In (88), the authors introduce a private dataset of
videos collected from 39 twin pairs. The proposed dataset of look-alikes (37) is
the only dataset of videos from look-alikes in the literature with 85, 000 videos
from 1000 look-alike pairs. Detection of makeup attacks ranging from cosmetic
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makeup to masks is mainly studied under the topic of presentation attack detection.
Datasets that include videos of mask attacks are the private Morpho dataset (18)
with 199 mask attacks, 3DMAD dataset (18) with 3D mask attack videos from
17 subjects, and HKBU-MARs dataset (48) with 12 masks recorded with multiple
devices under various lighting conditions. A more diverse dataset of attacks is
introduced in (49) by the name of SiW-M which not only includes 3D mask attacks
but also includes attacks with silicone masks and transparent masks. Furthermore,
it includes makeup attacks of both cosmetic and impersonation types as well as
obfuscation attacks. This dataset contains 1, 630 videos of length 5 to 7 seconds
from 13 types of attacks.

The majority of the datasets in the literature with a focus on digital facial manip-
ulations are limited to Deepfakes. DF-TIMIT dataset (42) includes 620 Deepfake
videos at sizes 64× 64 and 128× 128, Deepfake Detection dataset contains 3, 068
Deepfake videos from volunteer actors, and Celeb-DF dataset (47) contains 5, 639
Deepfake videos at various resolutions. Recently, two large-scale datasets are in-
troduced, namely, the DFDC dataset (17) consisting of 100, 000 Deepfake videos
as well as 19, 000 pristine videos at 240p to 2160p resolutions and the Deeper-
Forensics dataset (30) with 10, 000 Deepfake videos as well as 50, 000 pristine
ones. A few datasets include multiple attacks, namely the proposed FFW dataset
(39) which includes a set of 150 manipulated videos collected from the wild, and
the FaceForensics++ dataset (68) which includes 4000 videos of Deepfakes, CGI,
and splicing as well as 1000 pristine videos. The main focus of all these datasets is
object forgery and motion transfer attacks. The proposed Morph-Cut dataset (60)
is the only dataset in the literature that includes editing attacks.

2.2 Detection Techniques
Detection of physical attacks and digital attacks has traditionally been done in two
separate fields of study of facial video presentation attack detection and multi-
media forensics. With the advent of Deepfakes, a lot of research effort has been
directed towards the detection of Deepfake attacks as its own subfield.

2.2.1 Presentation Attack Detection

Despite the fundamental difference between the task of presentation attack detec-
tion with its focus on protecting biometric systems from attacks and the task of
protecting viewers from fake content, there is a considerable overlap correspond-
ing to the presentation attacks that are also photo-realistic. The overlap mainly
covers makeup attacks and mask attacks which are better studied in the field of
presentation attack detection. Passive presentation attack detection methods, also
known as software-based methods, try to use the available data in the probe for
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making a decision, in contrast to hardware-based and challenge-response methods
where additional data is extracted to facilitate detection. These methods rely on
physiological signs of life such as eye blinking and facial expression changes as
well as texture and deformation features for detection (25). Consequently, these
methods can be categorized into static methods and dynamic methods, correspond-
ing to the use of static features such as texture and the use of motion.

The texture-based methods try to learn the facial micro-textures that character-
ize real faces and have been effectively used for the detection of photo attacks.
Local binary patterns (LBP) (13) is a popular texture descriptor followed by dif-
ferent learning algorithms for detection. Translation to a more proper feature space
has also been investigated for detection in (87) using Fourier transformation. An-
other group of methods focus on quality degradation detection as the quality of
a generated probe is often lower than the reference due to the imperfections of
manufacturing stages during the generation process (20). Other characteristics of
the human face and skin such as absorption, reflection, scattering, and refraction
have also been used for detection (41). Texture-based methods work best when
the resolution of probes is sufficiently high for analysis of the textures, and their
performance drops when facing bad illumination conditions and post-processing
stages such as compression.

Physiological signs of life can be used as dynamic features. For example, humans
blink on average three times per minute and irregular blinking rates can be used
for liveliness detection (83). Pulse is another sign of life that can be extracted from
video footage using Eulerian video magnification (82) and be used for liveliness
detection (9, 64, 61). It is important to mention that while these methods can be
effective against the mask and prosthetic makeup attacks, they would fail against a
look-alike or light cosmetic makeup attacks as these attacks also contain the live-
liness and texture features corresponding to real faces. To distinguish look-alikes
and identical twins, distinct facial features such as marks (72), face asymmetry
(32), and aging-related features (44) can be used. Biometric systems can also be
used for distinguishing look-alikes and identical twins after these systems are fine-
tuned specifically on this task (3). The use of unique behavioral features has also
been proposed in (88) and (37).

2.2.2 Deepfake Detection

Following concerns over the use of Deepfakes for fake news, hoaxes, and financial
fraud, communities of media forensics, biometric anti-spoofing, and data-driven
deep learning have joined efforts to address these threats. Consequently, there
is a growing interest in Deepfake detection evident from the growing number of
workshops, conferences, and competitions dedicated to this topic (77). Most pro-
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posed Deepfake detection methods try to detect artifacts that are produced by the
GAN pipeline. In (54) the authors rely on the color difference between pristine
images and GAN-generated images. The use of convolutional traces of the gener-
ative model for detection is proposed in (23). GAN fingerprints caused by specific
GAN architecture are further studied as a means of detection in (86). The use of
eye color mismatch, missing reflections, and missing details in the eye and teeth
regions were proposed in (52). The artifacts that are caused by the misalignment
of the 3D head pose and the synthesized region are used in (85). Eye blinking
patterns have also been proposed for detection in (33). As GAN-generated images
have a fixed resolution compared to the target video, there will be a resolution mis-
match between the background and the facial region which was used in (46) for
detection.

A number of articles propose the use of general approaches that are not specific to
GAN generation artifacts. The neural activation difference of face recognition sys-
tems such as VGG-Face (62), OpenFace (5), and FaceNet (71) have been used by
(79) for classification. In (57) the authors propose the use of steganalysis features
extracted as pixel co-occurrence matrices. Inconsistencies between lip movement
and audio speech were also investigated in (42) as a means of detection. Facial ex-
pression and head movement correlations of four individuals were extracted based
on facial landmarks and modeled in (2) for detection. Steganalysis and meso-
scopic features are other general-purpose features that have shown to work well
for Deepfake detection in (1) and (89). In order to utilize both spatial and temporal
information for detection, 3DCNNs were used in (81) for improved performance
on low-quality videos. The temporal inconsistencies are also used in (24) and in
(69) via recurrent neural networks, and via optical flow fields in (4). The discrim-
inative power of individual regions of the face was studied in (77). The spatial and
spectral features extracted from photo response non-uniformity (PRNU) patterns
are used in (66).

Several studies have taken a machine learning-based approach for improving de-
tection performance. The multi-task incremental learning of new types of GAN-
generated images was explored in (51) as a measure of improving the performance
against new attacks. Attention mechanisms have also been applied to improve the
performance of detection systems in (16). The use of general-purpose image clas-
sifiers was proposed in (68) which outperformed the specialized methods on the
proposed dataset. In (58), it has been shown that multitask learning for both detec-
tion and localization of manipulated regions improves the detection performance.
Capsule networks have also been shown to perform on par with existing methods
with fewer parameters (59). In (10) restricted Boltzmann machine networks are
used for detecting manipulated patches in the image.
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Chapter 3

Summary of Published Articles
and Contributions

The research done towards this PhD is split into two threads with two different
views on the problem. One thread is initiated towards the analysis of the vul-
nerabilities of the viewers and responding to each vulnerability accordingly. A
second thread is also initiated with the goal of finding a generalized detection
solution following the observation that existing general-purpose detectors suffer
from generalizability issues. The following sections discuss the research findings
and contributions of the published articles during these studies.

3.1 Viewers’ Vulnerabilities
To analyze the vulnerabilities of the viewers to the existing generation techniques,
the first step taken was to study the existing generation techniques and form an
understanding of what is possible with current technology. Resulting from this
study, a taxonomy of possible generation techniques was produced in (36), forming
the basis for studying viewers’ vulnerabilities. Next, in (38) a collection of videos
from the most prevalent generation techniques is collected and subjective tests are
designed to see which ones the viewers are most susceptible to. Resulting from
this, two methods of video generation to which the viewers were susceptible were
identified, namely, unit-selection-based editing and use of look-alikes.

For detection, with a focus on the aforementioned two types of generated videos,
two solutions are proposed. To detect unit-selection-based editing which is a
form of inter-frame forgery, the traces of frame-interpolation are successfully used
for detection in (60). To detect look-alikes, and by extension, videos where the
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physiological attributes are not reliable for authentication, a face recognition method
based solely on facial behavior is introduced in (37). The four aforementioned
studies are summarized below.

3.1.1 Taxonomy

Detection of generated videos needs an understanding of different generation tech-
niques as well as their strengths and weaknesses. The importance of face in hu-
man interactions results in the sensitivity of humans to any subtle imperfections
in a generated video. As a result, generating realistic facial videos was a major
challenge until recently, and historically was limited to impersonations and subtle
video editing. Availability of powerful 3D rendering hardware and software resul-
ted in the introduction of CG face videos in the movie industry in the early 2000s
and deep learning based synthesis methods made realistic low-cost generation pos-
sible in 2017 after the introduction of Deepfakes.

For a video to be perceived as realistic, it should have a realistic representation in
all three available modalities, namely appearance, behavior, and speech. Further-
more, these three modalities can be independently generated and combined, and
as such, they can be analyzed independently. The source of appearance, behavior,
and speech in a generated video can be a living human and alternatively his/her re-
cording, or a computer model and its physical realization. As such, the facial video
generation techniques cover a wide range of methods ranging from impersonation
to android robots to CG faces to video editing.

3.1.2 Subjective tests

Based on the produced taxonomy, a collection of 24 realistic five-second videos
from six of the most prevalent generation techniques wes collected from a pub-
lic video-sharing website. The six techniques correspond to impersonation by
look-alikes, impersonation with prosthetic makeup, 3D CGI faces, GAN-generated
faces, inter-frame forgery, and partial video editing. These videos were used along
with an equal number of pristine videos for a subjective test where the natural en-
counter in social media is simulated on the web and the opinion of the viewers
on whether the videos are “real” or “fake” is asked. In total, 30 people particip-
ated in the subjective tests, and their performance was measured on the detection
task. The viewers were randomly subjected to a familiarization step and viewed
the videos along with a biometric reference pristine video of the target individual
half the time to analyze the effect of these parameters.

After the analysis of the results, it became apparent that the participants had a
low detection rate on videos generated by two of the six techniques, namely the
use of look-alikes and inter-frame forgery. These methods have the smallest foot-
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print in the produced video compared to the other four categories. Furthermore,
the results show that the availability of a biometric reference and familiarization
reduced the number of errors the participant made while knowing the target indi-
vidual made participants more uncertain without a loss in correct classification for
pristine videos. Another interesting observation was that the demographic para-
meters can have an impact on detection performance as older participants were
more confident in their decision which resulted in a higher error rate. This is an
example of human bias in decision-making in contrast to the widely discussed bias
in AI, and not taking such biases into account can leave certain portions of the
society more vulnerable to attacks. Consequently, this shows the importance of
studying and taking into account these biases via promoting participant diversity
and monitoring its effect on subjective studies.

Another interesting observation is that a literature review (as described in details
in Chapters 7 and 9) reveals a lack of attention to the detection of the attacks which
the subjective experiments identified as the most effective. This effect is rooted in
the fact that the viewer vulnerabilities can have little to no intersection with the
detector performance (43) and detector vulnerabilities (26). Nevertheless, the ma-
jority of articles in the literature focus on these factors regardless of whether the
viewers are already able to notice the visible artifacts in the generated content (43)
or outright replicate human’s detection ability by relying on visible artifacts for de-
tection (77). As the objective of a detector is protecting the viewers from attacks,
the detector needs to complement the human ability in detection, and this can be
most effectively achieved by reliance on objective measurement of the subjective
vulnerabilities. In other words, subjective tests give a clearer understanding of the
attack landscape and guide research towards solutions that address the viewer’s
vulnerabilities. Consequently, in the subsequent publications, the vulnerabilities
identified in the subjective vulnerability assessment study are targeted for mitiga-
tion.

3.1.3 Look-alike recognition

Relying on the results of the subjective test study, a next study was initiated on
the recognition of look-alikes. Look-alikes and identical twins pose a challenge
to both humans and face recognition systems as the physiological likeliness of the
pairs reduces the efficacy of physiological appearance in recognition. Prior stud-
ies have shown the independence of behavioral and physiological attributes, the
permanence of behavioral attributes, and the possibility of behavioral face recog-
nition in fixed-phrase and fixed-action scenarios in controlled environments. The
behavioral attributes of individuals are available in video footage and can provide
a robust alternative to physiological attributes when the latter is not sufficient for
face recognition. As such, a study is initiated to probe the possibility of action-
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independent face recognition without constraints on the environment as a substi-
tute for physiological face recognition. For this purpose, 1000 look-alike pairs
were mined using a state-of-the-art face recognition system along with verification
of discrimination difficulty using subjective tests. Based on these 1000 pairs, a
dataset of 85, 656 utterances was created using videos that were originally collec-
ted from YouTube without any specific constraints on the recording environment.

The size of the produced dataset enables the training of deep learning solutions.
To single out behavioral information in the videos, the locations of facial landmark
positions were extracted and normalized based on the facial pose, size, and aver-
age landmark position after normalization. Then a network architecture is designed
that consists of a 1D convolutional feature embedding extractor followed by a stat-
istical pooling layer over time dimension and a couple of fully connected layers to
map the input landmark position matrices to an identity embedding. The network
was trained on a separate set of 4500 non-overlapping identities using triplet loss
on euclidean distances and tested on the look-alike pairs. The results of the study
show that the proposed method on the proposed dataset can achieve an equal-error-
rate of as low as 8% for verification where the state-of-the-art physiological face
recognition system had an EER of 30%. As the proposed method relies solely
on facial behavior, it would be robust to any physiological attribute manipulation
which conserves behavioral information faithfully.

3.1.4 Inter-frame Forgery Detection

Based on the results of the subjective tests, the second category of generated videos
where the subjects are susceptible to is unit-selection-based video manipulation. In
these methods, the forger uses existing footage of a target individual, and by cut-
ting, reordering, and joining via frame interpolation, he/she can manipulate the
actions of the individual and thus the meaning in the footage. Inter-frame forgery
detection on facial videos is a largely unexplored field of research despite the ease
of generating such content with commercially available tools. Popular video edit-
ing tools such as Adobe Premiere Pro and Avid Media Composer contain tools for
such manipulation which are accessible through their easy-to-use graphical user
interface. For the purpose of the detection of these manipulations, there exists no
dataset in the literature. Consequently, a dataset of 1000 videos was introduced
based on the automation of the video generation process of Adobe Premiere Pro
Morph Cut transition using an internal scripting language called Extendscript. The
dataset is based on videos that are originally collected from YouTube and a pre-
filtering step based on face bounding-box movement is done to ensure no abrupt
jumps exist in the produced footage. The quality of the generated videos was fur-
ther assured by a manual post-filtering step.
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For detection, the frame interpolation traces1 were focused on. Any interpolation
method would have to rely on the information available in the frames before and
after to fill in the intermediate frames. Consequently, the interpolation method
would generate a smooth transition with lower-than-natural variability in the gen-
erated frames. To uncover the amount of natural variability in a frame, another
frame interpolation technique can be used to predict the frame based on the frames
before and after. The prediction error calculated as the difference between the ac-
tual frame and the parallel predicted frame will have traces of over-smoothness
in interpolated frames. The results show such differences between the prediction
error of interpolated frames and pristine frames. Using the prediction error as a
discriminative feature, a simple neural network is used to detect interpolations at
frame level with an accuracy of 95%.

3.1.5 Contributions

The contributions of this thread of research can be summarized as follows:

• Providing one of the first taxonomies on the topic of facial video generation
techniques, dating before the advent of Deepfakes, with a comprehensive
view and covering a wide range of possible digital and physical generation
techniques.

• Identification of the most effective generation techniques using the existing
examples of the most prevalent generation techniques via subjective tests
with a realistic setup, as well as studying the effect of parameters such as
familiarity, biometric knowledge, and demographic information on the per-
formance of individuals.

• Collecting the biggest dataset of look-alike pairs in the literature and com-
posing a large-scale video dataset of these pairs big enough for the develop-
ment of deep learning solutions.

• Introduction of the first general-purpose action independent behavioral face
recognition system in the literature which performs well on the videos from
the wild relying only on normalized landmark movements.

• Generation of the first facial inter-frame forgery dataset in the literature con-
taining 1000 videos based on the automation of the generation process of the
most popular commercial video editing tool. The dataset is also the biggest
dataset of inter-frame forgery in the literature.

1https://www.youtube.com/watch?v=RA4mAPitn4E

https://www.youtube.com/watch?v=RA4mAPitn4E
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• Utilization of frame prediction error for a simplified two-step inter-frame
forgery detection method with a detection rate of above 95%.

• Making the generated datasets available to the public to stimulate further
research.

3.2 Generalizability
One of the major challenges for existing detectors including the ones introduced in
the previous section is generalizability. A detector learned on a specific set of gen-
eration techniques tends to overfit the features that discriminate against these gen-
eration techniques from the pristine data. However, when a new generation tech-
nique appears for which the discriminative features are different from the learned
features, the performance of the detector drops drastically. The performance can
drop further if there is no overlap between the discriminative features of the new
technique to the previous ones. To address this issue, a first study was done in (39)
to evaluate the performance of the state-of-the-art digital manipulation detection
techniques on videos generated by unknown generation techniques. The results
of this study showed that existing solutions do not perform well when faced with
videos generated with an unknown generation technique. To address this issue,
the use of generalizable features learned by a generative model for digital manip-
ulation detection is proposed in (35) with a frame-level unknown manipulation
detection accuracy of 95.7%. This work is further extended to detect physical
manipulations in Chapter 11 where the rationality of the attacker was also taken
into account with reliance on game theory. The proposed method outperformed
existing state-of-the-art on the task of presentation attack detection when facing
rational attackers. The three aforementioned studies are summarized below.

3.2.1 Generalizability of existing methods

To measure the generalization capacity of digital manipulation detectors, a set of
150 videos were collected from YouTube which would fit the definition of digitally
manipulated realistic videos. The videos were generated with various techniques
including GAN, CGI, face swap, and manually tuned synthesis by artists. The
biggest dataset of digitally manipulated videos at the time of this study was the
FaceForensics dataset (67), on which the state-of-the-art detection methods were
tested and introduced. To evaluate the performance of the state-of-the-art sys-
tems on unknown generation techniques, these systems were trained on the Face-
Forensics dataset and tested on the collected dataset. The results show that even
though these models have a near-perfect detection accuracy on the test set of the
original dataset, they fail to detect the videos in the collected dataset with the low-
est EER being 27%. These results show that the detection algorithms overfit the
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generation techniques available during training. These results were further verified
by doing tests on a dataset of face swap images where the EER further worsened to
higher than 40%. Furthermore, the results show that, as expected, the performance
of the detectors is slightly better on the videos that are generated with a similar
generation method to the existing methods in the original dataset.

3.2.2 Generalizable Detector

As explained before, the detection performance of the existing state-of-the-art is
reduced drastically when faced with unknown generation techniques. To system-
atically approach the problem of generalization, a theoretical understanding of the
underlying cause is needed. When a discriminative model is trained on videos from
a set of generation techniques, the model tries to find the discriminative features
that are most useful in the detection of these videos. Furthermore, the model would
rank these features according to their usefulness for detection. As the discriminat-
ive features that are useful for the detection of unknown generation techniques are
unknown, if there is a mismatch between these features and the features that the
model relies on the most, the model is expected to perform poorly. In this scenario,
anomaly features may prove more useful for the purpose of detection. Anomaly
features describe the distribution of pristine data rather than the best discriminative
features for detecting any specific set of generation techniques, and consequently,
are not biased towards any specific set of generation techniques. Therefore, even
though using anomaly features for detection might result in a lower detection rate
on known generation techniques compared to the discriminative detectors, they are
expected to perform better when faced with unknown generation techniques.

A complete feature set would be a set that fully defines the distribution of pristine
data in the pixel representation. If the distribution of pristine data was available, the
likelihood of a probe to this distribution would serve as an ideal anomaly feature
for detection. However, due to the complexity of this distribution, existing methods
for modeling the distribution focus on a segment by segment distribution modeling.
One such method is the generative model PixelRNN which models the distribution
of individual pixel values conditioned on the pixel values before in raster order.
This generative model can be used to measure the likelihood of observing every
individual pixel value at each pixel location. Using this model, an image can be
converted to a likelihood matrix of the same size, which can be used to find the
overall likelihood of observing the image as well as to locate the anomalies in the
image at pixel level.

The results of the studies show that the overall likelihood of observing individual
images has limited capacity in discriminating pristine and generated images with
EERs around 25% as the distributions have a significant overlap. As such, the loc-
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ations of the anomalies were investigated further for detection; as visual inspection
and t-SNE representation showed that there are differences between pristine and
generated frames in this representation, and samples from a specific generation
technique tend to cluster together. To use this anomaly representation for detec-
tion, two approaches were investigated. The first approach was to directly use them
as input to a simple convolutional neural network for training. This approach could
perform on par with the state-of-the-art when faced with frames from known gen-
eration techniques on FaceForensics++ (68) dataset. However, when faced with
samples from unknown generation techniques, the method achieved an average
frame-level detection accuracy of 95.7%.

In the second approach, these representations were refined to a compressed rep-
resentation for video-level detection while conserving the detection-relevant in-
formation. Assuming the location of anomalies on the face to be constant, the
frame-level representations can be denoised by averaging over time dimension,
resulting in a single fixed-length denoised representation per video. In addition,
using principal component analysis trained on the training data, a hyper-plane can
be defined where the pristine data lies on. After sorting the PCA components ac-
cording to the explained variability on the training data in descending order, the
PCA representation can show in which directions the pristine data has the least
variability, and the distance to the PCA hyper-plane can further represent the un-
explained variability of a given input. By combining the last elements of the PCA
representation with the unexplained variability, a second anomaly feature can be
extracted corresponding to the explained energy of the representation along the
components where the representation of pristine data shows the least amount of
energy. This representation performs equally well compared to the overall image
likelihood as an anomaly score, and at the same time is independent of it with a
correlation value of 0.15.

In this study, a further parameter was introduced corresponding to the rationality of
the attacker when choosing a generation technique. In all existing methods in liter-
ature on the performance of detectors when facing multiple generation techniques,
it is assumed that the attacker chooses a generation technique at random with equal
probability. However, relying on game theory, it can be shown that the attackers
tend to use the most powerful attack (MPA) available to them defined as the attack
with the highest expected success rate across his options. Consequently, when fa-
cing a rational attacker, the average detection rate would not represent the real-life
performance of the system, and the performance of the detector when facing the
most powerful attack should be used as a measure.

The two attack independent anomaly features explained earlier, when combined,
have an unknown digital attack detection MPA EER of 8.2% on FaceForensics++
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dataset and 27.1% on physical attack detection on SiW-M (49) dataset. To im-
prove the detection performance against a rational attacker when all the attacks are
known attacks, a new loss function named categorical margin maximization loss
on an L2 normalized embedding space is introduced to maximize the performance
accordingly. This objective function exaggerates the loss for samples that are on
the margin between pristine and attack videos and suppresses the loss for samples
that are classified correctly. Consequently, most of the training loss would come
from generation techniques for which the classification performance is the low-
est, resulting in the optimization of performance for MPA while a more balanced
performance is achieved across known techniques. The proposed discriminative
classifier uses the compressed PCA representation as input and achieves an MPA
EER of 0.7% on the digital manipulations and 9.7% on presentation attack detec-
tion tasks. The logic-based fusion of the discriminative and the one-class classifier
results in a slight improvement of performance in most cases. Finally, thanks
to the capacity of the proposed representation in clustering the samples from the
same generation technique together, the proposed method achieves a remarkable
few-shot learning capacity which allows it to reduce MPA EER by 15.2% with
only five samples.

3.2.3 Contributions

The contributions of the second thread of research can be summarized as follows:

• Collection of the first dataset of digitally manipulated videos from the wild
and making the datasets public to stimulate further research on the problem
of generalizability.

• Experimental demonstration of the limited generalization capacity of state-
of-the-art detection methods.

• Introduction of a generalizable detection system that achieves an unknown
MPA detection accuracy of 89.3% on widely different digital generation
techniques at frame-level along with pixel-level explainability.

• Game theoretical formulation of interactions between the attacker and the
detector, and justification of the use of performance on the most powerful
attack as a more realistic performance metric for a detection system.

• Introduction of a new loss function named categorical margin maximization
loss that optimizes the performance of the detector towards the highest MPA
detection rate on known attacks.
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• Introduction of a novel detection mechanism for both known and unknown
attack detection with few-shot learning capacity based on pixel-level log-
likelihood values along with a robust fusion mechanism for the combination
of a discriminative and a one-class classifier.



Chapter 4

Conclusion and Future Work

This thesis aimed to provide an understanding of the vulnerability environment
concerning facial video authenticity at this point in time and provide solutions for
mitigation of the discovered vulnerabilities. To this end, the research objectives
and research questions were formulated in Section 1.2 and extensive research work
is done to address these questions through publications included in Parts II and III.
These seven publications are the main contributions towards the composition of
this thesis. The thesis emphasizes the importance of vulnerability assessment and
the generalizability of introduced detection methods. The results in this thesis
strongly suggest the following general conclusions regarding the main questions
to be answered by this research:

• Despite the significant attention directed towards Deepfake detection, sev-
eral other generation techniques including traditional ones are available to
malicious actors for creating photo-realistic facial videos. Comprehensive
analysis of the generation techniques and subjective vulnerability assess-
ment can result in the discovery of previously unknown vulnerabilities. Ex-
amples of these techniques that were discovered through our research are
editing-based methods and the use of physiological similarity. These meth-
ods can be very effective as they apply minimal alterations in footage and
do not produce significant artifacts. Furthermore, the vulnerability assess-
ment results on the viewers show that there can be demographic differences
between the detection ability of parts of society.

• A video contains a rich collection of discriminative information, and while
a forger may achieve realism in certain features, passive detection with re-
liance on other features in a video is feasible. For example, as the main
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focus of generation techniques is realism and similarity of the physiological
attributes, the behavioral attributes can provide further information that can
be used for detection. Attention to feature set selection can result in the
identification of features that not only perform well on the detection task but
also reduce the detection complexity.

• Classification-based methods tend to overfit the conditions in the training
data and their near-perfect performance on limited scenarios do not guar-
antee their deployability. Due to the ever-growing number of generation
techniques, there is an immediate need for detection methods that can per-
form well against new generation techniques. Anomaly features have shown
a better capacity for the detection of unknown attacks and can provide a
solid basis for the detection of unknown generation techniques as they do
not suffer from the same weakness of overfitting the known generation tech-
niques. Even though the classification-based methods may provide better
performance on known generation techniques, considering the rationality of
the attacker, the weakness against unknown generation techniques reduces
their utility in real-life scenarios.

4.1 Limitations
Following the introduction of deep learning fueled by the availability of high com-
putational capacity of GPUs, the field of machine learning has been experiencing
advancements at an incredibly rapid pace. In this context, computer-generated
content is not an exception and new generation techniques being introduced on
a frequent basis. As a result, it is important to take into account the time frame
of 2017 to 2020 as the context in which the research presented in this thesis was
done. In this time period, the computer-based generation techniques were in their
infancy and few generation techniques could achieve enough realism to bypass
human judgment. The first realistic generation techniques with roots in academic
research were instigated in 2016 following the introduction of early techniques
such as Face2Face (74) and Synthesizing Obama (73). At the end of 2017, Deep-
fakes1 were introduced by amateur developers and gained much attention due to its
open-source implementation and public availability and this was shortly followed
by the appearance of commercial applications.

Considering the attack landscape, the results of the presented taxonomy and sub-
jective vulnerability assessment studies conducted in late 2018 showed that many
of these generation techniques did not pose an imminent threat at the time due to
significant visual artifacts visible to the viewers. Thus the focus of the studies in

1https://github.com/deepfakes/faceswap

https://github.com/deepfakes/faceswap
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Part II of the thesis was shifted away from DeepFake detection. However, fol-
lowing the introduction of more effective generation techniques in the subsequent
years and the refinement of existing techniques, the quality of these methods soon
improved and this led to much higher success in bypassing human judgment, as
shown recently by Korshunov and Marcel in (43). To respond to these changes in
the attack landscape, the research presented in Part III tries to address vulnerabil-
ities to more recent attacks as well.

Since the submission of the articles included in Part II and III, we have seen fur-
ther advancements in the quality of the generated content and the introduction of
advanced generation techniques such as StyleGAN2 (34), Neural Voice Puppetry
(75), and DeepFaceLab (63). The performance of the proposed detection meth-
ods against these new attacks is unknown and requires further investigation. The
dynamic attack landscape shows the need for constant subjective vulnerability as-
sessment and reevaluation of existing detection methods against new attacks, as
well as research into new detection techniques with more emphasis on endurance
against the constant changes in the attack landscape. The approaches proposed in
Chapters 10 and 11 describe our efforts in this direction.

4.2 Future Work
Based on the research work carried under the scope of this thesis, the following
research directions are outlined worth considering for future work.

4.2.1 Scalable Solutions

In video content, there are large amounts of information present for the purpose of
detection. Consequently, the lack of sufficient data in each observation is not the
limiting factor for the detection performance, and the bottleneck comes from the
ability to utilize the information for the task. As a result, the majority of the de-
veloped state-of-the-art solutions in the literature rely on extensive computations
for achieving state-of-the-art detection performance. In contrast, considering the
deployment environment where hundreds of hours of video are uploaded to online
services such as YouTube every minute, these solutions would face major scalab-
ility issues. This calls for further research in the direction of the development of
efficient and scalable solutions with a focus on reducing the computational cost
of detection while maintaining competitive performance to the high-cost state-of-
the-art. An example of such solutions can be the extraction of compact yet reliable
feature sets from video data using low-cost video processing methods. The defini-
tion of evaluation criteria which take the number of operations for decision making
into account would direct the competition towards efficient detectors.

The challenges arising from the high computational expense of video processing
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are further evident from the observation that most groundbreaking advancements
in the field come from a limited number of research groups having access to suffi-
ciently large computational resources. In these conditions, replicating the state-of-
the-art by itself would be a major logistic challenge for independent researchers,
raising the entry barrier to the competition and consequently limiting the speed of
progress in research.

4.2.2 Diversity in Datasets

There is a large and ever-growing number of generation techniques that are within
the reach of malicious actors for creating fake facial videos. Despite the signi-
ficant progress made in recent years in the development of solutions with near-
perfect detection rates on specific attacks, the results of competitions such as the
Deepfake detection challenge shows that these solutions have limited applicability
when faced with new attacks. Despite the introduction of large-scale datasets in
recent years, these datasets are often limited in terms of the variety of generation
methods. Reliance on these datasets for the development of detection solutions
enforces bias on the trained detectors. Lack of diversity in a dataset limits the
performance evaluation scenarios for unknown attack detection, and the existence
of biases towards specific generation techniques makes the optimized detectors
ill-fitted for real-life applications. The detection of unknown attacks is still a chal-
lenging problem and requires a significant research effort to be resolved. Possible
solutions may be reliance on robust feature sets for detection which can be learned
by observing several generation techniques during training, as well as further de-
velopments on few-shot learning methods.

4.2.3 Robustness Against Adversarial Attacks

Similar to any other forensic scenario, the forgers are actively looking for exploits
in the detection mechanisms to increase their chance of success. This dynamic
nature calls for the development of flexible detectors that are capable of adapting
to changes in observed attacks. For example, the effects of obfuscation on the per-
formance of the detection systems with methods such as obstructing the face, ar-
tifact removal, and bad recording conditions are largely understudied. Continuous
efforts towards anticipating and monitoring new attack techniques and assessing
the vulnerability of detection techniques and content consumers would further in-
crease the awareness of the threat environment and provide grounds for mitigation
of the vulnerabilities before the forgers can exploit them.

Most existing research relies on the incremental evolution of detection mechan-
isms based on the empirical evaluation of the proposed methods in specific scen-
arios, and as a result, the research lacks a theoretical foundation for guidance. In
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contrast, researchers in the field of digital forensics have taken great steps towards
understanding and formulating the underlying phenomenons and developing meth-
ods that give a significant advantage to the detection side in an arms race. Con-
sequently, the research can significantly benefit from the adaptation of a similar
approach and creating a strong theoretical backbone that would serve as fertile
grounds for the development of robust detection systems. For example, reliance
on anomaly-based or complete feature sets can increase the range of discrimin-
ative information available for detection. Furthermore, a game-theoretic view on
the dynamics between the attackers and defenders can provide ways to model the
interactions and result in the formulation of more realistic objective functions to
improve the robustness of detectors against adversaries.
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Chapter 5

Article 1: A Taxonomy of
Audiovisual Fake Multimedia
Content Creation Technology

A. Khodabakhsh, C. Busch and R. Ramachandra, "A Taxonomy of Audiovisual
Fake Multimedia Content Creation Technology," 2018 IEEE Conference on

Multimedia Information Processing and Retrieval (MIPR), Miami, FL, 2018, pp.
372-377.

5.1 Abstract
The spread of fake and misleading multimedia content on social media has become
commonplace and is effecting society and its decision procedures negatively in
many ways. One special case of exploiting fake content is where the deceiver uses
the credibility of a trustworthy source as the means of spreading disinformation.
Thanks to advancements in technology, the creation of such content is becoming
possible in audiovisual form with limited technical knowledge and at low cost. The
potential harm of circulation of these content in media calls for the development
of automated detection methods. This paper offers a categorization of such fake
content creation technology in an attempt to facilitate further study on generalized
countermeasures for their detection.

5.2 Introduction
Consumption of digital media and its impact on decision procedures (e.g. elec-
tions) has reached a majority-owned relevance over traditional media (e.g printed

53



54 Article 1: A Taxonomy of Audiovisual Fake Multimedia Content Creation Technology

newspapers) in our world of ubiquitous information devices (Smartphone, tablets).
Along with that cultural change, we must accept for the consumed content an in-
herent loss of data authenticity. The lack of proper fact-checking and third-party
filtering on these platforms compared to traditional media resulted in the preval-
ence of misinformation and disinformation on these media (3). The spread of fake
content can have a long-lasting impact on individuals opinions even after present-
ation of factual information (17).

One special case of fake content is where a deceiver uses the identity of another
person (e.g. an authority figure) to disseminate false information, taking advant-
age of his/her credibility. Recent advancements in technology made it possible to
create such content in audiovisual form (Fig. 5.2(i)) (13, 26), using commodity
devices, and at low cost. A demonstration of existing technologies has been made
available online for the purpose of public awareness: http://futureoffake
news.com.

These content are of special importance as talking faces are a natural way of com-
munication for humans, and are preferred to other forms of communication. Fur-
thermore, despite considerable progress on detection of fake textual content (23),
very little effort has been directed to protect consumers from fake multimedia
content. On the other hand, manual detection is very costly and the capacity of
authentication can be out-competed by the mass of user-generated content. “Per-
sonation" is defined by the Oxford English Dictionary as “The action of assuming
a character, or of passing oneself off as someone else, esp. for fraudulent pur-
poses"1. In the context of this study, audiovisual personation can be described as
any attempt to assume the identity of another person in a audiovisual form, with
intent to deceive. The cases of convincing personations in history have been lim-
ited to people with natural similarity (e.g. the actor Clifton James, who resembled
General Montgomery in a deception mission in World War II (8)). However, as
technology advances, a wide range of virtual and artificial personation techniques
are becoming available, and examples of their use can be found in many real-life
applications.

For personations to be successful in deception, the created content should be of
high quality to pass the multimodal judgment of naive media consumers in natur-
alness and similarity of speech, appearance, and behavior. As a result, they should
be based on a good understanding of the human perception of reality and identity.
A notably related concept is the uncanny valley (15) hypothesis. This hypothesis
states that after a specific point, the more an artificial entity resembles a human out-
look and behavior, the presentation will elicit a more negative emotional response

1“personation, n." OED Online. Oxford University Press, June 2017. Web. 21 December 2017.

http://futureoffakenews.com
http://futureoffakenews.com
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from the observer. Nevertheless, despite the difficulty and expenses of climbing
up again from the depth of the uncanny valley, a vast amount of effort has been
dedicated to the creation of realistic artificial humans, and many instances of ar-
tificial entities have achieved realism in the sense of being indistinguishable from
reality to unsuspecting humans. The Hollywood industry with its need for realistic
yet low-cost animated scenes stimulated significant innovation in this domain over
recent years.

This article proposes categories to group existing technologies for the creation of
plausible audiovisual personation content with the goal of providing a compre-
hensive overview of deception attempts and creating a ground for the development
of generalized detectors.

The rest of this paper is organized as follows: Section 5.3 describes the technolo-
gies and the motivation behind the development of these technologies. Section 5.4
describes briefly the existing detection methods. Section 5.5 summaries the study
and discusses its implications, and finally section 5.6 will conclude and describe
future work.

5.3 Personation Methods
The technology for generation of artificial lifelike human appearance is advancing
with the goal of creating the experience of submersion and a greater degree of
presence and natural interaction with the artificial entity. The consumer may be
aware of the unreality of the entity, however, the apparent realism makes it cog-
nitively possible to have suspension of disbelief. The artificial entities may be
digital (e.g. an avatar), or physical (e.g. an android robot). These technologies
have applications in communication (e.g. telepresence, customer service, advert-
isement) , training (e.g. education, simulation) , health-care (elderly care, physical
and psychological therapy) , assistance (companionship, museum guides, office ro-
bots, software office assistants) , entertainment (e.g. cinematography, satire, video
games, stage shows) , and covert disinformation attacks. Based on the application,
the resulting systems can create a passive representation, or be interactive.

For the purpose of this article, the technologies can be categorized by the point
of application in the consumption process of the audiovisual content. This is mo-
tivated by the difference in technical demands of content generation, and thus de-
tection approaches at each application point. Fig. 5.1 shows the lifetime of an
audiovisual content. A video depicting a person is recorded by a camera, and after
traveling the network (including storage devices), it is shared by a publisher and
displayed to the consumer. Given an audiovisual representation of a person, the
points of suspicion are a false presentation at the camera, digital tampering of the
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recorded video, or replacement with a computer generated (CG) counterpart.

Person Camera Network Publisher Display Consumer

Physical DigitalArtificial,
Human

Tampering,
Synthesis

Figure 5.1: Points of vulnerability of video transmission medium to deception attempts.

Based on these points of vulnerability and different modalities of the audiovisual
signal, the following categorization is used to cover existing personation techno-
logy which will be discussed first for visual and subsequently for audio content:

5.3.1 Visual

A visual personation requires naturalness and similarity to the target person in
appearance and behavior. The behavior of the personation can be modeled and
applied independently of the appearance, and thus it is described separately.

Physical

A physical visual personation requires a convincing appearance of a person or an
object with the resemblance of the target person. This item can be created as an
artist’s impression, or be created using the scan or cast of the face of a person.

Artificial Artificial visual personation can be described as any physical artifact
(i.e. movable dummies and fleshly robots) that can convincingly resemble the tar-
get person in appearance and ability to move. Due to the complexity of the human
facial muscle configuration and movements, it is not possible to puppeteer the ar-
tifact mechanically. Thus the artificial personation devices are usually operated
by robots. Such robots are called androids and can have a photorealistic resemb-
lance to the target person thanks to realistic skin and hair like material used in their
production. These androids are mainly developed by robotics community for nat-
ural human-robot interactions, and have applications ranging from entertainment
to education and health-care. Notable examples are animatronics of US presidents
at the hall of presidents in the Walt Disney world resort2, and Geminoid robots
(Fig. 5.2(a)) created by Hiroshi Ishiguro at the Intelligent Robotics Lab at Osaka
University (16).

The facial movements are typically modeled by motors acting facial action units
on the face. Due to mechanical limitations, these robots have jerky movements
and their behavior is easily detectable as unnatural. To avoid these limitations in

2http://www.popularmechanics.com/technology/robots/a23699/robot-
presidents-disney/

http://www.popularmechanics.com/technology/robots/a23699/robot-presidents-disney/
http://www.popularmechanics.com/technology/robots/a23699/robot-presidents-disney/


5.3. Personation Methods 57

facial motion, some androids use a screen as a face (e.g. Life Imaging Projection
System aka L.I.P.S (Fig. 5.2(b)))3. Another notable example is the shape-shifting
robot WD-2, which can replicate the face of a person based on the 3D scan of his
face. The high cost of building and the unnatural movements limits the application
of these androids in personation attempts.

(a) The Geminoid (16) (left)
and Hiroshi Ishiguro (right)

(b) Life Ima-
ging Projec-
tion System3

(c) Natalie Portman (left)
and Keira Knightley (right)
(14)

(d) George W. Bush (left)
and Steve Bridges (right)
(6)

(e) Ezzat et
al. (10)

(f) Aimi Egu-
chi4

(g) Keanu Reeves (left) and
his digital double (right)
(18)

(h) Seymour
et al. (22)

(i) Thies et al.
(26)

(j) Suwajana-
korn et al.
(25)

Figure 5.2: Illustration of different visual personation technologies.

Human This category is the oldest personation method that has been used for
deception. The cost of personation varies depending on the apparent natural simil-
arity (i.e. biometric twins) of the target person and the personator. In case of lack
of sufficient resemblance, the personator can use heavy or prosthetic makeup and
masks to change his appearance5. The result is often of sufficient similarity to be
recognized as the target person. Many applications of this technique exist and are
mainly around the entertainment industry, such as “fake shemps"6 and imperson-
ators.

An example for identical twins is Leslie H. Gearren7 acting for Linda Hamilton in
“Terminator 2: Judgment Day" as her double. Natural similarity of actors Keira

3https://news.yale.edu/2001/03/19/heads-will-be-talking-yales-d
igital-media-arts-center

4http://newsfeed.time.com/2011/06/24/japanese-scientists-build-a
-perfect-and-fake-pop-star/

5https://www.boredpanda.com/game-of-thrones-make-up-art-transfo
rmation-paolo-ballesteros/

6https://web.archive.org/web/20071115162315/http://en.allexpert
s.com/q/Horror-Film-2863/Horror-Film-Staff.htm

7http://www.imdb.com/name/nm0357696/bio

https://news.yale.edu/2001/03/19/heads-will-be-talking-yales-digital-media-arts-center
https://news.yale.edu/2001/03/19/heads-will-be-talking-yales-digital-media-arts-center
http://newsfeed.time.com/2011/06/24/japanese-scientists-build-a-perfect-and-fake-pop-star/
http://newsfeed.time.com/2011/06/24/japanese-scientists-build-a-perfect-and-fake-pop-star/
https://www.boredpanda.com/game-of-thrones-make-up-art-transformation-paolo-ballesteros/
https://www.boredpanda.com/game-of-thrones-make-up-art-transformation-paolo-ballesteros/
https://web.archive.org/web/20071115162315/http://en.allexperts.com/q/Horror-Film-2863/Horror-Film-Staff.htm
https://web.archive.org/web/20071115162315/http://en.allexperts.com/q/Horror-Film-2863/Horror-Film-Staff.htm
http://www.imdb.com/name/nm0357696/bio
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Knightley for Natalie Portmans character has also been used in “Star Wars: Epis-
ode I – The Phantom Menace" (Fig. 5.2(c)). Many examples for prosthetic makeup
exist in satire (e.g. Steve Bridges as George Bush (Fig. 5.2(d)) (6)). Using humans
for personation has been done for political purposes too. The best-documented ex-
ample of political decoys is personation of Bernard Montgomery by Clifton James
(8). This method of personation is surprisingly effective in convincing people.
The main advantage of this technique compared to the other methods is complete
naturalness of the muscle control of the resulting personation.

The impersonator needs to learn the gestures and mannerism of the target person
in order for the personation to be convincing. For such applications, actors are
usually the best choice as of their experience in realistic mimicking of behavior.
This will provide similarity on top of realism of their movement.

Digital

Using computer algorithms, a video of a talking face can be a digitally modified
copy or be completely synthetic. Different technologies evolved for the creation
of animated faces based on these two categories for applications such as virtual
actors and automated dubbing.

Tampering An authentic video of a person can be manipulated and modified to
change the content of the recording. This can be done manually using video editing
software (Fig. 5.2(f)) (e.g. splicing and morph cut in Adobe Premiere) or auto-
matically using techniques such as active appearance models (AAM) (10). These
changes can require signal processing steps minimally, as of removing a single
word manually and morphing the before and after images, or extensively, as for
automatic concatenation of visemes in audiovisual text-to-speech (AVTTS).

One of the earliest examples of automatic tampering is Video Rewrite system (5).
Since these methods produce the original frames of the recorded video or their
morphed copy, the result is generally photorealistic and similar to the target per-
son. However, the realism of dynamics is limited by the amount of variability in
the existing footage. The more tampering and morphing happens between inco-
herent frames, the more temporal artifacts will be visible in the resulting video.
This method has been successfully used for AVTTS and achieved high realism
scores in subjective tests (Fig. 5.2(e)) (10). The limitation of this method is that
it requires a long expressive recording with consistent light and a fixed pose for
desirable results. However, the capture and animation process is much simpler
and computationally cheaper compared to synthesis and results in higher quality
videos.
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Synthesis The high computational cost and difficulty in 3D modeling of human
facial details and rendering of digital characters, as well as the extreme sensitivity
of humans to details of facial texture and motion, makes the generation of synthetic
faces hard. However, due to the flexibility these models provide for synthesis in
different lighting conditions, from different angles, and with the minimal amount
of capture needed compared to tampering techniques, there has been a lot of in-
terest and effort in creating realistic synthetic faces (4). The existing technology
has been used to synthesize faces of sufficient realism by the movie industry in
the past decade (Fig. 5.2(g)). However, the realism of synthesis is a function of
computational costs such as the number of polygons and reflection and shading res-
olution, making the technology limited to high budget non-realtime applications.
Nevertheless, in some cases, it may be possible to reduce computational costs by
only synthesizing the face partially and splicing it over some existing footage (4).

The advancements in computational graphics and graphics processing unit capa-
city slowly bring the possibility of photorealistic 3D rendering to real-time and
on personal computers (Fig. 5.2(h)) (22). The capture procedure of faces usually
requires the use of multiview face capture systems (9). It has also recently become
possible to infer the high-resolution texture of faces using a single low-resolution
photo of the face (21). Morph target animation can be used along with facial rig-
ging to animate the face mesh.

These models can present very high photorealism (22) thanks to methods for per-
fecting the details (e.g. skin reflectance modeling) (9). These synthetic faces have
also found applications in AVTTS (10) and robotics (2).

Animation source

The aforementioned physical and digital artificial entities have interfaces for anim-
ation (e.g. based on FACS). To answer how to animate these characters using their
interface, there are several solutions developed and are described in this section.

Motion capture Motion capture (mocap) technology has advanced tremendously
recently, and many markerless mocap systems have been developed with high ac-
curacy (7). This enables the actor or impersonator to control the actions of the
virtual or artificial character with ease and accuracy. Based on the resolution of the
motion capture device, the movements can be indistinguishable from real move-
ments. These systems have been applied by the movie industry as well as for
virtual reality and telepresence applications.

Synthesis In many cases, it is not possible to entirely rely on motion capture
for animation of the characters. Examples include video games and autonomous
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robots. Early systems were animated using predefined actions that were coded
manually (19). Example of these systems are the terminal-analog systems that
were early attempts to animate AVTTS characters. There have been attempts to
animate characters automatically using models such as hidden Markov models
(HMMs). These models can be trained on existing footage of the target person,
and used for the synthesis of proper behavior in new situations. Another type of
synthesis is the use of text or speech features to animate the character in the video
(Fig. 5.2(j)) (25). These systems have applications in AVTTS as well as automated
dubbing.

5.3.2 Auditory

Humans rely on dynamics and high-level auditory features for recognizing people,
and vocal-tract similarity does not affect the human perception as much as the
dynamics of speech. The resulting situation requires realistic virtual and physical
artificial beings to have natural sounding personations, as well as having similarity
in high-level features.

Physical

Physical methods rely on physical entities for generation of personation speech.
These can be broadly categorized into artificial and living.

Artificial A speech personation audio can be generated using biomechanical mod-
eling of human vocal apparatus (11). These systems are hard to develop as the vo-
cal apparatus of humans is not visible and not measurable as easily as faces. The
limitations are similar to those of artificial visual personation technologies. The
technology has not reached maturity for use in personation.

Human Professional impressionists can successfully imitate the voice of many
different people. This ability shows that no alteration to the vocal tract is needed,
and impersonation is an ability that can be learned by practice. Impersonations
usually mimic the mannerism of the target person and try to adjust their voice dy-
namics to match that of him/her. The resulting speech is convincingly similar and
sounds natural to the human ear. Impersonation is usually used by impressionists
for entertainment, however, instances of their use have been recorded for personal
and political gains. A notable example is the personation of President Truman’s
voice on the telephone to persuade foreign leaders to vote in particular ways at the
United Nations8.

8http://www.trumanlibrary.org/oralhist/wright.htm

http://www.trumanlibrary.org/oralhist/wright.htm
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Digital

Speech signal can be manipulated and generated digitally as well. Many different
systems have been developed with high naturalness and intelligibility for real-life
applications. Similar to digital visual personation techniques, these techniques are
also categorizable to tampering and synthesis.

Tampering A synthetic speech can be generated by concatenation of speech samples
from a target speaker. The concatenation footprints can be minimal, in the case of
removal of a word from an audio, or audible when extensively done (e.g. diphone
synthesis). The automated systems generating this kind of synthetic speech are
typically called unit-selection speech synthesis systems (12). Due to the use of
natural human voice for the generation of the synthetic speech, the resulting au-
dio has very natural human-like sound, resembling the voice of the target speaker.
However, due to the collection of each unit from a different context, the high-level
features such as style and intonation of speech are often lost. Some of these arti-
facts can be corrected using post-processing of the pitch and duration of phonemes
after synthesis (e.g. using Pitch Synchronous Overlap and Add (PSOLA)). Unit-
selection systems are the most used type of synthetic speech and are employed in
many real-life applications in our everyday lives.

Synthesis Many technologies for speech synthesis rely on models of speech.
These systems include but are not limited to: Statistical speech synthesis (SSS)
(29), Articulatory speech synthesis, and voice conversion (1). The most used type
of synthetic speech generation systems is SSS. These systems model the distri-
bution of speech features using HMMs in a similar manner to speech recognition
systems, and later synthesize speech using parameter generation algorithm. The
resulting speech lacks the naturalness of the unit-selection systems, but has more
cohesion, is more flexible, and can model the high-level and dynamic features of
the speech to some extent. The similarly is also high as the synthesis paramet-
ers are generated from the distribution of speech features extracted from genuine
speech. The possibility of speaker adaptation on these systems makes them a good
candidate for automated personation attempts.

Another type of synthetic speech that requires attention is voice conversion. Given
an audio signal from a target speaker, the system can learn a mapping from feature
space of the personator to that of the target speaker. This model can later be used
to convert the voice of a personator to the target speaker’s voice. As of now, these
systems lack naturalness in their generated audios but may improve tremendously
as the technology advances.

Wavenet (27) represents another interesting type of speech synthesis system that
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relies on waveform synthesis rather than feature synthesis. The clear naturalness
and resemblance of human speech using waveform synthesis is promising and can
pass human judgment.

Animation source

Digital speech synthesis systems usually get a text as an input for generating the
output audio. The text may be accompanied by affective information as well. The
exception to this is the voice conversion systems that act in a similar manner as the
motion capture systems.

5.3.3 Combinations

Multimodal personations require combination of visual and auditory modalities.
This is challenging, as humans rely on both visemes and phonemes to understand
speech, and thus are extremely sensitive to small disaccords between modalities.
The technology of choice for each modality can vary depending on the application
of the system. Of course, these techniques can be combined on each modality
as well, producing “hybrid" personations. This can be done to take advantage of
their fusion to reduce the need for extra modeling, avoiding artifacts, or reducing
computational costs. Obfuscation may also be employed concurrently to achieve
the same goals.

5.4 Detection Techniques
Different detection technologies are being developed stemming from fields of di-
gital video forensics, biometrics, and fake news detection. Presentation attack
detection technologies address the detection of physical attempts while tamper-
ing detection and computer-generated detection technologies provide solutions for
the detection of digital tampering and synthesis attempts respectively (Fig. 5.1).
Despite considerable achievements, to date, no generalized method for automated
detection of such content has been developed (20, 24, 28).

A different approach in development is to utilize contextual and style-based in-
formation as well as relying on external sources of knowledge for verification of
veracity of a piece of information (23). Hitherto, the task of personation detection
remains mostly a manual endeavor.

5.5 Discussion
In this study, we attempted to categorize all the existing applicable technologies
for audiovisual personation. The list of personation technologies can be summar-
ized in Table 5.1. It can be seen that the visual, auditory, and animation factors
of a given entity can each one be created by a human, by modifying an existing
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record, or by synthesis from a model, and done independently of one another. This
classification simplifies the description of any personation technology as well as
the formulation of weaknesses and strengths of these methods.

Table 5.1: Summary of the different personation technologies.

Visual Auditory Animation

Physical
Artificial Androids - Screens

Biomechanical
- Loudspeaker

-

Human
Twins
- Prosthetic makeup

Impersonation Impersonation

Digital
Record-based

Image-based
(Tampering)

Unit-selection
(Tampering)

Cloning

Model-based CG (Synthesis) SSS (Synthesis) Autonomous

An estimation of the detection difficulty of personation attempts for viewers is
given in Table 5.2. Given the difficulty of detecting record-based models, it can
be concluded that major risks of existing technologies are presented by these per-
sonations. A lower level of risk arises from modeling of reality by humans and
model-based systems.

Table 5.2: An estimate of detection difficulty of personation attempts for humans, along
with generation cost approximation. (E: Easy, M: Moderate, H: Hard) Naturalness and
similarity are estimated for Visual (V), aniMation (M), and Auditory (A) aspects.

Naturality Similarity Creation Cost
V M A V M A Model Prod.

Physical
Artificial H E E H E E High Low
Human H H H M H H Mod Low

Digital
Record-based H H H H M H Low Low
Model-based M M M H H H Mod Low

5.6 Future work
In this study, different techniques that are usable for personation are listed and ex-
plained. Future work consists of studying the risk assessment of these attacks and
applicable detection technologies. Creation of a dataset based on this classifica-
tion and objective evaluation of the performance of different detectors would be
the next step.
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6.1 Abstract
Advancements in computer graphics and artificial intelligence have facilitated the
generation of graphics faking human faces and this technology can be misused
for personal or political gain. Media consumers are exposed to hours of audi-
ovisual content daily and their vulnerability to fake audiovisual content has not
been fully studied and understood; this is in marked contrast to the fact that auto-
mated fake content generation techniques are readily accessible to the public. A
first step to address this vulnerability is to study the effectiveness of existing meth-
ods in passing human judgment .To this end, we examined the performance of
30 participants in the detection of 48 real and fake videos. The fake videos were
sourced from six different methods of generation and were collected from a public
video sharing website1, ranging from prosthetic makeup to Deepfakes. Our results
show that the participants failed to detect two different types of fake videos. How-
ever, participants detection performance improves when they have prior knowledge

1https://www.youtube.com/
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about the displayed individual in the form of a biometric reference video (introdu-
cing the individual and its behavior) that can be referenced during the test.

6.2 Introduction
The consumption of audiovisual content is on the rise due to the increase in net-
work speed and the richness and appeal of such content compared to traditional
forms of media. Further, the consumption of media from free and unreliable
sources such as social media channels has increased dramatically in recent years.
These two factors combined can cause a massive proliferation of fake news in
audiovisual format. This is alarming, because in contrast to text-based fake con-
tent detection, audiovisual fake content detection is in its infancy, and only few
automatic detection methods are in place with limited applicability (14) . An im-
portant case of audiovisual content is the case of talking faces, being a usual part
of online videos due to it being the most natural way of communication between
humans. The generation of videos of fake faces has become possible thanks to ad-
vancements in computer graphics and more recently in artificial intelligence. Many
methods claim to have video-realism, some of which are available for public use.
One recent example of using fake faces is the Xinhua agency’s AI presenter2.

Humans are shown to be vulnerable to digitally manipulated images (12). In 2012,
Farid et al. (4) measured the performance of humans in detecting fake face images
generated using computer graphics. Their results show above chance detection
accuracy in different resolutions and compression settings. In similar studies (2,
3), authors try to pinpoint contributing factors in detection such as positioning
of illumination sources and shadowing, color, and partial occlusion of the face.
However, in a more recent study in 2018, Rossler et al. (11) studied the detection
performance of humans on fake face images extracted from a specific fake video
generation algorithm. Their results show that human detection accuracy can be
as low as random guessing after video refinement and compression. This study
tries to provide insights into the open question, can people distinguish real videos
from fake ones? The results from this study’s simulated real-life scenario will shed
new light on media consumer vulnerabilities; it will also provide a review of the
effectiveness of new and traditional audiovisual fake face generation methods in
the current point in time.

The rest of this paper is organized as follows: Section 6.3 describes the exper-
imental methodology and includes details on the dataset, the test protocol, and
the test setup. Section 6.4 discusses the results of this study and then Section 6.5
presents our conclusions and proposals for future work.

2https://www.bbc.com/news/technology-46136504

https://www.bbc.com/news/technology-46136504


6.3. Data and Methodology 69

6.3 Data and Methodology
In this study, a real (a.k.a bona fide) video is defined as a continuous recording of
the target individual without any modification that changes the representation or
appearance of that target individual and the content of the utterance. Alternatively,
a fake video is anything to the contrary and can be described as either imperson-
ated, manipulated, or synthetic media related to the target individual. The target
individual is the natural person whose appearance is used for generation of the fake
video.

To reach the objective of this study, a set of videos were required that represents
the status of today’s technology in fake video generation, and a test setup that
simulates real-life video encounters.

6.3.1 Dataset

The scenario in this study is limited to continuous scenes of talking heads. As to
study the effect of visual and auditory features rather than the textual content of
the videos, only short utterances were considered for this study. A dataset con-
sisting of 48 videos, each five seconds in duration, were manually collected from
YouTube. The videos were selected such that they have a size of at least 640×480
pixels, and were manually screened for sufficient lighting and frontal face visibility
conditions. The videos are selected such that they do not contain any meaningful
uttered sentence, avoiding leakage of information about the real- or fake-ness of
the video.

Half of the videos fitted the criteria of “fake”, and categorized to six categories
based on the technique used to generate them, meanwhile the other 24 represent
the “real” video control set. Due to the very limited number of actual fake videos
matching the selection criteria, the selected fake material represents an extent of
videos that can be used as a fake video. Following the taxonomy introduced in (7),
the fake categories are as follows:

1. Physical

(a) Look-alike: The individual in the video is a look-alike of the target
individual. The voice may not match the target individual.

(b) Prosthetic Makeup: The individual in the video wears prosthetic makeup
and impersonates the target individual.

2. Digital

(a) Computer Graphics Imagery (CGI): The scene has been generated us-
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ing CGI. The voice may come from an impersonator or the target indi-
vidual.

(b) Interframe forgery (Morph-cut): To alter the spoken audio content, the
video has been cut and rejoined in a seemless manner, by using the
Adobe Premiere Pro Morph-cut3 video transition.

3. Hybrid

(a) Face CGI: This technique is similar to the CGI technique, with the
difference in that only the face or a part of the face was synthesized
and then overlayed on the recorded footage.

(b) Face GAN: Similar to Face CGI, only the face is replaced. Yet the syn-
thetic face is generated by Generative Adversarial Networks (GAN)
using Faceswap4 or an alternative open-source application based on
the same concept.

The selection process chose the most video-realistic examples encountered from
each fake category, fitting the overall criteria of duration and quality. The chosen
videos in each category were further filtered for video-realism by three colleagues
in our research lab. The selected videos partially overlap with the FFW dataset(8).
The sources of the videos guaranteed their status as fake. Facial regions of all
the fake videos are depicted in Figure 6.1. For the control set, 24 videos were
randomly selected from the VoxCeleb(10) dataset after filtering those with regards
to the same duration and quality criteria.

To address the effect of having a biometric reference included in the test, each
video in the real and fake categories was paired with a supporting biometric ref-
erence from the target individual. The selection criteria for biometric reference
videos were the same as for the “real” category and partially selected from Vox-
Celeb dataset. The participants’ detection performance was first stabilized by using
a short mock test that was based on five pairs of video and biometric references
that are separate from the experimental/control datasets. The target individuals
in the videos were adults who were either celebrities or political personalities of
varying in age and gender.

To eliminate low-level clues that participants might use to identify the fake videos,
the following metrics were measured to assure an overlapping distribution between
both sets: head size, head pose, image and facial quality. In both real and fake sets
the average head size was ≈ 128 pixels, average BRISQUE(9) was ≈ 36%, and

3https://helpx.adobe.com/premiere-pro/using/morph-cut.html
4https://github.com/deepfakes/faceswap

https://helpx.adobe.com/premiere-pro/using/morph-cut.html
https://github.com/deepfakes/faceswap
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Figure 6.1: The faces in the six categories of fake faces. Going left to right, the columns
correspond to the following categories in order: Look-alike, Prosthetic Makeup, CGI,
Morph-cut, Face CGI, and Face GAN.

average face quality(1) was≈ 61%. The distribution of facial pose in both sets also
has a high overlap. The list of videos in the dataset are made available online5.

6.3.2 Protocol

The aim of this test is to measure the following:

• Participants (i.e. media consumers) performance in the detection of the most
video-realistic fake samples in each category.

• Effect of presence of a biometric reference upon the detection performance.

• Effect of familiarizing the participants with different categories of fake con-
tent with a guide on the shortcomings of each fake face generation method
on their detection performance.

• Effect of prior knowledge of the target individual on the detection perform-
ance.

5http://ali.khodabakhsh.org/fake-faces-for-subjective-testing/

http://ali.khodabakhsh.org/fake-faces-for-subjective-testing/
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• Possible correlations between demographic information and subjective de-
tection performance.

• Common clues used by participants.

The test aims to have a measurement corresponding to the real-life scenario and
utilizes a web-based interface that participants access through their personal mul-
timedia device (limited to devices with a large display, e.g. laptop or tablet). To
make sure the participants can use both modalities, they were given guidelines for
screen and audio adjustment.

The experiment sessions were split into five parts. The first part was used to
briefly explain the test and also collect participants’ demographic information (age,
gender, education, and occupation). In addition to this, the existence of any visual
deficiency is probed, along with a question regarding the expected expertise of the
participant in the task.

The second part consists of a familiarization step, where fake videos are described
and a set of videos depicting examples of each category is shown to the parti-
cipants. To measure the effectiveness of familiarization, the familiarization page is
shown before the test in half of the population, and after the test in the other half.

The third step corresponds to a mock test with a fixed order. This step tries to
stabilize the performance of the participants and to reduce any inconsistency in
their performance caused by the learning process. This step follows the same set of
questions as the rest of the test. The answers for these videos were to be discarded
in the analysis.

The fourth step is the main part of the test, and was organized as follows: a video
is shown to the participant, sometimes along with a biometric reference, and the
participant is asked to answer a set of multiple choice questions about the video
in question. The questions address the decision of the participant on the video
being real or fake and ask if the participant knows of the target individual. Fur-
thermore, the participant is asked about the main clue that led to their decision to
be selected from a list of clues, with the option of mentioning additional clues in a
comment box. This process is then repeated for the remaining 47 videos. To avoid
any effect of ordering in the test, the videos were shown in a randomized order,
and the biometric reference video appeared randomly in half of the videos. The
participants were also allowed to have a no answer choice in the questions, if they
were uncertain of their response.

Finally, a feedback page is presented to the participants that provides a visualiz-
ation of their performance to reward them by increasing their awareness of their
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mistakes and vulnerabilities.

6.3.3 Test Setup

The test was implemented using the online survey tool Limesurvey(13). The par-
ticipants were invited by an email that included a token which limited each par-
ticipant to a single test trial. The participants were able to stop the test at any
point and resume later. The participants were asked to take the test on a large dis-
play with adequate brightness at arms distance, and have their audio on, and to be
connected to a high-speed internet connection.

The first page of the test included the previously described demographic ques-
tions. International Standard Classification of Education (ISCED) 2011 was used
to measure the participants’ highest completed level of education and Standard
Occupational Classification (SOC) System was used to classify their occupation.
The participants were asked if they have any deficiencies in their vision, defined
as any deficiency that had not been corrected (e.g. by corrective lenses) at the time
of the test. They were also asked about their level of expected expertise in the task
and given a choice between none, very low, moderate, quite high, and very high.
The parameters corresponding to the ordering of videos, biometric reference, and
familiarization page was randomly initialized and saved for the analysis step.

The familiarization page is now available online6. It contains seven videos illus-
trating the different fake content generation methods used in the test, along with a
description of fake video categires used in this study, and the artifacts they typic-
ally create.

A typical test survey page with a biometric reference is shown in figure 6.2. The
playback quality of videos were set to "medium"7, corresponding to 30fps, 360p
videos in VP9 format for video and Opus for audio. The mock test included five
videos similar to the actual test, with two real and three fake videos of which two
had a biometric reference while three were presented alone.

The mock test was followed by the main test, where the 48 videos were presen-
ted in a randomized order, 24 with biometric reference and 24 without biometric
reference. The time taken to answer each question set is also recorded.

6.3.4 Performance Evaluation

The performance evaluation metrics used in the experiment are from the ISO/IEC
30107-3 standard (5), they include: Attack Presentation Classification Error Rate

6http://ali.khodabakhsh.org/research/fake-faces-and-fake-face-
detection/

7https://developers.google.com/youtube/iframe_api_reference

http://ali.khodabakhsh.org/research/fake-faces-and-fake-face-detection/
http://ali.khodabakhsh.org/research/fake-faces-and-fake-face-detection/
https://developers.google.com/youtube/iframe_api_reference
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Figure 6.2: The test interface for a sample video with a biometric reference based on the
Limesurvey tool.
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(APCER) and Bona Fide Presentation Classification Error Rate (BPCER). APCER
measures the proportion of fake (i.e. presentation attack) videos incorrectly clas-
sified as real (i.e. bona fide), while BPCER measures the proportion of real videos
mistaken for fake.

In addition, to evaluate the confidence intervals for detection accuracies, Clopper-
Pearson method was used on the binomial distribution of decisions with a 95%
confidence interval. For evaluating the significance of difference between distri-
butions, two-tailed student’s t-test was used with a significance threshold of 0.05
(specified otherwise). Lastly, Pearson’s correlations were reported along with their
confidence interval using a Student’s t distribution for a transformation of the cor-
relation, and p-values below 0.05 were considered significant(6).

6.4 Results and Discussion
The results presented in this work are based on the participation of volunteers af-
filiated with our campus, as well as acquaints who were interested in taking the
test. During four weeks 30 people participated in the test. 60% of the parti-
cipants have a master degree, while 23% have a doctorate. 77% of the participants
self-identified as male while the remaining self-identified as female. 67% were
employed in Computer and Mathematics, while 13% were variously employed in
Education, Training, and Library services. The average age was 31.2 with a stand-
ard deviation of 7.5. The participants’ average time to complete the test was 39
minutes; this corresponds to an average of 37.6 seconds per video and 4.5 minutes
for familiarization.

Out of 30 participants, five had vision deficiencies; but their performance was not
statistically significantly different from the performance of the rest of the experi-
mental cohort, so their data has been included (p-value of t-test is 0.58, 0.29, and
0.66 for correct, uncertain, and incorrect choices. n = 5 for with and n = 25 for
without vision deficiency.). Out of 30 participants, 18 expected to have moderate
expertise and six expected to have very low expertise. The remaining six parti-
cipants were equally distributed between quite high and none. The participants
were of different nationalities, with 93% from Eurasia. The participants, when
asked, did not mention any mismatch in presentation or low-level patterns useful
for distinguishing between real and fake videos.

The participants had a below 30% BPCER and APCER in detecting real and fake
videos respectively, except for the look-alike and Morph-cut categories. No statist-
ical significance (with a 95% confidence) was observed between the other categor-
ies of the fake and average time taken to answer each question per category. Figure
6.3 shows the percentage of correct, uncertain, and incorrect identification of real
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Figure 6.3: Overall choice percentages with 95% confidence intervals of the participants
in the real and fake categories, along with each subcategory of fake videos. The letter be-
fore the fake category names correspond to the classification of fake videos ([P] Physical,
[D] Digital, and [H] Hybrid) (7).

and fake videos, along with the performance in each fake category separately.

Figure 6.4 shows the percentages of correct, uncertain, and incorrect identification
for every single video sorted by detection accuracy, along with their corresponding
category. The look-alike and morph-cut videos are gathered around the left-hand
side, while the other four categories are distributed in-between the real videos.
A close inspection of outliers in each category shows these videos having spe-
cial lighting conditions. For example, the most misclassified sample of prosthetic
makeup is the face on the fourth row, second column, in Figure 6.1. The most mis-
classified example of CGI and Face GAN are the faces at row one column three
and column six respectively. It is also interesting to observe that the percentage
of uncertain answers per video never exceeds 25% even when the percentage of
incorrect reaches above 50%. This implies that the participants were on average,
confident of their decision in all the videos. The three videos that were classified
correctly 100% of the time were of well-known political personalities (presidents
of the united states) and are shown in row one column two, row two column five,
and row four column six in Figure 6.1.

The most common main clues used is shown in Figure 6.5. The difference in
usage shows participants relied mostly on Head/Face compared to other clues. It
is also interesting to see that the distribution of clues is different in fake and real
videos. In addition, some clues resulted in different performance across classes.
For example, when participants mentioned movements as the main clue, BPCER
was 95% while APCER was only 49%. No statistical significance (with a 95%
confidence) was observed between the accuracy of detection given a specific clue
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Figure 6.4: The percentage of correct, uncertain, and incorrect choices per video, sorted
by the percentage of correct from low to high. The category of videos is shown in the plot
below with colored markers along with the percentage of population that knew the subject
in the video. Look-alike and Morph-cut samples are concentrated in the left side of the
graph.
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Figure 6.5: The number of correct, uncertain, and incorrect choices, given the most com-
mon main clue selected by the participants. The difference in distribution and accuracy of
clues in real and fake categories are visible.

due to small sample size. To measure clue diversity per participant compared to
the clue diversity in the whole group, the clue entropy is calculated. The average
participant entropy was measured to be 2.36 while the total entropy was 3.12,
showing that participants tended to focus on a smaller set of clues in comparison
to the population.

The presence of familiarization was accompanied by a shift in the distribution of
incorrect percentage towards lower values (t-test p = 0.07, n = 12 for with and
n = 18 for without familiarization) and reduced the inter-participant variability
for incorrect and uncertain responses as shown in Figure 6.6(a). Yet this reduc-
tion only caused an insignificant increase in uncertain and correct responses (t-test
p = 0.90 and 0.60 respectively at aforementioned sample sizes). This shows that
the provided familiarization oriented their decisions, yet was not effective in in-
creasing their overall accuracy. As shown in Figures 6.6(b) and 6.6(c), Having a
biometric reference shifted the distribution of incorrect percentages to lower values
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(t-test p = 0.05, n = 30 for both conditions), while knowing the target individual
mostly shifted the distribution of uncertain percentages in the same direction (t-
test p < 0.01, n = 30 for both conditions). The distribution of correct percentages
was shifted towards higher values when the target individual was known (t-test
p < 0.01).

(a) (b) (c)

Figure 6.6: The probability density estimates of the percentage of correct, uncertain, and
incorrect choices for each participant in the with and without (a) familiarization, (b) bio-
metric reference, and (c) knowledge of the target individual scenarios along with the ori-
ginal distribution. A shift towards lower values is observable in the incorrect distribution
in (a), while in there is (b) a shift towards lower values in the incorrect and uncertain
distributions. In (c) the uncertain distribution shifted significantly towards lower values.

The following were observed between the demographic information and the per-
formance of individual participants: Due to the small population size no significant
correlation was observed comparing the level of education and gender to perform-
ance. Level of expected expertise in the task had a positive trend in comparison to
the number of correct responses, yet the 95% confidence intervals for these values
were overlapping. A moderate positive correlation was observed between the age
and the number of incorrect answers (p = 0.07), simultaneously a moderate neg-
ative correlation existed between the age and the number of uncertain (p = 0.02),
canceling the overall effect on the number of correct, as shown in Figure 6.7.

6.5 Conclusion and Future Work
We evaluated the performance of 30 participants in distinguishing fake videos from
real ones using a web-based platform. 48 pair of videos were collected from an
online video sharing website, 24 of which could fit the definition of fake and were
generated using six different methods ranging from prosthetic makeup to Deep-
fakes.

The results suggest the vulnerability of participants to the traditional methods more
than the new methods, specifically to look-alikes and interframe forgery. This
aligns well with the long history of use of look-alikes as fake faces, especially as
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tion is observed between age and uncertain.

political decoys. Interframe forgery, on the other hand, has a limited footprint as it
only affects a part of the video. The footprint is further covered using the morph-
cut technique for smoothing the transition in jump cuts. Yet both these techniques
are expensive in practice, due to the difficulty of finding look-alike impersonators,
and of finding long videos depicting consistent scenes of the target person to be
used in the morph-cut setting.

It can also be concluded that the selected fake videos from CGI, Face CGI, Face
GAN, and Prosthetic Makeup techniques had not yet reached convincing video-
realism. The results also suggest special lighting setups to be effective in resulting
in more errors in the population, obfuscating the artifacts caused by the generation
method.

The existence of a biometric reference reduces the number of errors, while know-
ing of the target individual reduces the uncertainty, contributing to a higher number
of correct classification. The presented familiarization was not effective in increas-
ing the accuracy of participants, yet it caused a lower number of incorrect choices
which was in turn compensated with a higher number of uncertain ones. Further-
more, it is observed that individuals rely on a small set of clues for their decision,
and the main clue supporting the participants’ decision is in the head/face area.

Many parameters did not yet provide any statistically significant difference due to
the small number of participants and videos per category. This will be investigated
in more detail in our future work. The selected techniques also had a big difference
in ease of detection, limiting the effect of conditions such as familiarization and
biometric reference in detection accuracy. Furthermore, the population was not
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representative of the general population, limiting the implications of the findings.

This study shows the performance of suspecting audience in the specific task of
differentiating real and fake videos. However, in a real-life scenario, the audience
is not actively judging every and each video for them being real or fake, and the
major source of trust comes from the publisher of the video. The future work for
this study consists of a test design that measures the subjective performance in
an unsuspecting manner, on a wider and more diverse population. Furthermore,
the auditory and visual aspects of the signal will be studied separately. Effects of
lighting conditions and popularity of the subjects will also be studied in further
detail.
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7.1 Abstract
There is a long history of exploitation of the visual similarity of look-alikes for
fraud and deception. The visual similarity along with the application of physical
and digital cosmetics greatly challenges the recognition ability of average humans.
Face recognition systems are not an exception in this regard and are vulnerable
to such similarities. In contrast to physiological face recognition, behavioral face
recognition is often overlooked due to the outstanding success of the former. How-
ever, the behavior of a person can provide an additional source of discriminative
information with regards to the identity of individuals when physiological attrib-
utes are not reliable. In this study, we propose a novel biometric recognition system
based only on facial behavior for the differentiation of look-alikes in unconstrained
recording conditions. To this end, we organized a dataset of 85, 656 utterances
from 1000 look-alike pairs based on videos collected from the wild, large enough
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for the development of deep learning solutions. Our selection criteria assert that
for these collected videos, both state-of-the-art biometric systems and human judg-
ment fail in recognition. Furthermore, to utilize the advantage of large-scale data,
we introduce a novel action-independent biometric recognition system that was
trained using triplet-loss to create generalized behavioral identity embeddings. We
achieve look-alike recognition equal-error-rate of 7.93% with sole reliance on the
behavior descriptors extracted from facial landmark movements. The proposed
method can have applications in face recognition as well as presentation attack
detection and Deepfake detection.

Figure 7.1: Examples of look-alike identity pairs in the proposed 1000 look-alike pairs
(1000LP) dataset. Each column shows one pair of look-alikes. The identities in the pro-
posed dataset are a subset of the identities in the VGGFace2 (4) dataset.

7.2 Introduction
Distinguishing visually similar individuals, be it identical twins or look-alikes with
physical make-up or plastic surgery, has been challenging for both humans and
face recognition algorithms (16). In the context of video communication, this vul-
nerability is further exacerbated as other means of identity verification are often not
available. Moreover, the use of look-alikes and make-up for fraud has an advant-
age over digital manipulation methods as they don’t produce any digital footprint
in the received signal to be used for detection. Furthermore, despite the rise of
advanced digital video manipulation methods such as Deepfakes, subjective tests
show higher susceptibility of viewers to fake videos containing look-alikes rather
than digitally manipulated videos (11). Fortunately, a video signal contains addi-
tional clues on the identity of the person in the form of facial behavior (3, 15).

Among existing methods for behavioral face recognition (BFR), the vast major-
ity of studies focus on fixed-phrase authentication or specific emotional responses.
Chen et al. (6) propose use of dense optical flow vector distance for identific-
ation in a fixed-phrase scenario. In (5) Cetingul et al. experiment with dense
motion features, lip contour motion features, and lip shape features with a hidden-
Markov-model (HMM) classifier. Zafeiriou and Pantic (28) use principal compon-
ent analysis (PCA) followed by linear discriminant analysis (LDA) on dense facial
deformation features in spontaneous smile for biometric recognition. Wang and



7.2. Introduction 85

Liew (25) show that behavioral lip biometrics based on temporal shape descriptors
and motion vector representation outperforms physiological lip biometrics based
on texture descriptors. Gavrilescu (9) proposes a multi-state neural network on
individual facial expressions extracted in the form of facial action coding system
(FACS). More recently, Iengo et al. (10) use neural networks on dynamic facial
features to achieve a fixed-phrase recognition rate of 98.2% and Taskirar et al. (24)
use statistical properties of facial distances during different phases of smile facial
expression for face recognition.

A number of publications have attempted to address unconstrained BFR. Matta
and Dugelay (18) propose using rigid head displacements along with GMM and
Bayesian classifiers for person recognition. Ye and Sim (26) use locally similar
facial deformation patterns for identification through the calculation of local de-
formation profile similarity. In (22), Shreve et al. quantify the type and intensity
as well as the temporal dynamics of action units (AU) via calculating histogram
distances and dynamic time warping (DTW) distance. Yuan et al. (27) propose the
usage of active shape models on lip contour along with gaussian mixture models
(GMM) for authentication in smartphone applications.

BFR has also been used in multi-modal biometric recognition as well as present-
ation attack detection (PAD). Notably, Zhao and Pietikanien (30) introduce local
binary patterns (LBP) on three orthogonal planes and volume LBPs and thus incor-
porates immediate neighborhood frames of the video for face recognition. Kim et
al. (13) use long short-term memory (LSTM) cells on top of convolutional neural
networks (CNN) to capture smile facial dynamics. More recently, Pan and Deravi
(19) use support vector machine (SVM) on AU histogram features for presenta-
tion attack detection. Finally, Agrawal et al. (1) model facial expressions of four
individuals using facial landmarks and SVM to detect Deepfakes.

To distinguish look-alikes from each other many image-based methods have been
proposed. Klare et al. (14) provide a taxonomy of facial features and analyze
the discriminative power of these features for identical twin identification. The
only video-based solution is proposed by Zhang et al. (29), where they extracted
six types of face motion from the talking profile of identical twins and use the
similarity of aligned motion sequences for classification by an SVM model. To
the best of the authors’ knowledge, there exists no publicly available video dataset
of look-alikes in the literature. The only related video dataset in the literature
is the private dataset by Zhang et al. (29) collected from 39 pairs of twins at
the Mojiang International Twins Festival. There also exists a couple of related
datasets containing solely images. Lamba et al. (16) collected the only dataset
on look-alikes consisting of 500 images from 50 celebrities and their look-alikes.
Phillips et al. (20) collected a dataset of 435 twins consisting of 24050 images.
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All aforementioned publications rely on small data collected in controlled envir-
onments, and few of them address emotion- and utterance-independent detection
with limited success, and as such, among all publications regarding this topic, none
have addressed the unconstrained BFR in real-world scenarios. In this study, we
introduce a general-purpose action-independent identity descriptor extractor based
on facial behavior for distinguishing look-alikes. To this end, we also provide the
first large-scale look-alike video dataset named “1000 look-alike pairs (1000LP)”
which consists of approximately 23, 000 real-world videos collected from a public
video-sharing platform1, for which both humans and state-of-the-art recognition
systems fail at differentiation2. Among the aforementioned literature, the approach
in this article is in the same line of research as is taken by Zhang et al. (29) and
Agrawal et al. (1). The rest of this article is organized as follows: in Section 7.3
the proposed method is described, while Section 7.4 includes the details of the col-
lected dataset as well as the experiment setup. The results of the experiments are
discussed in Section 7.5 and the article is concluded in Section 7.6.

7.3 Proposed Method
The physiological likeliness of two individuals due to natural similarity or applic-
ation of physical or digital makeup may lead to false-positives in face recognition.
In these cases, the facial behavior can be a source of complementary informa-
tion for face recognition. Facial behavior contains identifiable information and
has a significant role in person identification by humans (3, 15). In our proposed
method, after face detection and facial landmark extraction in each frame, we train
a convolutional deep neural network (CDNN) which maps the sequence of normal-
ized landmark positions in the video to a vector in a generalized behavior space
in an end-to-end manner. This approach enables the recognition of persons that
are previously unseen by the detector by simply calculating the distance between
behavior-vectors extracted from a pair of videos. Furthermore, as the network only
sees the landmarks, it is guaranteed to be void of influence by the physiological
likeliness of the individuals. Furthermore, landmarks are not as sensitive to dis-
turbances and quality-related issues as other features such as optical and motion
fields are and can be extracted with higher confidence.

7.3.1 Preprocessing

We use the open-source facial behavior analysis toolkit OpenFace (2) to extract
the landmark positions from videos. The toolkit provides face detection as well
as pose estimation and 3D landmark positions for each frame in the video. For

1http://www.youtube.com
2The dataset is publicly available for download at http://ali.khodabakhsh.org/re

search/1000lp/

http://www.youtube.com
http://ali.khodabakhsh.org/research/1000lp/
http://ali.khodabakhsh.org/research/1000lp/
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landmark positions to be independent of the camera position and head rotation
angle, we use the pose estimation information to rotate the 3D landmarks in 3D
space to achieve a frontal pose of zero degrees roll, yaw, and pitch. Further on, the
landmark positions in each video are scaled to match a fixed scale used over the
whole dataset. The scaling is done such that the inner eye corner landmarks would
be on average 0.5 units apart. Finally, the landmarks are individually normalized
using their mean and standard deviation across the whole training dataset. The aim
of the aforementioned normalization steps is to convert the landmark positions to
rotation-independent displacements from the average position. Even though the
pose information can also contain additional behavioral identity information, they
were left out due to their dependence of the estimated pose to the camera angle
and position. Figure 7.2 visualizes the preprocessing pipeline.

OpenFace

Video

     Rotation & Scaling
Mean/Std

Normalization

Figure 7.2: Feature extraction pipeline.

7.3.2 The proposed recognition system

To extract identity-sensitive yet action-independent information from the time series
of landmark movements, it is fruitful to rely on the distribution statistics of the
landmark deviations. However, due to the noisy nature of the estimated 3D land-
mark positions extracted from 2D videos in the pre-processing step, a refinement
step proves necessary. However, the refinement criteria are ambiguous as the cor-
rect landmark position is not available. Furthermore, the movements are correlated
to a large extent and contain redundancies. Motivated by the recent success of x-
vectors (23) in the field of speaker recognition, we propose the network architec-
ture shown in Figure 7.3 for end-to-end learning of the appropriate refinement for
the best identification performance before statistical pooling. In this architecture,
four 1D-convolutional layers are applied to the input time series. By using max-
pooling layers across time, the receptive field of the final layer of the stack can be
increased. Following the convolutional layers, a linear mapping is learned to map
the output of the last convolutional layer to the feature-embedding space. After
calculation of the mean and standard deviation of the feature-embeddings across
time, the resulting fixed-length vector is then used for generating identity embed-
dings by two fully-connected layers. Instead of using class labels for training the
network, we use triplet loss (21) to enable better generalization capacity for unseen
identities. Furthermore, batch normalization is used after the input layer, the stat-
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istical pooling layer, and between the output of neurons and activation functions
to reduce the learning time of the network. No activation is used on the output of
the feature-embedding mapping layer and the final layer to enable the network to
utilize the full embedding space.
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Figure 7.3: Proposed network architecture.

The Euclidean distance between identity embeddings can directly be used as a bio-
metric dissimilarity metric. In the case of multiple enrollment samples from mul-
tiple identities, it is also possible to use the proposed system as a preprocessing
step, and train a softmax layer for classification directly on extracted identity em-
beddings.

7.3.3 Look-alike mining

The VoxCeleb2 dataset (7) contains over 1 million utterances from more than
6, 000 celebrities collected from YouTube. The identities in this dataset are a
subset of identities in the VGGFace2 (4) dataset. To mine for Look-alike iden-
tities, we used the ArcFace (8) face recognition system to compare the average
embeddings for each identity in the VGGFace2 dataset that appears in VoxCeleb2
dataset as well. After sorting the scores of the resulting 36M comparison pairs, the
top 2, 000 pairs with the highest similarity score are selected for a subjective face
recognition test. Among the top pairs, there exist pairs of identical twins as well.

In the subjective face recognition test, for each look-alike pair of identities, four
images are selected from each identity from the VGGFace2 dataset and shown to
participants. The task for the participants was to check whether the two sets of
images correspond to the same identity or two different people. The user interface
is shown in Figure 7.4. Due to the large number of comparisons, the test was
done by 20 participants, each labeling 200 pairs such that each pair is labeled by
two people. From the resulting comparisons, the pairs that were labeled as the
same people by at least one participant were selected as look-alikes and formed
the 1000 look-alike pairs (1000LP) dataset. Figure 7.1 shows examples of the
resultant look-alike pairs. To assure the reliability of the selected look-alike pairs,
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Figure 7.4: Subjective face recognition test user interface.

the equal-error-rate (EER) is calculated for the resulting look-alike pairs using the
ArcFace network, resulting in an unacceptably high EER of 30.32%.

7.4 Experiment Setup
The selected 1000 pairs of look-alikes consist of 1634 unique identities. The re-
maining 4500 identities in VoxCeleb2 are available for training the network. The
rest of this section describes the details of the organized test dataset and the para-
meters used for training.

7.4.1 1000LP Dataset

The utterances available in the VoxCeleb2 dataset are in the format of cropped
faces sized 224 × 224 pixels at 25 frames per second in AVC1 format. There
is a total of 1, 128, 246 utterances which originate from 150, 480 YouTube videos.
After filtering out all utterances with a length of less than 8 seconds and discarding
all utterances for which face landmark detection failed, a total of 253, 361 utter-
ances remained for training and 85, 656 utterances for testing. The median length
of the remaining utterances is 10.7 seconds. From the 4500 train identities, 15%
of them were held for validation purposes, and the remaining were used for train-
ing. For the test identities, one-third of videos (28, 368 utterances) were separated
for enrollment, and the remaining videos were used for testing. Resulting from
this, 127, 332 test trials were created, out of which 57, 288 are client trials and
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70, 044 are impostor trials3. Special care is taken in the selection of the enrollment
and test utterances such that if an utterance from a YouTube video is used in the
enrollment, no utterances from the same video remains in the test trials. Thus, the
performance is assured to correspond to the cross-video performance in real-life
use.

7.4.2 Detector

The network parameters are shown in Figure 7.3. The breadth of the network along
with the dimension of the final embedding is set to 512, with only the exception
of expanded feature embedding dimensions of three times the breadth. The total
number of trainable parameters in the network was 5.3M. A kernel size of 3 is used
in the convolutional stack while max-pooling is done with a stride of two, resulting
in a receptive field of 23 frames (roughly one second) before statistical pooling.
The normalized input had a dimension of 204 corresponding to 3D coordinates for
the 68 landmarks. The model was trained using TensorFlow4 with a batch size of
256 and the learning rate was manually adjusted towards minimizing validation
loss. Semi-hard triplet loss on L2 distance of L2 normalized network outputs was
used and the model was trained for 10 epochs. The hyper-parameters are selected
according to the highest network performance on validation data.

7.5 Results and Discussion
The verification and identification performance of the proposed method for Euc-
lidean similarity as well as softmax probabilities are reported in Table 7.1. The
Euclidean similarity scoring performs better in identification mode than softmax
probabilities and achieves an identification accuracy of 79.84% on video level.
This is remarkable considering the large number of identities enrolled in the sys-
tem (1634). Despite the high identification accuracy, the EER of the Euclidean
similarity measure is 13.04%. Softmax probabilities, however, achieve a much
better EER of 7.93% in verification mode. This discrepancy shows that softmax
probabilities perform better in separating score distributions of client and impostor
trials, but fails to preserve the ranking order of similarities. The detection error
tradeoff (DET) curve is shown in Figure 7.5 visualizing the fact.

In order to be able to interpret the performance of the proposed method, it is com-
pared to the reported results for existing BFR methods in the literature in Table
7.2. It is important to emphasize that all previous methods have only been tested
on videos with controlled and semi-controlled recording environments. Among

3The dataset is publicly available for download at http://ali.khodabakhsh.org/re
search/1000lp/

4https://www.tensorflow.org/

http://ali.khodabakhsh.org/research/1000lp/
http://ali.khodabakhsh.org/research/1000lp/
https://www.tensorflow.org/
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Verification Identification
EER (%) Top-1 (%) Top-5 (%)

Euclidean
Distance

Segment (∼10 sec) 15.42 60.57 77.83
Video (∼4 seg) 13.04 79.84 92.61

Softmax
Classifier

Segment (∼10 sec) 10.08 65.47 81.00
Video (∼4 seg) 7.93 73.87 86.33

Table 7.1: The performance of the proposed methods.

Figure 7.5: Detection error tradeoff (DET) curve for the proposed methods.

the methods that operate on non-predetermined motion, the proposed method has
the lowest EER and a comparable recognition rate despite the number of enrolled
identities being orders of magnitude larger.

The t-distributed stochastic neighbor embeddings (t-SNE) (17) for enrollment ut-
terances for a subset of identities is visualized in Figure 7.6. It is visible that
the enrollment utterances of test set identities form concentrated clusters with few
outliers. This signifies that the learned embedding space is able to generalize well
across unseen identities, and the failure cases probably correspond to the outliers.
Figure 7.7 shows landmark significance for a selected set of filters in the first con-
volutional layer of the network. The significance is measured in terms of the norm
of the 3× 3 matrix corresponding to multiplicative weights in x, y, and z coordin-
ates of each landmark in frames t − 1, t, and t + 1. These heatmaps show the
reliance of the network on meaningful facial actions such as eyebrow movements,
upper lip movements, and movements in the corners of the mouth.

The results of this study show the power of large data in improving the perform-
ance and generalizability of BFR systems. Even though this system is trained on
4500 identities, the number of training identities is still much smaller compared to
physiological face recognition systems, and there is room for further improvement.
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Figure 7.6: t-distributed stochastic neighbor embedding for enrollment utterances. For
aesthetic reasons, only the identities with more than 50 enrollment utterances are visual-
ized. Different colors and shapes signify different identities.

Figure 7.7: Facial landmark significance visualization for selected filters in conv1. The
significance is measured as the norm of the 3 × 3 matrix corresponding to x, y, and z
coordinates of the landmark in frames t− 1, t, and t+ 1.
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7.6 Conclusion
In this article, we proposed a novel general-purpose action-independent behavi-
oral identity embedding extraction network with acceptable performance for real-
life applications. The network benefits from a large number of training samples
and identities and proves capable of extracting descriptive embeddings for unseen
identities in unconstrained conditions. We also respond to the lack of publicly
available large-scale datasets for look-alike detection, as well as publicly avail-
able behavioral face recognition systems by releasing the 1000 look-alike pairs
(1000LP) dataset and the code for the proposed method.

The proposed method provides a complementary source of identity information
that can be used alongside physiological face recognition systems to make them
robust against look-alikes, as well as presentation attacks that try to mimic the
physiological likeliness. The proposed method is robust to physical and digital
spatial signal manipulations as it relies solely on the temporal behavior of the indi-
vidual in question. Due to the permanence of behavioral face biometrics (3) and its
robustness to manipulations and quality degradation, these methods have already
found their way into the detection of Deepfakes (1) and can provide a robust al-
ternative to existing narrowly applicable detection methods (12).
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Chapter 8

Article 4: Unit-Selection Based
Facial Video Manipulation
Detection

T. Nielsen, A. Khodabakhsh and C. Busch, "Unit-Selection Based Facial Video
Manipulation Detection," 2020 International Conference of the Biometrics
Special Interest Group (BIOSIG), Darmstadt, Germany, 2020, pp. 87-96.

8.1 Abstract
Advancements in video synthesis technology have caused major concerns over
the authenticity of audio-visual content. A video manipulation method that is of-
ten overlooked is inter-frame forgery, in which segments (or units) of an original
video are reordered and rejoined while cut-points are covered with transition ef-
fects. Subjective tests have shown the susceptibility of viewers in mistaking such
content as authentic. In order to support research on the detection of such manip-
ulations, we introduce a large-scale dataset of 1000 morph-cut videos that were
generated by automation of the popular video editing software Adobe Premiere
Pro. Furthermore, we propose a novel differential detection pipeline and achieve
an outstanding frame-level detection accuracy of 95%.

8.2 Introduction
Following the evolution of artificial intelligence and the rapid increase in the com-
putational capacity of computers in recent decades, many novel video manipula-
tion techniques have been introduced and became feasible. Despite the original
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intention of the developers of these techniques, many of them have the poten-
tial of being misused by malicious actors to spread disinformation for political
and financial aims. Following the significant media attention to this problem after
the introduction of Deepfakes, many research groups attempt to address the vul-
nerability (19). However, among video manipulation techniques, vulnerability to
unit-selection based methods have been overlooked. Unlike Deepfakes and sim-
ilar generation methods for which synthesis still requires a significant amount of
expert knowledge and computational capacity, unit-selection based video manip-
ulation can be flexibly done by commercial software such as Adobe Premiere Pro
through their easy to use graphical user interface. Furthermore, subjective tests
have shown unit-selection based manipulations to be more difficult to detect for
humans than intra-frame manipulations (12). The use of seamless cut-point trans-
itions is commonplace in media for shortening and summarizing the highlights of
videos and they go unnoticed more often than not1.

Due to the less computational cost and the higher video-realism of unit-selection
based generation methods, these methods have been explored for synthesis early-
on for applications like audio-visual synthesis and video dubbing (14). Even
though concatenative generation methods require long videos with constrained re-
cording conditions to be seamless, thanks to searchable public archives of videos,
there exists enough footage from interviews on celebrities and political figures for
these methods to be feasible. The first automatic technique for face-animation was
proposed by Bregler et al. in 1997 (6). They create a database of visemes2 from
existing footage and, given an input text, they retrieve the visemes and concaten-
ate them using morphing to synthesize a new sentence. More recently, Berthouzoz
et al. (5) introduced an editing tool to place visible cuts and seamless transitions
in interview videos based on text transcript, which was further developed into the
morph-cut transition in Adobe Premiere Pro3 as a replacement for B-roll4 and
jump-cut transitions5 for video summarization. Mattheyses and Verhelst (14) and
Johnston and Elyan (11) provide an overview of existing unit-selection based ma-
nipulation methods. Among the existing datasets, the biggest that includes inter-
frame forgery is VTD 2016 (1) which is comprised of 33 videos, 6 of which con-
tain inter-frame forgery. Johnston and Elyan (11) provide a review of existing
video tampering datasets.

1https://metro.co.uk/2018/12/13/viewers-baffled-child-appears-t
eleport-tv-interview-8244024/

2Visemes denote the shape of the mouth when pronouncing specific phonemes. Visemes and
phonemes do not share a one-to-one correspondence.

3https://www.adobe.com/products/premiere.html
4In B-roll transition, a supplemental footage is intercut with the main shot to cover the cuts.
5In jump-cut transition, the cut is kept as it is, causing an abrupt jump in the resulting footage.

https://metro.co.uk/2018/12/13/viewers-baffled-child-appears-teleport-tv-interview-8244024/
https://metro.co.uk/2018/12/13/viewers-baffled-child-appears-teleport-tv-interview-8244024/
https://www.adobe.com/products/premiere.html
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In the context of facial video manipulation, a substantial amount of research is
oriented towards intra-frame facial video manipulation detection (19). However,
there exists a gap in knowledge with regards to detection of unit-selection based fa-
cial video manipulation, and to the best of our knowledge, there are no dataset and
no proposed detection method that explicitly address this vulnerability. Nonethe-
less, Among the proposed methods for the detection of intra-frame manipulations,
some utilize inter-frame information for detection to a limited extent. The authors
in (10) and (16) exploit the inter-frame dependencies to detect frame-by-frame
manipulations via a convolutional long short-term memory (LSTM) network and a
recurrent neural network respectively. Amerini et al. (2) use estimation of the op-
tical flow field as input to a convolutional neural network (CNN) for the detection
of inter-frame inconsistencies.

To reduce the visibility of concatenation points in inter-frame forgery, simple
gradual transitions such as interpolation, warping, and morphing, as well as more
advanced methods such as face-specific warping (9) and intermediate frame min-
ing (5) can be used. Examples of advanced transitions that are already available in
video editing software are Adobe Premiere Pro Morph-cut (Figure 8.1) and Avid6

Fluid Morph. Despite the core algorithms of these transitions being trade secrets,
the name of these transitions implies the use of morphing in some form. Con-
sequently, single-image face morphing detection algorithms that are developed in
the context of biometric presentation attack detection become relevant for detec-
tion. Scherhag et al. (17) provide a recent survey of existing morphing attack de-
tection methods. Asaad and Jassim (3) used the responses of uniform local binary
pattern (LBP) extractors on the image to build a Vietoris-Rips complex for detec-
tion. Wandzik et al. (20) use high-level features of pretrained face recognition
networks as input for a linear SVM classifier.

Reference Frame Target FrameConstructed Frames

Figure 8.1: An example of a morph-cut transition.

Another set of relevant detection methods can be adopted from general-purpose
inter-frame forgery detection, namely frame-insertion and frame-deletion detec-
tion methods. Siatara and Mehtre (18) provide an overview of the existing inter-
frame forgery detection methods. Notably, Chao et al. (7) detect manipulated

6https://www.avid.com/

https://www.avid.com/
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videos by using the consistency in the total optical flow values in the X and Y
directions. More recently, Bakas and Naskar (4) used 3D convolutional neural net-
works with a special difference layer to detect out of place frames in the video
sequence.

In this work, we introduce a large-scale dataset of videos containing morph-cut
transitions based on videos collected from the wild.7 To the best of our know-
ledge, the Morph Cut dataset is the first of its kind and enables the training of deep
learning solutions for the detection task. Furthermore, we introduce a robust neural
detection pipeline, capable of detecting the morph-cut position at the frame level
in a video. The rest of this article is organized as follows: The dataset and the pro-
posed detector are introduced in Section 8.3. The experiment setup is explained
in Section 8.4 and the results are discussed in Section 8.5. Finally, the paper is
concluded in Section 8.6.

8.3 Methodology
Due to the lack of datasets containing a sufficiently large number of unit-selection
based manipulation in the literature, we decided to generate a dataset and provide
it publicly to stimulate further research in inter-frame forgery detection. In this
section, we summarize the construction process of the new Morph Cut dataset
along with the description of our proposed method for detecting the inter-frame
forgeries.

8.3.1 Morph Cut Dataset

The development of deep learning-based detectors requires large-scale datasets.
Consequently, as the manual generation of datasets of such scale is impractical, the
generation process needs to be automated. Adobe Premiere Pro is a well-known
popular video editing application that features a seamless morph-cut transition for
cut-point concatenation. Furthermore, Adobe Systems provide the scripting lan-
guage named Extendscript which can be used for automation of repetitive tasks in
video editing. As such, Adobe Premiere Pro morph-cut transition is the perfect
candidate to be used for the generation of the dataset. To achieve a seamless trans-
ition, the frames before and after transition need to be similar with regards to the
background as well as the general body posture.

To ensure the quality of the generated data, we relied on a much larger video data-
set consisting of interview videos as the basis for video selection. Thereafter, based
on the movements of face bounding-box after face detection in the videos and the

7The instructions on how to download the Morph Cut dataset are available at http://ali.
khodabakhsh.org/research/morphcut/

http://ali.khodabakhsh.org/research/morphcut/
http://ali.khodabakhsh.org/research/morphcut/
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structural similarity of the frames to one another, the videos were ranked and the
most suitable videos were selected for the application of morph-cut. Subsequently,
the transition is applied to the videos at random points during the interview and the
resulting manipulated videos were manually investigated for videos with visible
artifacts to be discarded.

8.3.2 Morph-cut Detection

The unit-selection based video synthesis requires smooth transitions at the cut-
points to cover the abrupt changes between the frame before and after. As such,
it is safe to assume the existence of frame interpolation during the transition in
one form or another. During frame interpolation, the content of the new frame in-
between is generated based on the information available in the frame before and
after. In contrast, pristine frames contain a natural variability that is not completely
explainable based on the information in the frame before and after. Let us consider
the frame in the middle to be consisting of two factors, p for the redundant inform-
ation that is inferable from the frame before and after, and u for the unpredictable
natural variability. A good frame interpolation would be able to infer p accurately,
however, inference of u is an ill-defined problem. If during the design and train-
ing of a frame interpolation method, no mechanism is considered for ignoring u,
the objective function would force the interpolation method to generate an aver-
age u which minimizes the penalty, yet never occurs in the pristine data. This
phenomenon often results in synthetic samples described as over-smooth.

Considering any two frame interpolation methods with the aforementioned charac-
teristics, we hypothesize that the predicted intermediate frames would show more
similarity to each other than to the pristine data. The rationale behind this is that the
p factor would exist in both pristine and synthetic frames, yet the u factor would
only properly occur in pristine data while the frame interpolation methods each
would generate an over-smooth average u. Thus it is reasonable for the difference
between the natural u and the average u to be greater than the difference between
two average us generated by the two synthesis methods. To use this behavior for
interpolation detection, for each frame, the interpolated parallel can be generated
from the frame before and after with any other good interpolation method that fits
the aforementioned description. Next, the prediction error can be measured as the
difference between the interpolated frame and the observed one. Consequently,
this difference can be used for distinguishing pristine frames from interpolated
ones by using a distance measure. Alternatively, this prediction error image can
be fed to a classifier which specializes in the detection of interpolated frames for
better performance.
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8.4 Experiment Setup
We provide the large-scale Morph Cut dataset for the task of unit-selection based
facial video manipulation detection training and testing on which we empirically
verify the detection hypothesis. Furthermore, in our benchmark we perform the
detection task with four applicable detection methods from the literature. The
details of the dataset along with the experiment setup is explained in the following.

8.4.1 Morph Cut Dataset Details

The VoxCeleb2 (15) dataset is used as a basis for video selection, which con-
tains a collection of interview videos from celebrities hosted on the video-sharing
platform YouTube. The videos are ranked based on the face bounding-box move-
ments, and on the suitable videos, uniform random sampling is applied to select
candidate points for morph-cut. Next, the candidates with high structural similar-
ity index (21) are selected and two morph-cut transitions are automatically added
to each video using Extendscript. The Morph Cut dataset contains 1, 000 videos
with an average duration of 2.75 seconds. This dataset adds up to ∼ 83, 000
frames with ∼ 27, 500 morphed frames and a ratio of 33% morphed frames to
pristine ones. The videos are split three sets corresponding to training, validation,
and the test data according to numbers in Table 8.1. The video parameters are
summarized in Table 8.2. The videos are accompanied by frame-level labels cor-
responding to whether each frame is morphed or pristine. All reported results are
based on frame-level classification performance between the morphed frames and
the pristine ones.

Table 8.1: The number of videos in each set of the constructed Morph Cut dataset.

Set Count
Train 700
Dev 150
Test 150

Table 8.2: The parameters used to create each video in the constructed Morph Cut dataset.

Video parameters
MPEG-4 (Base Media / Version 2)

480p (854× 480)
30 FPS (Frames-Per-Second)

AVC (NTSC)
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8.4.2 Proposed Detector

For the detector’s reference frame-interpolation method, the pre-trained CyclicGen
(13) convolutional neural network is used. For a given pair of frames, this network
produces a high-quality intermediate interpolated frame. Using this network, for
each frame in a video, a corresponding interpolated frame is synthesized based
on the frame before and after, and the prediction error is calculated in terms of a
difference image. The resulting prediction error images on cropped face regions
are then converted to gray-scale and fed to a simple convolutional neural network
for frame-level classification. The input to the network is augmented with the
context prediction error images of two frames before and after, resulting in an
input shape of 64 × 64 × 5 . The training and evaluation pipeline is visualized in
Figure 8.2 and the classifier network architecture is summarized in Table 8.3.

Frame t-1

Frame t

Frame t+1

Prediction for tPretrained
CyclicGen

Classifier Pristine | MorphedPrediction Error
(Grayscale) Prediction Error Stack

(t-2, t-1, t, t+1, t+2)

Figure 8.2: The training and evaluation pipeline in the proposed method.

8.4.3 Baseline Methods

For baseline methods to be used in our benchmark, we relied on recently pub-
lished and reproducible detection methods for face-morph detection (3), time-
aware Deepfake detection (10), inter-frame forgery detection (4), and general pur-
pose image classification (8). Among the four methods, (10) and (4) utilize tem-
poral information while (3) and (8) rely only on static face images. All methods
provide frame-level decision.

The first method is based on topological data analysis for image tampering detec-
tion described in the paper of the same name (3). This method was originally
created to detect morphing attacks on face images by extracting features from
the texture of the image itself, making the method sensitive to image tampering
through the degradation of the image. For this method, we first extract the cropped
faces from each frame in the dataset and construct a 1-skeleton of the full rips sim-
plicial complex for each face image, which is then fed into an SVM classifier to



106 Article 4: Unit-Selection Based Facial Video Manipulation Detection

Table 8.3: The network architecture of the classifier. The network contains 1.6M trainable
parameters.

Layer Output Shape Parameters
Conv2D (62, 62, 128) Kernel=(3,3)

MaxPooling2D (31, 31, 128) Pool=(2,2)
Conv2D (29, 29, 128) Kernel=(3,3)

MaxPooling2D (14, 14, 128) Pool=(2,2)
Conv2D (12, 12, 256) Kernel=(3,3)

MaxPooling2D (6, 6, 256) Pool=(2,2)
Conv2D (4, 4, 512) Kernel=(3,3)

MaxPooling2D (2, 2, 512) Pool=(2,2)
Flatten (2048)
Dense (512)

DropOut (512)
Dense (2)

attempt and recognize the morphed faces against the pristine ones.

The second method relies on recurrent neural networks for Deepfake detection
(10). The cropped face images are used as input to the network and all paramet-
ers are kept the same as described in the paper except we are training with fewer
epochs. The third method relies on 3D convolutional neural networks for the de-
tection of inter-frame forgery as described in (4). Finally, due to the outstanding
performance of the Xception-Net (8) for Deepfake detection task, the pre-trained
network is fine-tuned on the task of morph-cut detection on individual images.

8.5 Results and Discussion
Table 8.4 summarizes the detection accuracy of the proposed method in compar-
ison to the baseline methods. The proposed method achieves the highest detection
accuracy of 95.1% on the test set, followed surprisingly by the fine-tuned Xcep-
tionNet at 77.0%. The other three baseline methods show limited success in the
detection of morph-cut frames. The detection-error-tradeoff (DET) curve for the
top 3 best-performing methods is shown in Figure 8.3. In this figure, APCER
stands for attack presentation classification error rate and BPCER stand for bona
fide presentation classification error rate, which correspond to the missed detec-
tion and the false alarm rate of a biometric presentation attack detection system
respectively following the ISO/IEC 30107 standard terminology8. The proposed
method achieves an acceptable detection equal-error-rate (EER) of 4.95%.

8https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en

https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-3:ed-1:v1:en
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Table 8.4: The detection accuracy of the proposed method in comparison to the baseline
methods. The results show the frame-level performance.

Method Test Accuracy
Topological Data Analysis (3) 50.2%

Deepfake Video Detection (10) 59.0%

Inter-Frame Forgery C3D (4) 67.4%

Fine-tuned XceptionNet (8) 77.0%

Proposed Method 95.1%

Figure 8.3: The DET curve for the frame-level detection performance of the proposed
method, the fine-tuned Xception-Net(8), and the inter-frame forgery detection method(4).
The equal-error-rate (EER) value for the aforementioned methods is shown in the figure
legend.
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Examples of the prediction errors which are used as input to the classifier in the
proposed method are visualized in Figure 8.4. Natural variations are clearly visible
in prediction errors in pristine frames, while these variations are not observed in
the morphed (interpolated) ones. Figure 8.5 shows the probability density distribu-
tion of average prediction error per frame over pristine and morphed frames. The
morphed frame average prediction error distribution is shifted towards zero com-
pared to the pristine distribution, confirming the hypothesis proposed in Section
8.3.2. The clear distinction between the pristine and morphed frame prediction
errors visualized in Figure 8.4 and 8.5 show the effectiveness of prediction error
images in isolating useful features for morphed face detection.

Figure 8.4: Example of prediction error images of cropped faces in a six-frame sequence
of pristine frames (top) and morph-cut frames (bottom) in a video. The images visualize
the absolute gray value difference per pixel between the interpolation output and the actual
frame.

Figure 8.5: The probability density distribution of average prediction error per frame for
pristine and morphed frames across the dataset.
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8.6 Conclusion
In this article, we addressed the problem of unit-selection based facial video ma-
nipulation by providing the first large-scale dataset of videos manipulated by pop-
ular video-editing software. Furthermore, we proposed a detection method that
relies on frame-interpolation prediction-errors as discriminative features for the
detection of morphed frames. The proposed method outperforms the baseline
methods by a wide margin. The high frame-level performance of the proposed
method shows its capacity in reliably detecting unit-selection based video manip-
ulation and confirms the detection hypothesis that synthetic frames demonstrate
higher similarity to each other than to pristine ones.
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Chapter 9

Article 5: Fake face detection
methods: Can they be
generalized?

A. Khodabakhsh, R. Ramachandra, K. Raja, P. Wasnik and C. Busch, "Fake Face
Detection Methods: Can They Be Generalized?," 2018 International Conference
of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2018,

pp. 1-11.

9.1 Abstract
With advancements in technology, it is now possible to create representations of
human faces in a seamless manner for fake media, leveraging the large-scale avail-
ability of videos. These fake faces can be used to conduct personation attacks on
the targeted subjects. Availability of open source software and a variety of com-
mercial applications provides an opportunity to generate fake videos of a particular
target subject in a number of ways. In this article, we evaluate the generalizabil-
ity of the fake face detection methods through a series of studies to benchmark
the detection accuracy. To this extent, we have collected a new database of more
than 53, 000 images, from 150 videos, originating from multiple sources of di-
gitally generated fakes including Computer Graphics Image (CGI) generation and
many tampering based approaches. In addition, we have also included images
(with more than 3, 200) from the predominantly used Swap-Face application that
is commonly available on smart-phones. Extensive experiments are carried out
using both texture-based handcrafted detection methods and deep learning based
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detection methods to find the suitability of detection methods. Through the set of
evaluation, we attempt to answer if the current fake face detection methods can be
generalizable.

9.2 Introduction

(a) Bona fide (b) Face retargeting1 (c) DeepFake2 (d) CGI3

Figure 9.1: Examples of different fake faces in contrast to the bona fide presentation.

Face biometrics are widely deployed in various applications as it ensures reliable
and convenient verification of a data subject. The dominant application of face re-
cognition is for logical or physical access control to for instance restricted security
areas. Implicitly the human visual system applies face recognition to determine,
which data subject is the communication partner be it in a face to face conversa-
tion or be it in consuming messages while observing a media stream (e.g. news
channel). With recent advances in deep learning, it is now possible to seamlessly
generate manipulated images/videos in real-time using technologies like image
morphing, Snap-Chat, Computer Generated Face Image (CGFI), Generative Ad-
versarial Networks (GAN) and Face2Face (14). These technologies enable an at-
tacker to manipulate the face image either by swapping it with another face or by
pixel-wise manipulation to generate a new face image/video. It is well demon-
strated in the literature that face recognition techniques fail drastically in detecting
generated fake faces (9). Further fake face samples can also be shared by intention
with the social media, in order to spread the fake news associated with the target
subject. The challenge is not only posed to the biometric systems but also to the
general media perception on social media. Thus it is of paramount importance to
detect faked face representations to reduce the vulnerability of biometrics systems
and to reduce the impact of manipulated social media content.

Traditional biometric systems have addressed this problem of detecting the fake
faces using Presentation Attack Detection (PAD) schemes (1, 10). PAD schemes

1Pinscreen: http://www.pinscreen.com/
2https://www.fakeapp.org/
3“We the people”: http://www.macinnesscott.com/vr-art-x

http://www.pinscreen.com/
https://www.fakeapp.org/
http://www.macinnesscott.com/vr-art-x


9.2. Introduction 117

in the earlier works have investigated and provided remedial measures focused on
both attacks with low-cost artefacts ( e.g. print, display, and wrap) and high-cost
artefacts (like silicon masks). Another kind of attacks based on face morphing
takes face images of two different data subjects to generate a new morphed face
image which can practically match both the subjects (9). Yet another and recently
created method of generating a faked face image/video was presented in (14) that
can be used to introduce a personation attack on the target subject. The persona-
tion attack can be constructed by the re-enactment process, transferring the facial
expressions from the source actor to a target actor, resulting in the manipulated
images/video. This generated facial sample through such procedures is referred
to as the fake face (5) (11). The generated content shows high sample quality
of images/videos, which is difficult to detect even for trained forensic examiners
(11). There are recent additions to generate fake face images that include the use
of GAN, CGI, Face2face, and others which are highly realistic. The reliable de-
tection of such fake face images is challenging due to the process of re-enactment.
This results in infinitesimal variation in the face images that challenges the con-
ventional forensics methods based on extracting edge discontinuities and texture
information in spotting manipulated images.

To the best of our knowledge, there exists only one work that has attempted to de-
tect fake faces, which were using only one type of fakes, generated by Face2Face
application (11). In their work (11), pre-trained deep Convolutional Neural Net-
work (CNN) based approaches are evaluated on the newly constructed fake face
image database. The results reported in (11) show good detection performance of
the pre-trained Xception CNN that can be attributed to the fact that both fake face
generation and detection are carried out on the training and testing subset of one
particular dataset (FaceForensics). While this is an important first step, we need to
anticipate that with the evolution of computer vision technologies, fake faces can
also be generated using alternative and newer methods. Thus, it is necessary to
provide an insight into the generalization of the methods that are used to detect the
fake faces to measure the reliability.

In this work, we present a comprehensive and exploratory study on the generaliz-
ability of different fake face detection methods based on both recent deep learn-
ing methods and conventional texture descriptor based methods. To this extent of
studying generalizability, we present a new database created using diverse meth-
odologies for generating fake faces. Further, we also propose the protocols to
effectively evaluate the generalizability of both texture based and deep learning
based methods. The main contributions of this paper in fake face detection are:
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• A new database which we hereafter refer as Fake Face in the Wild (FFW)
database with more than 53, 000 images (from 150 videos) assembled from
public sources (YouTube) is introduced. This database shows the largest
diversity of different fake face generation methods provided so far.

• In the view of limited public databases available for this key research area,
the newly created database will be made available for the public along with
the publication of this paper.

• Comprehensive evaluation of 6 different algorithms that include various
kinds of deep learning methods such as AlexNet (6), VGG19 (12), ResNet50
(3), Xception (2), GoogLeNet/Inceptionv3 (13), and texture based methods
based on Local Binary Patterns (LBP) with Support Vector Machine (SVM).

• Extensive experiments providing insights on the generalization of the al-
gorithms for unseen fake faces are presented. Specifically, fake faces gener-
ated using three different methods such as CGI, FakeApp, face swap, etc are
considered.

9.3 Fake Face in the Wild Dataset (FFW)
This section presents the details of the newly constructed database. To simulate
the performance of fake face detection methods in the wild, a set of videos from a
public video sharing website (YouTube) is collected. This dataset is collected with
the special focus on digitally created contents, generated with recently developed
technologies. These videos include a wide array of fake images generated through
CGI, GANs, manual and automatic image tampering techniques, and their com-
binations, due to the widespread use of these methodologies. CGI is considered
in this work due to the wide availability and the ease of creation of high-quality
fake face images that include images of variable sizes. The key motivation in cre-
ating this database can be attributed to non-available public databases for either
devising detection methods or the study of generalizability. This work, therefore,
facilitates further research by making the dataset publicly available along with the
paper.4.

Table 9.1 shows a summary of the videos in the FFW dataset. The dataset is cre-
ated using videos of variable duration ranging from 2 seconds that corresponds
to 60 frames up-to 74 seconds that corresponds to more than 2, 000 frames. The
videos are carefully selected to have a resolution of at least 480p and above and are
manually checked for assuring the quality to avoid images with visible artifacts,

4Download information available at http://ali.khodabakhsh.org/ffw/

http://ali.khodabakhsh.org/ffw/
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face poses, degraded illumination on faces and resolution. The constructed dataset
consists of 150 videos, of which 85 videos broadly pertain to face images manipu-
lated via image tampering (e.g., splicing, replacing, etc) and 65 corresponds to the
use of CGI. The database thus consists of 53, 000 images. In order to have bona
fide samples for the evaluation, we have employed publicly available face forensic
database (11) resulting in a total of 78, 500 bona fide samples from 150 videos.

Table 9.1: Fake Face in the Wild Dataset (FFW) broad statistics. CGI faces were gener-
ated using several different graphics engines. Face (FakeApp) were generated in multiple
resolutions and with different settings. Face (Other) category includes Face replacement,
part of face splicing, and partial CGI faces, some of which were done manually, others
automatically (see Figure 9.3 for examples).

Category Type # of videos
CGI Full 50

Head 22
Tampering Face (FakeApp) 50

Face (Other) 28
Total 150

To evaluate the performance on the newly created database, the quality measures
are taken into consideration by processing the database through the same com-
pression algorithm such that the quality of both fake and bona fide samples are
consistent. This further avoids misleading detection error rates that for instance
can be attributed to compression artefacts and bias the detection methods. Figure
9.2 shows the distribution of the average BRISQUE quality assessment (7) meas-
ured for FFW database indicating high overlap of the distribution justifying the
similar quality. A sample set of images from the FFW dataset can also be seen in
Figure 9.3.
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Figure 9.2: Distribution of BRISQUE quality scores for the Fake Faces in the Wild (FFW)
dataset.
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Figure 9.3: Examples from Fake Faces in the Wild (FFW) dataset. Top row: CGI full
scene. Middle row: Deepfakes. Bottom row from left to right: Head CGI x2, Face re-
placement x2, Face CGI x2, Part of face splicing x2.

9.4 Fake Face Detection Techniques
With the goal of detection of a wide range of forged/CG/tampered audiovisual
content, many methods originating from image forensics and biometrics presenta-
tion attack detection can be adapted. In this perspective, widely used texture-based
method - Local Binary Patterns (LBP) and a set of CNN based systems are con-
sidered. The selection of CNN architectures AlexNet (6), VGG19 (12), ResNet50
(3), Xception (2), and GoogLeNet/Inceptionv3 (13) is based on the recent works
demonstrating very high performance for various tasks. The parameters are op-
timized when possible on the training data and the details of parameter tuning is
presented in 9.5.2.

9.5 Experimental Evaluation
This section presents the experimental evaluation of the FFW dataset. The exper-
iment protocols are designed in accordance with protocols advised in (11). We
present the evaluation of detecting known attacks followed by detecting unknown
attacks.

9.5.1 Evaluation Metrics

We present the detection error rates in terms of Equal Error Rates (EER) to provide
performance in the lines of earlier work. We further supplement the results using
the ISO/IEC 30107-3 (4) with Attack Presentation Classification Error Rate (AP-
CER) and Bona fide Presentation Classification Error Rate (BPCER) as described
in (4).
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9.5.2 Experimental Protocol

To effectively evaluate the fake detection methods, we divide the whole database
to have three different disjoint partitions such as training set, development set, and
testing set. The training set is adopted from the FaceForensics database (11) that
has 7, 040 bona fide and 7, 040 fake face samples. The training set is used to fine
tune the pre-trained deep CNN networks. To effectively fine-tune the networks
and avoid overfitting, we employ 5 different types of data augmentation on each of
the training images that includes translation and reflection. The learning rates of
the last layer are boosted such that weights of the earlier layer are not affected and
the weights of the last layer are adapted for the new training data. Thus, we have
used the weight learning rate factor as 10 and bias learning rate factor as 20. For
the texture based Local Binary Patterns (LBP) (8), the histogram is extracted using
(8,1) neighborhoods with a block size of 40 pixels. The training dataset is used to
train the SVM classifier.

The development dataset is comprised of 1, 500 bona fide and 1, 500 fake face
samples that are taken from the validation set of FaceForensics database (11). This
dataset is used to fix the operating thresholds such as Equal Error Rates (EER).
The testing dataset consists of three specific kinds: (1) To evaluate known arte-
facts - TestSet-I - Test set corresponds to test set of FaceForensics database (11)
that comprised of 1, 500 bona fide and 1, 500 fake face samples. This dataset is
particularly used to understand the detection performances of known attacks. (2)
To evaluate unknown artefacts - TestSet-II - The test set in this case consists of
a newly constructed FFW dataset. In order to be inline with known attacks, this
set is comprised of 1, 500 bona fide and 1, 500 fake face samples. (3) To evalu-
ate unknown artefacts - TestSet-III - This test set comprises of 1, 776 bona fide
samples and 1, 576 fake faces generated using FaceSwap and SwapMe application
proposed by (15).

While TestSet-I focuses on measuring the performance of the detection algorithms,
TestSet-II and TestSet-III are used to measure the generalizability of the detection
techniques. It has to be noted that none of these sets (TestSet-II and TestSet-III)
are used either for training, fine-tuning or validation process.

9.6 Results and Discussion
The detailed results and the obtained performance are provided in this section.

9.6.1 Performance on the Known Fake Face Attacks (TestSet-I)

The performance of texture- and CNN-based methods on known attacks (TestSet-
I) are summarized in Table 9.2 and Table 9.3. Following are the main observations:
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• CNN-based methods perform well and except for AlexNet, provide a detec-
tion accuracy of over 98%. In contrast, LBP features classified with SVM
have the accuracy of 96% on the test data.

• In the benchmark of the CNN networks, the Inception network gives the best
performance by a large margin.

• The low error rates in accord with a low EER error confirm the stability
of the selected threshold point for decision. However, deviation from the
selected operating point towards lower BPCER and higher APCER is visible
in the results, suggesting slight inaccuracy in EER threshold estimation.

Table 9.2: The accuracy of texture- and CNN-based classifiers on the TestSet I dataset
along with their confidence interval (CI).

Accuracy ± CI
Texture-based LBP 96.33% ± 0.69%

AlexNet 95.83% ± 0.73%
VGG19 98.30% ± 0.47%

CNN-based ResNet 98.43% ± 0.45%
Xception 98.70% ± 0.41%
Inception 99.60% ± 0.23%

Table 9.3: Performance of the systems on known fake faces from TestSet I. The threshold
is computed on the development database.

APCER BPCER EER
LBP 3.80% ± 0.99% 2.87% ± 0.86% 3.33%

AlexNet 7.80% ± 1.38% 1.73% ± 0.67% 3.73%
VGG19 2.47% ± 0.80% 0.47% ± 0.35% 1.40%
ResNet 2.27% ± 0.77% 0.47% ± 0.35% 1.40%

Xception 2.47% ± 0.80% 0.13% ± 0.19% 1.07%
Inception 0.67% ± 0.42% 0.47% ± 0.35% 0.53%

9.6.2 Performance on the Unknown Fake Face Presentations (TestSet-II)

Following the good performance of all neural network solutions along with the
LBP features, the generalizability of the learned classifiers are examined on the
collected dataset of matching size as shown in Table 9.4 and the observations are:

• The performance of all systems in terms of APCER errors drops signific-
antly, rendering the systems ineffective, classifying most images as bona
fide.
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• A closer look at the EER values for these systems shows much better than
random performance of CNN-based models on the Unknown dataset.

• It can be concluded that the performance of the CNN-based systems is very
poor because of the low performance at the selected operating point.

Table 9.4: Performance of the systems on unknown attacks from TestSet II. The threshold
is computed on the development database.

APCER BPCER EER
LBP 89.00% ± 1.62% 2.87% ± 0.86% 48.73%

AlexNet 91.47% ± 1.44% 1.73% ± 0.67% 32.13%
VGG19 90.73% ± 1.50% 0.47% ± 0.35% 29.40%
ResNet 89.53% ± 1.58% 0.47% ± 0.35% 30.33%

Xception 93.20% ± 1.30% 0.13% ± 0.19% 26.87%
Inception 91.93% ± 1.41% 0.47% ± 0.35% 27.47%

To illustrate this further, the score histogram of the known and unknown attacks
are presented in Figures 9.4 and 9.5 for LBP-SVM and Inception networks re-
spectively. The dotted vertical line indicates the threshold computed on the de-
velopment database that corresponds to the EER. Figure 9.4 shows the inability
of the system in distinguishing unknown attacks by a significant overlap between
the bona fide distribution and the distribution of scores from the unknown attacks.
However, a close look into Figure 9.5 shows that even though the network is cap-
able of discriminating between unknown attacks and the bona fide to some extent,
the weak placement of the decision boundary causes the network to fail. By setting
the threshold of the system to the EER point on the known attacks, even though the
system shows optimal performance for the known attacks, it also becomes vulner-
able to new types of attacks, where the separability may be less.

Performance on each Sub-Type of Attacks

To have a closer look at the capability of CNNs in generalization, EERs for each
type is calculated separately and reported in Table 9.5.

• From these results, it is visible that the networks perform better in detecting
CGI compared to contents generated by FakeApp, or other techniques.

• These results indicate that even though the networks were not trained to
detect CGI specifically, they are still somewhat effective for detecting of
CGI videos.
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Figure 9.4: LBP-SVM system comparison score distribution on TestSets I and II.
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Figure 9.5: Inceptionv3 system comparison score distribution on TestSets I and II.

Table 9.5: CNN performances in terms of EER on subcategories, corresponding to Table
9.1.

Full Image Manipulation
CGI FakeApp Other

AlexNet 32.60% 28.80% 34.37%
VGG19 28.00% 31.20% 28.60%
ResNet 28.80% 28.37% 34.40%

Xception 23.60% 25.20% 31.20%
Inception 23.40% 27.40% 31.40%
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9.6.3 Performance on the FaceSwap/SwapMe Dataset (TestSet-III)

To investigate the transferability of the generalization ability of the networks on
the unknown data of a widely different type, experiments were done on a filtered
subset of the FaceSwap/SwapMe dataset as shown in Table 9.6.

• The APCER and EER scores present a further drop in performance.

• These results indicate the lack of transferability of the learned classifiers to
the general face forgery classification cases.

Table 9.6: Performance of the systems on FaceSwap/SwapMe dataset from TestSet III.
The threshold is computed on the development database.

APCER BPCER EER
LBP 90.16% ± 1.50% 3.43% ± 0.86% 46.06%

AlexNet 94.04% ± 1.19% 5.01% ± 1.04% 43.02%
VGG19 97.27% ± 0.82% 2.31% ± 0.71% 44.93%
ResNet 89.40% ± 1.55% 8.22% ± 1.30% 43.79%

Xception 93.15% ± 1.27% 3.43% ± 0.86% 40.99%
Inception 71.64% ± 2.27% 22.58% ± 1.98% 46.39%

9.7 Conclusion and Future Work
The advancement of image manipulation and image generation techniques have
now provided the ability to create seamless and convincing fake face images. The
challenging nature of data both for visual perception and algorithmic detection is
provided in recent works. The key problem that was not considered up until now
is the evaluation of generalizability on existing fake face detection techniques. In
order to answer the question of generalizability, in this work, we have created a
new database which we refer to as Fake Face in the Wild (FFW) dataset contain-
ing 53, 000 images from 150 videos that are publicly available. The key obser-
vation from this work throws light on deficiencies of detection algorithms when
unknown data is presented. This observation holds for both texture descriptors
and deep-learning methods, which yet cannot meet the challenge of detecting fake
faces. This analysis further emphasizes the importance of validation of detectors
across multiple datasets. Proposed detectors that lack such validation can show
misleadingly high performances while having limited applicability, and provide
little contribution to the ongoing research. As such, advancements in fake face
detection technology call for the incorporation of proper cross-dataset validation
in all future research as a requirement for publication.
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The future work in the direction of fake face detection will involve the devel-
opment of systematical methods for answering the generalization problem, and
employment of multi-modal cues from fake face data.
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10.1 Abstract
Photo- and video-realistic generation techniques have become a reality following
the advent of deep neural networks. Consequently, there are immense concerns re-
garding the difficulty in differentiating what content is real from what is synthetic.
An example of video-realistic generation techniques is the infamous Deepfakes,
which exploit the main modality by which humans identify each other. Deepfakes
are a category of synthetic face generation methods and are commonly based on
generative adversarial networks. In this article, we propose a novel two-step syn-
thetic face image detection method in which general-purpose features are extracted
in a first step, trivializing the task of detecting synthetic images. The anomaly de-
tector predicts the conditional probabilities for observing every individual pixel in
the image and is trained on pristine data only. The extracted anomaly features
demonstrate true generalization capacity across widely different unknown syn-
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thesis methods while showing a minimal loss in performance with regard to the
detection of known synthetic samples.

10.2 Introduction
Advancements in the computational capacity of modern graphical processing units
(GPUs) in the past decades allowed the realization of deep neural network models.
Deep learning, among other contributions, provided solutions for the synthesis of
photo- and video-realistic content, challenging the existing manipulation detection
methods in video forensics. An especial case of such synthetic signals is “Deep-
fakes”, which are typically generated by generative adversarial networks (GANs).
Deepfakes in combination with obfuscation in various forms have shown to be
effective at fooling human subjects (13).

The research community has responded to this threat by developing various de-
tection methods. Yu et al. in (20) made use of unique GAN fingerprints for the
detection of fake images generated by these models. RNNs have been used for
temporal-aware detection of Deepfakes by Guera et al. in (6). The spectrum do-
main is used by Zhang et al. (21) for the detection of GAN generated images.

Most of the existing detection methods are, however, complex and have narrow
applicability as they are trained to detect specific types of synthetic signals and
fail to generalize (7). Few publications try to address the detection of synthetic
samples from unknown generation models. In (15), Stehouwer et al. used atten-
tion mechanisms and achieved remarkable performance over various generation
techniques. Nataraj et al. (11) used pixel co-occurrence matrices for generalized
detection across different GAN architectures. In (10), Marra et al. utilized multi-
task learning incrementally for detecting synthetic images coming from unknown
GAN models. Zhou et al. (22) proposed a two-stream classification network archi-
tecture based on steganalysis features. Afchar et al. (1) utilized mesoscopic fea-
tures along with shallow networks gaining robustness against unknown synthetic
images. Rossler et al. (13) evaluated different detection systems on a large dataset
of diverse synthetic samples and achieved the best performance with a pretrained
XceptionNet neural network. For an extensive review on the related literature,
please refer to (19).

Despite major progress in the detection of synthetic face images, the generalization
problem across widely different generation techniques remains a major issue. In
this article, we propose a novel general-purpose feature. The subsequent trivializ-
ation enables a simple detector to reliably detect unknown attacks form widely dif-
ferent generation techniques. The proposed method achieves this by suppressing
the content of the input signal while faithfully conserving the detection-relevant
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information. The rest of this article is organized as follows: Section 10.3 explains
the proposed two-step method along with the rationale behind it. Section 10.4 ex-
plains the experimental setup used for showcasing the performance of the method,
and Section 10.5 discusses the findings of the article. Finally, Section 10.6 con-
cludes the article.

10.3 Methodology
Synthetic images contain artefacts that can be used for detection and can act like
fingerprints for identification of their generation process. These traces, however,
are often minuscule and can be severely obscured by the actual content of the im-
ages to the extent of becoming imperceptible to the eyes of the viewer as well as
the automated detection systems. We hypothesize that in the synthetic face detec-
tion task, the actual content of images acts as a strong noise, and removing them
would unveil these traces and greatly simplify the task of synthetic face detection.
However, this approach requires knowledge of the actual content of the image for
reference.

In the absence of a reference to be subtracted from the image, the likelihood of the
image to an accurate probability distribution of pristine face images would serve
as a suitable proxy. To make the accurate modeling of the probability distribution
over the face image space practical, the image can be broken down into smaller
segments, and the probability distribution over individual segments of the image
conditioned on the previous segments can be modeled.

10.3.1 Pixel RNN

The probability distribution of intensity values in each pixel conditioned on pixels
before (in raster order) in pristine images can be modeled with a PixelRNN model
(18). In this model, for each pixel i, the probability distribution (in the form of
a Logistic mixture model) of observing the current value given all previous pixel
values is learned by a recurrent or a masked convolutional neural network. This
network would then be able to predict the probability distribution of pixel values
for each pixel location conditioned on the pixel values before it. This probability
distribution can then be used to measure the likelihood of observing a specific pixel
value in location xi given all pixel values before it (log(p(xi|x<i))). By repeating
this operation over all the pixels in an input image, one can calculate a likelihood
matrix with the same size as the input image. Consequently, the probability of
observing the input image can be calculated as log(p(x)) =

∑n
i=0 log(p(xi|x<i)).

For the purpose of this study, an improved variant of PixelRNN named Pixel-
CNN++ (14) is used.
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10.3.2 Classification

The probability of the input image is a feature that can spot anomalies and can
directly be used for classification. However, the conditional probability matrix
corresponding to the log-likelihood of observing every single pixel intensity can
serve as a better feature for classification as it contains additional information with
respect to the location of anomalies and the anomaly strength at each location. For
achieving a higher detection rate, one can use the model trained in the previous
step as an anomaly feature extractor, or in more precise terms a universal back-
ground model (UBM). The term UBM signifies that the model is universally used
regardless of the synthetic method in question in the detection task. Furthermore,
it signifies that the model is a background preprocessing step which postpones the
classification task to a second step. Consequently, a classifier can be trained on the
output of the UBM model which is in the form of a conditional probability matrix
in a supervised manner. Ideally, as the complexity of the detection problem is sub-
stantially reduced following the feature extraction step, a simple classifier should
be sufficient for detection of synthetic faces. In this study, we use a very simple
and small neural network for classification.

10.3.3 Generalization Performance

To measure the generalization capacity of a model, a common practice is to split
the generation techniques to known and unknown methods. Next, the model is
trained on synthetic data from the known methods and tested on the data from the
unknown methods. To show the generalization capacity of our proposed method,
we follow the same convention and do generalization tests in a leave-one-out
(LOO) manner. For each generation method, we consider all other methods to
be known and measure the detection performance on the single unknown method.
The overall generalization performance is then measured by aggregating them over
all the leave-one-out runs.

10.4 Experiment Setup
For the purpose of this study, the FaceForensics dataset (13) is selected as a large
dataset containing four manipulation techniques, namely Deepfakes1, Face2Face
(17), Faceswap2, and Neural Textures (16). This dataset contains 1000 pristine
videos along with 1000 from each manipulation technique, each split into three
sets of training (with 700 videos), development (with 150 videos), and test (with
150 videos). The videos are collected from YouTube and have a minimum quality
of 480p (VGA). The videos are provided in three different quality levels to simu-

1https://github.com/deepfakes/faceswap
2https://github.com/MarekKowalski/FaceSwap/

https://github.com/deepfakes/faceswap
https://github.com/MarekKowalski/FaceSwap/
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late the conditions of video processing in social networks. For extraction of face
images from the videos, the Dlib toolkit (8) is used, and the detected face images
are resized to 64 × 64. As the focus of this study is generalizability across the
four completely different generation techniques, we limit the experiments to un-
compressed data. Subsequently, the models are trained on individual cropped face
images from frames as shown in Figure 10.1, and the detection performance is
evaluated in terms of the frame-level detection accuracy.

Face Detection

Frame 64	×	64 PixelCNN++	UBM

(a) The pipeline for the training of the anomaly detection system. The model is trained on pristine
face images only.

Face Detection

Frame 64	×	64 Classifier Pristine	|	FakePixelCNN++	UBM 64	×	64

Front-end Back-end

(b) The training and evaluation pipeline of the classifier. The pre-trained anomaly detection model
is used as an anomaly feature extractor.

Figure 10.1: The training and evaluation pipelines of the proposed method. UBM stands
for universal background model and represents the probability distribution based anomaly
extraction system.

The UBM model used for experiments is the Tensorflow implementation of Pixel-
CNN++ (14). The default architecture, consisting of three blocks with five ResNet
layers and 160 filters in each layer is used. A single model with 94 million para-
meters is trained for five epochs on natural images only from the training set, with
a learning rate of 0.0001 on a single GPU in an end-to-end manner.

As the complexity of the detection problem is reduced in the anomaly feature ex-
traction step to an extent that the synthesis artifacts are visible in its output (see
Figure 10.4), a very simple classifier based on LeNet-5 (9) is used for detection
of synthetic faces from known and unknown generation methods. The modified
architecture summarized in Figure 10.2 is small enough to be trained on a CPU
and has less than one million parameters. For each experiment, one classifier is
trained on the available training data for 25 epochs with a learning rate of 0.001.
The activation function used is the ReLU function, and to improve the conver-
gence speed, batch normalization is used between the output of the layers and the
activation function. The overall detection pipeline is shown in Figure 10.1(b).
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Figure 10.2: The diagram of the classifier architecture. Each convolution is followed
by a 2x2 maxpooling layer and ReLU activation. The network has a total of 933, 442
parameters.

10.5 Results and Discussion
In this section, we first discuss the characteristics of the anomaly extraction method
and then summarize the performance of the method on both known and unknown
attack detection scenarios.

10.5.1 Features

Figure 10.3 shows the histogram of log-likelihoods for images in the validation
data for pristine images as well as the synthetic images. The log-likelihood values
for the pristine images are higher than the synthetic images, however, there is a sig-
nificant overlap between the distributions. Deepfakes show higher log-likelihood
values compared to the other synthesis methods. These results show the discrim-
ination power of the observation probability of the images for synthetic face image
detection. However, the image probability distributions have significant overlap,
and cannot be relied on as a high-performance detection score.

To achieve a better performance, we can rely on the pixel log-likelihood images
extracted by the UBM model as anomaly features. Figure 10.4 visualizes examples
of these images from the pristine data as well as the four generation techniques. In
this figure, a drastic difference is observable between the pristine images and the
synthetic images. The traces of the synthesis process are visible as low likelihood
points in yellow and red on the image. Furthermore, each generation method shows
a unique footprint in all examples. The Deepfakes have artifacts in the shape of the
spliced synthetic face area over the background image. The Face2Face technique
results in low likelihood pixel values on the edges of the 3D facial features such
as nose and jawline. FaceSwap technique results in low likelihood areas around
the eyes and the mouth. Lastly, NeuralTextures inhibits individual low-likelihood
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Figure 10.3: The image log-likelihood probability for pristine images and synthetic im-
ages in the development data.

pixels on the nose and eye regions.

10.5.2 Known Synthetic Face Detection

To measure the discriminative power of the likelihood images, we used the simple
classifier explained in the previous section for synthetic face detection on each in-
dividual method. The results are reported in Table 10.1 along with the performance
of the baseline methods from (13). The proposed method performs on par with the
baseline methods despite having a smaller input image size and a much smaller
number of parameters. These results confirm that the log-likelihood images con-
serve the information valuable for detection faithfully while reducing the detection
complexity by removing the unhelpful information.

Table 10.1: The performance of the proposed method in terms of detection accuracy in
known synthetic face image detection scenario in comparison with existing methods ad-
apted from (13). (DF: DeepFakes, F2F: Face2Face, FS:FaceSwap, NT:NeuralTextures)

Input Size DF [%] F2F [%] FS [%] NT [%]
Steg. Features+SVM(5) 128× 128 99.03 99.13 98.27 99.88
Cozzolinoet al.(4) 128× 128 98.83 98.56 98.89 99.88
Bayar and Stamm(2) 128× 128 99.28 98.79 98.98 98.78
Rahmouniet al.(12) 100× 100 98.03 98.96 98.94 96.06
MesoNet(1) 256× 256 98.41 97.96 96.07 97.05
XceptionNet(3) 299× 299 99.59 99.61 99.14 99.36
Proposed Method 64× 64 99.30 98.25 99.11 98.46
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(a) Pristine (b) Deepfake (c) Face2Face (d) FaceSwap (e) NeuralTextures

Figure 10.4: Examples of the log-likelihood output matrix of the universal background
model on pristine and synthetic face images. The name of the generation method is men-
tioned below each column. As shown in the color bar, red signifies low log-likelihood
probability, while blue signifies high.

10.5.3 Unknown Synthetic Face Detection

The performance of the proposed method in the unknown synthetic face detection
scenario is summarized in Table 10.2. The proposed method shows an acceptable
detection rates for all four synthesis methods while showing above 96% on three
out of four in LOO generalization experiments. The performance of Face2Face
method gets slight improvement over the known case due to the larger training
data available in the LOO scenario.

10.6 Conclusion
In this article, we introduced a truly generalizable synthetic face image detection
method which achieves an outstanding average detection accuracy of 95.73% on
unknown synthetic methods. The synthetic methods are from widely different
synthesis mechanisms ranging from Deepfakes from generative adversarial net-
works to FaceSwap. The proposed method consists of a preprocessing step where
the content of the image is suppressed, and the anomaly locations and anomaly
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Table 10.2: The performance of the proposed method on unknown synthetic samples in
terms of detection accuracy. For each method, the system is trained on the other three
synthesis data and did not observe a single sample of the method in question during train-
ing. The average detection accuracy is also reported. (DF: DeepFakes, F2F: Face2Face,
FS:FaceSwap, NT:NeuralTextures)

DF [%] F2F [%] FS [%] NT [%] Avg [%]
LOO Detection Accuracy 89.26 98.41 96.80 98.44 95.73

strengths are extracted. The classification is then done by a simple classifier.
The anomaly extraction step is trained on natural images only and preserves the
detection-relevant information faithfully in the form of observation log-likelihood
probability. The detectors’ success provides new hopes for addressing the gener-
alization problem over widely different generation processes.
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Article 7: Unknown Presentation
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Rational Attackers," arXiv preprint arXiv:2010.01592, 2020. (Submitted to IET

biometrics)

11.1 Abstract
Despite the impressive progress in the field of presentation attack detection and
multimedia forensics over the last decade, these systems are still vulnerable to at-
tacks in real-life settings. Some of the challenges for existing solutions are the
detection of unknown attacks, the ability to perform in adversarial settings, few-
shot learning, and explainability. In this study, these limitations are approached
by reliance on a game-theoretic view for modeling the interactions between the at-
tacker and the detector. Consequently, a new optimization criterion is proposed and
a set of requirements are defined for improving the performance of these systems
in real-life settings. Furthermore, a novel detection technique is proposed using
generator-based feature sets that are not biased towards any specific attack species.
To further optimize the performance on known attacks, a new loss function coined
categorical margin maximization loss (C-marmax) is proposed which gradually
improves the performance against the most powerful attack. The proposed ap-
proach provides a more balanced performance across known and unknown attacks
and achieves state-of-the-art performance in known and unknown attack detection
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cases against rational attackers. Lastly, the few-shot learning potential of the pro-
posed approach is studied as well as its ability to provide pixel-level explainability.

11.2 Introduction
Over the last decades, there have been major break-throughs in the fields of man-
ufacturing, computing, and communication, resulting in cost reduction as well as
higher availability of manufacturing and synthesis processes to the public. Among
the beneficiaries of these advancements are the attackers to biometric and forensic
systems, who take advantage of these methods to devise new and more powerful
attacks. Relying on the fact that face is the main modality of human communic-
ation in daily life, and the ever-growing interest in the use of face biometrics in
real-life applications, methods that can realistically produce facial videos have an
immense potential for abuse. The infamous Deepfake tool1 is such an example
that has repeatedly been used for the purpose of fake news generation to such an
extent that a bill was passed in the US senate to report at specified intervals on the
state of digital content forgery technology.

Consequently, biometric and forensic systems face new challenges every day as
they have to become secure against a wider range of attacks happening at a higher
frequency. Making the matters worse, the existing detection solutions are often de-
signed against a specific attack (or set of attacks) in controlled environments and
lack the capacity to face the challenges of real-life deployment. This is evident
from the results of the recent Deepfake detection challenge2 organized by Face-
book where the best performing algorithm had a detection rate of only 65% when
faced with unknown generation techniques. As such, addressing vulnerabilities of
existing solutions and introduction of methods to mitigate these vulnerabilities is
of utmost importance for deployment of these systems in practice.

One aspect of challenges for deployment that is rarely studied is the selection pro-
cess of a rational attacker. It is expected for an attacker with an ever-growing
menu of options for attacking to behave rationally and choose the most powerful
attack available to him to maximize the chance of infiltration. Furthermore, as the
defender does not have knowledge or access to massive amounts of data for all
possible attacks available to attackers, his detector would probably be tasked with
the detection of unknown attacks or attacks from which only a few training ex-
amples are available. Additionally, lack of explainability limits the use of a system
in high-stake applications where explainability increases its utility when operated
by a human supervisor.

1https://github.com/deepfakes/faceswap
2https://www.kaggle.com/c/deepfake-detection-challenge

https://github.com/deepfakes/faceswap
https://www.kaggle.com/c/deepfake-detection-challenge
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In this article, to address these challenges, a game-theoretic approach is considered
for the formulation of the interactions between the attacker and the detector. Res-
ulting from this, an optimization criterion is formulated and a set of requirements
are defined for designing the detector accordingly. To tackle the problem of un-
known attack detection and few-shot learning, the use of unbiased compressed
feature sets is proposed, and for targeting the optimal performance, a new loss
function is defined faithful to the formulated optimization criteria. Finally, the ex-
plainability of the proposed method is demonstrated with a few examples. The
rest of this article is organized as follows: In section 11.3, the related literature
is reviewed and a theoretic basis for the proposed approach is established in sec-
tion 11.4. Afterward, the proposed method is introduced in section 11.5 and the
case study experiment setup is explained in section 11.6. Finally, the results of the
experiments are reported and analyzed in section 11.7 and 11.8 and the article is
concluded in section 11.9.

11.3 Literature Review
Considering the task of forgery detection or presentation attack detection on the
face modality, there exist three relevant threads of research. First is the field of
multimedia forensics, and more specifically, anti- counter forensics (CF). This
thread of research takes an adversarial view on the problem and tries to optimize
the performance of the detection system facing an adversary who is actively work-
ing towards undermining the performance of the detector. Second is the field of
presentation attack detection (PAD) in which the objective of the detector is to se-
cure a biometric system against attacks from different presentation attack species
(PAS). Lastly, the newly established thread of Deepfake detection is considered
that was initiated to address new phenomenon of availability of automated open-
source photo-realistic digital video manipulation techniques on the internet. In
this article, the terminology proposed for the field of presentation attack detection
is relied on. Consequently, the act of forgery is called attacking the detector and
generation techniques used by the forger are called attack species.

11.3.1 Anti Counter Forensics

The majority of solutions in the literature are designed neglecting the fact that an
attacker works actively to undermine the performance of the detection system (11).
To address the vulnerability to CF attacks, many anti-CF techniques have been de-
veloped, with a focus on detecting the traces left by CF techniques. Anti-forensic
techniques often target a specific CF technique, and as a result, an obvious problem
occurs when the attacker anticipates the use of the anti-CF technique and adjust ac-
cordingly. In turn, the defender would need to resort to the introduction of a new
detection system to detect the anti-CF attacks, resulting in a never-ending iterative
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loop with unforeseeable outcomes (70). A possible solution to this problem is to
design techniques that are intrinsically more resistant to CF attempts (15)(57). For
example, in (27) the authors proposed the use of second-order statistics derived
from co-occurrence matrices and show robustness against CF attacks. Zhang et
al. (84) used a reduced feature set based on assumptions on the attacker’s data
manipulation strategy. A combination of one-class and two-class classifiers is pro-
posed in (10). Another interesting approach is the randomization of the feature
selection process (17). In (5) and (6), the authors propose the reuse of the original
feature space for the detection of CF attacks by retraining for the task of double
JPEG compression detection. The third group of solutions rely on game theory to
model the interactions between the detector and the attacker and improve the per-
formance of the detector at the final equilibrium (7) (69)(8). All aforementioned
methods address the case where attacker has a limited choice of CF attacks and do
not consider selection process of attacks in optimization of the detector.

11.3.2 Presentation Attack Detection

Similar to anti-CF techniques, the existing PAD research can be categorized into
three branches: (1) PAD systems that address specific PASs, (2) PAD systems
that increase or optimize the feature set to detect a higher variety of attacks, and
finally, (3) PAD systems that rely on game theory to model the interactions between
attacker and defender and optimize the PAD performance accordingly.

The early PAD methods addressed PAD for specific PAS, examples of which
are methods relying on features such as blinking, head movement, and textures
(56, 40, 58). Different Features have been used (80), (71), (59),(13), such as
2D Fourier spectrum (78), local binary patterns (LBP) (26). Authors in (83),
(44) and (62) presented central difference convolutional networks, layer-by-layer
progressive compact space generation, and style transfer techniques, respectively.
Many PAD methods rely on an augmented feature set using additional hardware.
Examples include 3D depth camera (77), multi-spectral camera (85), and micro-
phones (18). However, these techniques require the addition of often expensive
hardware to the pipeline, which may not be feasible in all applications. A few
studies tried to use generalizable feature sets for PAD. In (78), the authors propose
the use of image distortion analysis. The use of 25 general image quality features
for PAD is investigated in (32). In (42), a regression function is learned to map the
image quality assessment scores. The use of pixel-level supervision for improv-
ing features is investigated in (47) and regional self-supervision in (28). A limited
number of studies tried to address the generalizability of PAD systems (63) (9) us-
ing a one-class classification approach (4) (55), deep metric learning model (61),
and zero-shot (48). To the best of our knowledge, no game-theoretic approach is
proposed to model interactions between attacker and defender.
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11.3.3 DeepFakes Detection

Several approaches have been proposed for detecting DeepFakes, such as lack of
asymmetry in computer-generated imagery(24), spatio-temporal deformations of a
3D face model (25), use of periodic blood flow (20), generation flaws (51), blink-
ing (45), and blood flow (19), face warping artifacts (46), use of face landmark
locations (82), head pose consistencies (81), mesoscopic features (1), architecture-
specific GAN fingerprints (41) (52) (49), convolutional neural networks (CNNs)
(64), attention mechanism (23) and capsule networks(54), long short-term memory
(LSTM) networks (35), recurrent CNNs (65), and optical fields (3). However, such
detectors tend to overfit to the known attacks and show limited generalizability
(37). The problem of generalization has been studied in a few articles using, e.g.,
auto-encoder in (21) and (30), incremental learning in (50), pre-processing arti-
facts in (79), transferability of the network in (76), time dimension with attention
mechanism in (31). Other works are (43), (22), (2) and (74). Most studies have
a heavy focus on DNNs/GAN generated artifacts and do not consider other types
of manipulations. Also, none of the aforementioned studies take into account the
rationality of the attacker nor the case in which the attacker has multiple choices
of attack species. A summary of the most representative works in anti counter
forensics, presentation attack detection and deepfakes detection is presented in
Table 11.1.

11.4 Theory
In this section, I introduce the definition of a rational attacker and formulate such
an attacker’s pay-off equation and decision-making process. Furthermore, I dis-
cuss the detection strategy facing such an attacker and define the requirements for
a PAD system accordingly. Lastly, I justify the use of one-class detection tech-
niques based on generative models for unknown attack detection.

11.4.1 Rational Attacker

In most existing literature the selection process of the attackers for which attack
species to use is neglected and assumed to be that of random selection, resulting
in the proposed detectors having fundamental weaknesses. A rational attacker is
defined as an attacker who, knowing the pay-offs to his possible choices, selects the
one with the highest pay-off. From a game-theoretic perspective, the interactions
between an attacker x and the defender can be modeled by a sequential asymmetric
game in which the defender chooses a detector after which the attacker administers
their attack of choice. An attacker would have to choose among a set of attack
species Ax which represents all his options. The pay-off ui for the attacker for an
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attack ai ∈ Ax can be formulated as:

ui = r(1− pi)− cfpi − ci

= r − pi(r + cf )− ci
∼= −pi(r + cf )− ci

(11.1)

where r > 0 is the reward for a successful attack, pi is the probability of detection
(detection rate) for the attack species ai, cf > 0 is the cost of failure for the
attacker, and ci > 0 is the cost of the attack. To account for the budget of the
attacker, I assume the budget allows all attack species that are in Ax, and any
attack that requires a higher budget is excluded from Ax.

The attacker can, with the help of trial and error as well as consultation from the
experience of other attackers, have an accurate estimate of pi for ai ∈ Ax. The
attacker’s goal is to choose an attack species that maximizes the pay-off function
if the highest pay-off is higher than the pay-off of not attacking the system. As
r + cf is constant for every individual attacker, the optimization corresponds to
the selection of an attack species with the lowest weighted sum depending on pi
and ci. In practice, it is fruitful for the defender to take ci into account, and low-
cost attack species are expected to occur more frequently than the high-cost ones.
However, because measuring ci for individual attack species falls outside the scope
of this study, I assume the worst-case scenario in which the cost of all possible
attack species are assumed zero, enabling all attackers to use more effective attacks
regardless of the cost of the attack, as long as their budget allows the attack to be
included in Ax. Consequently, the pay-off formula boils down to ui ∼= −pi, and
the choice of the attacker would be the attack with the lowest pi, referred to as the
most powerful attack (MPA). The values for pis depends solely on the choice of
the detector by the defender.

11.4.2 Multiple Attackers

A detection system faces not only one attacker but different attackers with differ-
ent sets of Ax. Gathering statistics about the availability of attack species to the
attackers would provide further knowledge about the probability of observing a
specific MPA during the detection scenario. However, as such statistics are often
not available for individual attackers, a conservative approach would be to con-
struct a union set of all possible attack species for groups of attackers AXk

and
assume all attack species in AXk

are available to all attackers from category k. By
doing so, the PAD scenario is further simplified as the distinction between indi-
vidual attackers collapses and all attackers in each category become identical.

For example, using the budget as a categorizing factor, the attackers can be categor-
ized to low-budget and high-budget and the attack set for low-budget attackers AXl
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and high-budget attackers AXh
can be constructed. Next, using the probability of

an attacker belonging to each category p(Xk) and the performance of the detector
D on the MPA from that category perf(AXk

|D), the expected overall perform-
ance of the system can be estimated as

∑
k p(Xk) × perf(AXk

|D). Other ex-
amples of categorizing factors are expertise, time-budget, and access to unknown
attacks or anti-forensic attacks. As the categorization of the attackers and calcu-
lation of the probability of attackers belonging to each category falls outside the
scope of this study, I assume a single category AX for all attackers. From here on,
I use the term attacker to refer to the hypothetical attacker that can administer all
attacks in AX .

11.4.3 Detection Strategy

For deciding the best detection strategy, the accurate estimate of detection rate for
individual attack species by the attacker can be interpreted as equivalent to having
full knowledge over the detection performance over all ai ∈ AX . Due to the se-
quential nature of the game, the defender needs to choose pis for individual attack
species before the attacker decides which attack to choose. Subsequently, the ra-
tional attacker will choose the MPA which has the lowest detection rate depending
on the defender’s choice of detector.

Let us assume the set A denotes all possible attack species. In A, two attack spe-
cies are considered different if they have different manufacturing/generation pro-
cess, including generation parameters such as manufacturer expertise, quality, and
obfuscation. From the perspective of an attack detection system, an attack species
can be categorized into one of three subsets: (1) Known attack species (Ak) to
which detector is exposed in training process and its performance optimized, (2)
Unknown attack species (Au) to which detector is not exposed to and its perform-
ance is unknown, and (3) Anti-forensic attack species (Aa) signifying the attack
species that are designed with knowledge over the weaknesses of the detector in
mind and render the detector useless. These three subsets cover the whole set A.
It is important to mention that these subsets can be expanded as new attacks are
invented (become possible) and added to A.

To the extent of the knowledge available to the defender, Ak constitutes the set of
all possible attack species, all while the attacker may be able to administer attacks
falling outside Ak. The defender can know the detection rate for attack species
in Ak and optimize them accordingly, however, he cannot know the detection rate
for attack species in Au. The best the defender can do in this case is to make
an educated guess of what the minimum detection rate can be for attack species
in Au. To achieve this, every individual attack species in Ak can be left out as
an imaginary unknown attack species during training, and the minimum detection
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rate across all leave-one-out (LOO) trials can be used as a rough estimate of the
detection rate across MPA in Au.

The pay-off for the defender can be formulated as

vi = −cd − cm(1− pi), (11.2)

where cd is a constant cost of detection, cm is the constant cost of missed detection,
and pi is the probability of detection of attack ai which matches the definition of pi
for the attacker. Knowing that the attacker will choose MPA, i.e. the attack species
with the lowest pi, the defender’s best strategy would be to maximize the minimum
pi across both Ak and Au to maximize vi. There is a further objective of reducing
the detection cost such that cd is not prohibitively large, i.e. cd << cm(1 − pi).
The defender needs to choose to maximize pi either for ai ∈ Ak or ai ∈ Au, while
limiting cd according to the application dependant cm. As mentioned in Section
11.4.2, it is also possible to categorize the attackers to the ones with access to
attack species from Au and the ones without, and define an objective function that
takes into account the minimum detection rate over both Ak and Au. Yet, as the
defender does not possess any knowledge over Au, it logically follows that he
does not have any knowledge about the probability of the attackers being able to
use attacks that belong to Au either, and would need to resort to an educated guess
of the probability instead. In this study, I try to maximize the detection rate for
MPA from Ak and Au independently, corresponding to the cases where AX ⊂ Ak

and ∃ai ∈ AX , ai ∈ Au respectively, and propose a fusion scheme that can be
used to combine the resulting detectors without a significant loss of performance
in either case.

11.4.4 Requirements

Following the aforementioned explanations, it is evident that the common ap-
proach towards improving the average detection performance across known at-
tacks is not viable when the detectors are deployed and face rational attackers.
Consequently, a more sophisticated approach is needed to be taken based on these
analyses where the performance of a system is optimized considering the MPAs,
unknown attacks, and adversarial attackers. To this end, the following set of re-
quirements can be defined as guidance for the development of a robust detection
system:

• It should have an optimal minimum detection rate across known attack spe-
cies.

• It should have an acceptable minimum expected detection rate across un-
known attack species.
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• It should be able to learn to detect an unknown attack species optimally once
it becomes known by a few examples.

• The cost of detection should not outweigh the cost of miss-detection.

• It should be robust against adversarial attacks.

The first two requirements can be directly justified according to the formulation of
the problem provided in Sections 11.4.3. The third requirement follows directly
from the first two for the case when an unknown attack species becomes known. In
this case, the newly known attack species qualifies for a known attack species and
should follow the first requirement, even though there might exist only a limited
number of available examples from it. Consequently, the detector should be able
to learn to increase the detection rate of the previously unknown attack species to
match that of known ones.

There are certain solutions in the literature that attempt to address the last require-
ment (17), however, to the best of our knowledge, there exists no method to prove
the robustness mathematically, and empirical proofs would be limited to the spe-
cific anti-CF attacks that are considered. Consequently, for a detector to achieve
robustness against adversarial attacks, it needs to survive the test of time. As such,
fulfilling this requirement falls outside the scope of this study.

11.4.5 Generation-based Feature Sets

It is common practice to rely on discriminative models for the detection of at-
tacks. However, the objective of a discriminative model requires it to focus on the
discriminative features between bona fide (BF) and known attack species. Con-
sequently, these models do not learn discriminative features that are not directly
useful for the detection of the presented known attacks. As such, these models of-
ten fail to infer information on unknown attacks where the discriminative feature
set is different from the learned ones. In contrast, the objective of a generative
model trained on BF data requires it to model all variability in the BF data to the
capacity of the model, and because of this, does not over-represent some features
while under-representing the others. Using feature sets extracted by a generative
model, a detector is expected to be more robust to unknown attack species as it
has access to more informative feature sets (60), only limited by the capacity of
the generator in learning the feature set corresponding to BF data (53). Namely,
GANs have shown to be more effective for open-set recognition (29). Hence, gen-
erative models can be used for anomaly extraction more effectively in unknown
attack detection scenarios. Even though the features extracted using the generative
model are not optimized for detection and might not outperform the discriminative
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features used by a discriminative model on known attacks, it can be demonstrated
that they would generalize better on unknown attack species as they have no bias
regarding what the attack should look like (29)(53)(60).

11.4.6 Minimax Objective Function

Considering the known attack detection scenario, another limitation of most exist-
ing discriminative detectors is the reliance on the average loss for optimizing the
parameters. However, as argued in Section 11.4.3, the performance of a detector
against a rational attacker is not determined by the average detection rate, but the
detection rate on the MPA. Accordingly, optimizing the average detection rate does
not necessarily translate to the optimization of the detection rate against the MPA
all while posing challenges for the detection of the under-represented attack spe-
cies. In response to this limitation, objective functions that rely on minimizing
the maximum loss (or maximizing the minimum gain) are proposed as a reliable
alternative, for which the GAN loss (34) is a famous example.

11.5 Proposed Method
According to the requirements defined in Section 11.4.4, two separate detection
methods are proposed for both scenarios of known and unknown attack detection.
Furthermore, a fusion mechanism is introduced to combine the decision of the
two detectors for a unified solution with few-shot learning capabilities. Both pro-
posed methods rely on pixel-level generator-based anomaly features and its com-
pact representation extracted to achieve better performance across unknown attack
species. For the purpose of known attack detection, a new loss function is intro-
duced which follows the defined objective of maximizing the minimum detection
rate. For the purpose of unknown attack detection, I construct a generator-based
one-class detector that relies on attack-unspecific anomaly-sensitive information
extracted from the detection pipeline.

11.5.1 Pixel-Level Probability Distribution Modelling

A distribution model for BF images can provide an ideal model for presentation
attack detection, as it would be a generative model that contains the complete
feature-set and can also provide a single detection score in the form of the like-
lihood of an observation to the BF distribution. However, due to the complexity
of the distribution of BF images, the large amounts of data needed to train such
distribution properly, and finally the curse of dimensionality, it is deemed imprac-
tical. However, by breaking down the problem into modeling segments of an image
rather than the whole image, there exist practical solutions.

PixelRNN (75) is a generative model that models the pixel intensity value probabil-
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ity distribution conditioned on previous pixel values in raster order. This approach
can be used to calculate log-likelihood values for observing individual pixels in an
image, and once these values are aggregated, they can be used to estimate the log-
likelihood of observing the input image as a whole. The pixel-level log-likelihood
values can further be used for the localization of low-likelihood pixels (anomalies)
in the input. In the proposed approach, the aggregated log-likelihood value is used
as the first anomaly measurement for the one-class classifier, and a dimensionality
reduction scheme is proposed for simplification of the description of the localiz-
ation information for extracting the second anomaly measurement which are also
used for training the proposed discriminative detector for the known attack detec-
tion (Fig. 11.1).

Figure 11.1: The pipeline of the designed detection mechanism for both the discriminative
classifier and the generator-based one-class detector. The red, green, and blue arrows
signify the use of the data in the training of the models pointed to. The gray arrows
correspond to the flow of the probe data.

11.5.2 Dimensionality Reduction

The pixel-level log-likelihood values provide valuable information about the sever-
ity of the anomalies at each location in the image. However, dealing with features
the same size as the input video proves challenging, especially when the amount
of training data is limited. To tackle this problem, the following dimensionality
reduction scheme is proposed: As the location of anomalies in expected to re-
main roughly constant in a video, one can average the pixel-level log-likelihood
values across the cropped face frames across the whole input video. This step
will serve two purposes, firstly it collapses the data in the time dimension, and
secondly, it reduces the noise in the frame-level representations. Next, I use a prin-
cipal component analysis (PCA) transformation learned on BF data to reduce the
dimensionality further (Fig. 11.1).
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PCA transformation extracts the directions where the variability of the BF data is
most explained. It can also be used to extract the directions in which the input
data shows little variability. The components for which the BF data shows little
variability fits well with the definition of anomaly features, and they are a good
representation of the similarities between the BF samples. Additionally, the unex-
plained variability of input after transformation to the PCA space can provide fur-
ther anomaly clues. This unexplained variability can be measured as the distance
between the input and its projection on the PCA hyper-plane. Thus, I augment the
PCA transformed features with the measurement of unexplained variability. The
resulting compact representation manages to conserve the discriminative inform-
ation in the input video effectively while reducing the dimensionality further by a
factor of ≈ 1000.

The amount of shift across the PCA dimensions where BF samples show little
variability, along with the unexplained variance measurement can directly be used
for one-class detection. To reduce it to a single score, the energy of the input across
these dimensions can be measured by calculating the norm of the signal across
them. However, as the unexplained variability is on a different scale compared to
the PCA transformation values, a normalization step is required. Normalization
can be done by making the distribution of the BF samples across these dimensions
zero-mean unit-variance.

11.5.3 Categorical Margin Maximization Loss

As the performance of a system in deployment is measured according to its per-
formance for the MPA, a new minimax loss function needs to be introduced that
optimizes the detector towards achieving the highest MPA detection rate possible.
In this approach, motivated by the success of the triplet loss (67) , I introduce cat-
egorical margin maximization loss (C-marmax) that weighs attacks exponentially
according to the difficulty of classification, and thus focuses on reducing the loss
from the most difficult samples (MPAs) at each batch during the training. Using
C-marmax, the network transforms the aforementioned compact representations to
embeddings on a unit hyper-sphere where the distance between the BF data and at-
tacks are maximized while the distance between attacks from the same species, as
well as BF samples to each other, is minimized. In this loss, the distances between
attacks from one species to other species are ignored as we don’t have any in-
formation about the similarity or dissimilarity between distribution across any two
attack species. Hence the detector is categorical as it only considers distances
between observations from different categories (i.e. BF vs attacks) for calculating
the loss value. Finally, to exaggerate the loss from samples belonging to the MPA
and suppress the loss from other attack species, the loss attributed to the anchors is
exaggerated according to the distances such that the network pays more attention
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to marginal anchors to fulfill the objective of maximizing the minimum detection
rate.

In attack detection scenarios, there are a few classes, and it is possible to rely on
the distance to the center of distribution in a batch rather than the distance between
individual samples. To this end, in each batch, I compute the location of the center
of distribution for each attack species as well as BF data on the unit hyper-sphere,
and according to the label of the inputs, I use these centers to measure the distance
of the anchor to the positive distribution dp and the negative distribution dn. To
achieve the maximum margin possible between the distribution of BF samples
and PA samples in the embedding space, a fixed margin is not defined. Instead,
the ratio dp

dn
is used for the maximum dp and minimum dn in a batch from each

class, requiring the numerator to be minimized to zero, while the denominator
is maximized to the maximum possible value of 2 on the unit hyper-sphere. To
avoid the loss value to become infinity when dn is zero, the ratio is modified to

dp
dp+dn

which is equivalent to dp
dn

when dp << dn. Furthermore, to exaggerate the
loss for marginal observations (where dp is high) in comparison to non-marginal
observations (where dp is low), exponentiation is used, and the resulting formula
becomes ( dp

dp+dn
)g.

As the defined loss does not maximize the distance between centers of distribu-
tions directly, to assure that the center of distributions are far from each other, the
minimum distance between two centers are floored at

√
2 corresponding to 90 de-

grees on the unit hyper-sphere, with a second loss term. The final loss function is
summarized as follows:

lossm = (
max{d(a,Cp)}

(max{d(a,Cp)}+min{d(a,Cn))}
)g

lossc = max{min{
√
2− d(Cp, Cn)}, 0}

loss = lossm + 0.1× lossc

(11.3)

where, d stands for euclidean distance, a signifies the anchor, Cp is the center of the
positive class, Cn is the center of the negative class, g is the exaggeration factor,
lossm is the margin loss, and lossc is the center loss. During decision making,
the euclidean distance to the center of BF distribution can be used for scoring.
This distance can further be converted to an attack detection probability value by
division by 2.

In comparison to the triplet-loss, the proposed modifications result in a tunable
exaggeration of the loss in misclassified samples and suppression of the loss in the
correctly classified ones and relax the need for a fixed margin constant. Having
no constant margin, the network can continue training even after a specific margin
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is achieved between the classes until the maximum margin on the hyper-sphere
is reached. Furthermore, by using the center of the distribution instead of the
distance between individual anchors, the loss becomes less stochastic, allowing
faster convergence. To the same effect, the categorical nature of the proposed
loss relaxes the untrue assumption that all attacks come from the same distribution
regardless of their corresponding attack species.

11.5.4 Unknown Attack Detection

As argued in Section 11.4.5, a discriminative model may overfit to certain dis-
criminative features that correspond to the bias in known attack species used in
training. This also holds true for the presented C-marmax loss, as even though
it tries to achieve a balanced attack detection performance across known attack
species, it may exclude discriminative features that may be important for the de-
tection of unknown attack species. As such, to detect unknown attacks, a one-class
detector is proposed which does not have a bias towards any specific attack spe-
cies, or in other words, for it all attacks are unknown. As explained in Section
11.5.1, the log-likelihood value of observing an image serves as a good general-
purpose anomaly detection measure. However, this metric does not include the
other important discriminative feature available in the pixel-level log-likelihood
data, namely the location information. As explained in Section 11.5.2, the loca-
tion relevant anomalies can be represented by the components in a PCA transform
trained on BF where the BF data show the least variability. Furthermore, this
representation can be augmented by the unexplained variance in the form of the
distance of an observation to the PCA hyper-plane. Finally, the energy of the signal
across the resulting representation after normalization can be used as an anomaly
score. Following these steps, a second location-sensitive anomaly measure is de-
rived. Assuming a Gaussian distribution for BF scores for both anomaly measures,
using the BF score distribution, one can calculate the likelihood of an observation
belonging to this distribution as the final probability score. For the final score
of the one-class detection scheme, I simply average the two resulting likelihood
scores from the log-likelihood measure and the PCA-based measure (Fig. 11.1).

To fuse the probability scores from the discriminative detector and the one-class
detector when they are employed together, I use the following logic: If the discrim-
inative detector decides that a sample is an attack, it most certainly is one. How-
ever, if the discriminative detector decides that the sample is a BF, the defender
cannot be sure that the sample is a BF as it might come from an unknown attack.
So the one-class detector is to be consulted for a decision. This two step decision
logic can be interpreted as using an OR gate on the decision of the discriminative
and the one-class detector decisions. However, as both systems provide a probabil-
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ity scores rather than a decision, considering that A∨B = A+B−AB = A×B,
the following fusion formula is proposed that mirrors the logic level decision mak-
ing:

pPA(x|D,O) = 1− pBF (x|D)× pBF (x|O)

= 1− (1− pPA(x|D))× (1− pPA(x|O))
(11.4)

where pPA corresponds to the probability of belonging to the attack category, pBF

corresponds to the probability of belonging to the BF category, and O and D cor-
respond to one-class and discriminative detector models.

11.6 Experiment Setup
For measuring the effectiveness of the proposed method, its application on both
tasks of presentation attack detection and Deepfake detection are considered. In
this section, a description of the datasets used is provided, followed by the para-
meters used in training. Lastly, the measures used for evaluation of the method are
described.

11.6.1 Datasets

To show the performance of the proposed method for presentation attack detec-
tion, the SiW-M dataset3 (48) is selected due to its large collection of presentation
attack species. Similarly, the FaceForensics++ dataset4 (64) is chosen for the task
of Deepfake detection as it contains the widest choice of species between the avail-
able datasets.

SiW-M

This dataset consists of 660 BF videos from 493 subjects from diverse ethnicity
and age. Furthermore, it includes 966 PA videos from 13 different PAS collec-
ted under various environmental conditions, extreme face pose angles and lighting
conditions. The videos are around six seconds in length. This dataset is specific-
ally designed for the evaluation of generalization performance across unknown
PAS. The attack species in this dataset are categorized into replay, print, mask,
makeup, and partial attacks. The PAS available in this dataset are form a diverse
set of attacks including print and display attacks as well as transparent masks and
impersonation makeup. This dataset also includes PAS corresponding to partial
attacks.

For training the models, 530 randomly chosen BF videos are used, while 65 ran-
domly chosen BF videos were kept for development purposes, leaving 65 videos

3http://cvlab.cse.msu.edu/siw-m-spoof-in-the-wild-with-multiple-attacks-database.html
4https://github.com/ondyari/FaceForensics

https://web.archive.org/web/20200703043312/http://cvlab.cse.msu.edu/siw-m-spoof-in-the-wild-with-multiple-attacks-database.html
https://github.com/ondyari/FaceForensics
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for testing. For training the classifier in the unknown case, a LOO setup is used and
for each attack species, all the videos from other attack species are used for train-
ing, along with the training and development BF data. For few-shot learning, an
additional randomly chosen one or five videos from the targeted attack species are
included in the training, while in the known case 50% of the videos are included.

FaceForensics++

FaceForensics++ dataset contains four PAS corresponding to Deepfakes5, Face2Face
(73), Faceswap6, and Neural Textures (72). The dataset contains 1, 000 BF videos
and 1, 000 videos from each PAS, each split into three sets, reserving 72% for
training, 14% for validation and allocating 14% for evaluation. The videos are col-
lected from YouTube and after manipulation, recompressed in three video qualities
for evaluation of performance under various compression levels. For the purpose
of analyzing performance over unknown attacks, only the non-compressed version
of the data is used. Similar to the SiW-M dataset, both known and LOO unknown
attack detection experiments are considered.

11.6.2 Parameters

The proposed method has a number of parameters corresponding to face detection,
the pixel-level log-likelihood extraction model, the PCA model, and finally the
classifier. In this study, the videos are considered as a set of frame images. The
face region is extracted in each frame after face detection using the Dlib toolkit
(38), and the cropped faces are resized to 128× 128.

The overall pipeline of the proposed detection mechanism is visualized in Fig.
11.1 along with information about where the training data, development data, and
known attack data is used. The input image is first processed by the PixelCNN++
model trained using the training data, resulting in an aggregated observation log-
likelihood and pixel-wise log-likelihood matrices. The aggregated observation log-
likelihood is compared to the distribution of BF values learned from development
data to acquire the first generator-based anomaly measure. The pixel-wise log-
likelihood matrices are further normalized to zero-mean unit-variance using the
distribution of pixel values in the training data before applying the PCA transform.
The PCA transform is learned using the training data, and the PCA transformed
representation is augmented with the unexplained variance measure and normal-
ized to zero-mean unit-variance across all dimensions using the development data.
Then after sorting the components based on the explained variance of training data
in descending order, the last components are used for calculating the norm. This

5https://github.com/deepfakes/faceswap
6https://github.com/MarekKowalski/FaceSwap/

https://github.com/deepfakes/faceswap
https://github.com/MarekKowalski/FaceSwap/
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value is then compared to the distribution of BF scores learned on development
data for calculating the second generator-based anomaly measure. The first and
second probability scores are combined by averaging, resulting in a single one-
class classification score. The augmented and normalized PCA representations are
then passed to the discriminative classifier trained on BF data from training and
development set along with attack data from known attacks.

PixelCNN++

For pixel-level log-likelihood matrix extraction, a PixelCNN++7 (66) model is
trained on the resized cropped face images extracted from the BF training data.
The model consists of three hierarchies with five ResNet layers in each, with 160
filters with a receptive field of 3× 3 in each layer, resulting in 95 million paramet-
ers. Concatenated ELU (68) is used for activation and pixel intensity values are
modeled using 10 logistic distributions. For regularization, dropout with a probab-
ility of 50% is used. The model is trained with a batch size of one and the ADAM
(39) optimizer with a learning rate of 10−5 is used for 500 epochs on a single
randomly chosen frame per training video in each epoch.

The log-likelihood matrix is then generated by concatenating the pixel log-likelihood
values for each of the 10 logistic distributions for each color channel, resulting in
a matrix of size 128 × 128 × 30. For calculating the log-likelihood of observing
the video, the likelihood of observing each individual frame is calculated using
the weighted sum for the individual logistic distributions across the whole cropped
face image. These values are then averaged across time to measure the average
log-likelihood of the observed input video to be used for one-class detection. For
extracting location-sensitive features, after averaging the pixel-level log-likelihood
matrix values across the whole input video, at each pixel location, the distribution
of log-likelihoods are normalized such that the BF training data has a distribution
of zero-mean unit-variance, resulting in a matrix of size 128× 128× 30 per video.

Principal Component Analysis

In the next step, these matrices are extracted from the BF training data to train
a PCA model with sorted components according to the explained variance across
these components in descending order. Unexplained variance is measured by cal-
culating the euclidean distance between each input and its projection on the PCA
hyper-plane and added to the end of the PCA representation. The PCA representa-
tion is normalized to have zero-mean unit-variance for BF data from the validation
set. For one-class detection, to measure the energy of the input video across the
last 10% of the PCA representation, the norm after normalization is used. Using

7https://github.com/openai/pixel-cnn

https://github.com/openai/pixel-cnn
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the distribution of the norm values across the validation data, a single Gaussian
model is trained for calculating the likelihood of a given input to the BF distri-
bution. The same approach is taken for the video log-likelihood values collected
directly from the output of the PixelCNN++ model. These two likelihood values
are averaged to calculate the final score of the generator-based one-class detector.

Classifier

The PCA representation is also used for the training of the discriminative classifier
using the aforementioned loss function. A DNN model with four hidden layers,
each with 512 ReLU activated units is trained for mapping its input to the L2 nor-
malized embedding space of six dimensions (Fig. 11.2). Due to the limited amount
of training data available for training the classifier, dropout regularization with a
rate of 50% is used on the output of each hidden layer, along with L2 regulariza-
tion with a factor of 10−6. Oversampling is done by using random segments of the
training videos and their vertically flipped copies while testing is done on the whole
test videos. The training data is balanced by repetition to have 50% BF samples
and 50%

#PAS . The loss function only has one tunable parameter g, which was set to
two to achieve fast conversion. Training is done with a batch size of 128 for 100
epochs with a fixed learning rate of 10−3 using the ADAM optimizer. Finally, the
detection probability score is calculated by measuring the Euclidean distance of
the embedding to the average of the validation data embeddings divided by two.
The fusion between the probability score calculated by the generator-based one-
class detector and the discriminative detector is done using the formula in Section
11.5.4.

Figure 11.2: The architecture of the classifier network.

11.6.3 Metrics

To evaluate the performance of the proposed system, the threshold less equal-error-
rate (EER) metric is used. EER measures the error rate when the missed detection
percentage is equal to the false alarm percentage. For evaluation of performance
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across all attack species, the EER value for the MPA is chosen by measuring the
maximum EER across all species following the arguments represented in Sec-
tion 11.4.3. Furthermore, the detection error trade-off (DET) curve is used for
showing the missed detection rate for each false alarm value. Missed detection
corresponds to the bona fide presentation classification error rate (BPCER) and
false alarm corresponds to attack presentation classification error rate (APCER)
in ISO/IEC 30107 terminology8.In the experimental result tables, we report are
ACER@APCER=5%. The BPCER@APCER = 5% can be calculated as BPCER
= (ACERx2)-5%.

11.7 Presentation Attack Detection
In this section, the adequacy of the proposed generator-based anomaly represent-
ations is first explained. Later, the performance of the proposed method based on
these representations is evaluated and compared to the existing solutions in both
known and unknown attack detection scenarios. Lastly, the few-shot learning ca-
pacity of the proposed method is investigated and the computational cost of the
pipeline is reported.

11.7.1 Representation Adequacy

Fig. 11.3 shows examples of the log-likelihood matrices extracted by the Pixel-
CNN++ model for sample frames from BF data as well as each attack species. It
can be seen that BF data shows few single anomaly pixels corresponding to the
natural variations in the BF frame as well as anomalies around the location of the
glasses. However, each attack species shows its own pattern of anomalies cor-
responding to the locations where it is observed. For example for the obfuscation
makeup attack, the anomalies correspond to where the eyebrow and beard lines are
drawn, for the mannequin attack they correspond to the skin regions, for the paper
mask to the fold locations, and for the replay attack to the overexposed regions
of the face. These examples show the capacity of the representation to provide
explainability at pixel-level.

To further analyze the unique patterns from each attack species, the average log-
likelihood matrix for each species is presented in Fig. 11.4. The average and
standard deviation of log-likelihood values for training BF data are shown in the
first column. From these two images, it can be seen that most of the natural vari-
ability in the training data corresponds to the eye and the nasal dorsum as well
as the background, while the periocular region of the face contains a lower nat-
ural log-likelihood. After normalization of the average log-likelihood matrices for
test data using these two matrices, it can be seen that the test BF data matches

8https://www.iso.org/obp/ui/iso

https://www.iso.org/obp/ui/iso
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Figure 11.3: Example frames from BF and each PAS from the SiW-M dataset along with
their corresponding log-likelihood matrices below them. Red pixels show the location of
anomalies from the perspective of the PixelCNN++ model. From left to right: BF, Cos-
metic Makeup, Impersonation Makeup, Obfuscation Makeup, Half Mask, Mannequin, Pa-
per Mask, Silicone Mask, Transparent Mask, Print, Paper Cut, Funny Eye, Paper Glasses,
and Replay.

Figure 11.4: Average and standard deviation of the log-likelihood matrices over training
data in the first column, along with the average log-likelihood matrices for test BF data
and each individual PAS from the SiW-M dataset in the same order as in Fig. 11.3.

the training BF data average, while each attack species show a different pattern for
low likelihood and high likelihood regions. Attacks with unusually high likelihood
over the skin region are cosmetic makeup, impersonation makeup, half mask, man-
nequin, silicone mask, print, and partial cut attacks. This effect can be interpreted
as the over-smoothness of skin texture in these attacks. Attacks with unusually
low likelihood over the skin are obfuscation makeup, paper mask and to some ex-
tent transparent mask, which can, in turn, be interpreted as severe anomalies in
the skin texture. As expected, partial attacks show anomalies in the region of the
image where the attack is applied to.

Fig. 11.5 shows the t-SNE embeddings (36) of the normalized average pixel log-
likelihood matrices from each video. From this figure, it is evident that the repres-
entation manages to cluster attacks from the same species together with few excep-
tions. Furthermore, it shows a good separability between BF data and presentation
attack data, while the training BF data distribution overlaps with the test BF data.
These are remarkable characteristics for the features generated by the proposed
anomaly extraction which was trained in an unsupervised manner on only BF ex-
amples. This separation is however not perfect, as a cluster of BF samples are
located inside the attack distribution with high overlap with partial funny eye and
partial paper glass attacks. In addition, clusters of presentation attacks exist inside
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the BF distribution. The majority of these samples are from transparent mask, ob-
fuscation makeup, and partial paper glass attacks. By looking at Fig. 11.4 it can
be seen that all these attacks have a shared characteristic where the average log-
likelihood matrix has lower values on the skin region in contrast to other attacks
where the skin region shows higher log-likelihood values.

Figure 11.5: The t-SNE graph on the average log-likelihood matrices for all the data
available in the SiW-M dataset. Each point represents a video, and each attack species is
visualized with a different shape and color. The training BF data is shown with gray dots
while the test BF data is shown with pink pluses. A clear separation is visible between BF
data and attack data.
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11.7.2 One-class classification

The performance of both anomaly measures in the proposed one-class classifica-
tion scheme, along with the combined one-class detection score for each species
is presented in Table 11.2. Even though the EER values for the detection of in-
dividual attacks, with the exception of impersonation makeup attack, are far from
acceptable, these anomaly measures show a balanced performance across all at-
tack species. For all attacks, it can be seen that the fusion of these two anomaly
measures successfully reduces the EER close to the smaller value of the two, and
subsequently the MPA EER is reduced by 10%. The method performs signific-
antly better on impersonation makeup attacks compared to the other attacks while
transparent mask and paper glasses attacks are the most challenging for the system.

To see the effect of the number of PCA components in the detection rate, Fig. 11.6
shows the average as well as the maximum EER over all species after filtering out
the first n components from the PCA representation. It can be seen that, as hypo-
thesized, the last PCA dimensions contain a significant amount of attack-unspecific
discriminative information. The correlation between the aggregated log-likelihood
measure and the anomaly norm measures is 0.15 signifying the complementing
potential of these measures on each other. The combination scores reflect the com-
plementary nature of these measures and results in a detector with an MPA attack
detection EER of 27.1%. The DET curve for the resulting one-class detector is
shown in Fig. 11.7 for all attack species. This plot reveals three clusters of curves
corresponding to transparent mask, silicone mask, partial paper glass, paper mask,
partial funny eye, obfuscation makeup, and cosmetic makeup attacks with above
20% EERs, partial paper cut, replay, half mask, print, and mannequin attacks with
EERs between 10% and 20%, and finally impersonation makeup with less than 5%
EER. The attacks with higher than 20% EER reflect the overlaps observed in Fig.
11.5. The attacks with an EER below 20% show similarities in their average log-
likelihood images in Fig. 11.4 while the other attacks each have their individual
dissimilar patterns.

11.7.3 Detection Performance

In the following, the detection performance in terms of MPA EER is presented
and analyzed for the detection of known attacks, unknown attacks, and few-shot
learning.

Known attacks

The performance of the proposed methods in comparison to the existing detection
methods which are applied to the SiW-M dataset is reported in Table 11.3. It can
be seen that even though the proposed method is outperformed on most individual
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Figure 11.6: Detection performance according to the starting PCA component before
calculation of the energy.

attacks, the focus of the loss function on the MPA resulted in a lower EER on
the difficult attack species, namely cosmetic makeup. As a result, the proposed
discriminative detector achieves 9.7% EER on the MPA, reducing the MPA EER
by 37% compared to the best existing detector. The proposed fusion mechanism
further reduces the MPA EER to 8.5%. The DET curve for the proposed discrim-
inative detector is shown in Fig. 11.8. It is worth noting that the clusters visible in
Fig. 11.7 are merged together and the curves follow a similar course, representing
a more balanced detection performance. Furthermore, the curve for impersona-
tion makeup is almost identical to the one-class classification curve, showing that
the proposed C-marmax loss successfully avoided optimization of performance on
this attack which was the easiest to detect using its input. A similar pattern is ob-
servable in Table 11.3 where print and impersonation makeup attacks achieved the
smallest boost in performance after the application of the discriminative classifier.
Due to the small number of test samples, the DET curve shows abrupt changes,
showing that more data is needed for a more precise measurement of EERs.

Unknown Attacks

The results for the proposed method along with the performance of existing de-
tectors in unknown attack conditions are presented in Table 11.4. It can be seen
that, as expected, the one-class detector performs better than all discriminative de-
tection methods in terms of MPA EER, including the proposed method. However,
it is worth mentioning that the discriminative detectors gain an advantage over cer-
tain PASs where there is a similarity of the discriminative features between the
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Figure 11.7: Detection error trade-off curve for the one-class detector in PAD on the
SiW-M dataset.

Figure 11.8: Detection error trade-off curve of the discriminative detector for the known
attack detection on PAD task on the SiW-M dataset.
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unknown PAS and the known ones used in training. This distinction is visible in
cases where a significant difference exists between the one-class classifier perform-
ance compared to the discriminative classifier such as in the case of silicone mask
and mannequin attacks. A close observation of Fig. 11.5 reveals that samples from
these two attacks are not clustered together in the anomaly feature space. The pro-
posed fusion method managed to cap the EER for partial paper glasses and partial
funny eye attack where the proposed discriminative detection method fails while
not hindering the performance on cases where the discriminative detection method
performs well. Considering the existing solutions, it can be seen that there only
exists one approach that has a better than chance detection rate for MPA, namely
LLIG (28). This is concerning as it shows that all other existing methods would
be ineffective against a rational attacker, and in the case of (47), would actually
increase the efficacy of attacks. The proposed method achieves an MPA EER of
27.8% and outperforms all baseline methods.

OULU-NPU dataset

In Table 11.6, we report results of proposed framework as well as previously
presented strategies in the literature on OULU-NPU dataset (14). Fig. 11.10
shows the average and standard deviation of log-likelihood matrices for training
data along with the average matrices for test data. The OULU-NPU face present-
ation attack detection database is composed of 4950 real access and attack videos.
The videos were captured utilizing the front cameras of six mobile devices in three
sessions with different background scenes and illumination conditions. There are
two attacks, i.e., print and video-replay, which were generated via two printers and
two display devices. In this study, we adopted OULU-NPU Protocol II because it
presents the unknown attack detection scenario, namely, the effect of attack vari-
ation is assessed by introducing previously unseen print and video-replay attacks
in the test set. We can observe in Table 11.6 that the performance obtained us-
ing proposed framework is better than prior methods. For instance, the presented
method with c-marmax achieved 2.4% EER, whereas the scheme proposed in (33)
obtained 6.0% EER. It is also worth noticing that proposed system with one-class
classifier did not perform well, but the proposed system with fusion scheme could
avoid a major loss and attain notable accuracy.

Few-shot learning

In Table 11.5, the performance of the proposed method is presented on the task of
few-shot learning when having one or five examples, and compared to unknown
and known cases. It can be seen that by observation of even one example from
an unknown PAS, the performance of the system improves, and the MPA EER is
reduced by 45% from 33.5% to 18.3% by observation of five examples. As such,
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the proposed system shows the capacity of significantly reducing the EER after the
presentation of a few examples of a new PAS. It can also be seen that, specifically
in the case of impersonation makeup attack, the observation of new samples does
not reduce the EER. This can be explained by the fact that the EER is already low
in the zero-shot case, and the proposed C-marmax loss does not reward further
improvement in the EER of this attack as it does not improve the overall MPA
EER.

11.7.4 Detection Cost

Due to the big size of the PixelCNN++ model, the extraction of each individual
pixel log-likelihood matrix for each frame is the bottleneck and takes roughly 75
milliseconds in our setup. Considering the average length of six seconds for the
24 FPS videos in the dataset, processing each video takes 9 seconds, correspond-
ing to ×1.5 real-time speed. This may account for a prohibitively high detection
cost in certain applications such as smartphone-based detection or social media
monitoring. However, according to Eq. 11.2 the proposed method can find ap-
plications where the cost of a missed detection is high, such as border control and
authenticity verification in journalism.

11.8 Deepfake Detection
Fig. 11.9 shows the average and standard deviation of log-likelihood matrices
for training data along with the average matrices for test data. It can be seen
that most variations in the data are from the background, forehead, and cheeks,
while the eye and mouth regions had little variability with a low log-likelihood
average. The BF test data average matches that of training BF data. However,
there are distinct patterns corresponding to each attack species. In the case of
Deepfakes and NeuralTextures, there is a high log-likelihood region on the lower
half of the face, corresponding to the possible over-smoothness of the texture. In
the case of Deepfakes, there is a low-likelihood region around the eyebrows and
the chin line which corresponds to the locations where the artifacts that are the
characteristic of Deepfakes often occur. For the Face2Face technique, the pattern
corresponds to points with low log-likelihood around the nose and chin line, while
for the FaceSwap technique, the pattern corresponds to the eyes, nose, and mouth
regions.

Table 11.7 shows the performance of the one-class detector and the proposed dis-
criminative detector as well as their fusion. It can be seen that the one-class de-
tector managed to achieve acceptable MPA EER of 8.21% while the discriminative
detector achieved near-perfect video level detection. The Fusion did not degrade
the performance of the discriminative detector significantly. It is important to men-
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Figure 11.9: Average and standard deviation of the log-likelihood matrices over training
data in the first column, along with the average log-likelihood matrices for test BF and each
individual attack species in the FaceForencisc++ dataset in the following order: Deepfakes,
Face2Face, FaceSwap, NeuralTextures.

Figure 11.10: Average and standard deviation of the log-likelihood matrices over training
data in the first column, along with the average log-likelihood matrices for test BF and
each individual attack species in the OULU-NPU dataset in the following order: Printer 1,
Printer 2, Replay 1, Replay 2.

Table 11.7: Performance of the proposed detection methods for the task of known attack
detection on Deepfake detection task on the FaceForensics++ dataset.

Method Metric [%] DeepFake Face2Face FaceSwap NTexture MPA
One-class EER 6.43 8.21 2.14 2.14 8.21

ACER 5.00 8.21 3.21 3.21 8.21
C-marmax EER 0.00 0.71 0.00 0.36 0.71

ACER 2.50 2.50 2.50 2.50 2.50
Fusion EER 0.71 0.36 0.00 0.71 0.71

ACER 2.50 2.50 2.50 2.50 2.50
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tion that known attack detection on the raw subset of the dataset is a solved problem
with near-perfect frame-level detection rates reported in the baseline (64).

Table 11.8 reports the detection performance on the LOO unknown attack detec-
tion scenario. The low EERs of the discriminative detector shows that there are
mutually discriminative features across the known and unknown attacks, especially
for Face2Face and NeuralTexture methods. However, the face swap method shows
less similarity to other methods and this results in a increase in the EER of the
discriminative detector compared to the one-class one. Furthermore, the fusion
mechanism managed to lower the MPA EER significantly, and an MPA EER of
2.5% is achieved for the unknown attack detection. Due to the easiness of spot-
ting digital manipulation traces in raw videos, the overall performances in terms
of MPA are much lower than for PAD experiments.

Table 11.8: Performance of the proposed detection methods for the task of unknown attack
detection on Deepfake detection task on the FaceForensics++ dataset.

Method Metric [%] DeepFake Face2Face FaceSwap NTexture MPA
One-class EER 6.43 8.21 2.14 2.14 8.21

ACER 5.00 8.21 3.21 3.21 8.21
C-marmax EER 5.36 1.07 5.71 1.79 5.71

ACER 5.00 2.86 5.71 2.86 5.71
Fusion EER 2.50 1.43 2.50 1.43 2.50

ACER 3.57 2.50 4.29 2.50 4.29

11.9 Conclusion
The choice of the attack by a rational attacker can have a significant negative im-
pact on the performance of the detection systems in real-life scenarios. In response,
after relying on game theory to build a theoretic basis and formulating the interac-
tions between the attacker and the defender, a new detection method is proposed to
optimize the performance against attacks from such attackers. Experiments on the
tasks of presentation attack detection and Deepfake detection show effectiveness
of proposed method in improving detection rate on most powerful attacks both
in known attack cases and when the detector faces unknown attacks. Furthermore,
the proposed feature set is capable of enabling few-shot learning and explainability
at pixel-level. The proposed method shows generalizability across widely differ-
ent types of attacks ranging from Deepfakes and replay attacks to 3D masks and
makeup attacks and is able to show where the artifacts commonly occur for each
specific attack species. Also, unsupervised anomaly detection method used is able
to produce representations that cluster attacks from the same species together and
separate BF samples from attacks in an unsupervised manner with limited training
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data in unconstrained recording conditions.

However, this method has two specific short-comings. First, the extraction of the
anomaly representations is computationally expensive and thus the system can-
not be deployed in applications where processing an input video should be done
faster than in real-time such as automated content monitoring on social media.
Secondly, despite the proposed method outperforming the state-of-the-art in the
task of presentation attack detection, its expected 27.8% performance against the
most powerful unknown attack is still far from acceptable for real-life applications,
showing the need for further research in this direction. However, the availability of
more training data from a more diverse set of attacks may alleviate this limitation.
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