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� Four additives are investigated in the laboratory as railway ballast stabilisers.
� Repeated load triaxial tests assess the mechanical properties of stabilised ballast.
� The stabilisers enhance resilient modulus and resistance to permanent deformation.
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a b s t r a c t

Expensive and time-consuming maintenance operations are routinely performed to preserve the ballast
mechanical properties in railway lines. Binding agents are used for ballast stabilisation. Four different
additives based on bitumen, organosilane, lignosulphonate and polyurethane are investigated in the lab-
oratory by means of repeated load triaxial tests. The parameters that are directly relevant for use in rail-
way structures are assessed. Each binder type significantly influences both the resilient modulus and the
resistance to permanent deformation of the treated specimens. The ballast mechanical properties can be
conveniently modified, thus being beneficial to track stability and railway maintenance programme.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction and ends, level crossings and railway turnouts [7,8]. The change in
Ballast is the granular material that distributes the cyclic loads
induced by trains to the underlying track structure. The size of the
aggregates is usually comprised between 20 and 62 mm [1]. Ballast
is commonly adopted as the primary load bearing component and
represents the track form most used in Norway [2].

Ballast aggregates undergo wearing and crushing under the
train traffic action; the process entails the formation of fine parti-
cles (a main cause of ballast fouling) [3]. A higher content in fines
engenders a decrease in support stiffness, lateral stability and
resistance against permanent deformation [4,5]. This situation
can lead to augmented maintenance costs and, if neglected, even
train accidents [1].

The transition zones along the track are associated with abrupt
variation in support rigidity [6]. They exist in correspondence of
change from conventional track to slab track, at bridge approaches
the support stiffness of these zones causes high dynamic loads,
leading to ballast quality deterioration and consequently genera-
tion of fine particles [9,10].

Maintenance operations are frequently performed (i.e. ballast
tamping or renewal) in order to comply with the track geometric
requirements. The European yearly maintenance costs amount to
a significative quantity (30,000–100,000 euros per kilometre)
entailing, among the others, disruption to traffic and environmen-
tal issues [11,12]. Reducing maintenance expenses while still hav-
ing a high-quality ballast layer can contribute to huge savings.

The research investigates the improvement of ballast mechani-
cal properties associated to the use of binding agents. The use of
additives should aim at satisfying as many as possible of the fol-
lowing needs: 1) provide three-dimensional reinforcement across
the track 2) ensure drainage property 3) accomplish a relatively
quick treatment 4) decrease the frequency of maintenance opera-
tions 5) represent a cost-effective and environmentally friendly
technology. The most suitable stabilising solution among the
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available ones can be chosen upon each project’s contingencies and
priorities.

Four types of stabilising agents based on bitumen, organosilane,
lignosulphonate and polyurethane were investigated in the labora-
tory to assess the structural performance of treated ballast. Bitu-
men and polyurethane were chosen to expand and possibly
buttress the existing positive experience [13–17]. Organosilane
and lignosulphonate were investigated since recent applications
to coarse aggregates for pavement constructions showed promis-
ing results [18,19].

Repeated Load Triaxial Tests (RLTTs) characterise the stiffness
and the resistance against permanent deformation of untreated
and treated ballast samples. The systematic comparison of the
additives by means of RLTTs represents the innovative content of
the research. The existing literature solely and partly covers the
application of bitumen [14–16,20] and polyurethane [13,17]: these
agents were investigated by means of different testing methodolo-
gies. In addition, previous triaxial tests (not cyclic ones as RLTTs)
were performed on ballast [21–24] without comprising any
additive.
2. Stabilising agents

The tested material was collected from a railway section close
to Trondheim (Norway) in cooperation with the Norwegian
National Railway Administration - Bane NOR SF. The material
was partly worn, making the shape more rounded than newly pro-
duced ballast. The main rock type is fine-grained greenstone, veri-
fied by petrographic thin-section analysis, and metagabbro. The
stabilising agents adopted in the investigation are described in
the following sections and the main physical and chemical proper-
ties are reported in Table 1.
2.1. Bitumen

Bitumen Stabilised Ballast (BSB) refers to the application of
bituminous emulsion directly sprayed onto the ballast layer along
the track. Even if this binder can be sometimes used in railway
asphalt concrete tracks [25–27], there is very limited research
applied to railway ballast stabilisation [8,14]. Different types of
bituminous emulsions and use percentages were previously inves-
tigated and showed promising results [15,16]. Due to a lack of local
availability of bitumen emulsion, this research applies traditional
bitumen instead. However, after the evaporation of water has
taken place, the rheological and mechanical properties of bitumen
emulsion become similar to the ones of traditional bitumen [28].
The investigation applies two types of binder commonly used in
Norway for road construction, one has penetration 70/100 (re-
ferred to as BSB1) and one has penetration 160/200 (referred to
as BSB2).
Table 1
Main physical and chemical properties of the stabilising agents.

Additive Penetration Dynamic
(0.1 mm @ 25 �C) (cP @

bitumen 70/100 70–100 �90
bitumen 160/220 160–220 �30

Density Dynamic
(kg/m3) (cP @

organosilane C1 1010–1030 200
organosilane C2 1000–1020 20–
lignosulfonate 1250 5
polyurethane 1090 7
2.2. Organosilane

Organosilane Stabilised Ballast (OSB) is based on organosilane,
which is a nanoscale agent resistant to ultraviolet radiation and
temperature variation [29–31]. The additive is based on two com-
ponents here referred to as C1 and C2: they are an acrylic co-
polymer emulsion based on acetic acid and methanol and a poly-
meric dispersion composed of propylene glycol and alkoxy-alkyl
silyl, respectively. The components promote the formation of an
impermeable nanolayer of alkyl siloxanes on the surface of the
rocks. The available limited results are promising, but they are
mainly connected to clay and silt examined in the laboratory
[32–34] and in the field [35]. Recently, its application to coarse
crushed rocks has showed positive outcomes [18,19]. The safety
data sheets of the product do not report any environmental hazard
[36,37].

2.3. Lignosulfonate

Lignosulfonate Stabilised Ballast (LSB) refers to the application
of lignosulfonate, namely a sustainable agent obtained in industries
involving papermaking operations. Lignosulfonate is a water-
soluble organic substance that is not toxic and does not cause cor-
rosion [38,39]. The current results related to the improvement of
mechanical properties of aggregates are connected to clay and silt
tested both in the laboratory [38–42] and in the field [43–45]. As
in the case of organosilane, the recent application of lignosulfonate
to coarse crushed rocks has shown positive outcomes [18,19]. Since
lignosulfonate is water soluble, it is important to ensurewater drai-
nage, i.e. by virtue of good transversal profile.

2.4. Polyurethane

Polyurethane Stabilised Ballast (PSB) is a stabilisation technol-
ogy based on isocyanate compounds [13,17,46]. Two types of prod-
ucts have been mainly investigated in previous researches, one
based on isocyanate [47,48] and one based on isocyanate and
resins [49,50]; a rigid-foam version has also been tested [51]. By
controlling the polymer rheology, the curing time (gel-time) can
be adjusted as well as the strength of the bonding between the
aggregates contact points [52]. Special precautions should be
adopted when handling the product, as it is harmful if inhaled
and causes skin irritation.

3. Experimental methodology

3.1. Sample preparation

The tested particle size distribution (PSD) is displayed in Table 2,
each sample consisted of 5100 g of dry ballast material. The tested
PSD is a downscaled version of railway ballast by factor 0.5: the
viscosity Fraass point Softening point
60 �C) (�C) (�C)

,000 ��10 46–54
,000 ��15 35–43

viscosity Freezing point Boiling point
30 �C) (�C) (�C)

–600 <�5 188
200 0 100
50 5 100
80 <10 >200



Table 2
Particle size distribution (PSD) of ballast material.

Sieve Size (mm) 22.4–25 25–31.5
Ballast Passing (%) 70 30
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maximum particle size to be tested is recommended to be one fifth
of the sample diameter 150 mm as indicated by the code [53]. Even
if the downscaling process has an impact on the measured
mechanical responses [54], this does not hinder the general
research purpose of assessing and comparing the ballast stabilised
by means of different agents.

The BSB specimens were added 3% of bitumen by weight, both
binder 70/100 (BSB1) and binder 160/220 (BSB2) were tested; the
aggregates and the bitumen were heated up to 160 �C for three
hours before mixing. The material pre-heating is not necessary
when using a bituminous emulsion [25–27]. The OSB, LSB and
PSB samples were created at room temperature (22 �C) by adding
1.5%, 0.65% and 1.5% of organosilane, lignosulfonate and polyur-
ethane binders by weight, respectively. In order to blend properly
the stabilising agents and the aggregates, OSB, LSB and PSB sam-
ples were carefully mixed inside plastic bags and BSB samples
inside a steel bowl. The operator successively compacted each
specimen inside a steel mould by using a vibratory hammer (fre-
quency 25–60 Hz, amplitude 5 mm, total weight 35 kg), the com-
paction time was 30 s. Finally, each sample was covered by latex
membranes. Further information about curing time, curing tem-
perature and bulk density [55] is reported in Table 3. The condi-
tioning of the LSB samples comprised 50 �C for 48 h and then
22 �C (room temperature) for five days; in this fashion the lignosul-
fonate could adhere properly to the ballast aggregates [39–41].
Table 3 also shows an approximate price per kg of each stabilising
agent. It is important to stress that the amount of additive has not
been optimised for performance and cost, but it was chosen after
some trial and error tests. Fig. 1 displays the appearance of the
treated samples.

The diameter and the height of the tested specimens were
150 mm and 176–188 mm, respectively. The variation in height
was connected to the compaction of the coarse particles of the
samples. According to the code requirements, the height to diam-
eter proportion should be 2:1 [53]. Nevertheless, previous research
proved that this ratio has limited influence on the measured
mechanical properties [56]. The samples were added end-platens,
hose clamps and rubber O-rings before testing. Two replicate spec-
imens were investigated for every RLTT.
3.2. Repeated load triaxial test

Repeated Load Triaxial Test (RLTT) investigated the mechanical
properties of the aggregates, namely stiffness and resistance
against permanent deformation [57,58]. The device exerts two
kinds of external actions on the sample: a uniform confining pres-
sure (r3, triaxial or confining stress) thanks to pressurised water
Table 3
Overview of tested samples: additive quantity, curing time, curing temperature, bulk den

Additive Code Additive content
(%, weight)

Time
(day)

untreated UGM – –
bitumen 70/100 BSB1 3.0 2
bitumen 160/220 BSB2 3.0 2

organosilane OSB 1.5 7
lignosulfonate LSB 0.7 2 + 5
polyurethane PSB 1.5 2
and a vertical dynamic pressure (rd, deviatoric stress) by means
of a hydraulic jack. The application of rd follows the selected sinu-
soidal pattern and gradually augments with different intensities of
r3. The performed RLTT complies with the multi-stage low stress
level (MS LSL) scheme, characterised by five different r3 values;
moreover, six rd values constitute every sequence [53]. The MS
LSL loading is depicted in Fig. 2 considering rd and the bulk stress
h (h = r1 + r2 + r3). The maximum value of rd = 600 kPa adequately
simulates the train traffic [14,59]. Each test is formed by 30 steps
comprising 10,000 pulses applied at 10 Hz. Three Linear Variable
Differential Transducers (LVDTs) measure and record the axial per-
manent displacement every 5 pulses (0.5 s). A sequence is stopped
if the axial permanent deformation reaches 0.5% [53]. Fig. 3a shows
the RLTT equipment used in the investigation and Fig. 3b displays
the test rig [60]. The values of the deviatoric stress rd and the load
frequency applied are appropriate as they correspond to the order
of magnitude generated by a common railroad car travelling at the
speed of 200 km/h with total weight of 40,000 kg, length of 25 m
and two two-axle bogies with 2.5 m wheelbase; cement concrete
sleepers are 2.6 m wide and 0.3 m long [2]. The generated load fre-
quency is approximately comprised between 3 Hz and 30 Hz, and
the pressure under the sleeper varies between 300 kPa and 500 kPa
taking the Dynamic Amplification Factor (DAF) into consideration
[61].

3.3. Results interpretation

Given a constant triaxial stress r3, the resilient modulus MR

connected to a variation in the dynamic deviatoric stress rd
dyn is

determined as

MR ¼ Drdyn
d

eela
ð1Þ

where eael is the axial resilient strain. There are many equations that
describe the relationship between MR and h [57]. The k-h model
which is mostly used to interpret experimental results is provided
by Hicks & Monismith [62]

MR ¼ k1;HMra
h
ra

� �k2;HM

ð2Þ

where ra is a reference pressure (100 kPa) and k1,HM, k2,HM are
regression parameters. Moreover, Uzan model establishes a rela-
tionship between three parameters, namely MR, h and rd [63]

MR ¼ k1;UZra
h
ra

� �k2;UZ rd

ra

� �k3;UZ

ð3Þ

where k1,UZ, k2,UZ, k3,UZ are regression parameters. Compared to
Hicks & Monismith model, Uzan model has the advantage to take
into consideration both bulk stress and deviatoric stress, enabling
an useful representation in a three-dimensional plot.

The deformational response of the ballast can be described by
two components: one is elastic (resilient) and the other one is
sity and additive price estimate.

Curing Bulk density
(t/m3)

Price estimate
(EUR/kg)

Temperature
(�C)

– 1.68 –
22 1.73 0.4
22 1.73 0.4
22 1.73 9.0

50 + 22 1.70 0.6
22 1.69 4.5



Fig. 1. Treated ballast samples.

Fig. 2. RLTT loading sequences and steps.

4 D.M. Barbieri et al. / Construction and Building Materials 252 (2020) 119041
plastic (permanent). The latter is the result of compaction, particle
crushing or material migration; the plastic deformation is respon-
sible for the long-term distresses [58]. Several models have been
developed to illustrate the accumulation of vertical permanent
deformation evp as a function of different parameters. The experi-
mental data corresponding to each step are fitted according to
Hyde model [64], which establishes a relationship between the
accumulated vertical permanent strain evp, deviatoric stress rd

and triaxial stress r3 as follows

evp ¼ aHY
rd

r3
ð4Þ
Fig. 3. RLTT equipment for the laboratory invest
where aHY is the regression parameter. Hyde model is relatively
simple, but sufficiently accurate for comparing the results of RLTTs.
4. Results and discussion

4.1. Resilient modulus

The experimental values of resilient moduli and their trends
modelled according to Hicks & Monismith equation are displayed
in Fig. 4. All the modelled resilient moduli are displayed together
in Fig. 5a, the values of the regression parameters k1,HM, k2,HM are
reported in Fig. 5b.

All the additives except one significantly enhance the stiffness
of the ballast. Furthermore, bitumen 70/100 achieves bigger MR

values than bitumen 160/220: a more viscous binder attains a
major increase in stiffness [15]. Both organosilane and lignosul-
fonate augment the resilient modulus of the ballast, and the effect
achieved by the latter proves to be the most significant among the
investigated additives. In example, considering h = 200 kPa, the MR

values for UGM, BSB1, BSB2, OSB and LSB are 460 MPa, 1935 MPa,
1612 MPa, 756 MPa and 2335 MPa, respectively. There is no
previous experience regarding applications of organosilane and
lignosulfonate in ballast, but the results are in good agreement
with what previously found regarding coarse crushed rocks
[18,19].
igation (a) and test rig description [60] (b).



Fig. 4. Experimental data of resilient modulus and representation according to Hicks & Monismith model for UGM (a, b), BSB1 (c, d), BSB2 (e, f), OSB (g, h), LSB (i, j) and PSB
(k, l) samples.
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Fig. 5. Resilient moduli of tested samples according to Hicks & Monismith model (a) and regression parameters k1,HM, k2,HM (b).
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Polyurethane treated ballast behaved differently from the other
additives, attaining the lowest value of resilient modulus, which is
nearly constant (190 MPa) for any value of bulk stress h. On the
contrary, a previous experience performing triaxial load test (not
cyclic) on PSB reported enhanced stiffness [65]. Furthermore,
another laboratory investigation, but not based on triaxial tests,
also found an increase in stiffness [66]. These discrepancies may
be connected to the different testing methods, in particular the
first mentioned experience applied uniaxial loads in a
displacement-controlled mode [65].

In addition to the representation according to Hicks & Moni-
smith model (Fig. 4l), the PSB resilient modulus can be also dis-
played in a three-dimensional plot according to Uzan model as
reported in Fig. 6a: the polyurethane stabilised samples are not sig-
nificantly dependent on either bulk or deviatoric stresses. All the
MR values are almost 190 MPa, as previously depicted in the
two-dimensional representation (Fig. 5a). For comparison, Fig. 6b
takes in consideration OSB resilient modulus to portray the general
behaviour of ballast showing a clear dependency on both bulk and
deviatoric stresses. Fig. 6c displays the model regression parame-
ters. The elastic response of the PSB material deviates from the
other investigated ballast materials: the main part of the load
transfer is probably no longer in the rock skeleton but rather
through the polyurethane.

A high stiffness of the track is usually positive as entails a
decrease in deflections and a major resistance to train loads. Dif-
ferently, an excessive high stiffness can augment the dynamic
forces on the rail components, causing fatigue and wear issues.
In some contexts, a lower track stiffness can be a desirable condi-
tion [67].
Fig. 6. Resilient modulus of PSB (a) and OSB (b) samples represented acco
4.2. Resistance to permanent deformation

RLTT is composed of five loading sequences, the upper limit of
axial permanent deformation in each sequence is 0.5% [53]. The
accumulated vertical permanent deformation strains evp corre-
sponding to each sequence are represented in Fig. 7a, c, e, g, i
and modelled according to Hyde formulation as displayed in
Fig. 7b, d, f, h, j.

All the additives entail an improvement of the ballast in terms
of resistance against permanent deformation [68]. The stabilising
agents that display the best performance are organosilane, ligno-
sulfonate and polyurethane. Nevertheless, the use of bitumen
accomplishes a significative decrease in plastic strains. Considering
i.e. the ratio evp/rd = 5, the values of the vertical permanent defor-
mation evp for UGM, BSB1, BSB2, OSB, LSB and PSB are 5.55, 1.40,
2.90, 4.10, 0.65, 0.50, respectively, during the first RLTT sequence
and 3.50, 1.10, 0.70, 0.95, 1.75, 1.5, respectively, during the fifth
RLTT sequence. With the progressive increase in the confining
pressure, the trends of the vertical permanent deformation
for the treated samples become more and more similar. For
evp/rd = 6 in the first sequence, the difference between the highest
and the lowest evp values, corresponding to OSB and PSB, is 4.32.
For the same evp/rd value in the fifth sequence, the difference
assessed between the highest and the lowest evp values, corre-
sponding to LSB and BSB2, decreases to 1.26.

Fig. 8 displays the values of aHY regression parameter for each
loading sequence. The positive performance of stabilised ballast
agree with what found in the previous researches investigating
the deformation properties [14,17–19,69], even if different testing
approaches were used.
rding to Uzan model with regression parameters k1,UZ, k2,UZ, k3,UZ (c).



Fig. 7. Experimental and modelled accumulated vertical permanent strain corresponding to first (a, b), second (c, d), third (e, f), fourth (g, h) and fifth (i, j) RLTT loading
sequence.
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Fig. 8. Regression parameter aHY for each RLTT loading sequence according to Hyde model.
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5. Conclusions

The research scope was to characterise and systematically com-
pare some additives that can be used as stabilisation agents for
railway ballasts. They were composed of bitumen (Bitumen Sta-
bilised Ballast, BSB), organosilane (Organosilane Stabilised Ballast,
OSB), lignosulfonate (Lignosulfonate Stabilised Ballast, LSB) and
polyurethane (Polyurethane Stabilised Ballast, PSB). The resilient
modulus and the resistance against permanent deformation of
both untreated and treated ballast were investigated in the labora-
tory by means of Repeated Load Triaxial Tests (RLTTs).

All the binding agents accomplished variation in ballast stiff-
ness. Except for PSB, the resilient moduli of BSB, OSB and LSB
increased compared to untreated ballast. In many cases this is ben-
eficial to secure good load distribution to protect the layers under
the ballast. Contrastingly, the resilient modulus of PSB was smaller
than untreated ballast, and the stiffness of PSB was practically
independent from both bulk stress and deviatoric stress. This indi-
cates that there is a possibility to adjust rigidity in critical areas to
reduce noise/vibration or to secure a uniform stiffness along the
track irregularities.

Growing traffic volume, train speed and axle loads lead to
recurring maintenance operations, which incurs significative
expenses. All the additives enhanced the resistance to permanent
deformation of ballast. OSB, LSB and PSB showed the most signifi-
cant decrease in accumulated vertical permanent deformation.

The investigated technologies offer feasible solutions to miti-
gate ballast deterioration and track settlements; the additives rep-
resent promising options for improving ballast performance.

Nevertheless, there are some characteristics which may have
impacted the research findings and their interpretation. Firstly,
the optimization of the mixing proportions can contribute to iden-
tify the most suitable additive quantity for each practical case,
focusing i.e. on mixing stability, flowability, and curing time. Fur-
thermore, the tested particle size distribution was downscaled
compared to real ballast; consequently, fulfilling a field test could
contribute to buttress this research’s findings. Moreover, the inves-
tigation has only dealt with one type of ballast: even if the results
have been promising, the outcomes could be generalised even
more by further testing of other rock types.
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