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Introduction

Data assimilation is the process of predicting the state of a quantity of
interest using observations collected as,

d = g(r) + ✏, (1)

where the observed data vector d is a function g of an unknown quantity
of interest r called state vector and of an observation error denoted ✏.
Bayes’ theorem,

f(r|d) = f(d|r)f(r)
f(d)

, (2)

represents what the observed data tell us about the quantity of inter-
est, where f(r), f(d|r), f(d) and f(r|d) are the prior distribution, the
likelihood model, the marginal likelihood and the posterior distribution,
respectively. In the general case, the posterior distribution f(r|d) is not
analytically tractable and must be approximated. The approximation
itself can be very computationally demanding.

In this thesis work, we focus on data assimilation for spatio-temporal
phenomena. When cast in a Bayesian setting, we specify an initial
distribution, a forward model and a likelihood model which define the
posterior distribution. The forward model represents the evolution of the
spatio-temporal variables at play while the likelihood model describes the
data acquisition procedure. When the initial distribution is Gaussian and
the forward and likelihood models are linear with additive Gaussian noise
(Gauss-linear), the posterior distribution is Gaussian and analytically
tractable. It can be assessed using the traditional Kalman model (Kalman,
1960). In this settting, one usually distinguishes between the filtering and
smoothing distributions. The filtering distribution predicts the current
state of the quantity of interest while the smoothing distribution predicts
previous states of the same quantity of interest. They are assessed with
the Kalman Filter (Kalman, 1960) and the Kalman smoother (Rauch
et al., 1965), respectively.

When the forward and/or likelihood models are non-linear, analytical
tractability is lost and the extended Kalman filter (Jazwinski, 1970) and
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Introduction

smoother (Yu et al., 2004) can be used to approximate the posterior
distribution. They however require repeated evaluations of sensitivity
matrices which can be costly for high-dimensional problems. Ensemble
methods such as the ensemble Kalman Filter (EnKF) (Evensen, 1994,
2009) and smoother (EnKS) (Evensen and van Leeuwen, 2000) provide
an alternative approach that can be used to assimilate spatio-temporal
data and evaluate the posterior distribution of the quantity of interest.
The EnKF is a Monte-Carlo implementation of the Bayesian update. En-
semble members are simulated from the initial distribution and serve as
inputs to the forward model. The likelihood model is then used to condi-
tion the ensemble on the collected data. The EnKF has successfully been
applied to numerical weather prediction (Sakov et al., 2018), oceanogra-
phy (Bertino et al., 2003), reservoir simulation (Aanonsen et al., 2009)
and groundwater flow (Hendricks Franssen and Kinzelbach, 2008).

However, owing to the linearized conditioning step, the EnKF is not
well suited to represent spatio-temporal variables that display multimodal
spatial histograms. A regression towards the mean occurs during the con-
ditioning steps and the posterior marginal distributions drift towards
Gaussianity. This is a challenging problem in subsurface modeling: sub-
surface properties, such as porosity and saturation in reservoir simulation
and log-conductivity in groundwater flow, often appear as non-Gaussian
owing to the underlying geology. Statistical methods, such as Ensemble
Randomized Likelihood (EnRML) (Chen and Oliver, 2012), Gaussian
anamorphosis (Bertino et al., 2003; Zhou et al., 2012), Gaussian mixture
models (Dovera and Della Rossa, 2011) and truncated pluri-Gaussian
(Oliver and Chen, 2018), have been developed to address this issue.

An alternative to Gaussian mixture models is the selection-Gaussian
distribution (Arellano-Valle and del Pino, 2004; Arellano-Valle et al.,
2006; Omre and Rimstad, 2021). The class of selection-Gaussian distribu-
tions can represent multimodaliy, skewness and peakedness and is closed
under Gauss-linear operations. In addition, the selection-Gaussian distri-
bution is a conjugate prior to Gauss-linear likelihood models. The poste-
rior distribution is therefore selection-Gaussian and analytically tractable
when the forward and likelihood models are Gauss-linear. When they
are non-linear, it is possible to use the selection-Gaussian distribution
as an initial distribution within the ensemble Kalman filter framework
and conserve non-Gaussian features. These attributes make the selection-
Gaussian distribution well suited for data assimilation when the quantity
of interest is suspected to display a multimodal, skewed or heavy-tailed
spatial histogram for linear and non-linear models.

We define the hidden Markov model that serves as a basis for the rest
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of the thesis in the first section. In the next section, we focus on linear
models and present the traditional Kalman model. In the third section,
we introduce the major contribution of this thesis, the selection Kalman
model, as an extension of the traditional Kalman model that allows for
multimodality in linear models. In the fourth section, non-linear models
are considered and ensemble methods such as the EnKF are presented.
Methods to address the shortcomings of the EnKF are reviewed in the
fifth section. Finally, a summary of the papers constituting this PhD
thesis is presented.

In this introduction, f(y) denotes the probability density function
(pdf) of a random variable y, 'n(y;µ,⌃) denotes the pdf of the Gaussian
n-vector y with expectation n-vector µ and covariance (n⇥n)-matrix ⌃.
Furthermore, �n(A;µ,⌃) denotes the probability of the aforementioned
Gaussian n-vector y to be in A ⇢ Rn. We also use In to denote the
identity (n ⇥ n)-matrix.

Hidden Markov model

Consider the real valued state n-vector rt for discretized times t 2 Tr :
{0, 1, . . . , T, T + 1}. Let r denote {r0, r1, . . . , rT , rT+1} and ri:j denote
{ri, ri+1, . . . , rj}, 8(i, j) 2 T 2

r , i  j. Assume that the temporal m-
vectors of observations dt for t 2 Td : {0, 1, . . . , T} are available, and
define d = {d0,d1, . . . ,dT } and di:j = {di, . . . ,dj} accordingly. The
model specified thereafter defines a hidden Markov (HM) model (Cappé
et al., 2005), as displayed in Figure 1, with conditional independence and
single state dependence.

r0 r1 r2 . . . rT rT+1

d0 d1 d2 . . . dT

Figure 1: Graph of the hidden Markov model

Prior model: The prior model on r consists of an initial distribution and
a forward model,

f(r) = f(r0)f(r1:T+1|r0), (3)

where f(r0) is the pdf of the initial state and f(r1:T+1|r0) defines the
forward model.

3



Introduction

The forward model given the initial state [r1:T+1|r0] is defined as

f(r1:T+1|r0) =
TY

t=0

f(rt+1|rt), (4)

with
[rt+1|rt] = !t(rt, ✏

r
t ) ⇠ f(rt+1|rt), (5)

where !t(·, ·) 2 Rn is the forward function with random n-vector ✏
r
t . This

forward model only involves the variable at the previous time step rt,
hence it defines a first-order Markov chain.
Likelihood model: The likelihood model for [d|r] is defined as conditional
independent with single-site response,

f(d|r) =
TY

t=0

f(dt|rt), (6)

with
[dt|rt] =  t(rt, ✏

d
t ) ⇠ f(dt|rt), (7)

where  t(·, ·) 2 Rm is the likelihood function with random m-vector ✏
d
t .

Posterior model: The posterior model for the HM model in Figure 1 is
also a Markov chain (Cappé et al., 2005; Moja et al., 2018), and is given
by

[r|d] ⇠ f(r|d) =const ⇥ f(d|r)f(r) (8)

=const ⇥ f(d0|r0)f(r0)
TY

t=1

f(dt|rt)f(rt|rt�1)f(rT+1|rT )

=f(r0|d)
TY

t=1

f(rt|rt�1,dt:T )f(rT+1|rT ).

Oftentimes in data assimilation, the quantity of interest does not re-
quire the evaluation of the full posterior model. It might be sufficient to
evaluate the filtering or the smoothing distributions detailed hereafter.
Filtering distribution: The filtering distribution f(rt|d0:t) can be evalu-
ated recursively using:

f(rt|d0:t) =

Z
f(rt, rt�1|d0:t)drt�1 (9)

=const ⇥
Z

f(dt|rt, rt�1,d0:t�1)f(rt, rt�1|d0:t�1)drt�1

=const ⇥
Z

f(dt|rt)f(rt|rt�1)f(rt�1|d0:t�1)drt�1.
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Smoothing distribution: The smoothing distribution is denoted f(rs|d0:t),
t > s. Consider,

f(rs|d0:t) =

Z
f(rs, rs+1|d0:t)drs+1 (10)

=const ⇥
Z

f(rs|rs+1,d0:t)f(rs+1|d0:t)drs+1.

Since

f(rs|rs+1,d0:t) =
f(ds+1:t|rs, rs+1,d0:s)

f(ds+1:t|rs+1,d0:s)
f(rs|rs+1,d0:s) (11)

= f(rs|rs+1,d0:s),

Equation 10 therefore gives,

f(rs|d0:t) =const ⇥
Z

f(rs|rs+1,d0:s)f(rs+1|d0:t)drs+1 (12)

=const ⇥
Z

f(rs+1|rs)f(rs|d0:s)

f(rs+1|d0:s)
f(rs+1|d0:t)drs+1,

the smoothing distribution can thus be recursively evaluated.
The HM model defined in this section gives a very general framework

for the evaluation of the posterior distribution of the quantity of interest.
Its analytical tractability depends however on the assumptions that are
made on the prior and likelihood models. The different models presented
hereafter all use the HM model defined in this section.

Traditional Kalman model

The traditional Kalman model (Kalman, 1960) is defined assuming that
the initial state is distributed according to a Gaussian distribution,

f(r0) = 'n(r0;µ
r
0|·,⌃

r
0|·), (13)

with parametrization ⇥G = (µr
0|·,⌃

r
0|·). It also assumes that the forward

and likelihood models are Gauss-linear:

[rt+1|rt] =!t(rt, ✏
r
t ) = Atrt + ✏

r
t ! 'n(r;Atrt,⌃

r
t ) (14)

[dt|rt] = t(rt, ✏
d
t ) = Htrt + ✏

d
t ! 'm(d;Htrt,⌃

d
t ), (15)
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Introduction

where At is a (n ⇥ n)-matrix and Ht is a (m ⇥ n)-matrix, ✏
r
t is a

centered Gaussian n-vector with covariance (n ⇥ n)-matrix ⌃r
t and ✏

d
t a

centered Gaussian m-vector with covariance (m ⇥ m)-matrix ⌃d
t . Both

✏
r
t and ✏

d
t are assumed to be independent of rt. Under these assumptions,

the posterior model in Equation 8 is Gaussian and analytically tractable.

Kalman filter

Since the prior distribution for the initial state is Gaussian, the filtering
recursion given in Equation 9 can be evaluated using the Kalman Filter
(Kalman, 1960) with the following recursion formulas:

f(rt|d0:t�1) = 'n(rt;µ
r
t|t�1,⌃

r
t|t�1). (16)

Conditioning:

f(rt|d0:t) = 'n(rt;µ
r
t|t,⌃

r
t|t), (17)

with,

µ
r
t|t = µ

r
t|t�1 +⌃r

t|t�1H
T
t (Ht⌃

r
t|t�1H

T
t +⌃d

t )
�1

(dt � Hµ
r
t|t�1) (18)

⌃r
t|t = ⌃r

t|t�1 � ⌃r
t|t�1H

T
t (Ht⌃

r
t|t�1H

T
t +⌃d

t )
�1

Ht⌃
r
t|t�1.

Forwarding:

f(rt+1|d0:t) = 'n(rt+1;µ
r
t+1|t,⌃

r
t+1|t), (19)

with,

µ
r
t+1|t = Atµ

r
t|t (20)

⌃r
t+1|t = At⌃

r
t|tA

T
t +⌃r

t .

The (n ⇥ m)-matrix Kt = ⌃r
t|t�1H

T
t (Ht⌃

r
t|t�1H

T
t +⌃d

t )
�1 is de-

noted the Kalman gain. Equations 16–20 can be used recursively to eval-
uate the parameters of the Gaussian posterior distribution f(rT |d0:T ) =
'n(r;µr

T |T ,⌃
r
T |T ).

Kalman smoother

The smoothing distribution in Equation 12 can be evaluated with the
Kalman smoother (Rauch et al., 1965). Since the prior distribution for

6



the initial state is Gaussian, the joint distribution of [r0,d0] is jointly
Gaussian,

f(r0,d0) = 'n+m

0

@
"
r0

d0

#
;

"
µ
r
0|·

H0µ
r
0|·

#
,

"
⌃r

0|· ⌃r
0|·H

T
0

H0⌃
r
0|· H0⌃

r
0|·H

T
0 +⌃d

0

#1

A .

(21)

Assume [r0:t,d0:t] is jointly Gaussian. Consider [r0:t+1,d0:t], then

f(r0:t+1,d0:t) = f(rt+1|rt)f(r0:t,d0:t), (22)

is the product of a Gauss-linear forward model and a Gaussian distribu-
tion which shows that [r0:t+1,d0:t] is jointly Gaussian. Further, consider
[r0:t+1,d0:t+1], then

f(r0:t+1,d0:t+1) = f(dt+1|rt+1)f(r0:t+1,d0:t), (23)

is the product of a Gauss-linear likelihood model and a Gaussian dis-
tribution which shows that [r0:t+1,d0:t+1] is jointly Gaussian. By re-
cursion, [r0:t,d0:t] is jointly Gaussian for all t. By assembling sequen-
tially the mean and covariance matrix of [r0:T ,d0:T ] during the forward
run, the smoothing distribution f(rs|d0:T ), s < T , can be evaluated by
marginalizing out [r0:s�1, rs+1:T ], and conditioning on d0:T . Conceptu-
ally, this approach is the simplest way to define Kalman smoothing but it
might have a prohibitive storage cost for high-dimensional problems. The
Rauch–Tung–Striebel smoother (Rauch et al., 1965) can achieve more
efficiently the same outcome with a forward and a backward run using
Equation 12.

Kalman filter extensions

The extended Kalman filter (Jazwinski, 1970) is an extension of the
Kalman filter that allows for non-linearity in the forward and likelihood
models with a first-order Taylor expansion. Assume that the forward
model is non linear with additive Gaussian noise,

rt+1 = !t(rt) + ✏
r
t , (24)

the forward model !t is then linearized such that:

!t(rt) = !t(µ
r
t|t) +⌦T (rt � µ

r
t|t) + o(rt � µ

r
t|t), (25)

7



Introduction

where ⌦ = r!t(µr
t|t) thereby approximating,

µ
r
t+1|t ⇡!t(µ

r
t|t) (26)

⌃r
t+1|t ⇡⌦⌃r

t|t⌦
T +⌃r

t .

However evaluating ⌦ at every time steps can prove costly for high-
dimensional problems. In addition, if the forward model is more than
weakly non-linear for the considered time steps, the extended Kalman
filter is likely to behave poorly.

The unscented Kalman filter (Julier and Uhlmann, 1997) offers more
robust performances by considering weighted deterministic particles �

i
t, i =

0, . . . , 2n, distributed along a covariance contour. The weights are de-
noted wi

t, i = 0, . . . , 2n and are assigned to their respective particles such
that,

�
0
t =µ

r
t|t, w0

t = /(n+ ) (27)

�
i
t =µ

r
t|t +

⇣
(+ n)1/2[⌃r

t|t]
1/2
⌘

i
, wi

t = 1/2(n+ )

�
i+n
t =µ

r
t|t �

⇣
(+ n)1/2[⌃r

t|t]
1/2
⌘

i
, wi+n

t = 1/2(n+ ),

where  2 R, i = 1, . . . , n and
⇣
(+ n)1/2[⌃r

t|t]
1/2
⌘

i
is the i-th row of

the square root matrix of (+ n)⌃r
t|t

The particles are then propagated forward in time as:

�
i
t+1 =!t(�

i
t) (28)

�t+1 =
2nX

0

wi
t�

i
t+1.

Then instead of approximating ⌦ to estimate ⌦⌃r
t|t⌦

T as in the extended
Kalman filter, we consider the (n⇥ n)-matrix ⌃�,t+1 which is defined as:

⌃�,t+1 =
2nX

0

wi
t(�

i
t+1 � �t+1)(�

i
t+1 � �t+1)

T
, (29)

thereby giving,

µ
r
t+1|t ⇡�t+1 (30)

⌃r
t+1|t ⇡⌃�,t+1 +⌃r

t .

The unscented Kalman Filter has a comparable cost to the extended
Kalman filter but better estimates the non-linearity in the forward model
(Julier and Uhlmann, 1997).

8



Note that if the likelihood model is non-linear, similar derivations
can be presented for both the extended Kalman filter and the unscented
Kalman filter. An extended Kalman smoother and an unscented Kalman
smoother can also be derived (Yu et al., 2004; Särkkä, 2008).

Selection Kalman model

In the traditional Kalman model, the prior distribution for the initial
state is assumed to be Gaussian. Under this assumption, the posterior
distribution is Gaussian and therefore cannot represent non-Gaussian
features in the quantity of interest. The selection Kalman model defined
hereafter provides a solution to the issue. In the selection Kalman model,
the distribution for the initial state f(r0) is assumed to be in the class of
selection-Gaussian distributions (Arellano-Valle et al., 2006; Omre and
Rimstad, 2021). Consider an auxiliary Gaussian (n+ n)-vector [r̃0,⌫],

"
r̃0

⌫

#
⇠ '2n

0

@
"
r̃0

⌫

#
;

"
µ
r̃
0|·

µ⌫

#
,

"
⌃r̃

0|· ⌃r̃
0|·�

T
⌫|r̃

�⌫|r̃⌃
r̃
0|· ⌃⌫

#1

A , (31)

with expectation n-vectors µ
r̃
0|· and µ⌫ , correlation (n ⇥ n)-matrix �⌫|r̃,

and where ⌃r̃
0|·, ⌃⌫ , and ⌃⌫|r̃ are covariance (n⇥n)-matrices with ⌃⌫ =

�⌫|r̃⌃
r̃
0|·�

T
⌫|r̃+⌃⌫|r̃. Define a selection set A ⇢ Rn of dimension n and let

r0 = [r̃0|⌫ 2 A]; then, r0 is in the class of selection-Gaussian distributions
and its pdf is,

f(r0) =
⇥
�n(A;µ⌫ ,⌃⌫)

⇤�1 (32)
⇥�n(A;µ⌫ + �⌫|r̃(r0 � µ

r̃
0|·),⌃⌫|r̃) ⇥ 'n(r0;µ

r̃
0|·,⌃

r̃
0|·),

and is parametrized with ⇥SG = (µr̃
0|·,µ⌫ ,⌃

r̃
0|·,⌃⌫|r̃,�⌫|r̃, A). Note that

the class of Gaussian distributions constitutes a subset of the class of
selection-Gaussian distributions with �⌫|r̃ = 0 ⇥ In. The dependence
in [r̃,⌫] represented by �⌫|r̃ and the selection subset A are crucial user-
defined parameters. The selection-Gaussian model may represent multi-
modal, skewed, and/or peaked marginal distributions (Omre and Rim-
stad, 2021) as shown in Figure 2. As the traditional Kalman model,
the selection Kalman model also assumes the forward and likelihood
models to be Gauss-linear, see Equation 14. Under these assumptions,
the posterior model in Equation 8 is selection-Gaussian and analytically
tractable (Omre and Rimstad, 2021) for two reasons. First, the class
of selection-Gaussian distributions is closed under Gauss-linear transfor-
mations and second, the selection-Gaussian distribution is a conjugate

9



Introduction

(A) (B)

(C) (D)

Figure 2: Realizations of 1D selection-Gaussian pdfs (histogram) with
varying selection sets A ⇢ Rn (solid gray bars) for a bi-Gaussian pdf
[r̃, ⌫] (dark gray)

prior to Gauss-linear likelihood models. The selection Kalman model can
therefore represent non-Gaussian features in the posterior distribution of
the quantity of interest.

Selection Kalman Filter

The selection Kalman filter evaluates the filtering distribution f(r̃T |⌫ 2
A,d0:T ). The posterior distribution given by the selection Kalman filter
is calculated by first defining a Gaussian augmented state 2n-vector ut =
[r̃t,⌫]. The forward model in Equation 14 is then adjusted to account
for the augmented state vector,

[ut+1|ut] =

"
At 0
0 In

#
ut +

"
✏
r
t

0

#
, (33)

and so is the likelihood model in Equation 15,

[dt|ut] =

"
H 0
0 0

#
ut +

"
✏
d
t

0

#
. (34)

10



These forward and likelihood models are Gauss-linear, and the recursion
for the augmented state vector is,

f(ut+1|d0:t) =

Z
f(ut+1|ut)[f(dt|d0:t�1)]

�1
f(dt|ut)f(ut|d0:t�1)dut.

(35)
This recursion is identical to Equation 9, and hence it can be evaluated
using the Kalman filter recursions in Equations 16–20. The filtering
distribution,

f(uT |d0:T ) = '2n(u;µ
u
T |T ,⌃

u
T |T ), (36)

yielded by the Kalman filter recursions is a Gaussian 2n-vector with
mean 2n-vector µ

u
T |T and covariance (2n⇥ 2n)-matrix ⌃u

T |T representing
f(r̃T ,⌫|d0:T ) . The posterior distribution f(r̃T |⌫ 2 A,d0:T ) is then
assessed using Markov chain Monte Carlo (McMC) simulation (Omre
and Rimstad, 2021).

Selection Kalman Smoother

The selection Kalman smoother aims to evaluate [rs|⌫ 2 A,d0:T ],s < T .
As in the selection Kalman filter, we consider the augmented forward
and likelihood models presented in Equations 33 and 34, respectively.
Similarly to the Kalman smoother, one can show that [r0:t,⌫,d0:t] is
jointly Gaussian for all t. The smoothing distribution f(rs|⌫ 2 A,d0:T ),
s < T , is obtained by marginalizing out [r0:s�1, rs+1:T ], and conditioning
on d0:T and then on ⌫ 2 A using McMC simulations as in the selection
Kalman filter.

Non-linear models: Ensemble methods

When the forward and/or likelihood models are nonlinear, Equations 5
and 7 cannot be written in closed form. The analytical tractability of the
posterior model in Equation 8 is lost and the traditional Kalman model
cannot be used. When that is the case, ensemble methods are a popular
alternative to the extended Kalman filter in the field of data assimilation.
A collection of realizations, called an ensemble, are generated from the
initial distribution. The distribution from which the initial ensemble is
simulated is not limited to Gaussian distributions, it is therefore possible
to represent non-Gaussian features in the prior. Each data assimilation
cycle consists of two steps, conditioning and forwarding, represented by
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the following recursions,

f(rt|d0:t) =[f(dt|d0:t�1)]
�1

f(dt|rt)f(rt|d0:t�1) (37)

f(rt+1|d0:t) =

Z
f(rt+1|rt)f(rt|d0:t)drt,

that in general are not analytically tractable. The ensemble members
are propagated from one time step to the next by the forward model.
When conditioning on the data, ensemble methods circumvent the need
to evaluate the sensitivity matrix ⌦ at each assimilation, contrary to the
extended Kalman filter. The added cost of having to run the forward
model for each ensemble member is mitigated by the fact that these
forward runs can be easily parallelized.

Particle Filter

Particle filters (Gordon et al., 1993; Doucet et al., 2001) are a class of
Monte Carlo methods for filtering that represent the filtering distribution
as a weighted ensemble. The particle filter starts with an initial ensemble
of size np, where all ensemble members r

i
0, i = 1, . . . , np, are generated

from the initial distribution f(r0) and assigned the same weight w
i
0 =

1/np, i = 1, . . . , np. During the conditioning step, the particle filter
updates the weights according to:

w
i
t =

w
i
t�1f(dt|ri

t)Pnp

k=1w
k
t�1f(dt|rk

t )
, i = 1, . . . , np. (38)

During the forwarding step, the particles are propagated in time according
to,

r
i
t+1 = !t(r

i
t, ✏

r
t ), i = 1, . . . , np. (39)

Asymptotically, the posterior ensemble {r
i
T , w

i
T , i = 1, . . . , np} weakly

represents the filtering distribution in the sense that,

E(g(rT )) =

Z
g(rT )f(rT |d0:T )drT (40)

= lim
np!1

npX

i=1

Z
g(rT )w

i
t�(r

i
T � rT )drT

=
1X

i=1

w
i
tg(r

i
T ),

where � denotes the Dirac pdf. The use of particle filter is limited by one
major issue : as data is assimilated, the weight is distributed among fewer
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and fewer particles. This eventually leads to almost all the weight being
concentrated on only one particle. This collapse is even more acute in
high-dimensional problems. It possible to somewhat mitigate this effect
by reducing the variance of the weights using resampling (Doucet et al.,
2001; van Leeuwen, 2009).

Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) (Evensen, 1994) is another Monte-
Carlo method that bears some similarity with the particle filter. The
EnKF also generates an ensemble from the initial distribution f(r0)

denoted e0 = {r
u(i)
0 , i = 1, . . . , ne}, where ne is the ensemble size. Note

that no weights are assigned to the ensemble members. At time t, the
ensemble e

r
t = {r

u(i)
t , i = 1, . . . , ne} is assumed to represent f(rt|d0:t�1).

The conditioning step is initiated by generating pseudo observations
using the likelihood model d

(i)
t =  t(r

u(i)
t , ✏

d
t ), i = 1, . . . , ne, and defining

et = {(ru(i)
t ,d

(i)
t ), i = 1, . . . , ne}. The conditioning step is given by,

Assess ⌃rd from et ! ⌃̂rd ! K̂t = �̂rd[⌃̂d]
�1 (41)

r
c(i)
t = r

u(i)
t + K̂t(dt � d

(i)
t ), i = 1, . . . , ne.

The ensemble {r
c(i)
t , i = 1, . . . , ne} is assumed to represent f(rt|d0:t).

The Kalman gain Kt is inferred by calculating the sample covariance
matrix of the ensemble et. The forwarding step is given by,

r
u(i)
t+1 = !t(r

c(i)
t , ✏

r
t ), i = 1, . . . , ne, (42)

and the ensemble e
r
t+1 = {r

u(i)
t+1 , i = 1, . . . , ne} represents f(rt+1|d0:t).

Note that if the initial distribution is Gaussian and the forward and
likelihood models are Gauss-linear, the posterior distribution given by
the EnKF is asymptotically correct as ne ! 1. The EnKF is also subject
to ensemble collapse (Sætrom and Omre, 2013) in part because of the
coupling between ensemble members introduced by the conditioning in
which the same estimated Kalman gain is used to update all the ensemble
members.

Even though the analytical properties of the particle filter may appear
superior to that of the EnKF, the latter is preferable to the former in
high dimensional models (Li et al., 2016; Katzfuss et al., 2020).

Ensemble Kalman smoother

The ensemble Kalman smoother (EnKS) (Evensen and van Leeuwen,
2000) evaluates the smoothing distribution f(rs|d0:T ), s < T . Consider
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the interpolation pdf f(r0:T |d0:T ) with corresponding HM model recur-
sions (Cappé et al., 2005). The recursion is initiated by

[r0|d0] ⇠ f(r0|d0) = [f(d0)]
�1

f(d0|r0)f(r0). (43)

Then, for t = 1, . . . , T ,

[r0:t|d0:t] ⇠f(r0:t|d0:t) (44)
=[f(dt|d0:t�1)]

�1
f(dt|rt)f(rt|rt�1)f(r0:t�1|d0:t�1).

The EnKS is implemented in practice in a similar manner to the EnKF,
with a conditioning and a forwarding step. The main difference is that
at a given time t, the state vector includes the ensemble representation
of all the states up to time t. At time t, the ensemble e

r
t = {r

u(i)
0:t =

(ru(i)
0 , . . . , r

u(i)
t ), i = 1, . . . , ne} represents f(r0:t|d0:t�1). As in the EnKF,

the conditioning step is initiated by generating pseudo observations using
the likelihood model d

(i)
t =  t(r

u(i)
t , ✏

d
t ), i = 1, . . . , ne, and defining et =

{(ru(i)
0:t ,d

(i)
t ), i = 1, . . . , ne}. The conditioning step is then given by

r
c(i)
0:t = r

u(i)
0:t + �̂r0:tdt⌃̂

�1
d (dt � d

i
t), i = 1, . . . , ne, (45)

where then ensemble {r
c(i)
0:t , i = 1, . . . , ne} represents f(r0:t|d0:t) and

where �̂r0:tdt and ⌃̂d are inferred by calculating the sample covariance
matrix of the ensemble et. The forward step is given by,

r
u(i)
0:t+1 = [rc(i)

0:t ,!t(r
c(i)
t , ✏

r
t )], i = 1, . . . , ne, (46)

where then ensemble e
r
t+1 = {r

u(i)
0:t+1, i = 1, . . . , ne} represents f(r0:t+1|d0:t).

Note that the size of the state-space vector increases at every time step.
The target smoothing distribution f(rs|d0:T ), s < T , can be assessed by
extracting the relevant ensemble from {r

c(i)
0:T , i = 1, . . . , ne}.

Improving the EnKF

In this section we propose a solution to four of the major shortcomings
of the EnKF:

1. Localization: Against estimation uncertainty in the covariance ma-
trix estimate

2. Inflation: Against systematic underestimation of the uncertainty
in the posterior ensemble

14



3. Iterative methods: Improve data match when the non-linearity is
too dominant

4. Selection Ensemble Kalman Filter: Mitigates drift towards Gaus-
sianity

Localization

The conditioning step in the EnKF is based on the estimation of ⌃rd

from which we calculate the estimated Kalman gain K̂t = �̂rd[⌃̂d]
�1.

The ensemble size is commonly of the order of 102, while the dimension
of the state vector is in many applications of the order of 103 � 105.
Estimating Kt therefore leads to estimation uncertainty, whereby causing
unwarranted reduction in variance away from where the data is collected.
When the dimension of the data is small, for instance oil production
rate measured at a few wells, the estimation uncertainty will mostly
affect the estimate of �rd. However, when the dimension of the data is
large, for instance when assimilating seismic amplitudes, the estimation
uncertainty will affect the estimates of both �rd and ⌃d. Either way,
there are not enough ensemble members to accurately estimate Kt. To
remedy the issue, covariance localization is used to ensure that physically
distant points are uncorrelated. To that end, we define a damping (n+
m)⇥ (n+m)-matrix ⇥ that we multiply element-wise with the estimate
of ⌃rd from the ensemble ⌃̂rd,

⌃̃rd = ⇥ � ⌃̂rd, (47)

where � is the element-wise matrix product. The piecewise rational func-
tion presented in Gaspari and Cohn (1999) is often used to define ⇥.
Note that because the size of the ensemble is usually smaller than the
dimension of the state vector, the estimate of ⌃rd is rank deficient. Using
localization will helped improve the rank of ⌃̂rd.

Example: The example depicted in Figure 3 is adapted from Paper III.
The ensemble (size 100) representing the porosity field (size 4096) is
conditioned on the bottom hole pressure and the oil production rate
collected at the data collection points. The figure shows that localization
helps conserve variability away from where the data was collected when
the ensemble size is much smaller than the dimension of the grid size.

Inflation

In the conditioning step of the EnKF, see Equation 41, the Kalman gain
Kt is estimated using the ensemble which introduces coupling between
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Posterior ensemble (loc)
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Posterior ensemble (no loc)
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Figure 3: Marginal Variance: prior ensemble (left), the black dots denote
the data collection points, marginal variance of the posterior ensemble
with localization (center), posterior ensemble without localization (right)

ensemble members (Sætrom and Omre, 2013). This in turn leads to an
underestimation of the posterior marginal variances. Ensemble inflation
(Anderson and Anderson, 1999) is a pragmatic approach that addresses
the consequence of the problem (underestimated variance) rather than
its cause (coupled ensemble members) by increasing the spread of the
ensemble prior to conditioning without altering the correlation between
ensemble members. The inflated ensemble is given by,

r
u(i)
I = ↵⇥ (ru(i) � r̄

u) + r̄
u
, i = 1, . . . , ne, (48)

where r̄
u is the ensemble mean and ↵ � 1 is the inflation factor.

Example: The example depicted in Figure 4 is taken from the Report.
The ensemble representing the log-conductivity field is conditioned on
drawdown measurements from real pumping test data. The updated
ensemble members are used to simulate drawdown observations that
are then compared to the actual drawdown measurements. Without
inflation, the predicted drawdowns fail to cover the measured data, while
with inflation, the predicted drawdowns cover the measured data more
convincingly. However, one must be careful not to read too much into
the uncertainty quantification in the posterior ensemble as it has been
arbitrarily altered.

In our experience, results obtained with inflation have often been
underwhelming and hard to interpret, while localization appeared to be
more robust and often made resorting to inflation unnecessary.

Iterative methods

When the non-linearity in the forward and/or likelihood models becomes
too dominant for the EnKF to accommodate, matching the observed
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Figure 4: Data match using the EnKF (left) and the EnKF with inflation
(right). The red markers represent the measured data, the black line
the mean prediction, the dark gray area represents the 70% confidence
interval, the light gray area represents the 90% confidence interval

data becomes difficult. Indeed, the conditioning step of the EnKF is
an approximation whose validity is challenged when the forward and
likelihood models deviate too far from Gauss-linearity.

Iterative EnKF Because the conditioning step can be seen as the first
step in a Gauss-Newton algorithm, it is intuitive to replace the condi-
tioning step by an iterative method such as Gauss-Newton or Levenberg-
Marquardt. Assume the likelihood model is defined with additive Gaus-
sian error term, [dt|rt] =  t(rt) + ✏

d
t , with m-vector ✏

d
t being centred

Gaussian with covariance matrix ⌃d
t , the conditioning step of the iter-

ative EnKF (IEnKF) (Gu and Oliver, 2007; Sakov et al., 2012) is then
given by,

r
c(i)
t = argmaxr{(r

u(i)
t � r)T

h
⌃̂r

i�1
(ru(i)

t � r) + . . . (49)

( t(r) + ✏
d
t � dt)

T
h
⌃d

t

i�1
( t(r) + ✏

d
t � dt)}, i = 1, . . . , ne,

where ⌃̂r is inferred by calculating the sample covariance matrix of the
ensemble e

r
t = {r

u(i)
t , i = 1, . . . , ne} and where the gradients used for

the maximization are either calculated by solving the adjoint problem or
estimated using the ensemble.
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Multiple data assimilation The idea behind multiple data assimila-
tion (MDA) (Emerick and Reynolds, 2012, 2013) is to split the condi-
tioning step in several smaller substeps to mitigate the non-linearity and
retrieve a better data match. Assume the likelihood model is defined
with additive Gaussian error term, [dt|rt] =  t(rt) + ✏

d
t , with m-vector

✏
d
t being centred Gaussian with covariance matrix ⌃d

t . This likelihood
model can therefore be decomposed as,

f(dt|rt)) =
LY

i=1

[(f(dt|rt))]
wi (50)

/
LY

i=1

exp

 
�1

2
(dt �  t(rt))

T


1

wi
⌃d

t

��1

(dt �  t(r
u
t ))

!
,

with positive decomposition factors w : {wi, i = 1, . . . , L} such thatPL
i=1wi = 1. Equation 50 gives the blueprint for the MDA EnKF

algorithm - the conditioning step is repeated L times using the following
likelihood model:

[dt|rt] =  t(rt) +
1

p
wi

✏
d
t , i = 1, . . . , L. (51)

Because the measurement error of each sub-likelihood model is larger
than in the actual likelihood model, each sub-steps results in a smaller
update.

Example: The example depicted in Figure 5 is taken from the Report
and shows the effect of iterative methods on data match. The ensemble
representing the log-conductivity field is conditioned on drawdown mea-
surements from real pumping test data. The updated ensemble members
are used to simulate drawdown observations that are then compared to
the actual drawdown measurements. Data match for the EnKF is poor
while it is satisfactory for the IEnKF and the MDA EnKF. The spread
obtained using the MDA EnKF is larger than the IEnKF because the
MDA EnKF increases the measurement error variance to account for the
repeated conditioning steps within each data assimilation cycle, while
the IEnKF does not.

Selection EnKF

The selection EnKF (SEnKF) extends the selection Kalman Filter to
non-linear forward and likelihood models. The goal of the SEnKF is to
allow for multimodality in the posterior ensemble, which is difficult to
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Figure 5: Data match using the EnKF (left), MDA EnKF (center) and
IEnKF (right). The red dots represent the measured data, the black line
the mean prediction, the dark gray area represents the 70% confidence
interval, the light gray area represents the 90% confidence interval

achieve in the EnKF: when specifying a non-Gaussian prior distribution,
the successive conditioning steps render the posterior ensemble Gaussian-
like.

Let the initial distribution f(r0) be a selection-Gaussian. We take
advantage of the structure of the selection-Gaussian distribution and
consider the augmented state vector [r̃0,⌫] which is jointly Gaussian.
Conditioning on ⌫ 2 A is then done after conditioning the augmented
state vector on the data, therefore allowing for multimodality in the pos-
terior ensemble. We further define the appropriate forward and likelihood
models for the augmented state vector. The forward model is given by

"
r̃t+1

⌫t+1

�����
r̃t

⌫t

#
=

"
!t(r̃t, ✏

r
t )

⌫t

#
, (52)

while the likelihood model is given by
"
dt

�����
r̃t

⌫t

#
=  t(r̃t, ✏

d
t ). (53)

The SEnKF is a two step algorithm. The first step is to run the
EnKF: the initial ensemble e0 of contains realizations from the aug-
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mented state vector [r̃0,⌫] that is jointly Gaussian, the forward and like-
lihood model are defined by Equations 52 and 53, the posterior ensemble
eT = {(r̃u(i)

T ,⌫
u(i)
T ), i = 1, . . . , ne} therefore represents f(r̃T ,⌫T |d0:T ).

The second step of the SEnKF is to use MCMC to assess f(rT |d0:T ) =
f(r̃T |⌫ 2 A,d0:T ): the posterior ensemble is assumed to be jointly Gaus-
sian '2n((r̃,⌫); µ̂r̃⌫ , ⌃̂r̃⌫) with expectation vector µr̃⌫ and covariance
matrix ⌃r̃⌫ estimated from eT , f(rT |d0:T ) = f(r̃T |⌫ 2 A,d0:T ) is there-
fore selection-Gaussian and estimated using the Metropolis-Hastings al-
gorithm detailed in Omre and Rimstad (2021). A selection ensemble
Kalman smoother (SEnKS) and selection ensemble smoother (S-ES) can
be defined similarly. The SEnKS is a straightforward extension of the
EnKS using the same augmented state vector, forward and likelihood
models as the SEnKF.
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Figure 6: Example of a marginal distribution of the SEnKS (left) and
EnKS (right)

Example: The example depicted in Figure 6 is taken from Paper II. It
show the posterior marginal distribution of the initial temperature field
at a given location overlain with the prior marginal distribution at the
same location. It illustrates the SEnKS’s ability to conserve bimodality
in the posterior ensemble.
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Summary of the papers

The objective of this thesis work is to develop a new methodology for
sequential data assimilation that can represent multimodality in the pos-
terior distribution. In Paper I, the methodology is defined for linear prob-
lems and Paper II extends it non-linear problems. Case studies based on
the advection-diffusion equation and the diffusion equation, respectively,
illustrate the approach. The methodology is then tested on subsurface
modeling problems where the quantities of interest often display multi-
modal spatial histograms. In Paper III, we apply the methodology to
reservoir modeling and the assimilation of seismic and production data.
The goal is to estimate porosity and water saturation. In the Report, we
consider groundwater flow and the assimilation of real pumping test data
with the purpose of estimating hydraulic conductivity. A large variety of
EnKF algorithms are presented, evaluated and compared.

Paper 1: Spatio-temporal Inversion using the Selection Kalman
Model
Maxime Conjard and Henning Omre
Published in Frontiers in Applied Mathematics and Statistics

Abstract: Data assimilation in models representing spatio-temporal phe-
nomena poses a challenge, particularly if the spatial histogram of the
variable appears with multiple modes. The traditional Kalman model is
based on a Gaussian initial distribution and Gauss-linear forward and
observation models. This model is contained in the class of Gaussian dis-
tribution and is therefore analytically tractable. It is however unsuitable
for representing multimodality. We define the selection Kalman model
that is based on a selection-Gaussian initial distribution and Gauss-linear
forward and observation models. The selection-Gaussian distribution can
be seen as a generalization of the Gaussian distribution and may rep-
resent multimodality, skewness and peakedness. This selection Kalman
model is contained in the class of selection-Gaussian distributions and
therefore it is analytically tractable. An efficient recursive algorithm for
assessing the selection Kalman model is specified. The synthetic case
study of spatio-temporal inversion of an initial state, inspired by pollution
monitoring, suggests that the use of the selection Kalman model offers sig-
nificant improvements compared to the traditional Kalman model when
reconstructing discontinuous initial states.
Major contribution: In this paper, we define the selection Kalman model
for sequential data assimilation of linear problems. The selection Kalman
model is a generalization of the traditional Kalman model. In the tradi-

21



Introduction

tional Kalman model, the posterior distribution is Gaussian while in the
selection Kalman model, the posterior distribution is selection-Gaussian
thereby allowing for multimodality to be represented in the posterior
distribution. The results from the synthetic case study based on the
advection-diffusion equation illustrate the benefits of using the selection
Kalman model when reconstructing an initial temperature field that dis-
plays a bimodal spatial histogram.

Paper 2: Data Assimilation in Spatio-Temporal Models
with Non-Gaussian Initial States: The Selection Ensemble
Kalman Model
Maxime Conjard and Henning Omre
Published in Applied Sciences

Abstract: Assimilation of spatio-temporal data poses a challenge when
allowing non-Gaussian features in the prior distribution. It becomes even
more complex with nonlinear forward and likelihood models. The en-
semble Kalman model and its many variants have proven resilient when
handling nonlinearity. However, owing to the linearized updates, conserv-
ing the non-Gaussian features in the posterior distribution remains an
issue. When the prior model is chosen in the class of selection-Gaussian
distributions, the selection Ensemble Kalman model provides an approach
that conserves non-Gaussianity in the posterior distribution. The syn-
thetic case study features the prediction of a parameter field and the
inversion of an initial state for the diffusion equation. By using the se-
lection Kalman model, it is possible to represent multimodality in the
posterior model while offering a 20 to 30% reduction in root mean square
error relative to the traditional ensemble Kalman model.
Major contribution: In this paper, we extend the selection Kalman model
to sequential data assimilation of non-linear problems by defining the selec-
tion ensemble Kalman filter and the selection ensemble Kalman smoother.
In the traditional ensemble Kalman filter/smoother, the ensemble drifts
towards Gaussianity as data are assimilated. In the selection ensem-
ble Kalman filter/smoother, the posterior distribution is assumed to be
selection-Gaussian therefore allowing for multimodality to be represented
in the posterior distribution. The case studies based on the diffusion
equation, similar to the one in Paper I, show that the selection ensem-
ble Kalman filter/smoother can improve the estimation of quantities of
interest that display bimodal spatial histograms.
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Paper 3: Ensemble-based seismic and production data as-
similation using the selection Kalman model
Maxime Conjard and Dario Grana
Accepted for publication in Mathematical Geosciences

Abstract: Data assimilation in reservoir modeling often involves model
variables that are multimodal, such as porosity and permeability. Well
established data assimilation methods such as ensemble Kalman filter
and ensemble smoother approaches, are based on Gaussian assumptions
that are not applicable to multimodal random variables. The selection
ensemble smoother is introduced as an alternative to traditional ensemble
methods. In the proposed method, the prior distribution of the model vari-
ables, for example the porosity field, is a selection-Gaussian distribution,
which allows to model the multimodal behavior of the posterior ensemble.
The proposed approach is applied on a two-dimensional synthetic chan-
nelized reservoir for validation. In the application, the unknown reservoir
model of porosity and permeability is estimated from the measured data.
Seismic and production data are assumed to be repeatedly measured in
time and the reservoir model is updated every time new data are assim-
ilated. The example shows that the selection ensemble Kalman model
improves the characterisation of the bimodality of the model parameters
compared to the results of the ensemble smoother.
Major contribution: In this paper, we define the selection ensemble smoother
based on the selection Kalman model. The selection ensemble smoother
is used to assimilate seismic and production data from a synthetic reser-
voir model. The data is assimilated in one step contrary to the selection
ensemble Kalman smoother in which data is assimilated sequentially. The
results from this realistic case study shows that the selection ensemble
smoother provides a credible alternative to the ensemble smoother when
the quantities of interest display bimodal spatial histograms.

Report: Ensemble methods applied to groundwater flow
Maxime Conjard, Emilio Sanchéz-Léon, Olaf Cirpka and Henning Omre
Technical Report

Abstract: Assimilation of spatio-temporal data is challenging especially
when parameters are suspected to display a non-Gaussian spatial his-
togram. When that is the case, the selection ensemble Kalman filter has
been shown to produce encouraging results on synthetic tests cases, the
goal is therefore to situate its performance on a real data application
when compared to established methods. To that end, we first present a
review of existing ensemble Kalman filtering methods. We then present a
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synthetic and real data study where hydraulic conductivity is estimated
using pumping test data. The synthetic study confirms the suitability of
the selection ensemble Kalman filter when the conductivity field displays
a bimodal spatial histogram. The real data study shows that the selection
ensemble Kalman filter provides robust results, but its relevance is ques-
tioned when considering the added cost and the comparively good results
provided by the ensemble Kalman filter with multiple data assimilation.
Major contribution: This report determines the applicability of the se-
lection Kalman model to real data experiments in which the quantity
of interest displays a bimodal spatial histogram. A review of various
versions of the EnKF algorithm is presented and their respective perfor-
mances are discussed on a real data case study. The latter shows that
the SEnKF provides robust results when compared to other established
methods such as the IEnKF and the EnKF MDA.

Synthesis

The objective of this thesis work is to develop a methodology for spatio-
temporal data assimilation when the variables of interest display multi-
modal spatial histograms. Data assimilation is cast in a Bayesian set-
ting, and we specify a hidden Markov model. We define the selection
Kalman model in which the initial distribution is selection-Gaussian. The
selection-Gaussian distribution can represent multimodality, skewness
and heavytailedness.

For Gauss-linear models, the selection Kalman model is a generaliza-
tion of the traditional Kalman model (Paper I). The posterior distribution
is selection-Gaussian and analytically tractable.

For non-linear models, analytical tractability is lost. We extend the
use of the selection Kalman model to ensemble methods by defining the
selection ensemble Kalman filter (Paper II, Report), the selection ensem-
ble Kalman smoother (Paper II) and the selection smoother (Paper III).
These three algorithms mitigate the regression towards the mean that oc-
curs in traditional ensemble methods, thereby allowing for multimodality
to be represented in the posterior distribution.

Synthetic (Paper I, II, III, Report) and real data (Report) case studies
show that the selection Kalman model provides robust results that can
improve the estimation of quantities of interest that display multimodal
spatial histograms for Gauss-linear and non-linear models.

Further research should consider high-dimensional problems and focus
on improving the McMC sampling to accomodate larger grid size. A
comparative study comparing the merits of the selection Kalman model
to that of Gaussian mixture models would also be of interest.
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Data assimilation in models representing spatio-temporal phenomena poses a
challenge, particularly if the spatial histogram of the variable appears with multiple
modes. The traditional Kalman model is based on a Gaussian initial distribution and
Gauss-linear forward and observation models. This model is contained in the class of
Gaussian distribution and is therefore analytically tractable. It is however unsuitable
for representing multimodality. We define the selection Kalman model that is based on
a selection-Gaussian initial distribution and Gauss-linear forward and observation
models. The selection-Gaussian distribution can be seen as a generalization of the
Gaussian distribution and may represent multimodality, skewness and peakedness.
This selection Kalman model is contained in the class of selection-Gaussian
distributions and therefore it is analytically tractable. An efficient recursive
algorithm for assessing the selection Kalman model is specified. The synthetic
case study of spatio-temporal inversion of an initial state, inspired by pollution
monitoring, suggests that the use of the selection Kalman model offers significant
improvements compared to the traditional Kalman model when reconstructing
discontinuous initial states.

Keywords: inverse problem, spatio-temporal variables, Kalman model, multimodality, data assimilation

1 INTRODUCTION

Data assimilation in models representing spatio-temporal phenomena is challenging. Most statistical
spatio-temporal models are based on assumptions of temporal stationarity, possibly with a
parametric, seasonal trend model [1]. We consider spatio-temporal phenomena where the
dynamic spatial variables evolve according to a set of differential equations. Such phenomena
will, in statistics, normally be modeled as hidden Markov models [2]. The celebrated Kalman model
[3] is one of the most frequently used hidden Markov models.

In studies of hidden Markov models, it is natural to distinguish between filtering and smoothing
[2]. Filtering entails predicting the spatial variable at a given time with observations up to that point
in time. Smoothing entails predicting the spatial variable given observations both at previous and
later times. Filtering is naturally based on recursive temporal updating while smoothing appears as
more complicated since updating must also be made backwards in time. We focus on a particular
smoothing challenge, namely to assess the initial state given observations at later times and we denote
the task spatio-temporal inversion.

Spatio-temporal inversion is of interest in many applications. In petroleum engineering, initial
water saturation is often unknown. Ensemble smoothing techniques [4–6] are commonly used to
evaluate this parameter and improve fluid flow prediction. In air pollution monitoring [7], inverse
trajectory methods are used to identify potential source contribution. Source mapping of wildfire
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origin from airborne smoke observations is a spectacular example
[8]. Evaluation of groundwater pollution mostly focuses on the
future pollution of the pollutant, but as emphasized in [9], the
identification of the heterogeneous source may be complicated.

We study a continuous spatial variable, a random field (RF),
with temporal behavior governed by a set of differential
equations. The spatio-temporal variable is discretized in space
and time, and the hidden Markov model is cast in a Bayesian
framework. The prior model consists of an initial spatial model
and a forward spatio-temporal model, representing the evolution
of the spatio-temporal phenomenon. The likelihood model
represents the observation acquisition procedure. The
corresponding posterior model, fully defined by the prior and
likelihood models, represents the spatio-temporal phenomenon
given the available observations. The traditional Kalman model
constitutes a very particular hidden Markov model [3] with a
Gaussian initial model and a linear forward function with
Gaussian error term (Gauss-linear) forward model, and a
Gauss-linear likelihood model. Since the class of Gaussian
models is closed under linear operations, the posterior
distribution is also Gaussian in the Kalman model, and the
posterior model parameters are analytically tractable. Based on
this posterior Gaussian model, both filtering and smoothing can
easily be performed. In particular, the spatio-temporal inversion
can be obtained by integrating out the spatial variables at all time
points except the initial one, which is a simple task in Gaussian
models. Most spatio-temporal models used in statistical studies
are defined in the traditional Kalman model framework [10, 11].
Moreover, most of these models are based on spatial stationarity
and consider filtering. Their focus is primarily on computational
efficiency, not on model flexibility.

The fundamental Gauss-linear assumptions of the traditional
Kalman model are often not suitable in real studies. The initial
spatial variable may appear as non-Gaussian and/or the forward
and/or the likelihood functions are non-linear. In the control
theory community, linearizations such as the extended Kalman
filter [12] or quantile-based representation such as the unscented
Kalman filter [13] are recommended in these cases. These
approaches are suitable for models with mild deviations from
Gauss-linearity. Statisticians will more naturally use various
Monte-Carlo based approaches such as the particle filter [2] or
the ensemble Kalman Filter (EnKF) [14]. The particle filter is a
sequential Monte Carlo algorithm with data assimilation made by
reweighting the particles. To avoid singular solutions, resampling
is usually required during the assimilation. The need for
resampling makes the definition of an efficient corresponding
particle smoother difficult. The EnKF is also a sequential Monte
Carlo algorithm with data assimilation based on linear updates of
each ensemble member. The sequential linear updates cause the
ensemble distribution to drift toward Gaussianity. A
corresponding ensemble smoother [15] is available but the
ensemble drift toward Gaussianity makes it difficult to
preserve non-Gaussianity in the posterior distribution. The
discrete representation of the spatial variable makes the spatio-
temporal model high-dimensional, and according to [16, 17], the
EnKF is preferable to the particle filter in high dimensional
models. Lastly, brute force Markov chain Monte Carlo

(McMC) [18] algorithms may be used for spatio-temporal
inversion, but the increasing coupling of the temporal
observations makes these algorithms inefficient. Focus in our
study is on the spatial initial state of the spatio-temporal
phenomenon, and we aim at reproducing clearly non-
Gaussian marginal features, such as multi-modality, skewness
and peakedness. Several models with such features are presented
in the literature.

In [19], a hidden Markov model with a skew-Gaussian initial
model is defined, and for Gauss-linear forward and likelihood
models, it is demonstrated that the filtering is analytically
tractable. The skew-Gaussian model is based on a selection
concept, and the current spatio-temporal model will later be
defined along these lines.

In [16, 20–24], the initial model in the hidden Markov model
is defined to be a Gaussian mixture model representing
multimodality. These studies all consider filtering problems
and the filter algorithms are based on a combination of
clustering/particle filter and Kalman filter/EnKF. The Gaussian
mixture model contains a latent categorical mode indicator,
which in a spatial setting must have spatial coupling, for
example in the form of a Markov RF [25]. Data assimilation
in such categorical Markov RFs, either by particle filter or EnKF,
appears as very complicated [23, 24], particularly in a smoothing
setting.

The spatio-temporal case we consider in the current study has
a non-Gaussian spatial initial model, while both the forward and
likelihood models are Gauss-linear. We study this special case
since it has a particularly elegant analytical solution. Further, we
study spatio-temporal inversion, which entails smoothing to
assess the initial spatial variable given observations up to
current time, as it constitutes a particularly challenging
problem. To our knowledge, no reliable methodology exists for
solving such a spatio-temporal inverse problem.

In the hidden Markov model considered in this study, the
initial spatial model is assigned a selection-Gaussian RF [26],
which may capture multi-modality, skewness and/or peakedness
in the spatial histogram of the initial spatial variable. Recall that
the forward and likelihood models are assumed to be Gauss-
linear. Since the class of selection-Gaussian models is closed
under linear operations [26] the posterior model will also be
selection-Gaussian. The posterior model parameters are then
analytically tractable. A general algorithm for assessing this
posterior selection-Gaussian model is defined. Based on this
posterior model, both smoothing and filtering can be
performed. We denote this special hidden Markov model the
selection Kalmanmodel. The class of Gaussian models is a central
member in the class of selection-Gaussian models [26], hence one
may consider the selection Kalman model to be a generalization
of the Kalmanmodel. We develop the results presented above and
demonstrate the use of the selection Kalman model on a synthetic
case study of spatio-temporal inversion. This entails assessing the
initial spatial variable in a dynamic model based on a limited set
of observations.

The characteristics of the class of selection-Gaussian models
are central in the development of the selection Kalman model
properties. These characteristics are thoroughly discussed in [26],
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which is inspired by the results presented in [27, 28]. In these papers,
the general concept of the selection-Gaussian pdf is defined in a
probabilistic setting. In [19], the one-sided selection concept is used
to define a skew Kalman filter in a non-spatial setting.

In this paper y ∼ f (y) denotes a random variable y distributed
according to the probability density function (pdf) f (y), or
alternatively according to the corresponding cumulative
distribution function (cdf) F(y). Moreover, φn(y; μ,Σ) denotes
the pdf of the Gaussian n-vector y with expectation n-vector μ
and covariance (n × n)-matrix Σ. FurtherΦn(A; μ,Σ) denotes the
probability of the aforementioned Gaussian n-vector y to be in
A ⊂ Rn. We also use in to denote the all-ones n-vector and In to
denote the identity (n × n)-matrix.

In Section 2, the problem is set. In Section 3, the traditional
Kalman model is cast in a Bayesian hidden Markov model
framework. The generalization to the selection Kalman model is
then defined, and the analytical tractability is investigated. Further a
general recursive algorithm for assessing the posterior distribution is
specified. In Section 3, a synthetic case study of the advection-
diffusion equation is discussed to showcase the ability of the selection
Kalman model to solve the spatio-temporal inversion problem. The
goal is to reconstruct the initial state. Results from the selection
Kalman model and the traditional Kalman model are compared. In
section 4, conclusions are presented.

2 PROBLEM SETTING

The case is defined in a spatio-temporal setting. Consider the
variable {rt(x); x ∈ Lr , t ∈ T }; r·(·) ∈ R, with Lr a grid of size n
over a two-dimensional spatial area of interest while T :
{0, 1, . . . ,T} is a regular discretization in time. Let t " T
represent current time while t " 0 represents the initial time. The
spatial variable {r0(x); x ∈ Lr} is a discretized representation of the
initial state which later will be assumed to be unknown. Figure 1

displays the initial state that we evaluate in the case study. It is a
spatial field with two areas: the blue area is at low value and the
yellow area is at much higher value. One may consider the yellow
area as the release of a pollutant at time t " 0.

The spatio-temporal variable evolves in time, {rt+1(x); x ∈ Lr} "
ωt[{rt(x); x ∈ Lr}] where ωt(·) is a dynamic function usually
represented by a set of discretized differential equations. Figure 2
shows the temporal evolution of the field presented in Figure 1
according to a set of differential equations. The spatio-temporal
variable is not fully observable, it can only be measured at a
number of observation sites. The observations at the observation
sites are collected with some measurement error, they appear as time
series denoted {dt " (d1t , . . . , dmt ), t ∈ T } wherem is the number of
observation sites. The five observation locations in the case study are
represented by dots in Figure 1. Figure 3 displays the observations
collected at these observation locations. The typical challenge is to
infer the spatio-temporal variable {rt(x); x ∈ Lr, t ∈ T } based on the
observed time series {dt ; t ∈ T }. It constitutes a complex spatio-
temporal inverse problem. In the current study we focus on assessing
the initial spatial variable {r0(x); x ∈ Lr} from the observed time
series {dt ; t ∈ T }.

3 MODEL DEFINITION

Consider the unknown temporal n-vector rt , representing
the discretized spatial variable {rt(x); x ∈ Lr}, for t ∈ T r :
{0, 1, . . . ,T ,T + 1}. Define the variable r " {r0, r1, . . . , rT , rT+1}
and let ri:j denote {ri, ri+1, . . . , rj},∀(i, j) ∈ T 2

r , i≤ j. Moreover
assume that the temporalm-vectors of observations dt for t ∈ T d :
{0, 1, . . . ,T} are available, and define d " {d0, d1, . . . , dT} and di:j "
{di, . . . , dj} accordingly. The objective of this study is to assess
[r0|d]. To that end, we define a Kalman type model, represented as
a hidden Markov model in a Bayesian inversion framework.

3.1 Bayesian Inversion
The Kalman type model, phrased as Bayesian inversion, requires
the specification of a prior model for r and a likelihood model for
[d|r]. The model specified below defines a hidden Markov model
as displayed in Figure 4.

3.1.1 Prior Model
The prior model on r synthesizes the knowledge and experience
with the spatial variable of interest, and it consists of an initial
distribution and a forward model:

Initial Distribution
The prior distribution for the initial state r0 is denoted f (r0).

Forward Model
The forward model given the initial state [r1:T+1|r0] is

defined as,

f (r1:T+1|r0) " ∏T
t"0

f (rt+1|rt) (1)

with,

[rt+1|rt] " ωt(rt , εrt) ∼ f (rt+1|rt) (2)

FIGURE 1 | Initial state with observation locations (·) and monitoring
locations (×).
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where ωt(·, ·) ∈ Rn is the function that propagates rt forward in
time, with εrt a random component. Since ωt(·, ·) only involves the
variable at the previous time step, rt , the forward model is a
Markov chain.

3.1.2 Likelihood Model
The likelihood model on [d|r] provides a link between the
variable of interest r and the observations d and is defined as,

f (d|r) " ∏T
t"0

f (dt |rt) (3)

with,
[dt |rt] " ψt(rt , εdt ) ∼ f (dt |rt) (4)

where ψt(·, ·) ∈ Rm is the likelihood function with εdt a random
component. The likelihood model is defined assuming
conditional independence and single state response and is thus
in factored form.

3.1.3 Posterior Model
Bayesian inversion endeavors to assess the posterior distribution
of [r|d],

f (r|d) " [∫ f (d|r)f (r)dr]− 1 × f (d|r)f (r)
" const × f (d0|r0)f (r0)
×∏T

t"1
f (dt |rt)f (rt |rt−1)f (rT+1|rT)

" f (r0|d)∏T
t"1

f (rt |rt−1, dt:T)f (rT+1|rT)

(5)

which is a non-stationary Markov chain for the hidden Markov
model with a likelihood model in factored form as defined above
[29]. Assessing such a posterior distribution is usually difficult as
both the normalizing constant and the conditional transition
matrices are challenging to calculate.

3.2 Kalman Type Models
The current study is limited to Kalman type models. They
comprise an initial and a process part.

Initial Distribution
The initial distribution is identical to the initial

distribution of the prior model f (r0), and as such captures
the characteristics of the initial state of the process. Two
model classes are later discussed: the Gaussian and the
selection-Gaussian classes.

Process Model
The process model includes the forward model and likelihood

models defined in Section 3.1. It thus characterizes the process
dynamics and the observation acquisition procedure. The
forward model is defined by,

[rt+1|rt] " Atrt + εrt
f (rt+1|rt) " φn(rt+1;Atrt ,Σr|r

t ) (6)

with forward (n × n)-matrix At and n-vector error term εrt
defined as centered Gaussian with covariance (n × n)-matrix
Σr|r
t . The forward model is therefore Gauss-linear. The

likelihood component is defined by,

FIGURE 2 | Spatio-temporal diffusion.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org April 2021 | Volume 7 | Article 6365244

Conjard and Omre Selection Kalman Model



[dt |rt] " Hrt + εdt

f (dt |rt) " φp(dt;Hrt ,Σd|r
t ) (7)

with the observation (m × n)-matrix H and the m-vector error
term εdt defined as centered Gaussian with covariance
(m ×m)-matrix Σd|r

t . The likelihood model is also Gauss-
linear. This process model coincides with the frequently used
traditional Kalman model [3].

3.3 Traditional Kalman Model
The traditional Kalman model is defined by letting the initial
distribution be in the class of Gaussian pdfs,

r0 ∼ f (r0) " φn(r0; μr0,Σr
0) (8)

with initial expectation n-vector μr0 and positive definite
covariance (n × n)-matrix Σr

0. The Gaussian initial distribution
is parametrized by ΘG " (μr0,Σr

0). In our spatial study, this initial
distribution will be a discretized stationary Gaussian RF. The
process model is Gauss-linear and identical to the traditional
Kalman type.

This traditional Kalman model is analytically tractable. The
posterior distribution f (r|d) is Gaussian and the posterior
distribution parameters can be calculated by algebraic
operations on the parameters of the initial distribution,
process model and the observed data. Therefore the
assessment of the posterior distribution does not require
computationally demanding integrals. The analytical
tractability follows from the recursive reproduction of
Gaussian pdfs:

• The initial model f (r0) is Gaussian and the likelihood model
f (d0|r0) is Gauss-linear, hence the joint model f (r0, d0) is
Gaussian. Consequently, the conditional model f (r0|d0) is
Gaussian.

• The conditional model f (r0|d0) is Gaussian and the dynamic
model f (r1|r0) is Gauss-linear, hence the joint conditional
model f (r1, r0|d0) is Gaussian.

By recursion, we obtain that f (r|d) "
f (r0, . . . , rT+1|d0, . . . , dT ) is Gaussian. Note in particular that
since f (r|d) is Gaussian, so is f (r0|d). This pdf is obtained by
marginalization of f (r|d) which, for the Gaussian case, amounts
to removing rows from the expectation vector and rows and
columns from the covariance matrix. Additionally, the joint pdf
f (r, d) can be assessed using a simple recursive algorithm, see
Supplementary Appendix Algorithm A1 in Supplementary
Appendix A.

From the joint Gaussian pdf f (r, d), the posterior
distribution f (r|d) can be analytically assessed. In spatial
models, the grid dimension n may be large while the number
of data collection sites m usually is small. Supplementary
Appendix Algorithm A1 requires storing the covariance
[n(T + 2) +m(T + 1)] × [n(T + 2) +m(T + 1)]-matrix of the
Gaussian vector [r, d] which is hardly ever necessary in practice
where the target distribution is clearly identified. Only the spatial
variables of interest need to be stored, which entails that only the
covariance [n +m(T + 1)] × [n +m(T + 1)]-matrix of [r0, d] need
to be stored in our spatio-temporal inversion study.

FIGURE 3 | Observations at the observation locations and true curve.

FIGURE 4 | Graph of the hidden Markov model.
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3.4 Selection Kalman Model
The selection Kalman model is defined by letting the initial
distribution be in the class of selection-Gaussian pdfs [27, 28].
This class is defined by considering an auxilary n-vector ~r with
pdf from the Gaussian class,

f (~r) " φn(~r; μ~r ,Σ~r) (9)

with expectation n-vector μ~r and covariance (n × n)-matrix Σ~r . In
our spatial study this pdf will represent a discretized stationary
Gaussian RF. Define further an auxiliary q-vector ] by a Gauss-
linear extension,

[]|~r] " μ] + Γ]|~r(~r − μ~r) + ε]|~r (10)

with the expectation q-vector μ], and the regression (q × n)-matrix
Γ]|~r and the centered Gaussian q-vector ε]|~r , independent of ~r, with
covariance (q × q)-matrix Σ]|~r . In the current spatial study the
dimension of ~r and ] will be identical. Generally, we have,

f (]|~r) " φq(]; μ]|~r ,Σ]|~r) (11)

with μ]|~r " μ] + Γ]|~r(~r − μ~r). As a consequence, [~r, ]] is jointly
Gaussian,

[~r]] ∼ f (~r, ]) " φn+q([~r]];[ μ~r
μ]

],[ Σ~r Σ~rΓT]|~r
Γ]|~rΣ~r Σ]

]) (12)

with the covariance (q × q)-matrix Σ] " Γ]|~rΣ~rΓT]|~r + Σ]|~r . Define a
selection subset A ⊂ Rq, and define the class of selection-
Gaussian pdfs by rA " [~r|] ∈ A]. In the current spatial study
the set A will be separable in Rq. Generally, it follows that,

f (rA) " f (~r|] ∈ A)
" [Φq(A; μ],Σ])]− 1
× Φq(A; μ]|~r ,Σ]|~r) × φn(~r; μ~r ,Σ~r)

(13)

This class of pdfs is parametrized by ΘSG "
(μ~r ,Σ~r , μ], Γ]|~r ,Σ]|~r ,A) for all valid parameter sets. The class of
selection-Gaussian pdfs is very flexible and may represent multi-
modality, skewness and peakedness [26].

Four one-dimensional selection-Gaussian pdfs are displayed
in Figure 5 in order to demonstrate the influence of the selection
set A ⊂ R. The bivariate variable [~r, ]] is bi-Gaussian and
identical in all displays, while the selection sets are marked as
solid gray bars along the vertical ν-axis. Figure 5A contains a
selection set comprised of two segments symmetric about the
expectation of ν, making the selection-Gaussian pdf along the
horizontal axis bimodal and symmetric. Figure 5B contains a
selection set of two asymmetric segments, making the selection-
Gaussian pdf bimodal and asymmetric. Figure 5C contains a
selection set of three segments symmetric about the expectation
of ν, making the selection-Gaussian pdf trimodal and symmetric.

FIGURE 5 | Realizations of 1D selection-Gaussian pdfs (histogram) with varying selection sets A ⊂ Rn (solid gray bars) for a bi-Gaussian pdf [~r, ]] (dark gray).
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Lastly, Figure 5D contains a selection set comprised of only one
segment, making the selection-Gaussian pdf skewed. This
selection concept can be extended to higher dimensions and
even to discretized spatial models.

Note that assigning a null-matrix to Γ]|~r entails that
f (~r, ]) " f (~r)f (]) and selection on ] does not influence ~r. It
follows that f (rA) " f (~r) is Gaussian. The selection-Gaussian
model can therefore be seen as a generalization of the
Gaussian one. Assume that the conditional independence,
f (dt , ]|~rt) " f (dt |~rt)f (]|~rt), holds for all t, it can then
be demonstrated [26] that the following recursive
reproduction of selection-Gaussian pdfs holds:

• The initial model f (rA,0) is selection-Gaussian and the
likelihood model f (d0

∣∣∣∣rA,0) is Gauss-linear, hence the joint
model f (rA,0, d0) is selection-Gaussian. Moreover, the
conditional model f (rA,0|d0) is selection-Gaussian.

FIGURE 6 | Prior marginal distribution of the initial temperature field for
the selection Kalman model.

FIGURE 7 | Realizations from the prior distribution of the initial state; maps (upper), spatial histograms (lower).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org April 2021 | Volume 7 | Article 6365247

Conjard and Omre Selection Kalman Model



• The conditional model f (rA,0|d0) is selection-Gaussian and the
dynamic model f (rA,1

∣∣∣∣rA,0) is Gauss-linear, the joint conditional
model f (rA,1, r0,A|d0) is therefore selection-Gaussian.

By recursion, we obtain that f (rA|d) " f (rA,0, . . . , rA,T+1|
d0, . . . , dT ) is selection-Gaussian. Recall that these characteristics
are similar to those of the class of Gaussian pdfs that make the
traditional Kalman model analytically tractable. The selection
Kalman model is defined with an initial distribution from the
class of selection-Gaussian pdfs and a process model which is
Gauss-linear and identical to the traditional Kalman type. From
the characteristics of the class of selection-Gaussian distributions, it

follows that the posterior distribution f (rA|d) is in the class of
selection-Gaussian distributions and so is f (rA,0|d).

Consider the augmented (n + q)-vector [~r0, ]] which together
with the selection set A ∈ Rq defines the initial state
rA,0 " [~r0||] ∈ A]. The recursive algorithm, see Algorithm 1, is
initiated with this augmented vector which is Gaussian. The
conditional independence f (dt , ]|~rt) " f (dt |~rt)f (]|~rt) entails
that f (dt

∣∣∣∣rA,t) " f (dt |rt), which is Gauss-linear for all t.
Algorithm 1 provides the Gaussian pdf of the

[n(T + 2) + q +m(T + 1)]-vector [~r, ], d]. From the joint
Gaussian pdf f (~r, ], d), the pdf f (rA,0|d) " f (~r0|] ∈ A, d) can
be assessed by first marginalizing ~r and thereafter sequentially

ALGORITHM 1 | Joint Selection Kalman Model
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conditioning on d and then on ]. The final step, conditioning on
] ∈ A, is computer demanding even though ] has only dimension
q. Rejection sampling is only possible for very low values of q. We
therefore use the Metropolis-Hastings algorithm, a McMC
method, detailed in [26] and extended from [30]. Algorithm
1 requires storing the covariance [n(T + 2) + q +m(T + 1)] ×
[n(T + 2) + q +m(T + 1)] -matrix of the augmented Gaussian
vector [~r, ], d] which can usually be avoided in practice. Only the
spatial variables of interest need to be stored, which entails that only
the covariance [n + q +m(T + 1)] × [n + q +m(T + 1)]-matrix of
[~r0, ], d] need to be stored in our spatio-temporal inversion study.

4 SYNTHETIC STUDY

The synthetic study is introduced in Section 2, and we discuss it
in larger detail in this section.

4.1 Model
Consider a discretized spatio-temporal continuous RF representing
the evolution of a temperature field {rt(x), x ∈ Lr},
t ∈ T r : {0, 1, . . . . ,T ,T + 1}; rt(x) ∈ R, as defined in Section 2.
The number of spatial grid nodes is n " 21 × 21, while temporal
reference T is the current time up to T " 50. The discretized spatial
field at time t is represented by the n-vector rt .

The initial temperature field r0, given in Figure 1, is assumed
to be unknown. It is divided into two distinct areas: the blue area
where the temperature is set at 20°C and the yellow area where the
temperature is set at 45°C. Assume that, given the initial
temperature field, the field evolves according to the advection-
diffusion equation, a linear partial differential equation,

zrt(x)
zt

− λ∇2rt(x) + c · ∇rt(x) " 0 (14)

∇rt(x) · n " 0 (15)

with λ ∈ R+ the known diffusivity coefficient, n the outer normal
to the domain and c " [c1, c2] the known velocity field. The
forward model is defined as,

[rt+1|rt] " Art + εrt (16)

f (rt+1|rt) " φn(rt+1;Art ,Σr|r
t ) (17)

where the (n × n)-matrix A is obtained by discretizing the
advection-diffusion equation using finite differences, see
Supplementary Appendix B for finite differences scheme and
parameter values, while the centered Gaussian n-vector εrt , with
covariance (n × n)-matrix Σr|r

t " 0 × In represents model error.
Under these assumptions, the forward model is exact which
constitutes a limiting case to Gauss-linear models. The
evolution of the temperature field is described in Figure 2.

FIGURE 8 | Marginal pdfs at monitoring locations for increasing current time T from the inversion with the selection Kalman model.
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FIGURE 9 | Marginal pdfs at monitoring locations for increasing current time T from the inversion with the traditional Kalman model.

FIGURE 10 | MMAP predictions of the initial state for increasing current time T from the inversion with the selection Kalman model (SKM-upper) and with the
traditional Kalman model (TKM-lower).
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The observations are acquired at m " 5 different locations on the
spatial grid Lr at each temporal node in T d providing the set of
m-vectors {dt , t ∈ T d}. The observation locations are represented with
dots in Figure 1. The corresponding likelihood model is defined as,

[dt |rt] " Hrt + εdt (18)

f (dt |rt) " φm(dt;Hrt ,Σd|r
t ) (19)

where the observation (m × n)-matrixH is a binary selection matrix,
see Supplementary Appendix B, while the centered Gaussian
m-vector εdt with covariance (m ×m)-matrix Σd|r

t " σ2d|r × Im with
σd|r " 0.1, represents independent observation errors. Under these
assumptions, the likelihood model is Gauss-linear. The observations
are displayed as time series in Figure 3. Note that Σr|r

t and Σd|r
t are in

this example constant through time.
The forward and likelihood models are Gauss-linear. In order

to fully defined the selection Kalman model and traditional
Kalman model, we must specify the prior distribution for the
initial temperature field for both approaches.

We assume we know the initial temperature field has large
areas with low temperatures in the range [5°C, 25°C] and
possibly, smaller areas with high temperatures in the range
[40°C, 55°C]. The exact location, extent and temperature of
these smaller areas are unknown. The prior is therefore
spatially stationary in both models.

The prior distribution is set to be selection-Gaussian for the
selection Kalman model. Such a prior model can represent
multimodality. The model is constructed according to [26] and is
defined considering an auxiliary discretized stationary Gaussian RF,

f(r̃0) " φn(~r0; μ~rin, σ2~rΣρ

~r
) (20)

with expectation and variance levels, μ~r and σ2
~r
respectively. The

spatial correlation (n × n)-matrix Σρ
~r
is defined by an isotropic

second order exponential spatial correlation function
ρ~r(τ) " exp(−τ2/δ2); τ ∈ R+. Define the auxiliary n-vector ]
given ~r0,

[]|~r0] " c(~r0 − μ~rin) + ε] (21)

f (]|~r0) " φn[]; c(~r0 − μ~rin), (1 − c2)In] (22)

" ∏
i"1

n

φ1[]i; c(~r0,i − μ~r), (1 − c2)] (23)

with coupling parameter c ∈ R[−1,1] and centered Gaussian
independent n-vector ε] with variance (1 − c2). Note that this
pdf is in factored form. Consequently the joint pdf of [~r0, ]] is,

[~r0] ] ∼ φ2n([~r0] ];[ μ~rin0in
],[ σ2

~rΣ
ρ

~r
σ2
~r
cΣρ

~r
σ2
~r
cΣρ

~r
σ2
~r
c2Σρ

~r
+ (1 − c2)In ])

(24)

Define a separable selection set A ⊂ Rn such that
A " Bn,B ⊂ R. Therefore, the prior distribution is represented
by the discretized selection-Gaussian RF rA,0 defined as,

rA,0 " [~r0|] ∈ A] (25)

f (rA,0) " [Φn(A; 0in, σ2~rc2Σρ

~r
+ (1 − c2)In)]− 1

× ∏
i"1

n

Φ1[Ai; c(~ri − μ~r), (1 − c2)]
× φn(rA,0; μrin, σ2~rΣρ

~r
)

(26)

Note that after selection on the auxiliary variable ] is made, the
expectation and variance of the resulting rA,0 will no longer be
μ~rin and σ2

~r
Σρ
~r
.

FIGURE 11 |MMAP predictions (solid black line) with HDI 0.8 (red) intervals in cross section A-A′ of initial state at current time T " 50 with selection Kalman model
(left) and with traditional Kalman model (right). True cross section (dotted line).
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The parameters values are listed in Table 1 and they are
chosen to reflect what is assumed about the initial
temperature field. The prior marginal distribution is
bimodal, the dominant mode is centered about 18°C while
the smaller mode is centered about 40°C as shown in Figure 6.
The spread of the dominant mode covers the assumed
temperature range for the low temperature areas while the
spread of the smaller mode covers the assumed range for the
high temperature areas. Realizations from the prior
distribution and associated spatial histograms are shown in
Figure 7A. They exhibit large areas at low temperatures and
smaller areas at higher temperatures. Similarly to the
marginal distribution, the spatial histograms cover the
assumed range for high and low temperature areas.

The prior distribution for the traditional Kalman model is
Gaussian and is defined as,

f (r0) " φn(r0; μrin, σ2rΣρ
r ) (27)

with expectation and variance levels, μr and σ2r , respectively and
spatial correlation (n × n)-matrix Σρ

r defined by a second order
spatial correlation function ρr(τ) " exp(−τ2/δ2); τ ∈ R+. The
parameter values are listed in Table 1.

Figure 7B displays four realizations with associated spatial
histograms from the prior distribution for the traditional Kalman
model. The mean and variance levels are chosen so that the prior
covers the assumed range for the high and low temperature areas
as can be seen in the spatial histograms.

FIGURE 12 | Realizations from the posterior distribution of the initial state at current time T " 50.

TABLE 1 | Parameter values for the selection Gaussian initial model (SKM) and the
Gaussian initial model (TKM).

SKM
μ~r σ~r δ Γ A

28.75 10 0.15 0.95 [[−∞,−0.2)∪[0.5,+∞)]n

TKM
μr σ r δ

20 10 0.15
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Figure 7B can be compared to Figure 7A, and one observes
that only the selection-Gaussian distribution can capture bi-
modality in the spatial histograms. In studies with real data,
the prior model specification must of course be based on
experience with the phenomenon under study.

In the next section, we demonstrate the effect of specifying
different initial models in the spatio-temporal inversion model.

4.2 Results
The challenge is to restore r0 based on the observations d "
{d0, . . . , dT} by evaluating the posterior distribution in the
selection Kalman model f (rA,0

∣∣∣∣d0, . . . , dT ) and in the
traditional Kalman filter f (r0|d0, . . . , dT). We compare the
results from these two models that have been specified in the
previous section. The posterior distributions are analytically
tractable for both the selection Kalman model and the
traditional Kalman model. They are calculated using
Algorithm 1 and Supplementary Appendix Algorithm A1
respectively. In order to evaluate the results, we present
various characteristics of the posterior distributions for
increasing values of current time T:

1. Marginal pdfs at four monitoring locations represented by
crosses and numbered 1, 2, 3, 4 in Figure 1,

f (rA,0,i|d0:T) " ∫ f (rA,0|d0:T)drA,0,−i i " 1, . . . , 4 (28)

and similarly for f (r0,i|d0:T ) based on f (r0|d0:T). The index −i
stands for all the indices in 1, . . . , n but the ith index.

2. Spatial prediction based on a marginal maximum a
posteriori (MMAP) criterion,

r̂A,0 " MMAP{rA,0|d0:T} " {MAP{rA,0,j|d0:T}; j " 1, 2, . . . , n}
" {arg max{f (rA,0,j|d0:T)}, j " 1, 2, . . . , n} (29)

and similarly for r̂0 based on f (r0|d0:T ). This MMAP criterion is
used as the marginal posterior model may be multi-modal. For
uni-modal symmetric posterior distributions such as the
Gaussian one, the MMAP predictor coincides with the
expectation predictor.

3. The MMAP prediction and the associated 0.80 prediction
interval along a horizontal profile A-A’, see Figure 1. The
prediction interval is computed as the highest density
interval (HDI) [31], which entails that the prediction
intervals may consist of several intervals for multimodal
posterior pdfs.

4. Realizations From the Posterior Pdfs f (rA,0|d0:T ) and
f (r0|d0:T ).

Figure 8 displays the marginal posterior pdfs based on the
selection Kalman model at the four monitoring locations,

vertically, for increasing current time T, horizontally. At
current time T " 0, all pdfs are virtually identical to the
marginal pdf of the stationary initial model. As current time
T increases, and the observations are assimilated, one observes
substantial differences between the marginal pdfs at the
monitoring locations. The height of the high-value mode
increases depending on the proximity of monitoring location
to the yellow area, as expected. The posterior marginal pdf at
observation location one clearly indicates that it lies in the
yellow area already at current time T " 20 as the high-value
mode is increasing. At location two the high-value mode also

FIGURE 13 | Set up from the two yellow area test case.
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increases somewhat at T " 20, but does not increase more
thereafter. This monitoring location is outside the yellow
area, although fairly close to it. Location three is far from
both the yellow area and observation locations and the
posterior marginal pdf remains almost identical to the prior
model. Lastly, location four is far from the yellow area but close
to an observation location at which the observations remain

stationary, hence the low-value mode grows to be completely
dominant.

Figure 9 displays the marginal pdfs from the traditional
Kalman model. These marginal posterior pdfs are also
virtually identical at current time T " 0. As current time T
increases the marginal pdfs at the monitoring locations are
indeed different as they are shifting. However, this shift is

FIGURE 14 | Results from the two-yellow-area test case.
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difficult to observe. By using the selection Kalman model, the
indications of a yellow area at the correct location can be observed
from current time T " 20, while one can hardly observe any
indications of it if the traditional Kalman model is used.

The upper panels of Figure 10 display the MMAP spatial
prediction based on the selection Kalman model for increasing
current time T. At current time T " 0, the predictions are
virtually constant bar some boundary effect as the initial prior
model is stationary. As current time T increases, indications of the
yellow appear at T " 30, it is however at T " 50 that correct
location and spatial extent are identified. The prediction value of
the yellow area is very close to the correct value of 45. The blue
area value is predicted with some variability around the expected
20. The lower panels of Figure 10 present the corresponding
spatial predictions based for the traditional Kalman model. As
current time T increases, indications of something occurring in
the yellow area appears, but the location is uncertain and the
spatial extent only vaguely outlined. Moreover the predicted value
in the yellow area is much lower than the correct value 45. The
background value is however fairly precisely predicted around the
expected 20. The circular features centered about the observation
locations that appear on the predictions based on the selection
Kalman model in Figure 10 are not artifacts. These features are
also present on the predictions based on the traditional Kalman
model, although less prominent.

We evaluate the root mean square error (RMSE) values of the
two models at time T " 50. The RMSE criterion is used to
quantify the difference between the MMAP predictions in
Figure 10 and the truth in Figure 1. The RMSE for the
selection Kalman model is 2.76 while the RMSE of the
traditional Kalman model is 3.33 The selection Kalman model
therefore offers a 18% reduction in RMSE compared to the RMSE
of the traditional Kalman model.

Figure 11 displays the MMAP predictions with associated 0.80
prediction intervals along the horizontal profile A-A’. The
prediction from the selection Kalman model captures the yellow
area while the prediction from the traditional Kalmanmodel barely
indicates the yellow area. The prediction intervals follow the same
pattern. Note, however, that the prediction intervals of the
selection Kalman model may appear as two intervals close to
the yellow area since the marginal posterior models are bimodal.
By using the selection Kalman model, the location, spatial extent
and value of the yellow area is very precisely predicted at current
time T " 50. Predictions based on the traditional Kalman model
are less precise and rather blurred.

Figure 12 displays realizations from the posterior pdfs at
T " 50. For the selection Kalman model, see Figure 12A, the
yellow area is precisely reproduced in the majority of realizations
while for traditional Kalman model, see Figure 12B, the yellow
area is only vaguely indicated. Note however that the realizations
from the selection Kalmanmodel reflect the bimodality of the prior
model outside the central area where the five spot observation
design provides the most information. These observations are
consistent with the results observed in Figures 8, 9.

Conditioning on the observed data takes the same time for both
methods but the selection Kalmanmodel requires sampling from a
high dimensional truncated Gaussian pdf in order to evaluate the

posterior distribution which means that the computational
demand for the selection Kalman model is higher than that of
the traditional Kalmanmodel. For n " 441, as in our study, it takes
an average of 7.4s to generate 100 realizations from a selection-
Gaussian on our laptop computer, so a little over 12 min to
generate the 10,000 realizations used to estimate the MMAP for
the selection Kalman model. Note that the sampling becomes
increasingly more resource consuming as the grid dimension
increases and the computational time can be reduced by
introducing parallelization in the algorithm.

To demonstrate the generality of the selection Kalman model,
we define an alternative true initial state with two yellow areas, see
Figure 13A. We used the same model parameters as in the
primary case. The prior distribution for both the selection
Kalman model and the traditional Kalman model are identical
to the first case. Note in particular that the number of yellow areas
is not specified. The observed time series will of course be
different, see Figure 13B. These time series have many
similarities with the ones from the primary case. We inspect
the marginal pdfs at two monitoring locations, one inside each
yellow area, as they evolve with current time T, see Figure 14A.
Both marginal pdfs are identical at current time T " 0, and as
current time T increases the height of the high-value mode
increases, indicating that both monitoring locations are within
the yellow areas. In Figure 14B the corresponding MMAP
predictions are displayed for increasing current time T. We
observe that location, areal extent and value of both yellow
areas are well reproduced, but not as well as for the first case
since identifying two sources is more complicated. The
identification challenge is of course increasing with an
increasing number of yellow areas. Figure 14B also displays
the MMAP prediction for the traditional Kalman model for
the two-yellow-area case, where location, areal extent and
value are hard to evaluate, similarly to the first test case.

5 CONCLUSION

We define a selection Kalman model based on a selection-
Gaussian initial distribution and Gauss-linear dynamic and
observation models. This model may represent spatial
phenomena with initial states with spatial histograms that are
multimodal, skewed and/or peaked. The selection Kalman model
is demonstrated to be contained in the class of selection-Gaussian
distributions and hence analytically tractable. The analytical
tractability makes the assessment of the selection-Gaussian
posterior model fast and reliable. Moreover, an efficient
recursive algorithm for assessing the selection Kalman model
is specified. Note that the traditional Kalman model is a special
case of the selection Kalmanmodel, hence the latter can be seen as
a generalization of the former.

A synthetic spatio-temporal inversion case study with Gauss-linear
forward and observation models is used to demonstrate the
characteristics of the methodology. We specify both a selection
Kalman model and a traditional Kalman model and evaluate their
ability to restore the initial state based on the observed time series. The
time series are noisy observations of the variable of interest collected at
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a set of sites. The selection Kalman model outperforms the traditional
Kalmanmodel. The former model identifies location, areal extent and
value of the yellow area very reliably. The traditional Kalman model
only provides blurry indications with severe under-prediction of the
yellow area.We conclude that for spatio-temporal inversionwhere the
initial spatial state has bimodal or multimodal spatial histograms, the
selection Kalman model is far more suitable than the traditional
Kalman model.

The selection Kalman model has potential applications far
beyond the simple case evaluated in this case study. For all spatio-
temporal problems where multimodal spatial histograms appear,
the selection Kalmanmodel should be considered. The model can
easily be extended to a selection extended Kalman model, along
the lines of the extended Kalman model. A more challenging and
interesting extension is the definition of a selection ensemble
Kalman model including non-linear dynamic and observation
models. Research along these lines is currently taking place.
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1 RECURSIVE ALGORITHM FOR TRADITIONAL KALMAN MODEL
ALGORITHM 1.1. Joint Traditional Kalman Model

• Define
µ

r
t = E[rt]

µ
d
t = E[dt]

�rr
ts = Cov(rt, rs) = �rr

st
T

�dd
ts = Cov(dt, ds) = �dd
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st
T
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• Iterate t = 0, ..., T

Likelihood model:
µ
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t = Hµ
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t

�dd
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tt H
T + �
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t

Iterate s = 0, ..., t

�rd
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tsH
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End iterate s
If t > 0: Iterate s = 0, ..., t � 1

�dd
ts = H�rd

ts

End iterate s
Forwarding model:

µ
r
t+1 = Atµ

r
t

�rr
(t+1)(t+1) = At�

rr
tt A

T
t + �

r|r
t

Iterate s = 0, ..., t

�rr
(t+1)s = At�

rr
ts
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(t+1)s = At�
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End iterate s
• End iterate t
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�
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�
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is then fully defined by the algorithm.
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2 PARAMETERS IN THE DYNAMIC AND LIKELIHOOD MODELS
Forward (n ⇥ n)-matrix A is derived from the following finite difference scheme:

rt+1
i,j =rt

i,j + �t(�c2

rt+1
i,j+1 � rt+1

i,j

�x

+�
rt+1
i+1,j + rt+1

i�1,j + rt+1
i,j+1 + rt+1

i,j�1 + rt+1
i,j � 4rt+1

i,j

�x2 ),

where �x = 0.1m, �t = 0.5s, � = 1.43 ⇥ 10�2m2.s�1 and [c1, c2] = [0, �0.1]m.s�1. When (i, j) is
on the no-flow boundary, we use

rt+1
i,j+1 � rt+1

i,j�1

2�x
= 0,

rt+1
i+1,j � rt+1

i�1,j

2�x
= 0.

Both equations are necessary at the corners, only one on the rest of the boundary. Observation (m ⇥
n)-matrix H is a binary selection matrix defined as,

H =

2

66664

0 . . . 0 1 0 . . . . . . 0
0 . . . . . . 0 1 0 . . . . . . 0
0 . . . . . . 0 1 0 . . . . . . 0
0 . . . . . . 0 1 0 . . . . . . 0
0 . . . . . . 0 1 0 . . . 0

3

77775
.
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Featured Application: Porosity/permeability inversion in petroleum engineering; Log-conductivity
inversion with heads and tracer data in hydrogeology; Source contribution identification in air
pollution monitoring.

Abstract: Assimilation of spatio-temporal data poses a challenge when allowing non-Gaussian
features in the prior distribution. It becomes even more complex with nonlinear forward and
likelihood models. The ensemble Kalman model and its many variants have proven resilient when
handling nonlinearity. However, owing to the linearized updates, conserving the non-Gaussian
features in the posterior distribution remains an issue. When the prior model is chosen in the class
of selection-Gaussian distributions, the selection Ensemble Kalman model provides an approach
that conserves non-Gaussianity in the posterior distribution. The synthetic case study features
the prediction of a parameter field and the inversion of an initial state for the diffusion equation.
By using the selection Kalman model, it is possible to represent multimodality in the posterior model
while offering a 20 to 30% reduction in root mean square error relative to the traditional ensemble
Kalman model.

Keywords: data assimilation; EnKF; multimodality

1. Introduction

Data assimilation of spatio-temporal models is a challenge in many fields of study, including,
but not limited to, air pollution mapping, weather forecast, petroleum engineering, and ground water
flow assessment. Over the years, methods have been developed to handle increasingly complex
problems. It started with the Kalman filter as presented in the seminal publication [1]. The Kalman
filter is based on a Gaussian initial model and Gauss-linear forward and observation models. It defined
the foundation for data assimilation and is still used in many assimilation studies. The extended
Kalman filter (EKF) [2] appeared as a natural methodological extension that allowed for nonlinearity
in the Kalman filter framework by linearization. The ensemble Kalman filter (EnKF) [3,4] defined a
Monte Carlo approach to the filter and it became popular as it allowed for nonlinearity in the forward
and observation models without having to evaluate analytical gradients. The EnKF and its variants
have proven to be efficient in solving high-dimensional and nonlinear problems, see [5,6]. In the EnKF,
the initial ensemble members represent the initial state which may not have an analytical expression.
The forward model then propagates the ensemble members forward in time. Pseudo observations are
generated using the observation model. The conditioning of each ensemble member is made with the
Kalman weights estimated from the ensemble to give the best linear update. In cases where the initial

Appl. Sci. 2020, 10, 5742; doi:10.3390/app10175742 www.mdpi.com/journal/applsci
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model is non-Gaussian, the distribution of the variable of interest conditioned on the data will tend
toward Gaussianity as observations are assimilated due to the linear assimilation rule.

Non-Gaussian initial distributions may be conserved by using a univariate transform into
Gaussian marginals while assuming multi-Gaussianity in the transformed space. A univariate back
transform is then used to return to the original space. This approach has a long history in traditional
statistics, geostatistics, and more recently in ensemble methods for data assimilation, which is referred
to as copulas [7], normal score transform [8], and Gaussian anamorphosis [9], respectively. The latter
has shown to improve the performance of the EnKF in many applications [10,11]. There are however
some unresolved issues since Gaussian anamorphosis transforms the marginal distributions rather
than the full distribution, and the effect on the resulting variables interdependence is uncertain.

The Ensemble Randomized Maximum Likelihood Filter (EnRML) [12] and its close relative the
Iterative EnKF (IEnKF) [6] are primarily used to handle nonlinearities in the forward and observation
models, but they will also retain certain non-Gaussian features in the filtering distribution. These filters
require gradient evaluations to execute the update which can be complicated even if the adjoint
state method is used. One alternative is to evaluate the gradient using the ensemble itself [13],
but this approach introduces an approximation with unclear consequences, particularly in models
with multimodal marginals.

Multimodality in the prior model can be represented using categorical auxiliary variables to
construct Gaussian mixture prior models [14–16]. In a spatial setting, these models appear as
a combination of Gaussian random fields whose parameters depend on the value taken by the
categorical variable, but in order to retain spatial dependence, the categorical variable must also have
a spatial dependence. This indicator spatial variable can be modeled as a Markov [17] or truncated
pluri-Gaussian [18] random field. For both of these models, there are challenges related to temporal
data assimilation, although some encouraging examples have been developed [19].

We define and study an alternative prior model, the selection-Gaussian random field [20,21],
which may represent multimodality, skewness, and peakedness. This random field model is conjugate
with respect to Gauss-linear forward and observation models, similarly to the Gaussian random field
model. The posterior distribution is therefore analytically tractable under these assumptions [22].
For general forward and observation models, ensemble based algorithms along the lines of the EnKF
can be designed. Such selection ensemble Kalman algorithms are the focus of this study, and they are
evaluated on a couple of examples.

In Section 2, we introduce the selection ensemble Kalman model. It provides a framework for
the use of the selection-Gaussian distribution as a prior in data assimilation. This framework is then
used for ensemble filtering and smoothing through the selection EnKF (SEnKF) and the selection EnKS
(SEnKS) algorithms. In Section 3, a synthetic case study of the diffusion equation, with two distinct test
cases, showcases the ability of the proposed approaches to assess a parameter field and the initial state
of a dynamic field. Results from the SEnKF and the SEnKS are compared to that of the traditional EnKF
and the EnKS, respectively. In Section 4, potential shortcomings are discussed and the results are put
into perspective with respect to applicability in more realistic applications. In Section 5, conclusions
are presented.

In this paper, f (y) denotes the probability density function (pdf) of a random variable y,
jn(y; µ, S) denotes the pdf of the Gaussian n-vector y with expectation n-vector µ and covariance
(n ⇥ n)-matrix S. Furthermore, Fn(A; µ, S) denotes the probability of the aforementioned Gaussian
n-vector y to be in A ⇢ Rn. We also use in to denote the all-ones n-vector, In to denote the identity
(n ⇥ n)-matrix and 1(S) to denote the indicator function that equals 1 when S is true and 0 otherwise.
We consider log-diffusivity to be an adimensional quantity and it will therefore not be given a unit.

2. Materials and Methods

Consider the unknown temporal n-vector rt for t 2 Tr : {0, 1, . . . , T, T + 1}. Let r =
{r0, r1, . . . , rT , rT+1} denote the variable of interest and let ri:j denote {ri, ri+1, . . . , r j}, 8(i, j) 2 T 2

r , i  j.
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Assume that the temporal m-vectors of observations dt for t 2 Td : {0, 1, . . . , T} are available, and define
d = {d0, d1, . . . , dT} and di:j = (di, . . . , dj} accordingly. The model specified hereafter defines a hidden
Markov (HM) model [23] as displayed in Figure 1.

Prior model: The prior model on r consists of an initial and a forward model,

f (r) = f (r0) f (r1:T+1|r0), (1)

where f (r0) is the pdf of the initial state and f (r1:T+1|r0) defines the forward model.
(a) Initial distribution: The distribution for the initial state f (r0) is assumed to be in the class of

selection-Gaussian distributions [20,21]. Consider a Gaussian (n + n)-vector [r̃, n],
"

r̃

n

#
⇠ j2n

 "
r̃

n

#
;

"
µr̃
µn

#
,

"
Sr̃ Sr̃GT

n|r̃
Gn|r̃Sr̃ Sn

#!
, (2)

with n-vectors µr̃ and µn, (n ⇥ n)-matrix Gn|r̃, and where Sr̃, Sn, and Sn|r̃ are all three covariance
(n ⇥ n)-matrices with Sn = Gn|r̃Sr̃GT

n|r̃ + Sn|r̃. Define a selection set A ⇢ Rn of dimension n and let
r0 = [r̃|n 2 A]; then, r0 is in the class of selection-Gaussian distribution and its pdf is,

f (r0) = [Fn(A; µn, Sn)]
�1 (3)

⇥Fn(A; µn + Gn|r̃(r0 � µr̃), Sn|r̃) ⇥ jn(r0; µr̃, Sr̃).

Note that the class of Gaussian distributions constitutes a subset of the class of selection-Gaussian
distributions with Gn|r̃ = 0 ⇥ In. The dependence in [r̃, n] represented by Gn|r̃ and the selection subset A
are crucial user-defined parameters with the latter being temporally constant. The selection-Gaussian
model may represent multimodal, skewed, and/or peaked marginal distributions, see [21]. In this
study, the initial distribution is defined to be a discretized stationary selection-Gaussian random field
with parametrization,

µr̃ = µr̃in

µn = µnin

Sr̃ = s2
r̃ S

r
r̃ (4)

Sn = g2S
r
r̃ + (1 � g2)In

Gn|r̃ = gs�1
r̃ In.

For a given spatial correlation (n ⇥ n)-matrix S
r
r̃ , a stationary selection-Gaussian random field

is fully parametrized by QSG = (µr̃, µn, sr̃, S
r
r̃ , g, A). Similarly, a stationary Gaussian random field is

parametrized by QG = (µr, sr, S
r
r ).

(b) Forward model: The forward model given the initial state [r1:T+1|r0] is defined as

f (r1:T+1|r0) =
T

’
t=0

f (rt+1|rt), (5)

with

[rt+1|rt] =wt(rt, er
t) ⇠ f (rt+1|rt), (6)

where wt(·, ·) 2 Rn is the forward model with random n-vector er
t , independent and identically

distributed (iid) for each t. This forward model may be nonlinear, but, since it only involves the
variable at the previous time step rt, it defines a first-order Markov chain. Note that f (rt+1|rt) cannot
generally be written in closed form.
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r0 r1 r2 . . . rT rT+1

d0 d1 d2 . . . dT

Figure 1. Graph of the hidden Markov model.

Likelihood model: The likelihood model for [d|r] is defined as conditional independent with
single-site response,

f (d|r) =
T

’
t=0

f (dt|rt), (7)

with

[dt|rt] =yt(rt, ed
t ) ⇠ f (dt|rt), (8)

where yt(·, ·) 2 Rm is the likelihood function with random m-vector ed
t , iid for each t. Note that

f (dt|rt) cannot generally be written in closed form.
Posterior model: The posterior model for the HM model in Figure 1 is given by

[r|d] ⇠ f (r|d) = const ⇥ f (d|r) f (r)

= const ⇥ f (d0|r0) f (r0)
T

’
t=1

f (dt|rt) f (rt|rt�1) f (rT+1|rT) (9)

= f (r0|d)
T

’
t=1

f (rt|rt�1, dt:T) f (rT+1|rT),

and is also a Markov chain, see [23,24]. This model is denoted the selection ensemble Kalman model.
If the forward and likelihood models are Gauss-linear, the posterior model is also selection-Gaussian
and analytically tractable, see [22]. When the forward and/or likelihood models are nonlinear, however,
approximate or sampling based assessment of the posterior model must be made. For this purpose,
we introduce the selection ensemble Kalman filter (SEnKF) and smoother (SEnKS) in the spirit of the
traditional ensemble Kalman model [3].

The traditional EnKF algorithm aims at assessing the forecast pdf f (rT+1|d0:T), and it is justified
by general HM model recursions, see [23]. The algorithm is initiated by

[r1|d0] ⇠ f (r1|d0) =
Z

f (r1|r0)[ f (d0)]
�1 f (d0|r0) f (r0)dr0, (10)

and utilizes the recursion for t = 1, . . . , T,

[rt+1|d0:t] ⇠ f (rt+1|d0:t) =
Z

f (rt+1|rt)[ f (dt|d0:t�1)]
�1 f (dt|rt) f (rt|d0:t�1)drt. (11)

The expressions are represented by an ensemble of realizations, which in each recursion is
conditioned using a linearized approximation with Kalman weights estimated from the ensemble.
Thereafter, the ensemble is forwarded to the next time step. The SEnKF introduced in this study relies
on the same relations as above, but it operates on the augmented (n + n)-vector [r̃·, n], see Equation (2).
Hence, the forward model is defined as

"
r̃t+1
nt+1

�����
r̃t
nt

#
=

"
wt(r̃t, er

t )
nt

#
. (12)
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where the auxiliary n-vector nt is temporally constant.
The likelihood model is defined as

"

dt

�����
r̃t
nt

#
= yt(r̃t, ed

t ). (13)

The SEnKF algorithm provides an ensemble representation of

"
r̃T+1

n

�����d0:T

#
⇠ f (r̃T+1, n|d0:T), (14)

and, based on this ensemble, empirical sampling based inference, see [21], is used to obtain the forecast
of interest:

[rT+1|d0:T ] ⇠ f (rT+1|d0:T) = f (r̃T+1|d0:T , n 2 A). (15)

The SEnKF algorithm is specified in Algorithm A1 in Appendix A.
The traditional EnKS algorithm aims at evaluating the interpolation pdf f (r0:T |d0:T) with

corresponding HM model recursions, see [23]. The algorithm is initiated by

[r0|d0] ⇠ f (r0|d0) = [ f (d0)]
�1 f (d0|r0) f (r0), (16)

and the recursions for t = 1, . . . , T,

[r0:t|d0:t] ⇠ f (r0:t|d0:t)

= [ f (dt|d0:t�1)]
�1 f (dt|r0:t, d0:t�1) f (rt|r0:t�1, d0:t�1) f (r0:t�1|d0:t�1) (17)

= [ f (dt|d0:t�1)]
�1 f (dt|rt) f (rt|rt�1) f (r0:t�1|d0:t�1).

The expressions are represented by an ensemble of realizations. Forwarding is made on the
ensemble and the conditioning is empirically linearized. Note that the dimension of the model
increases very fast, one may therefore only store the interpolation pdf f (rs|d0:T) at the time point s of
interest. The SEnKS introduced in this study relies on the relations defined above and uses an extended
(n + n)-vector [r̃, n] as defined in Equation (2). The forward and likelihood models are identical to
those defined for the filter. The SEnKS algorithm provides an ensemble representation of

"
r̃0:T

n

�����d0:T

#
⇠ f (r̃0:T , n|d0:T), (18)

and by using empirical sampling based inference, see [21], the interpolation of interest is assessed,

[r0:T |d0:T ] ⇠ f (r0:T |d0:T) = f (r̃0:T |d0:T , n 2 A). (19)

The SEnKS algorithm is specified in Algorithm A2 in the Appendix A. Both algorithms, SEnKF
and SEnKS, contain empirically linearized conditioning and asymptotic results, when the ensemble size
goes to infinity, and are consistent only for Gauss-linear forward and likelihood models. Under these
assumptions, the model is analytically tractable; however, see [22]. In spite of this lack of asymptotic
consistency for general HM models, the ensemble Kalman scheme has proven surprisingly reliable for
high-dimensional, weakly nonlinear models even with very modest ensemble sizes [25].

3. Results

We consider two test cases to illustrate the relevance of the selection ensemble Kalman algorithms
presented in Section 2. The model, common to both test cases, is based on the diffusion equation.
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The test cases are designed such that it will be opportune to consider bi-modal initial distributions.
In the first test case, we compare the SEnKF to the traditional EnKF with a focus on predicting the
diffusivity field that contains a high diffusivity channel. In the second test case, we compare the SEnKS
to the traditional EnKS with a focus on evaluating the initial temperature field that is divided into two
distinct areas where the initial temperature is substantially higher in one than in the other.

3.1. Model

Consider a discretized spatio-temporal random field, {rt(x), x 2 Lr ⇢ R2} where t 2 Lt :
{0, 1, . . . . , T} and rt(·) 2 R that represents temperature (�C). Let a discretized spatial random field,
{l(x), x 2 Lr ⇢ R2}; with l(·) 2 R� representing diffusivity (m2 s�1). Let x be the spatial reference
on the regular spatial grid Lr on the domain D, while t is the temporal reference on the regular
temporal grid Lt. The number of spatial grid nodes is n = 21 ⇥ 21, and they are placed every 10 cm
vertically and horizontally. The discretized temperature field at time t may be represented by the
n-vector rt and the diffusivity field by the n-vector l. Both are assumed to be unknown. Note that the
Kalman models are defined on the joint variable [rt, l].

Assume that, given the initial temperature field, the field evolves according to the
diffusion equation:

∂rt(x)
∂t

� r · (l(x)rrt(x)) = q (20)

rrt(x) · n = 0,

with n the outer normal to the domain and q a source term. The expression in Equation (20) is
discretized using finite differences and the forward model is defined as

[rt+1|rt, l] =w⇤(rt, l), (21)

with w⇤(·, ·) 2 Rn. Convergence and stability of the numerical method are easily ensured for the finite
difference scheme that is used. The initial temperature field r0 is considered unknown in the test cases.

The forward model is assumed to be perfect in the sense that there is no model error. The forward
model in Equation (6) then takes the form,

w([rt, l], 0in) =

"
w⇤(rt, l)

l

#
. (22)

This forward model is nonlinear due to the product of rt and l in Equation (20). Consequently,
the assumption of Gauss-linearity required for both the traditional Kalman model [1] and the selection
Kalman model [22] is violated and necessitates ensemble based algorithms.

The observations are acquired in a m = 5 location pattern on the spatial grid Lr at each temporal
node in Lt, providing the set of observations m-vectors dt, t 2 Lt. The corresponding likelihood model
is defined as

[dt|rt] = yt(rt, ed
t ) = Hrt + ed

t (23)

f (dt|rt) = jm(dt; Hrt, Sd|r),

where the observation (m ⇥ n)-matrix H is a binary selection matrix, while the centered Gaussian
m-vector ed

t with the covariance (m ⇥ m)-matrix Sd|r = s2
d|r Im, and s2

d|r = 0.1 represents independent
observation errors. This likelihood model is in Gauss-linear form.
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3.2. Test Case 1: Predicting the Parameter Field

The focus of this test case is to predict the unknown diffusivity field l based on the observations
d. Because diffusivity is constant in time, smoothing and filtering give an identical prediction of the
field. However, filtering is preferred because it does not require updating the ensemble at all future
times in addition to the previous one, see [26]. The posterior model is evaluated using the SEnKF,
see Appendix A and the results are compared to those from the traditional EnKF algorithm.

The true diffusivity n-vector l is displayed in Figure 2. The diffusivity l is always positive.
To ensure that ensemble updates do not lead to negative diffusivity values, we work on log(l).
The figure shows a channel in which the diffusivity is higher than in the rest of the field. The diffusivity
field is formally defined as

l(x) = l11(x 2 D1) + l21(x 2 D2), (24)

where D1 ⇢ D is the low diffusivity area and D2 ⇢ D is the high diffusivity channel. The parameter
values are l1 = e�12 m2 s�1 and l2 = e�5 m2 s�1. The true temperature field is initially at 20 �C and
the heat source on the lower border of the high diffusivity channel starts pumping in heat at T = 0 at a
constant volumetric rate q = 15 W m�3, see Figure 2. The temporal evoluation of the temperature field,
shown in Figure 3, is obtained by solving the diffusion equation in Equation (20) for the log-diffusivity
field in Figure 2 and the initial temperature field defined above. The temperature observations d,
see Figure 4, are then collected from the five locations shown in Figure 2 using the likelihood model
defined in Equation (23). The measurements are taken every second from T = 0 to T = 100. As the
heat from the source diffuses mostly along the high diffusivity channel, the observed temperature
increases substantially at observation locations within the channel.

The unknown initial field for log-diffusivity log(l) is assigned a stationary selection-Gaussian
random field prior model with parameters QSG

l = (µl
r̃ , µl

n , sl
r̃ , S

r
r̃ , gl, A), see [21] and Equation (2).

The parameter values for the prior model are listed in Table 1.

Figure 2. Initial log-diffusivity field with observation locations ·, monitoring locations ⇥, and heat
source 4.
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Figure 3. True temperature (�C) field evolution over time.

Figure 4. Data collected over time (·) and true temperature evolution (line) at the data collection points.

Table 1. Parameter values for the selection-Gaussian initial distribution for the initial log-diffusivity field.

Parameters Values

µl
r̃ �8.5

µl
n 0

sl
r̃

p
1.6

gl 0.9
A ] � •, �0.3] [ [0.5,+•[n
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The unknown initial temperature field r0 is assigned a stationary Gaussian random field prior
model with parameters QG

r = (µr, sr, S
r
r ) with expectation and variance levels µr = 20 and

s2
r = 2, respectively. The variance level is relatively large as we assume little prior knowledge

of the initial temperature field. For both prior models, the spatial correlation (n ⇥ n)-matrix S
r
· is

defined by the second order exponential spatial correlation function r·(t) = exp (�t2/d2); d = 0.15,
with interdistance t.

Figure 5 contains realizations from the prior model of the log-diffusivity field and their associated
spatial histograms. The prior model is specified to be spatially stationary except for boundary effects
with bi-modal spatial histograms. The selection set A ⇢ Rn for the prior model is chosen to obtain
bi-modal marginal distributions with a very dominant mode centered slightly above the value for l1
and a very small mode centered slightly below the value for l2. The prior is therefore not centered at the
true values. Note that the joint random field [log(l), r0] will appear as a bi-variate selection-Gaussian
random field, see [21].

Figure 5. Realizations from the initial selection-Gaussian distribution of the log diffusivity f (log(l))
at time T = 0 (upper panels) and associated spatial histogram (lower panels). Lower panels:
the horizontal axes represent the log-diffusivity, the vertical axes represent the relative prevalence of
each log-diffusivity value for the realization in the panel right above.

The SEnKF operates on the 3n-vector [log(l̃), n, r0], and therefore we generate an initial ensemble
with ne = 10,000 ensemble members that are sampled from the Gaussian 3n-vector [log(l̃), n, r0]
with pdf,

2

64
log(l̃)

n

r0

3

75 ⇠ j3n

0

B@

2

64
log(l̃)

n

r0

3

75 ;

2

64
µl

r̃
µl

n

µr

3

75 ,

2

64
sl

r̃
2
S

r
r̃ glsl

r̃ S
r
r̃

T 0
glsl

r̃ S
r
r̃ gl2

S
r
r̃ + (1 � gl2

)In 0
0 0 sr

2S
r
r

3

75

1

CA . (25)

The EnKF operates on the 2n-vector [log(l), r0], and therefore we generate an initial ensemble
with ne = 10,000 ensemble members that are sampled from the selection-Gaussian distribution
f (log(l), r0). The variables log(l) and r0 are independent, so we generate them independently:
10,000 samples from the selection-Gaussian n-vector log(l) with parameters QSG

l and 10,000 samples
from the Gaussian n-vector r0 with parameters QG

r . It is important to understand that both ensemble
algorithms are initiated with an ensemble from an identical selection-Gaussian random field prior
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model for [log(l), r0] at T = 0, which reflects the bi-modality of the prior model. Due to the size of the
ensemble relative to the dimension of the problem, we are using neither localization nor inflation in
the algorithms.

To illustrate the differences between the SEnKF and the EnKF, we present the following results for
both algorithms:

1. The marginal posterior distributions f (log(li)|d0:T) of the log-diffusivity field at four monitoring
locations denoted 1, 2, 3, 4 on Figure 2, at time T = 0, 50, 80, 100.

2. The marginal maximum a posteriori (MMAP) prediction of the log-diffusivity field at time at
time T = 0, 50, 80, 100.

3. Realizations from the posterior distribution f (log(l)|d0:T) at time T = 100.
4. The root mean square errors (RMSE) of the MMAP prediction of the log-diffusivity field relative

to the true log-diffusivity field at time T = 100.

Figures 6 and 7 show the marginal posterior pdfs f (log(li)|d0:T) at the four monitoring locations
at time T = 0, 50, 80, 100 for the SEnKF and EnKF algorithms, respectively. Monitoring locations 1
and 2 are placed within the high diffusivity area while the two other locations are placed far into
the low diffusivity area. At T = 0, all pdfs are identical, in all locations due to the stationary prior
model and for both algorithms due to identical prior models. The SEnKF results appear to preserve
bi-modality as observations are assimilated. As more data are made available, the high value mode
increases at monitoring locations 1 and 2 that are inside the high diffusivity area. The low value
mode remains dominant at monitoring locations within the low diffusivity areas. These results reflect
expected behaviors. The traditional EnKF results are significantly different since the bi-modality of
the marginal pdfs disappears already at T = 50. The marginal pdfs are Gaussian-like and are gently
moved toward high and low values depending on which diffusivity area the monitoring locations
are in. This regression toward the mean effect of the EnKF is generally recognized as it gives the best
prediction in the squared error sense [27].

Figure 6. SEnKF approach: Marginal posterior distribution of the log diffusivity f (log(li)|d0:T) at
time T = 0, 50, 80, 100 at the monitoring locations (1, 2, 3, 4) denoted (p1, p2, p3, p4).
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Figure 7. EnKF approach: Marginal posterior distribution of the log diffusivity f (log(li)|d0:T) at time
T = 0, 50, 80, 100 at the monitoring locations (1, 2, 3, 4) denoted (p1, p2, p3, p4).

Figure 8 displays the MMAP predictions based on the SEnKF and the traditional EnKF at time
T = 0, 50, 80, 100. At T = 0, the predictions from the two algorithms are identical since they use
identical prior models. As observations are assimilated, the SEnKF predictions reproduce the high
diffusivity area relatively well, with clear contrast. The traditional EnKF predictions also indicate the
diffusivity areas, but with less contrast. Figure 9 displays the MMAP prediction at T = 100 along
the section B-B’ shown in Figure 2. The high contrast reliable reconstruction of the high diffusivity
channel by the SEnKF algorithm is confirmed. The traditional EnKF predictions appear less reliable.
The 80% highest density interval (HDI) [28] covers the true diffusivity values for the SEnKF while
these values are far outside the interval for the traditional EnKF results. The results are consistent with
the observations made regarding the marginal posterior pdfs in Figures 6 and 7.

Figures 10 and 11 show realizations and spatial histograms from the posterior distribution
of the log-diffusivity at time T = 100 for the SEnKF and traditional EnKF algorithms, respectively.
The realizations from the SEnKF largely reproduce the channel with clear contrast while the realizations
from the EnKF also reproduce the channel, but with much less contrast. The spatial histograms also
underline the difference in contrast in that they are clearly bi-modal for the SEnKS and much more
Gaussian-like for the EnKS.

Table 2 shows that the RMSE of the MMAP prediction relative to the true diffusivity field for the
SEnKF is approximately 30% lower than for the EnKF .

Table 2. RMSE comparing the MMAP prediction and the true log diffusivity field at time T = 100.

SEnKF ENKF

RMSET=100 2.72 3.76

This test case clearly illustrates the SEnKF’s ability to conserve multimodality in the posterior
distribution and it leads to predictions with better constrast and accuracy. We conclude that the
reconstruction of the true diffusivity field is done more reliably by the SEnKF algorithm than by the
EnKF algorithm.
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Figure 8. MMAP predictions of the log diffusivity field (log(l)|d0:T) at time T = 0, 50, 80, 100 (upper
panels—SEnKF approach, lower panels—EnKF approach).

Figure 9. MMAP predictions of the log diffusivity field with 80% HDI in cross section B-B’ at time
T = 100 with SEnKF (left) and with EnKF (right).

Figure 10. SEnKF approach: Realizations of the posterior distribution of the log diffusivity
f (log(l)|d0:T) at time T = 100 (upper panels) and associated spatial histogram (lower panels).
Lower panels: the horizontal axes represent the log-diffusivity, the vertical axes represent the relative
prevalence of each log-diffusivity value for the realization in the panel right above.
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Figure 11. EnKF approach: Realizations of the posterior distribution of the log diffusivity
f (log(l)|d0:T) at time T = 100 (upper panels) and associated spatial histogram (lower panels).
Lower panels: the horizontal axes represent the log-diffusivity, the vertical axes represent the relative
prevalence of each log-diffusivity value for the realization in the panel right above.

3.3. Test Case 2: Reconstructing the Initial Field

The focus of the study is to evaluate the unknown initial state of the temperature field r0 based on
the observations d. The posterior model f (r0|d) is assessed using the SEnKS, see Appendix A, and the
results are compared to those from the traditional EnKS.

The true initial temperature field r0 is set at 20 �C except for a square shaped region with
temperature set at 45 �C, see Figure 12. The temperature field is formally defined as

r0(x) = t11(x 2 D1) + t21(x 2 D2), (26)

where D1 ⇢ D is the low temperature area and D2 ⇢ D is the high temperature area, and t1 = 20 �C
and t2 = 45 �C. Figure 12 shows the true log-diffusivity n-vector log(l). The diffusivity l is always
positive. To ensure that ensemble updates do not lead to negative diffusivity values, we work on log(l).
The heat contained in the high temperature area will diffuse towards the rest of the field according to
the diffusion equation in Equation (20), see Figure 13. The temporal observations are collected at five
different observation locations according to the likelihood model in Equation (23), see Figure 12.
Figure 14 displays the observations d where it is clear that the observed temperature increases
substantially only at the observation locations close to the high temperature area. The measurements
are taken every second from T = 0 to T = 50.

The unknown initial temperature field r0 is assigned a stationary selection-Gaussian random
field prior model with parameters QSG

r = (µr̃, µn, sr̃, S
r
r̃ , g, A). The parameter values are listed in

Table 3. The unknown log-diffusivity field log(l) is assigned a stationary Gaussian random field prior
model with parameters QG

l = (µl, sl, S
r
l) with expectation and variance levels µl = �8.5 and s2

l = 2,
respectively. For both prior models, the spatial correlation (n ⇥ n)-matrix S

r
· is defined by the second

order exponential spatial correlation function r·(t) = exp (�t2/d2); d = 0.15, with interdistance t.
Figure 15 contains four realizations from the prior model of the temperature field and their spatial

histograms. The marginal initial distributions of the realizations are bi-modal and spatially stationary
except for boundary effects. The selection set A ⇢ Rn in the prior model is chosen to obtain a bi-modal
marginal distribution with one large mode approximately centered about 20 �C and a smaller mode
centered close to 45 �C.
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Table 3. Parameter values for the selection-Gaussian initial distribution for the initial temperature
prior model.

Parameters Values

µr̃ 28.75
µn 0
sr̃

p
10

g 0.8
A ] � •, �0.2] [ [0.5,+•[n

Figure 12. Initial temperature (�C) field (left) with data collection points · and monitoring locations ⇥
and reference log-diffusivity field (right).

Figure 13. True temperature (�C) field evolution over time.

The SEnKS operates on the 3n-vector [r̃0, n, log(l)], and therefore we generate an initial ensemble
with ne = 10,000 ensemble members that are sampled from the Gaussian 3n-vector [r̃0, n, log(l)]
with pdf,

2

64
r̃0
n

log(l)

3

75 ⇠ j3n

0

B@

2

64
r̃0
n

log(l)

3

75 ;

2

64
µr̃
µn

µl

3

75 ,

2

64
sr̃

2S
r
r̃ gsr̃S

r
r̃

T 0
gsr̃S

r
r̃ g2S

r
r̃ + (1 � g2)In 0

0 0 sl
2S

r
l

3

75

1

CA . (27)

The EnKS operates on the 2n-vector [r0, log(l)] , and therefore we generate an initial ensemble
with ne = 10,000 ensemble members that are sampled from selection-Gaussian distribution f (r0, log(l)).
The variables r0 and log(l) are independent, so we generate them independently: 10,000 samples
from the selection-Gaussian n-vector r0 with parameters QSG

r and 10,000 samples from the Gaussian
n-vector log(l) with parameters QG

l . Due to the size of the ensemble relative to the dimension of the
problem, we used neither localization nor inflation in the algorithms.

To illustrate the differences between the SEnKS and the EnKS we present the following results for
both algorithms:
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1. The marginal posterior distributions f (r0,i|d0:T) of the initial temperature field at four monitoring
locations denoted 1, 2, 3, 4 on Figure 12, at time T = 0, 20, 30, 50.

2. The marginal maximum a posteriori (MMAP) prediction of the initial temperature field at time at
time T = 0, 20, 30, 50.

3. Realizations from the posterior distribution f (r0|d0:T) of the initial temperature field at time
T = 50.

4. The root mean square errors (RMSE) of the MMAP prediction of the initial temperature field
relative to the true initial temperature field at time T = 50.

Figure 14. Data collected over time (points) and true temperature (�C) evolution at the data collection
points (line).

The marginal posterior pdfs f (r0,i|d0:T) at the four monitoring locations at time T = 0,20,30,50 are
displayed in Figures 16 and 17 for the SEnKS and EnKS algorithms, respectively. At T = 0, the prior
models for both algorithms are identical and so are the marginal pdfs. Monitoring location 1 is placed
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inside the high temperature area. As observations are assimilated, the marginal pdf from the SEnKS
remain bi-modal, but the high value mode increases steadily. For the other monitoring locations, all placed
outside the high temperature area, the bi-modality is reproduced but with a dominant low value mode.
The relative size of the modes reflects the distance to the high temperature area and the observation
locations. The marginal pdfs from the EnKS lose their bi-modality after a few assimilation steps and from
then on the Gaussian-like marginal pdfs are only slightly shifted by the assimilation of observations.

Figure 15. Realizations from the selection-Gaussian initial distribution of the initial temperature field
f (r0) at time T = 0 (upper panels) and associated spatial histogram (lower panels). Upper panels: the
colorbar gives the temperature in �C. Lower panels: the horizontal axes represent the temperature
(�C), the vertical axes represent the relative prevalence of each temperature value for the realization
right above.

Figure 16. SEnKS approach: Marginal posterior distributions of the initial temperature f (r0,i|d0:T) at
time T = 0, 20, 30, 50 at monitoring locations (i = 1, 2, 3, 4) denoted (p1, p2, p3, p4). The horizontal axes
representing temperature are expressed in �C.
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Figure 17. EnKS approach: Marginal posterior distributions of the initial temperature f (r0,i|d0:T) at
time T = 0, 20, 30, 50 at monitoring locations (i = 1, 2, 3, 4) denoted (p1, p2, p3, p4). The horizontal axes
representing temperature are expressed in �C.

Figure 18 displays the MMAP predictions of the initial temperature field based on the SEnKS
and the traditional EnKS at time T = 0, 20, 30, 50. For the SEnKS, the high temperature area is clearly
identifiable with clear contrast from time T = 30 while for the EnKS the high temperature area is
hardly ever identifiable on the MMAP predictions that show little contrast. Figure 19 displays the
MMAP prediction of the initial temperature field at T = 50 along the section A-A’, see Figure 12,
for the SEnKS and the traditional EnKS. The SEnKS clearly identifies the high temperature area and
the 80% HDI covers the truth, while the EnKS clearly fails to identify the high temperature area and
the 80% HDI does not even cover it.

Figure 18. MMAP predictions of the initial temperature (�C) field at time T = 0, 20, 30, 50 for the SEnKS
approach (upper) and the EnKS approach (lower).
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Figure 19. MMAP predictions of the initial temperature (�C) field (r0|d0:T) with 80% HDI in cross
section A-A’ at time T = 50 with SEnKS (left) and with EnKS (right).

Realizations of the posterior model at T = 50 based on the SEnKS and the traditional EnKS
algorithms are displayed in Figures 20 and 21, respectively. The SEnKS produces realizations
that appear bi-modal while the ensemble members from the EnKS display more symmetric spatial
histograms. Even though the differences between the realizations are quite subtle, they are consistent
with previous results.

Table 4 shows that RMSE of the MMAP prediction relative to the true initial temperature field for
the SEnKS is approximately 20% lower than for the EnKS.

This test case clearly illustrates the ability of the SEnKS to conserve multimodality in the posterior
distribution, and it leads to predictions with better contrast and accuracy. We conclude that the SEnKS
algorithm provides a more reliable reconstruction of the initial state of the temperature field than
the traditional EnKS algorithm. Note that the posterior model for the unknown diffusivity field
f (log(l)|d) can also be assessed with the two algorithms. When comparing the MMAP predictions
relative to the true diffusivity field, see Figure 12, we observe that none of the algorithms provide
reliable predictions. We conclude that the small scale variations in the field are not sufficiently distinct
to be identified.

Figure 20. SEnKS approach: Realizations from the posterior distribution f (r0|d0:T) of the initial
temperature field at time T = 50. Upper panels: the colorbar gives the temperature in �C. Lower panels:
the horizontal axes represent the temperature (�C), the vertical axes represent the relative prevalence of
each temperature value for the realization right above.
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Figure 21. EnKS approach: Realizations from the posterior distribution of the initial temperature field
f (r0|d0:T) at time T = 50. Upper panels: the colorbar gives the temperature in �C. Lower panels: the
horizontal axes represent the temperature (�C), the vertical axes represent the relative prevalence of
each temperature value for the realization right above.

Table 4. RMSE comparing the MMAP prediction of the initial temperature field and the initial
temperature field at time T = 50.

SEnKS ENKS

RMSET=50 2.92 3.72

4. Discussion

The traditional EnKF and EnKS algorithms provide an ensemble that directly represents
the posterior models f (rT+1|d0:T) and f (r0:T |d0:T), respectively. Hence, the posterior models
can be assessed by displaying statistics based on these ensembles. Reliable assessment of the
posterior model in the two test cases can be obtained with approximately 1000 ensemble members.
The SEnKF and SEnKS algorithms under study provide an ensemble of the augmented posterior
models, f (r̃T+1, n|d0:T) and f (r̃0:T , n0:T |d0:T), respectively. In order to obtain the posterior models of
interest, f (rT+1|d0:T) and f (r0:T |d0:T), the conditioning on n 2 A must be made by empirical sampling
based inference, see [21,22]. This inference requires the estimation of the expectation vector µr̃n and
covariance matrix Sr̃n. The two test cases are defined on a (21 ⇥ 21)-grid for both r̃t and n—hence in
dimension 882. The expectation and covariance will have 882 and 389,403 unique entries, respectively.
Our experience from this study is that approximately 10,000 ensemble members are required to obtain
reliable assessment of the posterior models of interest. To reduce the ensemble size, we have tested
various localization approaches [29], without notable success, and leave the subject for further research.

5. Conclusions

Data assimilation of spatio-temporal variables with multimodal spatial histograms is challenging.
Traditional ensemble Kalman algorithms enforce a regression towards the mean due to the linearized
conditioning on observations, hence the multimodality is averaged out. We introduce the selection
ensemble Kalman algorithms, termed SEnKF and SEnKS. These algorithms are based on recursive
expressions similar to the ones justifying the traditional ensemble Kalman algorithms, but they are
defined in an augmented space including the selection variable. From the two case studies, we conclude
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that multimodality is much better represented by the selection ensemble Kalman algorithms than by
the traditional ones. We obtain RMSE reductions in the range of 20 to 30%.

The traditional ensemble Kalman algorithms provide an ensemble representation of the posterior
model of interest hence making assessment of the posterior pdf simple. The selection ensemble Kalman
algorithms are defined in an augmented space and conditioning on the selection variable must be
made a posteriori. For this conditioning to be reliable, the ensemble size needs to be much larger
than for the traditional algorithms. Hence, there is a trade-off between improved reproduction of
multimodal characteristics of the phenomenon under study and the computational demands. In our
case study, the ensemble size needed to be increased by approximately a factor of ten.

We have not fully explored the possibilities of robust estimation of model parameters in
the conditioning of the selection variable. This robustification may reduce the ensemble size
requirements. Note that parallelization in forwarding of the ensemble is possible and it will reduce the
computer demands.
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Glossary

rt 2 Rn discretized spatial variable at time t.
[r̃t, n] 2 R2n Gaussian variables; basis and auxiliary variables, at time t.
A ⇢ Rn selection set.
rt = [r̃t|n 2 A] selection Gaussian variable at time t.
µ· 2 Rn expectation vector.
S· 2 Rn ⇥ Rn covariance matrix.
S

r
· 2 Rn ⇥ Rn correlation matrix.

G·|· 2 Rn ⇥ Rn matrix cross-correlation
dt 2 Rm observation variable at time t.
w(rt, er

t ) forward function at time t.
y(rt, ed

t ) observation function at time t.
r·(t) 2 R[�1,1] spatial correlation function.

Appendix A

The algorithms detailed in Algorithms A1 and A2 follow the formalism in [4].
Algorithm A1 description: The SEnKF is a two-step algorithm. The first step is a traditional EnKF

that evaluates [r̃T+1, n|d0:T ]. The second step consists of a sampling step where the target quantity
[rT+1|d0, ..., dT ] is evaluated using [r̃T+1, n|d0:T ] from the first step.
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Algorithm A1 Selection Ensemble Kalman Filter (SEnKF)

A time series of ensembles is defined as et = {(r̃u(i)
t , n

u(i)
t , d

i
t), i = 1, ..., ne}, 8t = 0, · · · , T and the

(2n + m)-vector [r̃t, nt, dt] has the following covariance matrix:
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10.

"
r̃

c(i)
t

n
c(i)
t

#
=

"
r̃

u(i)
t

n
u(i)
t

#
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16. d
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t+1), i = 1, ..., ne

17. et+1 = {(r̃u(i)
t+1, n

u(i)
t+1, d

i
t+1), i = 1, ..., ne}

18. Else
19. et+1 = {(r̃u(i)

t+1, n
u(i)
t+1), i = 1, ..., ne}

20. End iterate
21. Estimate µr̃n, Sr̃n from eT+1 ! µ̂r̃n, Ŝr̃n

22. Assess
23. f̂ (rT+1|d0, ..., dT) =

⇥
Fn(A; µ̂n, Ŝn)

⇤�1 ⇥ Fn(A; µ̂n + Ĝn|r̃(r � µ̂r̃), Ŝn|r̃) ⇥ jn(r; µ̂r̃, Ŝr̃)
24. End Algorithm

The ensemble eT+1 represents [r̃T+1, n|d0:T ]. To assess f (rT+1|d0:T) = f (r̃T+1|d0:T , n 2 A),
the sampling algorithm specified in [21] requires E[r̃T+1, n|d0:T ] = µr̃n and Cov[r̃T+1, n|d0:T ] = Sr̃n

which are estimated using the ensemble eT+1.

Algorithm A2 description: The SEnKS is a two-step algorithm. The first step is a traditional
EnKS that evaluates [r̃t, n|d0:T ]. The second step consists of a sampling step where the target quantity
[rt|d0, ..., dT ] is evaluated using [r̃t, n|d0:T ] from the first step.
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Algorithm A2 Selection Ensemble Kalman Smoother (SEnKS)
Two time series of ensemble sets are defined as
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0
r̃nd

9.

"
r̃

c(i)
0

n
c(i)
0

#
=

"
r̃

u(i)
0

n
u(i)
0

#
+ Ĝ
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0:t
r̃n,dŜ
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Abstract Data assimilation in reservoir modeling often involves model variables that
are multimodal, such as porosity and permeability. Well established data assimilation
methods such as ensembleKalman filter and ensemble smoother approaches, are based
on Gaussian assumptions that are not applicable to multimodal random variables. The
selection ensemble smoother is introduced as an alternative to traditional ensemble
methods. In the proposed method, the prior distribution of the model variables, for
example the porosity field, is a selection-Gaussian distribution, which allows mod-
eling of the multimodal behavior of the posterior ensemble. The proposed approach
is applied for validation on a two-dimensional synthetic channelized reservoir. In the
application, an unknown reservoir model of porosity and permeability is estimated
from the measured data. Seismic and production data are assumed to be repeatedly
measured in time and the reservoir model is updated every time new data are assim-
ilated. The example shows that the selection ensemble Kalman model improves the
characterisation of the bimodality of the model parameters compared to the results of
the ensemble smoother.
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1 Introduction

The predictions of fluid flow reservoir models are generally affected by the uncer-
tainty in the initial reservoir model of petrophysical properties, such as porosity and
saturation. This model is usually built by integrating different types of data (core mea-
surements, well logs, and surface seismic measurements) and by using geophysical
data and statistical algorithms. The so-obtained static reservoir model is then used as
an input for fluid flow simulators to predict the dynamic changes in fluid saturation
during injection and production. However, there are several sources of uncertainties
that might impact the accuracy of the static reservoir model, and as a consequence
they affect the accuracy of the fluid flow predictions. Probability random fields can
be used to represent the model uncertainty. When additional data become available,
including production data or repeated seismic surveys, the static model is updated to
reduce the initial uncertainty and improve the reservoir description (Oliver et al. 2008;
Evensen 2009).

During injection and production, direct observations of the fluid saturation can be
acquired at the well locations. However, this information is available only at sparse
locations and cannot fully explain the local variations far away from the wells. Seis-
mic data, repeatedly acquired at multiple times, are used to monitor the changes in
seismic response during injection and production (Landrø 2001; Landrø et al. 2003;
Dadashpour et al. 2010; Trani et al. 2012). The changes in fluid saturation affect the
elastic response of the reservoir. Therefore, by measuring seismic and well data at dif-
ferent times, rock and fluid properties can be predicted by solving inverse problems.
In reservoir modeling, this process is called history matching (Williams et al. 1998),
which is a data assimilation problem where a set of unknown model variables are
updated every time new data are available (Evensen 2009). Time-lapse seismic data
have been previously used in history matching in reservoir applications (Huang et al.
1997; Landa et al. 1997; Aanonsen et al. 2003; Kretz et al. 2002; Dong et al. 2005).
The integration of seismic data leads to several challenges associated with the reso-
lution of the data and the dimensionality of the problem. In this work, the measured
data include oil production and bottom hole pressure at the wells and surface seismic
data, and the unknown model variables are the porosity and saturation fields, but the
process can be extended to other rock and fluid properties.

Several methods have been presented to solve data assimilation problems, such as
gradient-based techniques (e.g. Gauss–Newton), derivative-free optimizationmethods
(e.g. Hooke–Jeeves direct search, genetic algorithm, and particle swarm optimiza-
tion) and Monte Carlo methods (e.g. ensemble Kalman filter and particle filtering) as
described in Oliver and Chen (2011). However, one of the main challenges in seismic
and production data assimilation is the representation of the uncertainty. The Ensem-
ble Kalman filter (EnKF) is a Bayesian updating method that relies on the Kalman
filter predictor-corrector structure (Evensen 2009). This method has been successfully
applied to several geoscience problems including subsurfacemonitoring (Nævdal et al.
2003; Oliver et al. 2008; Evensen 2009; Oliver and Chen 2011). Skjervheim et al.
(2005) applied the EnKF approach to time-lapse seismic and production data in a
three-dimensional field case.
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Several variations of the ensemble approach have been presented to improve the
accuracy of the predictions, including the ensemble smoother and the ensemble
smoother with multiple data assimilation (Emerick and Reynolds 2013). Numerous
attempts focusing on reproducing the uncertainty in the Kalman gain estimate have
also been presented (Myrseth et al. 2010; Sætrom and Omre 2011). Mathematical
formulations including localization, covariance inflation, and dimensionality reduc-
tion have also been tested for preventing overfitting, ensemble collapsing and spurious
correlations and to make the approach applicable to practical applications, including
non-linear models in large grids. However, ensemble based methods are generally
based on Gaussian assumptions for the conditional distribution of the model, and
therefore it is not theoretically applicable to models with multimodal random vari-
ables. A regression towards the mean occurs during the conditioning steps, thereby
rendering posterior marginal distributions Gaussian. This is a challenging problem in
reservoir simulation because subsurface properties, such as porosity and saturation,
often show non-Gaussian distributions owing to the underlying geology. The focus on
this study is on representing non-Gaussian features in the posterior ensemble of the
variables of interest.

Statisticalmethods, such asEnsembleRandomizedLikelihood (EnRML) (Chenand
Oliver 2012), Gaussian anamorphosis (Bertino et al. 2003; Zhou et al. 2012), Gaussian
mixture models (Dovera and Della Rossa 2011) and truncated pluri-Gaussian (Oliver
and Chen 2018), have been developed to address this issue. EnRML and Gaussian
anamorphosis attempt to modify the conditioning step to preserve the desirable fea-
tures in the posterior ensemble, and they are compatible with any prior ensemble.
Gausssian mixture and truncated pluri-Gaussian models assume specific prior distri-
bution, and the ensemble algorithm is adapted to the priormodel. Recent developments
also include the indicator based data assimilation proposed in Kumar and Srinivasan
(2018) and the hierarchical truncated pluri-Gaussian simulation (Silva and Deutsch
2019).

An alternative to Gaussian mixture models is the selection-Gaussian models
(Arellano-Valle et al. 2006; Arellano-Valle and del Pino 2004; Omre and Rimstad
2018). These models have been applied to spatio-temporal inversion in Conjard and
Omre (2020) and validated using synthetic examples. In this manuscript, the compati-
bility of the selection Kalman model framework detailed in Conjard and Omre (2020)
is extended by integrating the selection Kalman model with the ensemble smoother.
The resulting approach is named ’selection ensemble smoother’. The prior for the ini-
tial state vector is a selection-Gaussian distribution, but instead of sampling the initial
ensemble directly from the selection-Gaussian distribution, the proposed approach
takes advantage of the structure of the selection-Gaussian to sample from a Gaussian
augmented state vector, thereby preventing unwanted regression towards the mean
while keeping the computational cost to a minimum. A similar approach has been
proposed for asymmetric priors using the closed skew Gaussian distribution (Naveau
et al. 2005; Rezaie and Eidsvik 2014).

The proposed methodology is then tested on a two-dimensional channelized reser-
voir, with the goal of estimating the porosity and saturation fields based on seismic
and production data. In Sect. 2, the problem is defined in a Bayesian formulation, the
novel method is presented and the forward operator for the reservoir model is defined.
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In Sect. 3, a synthetic two-dimensional case study featuring a channelized reservoir
with two facies is presented. In Sect. 4, conclusions are presented.

2 Methodology

The Methodology section describes the proposed framework for data assimilation in
reservoir modeling. The Bayesian formulation of the selection ensemble smoother is
first presented. Then, the forward operators for the geophysics and fluid flowmodeling
are summarized.

In this paper, f ( y) denotes the probability density function (pdf) of a random
variable y, ϕn( y;µ,!) denotes the pdf of the Gaussian n-vector y with expectation
n-vector µ and covariance (n× n)-matrix !. Furthermore, "n(A;µ,!) denotes the
probability of the aforementioned Gaussian n-vector y to be in A ⊂ Rn. Further, in
is used to denote the all-ones n-vector.

2.1 Hidden Markov Model

From a Bayesian perspective, the data assimilation can be assimilated in a hidden
Markov model formulation, where at a given time the current state is updated based
on the previous state and the current measurements. The state of the chain represents
the values of the variables of interest. If a variable of interest is r and the observable
measurement is d, the goal of data assimilation is to predict the initial value of the
variable of interest, i.e. the state of the chain r0 = r t=0 based on the data dt available
at different times t = 0, . . . , T , assuming that the forward model and the likelihood
function of the measurements are known.

Given the prior model of the initial state vector r0 ∈ Rn, the distribution of the
vector of the following states [r1:T+1|r0] = [r1, . . . , rT+1|r0] is defined as

f (r1:T+1|r0) =
T∏

t=0

f (r t+1|r t ), (1)

with

[r t+1|r t ] =ωt (r t )+ ϵrt ∼ f (r t+1|r t ), (2)

where ωt (·) ∈ Rn is the forward operator with random Gaussian n-vector ϵrt , inde-
pendent and identically distributed (iid) for each time t . The forward model defines a
first-order Markov chain.

Consider, then, a set of measurements d = {d1, . . . , dT } where dt ∈ Rm,∀t =
1, . . . , T . It is assumed that the measured data depend on the variables of interest
according to a likelihood model. The likelihood model for [d|r] is conditionally inde-
pendent and defined as
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f (d|r) =
T∏

t=0

f (dt |r t ), (3)

with

[dt |r t ] =ψt (r t )+ ϵdt ∼ f (dt |r t ), (4)

where ψt (·, ·) ∈ Rm is the likelihood function with random Gaussian m-vector ϵdt , iid
for each t .

Let "t = ωt ◦ ωt− 1 ◦ . . .ω1 such that

[r t+1|r0] = "t (r0)+ ϵrt , (5)

then, it is possible to write [dt |r0] as

[dt |r0] = ψt ◦ "t− 1(r0)+ ϵdt , (6)

and consequently [d|r0] as

[d|r0] =

⎡

⎣
ψ1 ◦ "0(r0)

. . .

ψT ◦ "T − 1(r0)

⎤

⎦ +

⎡

⎣
ϵd1
. . .

ϵdT

⎤

⎦ . (7)

Equations 1 and 4 provide the framework for the EnKF, whereas Eq. 7 gives the
framework for the ensemble smoother using the same hidden Markov model formu-
lation.

2.2 Ensemble Smoother

The ensemble smoother is an inverse method that assimilates the measured data d in
a unique step by evaluating the likelihood f (r0|d). The likelihood model described
in Eq. 7 is represented as

d= g (r0)+ δ, (8)

where g (r0) =

⎡

⎣
ψ1 ◦ "0(r0)

. . .

ψT ◦ "T − 1(r0)

⎤

⎦ and δ =

⎡

⎣
ϵd1
. . .

ϵdT

⎤

⎦.

In this data assimilation approach, an ensemble ofne members r p(i), i = 1, . . . ,ne
is generated from the prior distribution of the initial state f (r0) and the ensemble
members are updated as

r u (i) = r p(i) + $̂r,d !̂
− 1
d (d− di ), i = 1, . . . ,ne, (9)
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where di represents the pseudo-data (i.e. the data predicted from the model according
to the forward operator) generated for the ensemble member i as d(i) = g (r p(i))+ δ,
and where the crosscovariance and covariance matrices, $̂r,d and !̂d , are computed
as

$̂r,d = 1
ne

ne∑

i=1

(r p(i) − r p)(di − d)T , (10)

!̂d = 1
ne

ne∑

i=1

(di − d)(di − d)T , (11)

with r p being the empirical mean from the initial ensemble and d the empirical mean
of the pseudo-data. Localization has been proposed in data assimilation problems to
avoid spurious correlations and ensemble collapse (Houtekamer and Mitchell 1998;
Chen and Oliver 2011). The method is based on distance-dependent functions to
constrain the updates of the model variables and their variability to a specific area
based on the observed data in that region. Localization should be applied on a scale
larger than the correlation length of the spatial variograms of the model variables to
avoid introducing biases on the spatial correlation and resolution of the model. In the
case study, localization is used on both $̂r,d and !̂d because, as is often the case, the
size of the ensemble is small compared to the dimension of the state vector.

One of the most popular inverse methods in reservoir modeling simulation is the
ensemble smootherwithmultiple data assimilation (ES-MDA) (Emerick andReynolds
2013). In the MDA version of the ensemble smoother, the data are assimilated mul-
tiple times to improve convergence. This approach requires a limited number of runs
of the forward operator and handles the non-linearity in the forward and likelihood
models. The mathematical formulation of the MDA approach is detailed in Emerick
and Reynolds (2013).

In the ensemble smoother, the prior distribution for the initial state can be cho-
sen freely, however it is difficult to preserve non-Gaussian features in the posterior
distribution owing to the linearized update (Eq. 9). The selection ensemble smoother
attempts to represent non-Gaussian features in the posterior distribution.

2.3 Selection Ensemble Smoother

The selection-Gaussian pdf can represent multimodality, skewness, and heavy-tailed
distributions; it is an extension of the skew-Gaussian distribution (Omre and Rimstad
2018). Consider a Gaussian (n+ n)-vector [r̃, κ]

[
r̃
κ

]
∼ ϕ2n

([
r̃
κ

]
;
[
µr̃
µκ

]
,

[
!r̃ !r̃$

T
κ|r̃

$κ|r̃!r̃ !κ

])
, (12)

where µr̃ and µκ are n-vectors, $κ|r̃ is a (n× n)-matrix, and !r̃ , !κ , and !κ|r̃ are
three covariance (n× n)-matrices with !κ = $κ|r̃!r̃$

T
κ|r̃ + !κ|r̃ .
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If r0 is defined as r0 = [r̃|κ ∈ A], where A ⊂ Rn is a selection set of dimension
n, then r0 is distributed according to a selection-Gaussian pdf given by

f (r0) =
[
"n(A;µκ ,!κ)

]− 1

"n(A;µκ + $κ|r̃ (r0 − µr̃ ),!κ|r̃ ) × ϕn(r0;µr̃ ,!r̃ ). (13)

The structure of the selection-Gaussian model provides a suitable model for non-
Gaussian features of the posterior distribution of the inverse problem.

A selection-Gaussian random variable r A ∈ Rn can be written as [r|κ ∈ A] with
r ∈ Rn, κ ∈ Rn, A ⊂ Rn, and where [r, κ] is jointly Gaussian. When conditioning
on data, it is always possible to consider [r, κ], condition first on the data d and
then on κ ∈ A. Similarly when transforming r A :→ g (r A), one can show that the
distribution of g (r A)) is equal to that of [g (r)|κ ∈ A]. In any data assimilation process
where a selection-Gaussian distribution is chosen as a prior, it is therefore possible
to work on the augmented Gaussian vector [r, κ] throughout the assimilation step(s),
and condition on the latent variable κ being in A afterwards. The selection Ensemble
Kalman filter detailed in (Conjard and Omre 2020) adopts this approach.

Theproposed selection ensemble smoother for data assimilation problems is defined
by aprior distribution f (r0) that is selection-Gaussian such that r0 = [r̃0|κ ∈ A], A ⊂
Rn, and where the prior state vector is represented by the augmented vector [r̃0, κ].
When assessing [r0|d1:T ], the selection ensemble smoother first evaluates [r̃0, κ |d1:T ]
and then adopts aMarkov chainMonte-Carlo (MCMC) algorithm (Omre and Rimstad
2018) to calculate [r0|d1:T ] = [r̃0|κ ∈ A, d1:T ]. There are two advantages in using
the augmented state vector. First, in ensemble methods, the update step is optimal if
the prior is Gaussian and the prior and the data are jointly Gaussian. Therefore, by
enforcing a Gaussian initial state vector, the optimal update conditions are ensured.
Then, since the update is optimal only if the prior is Gaussian and the forward and
likelihood models linear and Gaussian, the traditional update tends to make the poste-
rior ensemble more and more Gaussian; however, conditioning on the latent variable
after the assimilation is performed allows representing non-Gaussian features in the
posterior distribution.

The selection ensemble smoother proceeds as follows. First,ne ensemble members
are generated

[r̃ p(i), κ p(i)], i = 1, . . . ,ne, (14)

from the augmented Gaussian prior distribution of the initial state f (r0, κ), and they
are updated as

[
r̃ u (i)

κ u (i)

]
=

[
r̃ p(i)

κ p(i)

]
+ $̂r̃κ,d !̂

− 1
d (d− di ), i = 1, . . . ,ne, (15)
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where di represents the pseudo-data generated for the ensemble member i as d(i) =
g (r̃ p(i))+ δ, and where $̂r̃κ,d and !̂d are calculated as follows

$̂r̃κ,d = 1
ne

ne∑

i=1

([
r̃ p(i)

κ p(i)

]
−

[
r̃
p

κ p

])
(di − d)T , (16)

!̂d = 1
ne

ne∑

i=1

(di − d)(di − d)T , (17)

with r̃
p
and κ p being the empiricalmeans from each component of the initial ensemble

and d being the empirical mean of the pseudo-data. In the case study, localization is
used on both $̂r̃κ,d and !̂d because the size of the ensemble is small compared to the
dimension of the state vector.

After conditioning on the data, the ensemble represents [r0, κ |d]which is assumed
to be Gaussian. The target distribution f (r0|κ ∈ A, d) can be written as

f (r0|κ ∈ A, d) = 1
f (κ ∈ A|d)

∫

A
f (r0|κ, d) f (κ |d)dκ, (18)

=
∫

Rn
f (r0|κ, d)

f (κ, d)I A(κ)
f (κ ∈ A, d)

dκ, (19)

=
∫

Rn
f (r0|κ, d) f (κ |κ ∈ A, d)dκ . (20)

Equation 20 shows how sampling from the posterior distribution is performed:
first from the truncated Gaussian κ∗ ∼ [κ |κ ∈ A, d] and then from the Gaussian
vector r∗ ∼ [r0|κ∗, d]. Hence r∗ are distributed according to the target distribution
f (r0|κ ∈ A, d).
The challenging step is the sampling from the truncated Gaussian, which is per-

formed using an MCMC sampling algorithm (Omre and Rimstad 2018). The MCMC
algorithm, denoted by S, generates κ∗

κ∗ = S(µ̂κ |d, !̂κ |d, A), (21)

where µ̂κ |d and !̂κ |d are the empirical mean and covariance matrix of the posterior
ensemble for κ . Note that the selection set A is considered constant throughout the
algorithm. The empirical covariance matrix estimate !̂κ |d is known to be subject to
sampling errors, which are addressed by using localization on !̂κ |d. The algorithm
itself has to be tailored to the specific application as rank deficiency is to be expected
in high-dimensional inverse problems. The original algorithm expected a positive
definite covariance matrix, and even though localization does increase the rank of
the localised matrix, it is unlikely that it becomes full rank after the transformation.
Therefore, singular value decomposition is used to evaluate the pseudo inverse instead
of outright inverting the matrix in the algorithm. The singular value decomposition of
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!̂κ |d gives,

!̂κ |d = U!V T , (22)

where U and V are (n×n) orthogonal matrices, and ! is an (n×n) diagonal matrix
whose diagonal entries are non-negative. The pseudo inverse !̂

+
κ |d of !̂κ |d is then

given by

!̂
+
κ |d = V!+UT , (23)

where !+ is the pseudoinverse of !, which is formed by replacing every non-zero
diagonal entry by its inverse and transposing the resulting matrix.

2.4 Forward Operator

The data assimilation problem discussed in this work requires two operators: the fluid
flow simulation operator used as a forward model and the geophysical operator used
for the likelihood model of the measured data.

The forecast of the dynamic behavior of fluid displacement in the subsurface
requires a mathematical-physical model generally called fluid flow simulation. For
hydrocarbon-water two-phase flow in subsurface reservoirs, the model is based on
Darcy’s equation and mass balance law and includes two partial differential equations
(PDE) in two unknowns, namely water saturation sw(t) andwater pressure pw(t). This
model assumes that there are only two immiscible fluids, the flow is isothermal, and
the capillary pressure is a function of saturation. For a system of oil and water, the
PDE system can be written as follows

∇ ·
[

kkw
Bwµw

(∇ pw(t) − γw∇d )
]
+qw = ∂

∂t

(
φsw(t)
Bt

)
, (24)

∇ ·
[

kko
Boµo

(∇(pw(t) − pc(t)) − γo∇d )
]
+ qo =

∂

∂t

(
φ(1 − sw(t))

Bo

)
, (25)

where k is the absolute permeability, φ is the porosity, d is the depth, pc is the capillary
pressure,qw is the water production rate,qo is the oil production rate and the constants
kw, Bw, µw, γw, γw, ko, Bo, µo, and γo are parameters associated with the fluid
properties of oil and water. If porosity and permeability are known, then the system
can be solved using finite difference methods to compute the water and saturation and
pressure, sw(t) and pw(t), at any time t . The oil saturation and pressure can then be
computed from water saturation and water pressure.

The permeability field is assumed to be a point-wise function of the porosity field
given by Kozeny–Carman’s equation

k = a × φ3

(1 − φ)2
, (26)
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where a is a geometrical factor estimated by fitting the true permeability field. This
approximation allows removing k from the state vector because it is then a known
function of the porosity φ.

Similarly, the prediction of the geophysical response of subsurface models requires
a mathematical-physical model that includes rock physics relations and seismic wave
propagationmodels. Rock physicsmodels allow computing P-wave and S-wave veloc-
ities and densities given the petrophysical properties, porosity, and fluid saturation.
The seismic wave propagation model allows calculating the seismic response, in terms
of amplitude and travel time, based on the velocities and densities. For a partially-
saturated porous rock of porosity φ and water saturation sw, the density ρ(φ, sw) can
be computed as

ρ(φ, sw) = (1 − φ)ρm + φ (ρwsw + ρo(1 − sw)) , (27)

and the P-wave and S-wave velocities, vp(φ, sw) and vs(φ, sw), are given by Raymer–
Dvorkin’s relations (Dvorkin et al. 2014)

vp(φ, sw) = (1 − φ)2

√
Km + 4

3Gm

ρm
+ φ

√√√√
(

sw
Kw

+ 1− sw
Ko

)− 1

ρwsw + ρo(1 − sw)
, (28)

vs(φ, sw) = (1 − φ)2

√
Gm

ρm

√
(1 − φ)ρm

ρ(φ, sw)
, (29)

where ρm is the density of the solid phase, ρw is the density of water, ρo is the density
of oil, Km is the bulk modulus of the solid phase, Gm is the shear modulus of the solid
phase, Kw is the bulk modulus of water, and Ko is the bulk modulus of oil. All these
parameters are assumed to be constant and known. The reflection coefficients rpp(t, θ)
associated with seismic wave propagation are a function of the seismic travel time and
incident angle θ and depend on the relative change in P-wave and S-wave velocity
and density. For small incident angles, the reflection coefficients can be approximated
using Aki–Richards equations (Aki and Richards 1980) as

rpp(t, θ) = rp(θ)
∂

∂t
vp(t)+ rs(θ)

∂

∂t
vs(t)+ rρ(θ)

∂

∂t
ρ(t), (30)

where

rp(θ) =
1
2
(1+ tan2(θ)), (31)

rs(θ) = − 4c sin2(θ), (32)

rρ = 1
2
(1 − 4c sin2(θ)), (33)

with c being a constant value equal to the square of the average vs/vp ratio.
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Fig. 1 Graph of the hidden Markov model

Fig. 2 Data assimilation flowchart

Fig. 3 Reference porosity and permeability fields, with the location of the injection and producer wells

The amplitudes s(t, θ) of the seismogram are then approximated as a convolution
of a wavelet w(t, θ) and the reflection coefficients rpp(t, θ) as

s(t, θ) =
∫

w(u , θ)rpp(t − u , θ)du , (34)

where the waveletw(t, θ) is generally assumed to be known. As shown in Buland and
Omre (2003), the convolution can be discretized by decomposing thematrix associated
with the forward operator as G = WAD, where W is the wavelet matrix, A is the
reflection coefficient matrix, and D is the first order differential matrix.
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Fig. 4 Water saturation at initial and final times

Fig. 5 Well production data: bottom hole pressure and oil production rate

In the current implementation, we adopted a forward model based on the con-
volution of the wavelet with the linearized approximation of Zoeppritz equations
(Shuey 1985; Aki and Richards 1980) because it is mathematically tractable, and the
computational cost is limited. The proposed approach can be extended to other for-
ward operations including convolutional models based on full Zoeppritz equations,
Kennett’s invariant imbedding method and the Born weak scattering approximation
(Zoeppritz 1919; Kennett 1984; Russell 1988; Sheriff and Geldart 1995; Yilmaz 2001;
Aki and Richards 1980). In theory, the same formulation can also be applied to the
full waveform model for wave propagation, however, the computational cost of the
approach is still prohibitive for field-scale applications. Applications of ensemble-
based methods to full waveform inversion problems have been proposed Thurin et al.
(2019) and Gineste et al. (2020), according to Gaussian assumptions of the error and
model variables.
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Fig. 6 Seismic data (near and far angle) at the top and bottom of the reservoir after 12 years of injection
and production

Table 1 Parameter values

µ
φ
r̃ () µ

φ
κ () σ

φ
r̃ () γ φ() A() dx (m) dy(m)

− 2.5 0 0.2 0.99 (]-∞,- 0.2] ∩ [0.3, 2[)n 100 200

3 Application

The proposed method is applied to a two-dimensional synthetic case to demonstrate
the validity of the selection ensemble smoother (S-ES) and the advantages compared
to the traditional ensemble smoother (ES).

The synthetic example mimics the production of hydrocarbon in a reservoir by
water injection as shown in Liu and Grana (2018, 2020). The geology of the reservoir
includes four channels in the north-south direction with an average porosity of 0.2.
The channels are surrounded by shale with effective porosity close to 0. It is assumed
that the entire reservoir is filled by oil with an irreducible water saturation of 0.2.
Water is injected in four wells and oil is produced from six wells. All the wells are
located within the channels. Fluid flow occurs predominantly within the channels due
to the low porosity and permeability of the surrounding shale, and the injected water
displaces the oil in place towards the producing wells.
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Fig. 7 Prior ensemble of models: mean maps and marginal histograms

Fig. 8 Posterior ensemble prediction from the selection ensemble smoother: marginal maximum a poste-
riori (MMAP) predictions

The reservoir model mimics the two-phase (oil and water) flow due to water injec-
tion and oil production in a geological system represented in a two-dimensional
uniform grid ofn= 64×64 cells of dimension 40×40×25m. Figure 3 shows the true
porosityφr and permeability k r fields. The reference porositymodel is generated using
the following geostatistical modeling approach: First, a facies model for a channelized
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Fig. 9 Posterior ensemble prediction from the selection ensemble smoother: predictions along horizontal
and vertical lines

system is generated using object modeling with randomly sampled parameters of the
channel geometry (length, width, and tortuosity). Then a porosity model is generated
using sequential Gaussian simulation within each facies using facies-dependent prior
distributions to mimic medium-high porosity within the channels and low porosity in
the background shale. Finally, permeability is simulated in the logarithmic domain,
conditioned on the porosity field using sequential Gaussian co-simulation. Figure 3
shows the geostatistical realization used as the reference (true) model for the applica-
tion. Figure 3 also shows the locations of the four water injection wells (i1, i2, i3, i4)
and the six producer wells (p1, . . . , p6).

Fluid flow is then simulated to create the reference (true) saturation maps for a
time period of 12 years using the Matlab Reservoir Simulation Toolbox (MRST) (Lie
2019). Figure 4 shows the evolution of the water saturation in the field for the reference
porosity and permeability field specified in Fig. 3. The initial water saturation sw0 is
set constant to 0.2, then water propagates predominantly within the channels until it
reaches, after 12 years, one of the producers. Figure 5 shows the bottom hole pressure
(BHP) and the oil production rate (OPR) every six months at the injector and producer
wells, respectively.

In addition to the saturation and production data, a synthetic geophysical dataset is
generated for the data assimilation problem. To generate seismic data, two additional

123



Math Geosci

400 800 1200 1600
Distance (m)

400 

800 

1200

1600
D

is
ta

nc
e 

(m
)

0

0.1

0.2

0.3

0.4
Porosity()

400 800 1200 1600
Distance (m)

400 

800 

1200

1600

D
is

ta
nc

e 
(m

)

0

0.1

0.2

0.3

0.4
Porosity()

400 800 1200 1600
Distance (m)

400 

800 

1200

1600

D
is

ta
nc

e 
(m

)

0

0.1

0.2

0.3

0.4
Porosity()

400 800 1200 1600
Distance (m)

400 

800 

1200

1600

D
is

ta
nc

e 
(m

)

0

0.1

0.2

0.3

0.4
Porosity()

Fig. 10 Posterior realizations from the posterior distribution of the porosity field obtained from the selection
ensemble smoother

Fig. 11 Posterior statistics of the selection ensemble smoother results compared to the true model

geological layers representing non-permeable shale formations are added above and
below the reservoir model. The model then includes three layers (top shale, reservoir,
and bottom shale) and two interfaces (top reservoir and bottom reservoir). Seismic
data are then generated using the rock physics model with constant mineral properties
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Fig. 12 Predicted bottom hole pressure (BHP) at the 4 injection wells obtained from the selection ensemble
smoother; the ensemble members are in black, the measured BHP in red

Fig. 13 Predicted oil production rate (OPR) at the 6 producer wells obtained from the selection ensemble
smoother; the ensemble members are in grey, the measured OPR in red

in sand and shale and the seismic convolutional operator. The seismic data are calcu-
lated for two incident angles of 8◦ (near) and 24◦ (far). Figure 6 shows the seismic
data computed 12 years after injection and production started. Because the reservoir
properties are assumed to be vertically homogeneous within the model, two main

123



Math Geosci

Fig. 14 Ensemble smoother predictions:meanmaps,marginal histograms, and predictions along horizontal
and vertical lines

reflections are generated in the seismic response, at the top and at the bottom of the
reservoir. For this reason, for each trace, the dimension of the data is 4×1 (two angles
and two measurements per angle), the dimension of the vector of elastic variables is
9 × 1 (three properties and three locations per property), and the dimension of the
vector of porosity and initial saturation is 6×1 (two properties and three locations per
property). The seismic operator is represented by a matrix G = WAD of dimensions
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Fig. 15 Predicted bottomhole pressure (BHP) at the 4 injectionwells obtained from the ensemble smoother;
the ensemble members are in black, the measured BHP in red

Fig. 16 Predicted oil production rate (OPR) at the 6 producer wells obtained from the ensemble smoother;
the ensemble members are in grey, the measured OPR in red

4× 9 (W is 4× 4, A is 4× 6, D is 6× 9) and the rock physics model is a system of 3
equations (one for each elastic property) with two unknowns (porosity and saturation).

The focus is on the prediction of the porosity field assumed to be spatially variable
but constant in time, and the water saturation field before and after the experiment.
Following the formalism in Eq. 8, all the measured data, production and seismic are
saved in a vector d that contains OPR and BHP measurements every six months for
twelve years and the seismic amplitudes measured after twelve years. Porosity and
initial water saturation are stored in r0. The forward model f generates the model
predictions according to the discretization of Eqs. 24, 25, 30 and 34 . The measured
data are perturbed by adding white noise represented by the Gaussian error term δ with
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standard deviation 1,
√
2/2 for BHP and OPR respectively. The seismic amplitudes

have a signal to noise ratio of approximately 2.5.
In this case study, data assimilation is performed using two methods: S-ES and ES.

Figure 2 displays a flowchart summarizing the data assimilation procedure. For the
S-ES, the prior distribution of the porosity field φ is defined on log-scale as f (log(φ))
and is selection-Gaussian with parameters

'SG
φ = (µ

φ
r̃ , µ

φ
κ , σ

φ
r̃ ,!

ρ
r̃ , γ

φ, A). (35)

The parameters (γ φ, A) are chosen so that the prior marginal is bimodal, with
modes approximately matching the average porosity values of the two facies in the
reference field. The spatial correlation (n× n)-matrix !

ρ
· is defined by the second

order exponential spatial correlation function ρ(τ ; dx , dy) = exp [− (
τ 2x
d 2x

+ τ 2y
d 2y
)]. The

parameters values are listed in Table 1. The chosen values for dx and dy assume longer
correlation along the y-axis than along the x-axis. The prior distribution for the initial
water saturation field is Gaussian centered at µsw = 0.2 × inwith covariance matrix
!sw = 0.0005 ∗ !

ρ
r̃ , where !

ρ
r̃ is the covariance matrix of the porosity field.

An initial ensemble e0 = {r p(i)0 , i = 1, . . . ,ne} of size ne = 500 is generated.
Covariance localization (Gaspari and Cohn 1999) is used for the conditioning. The
localization was chosen restrictive enough to preserve an acceptable rank in the esti-
mated covariance matrix, thereby preventing ensemble collapse. The mean of the
realizations and the marginal distributions are shown in Fig. 7. The spatial stationarity
is shown in themaps, whereas themarginal distribution is displayed by the histograms,
which show the bimodality of the selection-Gaussian prior distribution for porosity.

The posterior distributions of porosity andwater saturation are then computed using
the S-ESmethod. Figure 8 shows the posteriormean for the porosity field and thewater
saturation field after 12 years obtained by the S-ES. Comparing the posterior mean
of the porosity field to the reference porosity field, it can be observed that channels
are correctly identified with good accuracy. The predicted water saturation field is
smoother than the reference water saturation, but the overall pattern is aptly repro-
duced. Figure 9 shows the prediction and 95% confidence interval for porosity and
water saturation along a vertical and horizontal line of the two-dimensional field. Even
though the uncertainty is slightly underestimated, the S-ES captures the characteristics
of the variations of the porosity and water saturation fields. Inflation was not adopted
to show the uncertainty quantification of the methods, but the use of inflation factors
might mitigate the underestimation in the uncertainty quantification. Figure 10 shows
realizations from the posterior distribution of the porosity field obtainedwith the S-ES.
The channels are correctly predicted with some uncertainties on the boundaries. Fig-
ure 11 shows the spatial histograms of the predicted porosity field and water saturation
field obtained with the S-ES and compares them the reference values. The marginal
maximum a posteriori (MMAP) is used as a predictor due to the marginal bimodality
of the posterior ensemble. The spatial histogram of the mean porosity field shows an
accurate match with the reference porosity field, whereas the water saturation spatial
histogram is slightly smoother than the references one. Both findings are consistent
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Table 2 Statistics comparing
the S-ES prediction to the ES
prediction

S-ES ES

MAEφ 1.96 × 10− 2 2.6 × 10− 2

MAEsw 6.6 × 10− 2 8.5 × 10− 2

corrφ 0.85 0.82

corrsw 0.84 0.75

80% coverage 0.85 0.71

with the analysis of Fig. 8. Figures 12 and 13 show the predicted OPR and BHP for
the S-ES respectively, showing a good agreement with the true data.

For the traditional ES approach, the prior ensemble is generated assuming that
the prior distributions for the log-porosity and initial water saturation fields are
Gaussian. The prior distribution for the porosity field is defined as f (log(φ)) ∼
ϕn(log(φ),µr , σ

2
r × !

ρ
r ), where µr = − 2.5in and σ 2

r = 0.2 are chosen such that
the marginal prior distribution approximates the spatial histogram of the reference
porosity field. The covariance matrix!

ρ
r and the prior distribution for the initial water

saturation field are the same as in the S-ES case. Figure 14 shows the results for the
posterior ensemble for the porosity field and water saturation field obtained using the
ES. The posterior mean of the porosity field seems to identify the channels but the
porosity values are underestimated within the channels. The predicted water satura-
tion is much smoother than the reference water saturation field and the prediction
from the S-ES. The spatial histogram of the mean porosity field shows that the ES
fails to capture the bimodal nature of the porosity field, while the spatial histogram
of the water saturation field severely underestimates the number of locations where
saturation remains equal to the initial value of 0.2 and overpredicts saturation in sev-
eral locations. By analyzing the predictions of porosity and water saturation along
the horizontal and vertical lines, the ES prediction fails to capture the sharp changes,
even though the coverage of the confidence intervals is satisfactory. Figures 15 and 16
display the predicted OPR and BHP for the ES, showing a better match for OPR and
a worse match for BHP compared to the S-ES results.

The two methods are compared using different statistics: the mean absolute error
(MAE), the correlation, and the 80% coverage probability are considered. Let MAEφ

and corrφ define, respectively, the MAE and the correlation between the predicted
porosity field and the reference porosity field. Further, let MAEsw and corrsw define,
respectively, the MAE and the correlation between the predicted water saturation
field and the reference water saturation at the final time step. The 80% coverage
probability is calculated for the predicted porosity field. The results are detailed in
Table 2. The MAE measures for the ES are about 30% higher than those of the S-
ES. The correlations for the porosity are comparable. The correlation for the water
saturation for the S-ES is about 10% higher than that of the ES. The 80% coverage
probability seems to indicates the ES underestimates the uncertainty more than the
S-ES overestimates it. Overall these statistics are favorable to the S-ES. The sensitivity
to the data does not seem to cause over-fitting. The use of multiple data assimilation
and iterative methods could improve the data match for both the ensemble smoother
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and selection ensemble smoother. The S-ES has a higher computational demand than
the ES because the posterior distribution needs to be sampled. On a 64 × 64 grid, it
takes a few minutes to generate 200 samples, which is considered acceptable in view
of the results. When the dimension of the data is very large, such as for field case
reservoir models defined on 3D grids with millions of nodes, the matrix !̂d in Eqs. 9
and 15 is too large to be stored, let alone inverted. In that case, one could propose
a parametric approach where the covariance is defined by a few model parameters
and maximum likelihood estimation is used to estimate those parameters (Skauvold
and Eidsvik 2019). Alternatively, a methodological development along the lines of the
parametric Kalman filter could be considered (Pannekoucke et al. 2016).

4 Conclusions

Seismic and production data assimilation is performed to predict the spatial distribu-
tion of porosity and water saturation using a novel method named ’selection ensemble
smoother’, a Monte Carlo ensemble method that extends the ensemble smoother to
selection-Gaussian models. By using a selection-Gaussian prior and an augmented
initial state vector, the posterior distribution can represent multimodal posterior dis-
tributions. The main advantage of the selection ensemble smoother is the use of the
augmented state vector which makes possible conditioning on the latent variable after
data assimilation. The posterior distribution is then sampled assuming that the model
is selection-Gaussian, thereby allowing multimodal features in the posterior distribu-
tion. The design of the experiment is optimal for the selection ensemble smoother
approach since the channelized system leads to a bimodal porosity distribution. The
results from the selection ensemble smoother are promising since the predictions are
accurate and the data predictions match the measurements. The limited band-with
of the seismic measurements, which limits the resolution of the data, prevents the
inversion from clearly identifying the non-stationarity in the porosity field but still
allows the selection ensemble smoother method to select the right mode, whereas the
ensemble smoother results regress towards the mean.
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Abstract

Assimilation of spatio-temporal data is challenging especially when the variables are suspected to
display non-Gaussian spatial histograms. For these cases, the selection ensemble Kalman filter has
shown to produce encouraging results on synthetic tests cases. The objective of this study is there-
fore to situate its performance on a real data application when compared to established methods. We
first present a review of existing ensemble Kalman filtering methods. We then present a synthetic and
real data study where hydraulic conductivity is predicted using pumping test data. The synthetic study
confirms the suitability of the selection ensemble Kalman filter when the conductivity field displays a
bimodal spatial histogram. The real data study shows that the selection ensemble Kalman filter pro-
vides robust results, but its suitability is questioned when considering the added computational cost
relative to the ensemble Kalman filter with multiple data assimilation.

1 Introduction

Data assimilation for spatio-temporal phenomena is of interest in many scientific fields such as geo-
sciences, numerical weather prediction and oceanography. When cast in a Bayesian setting, we define
a prior distribution for the initial state, a forward and a likelihood model and a posterior distribution.
The forward model represents the evolution of the spatio-temporal variables at play while the likeli-
hood model describes the data acquisition procedure. When the prior distribution for the initial state is
Gaussian and the forward and likelihood models are linear with additive Gaussian noise (Gauss-linear),
the posterior distribution is analytically tractable and can be assessed using the Kalman filter (Kalman,
1960). When the forward and likelihood models are non-linear, the extended Kalman filter (McElhoe,
1966) can be used to approximate the posterior distribution. It however requires repeated evaluations
of sensitivty matrices which can be costly for high-dimensional problems. The ensemble Kalman filter
(EnKF) (Evensen, 1994), a Monte-Carlo implementation of the Bayesian update, provides an alterna-
tive approach. Ensemble members are simulated from the initial distribution and serve as inputs to
the forward model. The ensemble members are then sequentially conditioned on the data using the
covariance matrix estimated from the ensemble itself. In addition to allowing for non-linearity in the

*Corresponding author: maxime.conjard@ntnu.no
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1 INTRODUCTION 2

forward and likelihood models, the ensemble can in principle be simulated from any initial distribu-
tion. The EnKF has successfully been applied to numerical weather prediction (Houtekamer et al., 2005),
oceanography (Bertino et al., 2003), reservoir simulation (Aanonsen et al., 2009) and groundwater flow
(Hendricks Franssen and Kinzelbach, 2008). Many extensions to the method have been developed to
handle its intrinsic weaknesses. Methods (Anderson and Anderson, 1999; Sætrom and Omre, 2012) such
as covariance inflation, can be used to counteract the systematic underestimation of the spread of the
posterior ensemble. Covariance localization (Hamill et al., 2001) and hierarchical approaches (Myrseth
and Omre, 2010) are used to improve covariance matrix estimates which come under scrutiny when the
ensemble size is smaller than the dimension of the state space vector, which is usually the case. Gaus-
sian mixture models (GMM) (Dovera and Della Rossa, 2010) and Gaussian anamorphosis (GA) (Simon
and Bertino, 2009) are used to conserve non-Gaussianity in the posterior distribution. Iterative meth-
ods (Li and Reynolds, 2009) and so called multiple data assimilation (Emerick and Reynolds, 2013) are
used to improve data match in cases where the non linearity in the forward and likelihood models is too
important thereby making data match difficult.

We present a review of ensemble Kalman filtering methods that have been successfully used across
a broad range of applications. The goal of this study is to evaluate the newly developed Selection En-
semble Kalman filter (SEnKF) (Conjard and Omre, 2021, 2020) and establish its applicability to real data
experiments in regard to established methods. The SEnKF is an extension to the EnKF that can model
multimodality, skewness and peakedness in the prior and posterior distributions. The prior model is
defined to be a selection-Gaussian distribution (Arellano-Valle et al., 2006; Arellano-Valle and del Pino,
2004). The selection-Gaussian distribution is a conjugate prior to Gauss-linear forward and likelihood
models and under these assumptions, Bayesian inversion (Omre and Rimstad, 2021; Forberg et al., 2021;
Forberg et al., 2021) and sequential data assimilation (Conjard and Omre, 2021) produce analytically
tractable posterior distributions. The motivation behind the development of the SEnKF is to extend the
methodology to non-linear forward and likelihood models.

The relevance of the SEnKF is investigated through two case studies in which pumping test data is
used to estimate the variables that govern groundwater flow in an aquifer. The synthetic case study de-
termines the applicability of the SEnKF to groundwater flow in which the variables of interest exhibit
spatial bimodality. The real case study illustrates the pertinence of the SEnKF in real data study where
the variables of interest are suspected to exhibit spatial bimodality, by comparing the results with estab-
lished methods.

In this paper y ª f (y) denotes a random variable y distributed according to the probability density
function (pdf) f (y), or alternatively according to the corresponding cumulative distribution function
(cdf) F (y). Moreover, 'n(y ;µ,ß) denotes the pdf of the Gaussian n-vector y with expectation n-vector
µ and covariance (n £n)-matrix ß. Further ©n(A;µ,ß) denotes the probability of the aforementioned
Gaussian n-vector y to be in A ΩRn . We also use i n to denote the all-ones n-vector and I n to denote the
identity (n £n)-matrix.

In Section 2, we introduce the two hidden Markov model, the Kalman model and selection Kalman
model, that provides the theoretical foundations for the rest of the study. In Section 3, a review of the
different ensemble filtering methods is given. In Section 4, the results from the synthetic and real data
case studies are presented. In Section 5, conclusions are forwarded.
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2 Hidden Markov model

Consider the real valued state n-vector r t for t 2Tr : {0,1, . . . ,T,T +1}. Let r denote {r 0,r 1, . . . , r T ,r T+1}
and r i : j denote {r i ,r i+1, . . . ,r j },8(i , j ) 2 T 2

r , i ∑ j . Assume that the temporal m-vectors of observations
d t for t 2Td : {0,1, . . . ,T } are available, and define d = {d 0,d 1, . . . ,d T } and d i : j = (d i , . . . ,d j } accordingly.
The model specified thereafter defines a hidden Markov (HM) model (Cappé et al., 2005) as displayed in
Figure 1.

r 0 r 1 r 2 . . . r T r T+1

d 0 d 1 d 2 . . . d T

Figure 1: Graph of the hidden Markov model.

Prior model: The prior model on r consists of an initial and a forward model,

f (r ) = f (r 0) f (r 1:T+1|r 0), (1)

where f (r 0) is the pdf of the initial state and f (r 1:T+1|r 0) defines the forward model.
The forward model given the initial state [r 1:T+1|r 0] is defined as

f (r 1:T+1|r 0) =
TY

t=0
f (r t+1|r t ), (2)

with
[r t+1|r t ] =!t (r t ,≤r

t ) ª f (r t+1|r t ), (3)

where !t (·, ·) 2 Rn is the forward function with random n-vector ≤r
t . This forward model only involves

the variable at the previous time step r t , hence it defines a first-order Markov chain.
Likelihood model: The likelihood model for [d |r ] is defined as conditional independent with single-site
response,

f (d |r ) =
TY

t=0
f (d t |r t ), (4)

with
[d t |r t ] =√t (r t ,≤d

t ) ª f (d t |r t ), (5)

where √t (·, ·) 2Rm is the likelihood function with random m-vector ≤d
t .

Posterior model: The posterior model for the HM model in Figure 1 is also a Markov chain (Cappé et al.,
2005; Moja et al., 2018) and is given by

[r |d ] ª f (r |d ) =const £ f (d |r ) f (r )

=const £ f (d 0|r 0) f (r 0)
TY

t=1
f (d t |r t ) f (r t |r t°1) f (r T+1|r T ) (6)

= f (r 0|d )
TY

t=1
f (r t |r t°1,d t :T ) f (r T+1|r T ),
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The HM model defined in this section gives a very general framework for the evaluation of the pos-
terior distribution defined in Equation 6. Its analytical tractability depends however on the assumptions
that are made on the prior and likelihood models. If the initial state in the prior model is Gaussian and
both forward and likelihood models are Gauss-linear, the posterior distribution is analytically tractable,
and it can be assessed using the Kalman recursions (Kalman, 1960). If the initial state is selection-
Gaussian and both forward and likelihood models are Gauss-linear, the posterior distribution is also
analytically tractable, and it can be assessed with the Selection Kalman recursions (Conjard and Omre,
2021).

Focus in the current study is on filtering/forecasting, hence on assessing f (r T+1| d 0:T ), which usually
can be done by filtering recursions.

2.1 Traditional Kalman model

The traditional Kalman model assumes that the initial state is distributed according to a Gaussian distri-
bution,

f (r 0) ='n(r 0;µr
0|·,ß

r
0|·) (7)

with parametrization £G = (µr
0|·,ß

r
0|·). It also assumes that the forward and likelihood models are Gauss-

linear:

[r t+1|r t ] =!t (r t ,≤r
t ) = At r t +≤r

t !'n(r ; At r t ,ßr
t ) (8)

[d t |r t ] =√t (r t ,≤d
t ) = H t r t +≤d

t !'m(d ; H t r t ,ßd
t ) (9)

where A is a (n £n)-matrix and H is a (m £n)-matrix, ≤r
t is a centered Gaussian n-vector with co-

variance (n £n)-matrix ßr
t and ≤d

t a centered Gaussian m-vector with covariance (m £m)-matrix ßd
t .

Under these assumptions, the posterior model in Equation 6 is Gaussian and analytically tractable. The
recursion,

f (r t+1|d 0:t ) =
Z

f (r t+1|r t ) f (r t |d 0:t )dr t , (10)

=
Z

f (r t+1|r t )[ f (d t |d 0:t°1)]°1 f (d t |r t ) f (r t |d 0:t°1)dr t ,

for t = 0, . . . ,T , can be evaluated using the Kalman Filter (Kalman, 1960) with the following recursion
formulas,

f (r t |d 0:t°1) ='n(r t ;µr
t |t°1,ßr

t |t°1),

f (r t |d 0:t ) ='n(r t ;µr
t |t ,ßr

t |t ),

µr
t |t =µ

r
t |t°1 +ß

r
t |t°1H

T
t (H tß

r
t |t°1H

T
t +ßd

t )
°1

(d t °Hµr
t |t°1),

ßr
t |t =ß

r
t |t°1 °ß

r
t |t°1H

T
t (H tß

r
t |t°1H

T
t +ßd

t )
°1

H tß
r
t |t°1, (11)

f (r t+1|d 0:t ) ='n(r t+1;µr
t+1|t ,ßr

t+1|t ),

µr
t+1|t = Atµ

r
t |t ,

ßr
t+1|t = Atß

r
t |t A

T
t +ßr

t .
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The (n £m)-matrix K t = ßr
t |t°1H

T
t (H tß

r
t |t°1H

T
t +ßd

t )
°1

is denoted the Kalman weights. Hence the
Kalman filter can be determined analytically by the recursions above, and it is closed in the class of Gaus-
sian pdfs. The posterior model is Gaussian and the filtering/forecasting distribution is of course also
Gaussian and it is assessable from the Kalman recursions f (r T+1|d 0:T ) ='n(r ;µr

T+1|T ,ßr
T+1|T ).

2.2 Selection Kalman model

In the selection Kalman model, the distribution for the initial state f (r 0) is assumed to be in the class
of selection-Gaussian distributions (Arellano-Valle et al., 2006; Omre and Rimstad, 2021). Consider an
auxiliary Gaussian (n +n)-vector [r̃ 0,∫],

∑
r̃ 0
∫

∏
ª'2n

µ∑
r̃ 0
∫

∏
;
∑
µr̃

0|·
µ∫

∏
,
∑
ßr̃

0|· ßr̃
0|·°

T
∫|r̃

°∫|r̃ßr̃
0|· ß∫

∏∂
, (12)

with expectation n-vectors µr̃
0|· and µ∫, correlation (n £n)-matrix °∫|r̃ , and where ßr̃

0|·, ß∫, and ß∫|r̃ are

covariance (n £n)-matrices with ß∫ = °∫|r̃ßr̃
0|·°

T
∫|r̃ +ß∫|r̃ . Define a selection set A Ω Rn of dimension n

and let r 0 = [r̃ 0|∫ 2 A]; then, r 0 is in the class of selection-Gaussian distribution and its pdf is,

f (r 0) =
£
©n(A;µ∫,ß∫)

§°1 (13)

£©n(A;µ∫+°∫|r̃ (r 0 °µr̃
0|·),ß∫|r̃ )£'n(r 0;µr̃

0|·,ß
r̃
0|·).

It can therefore be parametrized with £SG = (µr̃
0|·,µ∫,ßr̃

0|·,ß∫|r̃ ,°∫|r̃ , A). Note that the class of Gaus-
sian distributions constitutes a subset of the class of selection-Gaussian distributions with °∫|r̃ = 0£ I n .
The dependence in [r̃ ,∫] represented by °∫|r̃ and the selection subset A are crucial user-defined param-
eters. The selection-Gaussian model may represent multimodal, skewed, and/or peaked marginal dis-
tributions (Omre and Rimstad, 2021). As in the traditional Kalman model, see Section 2.1, the selection
Kalman model also assumes the forward and likelihood models to be Gauss-linear, see Equation 8. Un-
der these assumptions, the posterior model in Equation 6 is selection-Gaussian and analytically tractable
(Conjard and Omre, 2021). The selection Kalman model is defined by the Gaussian augmented state 2n-
vector u t = [r̃ t ,∫] and the selection set A. The forward model in Equation 8 is adjusted to account for the
augmented state vector,

u t+1 =
∑

At 0
0 I n

∏
u t +

∑
≤r

t
0

∏
, (14)

and so is the likelihood model in Equation 9,

d t =
∑

H 0
0 0

∏
u t +

∑
≤d

t
0

∏
(15)

These forward and likelihood models are Gauss linear, and the recursion for the augmented state vector
is ,

f (u t+1|d 0:t ) =
Z

f (u t+1|u t )[ f (d t |d 0:t°1)]°1 f (d t |u t ) f (u t |d 0:t°1)du t . (16)

This recursion is identical to Equation 10, and hence it can be evaluated using the Kalman recursions in
Equation 11. The filtering /forecasting distribution

f (uT+1|d 0:T ) ='2n(u;µu
T+1|T ,ßu

T+1|T ), (17)
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yielded by the Kalman filter is a Gaussian 2n-vector with mean 2n-vector µu
T+1|T and covariance (2n £

2n)-matrix ßu
T+1|T . In order to obtain the distribution as evaluated by the selection Kalman filter, one

needs to assess f (r̃ T+1|∫ 2 A,d 0:T ) which can be done using McMC simulation.
The McMC algorithm used in Conjard and Omre (2021) and Conjard and Omre (2020) to sample

realizations from the selection-Gaussian distribution worked well on small state vectors (∑ 500) but had
to be adapted to handle high-dimensional problems. In order to sample r 0 = [r̃ 0|∫0 2 A], it is necessary to
sample a truncated Gaussian n-vector∫ 2 A. The selection set is typically [(°1,°b][[b,+1)])n , where n
is the dimension of the state vector. This means that the selection set is composed of 2n disjoint subsets.
To ensure satisfactory mixing, it is necessary that the samples come from different subsets of A which
becomes difficult to ensure as n increases.

3 Ensemble Filter Algorithm

In the general HM model, see Section 2, the filtering/forecasting distribution f (r T+1|d 0:T ) can be eval-
uated using sequential Monte-Carlo techniques. Similar techniques for evaluating the smoothing distri-
bution also exist but are not discussed in greater detail here. There are primarily two sequential Monte-
Carlo algorithms and their variants that are in frequent use: the particle filter (PF) (Gordon et al., 1993;
Van Leeuwen, 2009) and the EnKF (Evensen, 1994). The former has favorable asymptotic characteristics
when the number of particles/members tends towards infinity, while the latter is only asymptotically
exact for the Gauss-linear case. In high-dimensional models, actually for n ∏ 10, and a fairly limited
number of particles/members, the EnKF has proven to be clearly favorable (Katzfuss et al., 2020; Li et al.,
2016). We focus on the properties of the EnKF and its variants in the current study.

3.1 Traditional Ensemble Kalman filter

When the forward and/or likelihood models are nonlinear, Equations 3 and 5 cannot be written in closed
form. The analytical tractability of the posterior model in Equation 6 is lost. Hence the filtering/forecast-
ing distribution must be approximated. One way to approximate the forecast recursion, see Equation 10,
is the EnKF. Instead of tracking the first two-moments of the forecast recursion as is done in the Kalman
Filter, the EnKF uses a Monte-Carlo approach and generates ne realizations from the initial distribution
f (r 0) that form an ensemble e0. The realizations are referred to as ensemble members, and ne as en-
semble size. Each iteration of the EnKF algorithm consists of two steps, conditioning and forwarding,
represented by the following recursions,

f (r t |d 0:t ) =[ f (d t |d 0:t°1)]°1 f (d t |r t ) f (r t |d 0:t°1), (18)

f (r t+1|d 0:t ) =
Z

f (r t+1|r t ) f (r t |d 0:t )dr t ,

that in general are not analytically tractable. The initial ensemble is defined as ne iid realizations
e

r
0 = {r

u(i )
0 , i = 1, . . . ,ne } from f (r 0). The distribution from which the prior ensemble is sampled is not

limited to Gaussian distributions, it is therefore possible to represent non-Gaussian features in the prior.
The prior ensemble can actually be generated by any stochastic algorithm representing prior experience
with the variable under study. At time t , the ensemble e

r
t = {r

u(i )
t , i = 1, . . . ,ne } is assumed to represent

f (r t |d 0:t°1). The conditioning step is initiated by generating pseudo observations using the likelihood
model d

(i )
t =√t (r

u(i )
t ,≤d

t ), and defining e t = {(r
u(i )
t ,d

(i )
t ), i = 1, . . . ,ne }. The conditioning step is the chal-

lenging step, and it is performed by linearizing the updating,
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Assess ßr d from e t ! ß̂r d ! K̂ t = °̂r d [ß̂d ]
°1

r
c(i )
t = r

u(i )
t + K̂ t (d t °d

(i )
t ); i = 1, . . . ,ne . (19)

The ensemble {r
c(i ); i = 1, . . . ,ne } is assumed to represent f (r t |d 0:t ). The Kalman weights K t must

be inferred from the ensemble e t . Both the linearization and this inference are critical factors for the
reliability of the EnKF algorithm, which will be discussed in greater detail later.

The forward step can be made correctly for each ensemble member,

r
u(i )
t+1 =!t (r

c(i )
t ,≤r

t ); i = 1, . . . ,ne , (20)

and the ensemble e
r
t+1 = {r

u(i )
t+1 , i = 1, . . . ,ne } representing f (r t+1|d 0:t ) is defined.

The traditional EnKF algorithm is presented in Algorithm 1. The outcome of the traditioal EnKF algo-
rithm e

r
T+1 = {r

u(i )
T+1, i = 1, . . . ,ne } represents f (r T+1|d 0:T ). Based on e

r
T+1, both predictions and prediction

intervals for [r T+1|d 0:T ] can be inferred using the ensemble average and ensemble marginal variance re-
spectively. In terms of computer demand, the forwarding step is usually the bottleneck in the EnKF algo-
rithm, as ne evaluations of the forward model repeated at each iteration can be extremely costly, usually
limiting the ensemble size to the order of 100.
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Algorithm 1 Traditional Ensemble Kalman Filter (EnKF)
The (n +m)-vector [r ,d ] has covariance matrix:

ßr d =
∑
ßr °r d
°dr ßd

∏

Initiate:

ne = No. of ensemble members

Generate: r
u(i )
0 ª f (r 0), i = 1, ...,ne

Generate: ≤d(i )
0 , i = 1, ...,ne

d
(i )
0 =√0(r

u(i )
0 ,≤d(i ))

0 ), i = 1, ...,ne

e0 = {(r
u(i )
0 ,d

(i )
0 ), i = 1, . . . ,ne }

Iterate t = 0, ...,T :

Conditioning:

Estimate ßr d from e t °! ß̂r d ! K̂ t = °̂r d [ß̂d ]
°1

r
c(i )
t = r

u(i )
t + K̂ t (d t °d

(i )
t ), i = 1, ...,ne

Forwarding:

Generate: ≤r (i )
t , i = 1, ...,ne

r
u(i )
t+1 =!t (r

c(i )
t ,≤r (i )

t ), i = 1, ...,ne

Generate: ≤d(i )
t+1 , i = 1, ...,ne

d
(i )
t+1 =√t+1(r

u(i )
t+1 ,≤d(i )

t+1 ), i = 1, ...,ne

e t+1 = {(r
u(i )
t+1 ,d

(i )
t+1), i = 1, . . . ,ne }

End iterate

The ensemble e
r
T+1 = {r

u(i )
T+1, i = 1, . . . ,ne } represents f (r T+1|d 0:T )

3.2 Special case: Traditional Kalman model

The traditional Kalman model is a Gauss-linear HM model, and the model assumptions are specified
in Section 2.1. The EnKF can be used on this model to assess the filtering/forecasting distribution and
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the results can be compared to the exact analytical results from the Kalman recursions. If the model
parameters are known and the Kalman weights K t can be calculated correctly, then the conditioning
steps in the EnKF are exactly correct for all t , and the ensemble e t contains ne iid elements from the
correct Gaussian pdf.

The EnKF algorithm is assumed to be initiated by the ensemble members in e
r
0 being iid from a mul-

tivariate Gaussian n-vector with unknown parameters. Hence, the approximation in the EnKF, under
the traditional Kalman model assumptions, is only the assessment of the Kalman weights K t from the
ensemble e t .

In order to evaluate the effect of the Kalman weights inference, assume that the ensemble e t contains
iid ensemble members from the correct Gaussian pdf. The conditioning step can then be written,

e t : {(r
u(i )
t ,d

(i )
t ), i = 1, . . . ,ne }, i i d 'n+m

µ∑
r

d

∏
;µr d ,ßr d

∂
,

Assess ßr d from e t ! ß̂r d ! K̂ t = °̂r d [ß̂d ]°1,

r
c(i )
t = r

u(i )
t + K̂ t (d t °d

(i )
t ), i = 1, ...,ne , (21)

where d t is the observed data. The reliability of the EnKF is dependent on the Kalman weights in-
ference. Under Gaussian assumptions, the traditional minimum variance unbiased estimator for ßr d
should be used (Mardia et al., 1979). Note that if the estimator for ßr d is consistent as ne !1, so is the
estimator for K t . Then the EnKF is asymptotically correct as ne !1 under the traditional Kalman model
assumptions. This characteristic is not very impressive since the filter is analytically tractable under these
assumptions. Unfortunately, there are not more general asymptotic results for the EnKF. In spite of this,
the EnKF has proven to be very reliable for high-dimensional problems with weakly non-linear forward
and likelihood models. Challenges arising from having only a finite number of ensemble members will
be discussed in the following paragraphs.

3.2.1 Ensemble shrinkage

The inference of the Kalman weights (n £m)-matrix K t from the ensemble e t of size ne is the challenge
under traditional Kalman model assumptions. For the estimator K̂ t to have full rank, one needs ne >
n+m (Sætrom and Omre, 2013) and then K̂ t is know to be matrix-T distributed. If ne ∑ n+m, additional
rank related inference problems occur. In this section, we assume that ne > n +m and return to rank
challenges in Section 3.3.1. The conditioning in the EnKF appears as Gaussian ensemble conditioning
using plug-in estimate K̂ t for the Kalman weight K t . This standard statistical procedure is known to
slightly underestimate the variability, but may be justifiable for one assimilation step. However, if the
conditioning step is repeated numerous times, the ensemble variability may be severely underestimated
and the ensemble can collapse. Thereafter data assimilation is impossible since the Kalman weights
cannot be estimated. It is therefore important to perform each conditioning step precisely in a way that
also captures model parameter uncertainty. We will evaluate two major effects in the conditioning step
of the EnKF:

1. Ensemble center drift

2. Ensemble variability reduction

The ensemble members in e t are assumed to be iid (n+m)-dimensional Gaussian vectors with expecta-
tion µr d and covariance ßr d , which is convenient when evaluating one single conditioning step from t
to t +1.
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3.2.1.1 Ensemble center drift We evaluate the ensemble average by studying the expected value of
the conditioning step of one ensemble member, which should be the conditional expectation µr |d ,

E(r
c(i )
t ) =E(r

u(i )
t )+E(K̂ t (d t °d

(i )
t )), (22)

=µr +E(K̂ t )(d t °Hµr )°Cov(K̂ t ,d
(i )
t ),

=µr |d + [E(K̂ t )°K t ][d t °Hµr ]°Cov(K̂ t ,d
(i )
t ).

The conditioning step is therefore not automatically centred at µr |d as wanted. However, if K̂ t is

an unbiased estimator for K t and (K̂ t ,d
(i )
t ) are independent then correct centering for each updated

ensemble member is ensured.
Define the sub-ensemble e

°i
t = e t \{r

u(i )
t ,d

(i )
t } and let the estimator forßr d based on e

°i
t be the regular

unbiased covariance estimator, defining ß̂
°i
r d , according to the suggestion in Loe and Tjelmeland (2021).

Then the estimator for K t , K̂
°i
t = °̂°i

r d [ß̂
°i
d ]

°1
, will be unbiased and independent of d

(i )
t as required above.

If the conditioning of each ensemble member is correctly centred, then the ensemble average will
also be unbiased for µr |d . In Section 3.2.1.3, an algorithm preventing ensemble center drift is defined.

3.2.1.2 Ensemble variability reduction We evaluate the ensemble variance, which is determined by
the variance in each member and the covariance between members. It is important to note that the
objective is not to minimize the variance, but rather to represent uncertainty in the EnKF algorithm real-
istically.

Assume that we ensure correct centering of the conditioning by using the conditioning weights K̂
°i
t

for each ensemble member. The variance of one ensemble member after conditioning is,

Var(r
c(i )
t ) =Var(r

u(i )
t )+Var(K̂

°i
t [d t °d

(i )
t ])+2Cov(r

u(i )
t , K̂

°i
t [d t °d

(i )
t ]), (23)

=ßr |d +E([K̂
°i
t °K t ]Q1[K̂

°i
t °K t ]

T
),

where Q1 is a (m £m)- matrix related to the likelihood model (Sætrom and Omre, 2013).
The variance is the conditional variance ßr |d , plus a term caused by the lack of knowledge about the

model parameters, represented by K t . The EnKF is based on plugging in the estimator K̂
°i
t for K t and

do not capture the latter variability. Consequently, there is a downward bias in the variability in each
updated ensemble member.

The ensemble variance will also be influenced by the coupling of the updated ensemble members.
Positive coupling causes a downward bias in the ensemble variance relative to the individual member
variance.

The covariance between two updated ensemble members caused by the conditioning step is,

Cov(r
c(i )
t ,r

c( j )
t ) =Cov(r

u(i )
t ,r

u( j )
t )+Cov(K̂

°i
t [d t °d

(i )
t ], K̂

° j
t [d t °d

( j )
t ]) (24)

+Cov(r
u(i )
t , K̂

° j
t [d t °d

( j )
t ])+Cov(K̂

°i
t [d t °d

(i )
t ,r

u( j )
t ]),

=E([K̂
°i
t °K t ]Q2[K̂

° j
t °K t ]

T
)+2Cov(r

u(i )
t , [K̂

° j
t °K t ]q 2),
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where q 2 is an m-vector and Q2 a (m £m)- matrix both defined by the likelihood model (Sætrom and

Omre, 2013). The covariance is non-zero, since [K̂
°i
t , K̂

° j
t ] are correlated through many common en-

semble members and so are [r
u(i )
t , K̂

° j
t ] since the former is used to calculate the latter. The covariance

will actually be positive, and hence the ensemble variability will have a downward bias relative to the
individual ensemble member variability.

Consequently, both member variance and coupling will contribute to underestimating the variability
in the EnKF. In order to correct for this downward bias, we need to account for the uncertainty in esti-
mating the Kalman weights K t from the ensemble e t . For the traditional Kalman model with ne > n+m,

the estimator K̂
°i
t is known to be matrix-T distributed with parameters defined by the model parame-

ters. Let K̃
i
t , i = 1, . . . ,ne be ne samples from this matrix-T distribution with plug-in parameter values

K̂
°i
t , i = 1, . . . ,ne , respectively (Sætrom and Omre, 2011). If these simulated weights are used in the con-

ditioning step instead of the plug in estimates themselves, the member variance will be approximately
correct and coupling will approximately be zero. The interdependence in the weights is not fully removed
since the plug-in estimates in the matrix-T model parameters are dependent.

The simulation algorithm for a matrix-T distribution can be performed in three steps. Firstly, gener-
ate an ensemble eG : {(r

j ,d
j ), j = 1, . . . ,ne } from a centred multi-Gaussian vector with plug-in estimates

ß̂r d from the EnKF; secondly assess ßr d from eG to obtain ß̃r d and thirdly compute K̃ = °̃r d [ß̃d ]
°1

. For
ne > n+m, the resulting K̃ is matrix-T distributed. This approach can also be used when ne ∑ n+m, but
then the distributional characteristics of K̃ remain unspecified.

3.2.1.3 Practical implemetation Based on the discussion in the two previous sections, we recom-
mend using the approach detailed in Algorithm 2 for the conditioning step.
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Algorithm 2 Hierarchical EnKF

e t : {(r
u(i )
t ,d

(i )
t ), i = 1, . . . ,ne }

Conditioning:

For i = 1, . . . ,ne

Define e
°i
t = e t \{r

u(i )
t ,d

(i )
t }

Assess ßr d from e
°i
t °! ß̂

°i
r d

Generate e
Gi : {(r

( j ),d
( j )), j = 1, . . . ,ne °1} iid 'n+m(

∑
r

d

∏
;0in+m ,ß̂

°i
r d )

Assess ßr d from e
Gi °! ß̃

i
r d ! K̃

i
t = °̃

i
r d [ß̃

i
d ]

°1

r
c(i )
t = r

u(i )
t + K̃

i
t (d t °d

i
t )

End for

Forwarding:

r
u(i )
t+1 =!t (r

c(i )
t )+≤r

t ; i = 1, . . . ,ne

d
(i )
t+1 =√t+1(r

u(i )
t+1 )+≤d

t ; i = 1, . . . ,ne

e t+1 : {(r
u(i )
t+1 ,d

(i )
t+1); i = 1, . . . ,ne }

This conditioning procedure ensures correct centering by using the ensemble e
°i
t and an unbiased

estimator for K t , and approximately correct variance by capturing the uncertainty in K t estimates. The
latter correction also reduces the coupling of the ensemble members.

3.2.1.4 Ensemble inflation Ensemble shrinkage, cause by repeated conditioning steps in the EnKF,
is frequently observed in practice. Ensemble inflation (Anderson and Anderson, 1999) is a pragmatic
technique that treats the problem rather than correcting for the cause,

r
u(i )
I =Æ£ (r

u(i ) ° r̄
u)+ r̄

u , i = 1, . . . ,ne , (25)

where r̄
u is the ensemble average and Æ ∏ 1 is the inflation factor and where the index I denotes the

inflated ensemble members. Inflation increases the variance of each ensemble member but does not
reduce the coupling between the members. The value is often claimed to be assigned from experience
although trial and error seems to be somewhat prevalent. Adaptive inflation (Anderson, 2007) can also
used to systematically estimate the inflation factor. The subjectivity of the inflation factor in correcting
the ensemble variability reduces the confidence one should have in the prediction intervals provided by
the EnKF when using inflation.
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3.3 General case: Hidden Markov model

In the general case, when the initial distribution is non-Gaussian and/or the forward and likelihood mod-
els are non-linear, the EnKF only approximates the filtering/forecasting distribution f (r T+1|d 0:T ). In this
section, we consider the HM model defined in Section 2, with additive Gaussian errors. The HM model
is therefore defined as,

r 0 ª f (r 0).

[r t+1|r t ] =!t (r t )+≤r
t ! f (r t+1|r t ) ='n(r ;!t (r t ),ßr

t ). (26)

[d t |r t ] =√t (r t )+≤d
t ! f (d t |r t ) ='m(d ;√t (r t ),ßd

t ),

with n-vector ≤r
t and m-vector ≤d

t being centred Gaussian with covariance matrices ßr
t and ßd

t respec-
tively. In the following paragraph, we discuss three issues arising when the forward and likelihood models
are non-linear:

1. Instability in the Kalman weight inference

2. Drift towards Gaussianity

3. Linearized conditioning

3.3.1 Instability in the Kalman weight inference

The ensemble e
r d
t , representing f (r

u
t ,d t ) is in the general case non-Gaussian. The approximate lin-

earized conditioning is performed with the Kalman weights K t which must be estimated from the en-
semble. As default, one estimates the covariance matrix of [r

u
t ,d t ] denoted ß̂r d using the traditional

unbiased covariance estimator and calculates the weights K̂ t = °̂r d [ß̂d ]
°1

. In practice, one may only
calculate the two submatrices of ß̂r d that define K̂ t . There is of course estimator uncertainty but in the
traditional EnKF algorithm, one uses directly the plug-in estimate K̂ t and ignores this uncertainty.

Two sources of uncertainty appear in K̂ t . Firstly, there is estimation uncertainty since the ensemble
size is finite, ne < 1. Secondly, if the ensemble size is small, ne ∑ n +m, K̂ t will also lack full rank.
Estimation error in K̂ t will distribute the weights somewhat arbitrarily to the m-vector [d t °d

i
t ]. The

major concern is that observation dimensions which should have no influence on conditioning are by
chance assigned influence. Moreover, it is notorious that the traditional unbiased covariance estimator
is not robust with respect to deviations from Gaussianity (Huber, 1981). In statistics, robust shrinkage
estimators are frequently used (Ledoit and Wolf, 2004) to account for this instability.

Rank deficiency in K̂ t occurs if ne ∑ n +m which is often the case. This effect will also cause the
weights to be arbitrarily distributed. The only way to correct for this effect is to introduce subjective
information in the estimator. We discuss two alternative approaches for improving the Kalman weights
estimate:

1. Covariance localization

2. Hierarchical approach

3.3.1.1 Covariance localization Covariance localization (Hamill et al., 2001; Bocquet and Carrassi,
2017) can be seen as a pragmatic inference alternative in the sense that it both reduces the estima-
tion uncertainty in ßr d and adresses the rank defiency issue. It is conceptually simple as it operates



3 ENSEMBLE FILTER ALGORITHM 14

directly on the traditional unbiased covariance estimator by multiplying it element-wise with a damping
(n +m)£ (n +m)-matrix≠,

ß̃r d =≠± ß̂r d , (27)

where ± is the element-wise matrix product and ß̂r d is the traditional unbiased covariance estimator.
This localization matrix≠must be assigned based on experience with the correlation structure in [r ,d ]
and it must be positive definite. The piecewise rational function defined in Gaspari and Cohn (1999) is
often used to define≠.

The Kalman weight estimator is then K̃ t = °̃r d [ß̃d ]
°1

which appears with shrinkage towards the
weights implicitely defined by≠. Moreover, the estimated Kalman weights K̃ t have improved rank prop-
erties.

3.3.1.2 Hierarchical approach The hierarchical approach Myrseth and Omre (2010) can be consid-
ered as Bayesian inference in a Gaussian model. The model parameters (µ,ß) are seen as random vari-
ables and are assigned prior pdfs, which add subjectivity in the model. By using conjugate prior models,
analytical tractability is ensured. Consider the Gauss-linear HM model, and define the model parameters
to be random variables in a Bayesian inference setting,

[r
u
t ,d t |µr d ,ßr d ] ª'n+m

µ∑
r

d

∏
;µr d ,ßr d

∂
, (28)

and assume further e
r d
t = {(r

u(i )
t ,d

i
t ), i = 1, . . . ,ne } with ne iid samples. Assign a conjugate prior model to

the model parameters,

f (µr d |ßr d ) ='n+m(µ;µp ,øpßr d ), (29)

f (ßr d ) =W°1(ß;ßp ,∫p ),

where W°1 denoted the inverse Wishart pdf, with user defined hyper parameters being (n+m)-vector
µp , scale factor øp 2R+, positive definite covariance ((n+m)£(n+m))-matrixßp and degree of freedom
∫p 2RÇn+m+1,+1É. Note that the prior expectation for ßr d is E(ßr d ) = [∫p ° (n +m)°1]°1ßp .

The corresponding posterior distribution for the covariance matrix ßr d is,

f (ßr d |e t ) = W°1(ß;ßpp ,∫p +ne ), (30)

with,

ßpp =ßp + (ne °1)ß̂r d + [
1

ne
+øp ]

°1
(µ̂r d °µp )(µ̂r d °µp )T , (31)

and hence the hierarchical estimator for ßr d ,

ß̃r d = E(ßr d |e t ) = [∫p +ne ° (n +m)°1]°1ßpp . (32)

The hierarchical estimator ß̃r d appears as a weighted average of the prior assignment, the traditional
unbiased covariance estimator and the deviations of the expectations. The latter term is often ignored by
using plug-in estimates for the expectation in the prior model. Note that in the limit when ne !1, one
obtains ß̃r d = ß̂r d , the traditional estimator. Moreover, even for cases where ne < n +m the hierarchical
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estimator ß̃r d has full rank which is ensured by the user-specified prior ßp having full rank. The Kalman

weight estimator is then K̃ t = °̃r d [ß̃d ]
°1

which has full rank and appears with shrinkage towards the
weights implicitely defined by the user-specified prior ßp . The challenge is to assign a suitable prior
model forßr d with expectation [∫p ° (n +m)°1]°1ßp which must reflect experience with the correlation
structure in [r

u
t ,d t ]. The confidence in the prior assignment is reflected in the degree of freedom ∫p >

n +m +1.

3.3.2 Drift towards Gaussianity

The EnKF algorithm is, as mentioned previously, asymptotically correct, when ne !1, for Gauss-linear
model HM model. Consider an initial ensemble e0 generated from a non-Gaussian initial model f (r 0).
Assume further that the forward and likelihood functions are continuous.

The sequential updates in the EnKF will make the ensemble e t more and more Gaussian - the ensem-
ble drifts towards Gaussianity. This drift is caused by the successive linearized updates when condition-
ing on the data.

Several variants of the EnKF exist that address this issue:

1. Gaussian anamorphosis (GA) EnKF

2. Gaussian Mixture (GM) EnKF

3. Selection (S) EnKF

3.3.2.1 Gaussian anamorphosis (GA) EnKF The idea is to transform the ensemble to be marginally
Gaussian before conditioning, the transformed ensemble will be marginally Gaussian, and to carry out
the conditioning with the transformed ensemble. After conditioning, the ensemble is then back-transformed.
Applications have shown that Gaussian anamorphosis can successfully prevent the drift towards Gaus-
sianity, see Zhou et al. (2012).

Consider a univariate random variable y with cdf FY (y) and a random sample (y1, . . . , yny ) iid from
FY (y). The cdf can be estimated as,

F̂Y (y) = J

(
1

ny

nyX

j=1
1(y j ∑ y)

)

, (33)

where J {·} is some semi parametric smoother of the empirical stepwise cdf estimator in the argument.
The smoother ensures that the back-transform is real valued.

The univariate Gaussian transform of one sample y0 from FY (y) is defined as,

ỹ0 =©1(F̂°1
Y (y0);0,1). (34)

Note that ỹ0 has an approximate standard Gaussian pdf. Similarly the back-transform of the univariate
Gaussian sample ũ0 is,

u0 = F̂Y (©°1
1 (ũ0;0,1)). (35)

The smoothing of F̂Y (y) ensures that u0 2R and do not belong to the set {y1, . . . , yny } only.

The univariate transformation of an ensemble e t : {(r
u(i )
t ,d

(i )
t ), i = 1, . . . ,ne } entails that for each en-

semble member, each of the (n +m) dimensions must be transformed independently. Hence only ap-
proximate univariate Gaussianity is ensured, the multivariate characteristics remaining unspecified. The



3 ENSEMBLE FILTER ALGORITHM 16

latter entails that the linearized conditioning is only approximately correct. Algorithm 3 presents the GA
EnKF procedure.

Algorithm 3 Gaussian anamorphosis EnKF

e t : { (r
u(i )
t ,d

(i )
t ), i = 1, . . . ,ne }

Conditioning:

Assess all (n +m) dimensions by FY (y) from e t ! F̂Y (y)

Univariate Gaussian transform of e t by F̂Y (y) ! ẽ t

Univariate Gaussian transform of observations d t by F̂Y (y) ! d̃ t

Estimate ßr d from ẽ t ! ß̂r d ! K̂ t = °̂r d [ß̂d ]
°1

r̃
c(i )
t = r̃

u(i )
t + K̂ t (d̃ t ° d̃

(i )
t ), i = 1, ...,ne

Univariate back-transform of r̃
c(i )
t by F̂Y (y) ! r

c(i )
t

Forwarding:

r
u(i )
t+1 =!t (r

c(i )
t )+≤r

t ; i = 1, . . . ,ne

d
(i )
t+1 =√t+1(r

u(i )
t+1 )+≤d

t ; i = 1, . . . ,ne

e t+1 : {(r
u(i )
t+1 ,d

(i )
t+1); i = 1, . . . ,ne }

3.3.2.2 Gaussian Mixture (GM) EnKF The basic idea is to specify the prior initial model as a Gaussian
mixture (GM) model which can represent multimodal variables. Let the forward and likelihood models
of the HM model be Gauss-linear. The posterior pdf will then also be a GM model and be analytically
tractable. The conditioning step can be made independently for each component of the GM model, and
the associated weight for each component can also be calcultated. For general forward and likelihood
models, ensemble based filtering algorithms must be used. The difficulty is that each ensemble mem-
ber must carry a mode indicator assigned to one of the components, and that this indicator may change
during the forwarding step. These filtering algorithms have proven robust against the drift towards Gaus-
sianity (Li et al., 2016; Ackerson and Fu, 1970; Chen and Liu, 2000; Smith, 2007; Dovera and Della Rossa,
2010; Bengtsson et al., 2003), at least for low-dimensional models.

Consider a set of n-dimensional Gaussian pdfs,'n(r ;µl
r ,ßl

r ); l = 1, . . . ,L, denoted components, and a
set of normalized mixture weights º : {º1, . . . ,ºL}. The prior initial model is specified to be a GM model :

f (r 0) =
LX

l=1
ºl £'n(r 0;µl

r ,ßl
r ). (36)

Note that a particular realization r s will belong to the k-th component of the mixture with probability:

∏k (r s ) =
"

LX

l=1
ºl £'n(r s ;µl

r ,ßl
r )

#°1

£'n(r s ;µk
r ,ßk

r ). (37)
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Consider further the Gauss-linear likelihood model,

f (d |r ) ='m(d ; Hr ,ßd |r ). (38)

The associated posterior model will also be a Gaussian mixture model (Grana et al., 2017),

f (r |d ) =
LX

l=1
ºl |d £'n(r ;µl

r |d ,ßl
r |d ), (39)

where the conditional expectations and covariances are obtained by component wise conditioning on
the observations d . The posterior mixture weights are defined by

ºk|d =
"

LX

l=1
ºl £'m(d ; Hµl

r , Hßl
r H

T +ßd |r )

#°1

ºk £'m(d ; Hµk
r , Hßk

r H
T +ßd |r ). (40)

For general forward and likelihood models, the ensemble representation must contain a mode indicator
associated with each ensemble member,

e t : {(r
u(i )
t , l (i )

t ,d
(i )
t , i = 1, . . . ,ne }, (41)

with mode indicator l (i )
t 2 {1, . . . ,L}. The dynamic updating of this mode indicator often appears as chal-

lenging. The conditioning/forward steps in the GM-EnKF are detailed in Algorithm 4.

Algorithm 4 Gaussian mixture EnKF

e
°l
t : {(r

u(i )
t , ·,d

(i )
t ), i = 1, . . . ,ne }

Conditioning:

Assess f (r
u
t ) from e

°l
t ! f̂ (r

u
t ) =PL

l=1 º̂l £'n(r , µ̂l
r , ß̂l

r )

Assign ensemble member i to mode indicator l (i )
t 2 {1, . . . ,L} with probability {∏l (r

u(i ))
t ), l = 1, . . . ,L}

Define ensemble e t : {(r
u(i )
t , l (i )

t ,d
(i )
t , i = 1, . . . ,ne }

Assess ßl
r d ; l = 1, . . . ,L from e t ! ß̂

l
r d ! K̂

l
t = °̂

l
r d [ß̂

l
d ]

°1

r
c(i )
t = r

u(i )
t + K̂

l (i )
t

t (d t °d
(i )
t ), i = 1, ...,ne

Forwarding:

r
u(i )
t+1 =!t (r

c(i )
t )+≤r

t , i = 1, . . . ,ne

d
(i )
t+1 =√t+1(r

u(i )
t+1 )+≤d

t , i = 1, . . . ,ne

e
°l
t+1 : {(r

u(i )
t+1 ,d

(i )
t+1), i = 1, . . . ,ne }

The challenging part of the algorithm is to assess the GM model f (r
u
t ). Other versions of the (GM)

EnKF algorithm use the EM-algorithm, particle filters or clustering techniques. If the dimension of r is
of some size, estimating a suitable GM model will be complicated.
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3.3.2.3 Selection (S)EnKF The basic idea is to specify the prior initial model as a selection-Gaussian
pdf, see Section 2.2, which can represent multimodal, skewed and/or peaked variables. For general for-
ward and likelihood models, one must rely on ensemble based filtering algorithms. These algorithms are
inspired by the analytically tractable model discussed in Section 2.2, and have proven to be robust with
regard to drift towards Gaussianity (Conjard and Omre, 2020). Let the prior initial distribution f (r 0) be
a selection-Gaussian pdf with parameters £SG = (µr̃ ,ßr̃ ,µ∫,ß∫|r̃ ,°∫|r̃ , A), see Equations 18 and 19. The
auxiliary variables (r̃ 0,∫) are then jointly Gaussian and the variable of interest is r 0 = [r̃ 0|∫ 2 A] which is
selection-Gaussian.

The initial ensemble e0 of the EnKF algorithm contains realizations of the auxiliary variables [r̃ 0,∫]
which are jointly Gaussian. The SEnKF algorithm is identical to the EnKF algorithm defined on these
auxiliary variables. The forward model is given by

∑
r̃ t+1
∫t+1

∏
=

∑
√t (r̃ t ,≤r

t )
∫t

∏
, (42)

while the likelihood model is given by
d t =!t (r̃ t ,≤d

t ). (43)

Based on these models, an algorithm identical to the traditional EnKF algorithm is activated, to obtain
the ensemble eT+1 = {(r̃

u(i )
T+1,∫u(i )

T+1), i = 1, . . . ,ne }. Note that a time index is added to ∫ to account for the
data assimilation up to time T . The expectation vectorµr̃∫ and covariance matrixßr̃∫ are estimated from
eT+1, and based on the jointly Gaussian '2n((r̃ ,∫);µ̂r̃∫,ß̂r̃∫), the filter variable of interest [r T+1|d 0:T ] =
[r̃ T+1|∫ 2 A,d 0:T ] is assessed by McMC simulation.

The conditioning and forwarding steps of the SEnKF algorithm are specified in Algorithm 5.

Algorithm 5 Selection EnKF

e t = {(r̃
u(i )
t ,∫u(i )

t ,d
i
t ), i = 1, ...,ne }

Conditioning:

Estimate ßr̃∫d from e t °! ß̂r̃∫d ! K̂ t = °̂r∫d [ß̂d ]
°1

∑
r̃

c(i )
t

∫c(i )
t

∏
=

∑
r̃

u(i )
t

∫u(i )
t

∏
+ K̂ t (d t °d

(i )
t ), i = 1, ...,ne

Forwarding:

Generate ≤r̃ (i )
t , i = 1, ...,ne

∑
r̃

u(i )
t+1

∫u(i )
t+1

∏
=

∑
!t (r̃

c(i )
t ,≤r̃ (i )

t )
∫c(i )

t

∏
, i = 1, ...,ne

Generate ≤d(i )
t , i = 1, ...,ne

d
(i )
t+1 =√t+1(r̃

u(i )
t+1 ,≤d(i )

t+1 ), i = 1, ...,ne

e t+1 = {(r̃
u(i )
t+1 ,∫u(i )

t+1 ,d
i
t+1), i = 1, ...,ne }
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3.3.3 Linearized conditioning

The ensemble e t representing f (r
u
t ,d t ) is in the general case non-Gaussian. The conditioning step is ini-

tiated by assessing ßr d from the ensemble to obtain ß̂r d . The cross covariance matrix °r d only captures
the linear relationship between [r

u
t ,d t ], not the non-linear features of the observation function √t (·, ·).

Since the linearization of √t (·, ·) is based on the ensemble e t , it is made over the span of the ensemble
members. The observation error will also influence the impact of extreme pseudo-observations. Narrow
span ensembles with larger observation errors tend to give good linear approximation. We discuss two
alternative approaches for reducing the effect of this approximate linearization in the conditioning step,

1. Multiple data assimilation.

2. Iterative data assimilation.

3.3.3.1 Multiple data assimilation (MDA) EnKF The basic idea is to split the conditioning step into
a sequence of conditioning sub-steps (Emerick and Reynolds, 2013). Each sub-step uses a larger vari-
ance in the likelihood model, and these variances are balanced such that the conditioning is correct
for the Gauss-linear HM model. The empirical linearization is over the span of the ensemble, which is
narrowed by sub-conditioning. Moreover, the likelihood variance is increased for each sub-conditioning
step. These two effects make the MDA EnKF algorithm efficient in practice (Emerick and Reynolds, 2013).

The likelihood model in the general HM model, f (d t |r t ), is defined to have a non-linear likelihood
function with additive Gaussian error term, see Equation 38. This likelihood model can be decomposed
as,

f (d t |r u
t )) =

LY

i=1
[( f (d t |r u

t ))]wi , (44)

=
LY

i=1
[('m(d ;√t (r

u
t ),ßd

t ))]
wi ,

= const £
LY

i=1
exp

µ
°1

2
(d t °√t (r

u
t ))

∑
1

wi
ßd

t

∏°1

(d t °√t (r
u
t ))T

∂
,

with positive decomposition factors w : {wi , i = 1, . . . ,L} such that
PL

i=1 wi = 1, ordered in decreased or-
der. The posterior model in the conditioning step can therefore be expressed by

f (r
u
t |d t ) = const £ f (d t |r u

t ) f (r
u
t ), (45)

= const £exp
µ
°1

2
(d t °√t (r

u
t ))

∑
1

w1
ßd

t

∏°1

(d t °√t (r
u
t ))T

∂

£ . . .

£exp
µ
°1

2
(d t °√t (r

u
t ))

∑
1

wL
ßd

t

∏°1

(d t °√t (r
u
t ))T

∂

£ f (r
u
t ).

This decomposition justifies the sequential conditioning procedure. The sub-conditioning steps
starts from the right hand side, by conditioning on d t associated with variance 1

wL
ßd

t . Then the resulting
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updated r
u
t is conditioned on d t with variance 1

wL°1
ßd

t , etc. Finally conditioning on d t associated with

variance 1
w1
ßd

t provides the correct posterior distribution f (r
u
t |d t ).

The span of the ensemble members narrows and the likelihood variance increases in the sub-conditioning
steps. In practice, this makes the conditioning piece-wise linear, which of course is beneficial for non-
linear likelihood functions.

The conditioning and forwarding steps of the MDA EnKF algorithm are specified in Algorithm 6.

Algorithm 6 Multiple data assimilation EnKF

Conditioning:

Set r
u(i )
t ,1 = r

u(i )
t , i = 1, ...,ne

For k = 1, . . . ,L

≤d(i )
t ,k ª'm(≤;0, 1p

wk
ßd

t ), i = 1, ...,ne

d
(i )
t ,k =√t (r

u(i )
t ,k ,≤d(i )

t ,k ), i = 1, ...,ne

e t ,k = {(r
u(i )
t ,k ,d

i
t ,k ), i = 1, ...,ne }

Estimate ßr d from e t ,k °! ß̂r d ,k

r
u(i )
t ,k+1 = r

u(i )
t ,k + °̂r,d ß̂

°1
d ,k (d t °d

i
t ,k ), i = 1, ...,ne

End For

r
c(i )
t = r

u(i )
t ,L+1, i = 1, ...,ne

Forwarding:

r
u(i )
t+1 =!t (r

c(i )
t )+≤r

t , i = 1, . . . ,ne

d
(i )
t+1 =√t+1(r

u(i )
t+1 )+≤d

t , i = 1, . . . ,ne

e t+1 : {(r
u(i )
t+1 ,d

(i )
t+1), i = 1, . . . ,ne }

3.3.3.2 Iterative(I) EnKF The basic idea is to rephrase the conditioning step as an optimization prob-
lem (Li and Reynolds, 2009; Sakov et al., 2018), which can be done exactly for a Gauss-linear HMM. If
the likelihood is non-linear, it is intuitive to replace the conditioning step by an iterative method such as
Gauss-Newton or Levenberg-Marquardt where the gradients are either calculated by solving the adjoint
problem or estimated using the ensemble.

Consider the conditioning step in a Gauss-linear HM model, the posterior pdf f (r |d ) is also Gaussian
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and the posterior expectation therefore coincides with the posterior mode given by,

argmax
r

{ f (r |d )} =argmax
r

{log f (r |d )}, (46)

=argmax
r

{(r °µr )Tß°1
r (r °µr )+ (Hr °d )Tß°1

d (Hr °d )}, (47)

=µr °ßr H
T (H

Tßr H +ßd )
°1

(d °Hµr ). (48)

Note that if the substitutions µr = r
u
t and d = d t °≤d

t are made in the expression above, it coincides with
the EnKF conditioning step. Consequently, the conditioning optimization expression for Gauss-linear
HM models is,

r
c
t = argmax

r

{(r
u ° r )T ß̂

°1
r (r

u ° r )+ (Hr °d s )T ß̂
°1
d (Hr °d s )}. (49)

Note that d
s = d °≤d

t is a random pseudo truth since d t = Hr
u
t +≤d

t while r
u
t is a randomized expectation

in the prior. In the Gauss-linear HM model, the objective function is quadratic and the solution can be
calculated analytically. This solution coincides with the EnKF conditioning step.

For a general HM model where the likelihood model is defined as,

[d t |r u
t ] =√t (r

u
t )+≤d

t , (50)

one will intuitively define the conditioning optimization step as,

r
c
t = argmax

r

{(r
u ° r )Tß°1

r (r
u ° r )+ (√t (r )°d

s )Tß°1
d (√t (r )°d

s )}. (51)

The maximization is solved using an iterative method such as Gauss-Newton or Levenberg-Marquardt
where the Jacobian matrices are assessed either from the ensemble or evaluated numerically by for in-
stance solving the adjoint problem. The conditioning and forwarding steps of the iterative EnKF are
detailed in Algorithm 7

Algorithm 7 Iterative EnKF

e t : {(r
u(i )
t ,d

(i )
t ), i = 1, . . . ,ne }

Conditioning:

Estimate ßr d from e t °! ß̂r d

r
c(i )
t = argmax

r

{(r
u(i )
t ° r )T ß̂

°1
r (r

u(i )
t ° r )+ (√t (r )°d t )T ß̂

°1
d (√t (r )°d t )},

i = 1, . . . ,ne .

Forwarding:

r
u(i )
t+1 =!t (r

c(i )
t )+≤r

t , i = 1, . . . ,ne

d
(i )
t+1 =√t+1(r

u(i )
t+1 )+≤d

t , i = 1, . . . ,ne

e t+1 : {(r
u(i )
t+1 ,d

(i )
t+1), i = 1, . . . ,ne }
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4 Ensemble methods applied to groundwater flow

In hydrogeological applications, it is common practice to use physics-based numerical models to simu-
late and predict groundwater flow. These models describe groundwater flow by solving numerically the
groundwater flow equation on a discretized domain. To produce reasonable simulations, the model pa-
rameters (e.g., the hydraulic conductivity) are usually estimated from observations of model states (e.g.,
hydraulic heads and soil water content) through model inversion.

In recent years, data assimilation and ensemble Kalman-based methods have become popular meth-
ods in hydrogeology, mainly because the explicit calculation of the gradient matrices needed for updat-
ing parameters is not needed. Instead, they are evaluated by ensemble averaging within a Monte Carlo
framework.

In the current study, we investigate the performance of the ensemble methods described in previous
sections when estimating spatially distributed aquifer parameters of a groundwater-flow model subject
to pumping tests. In the following, we present the governing equation describing groundwater flow, and
introduce the main characteristics of the research field site Lauswiesen, near Tübingen, Germany. The
objective is to situate the performance of the SEnKF with respect to established methods. To that end, we
then present a synthetic study based on the real field site in which the reference log-conductivity field dis-
plays a two-layer structure with a bimodal spatial histogram that is similar to the assumed characteristics
of the study area. The design of the experiment is purposedly favorable to the SEnKF in order to show-
case its potential and motivate its use in real data applications in which a bimodal distribution might
better represent real material properties. We finally present the results of the data assimilation experi-
ments performed using real pumping tests implemented as the Lauswiesen field site. Earlier direct-push
injection-logging (DPIL) measurements from the field site suggest, as previously mentioned, a two-layer
structure in the log-conductivity field. It provides a good scenario to test the SEnKF, whose performances
are evaluated in regards to five established methods.

Groundwater Flow Equation

We consider transient groundwater flow in a porous aquifer described by:

So(x)
@h(x , t )
@t

°r · (K (x)rh(x , t )) =W0,8x ,8t

h(x , t0) = h0,8x

h(x 2 °i n , t ) = hi n ,8t (52)

h(x 2 °out , t ) = hout ,8t

° (K (x 2 °i n)rh(x 2 °i n , t )) ·n = q0,8t ,

where x denotes the spatial coordinates, So(·) the specific storativity, K (·) is the spatially distributed hy-
draulic conductivity, h(·, ·) is the hydraulic head, t is time, and to the initial time. The parameter Wo
represents volumetric sources or sinks (e.g., injection/extraction wells). The in- and outflow boundaries
of the domain °i n and °out , respectively, have Dirichlet boundary conditions. The rest of the domain’s
boundaries °n have Neumann boundary conditions. The parameters hi n , hout and ho are the fixed hy-
draulic heads along °i n and °out and initial hydraulic head, respectively. The vector n is the outer normal
unit vector to the boundary. The specific discharge q(·, ·) follows Darcy’s law q(x , t ) =°(K (x)rh(x , t )).
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Figure 2: Hydrogeological research site Lauswiesen: Location and distribution of the injection/ extrac-
tion and observation wells in the well field used during the field experiments. From Sánchez-León et al.
(2020)

Hydrogeological Research Site Lauswiesen and Experimental Design

The research site Lauswiesen is located in the Neckar Valley, Tübingen, Germany (Figure 2). The aquifer
consists of 8m to 9m thick gravel with small amounts of sand (ª 10%) and fines (∑ 10%). It is overlain
by about 2m of alluvial fines, and underlain by low-conductive claystones. The depth to groundwater
is ª 4m. Previous field investigations report a mean hydraulic conductivity value of the aquifer of 3£
10°3ms°1 (Doro et al., 2015; Sánchez-León et al., 2020), which is a typical value for deposits dominated
by gravel-sheet sediments. In Figure 3, we show a schematic representation of the main subsurface units,
the wells available at the field site, and the general setting of the pumping tests.

The wells available at the field site cover an area of about 30m£10m and include four fully screened
wells (B-wells), aligned with the main natural groundwater flow direction (Figure 2). Between wells B3
and B6, a total of 20 observation wells are distributed in a 5m£4m regular grid. From the 20 observation
wells, four of them (cmt-wells) have a multi-channel tube with six depth-discrete observation ports each,
while the rest (ow-wells) are fully screened and vary between 1.9cm and 2.5cm in diameter (see also
Figure 3).

To assess the performance of the methods presented in this work, we adopt the experiment pre-
sented in Sánchez-León et al. (2020), which considers the physical subsurface properties at the field site,
as well as the available equipment. To demonstrate the applicability of the methods to real aquifers, we
use a subset of the data collected during a field hydraulic tomography experiment (Sánchez-León et al.,
2020). Hydraulic tomography is a method in which the aquifer is sequentially stressed at specific isolated
sections, and the hydraulic responses are measured at many observation points. To minimize the propa-
gation of the hydraulic pressure changes of the Neckar river into the investigated area, a nested-cell flow
field with two injection and two extraction wells is proposed (Sánchez-León et al., 2020), producing a sta-
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Figure 3: Pumping test design. Adapted from Sánchez-León et al. (2020)

ble local artificial ambient flow field with high extraction and injection rates applied at the outer wells,
and lower injection/extraction rates at the inner wells. We selected data from three of six pumping tests,
with water injection in well B3 at three different isolated depths and rates, and extracted from wells B6
and B7 over the entire aquifer thickness. The pumping rates values are summarized in Table 1.

Injection/extraction rates (ls°1)

Test B2 B3top B3mid B3bot B6 B7

3a 5.2 1.8 0.9 0.6 -2.5 -9
3b 4.9 2.2 0.82 0.6 -2.0 -8.7
1b 4.8 2.0 0.87 0.6 -2.4 -9

Table 1: Pumping tests setup: top, mid and bot refer to the top, middle and bottom sections generated in
the inner injection well B3. Positive flow rates represent injection of water, and negative flow rates refer
to extraction rates

With an extensive DPIL campaign, two major aquifer layers are identified (Lessoff et al., 2010), a
highly permeable and relatively homogeneous upper layer and a less conductive and more heteroge-
neous lower layer (Figure 4). DPIL measurements only provide relative values of hydraulic conductivity,
and while it is possible to transform them to absolute values, e.g. by defining the dependence between
relative and absolute hydraulic conductivities, the combined uncertainty from the measurements and
the inversion method are a strong deterrent to using inverted measurements to fit a prior model. We
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Figure 4: Relative conductivity measurements from the DPIL measurement campaign (Lessoff et al.,
2010)

rather refer to the evaluation of the aquifer made in Sánchez-León et al. (2020) to specify a mean and
correlation structure for the hydraulic conductivity fields. The DPIL measurements however, serve as a
motivation for using a selection-Gaussian prior that describes the two-layer system.

4.1 Groundwater model and data assimilation setups

We consider a discretized spatio-temporal random field, {h(x , t ), x 2 Lr Ω R3} where x is the spatial ref-
erence on the regular spatial grid Lr , t 2 Lt : {0, t1, t2, . . . ,T } are discretized time points, and h(·, ·) 2 R
represents the hydraulic head (m). We also consider two discretized spatial random fields, {log(K (x)),
x 2Lr ΩR3} and {S0(x), x 2Lr ΩR3}; with K (·) 2R© representing the hydraulic conductivity (ms°1), and
S0(·) 2R© representing aquifer storativity (m°1).

To simulate three dimensional groundwater flow, we use a finite volume numerical model imple-
mented in Matlab. Figure 5 shows the model domain in yellow, the area of interest where the injection,
extraction and observation wells are located is shown in blue. The grid covers the whole domain rather
than only the area of interest such that pumping effects at the boundaries are minimized. While bound-
ary conditions are assigned at the outer border of the model domain, parameters are updated only for
the area of interest. The total number of spatial grid nodes is n = 14007, with finer grid elements in the
area of interest than outside, reducing the total number of elements in the model and hence, model run
times. The area of interest contains 6256 grid nodes. The pumping test times are discretized in 27 steps,
from 0 to 7,000s when it is assumed that steady state is achieved. The discretized hydraulic head field
at time t may be represented by the n-vector ht and the log-conductivity and storativity fields by the
n-vectors log(K ) and S0, respectively. The storativity is assumed to be constant on the whole field such
that S0 = S0i n , where S0 is considered unknown. The state-space vector which contains the quantities
of interest, is therefore composed of log(K ) and S0. The data consists of hydraulic head measurements
collected at the active observation wells during water extraction. The forward model describes the evolu-
tion of the hydraulic head field in time for a given set of parameters (state-space vector). The likelihood
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Figure 5: Three dimensional model used for the groundwater flow simulations. The whole model domain
is shown in yellow, and the area of interest in blue. The injection and extraction wells are in red (B2, B3,
B6, B7), the fully screened measurement wells are in green, and the active multi-layer wells in black. The
observation wells shown correspond to those active during pumping test 1b

model selects hydraulic head values only at locations where it is measured. The forward model is ob-
tained by discretizing the groundwater flow equation (Equation 52) with a three-dimensional numerical
model that solves either transient flow or directly steady-state by the finite volume method on rectangles,
and is defined as:

ht+1 =!t (log(K ),S0,ht ;hi n ,hout , q0,W0) (53)

Constant-head values are defined at the left (hi n = 0.01m) and right (hout = 0m) boundaries of the
model domain, and no-flux boundaries (q0) at the front, back, bottom, and top faces. The initial head
field is defined by h0 = h0i n , such that h0 = 0 m. The injection and extraction rates are defined in Table
1. The likelihood model is defined as follow,

d t = Hht +≤d
t (54)

The matrix H is the observation (m£n)-matrix. The wells ws , s = 1, . . . ,m contain ls , s = 1, . . . ,m grid cells
respectively. The observation matrix is therefore defined as,

[H ]i , j =
1
li

, j 2 wi , i = 1, . . . ,m. (55)

Measurements from the cmt-wells are constrained to a specific point in depth, leading to a single non-
zero entry for the corresponding rows in the observation matrix H . For the ow-wells, which are fully
screened along the entire aquifer thickness, non-zero entries in H cover a number of grid elements de-
noted l·. The simulated drawdown at these wells is averaged over the number of grid-cells representing
the well. The corresponding rows in the observation matrix have therefore l· non-zero entries equal to
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Figure 6: Reference log-conductivity field

1
l·

. The random m-vector ≤d
t is centered Gaussian with covariance ßt

d = æt
d

2
I m . The measurement er-

ror level æt
d will be specified later. We consider drawdowns rather than the absolute hydraulic heads

as observations, where drawdown is defined as the depletion in piezometric head due to groundwater
injection and/or extraction. All the data assimilation experiments will be conducted with ne = 500 en-
semble members. Note that only the elements of the state space vector [log(K ),S0] are of interest in this
study.

4.2 Synthetic Case Study

For the synthetic pumping test we generate a reference log-conductivity field log(K )r e f from a selection-
Gaussian distribution with parameters £SG

r e f = (µr e f
r̃ ,µr e f

∫ ,ær e f
r̃ ,ßΩr̃ ,∞r e f , Ar e f ). The parameters values

are listed in Table 5. The spatial structure of the generated log-hydraulic conductivity field is in agree-
ment with the two-layer system of hydraulic conductivity distributions recognized at the field site (see
Figure 6). We assume an effective aquifer storativity S0 of 8.6£ 10°3m°1 which is typical for confined
systems.

For the SEnKF, see Section 3.3.2.3, the prior ensemble for the log-conductivity field is generated from
a selection-Gaussian random field log(K ) with parameters £SG

K = (µk
r̃ ,µk

∫,æk
r̃ ,ßΩr̃ ,∞k , Ak ). The param-

eters (∞k , Ak ) are chosen such that the prior marginal distributions be bimodal, with modes close to
those of the spatial histogram of the reference log conductivity field log (K )r e f (Figure 7). For the EnKF,
see Section 3.1, the prior ensemble for the log-conductivity field is generated from a Gaussian random
field log(K ) defined by 'n(log(K );µr i n ,æ2

rß
Ω
r ) where µr = °7 and ær =

p
1.6 are chosen such that the

marginal prior distribution covers the spatial histogram of the reference log-conductivity field (Figure
7). The spatial correlation (n £n)-matrix ßΩ· is defined by the second order exponential spatial correla-
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Table 2: Parameter values for reference and prior model

Ref
µ

r e f
r̃ () µ

r e f
∫ () æ

r e f
r̃ () ∞r e f () Ar e f ()

-7 0 0.6 0.99 [(°1,°0.1][ [0.1,+1)]n

Prior SEnKF
µk

r̃ () µk
∫() æk

r̃ () ∞k () Ak ()
-7 0 1.6 0.95 [[°3,°0.2][ [0.3,3.3]]n

tion function Ω(ø;dx ,dy ,dz ) = exp[°(ø2
x /d 2

x +ø2
y /d 2

y +ø2
z /d 2

z )]. This spatial correlation function is used to
generate the reference field and for both prior models with parameters values dx = 8m,dy = 4m and
dz = 1m. While the prior for the SEnKF has a larger marginal variance, it has a comparable spread
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Figure 7: Prior marginal distribution for the SEnKF (left) and the EnKF (right) compared to the spatial
histogram of the reference log-conductivity field

to the prior for the EnKF (Figure 7). The prior distribution for the effective storativity S0 is defined by
'1(S0;8.6£10°3,1£10°6). During the data assimilation, covariance localization, see Section 3.3.1.1, is
used in both methods.

4.2.1 Results

Figures 8 and 9 show the predicted drawdown recorded at the nine observation wells defined in the model
for the SEnKF and EnKF, respectively. The dark gray area represents the 70% prediction interval, the light
gray area represents the 90% prediction interval. The red lines are the true unperturbed synthetic draw-
down, and the red crosses represent drawdown perturbed by observation error with standard deviation
æt

d = 0.05. The value of æt
d is representative of the expected accuracy of modern sensors for hydraulic

head.
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Figure 8: Predicted drawdown from the SEnKF at the observation wells for pumping test 1b compared
to the true (red line) and measured drawdowns (red crosses). The dark gray area represents the 70%
prediction interval, the light gray area represents the 90% prediction interval.

The SEnKF and the EnKF appear to predict convincingly the true unperturbed drawdown. The spread
of the predicted drawndown is larger for the SEnKF than for the EnKF, and it seems more commensurate
with the observed drawdown for the former than the latter. This suggests that the EnKF might be under-
estimating the uncertainty despite the good predictions of the true unperturbed drawdowns.

Figure 10 displays the 3D reference log-conductivity field together with the 3D predicted log-conductivity
field from the SEnKF and the EnKF. Recall that the predicted spatial variables provided by the SEnKF and
the EnKF will be smoother than the truth. The SEnKF prediction represents to some extent the two-layer
structure observed in the reference field while the EnKF prediction exhibits the aforementioned regres-
sion towards the mean.

Figure 11 shows the predicted log-conductivity along well 2 for the SEnKF and the EnKF. The SEnKF
appears to better predict the log-conductivity along this well as it is able to identify the aforementioned
layered structure of the reference field, at least at this measurement well, while the EnKF does not.
These observations are consistent with the analysis of Figure 10. Recall again that spatial predictions
are smoother than the truth.

Figure 12 shows the coverage probability of the reference log-conductivity field for the SEnKF and the
EnKF prediction intervals. Visual inspection of the curves indicates that the SEnKF slightly overestimates
the prediction intervals while the EnKF clearly underestimates them. Conservatively overestimating the
prediction intervals appear preferable to the opposite.
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Figure 9: Predicted drawdown from the EnKF at the observation wells for pumping test 1b compared
to the true (red line) and measured drawdowns (red crosses). The dark gray area represents the 70%
prediction interval, the light gray area represents the 90% prediction interval.

Table 3: RMSE and SSIM and coverage comparing the predictions of the different methods to the true log
diffusivity field

SEnKF EnKF

Initial M AE 1.26 1.15

M AE 1.05 1.10
Posterior SSI M 0.0704 0.0464

To further quantify the performance of the data assimilation experiments, we estimate the mean
absolute error (MAE) between the predicted log-conductivity fields and the reference field. We want the
MAE to be as small as possible. We also compare the structural similarity index (SSIM) (e.g. Zhou et al.
(2004)), a metric used in image analysis to measure the degradation of the structural information of an
image. We want the SSIM to be as large as possible. The results are detailed in Table 3, both metrics are
favorable to the SEnKF. In particular the SEnKF offers a 17% relative reduction in MAE while the EnKF
only gives 4%.
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Figure 10: Reference log-conductivity field (left), mean log-conductivity prediction from the SEnKF (cen-
ter) and mean log-conductivity prediction from the EnKF (right)

4.2.2 Closing remarks

The synthetic case study demonstrate that the SEnKF provides more accurate predictions of the reference
log-conductivity field than the EnKF. Moreover, the prediction intervals for the drawdowns provided by
the SEnKF appear as more realistic than the ones provided by the EnKF. To further test the performance
of the SEnKF for real applications, where information about the true aquifer properties is limited, we
apply the presented methodology to data collected from real pumping tests.

4.3 Real Case Study

For the study with real data, we consider drawdown data from three different pumping tests performed
at the Lauswiesen field site. These tests are part of a larger experiment implemented at the field site as
described in Sánchez-León et al. (2020). The pumping tests are labeled as pumping tests 3b, 3a and 1b.
Slightly different injection/extraction rates are applied for each test (see Table 1). Additionally, different
observation wells are monitored during each test. The collected dataset is shown in Figure 13. When
assimilating each pumping test separately, data match is easily achieved for pumping tests 3b and 3a
for all methods (not shown). This is however not the case for pumping test 1b. We therefore focus on
assimilating pumping test 1b and evaluate whether the different methods detailed in Section 3 influence
the results. Table 4 presents the six methods that are considered in this study.

Table 4: Methods overview with different features (X: included, 7: excluded)

Prior Localization Inflation MDA

EnKF Gaussian X 7 7
EnKF/Infl Gaussian X X 7
GA EnKF Gaussian X 7 7

IEnKF Gaussian X 7 7
SEnKF Selection-Gaussian X 7 X

MDA EnKF Gaussian X 7 X

For the SEnKF, the prior ensemble for the log-conductivity field log(K ) is generated from a selection-
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Figure 11: Predicted log(K) along observation well 2 in pumping test 1b using the SEnKF (left) and the
EnKF (right). The prediction is in blue, the true log conductivity in red and the area in gray denotes the
80% prediction interval

Gaussian random field, the parameter values are listed in Table 5. Figure 14 shows the prior marginal
distribution overlain with relative log-conductivity measurements collected from available DPIL mea-
surements. The prior distribution roughly reproduces the shape of the relative log(K ) values of the DPIL
measurements. The parameters (∞, A) are chosen so that the prior marginal is bimodal, with modes al-
lowing for high conductivity pockets as suggested by the DPIL measurements.

For the other five methods, the prior ensemble of the log-conductivity field is generated from a Gaus-
sian random field log(K ) defined by 'n(log(K );µr i n ,æ2

rß
Ω
r ) where µr =°6 and ær =

p
1.6.

For both prior models, the spatial correlation (n £n)-matrix ßΩ· is defined by the second order ex-
ponential spatial correlation function Ω(ø;dx ,dy ,dz ) = exp[°(ø2

x /d 2
x +ø2

y /d 2
y +ø2

z /d 2
z )]. The parameters

values are listed in Table 5. The parameter values for both prior models are chosen in accordance with
Sánchez-León et al. (2020), and adjusted to ensure that the drawdowns simulated with the initial ensem-
ble covers the measured drawdowns for all three pumping tests. The prior distribution for the effective

Table 5: Parameter values for the selection-Gaussian prior

µr̃ () µ∫() æ2
r̃ () ∞() A() dx (m) dy (m) dz (m)

-6 0 1.6 0.99 [(°1,0][ [0.2,+1)]n 8 4 1
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Figure 12: Reference conductivity field coverage for the SEnKF and the EnKF. Prediction Æ intervals (hor-
izontal), coverage of the reference conductivity field in estimated 1°Æ prediction intervals (vertical)

storativity S0 is defined by '1(S0;8.6£10°3,1£10°6). During the data assimilation, covariance localiza-
tion, see Section 3.3.1.1, is used in all methods. When inflation is used, see Section 3.2.1.4, an inflation
factor Æ =

p
1.02 is chosen. When MDA is used, see Section 3.3.3.1, eight substeps are considered. The

IEnKF, see Section 3.3.3.2, uses Levenberg-Marquardt iterations and considers sensitivity matrices cal-
culated directly from the ensemble. The method closely follows the procedure presented in Luo et al.
(2015), and our implementation is based on the code made available by the authors. The standard devi-
ation of the observation error is set to æt

d = 0.05 in line with the expected accuracy of modern sensors for
hydraulic head.

4.3.1 Results

The methods are compared considering the following:

1. Data match: Predicted drawdowns at the observation wells of pumping test 1b conditioned on the
drawdown measurements collected during pumping test 1b.

2. Validation I: Predicted drawdowns at the observation wells of pumping test 3a conditioned on the
drawdown measurements collected during pumping test 1b.

3. Validation II: Predicted drawdowns at the observation wells of an additional pumping test with
different injection, extraction and observation wells conditioned on the drawdown measurements
collected during pumping test 1b.

4. Validation III: Predicted log-conductivity along well B6 and B7 conditioned on the drawdown mea-
surements collected during pumping test 1b. The results are compared to flowmeter measure-
ments along these two wells.



4 ENSEMBLE METHODS APPLIED TO GROUNDWATER FLOW 34

(a) Pumping test 3b (b) Pumping test 3a

(c) Pumping test 1b

Figure 13: Drawdown measurements d 3b , d 3a and d 1b from the three pumping tests 3b, 3a and 1b re-
spectively

We first investigate the Data match results. Figure 15 displays the predicted drawdowns from the EnKF
at the observation wells for pumping test 1b. The data match is poor and the ensemble spread exceed-
ingly narrow, especially at wells where the data match is the worst. This could be indicative of ensemble
collapse, or of a non-linearity that is too important for the EnKF to accommodate. However, the log-
conductivity fields shows no sign of collapse and conserve an acceptable amount of spread. The non-
linearity can either have its origins in the forward model, or from missing information in the prior dis-
tribution of parameters. Considering that data match is easily achieved in the synthetic study, it would
stand to reason that the source of the non-linearity lies in the complexity of the subsurface that is not
modelled by the prior distribution.

Upon inspection of Figures 16-19 containing predicted drawdowns at the observation wells for pump-
ing test 1b from the five other methods under consideration, it is determined that two methods display
good data match, the IEnKF and the SEnKF, while one, the MDA EnKF, gives an acceptable data match.
For the others two methods, data match is poor. Note that the SEnKF uses MDA which has a substantial
and positive effect on the results.

In the rest of the study, only the three methods with the best data match (IEnKF, SEnKF and MDA
EnKF) are further investigated. To validate the updated ensemble of parameters, we test their perfor-
mance with two additional datasets that are not used during data assimilation.

The first dataset is collected during pumping test 3a (Validation I). Figures 21, 22, 23 shows the pre-
dicted drawdowns at the measurement wells for pumping test 3a for the IEnKF, SEnKF and MDA EnKF
respectively. The best prediction is given by the MDA EnKF, closely followed by the SEnKF. The IEnKF
predictions fail to give any coverage to 3 of the 10 wells.

The second dataset (Validation II) is obtained in a different field campaign, where the settings of
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Figure 14: Prior selection-Gaussian distribution overlain with relative log-conductivity measurements
collected from the DPIL measurements centered about the assumed mean log-conductivity of the field.

the pumping tests are completely different to those of the tests presented in this work. Validation using
data from tests with different settings, and therefore completely different groundwater flow regimes, is
a strong assessment of the robustness of the data assimilation experiments. In this additional pumping
test, water is extracted at a rate of 3.54 L/s, from an isolated section at a depth of 5.27 m in well B6 .
No additional injection of water is implemented. The aquifer responses to pumping are monitored at
different depths using the multilevel cmt-wells (see Figure 3). Figures 24, 25, 26 shows the predicted
drawdowns at the measurement wells for the additional pumping test. The data measured at well 2
exhibit an odd behaviour, we do not consider it when analyzing the results. The SEnKF and the MDA
EnKF give good predictions while the IEnKF fails to give predictions that cover the measured data. These
observations are consistent with the results from pumping test 3a.

As a final validation and to supplement the pumping test validations, we consider the results from
Validation III. We compare the predicted log-conductivity field to flowmeter data collected along wells B6
and B7. Figure 27 displays the predicted log-conductivity for the IEnKF, SEnKF and MDA EnKF compared
to the log-conductivity measured using a flowmeter. All three methods provide an acceptable coverage
to the flowmeter data.

4.3.2 Closing remarks

The real case study demonstrates that even though the IEnKF gives the best data match for 1b and pro-
vide an acceptable coverage to the flowmeter data, the prediction of the drawdowns for both pumping
tests used as validation are underwhelming. The data match for 1b is comparatively less convincing for
the MDA EnKF, but the predictions for both pumping tests are satisfactory, and provides a suitable cov-
erage to the flowmeter ata. The SEnKF never provides the best of out three, but is consistently reliable
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Figure 15: Data Match, EnKF: Predicted drawdown at observations wells for pumping test 1b given d 1b
compared to the measured drawdowns (red line). The dark gray area represents the 70% prediction in-
terval, the light gray area represents the 90% prediction interval

throughout.

5 Conclusion

This study presented a review of existing ensemble Kalman filtering methods. The objective is to situate
the newly developed SEnKF in the existing literature. The synthetic case study is consistent with previ-
ous studies in that it confirms the aptitude of the SEnKF when the quantity of interest displays a bimodal
spatial histogram. The real case study shows that in a situation where there is legitimate reasons to sus-
pect the log-conductivity field exhibits spatial bimodality, the SEnKF provides robust if not compelling
results. However, considering the added computational burden, the MDA EnKF might be the more cost
efficient approach. It would be interesting to see if the comparison between these methods yield dif-
ferent results when conditioning on tracer data. It would however require rewriting the MCMC sampler
in the SEnKF to allow for larger grid size because of the resolution needed for tracer test simulation. It
would also be interesting to investigate what the comparison would yield if the three pumping tests are
assimilated sequentially. Both these matters are left for further research.
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Figure 16: Data Match, EnKF with inflation: Predicted drawdown at observations wells for pumping test
1b given d 1b compared to the measured drawdowns (red line).The dark gray area represents the 70%
prediction interval, the light gray area represents the 90% prediction interval

Figure 17: Data Match, GA EnKF: Predicted drawdown at observations wells for pumping test 1b given
d 1b compared to the measured drawdowns (red line). The dark gray area represents the 70% prediction
interval, the light gray area represents the 90% prediction interval
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Figure 18: Data Match, IEnKF: Predicted drawdown at observations wells for pumping test 1b given d 1b
compared to the measured drawdowns (red line). The dark gray area represents the 70% prediction in-
terval, the light gray area represents the 90% prediction interval

Figure 19: Data Match, SEnKF: Predicted drawdown at observations wells for pumping test 1b given
d 1b compared to the measured drawdowns (red line). The dark gray area represents the 70% prediction
interval, the light gray area represents the 90% prediction interval
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Figure 20: Data Match, MDA EnKF: Predicted drawdown at observations wells for pumping test 1b given
d 1b compared to the measured drawdowns (red line). The dark gray area represents the 70% prediction
interval, the light gray area represents the 90% prediction interval

Figure 21: Validation I, IEnKF: Predicted head at observations wells for test 3a given d 1b . The dark gray
area represents the 70% prediction interval, the light gray area represents the 90% prediction interval



5 CONCLUSION 40

Figure 22: Validation I, SEnKF: Predicted drawdown at observations wells for test 3a given d 1b compared
to the measured drawdowns (red line). The dark gray area represents the 70% prediction interval, the
light gray area represents the 90% prediction interval

Figure 23: Validation I, MDA EnKF: Predicted head at observations wells for test 3a given d 1b . The dark
gray area represents the 70% prediction interval, the light gray area represents the 90% prediction interval
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Figure 24: Validation II, IEnKF: Predicted drawdown at observations wells for the additional test given
d 1b compared to the measured drawdowns (red line) . The dark gray area represents the 70% prediction
interval, the light gray area represents the 90% prediction interval
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Figure 25: Validation II, SEnKF: Predicted drawdown at observations wells for the additional test given
d 1b compared to the measured drawdowns (red line). The dark gray area represents the 70% prediction
interval, the light gray area represents the 90% prediction interval
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Figure 26: Validation II, MDA EnKF: Predicted drawdown at observations wells for the additional test
given d 1b compared to the measured drawdowns (red line). The dark gray area represents the 70% pre-
diction interval, the light gray area represents the 90% prediction interval
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Figure 27: Validation III: predicted log(K ) (blue) along wells B6 and B7 using the IEnKF (top), SEnKF
(mid) and MDA EnKF (bot) compared to flowmeter measurements(red). The dark gray area represents
the 70% prediction interval, the light gray area represents the 90% prediction interval
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