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A B S T R A C T

Sentinel-1 mission with its wide spatial coverage (250 km), short revisit time (6 days), and rapid data dis-
semination opened new perspectives for large-scale interferometric synthetic aperture radar (InSAR) analysis.
However, the spatiotemporal changes in troposphere limits the accuracy of InSAR measurements for operational
deformation monitoring at a wide scale. Due to the coarse node spacing of the tropospheric models, like ERA-
Interim and other external data like Global Navigation Satellite System (GNSS), the interpolation techniques are
not able to well replicate the localized and turbulent tropospheric effects. In this study, we propose a new
technique based on machine learning (ML) Gaussian processes (GP) regression approach using the combination
of small-baseline interferograms and GNSS derived zenith total delay (ZTD) values to mitigate phase delay
caused by troposphere in interferometric observations. By applying the ML technique over 12 Sentinel-1 images
acquired between May–October 2016 along a track over Norway, the root mean square error (RMSE) reduces on
average by 83% compared to 50% reduction obtained by using ERA-Interim model.

1. Introduction

The fast, accurate, and cost-effective detection and mapping of
ground instabilities at regional to national scales can be extremely
helpful for civil protection authorities. Such maps can be used for
planning effective proactive measures and implementing warning sys-
tems for the areas prone to risk (Emadali et al., 2017; Milillo et al.,
2018). Even if ground deformation cannot be prevented or stopped, it
must be accounted for in new construction planning.

Classical geodetic methods such as observations made by permanent
global navigation satellite system (GNSS) stations allow monitoring of
ground deformation at high temporal resolution with millimeter-level
accuracy. However, they can provide the information only at discrete
and predefined spatial locations, rather than spatially continuous de-
formation field. By contrast, surface deformation maps provided by
space technology via Interferometric Synthetic Aperture Radar (InSAR)
have an expanded spatial and temporal coverage. InSAR is capable of
capturing the full continuous deformation field with a spatial-resolution
on the order of 1–20 m and temporal-resolution of 6–45 days over

hundreds of square kilometers. The potential of InSAR for mapping
large-scale deformation (Cetin et al., 2014; Daout et al., 2017; Hussain
et al., 2018; Kaneko et al., 2013; Motagh et al., 2010) has further been
facilitated and improved thanks to Sentinel-1 mission, operated by the
European space agency (ESA) (Haghshenas Haghighi and Motagh,
2018; Kalia et al., 2017; Raspini et al., 2018). The interferometric wide
swath (IW) acquisition mode can image a 250-km swath, which makes
it possible to routinely generate large-scale interferograms by seam-
lessly concatenating consecutive frames of data along the acquisition
track (Ferretti et al., 2015; Torres et al., 2012). However, despite the
potential to generate large-scale interferograms, the spatiotemporal
variability of the troposphere, limits InSAR measurements accuracy
(Delacourt et al., 1998; Haghshenas Haghighi and Motagh, 2017). For
instance, 20% change in relative humidity leads to 10 cm error in the
final deformation map (Zebker et al., 1997). Tropospheric phase delays
may be mitigated by applying the time filtering implemented in ad-
vanced multi-temporal InSAR (MTI) methods. These techniques are
typically applied on the original interferograms and have been widely
used to measure the Earth's surface deformations related to subsidence/
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uplift (Haghshenas Haghighi and Motagh, 2019; Lubitz et al., 2013;
Motagh et al., 2017; Shamshiri et al., 2014), landslide (Haghshenas
Haghighi and Motagh, 2016; Intrieri et al., 2018; Mirzaee et al., 2017),
tectonic (Feng et al., 2017; Fielding et al., 2017; Motagh et al., 2010),
and volcanoes (Morales Rivera et al., 2017; Spaans and Hooper, 2016;
Walter and Motagh, 2014). The MTI techniques can be broadly classi-
fied into three main categories, which are (1) persistent scatterer (PS)
(Ferretti et al., 2001; Hooper et al., 2004), (2) small baseline (SBAS)
approach (Berardino et al., 2002), and (3) hybrid methods, such as
SqueeSAR™ (Ferretti et al., 2011; Raspini et al., 2013; Shamshiri et al.,
2018; Solari et al., 2018). Studies have shown that applying MTI
methods on the tropospherically corrected interferograms further im-
proves the accuracy of the final results (Jo et al., 2010; Samsonov et al.,
2014; Tang et al., 2018; Vajedian et al., 2015).

One way to correct for tropospheric delays in interferograms is
using external sources such as the meteorological models like ERA-
Interim/ERA5 (Hu and Mallorquí, 2019; Jolivet et al., 2011). ERA-In-
terim is a global atmospheric reanalysis calculated by the European
center for medium-range weather forecast (ECMWF). The system pro-
vides several meteorological variables, including pressure, temperature,
and relative humidity at 6-hour intervals, and horizontal resolution of
approximately 79 km, with 60 levels in vertical (Berrisford et al., 2011).
The data are temporally and spatially interpolated to find the tropo-
spheric phase delay at SAR observation system. However, the hor-
izontal resolution of the ERA-Interim is not fine enough to capture the
small scale turbulent mixing effect in InSAR observations.

One alternative is to use GNSS-based techniques (Onn and Zebker,
2006; Williams et al., 1998; Yu et al., 2018). The zenith total delay
(ZTD) can be accurately derived at the highest temporal resolution
(15–30 min (Herring et al., 2018)) among the available external data-
sets, from each GNSS receiver. Using densely distributed GNSS stations
we can map phase delay into SAR line-of-sight (LOS) direction. How-
ever, the ZTDs derived at the GNSS receivers should be interpolated at
the SAR pixel size, which is a challenging task, especially in areas with
rugged topography and large meteorological contrasts. Using inter-
polation methods leads to distorted extrapolation/interpolation in areas
exceeding the maximum altitude of the GNSS stations and in areas with
steep topography. Moreover, it is expected that these methods are
limited to map the effect of turbulent mixing.

To overcome these problems, we implement a new method for
tropospheric correction of large-scale Sentinel-1 interferograms based
on a machine learning (ML) approach, which exploits short-interval
interferograms and ZTD values at GNSS stations. ML approaches have
been widely used and demonstrated their predictive accuracy in fields
of data mining (Bellinger et al., 2017), pattern recognition (Viola and
Jones, 2001), regression (Huang et al., 2012), classification (Liaw et al.,
2002), and spatial interpolation (Li et al., 2011). They are also suc-
cessfully employed in remote sensing applications (Zhu et al., 2017)
such as classification of hyper-spectral images (Chen et al., 2015;
Santara et al., 2017), interpretation of SAR and high-resolution satellite
images (Chen et al., 2016; Duan et al., 2017; Hu et al., 2015; Zhao et al.,
2016a), data fusion (Huang et al., 2015; Zhong et al., 2016), 3-D re-
construction (Blaha et al., 2016; Hane et al., 2013), and interferometric
phase unwrapping (Sawaf and Groves, 2014; Spoorthi et al., 2019). We
focus on Norway, and use the unwrapped differential phase derived by
large-scale interferograms of Sentinel-1 with short temporal baselines
as primary input variables and the GNSS stations location as secondary
input variables for the model training. We use the differential ZTDs
(dZTD) derived at the GNSS stations at two acquisition times as the
response variables. We then use the model to predict the corresponding
dZTD values for the whole interferogram. The estimated dZTD maps
can be used to compute the dZTD maps for the interferograms with
larger temporal baselines before applying the SBAS analysis. We show
that applying this approach on interferograms further improves the
quality of InSAR time-series analysis in comparison to those cases,
where interferograms are corrected by ERA-Interim.

In the following sections we first present the dataset employed for
this study, then describe the methodology and the applied ML techni-
ques. Then we evaluate the tropospheric corrections results using dif-
ferent methods and finally discuss the results in terms of the perfor-
mance of the applied techniques.

2. Data processing

2.1. Interferometric processing

We use 12 SLC images of Sentinel-1 acquired in IW mode covering
May–October 2016 from descending track number 37. The outline of
the frames is shown in Fig. 1.

We build the interferograms using the GAMMA software
(Wegmüller and Werner, 1997). We first concatenate consecutive
frames of the images along the acquisition track, and select one con-
catenated scene as a master (29 July 2016) to provide the reference
geometry. The remaining concatenated images are co-registered and re-
sampled to the master reference geometry using terrain height and
precise orbit geometry, followed by intensity matching and spectral
diversity refinement methods (Fattahi et al., 2016; Nannini et al., 2016;
Prats-Iraola et al., 2012; Scheiber and Moreira, 2000) for coregistration.
Subsequently, an optimal small baseline network of interferograms is
defined by considering a maximum temporal baseline of 36 days. Fig. 2
shows the network.

The multi-looked interferograms have been generated with 10 and 2
looks in the range and the azimuth direction, respectively. Initial to-
pographic phase components are subtracted from the small-baseline
interferograms using a re-sampled digital elevation model (DEM) at 90-
m pixel spacing provided by the Norwegian Mapping Authority (NMA).

Fig. 1. The outlines of the Sentinel-1 frames along the track number 37 re-
presented by the rectangles, superimposed on the aerial image (norgeskart.no).
Red triangles show the permanent Norwegian mapping authority (NMA) GNSS
stations in mainland Norway, IGS, and EUREF GNSS stations. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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The interferograms are geocoded using the same DEM. Finally, two-
dimensional phase unwrapping is performed on the small-baseline in-
terferograms for pixels with a coherence greater than 0.2.

2.2. ERA-Interim

As mentioned earlier, ERA-Interim provides among other meteor-
ological variables, pressure (P), temperature (T), and relative humidity
(e). Putting these meteorological data in Eq. (1), the ZTD(i) at a specific
height h(i) can be derived by integrating the hydrostatic and wet com-
ponents from height h to the top of the troposphere, htop (considered
30 km in this study) (Doin et al., 2009; Hanssen, 2001).

∫= + +− ′ZTD K P
T

K e
T

K e
T

dh10 (( ) ( ) ) ,i
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( ) 6

1 2 3 2
i

top
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where K1 = 77.6 KhPa−1, =′K 23.32 KhPa−1, and
K3 = 3.75×105 K2hPa−1 (Smith and Weintraub, 1953).

We use the TRAIN toolbox, which performs a linear interpolation in
time, and a lateral and vertical spline interpolation of P, T, and e, then
computes the ZTD for each node at the SAR acquisition time using Eq.
(1) (Bekaert et al., 2015). Afterwards, we map them into the Sentinel-1
LOS direction, using Eq. (2):

=STD ZTD
θcos

,
i (2)

where θi is the incidence angle of the radar signal for the resolution cell
i, and STD is the slant total delay (STD). Finally, using Eq. (3), we can
convert the STD map from pseudo-range to phase delay, ϕtrop.

= −ϕ π
λ

STD4 ,trop (3)

where λ is the Sentinel-1 wavelength.

2.3. GNSS processing

In order to calculate the tropospheric phase delay, we exploit
roughly 200 permanent GNSS stations (CPOS) provided by the
Norwegian mapping authority (NMA), with the separation between
adjacent stations ranging from 13 km to 70 km, and around 50–60 km
on average (Jacobsen and Schäfer, 2012). We also use four interna-
tional GNSS service (IGS), and five EUREF permanent network (EPN)
stations. Fig. 1 shows the location of the GNSS stations.

To derive the ZTD values from the GNSS receivers, we use the
GAMIT software package (Herring et al., 2018). For this, we first divide
the GNSS data into six clusters, and add the observations from the EPN
and IGS sites into all of the cluster solutions to constrain the network
solutions. Then we process each sub-network separately for each ac-
quisition day of SAR data at 2-hour intervals using the network-based
solution in GAMIT software package. Afterwards, we map them into the
Sentinel-1 LOS to derive STD using Eq. (2).

The STDs derived at the GNSS receivers should be interpolated at
the SAR pixel size, which is a challenging task. Because of the rugged
topography and the large meteorological contrasts throughout Norway,
the spatiotemporal variability in the ZTD is high. Considering the GNSS
data used in this study, the variability ranges from ~ 32 cm to ~ 45 cm
in space, and reaches to ~ 18 cm during a day. Fig. 3a shows the ZTD

Fig. 2. Plot of the acquisition dates versus the perpendicular baselines for the
network of the Sentinel-1 data. The black circles represent the slave images and
the red one shows the master image. The lines represent the small-baseline
interferograms. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)

Fig. 3. (a) The zenith total delay versus elevation at each GNSS stations in September 15th, 2016, (b) the ZTD values in time at two GNSS stations, AREC and BATC,
located at the same elevation (see Fig. 1 for their location). The bars show the standard deviations at each hour.
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values versus the elevation at each GNSS stations in Norway on Sep-
tember 15th, 2016. It can be seen that although there is a inverse
correlation between the ZTD and the elevation, the ZTDs differ between
two stations located at the same elevation. As an example, we plot in
Fig. 3b the changes in ZTD values over time at two GNSS stations, called
AREC and BATC, located in southern and northern Norway (black co-
lored triangles in Fig. 1). Even though they are at the same elevation
(~78.8 m), their ZTD show totally different behavior in time. This
makes it necessary to accurately estimate the tropospheric artifacts and
remove them from the interferograms. It also shows that one single
ZTD-elevation relationship is not applicable for a scene the size of
Norway.

In order to interpolate the delay due to tropospheric stratification,
which correlates with topography, different approaches have been
suggested including spatial structure function (Li et al., 2006), iterative
tropospheric decomposition (ITD) (Yu et al., 2017), seasonal Gaussian
function (Hu and Yao, 2018), and least-squares collocation (Wilgan and
Geiger, 2018). However, as mentioned above, the ZTD-elevation dis-
tribution in Norway for different dates, shows complex patterns and
vary in time, which makes it difficult to fit a specific function to the
data. In the following section, we explain how we can exploit machine-
learning for such data integration between GNSS and interferometric
observations for tropospheric correction.

2.4. Machine learning approach

We propose a new method based on ML approach using combina-
tion of GNSS and small baseline (SB) interferograms with short tem-
poral baselines to model and correct tropospheric effects in interfero-
metric phase. Fig. 4 shows the flowchart of our algorithm. We first
select interferograms with small temporal baselines (12 days in this
study). For each of these interferograms, we train a model using the
available GNSS stations, by this assumption that the ground surface
displacement is negligible at the permanent GNSS stations, and the
interferograms are mainly affected by the tropospheric phase delays.
The differential unwrapped phases at the location of the GNSS stations
are used as primary variables, and the location of the stations (ϕ, λ) are
used as the secondary variables for the inputs of the training. We then
exploit differential STDs at GNSS stations as the response of the model.

After preparing the training datasets (the inputs and the responses)
for interferograms with small temporal baselines we apply on our da-
tasets several ML-based approaches including linear regression, support
vector machine (SVM) (Cortes and Vapnik, 1995), as well as Gaussian
processes (GP) regression (Rasmussen, 2004). The modeling is per-
formed by minimizing an objective function, which is the root-mean-
square error (RMSE) in this study. We use a 5-fold cross-validation to
validate the trained model. For this, we randomly partition our dataset
into five disjoint sub-datasets. Four sub-datasets are combined and used
for the model training and the held-out one, the so-called validation
dataset, is used to check the prediction of the trained model. This

process is repeated by varying the validation dataset until all five sub-
datasets are used for validation. The performance of the models is then
assessed by the average RMSE on all datasets, when they are kept in a
held-out fold. Consequently, all methods are applied to the same
training and test datasets, and the model corresponding to the lowest
RMSE is selected. In the next step, the selected model, which is able to
predict the STD at each GPS stations in the interferogram, is used to
predict the differential STD values at all pixels in the interferogram.
This procedure of training is re-performed for each interferogram with
small temporal baseline in the network (Fig. 2).

During model training, it may happen that the training error be-
comes very small, but prediction error for the new data becomes large.
This is a well-known problem in machine-learning referred to as over-
fitting (Dietterich, 1995; Domingos, 2012). To avoid this, we add the
elevation of the stations in those interferograms suffering from over-
fitting as the secondary variables. It is worth noting that phase un-
wrapping errors in the islands relative to the mainland due to the water
separation are visually identified and manually removed from all the
interferograms before the ML-running. Therefore, the GNSS stations,
which are located in the areas affected by the unwrapping errors, are
considered as outliers in the model training and are discarded from the
modeling.

In our experience, among the mentioned methods, GP leads to the
most accurate prediction (the RMSE of the training is up to around 2.5
radians; 10 mm), as it has been also concluded in other studies (Bélisle
et al., 2015). We apply GP with different covariance functions for each
dataset and select the one with the lowest RMSE.

GP regression is a non-parametric, supervised learning method. Let
= =S x y{ , }i i

i
n( ) ( )

1 be a set of training points where, x(i) is the differential
phases at the GNSS stations and the GNSS locations as the inputs, and
y(i) is the differential STD at the GNSS stations as the response. The
objective is to learn a function f projecting the input vector x into a
target function y, as
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Using the rules for conditioning Gaussian, we will have (Do, 2007):

�
→ →y y x x μ*| , , *~ ( *, Σ*)n (7)

where,

Fig. 4. Flow diagram of the implemented tropospheric correction method from the small temporal baseline interferogram in this study.
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are the estimate for y* and the uncertainty in the estimation, respec-
tively.

The covariance function reflects the similarity between data points,
i.e. the input points that are close have high covariance function, and

are likely to have similar response values (Zhao et al., 2016b). The four
most common covariance functions, namely exponential, squared ex-
ponential, rational quadratic, and Matern 5/2 are used in this study.
The exponential covariance function is defined as follows (Rasmussen
and Williams, 2006):

Fig. 5. An example of tropospheric corrections from InSAR and GNSS-based method (using machine learning) on the interferogram “20160927–20161009”, where
date is in yyyymmdd-yyyymmdd format. (a) shows the original interferogram, (b–c) the unwrapped phases of the original interferograms and the differential STD
values at the GNSS locations, respectively. (d) shows the training of the model, (e) the predicted differential STD, and (f) the corrected interferogram. The triangles in
(a) show the location of the GNSS stations. The star in (f) shows the location of the reference area, which is one of the GNSS stations, and set for the all interferograms
and STD maps.
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where σf is the standard deviation of the function, l is the characteristic
length-scale which determines how rapidly the function varies with the
input data (x), and r is the Euclidean distance between xi and xj,

= − −r x x x x( ) ( )i j
T

i j . The squared exponential covariance function,
defined by:
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The rational quadratic one is defined as:

= + −k x x σ r
l α
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2

)i j f
α2

2

2 2 (11)

where, α is a positive-valued scale-mixture parameter. And the Maten
5/2 covariance function is defined as follows:
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The parameters to be calibrated are σn
2, σf

2 and l when the ex-
ponential, squared exponential or Matern 5/2 is used as the covariance
function. The parameter α is determined as well if the covariance
function of rational quadratic is used. To achieve accurate model
parameters, it is necessary to have a well-distributed training data. As
the training data here is the location of the stations and the interfero-
metric phase at the stations, the data should be well-distributed over
the area of interest and have the phase values with high variance. In
this way, the Euclidean distance (r in the covariance functions formula)
between the training data and the testing data will not be large. As a
result, the covariance function (k(xi,xj)) will increase, which in turn
leads to a better prediction.

In order to estimate the differential STD map for the interferograms
with large temporal baselines (> 12 days in this study), we use two
connected small temporal baseline interferograms, and add their dif-
ferential STD maps. As interferograms with large temporal baseline are
a linear combination of the small temporal baselines ones, we can infer
that if the correction is good enough on the small ones, it will be good
on the large ones as well. The approach can be validated by comparing
the differential STD values at the GNSS stations with their corre-
sponding values in the estimated STD map.

2.5. Displacement retrieval

As mentioned before, the main challenge in large-scale InSAR pro-
cessing is tropospheric corrections. Having estimated this using ML-
approach presented in Section 2.4, the tropospherically corrected in-
terferograms can be processed to retrieve the displacement field using
the SBAS approach (Berardino et al., 2002). For the SBAS analysis, we
select pixels with coherence greater than 0.4 in at least half of the stack
of interferograms. It should be mentioned that as Norway is close to the
polar region, ionospheric effect may affect the quality of C-band InSAR
interferograms (Fattahi et al., 2017; Gomba et al., 2017; Jacobsen and
Andalsvik, 2016; Liang et al., 2019). However, as the focus of the study
is tropospheric correction, the contribution from the ionospheric errors
are accounted for here by finding the best-fitting plane to the selected
pixels in each interferogram, which is assumed to remove residual
tropospheric errors as well. We then estimate and remove DEM errors
based on the relationship between interferometric phase and perpen-
dicular baseline. Finally, the displacement time-series is derived by
least-squares inversion at each pixel.

3. Results

Figs. 5 and 6 show the performance of the machine learning-based
technique (GP regression) developed in this study for correcting tro-
pospheric artifacts of interferograms. To correct each interferogram, we

subtract from the original interferometric observations the estimated
differential STD map and the fitted plane. Among 200 GNSS stations,
roughly 73 stations fall within the processed region. Their location are
shown on the original interferograms (a). We used the unwrapped
phases of the original interferograms at the GNSS locations together
with the GNSS locations as a training set (b) and the differential STD
values as the response (c). Using the GP technique, we fit the models,
shown in (d), and predict the differential STD values for the whole
interferogram using the model (e). Finally, we apply the DEM error
corrections, and the predicted differential STD on the original inter-
ferogram, and deramp the result (f).

We assess the performance of our method by computing the re-
duction in interferogram RMSE after correcting for the tropospheric
phase as measures of the method quality. The result shows that using
our method, the RMSE values reduce from 27 mm in
“20160927–20161009” interferogram and 23 mm in
“20161009–20161021” interferogram to 2 and 3 mm, respectively
(reduction by 91.7% and 85.8%).

Using two differential STD maps for the short intervals (12 days),
interferograms “20160927–20161009” and “20161009–20161027”, we
can now estimate the differential STD map for the interferogram
“20160927–20161027” with longer interval (24 days). Fig. 7 shows the
original interferogram, the differential STD resulted by the technique,
and the corrected interferogram. As illustrated in Fig. 7 the result is
very encouraging as it leads to the RMSE reduction of the original in-
terferogram by 81%.

We validated the technique for the interferograms with longer in-
tervals (like Fig. 7b), for which we have estimated the differential STD
map using the maps derived by the interferograms with short temporal
baseline (like Figs. 5e and 6e). To this end, we extracted the estimated
differential STD values at the GNSS stations and compared them with
their corresponding values derived from each GNSS station. As an ex-
ample, Fig. 8 illustrates the scatter-plot of the estimated differential
STD using the machine learning-based technique at the GNSS locations
versus the differential STD derived from each GNSS stations for the
interferogram “20160927–20161021”. The RMSE of 2 cm, and the
correlation of 96% between the estimations and observations indicates
the efficiency of our approach. For the rest of the interferograms with
large-temporal baselines the RMSE ranges from 1.35 to 5.3 cm, and the
correlation from 0.94% to 0.99%.

4. Discussions

In this section, we compare the results of our method with those
obtained by using ERA-Interim. We also quantify the performance of
our results in terms of RMSE reduction in the short-interval SB inter-
ferograms, sensitivity of the ML approach to the training set size and
their spatial distribution, the quality of the correction as a function of
distance, and reliability of the displacement time-series derived by
different correction methods. At the end of this section we also in-
vestigate whether our method removes the other phase components like
the deformation and the ionospheric effects.

4.1. Assessment of the techniques performance

Fig. 9 shows exemplary performance of the ERA-Interim on two
interferograms with short temporal baselines. Comparing the original
interferogram (a and d) with the STD maps derived using ERA-Interim
(b and e) exhibits a good correlation in their overall pattern. Following
the DEM error and the deramping steps (explained in Section 2.5) on
the tropospherically corrected interferograms (c and f), the results show
that using ERA-Interim reduces the RMSE of the original interferograms
from 2.7 cm in “20160927–20161009” interferogram and 2.3 cm in
“20161009–20161021” interferogram to 2 and 1 cm, respectively. This
leads to 23% and 57% reduction in RMSE using ERA-Interim. However,
as it was presented in Section 3, our approach works much better on the
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same interferograms, reducing their RMSE to 2 and 3 mm.
We extend the above comparison and calculate RMSE for all inter-

ferograms with short-temporal baselines corrected with ERA-Interim
and our proposed method (Table 1). As seen in Table 1 by using our
approach, RMSE values of the original interferograms decreased by
70–92 %, while using the ERA-Interim they decreased by 20–75 %. On
average ML-based approach leads to reduction of 83%, while ERA-

Interim reduces the RMSE by 50%, clearly demonstrating the capability
of our approach in mitigating tropospheric artifacts.

4.2. Sensitivity of the ML technique to training set size

During the ML-approach, for each interferogram with short-tem-
poral baseline we first trained a model accurately using all available

Fig. 6. An example of tropospheric corrections from InSAR and GNSS-based method (using machine learning) on the interferogram “20161009–20161021”. (a)
shows the original interferogram, (b–c) the unwrapped phases of the original interferograms and the differential STD values at the GNSS locations, respectively. (d)
shows the training of the model, (e) the predicted differential STD, and (f) the corrected interferogram. The triangles in (a) show the location of the GNSS stations.
The star in (f) shows the location of the reference area, which is one of the GNSS stations, and set for the all interferograms and STD maps.
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GNSS stations in the processed region (73 stations). To check if the
approach is applicable for the regions with coarser GNSS network, we
investigate the robustness of our approach to fewer GNSS stations to
determine if it can be used to derive comparable modeling as obtained
using all the stations. We achieved this by applying the test on the in-
terferogram “20160927–20161009” and calculating the RMSE of the
corrected interferogram using different number of the training data.
The training accuracy is evaluated by computing the RMSE reduction of
the corrected interferogram compared to the original one. Fig. 10 il-
lustrates the changes of RMSE versus training set size by our method.

From Fig. 10, it is obvious that the reduction in RMSE of the

corrected interferogram compared to the original one using only 30% of
the entire training data is approximately the same as that obtained by
using the entire training set. For example, the RMSE reduces by ~80%
using only 10% of training data (7 GNSS stations). This indicates that
our approach is tolerant to training set size, having a good general-
ization capability even with a small set of training samples. The figure
also shows that the accuracy decreases, when the training data size is
reduced from 20% to 10% of the training set. This is caused by random
selection of the training set, which is investigated in the next section.

4.3. Sensitivity of the ML technique to the spatial distribution of training
data

As seen in Fig. 10, using 10% of the stations leads to a better cor-
rection than with 20% of the stations (~77% compared to ~82%).
Better performance of the model with fewer stations suggests a certain
sensitivity of the approach to the spatial distribution of the GNSS sta-
tions. We analyze this assumption using only 7 stations (10% of the
training data) with different spatial distribution, all of which are lo-
cated on the up, down, right, or left side of the processed region. We
then apply the test on the interferogram “20160927–20161009”. The
analysis shows that the RMSE of the corrected interferogram reduces by
around 56–80 % when the stations are on one side of the image (up,
down, right, or left side of the processed region). However, in our ex-
perience the best result is achieved when the stations are distributed
spatially-homogeneous over the whole processed region (RMSE reduc-
tion of 90%). This indicates that as samples become dispersed across the
region of interest, training accuracy improves significantly. This is not
surprising as a wider range of sampling in ML problems leads to have
good representative samples of the data, which in turn results in better
generalization capabilities (Cracknell and Reading, 2014; Harvey and
Fotopoulos, 2016). As it is mentioned in Section 2.4, when the training
data are located on one side of the image, the Euclidean distance be-
tween the training data and the testing data will be increased, which in
turn reduces the covariance function and leads to have an unreliable
prediction. Conversely, if they are distributed evenly across the inter-
ferogram, but their number is not large enough to properly represent
the variability of the phase in interferograms with high variances, this
will not lead to reliable prediction either.

Fig. 7. An example of tropospheric correc-
tions from InSAR and GNSS-based method
(using machine learning) on the inter-
ferogram with longer interval (24 days)
“20160927–20161021”. (a) shows the ori-
ginal interferogram, (b) the estimated dif-
ferential STD, and (c) the corrected inter-
ferogram. The star in (c) shows the location
of the reference area, which is one of the
GNSS stations, and set for the all inter-
ferograms and STD maps.

Fig. 8. Scatter-plot of the estimated differential STD using the machine
learning-based technique at the GNSS locations versus the differential STD
derived from each GNSS stations for the interferogram with longer interval
(24 days), “20160927-20161021”.
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Fig. 9. Examples of tropospheric corrections from ERA-Interim. (a) shows the original interferogram (“20160927–20161009”), (b) the STD maps derived using ERA-
Interim, and (c) shows the original interferogram after DEM error and the deramping and the tropospheric corrections. (d–f) similar to (a–c) but for interferogram
“20161009–20161021”. The star in (a) shows the location of the reference area, which is set for the all interferograms and STD maps.
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4.4. The quality of the correction as a function of distance

The uncertainty of the tropospheric correction is a function of dis-
tance (Emardson et al., 2003; Fattahi and Amelung, 2015). To in-
vestigate the quality of the correction as a function of distance to the
GNSS stations, we used half of the stations for the model training and
another half for the validation. We selected stations with different
spatial distribution to increase the variability of the distance; all sta-
tions located in the up, bottom, middle part of the processed region or
randomly distributed over the region. We compute the residual of the
tropospheric delay (the predicated delay-known delay) for the stations
that were not used in the training. Fig. 11a shows the residual of the
delay for the stations, which were used as a test data versus the distance
to the closest station, which were used as a training data. The figure
shows that, as expected, the prediction error of the model increases by
increasing the distance. To simplify the interpretation, we plotted in
Fig. 11b the averaged residuals of the test stations within the bins with
the width of 50 km distance from the training stations with their as-
sociated standard deviations.

4.5. Validation of the displacement time-series

To validate the tropospheric correction methods, we compare the
InSAR derived time-series before and after corrections with those ob-
served at each GNSS stations (Fig. 12). To this end, we projected the
displacement in east, west, and up directions into the Sentinel-1 LOS
direction with the formulation in (Hanssen, 2001). InSAR time-series
are relative to a reference date, which is 20160729 (master image).
GNSS time-series are referenced to the same reference date as InSAR
time-series. All InSAR and GNSS time-series are referenced in space to
the same area, which is one of the GNSS stations (the location is de-
picted in Fig. 9a with a star). Looking at the time-series plots, shows
that the scatter of InSAR time-series significantly reduces after tropo-
spheric delay correction. They can introduce errors of over 15 cm to
ground surface displacement.

To quantify the performance of the tropospheric correction, we

compute the RMSE of InSAR time-series (before and after correction)
relative to GNSS time-series measurements. As illustrated in Fig. 12,
correction of tropospheric delay significantly improves the quality of
the results, reducing the RMSE from 1.6 and 7.9 cm at different stations
before correction to 1 and 2.4 cm after correction using ERA-Interim
model. Compared to ERA-Interim, our proposed method works sig-
nificantly better as it leads to the RMSE reduction of 3 to 7 mm. This
indicates the importance of the tropospheric correction and in parti-
cular the effectiveness of our approach to deal with this problem.

4.6. Does the method remove the other phase components?

Here, we investigate whether our method simply mimics the inter-
ferogram and in turn removes other phase components, like ionospheric
effects or ground deformation. Fig. 13 shows one of the unwrapped
interferograms, “20160822–20160903”, and the differential STD map
derived using our method. Looking at the dSTD values at the GNSS
stations on the tropospheric map (the circles in the Fig. 13b, which are
used as training data), shows the good performance of the modeling.
Comparing (Fig. 13a and b) shows that the response of the model is
affected by the dSTD values at the GNSS stations and not by the

Table 1
RMSE of the short-interval (12 days) interferograms without and with the
tropospheric correction techniques. The unit is centimeter.

Date [yyyymmdd] Tropospheric correction technique
master_slave no-correction ERA-Interim ML

20160530_20160611 2.61 1.39 0.51
20160705_20160717 2.09 0.83 0.37
20160717_20160729 1.92 1.01 0.47
20160729_20160810 2.65 1.35 0.27
20160810_20160822 1.91 1.1 0.44
20160822_20160903 1.77 1.42 0.54
20160903_20160915 7.85 2 1.02
20160915_20160927 8.54 2.14 1.05
20160927_20161009 2.67 2.06 0.22
20161009_20161021 2.37 1.01 0.34

Fig. 10. Comparison of the RMSE reduction for the whole training set and
fewer training data.

Fig. 11. (a) The residual of the tropospheric delay for the stations which used as
a test data versus the distance to the closest station which used as a training
data. The different sets of the training data are used with different spatial
distribution; the stations located in the up, bottom, middle part of the processed
region or randomly distributed over the processed region. (b) The averaged
residuals of the test stations within the bins with the width of 50 km distance
from the training stations. The bars show the associated standard deviations for
each averaged residual. The equation on the left bottom corner shows the linear
fitting to the graph, depicted by red line. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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interferometric phase values at the stations. The modeling uses the
interferometric phase values mainly for deriving the gradients of the
dZTD changes in space. This shows that our method does not map all
the interferometric phase onto the tropospheric delays.

As it can be seen in the figure, there is a clear difference between the
interferogram and the tropospheric map in the northern part. As there is
no (or very little) deformation in the interferograms, the difference
might be because of ionospheric effects or inaccuracies in the tropo-
spheric delay estimation at the stations.

Looking at the rate of the total electron content (TEC) index changes
in these Sentinel-1 acquisition dates (Fig. 13c and d), shows that there
was a high activity in the date 2016-09-03, especially in northern
Norway. Therefore the high activity of the ionosphere can be

considered as the main explanation for such a difference.
As the modeling uses the ZTD estimation at the GNSS stations as

response, the performance of the method is affected by the uncertainty
in the ZTDs estimation as well. This uncertainty is introduced by a
variety of factors including mapping functions, phase ambiguity, re-
ceiver clock corrections, satellite orbits, ionospheric delay, signal multi-
path, and antenna related errors (Ning et al., 2016). For the analyzed
interferogram (“20160822–20160903”), the standard deviations of the
ZTD values at the stations range from around 5 to 10 mm, which is
equal to 1 to 2.2 radians. Therefore, part of the differences seen in
Fig. 13a–b is caused by the uncertainty in the ZTD estimation.

It is worth noting that as the training dataset for the modeling is not
affected by deformation, the model does not learn anthing about

Fig. 12. GNSS time-series in Sentinel-1 LOS direction (blue lines) with twice the standard deviations compared with InSAR time-series before (red triangles) and after
correction, using ERA-Interim (green triangles) and machine learning-based method (black triangles). All InSAR and GNSS time-series are relative to a reference date,
which is 20160729, and to the same area, which is one of the GNSS stations (the location is depicted in Fig. 9a with a star). The geographical coordinates of the
stations are written in the top left of each plot. The values in the bottom left show the RMSE between the GNSS time-series with the corrected time-series with
different methods, indicated by their colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. An example of tropospheric map from InSAR and
GNSS-based method (using machine learning) on the inter-
ferogram “20160822–20160903”. (a) the original inter-
ferogram, and (b) the predicted differential STD map. (c and
d) the mean rate of TEC index observed at ground location for
northern, middle and southern Norway in the dates 20160822
and 20160903, respectively (Courtesy http://sesolstorm.
kartverket.no). 0–1 TECU/min means the low activity, while
3–5 TECU/min means the high activity. The circles in (a and
b) show the GNSS stations locations, color-coded by the in-
terferometric phase and the differential STD values, respec-
tively, used for the model training. The star in (a and b) shows
the location of the reference area, which is one of the GNSS
stations.
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deformation signal. As a result the model can differentiate between
tropospheric delay and deformation signal and perform well for areas
other than Norway with higher deformation rates and/or in areas
where deformation has correlation with topography. However, this
needs to be investigated in more detail in future research.

5. Conclusions

Our study with Sentinel-1 data showed that ERA-Interim is not able
to well reduce tropospheric phase delay in large-scale interferometric
synthetic aperture radar (InSAR) measurements over Norway. We
showed that our new technique based upon machine learning (ML)
exploiting interferograms with short temporal baselines and global
navigation satellite system (GNSS) derived zenith total delay (ZTD),
improves tropospheric corrections on Sentinel-1 interferograms on
average by 83% compared to 50% root-mean-square error (RMSE) re-
duction gained by using ERA-Interim. The technique facilitates the
corrections, as we do not need to deal with finding a suitable function to
interpolate the coarse model-node spacing. It is also robust in the case
of few GNSS stations. However, the quality of the correction depends on
the spatial distribution of the stations and is a function of distance to
the stations. Comparing the displacement time-series based on small
baseline subset (SBAS) on the interferograms corrected by our approach
with GNSS measurements showed a good agreement, with overall
RMSE of 5.2 mm compared to 14.7 mm derived by using the SBAS
approach and the correction based on ERA-Interim.
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