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Abstract: The microbial diversity in anaerobic digestion (AD) is important because it affects process
robustness. High-throughput sequencing offers high-resolution data regarding the microbial diversity
and robustness of biological systems including AD; however, to understand the dynamics of microbial
processes, knowing the microbial diversity is not adequate alone. Advanced meta-omic techniques
have been established to determine the activity and interactions among organisms in biological
processes like AD. Results of these methods can be used to identify biomarkers for AD states. This
can aid a better understanding of system dynamics and be applied to producing comprehensive
models for AD. The paper provides valuable knowledge regarding the possibility of integration of
molecular methods in AD. Although meta-genomic methods are not suitable for on-line use due
to long operating time and high costs, they provide extensive insight into the microbial phylogeny
in AD. Meta-proteomics can also be explored in the demonstration projects for failure prediction.
However, for these methods to be fully realised in AD, a biomarker database needs to be developed.

Keywords: microbial diversity; next generation sequencing; proteomics; metabolomics; community
diversity; anaerobic digetion; biogas

1. Introduction

Microorganisms are abundant organisms in the environment that play essential roles
in the sustainability of all life on the Earth [1]. Anaerobic digestion (AD) is an engineered
process for biological waste management through the conversion of the organic feedstocks
by microorganisms to produce biogas (i.e., a mixture of mainly methane and carbon diox-
ide) [2]. The AD process is a metabolic reaction consisting of four main steps in series (i.e.,
hydrolysis, fermentation or acidogenesis, acetogenesis and methanogenesis), where several
types of anaerobic bacteria and archaea interact together to produce biogas (Figure 1) [3–6].
Moreover, the AD process is strictly dependent on the activity of the microorganisms, and
its efficiency is affected by critical interactions between the microorganisms (i.e., known
as syntrophic activities (which can be defined as close cooperation between at least two
organisms based on the transfer of metabolic products from one to another)) within the
digester [2,7].

Although the online monitoring of conventional operation parameters (e.g., pH,
temperature, volatile fatty acids, biogas composition and alkalinity) reflect the current
situation in terms of monitoring AD, these do not provide enough data to understand the
microbial community composition, dynamics and function, limiting the predictability of the
process direction [8,9]. Additional information such as electron transfer mechanisms [10,11],
the level of functional equivalence in the microbial networks and the metabolic capacity
of newly identified microorganisms are required to develop and optimize AD [12,13].
Meta-omic techniques and gene amplicon sequencing methods can fill this gap in the

Microorganisms 2021, 9, 1162. https://doi.org/10.3390/microorganisms9061162 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-1019-6655
https://www.mdpi.com/article/10.3390/microorganisms9061162?type=check_update&version=1
https://doi.org/10.3390/microorganisms9061162
https://doi.org/10.3390/microorganisms9061162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9061162
https://www.mdpi.com/journal/microorganisms


Microorganisms 2021, 9, 1162 2 of 25

understanding of AD and have been developed in order to link the function and activity of
the microbial community [14,15].
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Figure 1. The overall metabolic pathways of anaerobic digestion. Polymeric organic materials go through the four stages of
anaerobic digestion (hydrolysis, acidogenesis, acetogenesis and methanogenesis), in order to produce raw biogas.

This manuscript starts by giving an overview of the anaerobic digestion process and
continues by presenting microbial biology and molecular techniques relevant for use in
AD. The authors emphasize the importance of the meta-omics techniques in terms of
understanding the complete picture of microbial community diversity and interactions in
AD systems. Finally, the review highlights the gaps between different disciplines and how
to bridge these in order to achieve a comprehensive modelling approach in AD. This paper
gives a broad summary of gaps in the field by suggesting currently employed solutions that
will help to develop an advanced mathematical model for AD. It also aids in developing
stable and predictable AD while helping to identify new pathways for biogas production.

2. Anaerobic Digestion (AD)

During hydrolysis, complex polymers (including carbohydrates, proteins and lipids),
are converted to the simpler monomers such as monosaccharides (C5 and C6 sugars), amino
acids and long-chain fatty acids (LCFAs) [5]. Different types of facultative and obligate
anaerobes produce extracellular enzymes to accomplish the hydrolysis process [4,16].
Acidogenesis is carried out with acidogenic bacteria. In this step, approximately 70% of the
products from hydrolysis of carbohydrates are converted to hydrogen, carbon dioxide and
acetate that can be directly used by methanogenic archaea [17]; however, for proteins and
fats, this conversion ratio can be different. For instance, proteins first convert to amino acids
and then to final products. For lipids, the hydrolysis splits them into LCFAs and glycerol,
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where the LCFAs are decomposed through β-oxidation [18]. The remaining hydrolysis
products are converted into intermittent components including short-chain fatty acids (e.g.,
propionate, butyrate and alcohols), which require further degradation [6,19].

The intermediate products of acidogenesis are further fermented by acetogenic organ-
isms to acetate, methyl compounds, carbon dioxide and hydrogen [20]. Methanogenesis is
mainly carried out by a group of Archaea organisms known as methanogens, which can
be categorized in three main groups [21]. The main active methanogens are aceticlastic
methanogens that produce methane from acetates through the aceticlastic pathway, hy-
drogenotrophic methanogens that produce methane from CO2 reduction by hydrogen or
formate, and methyloclastics methanogens that are capable of consuming methyl com-
pound (e.g., methanol, methylamines and methyl sulphide) to produce methane [4,22,23].

Hydrogenotrophic methanogens play a crucial role in the stability and robustness
of the AD by maintaining low hydrogen partial pressure in the system. Most of the
methane in AD is produced by aceticlastic methanogens (i.e., approximately two-thirds),
with minimum methane generation from methyloclastic methanogens [21]; however, in
high ammonia content (>3 g/L NH3-N) [24], the methane production pathway from
acetate will be reduced. In this condition, the hydrogenotrophic methanogens provide
the dominant methane production pathway [25–27]. The typical growth rate of different
functional groups varies by several factors including the type of substrate, operational
condition, microbial diversity and the type of reactor [28,29]. It is generally accepted that
the hydrolysis of complex substrates such as lignocellulosic materials are the rate-limiting
step in AD [30]. However, additional factors may result in low growth rates for proton-
reducing syntrophic bacteria and methanogenic microorganisms in AD [31], especially in
continuous feeding reactors where some of the microbes will leave the reactors through the
outlet [32]. For example, methanogens are very sensitive to environmental disturbances
such as pH, accumulation of fatty acids and ammonia concentration, while the growth rate
of proton exchange bacteria is extremely dependent on the partial pressure of hydrogen in
the system [32,33].

The acetogenic activity is thermodynamically affected in the high partial pressure of
hydrogen; moreover, the conversion reaction of butyrate and propionate to acetate and
hydrogen will only proceed in a low concentration of hydrogen in the system [34,35]. This
can be avoided through balancing hydrogen production from acetogens and hydrogen
consumption by methanogens [4,36]. Under certain conditions (e.g., high temperature
and high ammonium concentration), where the acetolactic methanogenesis pathway is
inhibited, an alternative pathway will be opened to convert acetate to hydrogen and
CO2. This pathway links the syntrophic acetate oxidation by acetate-oxidizing bacteria to
hydrogenotrophic methanogenesis as shown in Table 1.

Table 1. Syntrophic acetate oxidation linked to hydrogen conversion to methane.

Reaction Name Reaction ∆G◦ (kJ/mol)

Syntrophic Acetate Oxidation CH3COO− + 4H2O→ 2HCO3
− + 4H2 + H+ +104.6

Hydrogen to Methane 4H2 + HCO3
− + H+ → CH4 + 3H2O −135.6

Overall Reaction CH3COO− + H2O→ CH4 + HCO3
− −31

Even though the acetate oxidation pathway through acetate-oxidizing bacteria is not
the main biological pathway in most biogas production plants, it can become the dominant
methane generating pathway in high operating temperatures and high ammonia concen-
trations [18]. In AD, syntrophic species produce H2 and acetate through degrading organic
materials (e.g., fatty acids, alcohols and aromatic compounds) and in endergonic reactions
(i.e., an additional driving force is needed to perform these reactions) [37]. From the acetate
oxidation reaction (Table 1) it can be concluded that the only factor that causes the reaction
toward hydrogen production is the low concentration of hydrogen on the right side of
the reaction. The feasibility of such reactions depends greatly on hydrogen consumption
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by methanogenesis to maintain low hydrogen partial pressure in the system. In addition,
the syntrophic species (e.g., acetate oxidizing-bacteria) are also dependent on physical
attachment to the electron accepting cells (e.g., hydrogenotrophic methanogens) to ease
immediate interspecies electron transfer. AD is based on such H2 production/consumption
partnerships [38].

Even though the general scheme of AD is well understood, the biology behind AD
is not entirely established. Optimized AD cannot be achieved by simply identifying
the microorganisms, but also requires determination of activity and interaction between
different microorganisms [12].

3. Microbial Diversity

In microbiology, a microbial culture can be developed in order to determine types
of microbe or for testing the absence of specific organisms. A microbial culture is used
to regenerate and grow microorganisms on special growth media [39,40]. Methods that
are based on growing and selecting microbes through conventional cultivation media
(often on conventional cultivation media in Petri dishes) in a specific ecosystem are known
as culture-dependent techniques [41,42]. Only 1% of the known microorganisms can be
cultivated in this way due to several factors including lack of specific nutrients, oxygen level,
temperature, pH, biological interactions and missing growth factors (e.g., an important
element that can be produced by other microbes in the original culture) [39].

The culture-dependent techniques (e.g., DNA-DNA hybridization) are suitable to
identify the main population in a specific metabolic process. Since the culture-dependent
techniques do not consider the environmental factors affecting the AD process, the applica-
tion of these techniques alone does not give a complete picture of the microbial ecology
and physiology of the system [12,43,44].

In the past, synthetic media was the main option for cultivation. With the advent
of polymerase chain reaction (PCR) the analysis of microorganism without cultivation
became possible. Several methods were developed and coupled with PCR for investigating
complex cultures, and as a result the culture-independent technique was coined. This term
includes the modes that are not based on cultivation [41]. Culture-independent methods
(e.g., cloning of 16S rRNA and denaturing gradient gel electrophoresis) rely on molecular
methods to study microbes within their original environments. These approaches, together
with supplementary techniques including imaging, chemical analysis and isotope labelling,
can give a better insight into the microbial community and its dynamics. Such culture-
independent techniques have exposed previously uncharacterized microbial diversity in
AD [12].

Microbial diversity is the range of microorganisms and their relative abundancy in
a specific community [45]. Microbial diversity is important because it has an effect on
process robustness [46]. Each species in the biological system has its own weaknesses. If
the environmental situation pushes these species toward their inhibition, then, in a diverse
culture, other species can maintain their activity through other metabolic pathways to com-
pensate for the lack of specific activities in the system. As a result, a metabolically diverse
system is a stable and robust biological culture for various environmental conditions [22].

The microbial diversity can give precise information regarding the biological diversity
in three main levels (i.e., genetic variation within a species, distribution and number of
different species and the community diversity or ecology). However, the classification of
unknown bacteria can be the main challenge in the determination of microbial diversity [47].
The biodiversity can be estimated by measuring the divergence in molecular characters
(i.e., by nucleic acid homology). The stability of the system is related to the stability of the
community, and stress within the system can lead to an unstable system and variation in
the species diversity [48]. Therefore, diversity analysis is of interest as it provides a better
understanding of [47]:

• the genetics of the organisms and their distribution in the community
• the functional role of their diversity
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• the types of species
• the specific amount of each species within the system

Abiotic factors (e.g., temperature, pH, oxygen, nutrients and toxic materials), together
with morphological characterization of cells (i.e., cell shape, cell wall structure and flagella
per individual cell) are not enough to establish a detailed classification of the microbe.
Therefore, biotic factors at the molecular level (e.g., the DNA sequence) must be analyzed
to obtain stronger classification of the microbial system [49].

Recently developed methods in molecular and chemical ecology have introduced
promising options in order to study the microbial diversity [50,51]. These methods can be
used to investigate the microbial diversity and community structure. They are classified
into molecular biology and biochemical techniques that are comprehensively reviewed by
Fakruddin et al. [47] (Table 2).

Table 2. Some of the biochemical and molecular methods for determination of microbial diversity [47]. Different platforms and
sequencing technologies have been listed in detail by Kulski 2015 [52].

Molecular Biotechniques Biochemical Techniques

Mole percentage guanine-cytosine
Nucleic acid hybridization

DNA reassociation, restriction fragment length polymorphism (RFLP)
Terminal restriction fragment length polymorphism (T-RFLP)

Ribosomal intergenic spacer analysis (RISA)
Automated ribosomal intergenic spacer analysis (ARISA)
Amplified ribosomal DNA restriction analysis (ARDRA)

DNA microarrays
Polymerase chain reaction (PCR)

Plate counts
Sole-carbon-source utilization (SCSU)

Phospholipid fatty acid (PLFA) analysis

Polymerase chain reaction (PCR) amplification is a standard molecular biology method
allowing the amplification of specific DNA sequences that can be used to determine
the microbial community composition. The small subunit rRNA genes (i.e., 16S rRNA)
are regularly employed to study the biodiversity and community composition for many
microbial systems [12]. Traditional molecular fingerprint methods or first-generation
sequencing techniques have been effectively used for the assessment of the microbial
community in anaerobic digesters; however, these methods are time-consuming and give a
low resolution of the community [53].

Unlike traditional sequencing technologies, recently developed sequencing technolo-
gies, known as high-throughput techniques or next-generation sequencing (NGS), are
capable of sequencing multiple DNA molecules simultaneously with low cost, short pro-
cessing times and high resolution [54]. These features lead to the generation of large data
sets that can enhance the statistical correlation analysis [12]. Six main steps are adapted for
NGS techniques as shown in Figure 2 [55].

Illumina and Roche 454 are two main high-throughput platforms for sequencing 16S
rRNA that have been used for AD culture analysis. In fact, the correlation between the
community composition and the operational conditions (e.g., feed type, temperature, am-
monia concentration, pH and organic loading rate) can be investigated by the data collected
from high-throughput sequencing techniques [6,56]. Additionally, the combination of long-
term operation monitoring, and microbial diversity may reflect significant information
regarding community function. Werner et al. [57] showed that to maintain syntrophic
populations, resilience is more important than the dynamic competition. Moreover, they
demonstrated a strong relationship between methanogenic activities and substrate removal
efficiency [57]. Overall, the improved resolution of high-throughput sequencing methods
has led to the discovery of thousands of operational taxonomic units (OTU) in full-scale
AD (an OTU can refer to a group of individual microbes with some similarities including
unknown organisms with DNA sequence similarity), while earlier this number was as low
as 69 OTUs (i.e., examined with clone libraries) [57,58]. Moreover, this high resolution
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can aid in the identification of low abundant populations and their contribution to biogas
production [12].
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Among the high-throughput techniques, pyrosequencing (employed by the 454 Roche
platform) is widely used to assess community composition in AD. For the first time,
Ronaghi et al. [59] introduced pyrosequencing based on employing pyrophosphate (PPi)
and produced the sequencing through a synthesis reaction; however, this pyrosequencing
approach has some limitations, and modified techniques were required. These limitations
and modifications in the PCR have been well-reviewed by Ari and Arikan 2016 [60].
The 454 Roche system can only generate a low amount of short reads (i.e., it produces a
400 megabase (unit of DNA fragments length) sequence in each run with an average read
length of 400 basepairs) [12].

Reversible dye terminator (RDT) methods were developed for wider sequencing
ranges [60]. RDTs are categorized into two main classes: blocked and unblocked (bRDT
and ubRDT, respectively) [60,61]. bRDT has shown better performance in the termination
process (mainly used for second-generation sequencing), and ubRDTs are more efficient in
sequence elongation results [62]. The Illumina platform is a second-generation sequencing
platform based on bRDT that utilizes 3′-O-azidomethyl for DNA sequencing [60]. The
Illumina MiSeq platform can generate 2 × 300 basepair paired end reads and 4 terabases of
sequence per run, which is significantly larger than the 454 Roche platform [12].

Since the quality of the community composition analysis is important, several studies have
attempted to evaluate the possible errors associated with applying NGS techniques [63,64].
For example, pyrosequencing provides an overestimation of rare phylotypes (i.e., a group
of small rRNAs that have a specific level of similarity in gene markers) due to artificial
amplification. Even though the sequencing results from Illumina do not contain these
limitations, it has some systematic calling biases (i.e., tiles of sequencing plates tend
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to produce reads of different quality) [60,65]. The complexity of downstream analysis,
for example by de novo genome assembly, will be lowered by reducing these errors
from the sequencing process. There are methods under development for the estimation
and correction of these shortfalls [66]. Many correction algorithms including accurate
correction of error (ACE) [67], Bayes Hammer [68], bloom filter-based error correction
solution (BLESS) [69] and error correction (EC) [70] have already been developed. The error
correction tools identify and correct the sequences through replacing uncovered k-mers
(i.e., from the k-mer coverage spectrum of the input data) with k-mers that have a higher
coverage [66]. It has been shown that the error correction algorithms reduce the sequencing
errors without introducing new sources of error [71]. Short-read assemblers first generate a
de Bruijn graph containing all k-mers (sub-sequences of length k contained in biological
sequences) of the input reads and their overlaps [66]. Consequently, the presence of error
sequences introduces an additional analysis task.

4. Determination of Metabolic Functionality by Meta-Omic Techniques
4.1. Metagenomics

NGS-based metagenomics is a rapidly growing research field in different biological
systems including the human body, animals, soil, ocean and anaerobic environments,
which aids the understanding of the diversity and functional complexity [72,73]. In AD,
a metagenomic method can provide insight into the progress of a digester. An example
is the ability to follow the AD process from the initial step, through an acidic condition
(i.e., where volatile fatty acids (VFAs) are accumulated), and back to its normal operation
condition [73,74]. The main objective of metagenomic methods, especially in a less complex
environment, is to rebuild large fragments of genomes (or complete genomes) from species
present in the microbial community [75,76].

In more complex environments such as AD, gene-centric metagenomics have shown
better performance by providing an overview of gene frequency [77,78]. Metagenomic
techniques have revealed a high number of gene reads, of which most of them are not yet
identified, and consequentially, the functional information from these reads is limited. De-
spite this, in AD, metagenomics have provided insight into the evolutionary relationships
among different species and the metabolic functionality of the microbial community [12].

Feedstock type, substrate pre-treatment and the operational conditions can signifi-
cantly affect the function and diversity of the microbial community [46,79]. Combined
metagenomics and the AD performance data is a technique through which the functional
redundancy can be estimated. In addition, it is possible to achieve a stable operational
condition by maintaining the level of metabolic diversity [80]. Higher resolution and longer
read length of future amplicon sequencing methods, together with improved algorithms
and genome binning methods, can introduce future advances in metagenomics [81,82].

In the near future, rebuilding near-complete genomes by metagenomics combined
with other meta-omic methods (e.g., meta-transcriptomes and meta-proteomes) not only
assists generating a strong genomic database for AD, but can also provide information
with respect to the interaction between various functional groups [12].

4.2. Meta-Transcriptome

Meta-transcriptomics is the study of the function and activity of the complete set
of transcripts (mRNA sequence) from the culture sample. Besides measuring the in-
situ gene expression, it gives an insight into the activity of microbes (i.e., the genes that
have increased or reduced expression in a specific microbial environment) [83]. Meta-
transcriptomic approaches reduce the complexity of metagenomics by focusing on the
species that are suggested to be metabolically active [1,83]. In order to calculate the gene
expression, the reads from these approaches (i.e., generally 20 million reads are sufficient),
need to be mapped against reference genomes (e.g., metagenome reads from the same
environment). Therefore, it is a faster, cheaper and a more reliable technique that, unlike
traditional methods such as measuring by microarrays, can also detect novel genes [83].
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High-throughput transcriptomics have increased the measuring of gene expression
profiles and have enabled the identification of unknown sequence transcripts. Despite this,
meta-transcriptomics introduce practical challenges and limitations including low recovery
of high-quality RNA and the short half-life of mRNA, difficulties enriching mRNA, and
bias related to cDNA synthesis and amplification [84,85]. Some of these problems can be
addressed through developing protocols, enhancing sequencing platforms and improving
sampling and storage methods [1,12]. For instance, to avoid deterioration of RNA quality,
the best method is to immediately extract RNA samples then store at −80 ◦C or snap freeze
in liquid nitrogen and store in −80 ◦C [86]; however, the longer the storage, the more
deterioration in the quality of RNA observed. The other possible way to reduce loss of
RNA is avoiding the use of RNALater (i.e., a liquid tissue storage reagent that stabilizes
cellular RNA in an unfrozen condition) to maintain the integrity of the samples as it lyses
some cells and can interfere with the RNA extraction kit (e.g., Ambion RiboPure Bacteria
Kit/LifeTeh Trizol Plus). Using kits for sample preparation is another important factor
to recover more mRNA and removing abundant ribosomal RNA species. Traditionally,
the recovery of the mRNA was approximately 25%, while the recently developed kits can
recover mRNA to around 70% [87,88].

4.3. Meta-Proteome

Wilmes and Bond [89] have defined meta-proteomics as the identification of all the
expressed proteins at a given time within an ecosystem under a specific condition (e.g., soil,
sediments, marine and freshwater, anaerobic environments, human body and animal guts).
Metaproteomic approaches are based on six main steps (Figure 3). The metaproteomic
analysis methods include all data extracted from metagenomics, diversity and functional
diversity information and identified biological processes in order to define the metabolic
activity and biological pathways of the microorganisms along with their cooperation and
competition [90]. Siggins et al. [91] gives an extensive overview of this process, and the
sampling and analysis method for AD samples have been described by Heyer et al. [92].

The main superiority of meta-proteomics in AD is the possibility of linking the func-
tion of the proteins with a certain taxonomy and correlating their presence with metabolic
activity [93]. Abram et al. [94] conducted a meta-proteomics approach that revealed the
enzymes involved in different pathways including methanogenesis from CO2/acetate,
glycolysis and pentose phosphate pathways. Heyer et al. [95] showed that the microbial
community is shaped by syntrophic interactions, competition and phage-induced interac-
tions causing a slower biogas production process due to cell lysis. They discovered that
meta-proteomics can be used to investigate and identify the metabolic activities within
a microbial community and exposed the syntrophic and competitive interactions among
different organisms. The main limitations and challenges associated with the application
of meta-proteomics approaches in AD are [93]:

• contamination by the products of biomass degradation
• sample complexity
• redundant protein identifications
• lack of detailed databases

Meta-proteomics has been used to create a prototype database for biogas plants [93].
An optimized workflow with low pre-fractionation of samples and high coverage of
proteins has been established through employing sensitive Obritrap mass spectrometers
and searching spectra against biogas plants metagenomics by comprehensive bioinformatic
platforms. Accordingly, the results of these studies showed that the metaproteins or
taxonomy could be identified as biomarkers for biogas plants [92,93,95]. Even though some
meta-proteomics methods (e.g., gel electrophoresis and cluster analysis) are quite fast and
can be used in full-scale AD plants to predict the AD failure, the lack of a comprehensive
database for AD biomarkers can reduce the application of such technology [96]. More
experimental data have been provided in the section “Possible Applications of Molecular
Techniques in AD”.
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Figure 3. Typical workflow for (meta) proteomics analysis [based on [91]]. Initially, the samples are collected from the
biological community then the microbial fraction or extra cellular components are separated from the sample. After
protein extraction, gel-based or gel-free methods can be used to separate proteins that are then analyzed through mass
spectrometry (e.g., peptide sequence or peptide mass fingerprint). After determining the peptide amino acids, tandem
mass spectra of peptides can match database-derived protein sequences and finally the proteins can be linked to different
metabolic pathways.

4.4. Meta-Metabolome

Metabolites are the intermediates or end products of metabolism. Meta-metabolome
analysis techniques characterize and evaluate the metabolites including metabolic interme-
diates, hormones and low-weight molecules within an organism (i.e., necessary molecules
for maintenance, growth and normal function of microorganisms) [97]. Therefore, the
meta-metabolome can provide a snapshot of cellular processes that are taking place or
have recently occurred [98]. The main challenge associated with metabolomics is that
the detection of metabolites is dependent on knowledge of the biological pathways [98].
Although several methods have been developed to analyze metabolites, the liquid-liquid
extraction and analyses (i.e., via gas chromatography-mass spectrometry (GC-MS) or liquid
chromatography-mass spectrometry (LC-MS)), coupled with chemometrics, have shown
promising results [99].

5. Determining Specific Function of Specific Genes and Protein

Meta-omic approaches help to link the known species in the microbial community
to relevant metabolism within AD. The understanding of the microbial community can
further be improved by gaining insight into substrate consumption via specific species and
visualizing the spatial organization of the community.
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5.1. Stable Isotope Probing (SIP)

DNA stable-isotope probing was originally developed to assess the metabolic function
of microorganisms in the environment [100]. This can help to identify the active consumers
of substrates within the environment [101]. DNA-SIP (stable isotope probing) has been ef-
fectively used to identify functionally active microorganisms in different environments such
as soil, cave water, coal mine, freshwater, marine and anaerobic environments [101–103].
This approach relies on the incorporation of stable-isotope components (e.g., 13N or 15N)
into microbial DNA during growth on labelled substrates [100,102]. Combining SIP and
metagenomic sequencing approaches is a strong approach to discover novel active organ-
isms within a microbial community [101,103].

5.2. Fluorescence In Situ Hybridisation (FISH)

Fluorescence in situ hybridization (FISH) is an extensively researched method to detect
specific organisms within a biological sample. The FISH technique relies on employing
fluorescently labelled oligonucleotide probes bound to rRNA [104,105]. For the first time
in an anaerobic environment, Raskin et al. [106,107] used FISH to specify methanogens
within a sample. Although FISH is a suitable tool to identify, quantify and analyze the
dynamics of specific organisms in AD, it should be noted that the physiological properties
of FISH vary by the operational condition [104,108]. The dependency of FISH on ribosomes
reduces the reliability of the general probs. This leads the method to employ specific probes
in the sub-groups, requiring information that is unknown [109]. The main advantages and
disadvantages of FISH methods for use in different anaerobic environments have been
comprehensively summarized by Sanz et al. [110].

5.3. Microautoradiography

Microautoradiography (MAR) has been used to assess microbial growth and substrate
competition within a culture [111]. The MAR technique employs radioactive isotopes to
investigate substrate uptake by specific organisms [12,112]. The main advantage of MAR
is its high sensitivity and short incubation time; however, its dependency on radioactive
isotopes with relatively long half-lives limits its application. Despite this, Carman [113]
investigated the consumption of radioactively labelled substrates by a sedimentary mi-
croorganism using MAR. The results showed that the [3H]acetate and [3H]thymidine were
consumed by heterotrophic bacteria and the [14C]bicarbonate was taken up by microalgae.
A combined MAR-FISH technique has also been applied to investigate the metabolically
active microbial cells. Ito et al. [44,114] used MAR-FISH with [U-14C]glucose to identify
the major acetate consumers in AD (i.e., unknown bacteria and filamentous archaea cells),
and calculated a substrate degradation rate (i.e., glucose, propionate and acetate) to define
the rate-limiting step. Furthermore, to classify undefined acetate consuming bacteria, the
MAR-FISH was coupled with SIP and 16S rRNA sequencing [44,114]. The results revealed
that the acetate utilizing bacteria belong to the Synergistes group four are significantly capa-
ble of acetate uptake and had a higher maximum uptake rate than Methanothrix. Therefore,
these bacteria are more competitive for acetate consumption over Methanothrix at high
acetate concentrations (2.5 to 10 mM).

5.4. Secondary Ion Mass Spectroscopy (SIMS)

Single-cell approaches of stable isotope-labelled cultures use secondary ion mass
spectrometry (SIMS) to overcome the limitations of MAR or FISH-MAR [115]. Although
these methods are relatively expensive, they can provide promising information on the
function and interaction of microbes in their natural habitat. SIMS is a suitable tool to
visualize the distribution of stable or radioactive isotopes in microbial cells. SIMS can
be used to investigate the cellular function of multicellular organisms (e.g., filamentous
cyanobacteria), and is suitable to study the adaptation of microorganisms in their natural
environment [116,117].
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SIMS is a sensitive mass spectrometric technique that measures elemental, isotopic or
molecular composition of a solid surface. Initially, SIMS employs an ion gun to produce an
ionic beam and generates secondary particles including atoms and molecules (depending
on SIMS mode) from the surface of the organism in a high vacuum [115]. Figure 4 gives
a schematic representation of the SIMS method. Modern SIMS-based instruments (i.e.,
NanoSIMS) are capable of measuring up to seven elements or isotopes simultaneously.
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A combination of FISH and NanoSIMS can be used to enhance the resolution, aiding
the calculation of the substrate uptake rate [118]. Ho et al. [119] analyzed the substrate
accumulation and the effect of the hydraulic retention time when the operational temper-
ature varies from 35 ◦C to 55 ◦C by NanoSIMS using 13C-labeled acetate. They further
analyzed the microbial community through 16S rRNA-based FISH to identify the key
species and the active methane production pathways under shorter hydraulic retention
times. Werner et al. [120] conducted a long-term experiment (3-year observation of lab-scale
AD) based on the FISH-NanoSIMS technique to study the effects of high ammonia loading
and identification of alternative pathways for aceticlastic methanogenesis. They reported
that the syntrophic acetate oxidation bacteria have controlled the distribution of bacterial
phylotypes. It was also observed that a partial shift from aceticlastic to hydrogenotrophic
methanogens occurred due to higher ammonia loadings.

The combination of available techniques described above can provide a culture-
independent method to identify specific functions and pathways. Further development of
NanoSIMS may aid the detection of enzymes, proteins and mRNA transcripts for expres-
sion of specific genes and release of key enzymes [12,121].

6. Possible Applications of Molecular Techniques in AD

The possible applications of molecular techniques in biogas plants are reviewed and
their potential contribution in the improvement of the overall performance of biogas
plants is addressed. The major engineering applications of molecular techniques related to
meta-omics methods is investigated separately in the following.

6.1. 16s rRNA Gene Sequencing

Real-time tracking of 16s rRNA through currently developed facilities can aid in the
achievement of a stable AD process [122]. The short analysis time or real-time PCR, digital
droplet PCR (i.e., a typical run for real time PCR and digital PCR takes approximately 2 h)
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and Illumina techniques may lead to their near online applications in AD to continuous
track of the total and active bacteria community that can be compared with a reference
database [123]. In general, the variations by reason of the operational condition, substrate
characterization and presence of inhibitors in community composition can be detected
by knowing the composition of a stable community as a reference unit [124]. By linking
the 16s rRNA analysis results to these variations, a local database for the biogas plant can
be developed to predict the process failures [8]. Nordgård et al. [123] employed Illumina
sequencing of 16S rRNA amplicons to specify the effects of the alteration of ammonia
concentrations on bacteria and archaea community compositions. They categorized Syn-
trophomonadaceae as the most abundant OTUs that were positively correlated to methane
production in high and low ammonium concentration conditions [123]. They also showed
that after long operation periods and culture adaptation (for 200 days), the Aceticlastic
Methanothrix actively contributed in methane production in low ammonia concentration,
while in high ammonia concentration, the Methanosarcina played an important role for
methane production [123].

16S rRNA-based assessment of AD can be linked to the function of closely related
species in the microbial community; however, it should be considered that closely related
species can act differently in a microbial community [12,15,125]. Metabolism of an anaerobic
culture can also be inferred by relating it to the dynamics and composition of the microbial
diversity. In AD, where the competing species and syntrophic groups are responsible for
fulfilling the biological pathways, this correlation becomes even more important. Due
to complex microbial interactions within AD, the correlation analysis needs to be done
carefully. In this way, the hypotheses regarding the correlation between community
composition and the metabolic functionality can be developed and further evaluated using
supplementary techniques [126].

Ziganshin et al. [6] employed a PCR-based 16s rRNA technique to investigate the ef-
fects of using various types of agricultural substrate on microbial community composition
in AD. Clostridia and Bacteroidetes were the main bacteria taxa, while Methanomicrobiales
and Methanosarcinales were the dominant methanogenic archaea. The results from corre-
lation analysis showed that the community composition was mainly affected by inhibition
concentration and the temperature shift from 38 to 55 ◦C [6]. Conventional substrates such
as maize silage combined with cattle manure had a similar and stable community, while
chicken manure and Jatropha press cake digested in a less diverse community mainly due
to presence of inhibitors. Digestion of chicken manure depended on syntrophic acetate oxi-
dation as the aceticlastic methanogenesis pathway was inhibited, whereas fiber-degrading
organisms (Actinomyces and Fibrobacter) are required for Jatropha press cake digestion [6].

Beside all the positive sides of this method, the 16S rRNA sequencing method has
several limitations. These limitations include slow evolution rate, comprising multiple
non-identical 16SrRNA genes in addition to difficulties associated with the occurrence of
homologous recombination and horizontal gene transfer [127].

6.2. Metagenomics

Metagenomics can identify and characterize all the genes and consequently all the
organisms present in the AD microbial community. Moreover, metagenomics has re-
vealed dramatic differences between community compositions when the community struc-
ture seems similar. Metagenomics can also be employed to expose the potential of each
microbial group and their contribution to the biogas production process. For instance,
Jaenicke et al. [75] employed gene-centric metagenomics to characterize a full-scale AD
process for the first time. In addition to the identification of new taxa, the results revealed
that the Clostridia class has a direct effect on reductive CoA or Wood-Ljungdahl pathway (a
set of biochemical reactions used by many bacteria and archaea including sulfate-reducing
bacteria, acetogens, and methanogens where CO2 is reduced to CO and formic acid or
formyl group in the presence of two enzymes (CO dehydrogenase and acetyl-CoA syn-
thase). Then the formyl group is reduced to the methyl group. Bacteria and archaea use a
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reverse reaction for acetate degradation to the methyl group and CO then methylotrophic
methanogens reduce the methyl group to methane through CO oxidation to CO2 and
H2 [128]) (i.e., a syntrophic association between Clostridia and hydrogenotrophic methano-
genesis was discovered) [129]. Wirth et al. [130] investigated the microbial community and
metabolic functionality of a full-scale AD process fed by maize silage and pig manure. They
found that the driving force for optimal biogas production relied on a balance between elec-
tron consumers and producers. Hydrogen is an electron transfer mediator meaning that the
proton reducers pick up a proton and put on an electron and then the resulting hydrogen
is transferred. The proton receiver then grabs the hydrogen and strips off the electron and
releases the proton again. There are other electron transfer mediators in the system such
as formate or even intraspecies electron transfer methods [10,11,131]. Therefore, the bal-
ance in production and consumption of these electron transfer mediators has a significant
effect on the stability of AD. Lie et al. [74] added granular activated carbon (GAC) into
upflow anaerobic sludge bed (UASB) reactors (i.e., fed by municipal wastewater) in order
to assess the increase in the electron transfer among syntrophic bacteria and methanogens.
The study indicated that the GAC can enhance methane production through enhanced
electron transfer. Moreover, it revealed that Geobacter and Methanosarcina take the main role
in this activity. The abundance of gene coding also concluded that the GAC can inhibit
the nitrate- and sulfate-reducing bacteria resulting in an increase of the concentration of
methanogenic Archaea.

Metagenomic approaches are appropriate strategies for different objectives such as
identifying and isolating key players of an anaerobic culture [132,133]. Metagenomics can
also be used in bioprocessing in order to identify effective enzymes aiding degradation
of resistant substrates such as cellulose and lignin [134]. In a full-scale plant, detailed
information regarding the community composition and the possible potential of the dif-
ferent microbial classes can be extracted by metagenomics. By linking this information to
the different operational conditions, a valuable database is provided to understand the
strengths and weaknesses of the microbial community against different substrates, presence
of inhibitors, and characteristic variations for rapid adaption to the new condition [72,135].
Despite this, the identification of these variations through metagenomics is normally slow
compared to the sludge residence times in the anaerobic reactors. This means, in AD, only
a limited online application of the currently developed metagenomics can be expected.

6.3. Meta-Transcriptome

Although a rich genome/metagenome reference database for AD has not yet been
established, meta-transcriptomics has the potential to expose highly expressed pathways
for organic conversion in AD. For example, by using meta-transcriptomics, the function
of low abundance organisms and their effect on process stability can be determined and
documented. Zakrzewski et al. [136] conducted a meta-transcriptomic study on a full-scale
AD process. The study revealed the expression of a transcript profile encoding enzymes
for each step of AD. A large portion of the reads in this study could not be assigned to the
well-known sequences suggesting a need for an extended genome and metagenome refer-
ence database. Jia et al. [137] employed genome-centric meta-transcriptomes to identify
the active population in the microbial community and rebuilt their metabolic network in
an anaerobic culture fed by a cellulose-rich substrate. This study showed that at 35 ◦C,
Clostridium cellulolyticum-related bacteria were the dominant organisms performing cellu-
lose hydrolysis, while Ruminococcus-related bacteria were the dominant organisms carrying
out acidogenesis and acetogenesis.

Meta-transcriptomics allows the determination of the functionality of multi-task or-
ganisms (e.g., Clostridia, which is capable of different activities ranging from hydrolysis to
acetate oxidation), as well as estimation of the dominant route for methane production in
AD [6,12,14,15]. Ardèvol et al. [138] carried out a metagenomic and meta-transcriptomic
analysis of AD of the microalgae Spirulina identifying that the substrate was hydrolyzed by
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Bacteroidetes (i.e., ML635J-40 aquatic group), and the hydrogenotrophic pathway was the
main methane-producing pathway for this type of substrate.

The meta-transcriptomics have been recently applied in the study of electron transfer
between syntrophic acetogens and methanogens [126,139]. The results from these studies
suggest the possibility of direct electron transfer between Geobacter and Methanothrix
populations meaning that the Methanothrix can function as a hydrogenotrophic organism in
a direct interspecies electron transfer (DIET) technique even though they have previously
been thought to be acetate consumers for methane production. In these approaches,
developed biofilms on conductive materials (i.e., granular activated carbon or microbial
aggregates derived from an up-flow anaerobic digester) have been analyzed to gain a
better understanding of electron transfer concepts in AD [139–141]. Shrestha et al. [141]
employed meta-transcriptomic techniques to investigate the DIET and H2 interspecies
transfer (HIT). The gene transcript abundance was assessed in two cultures including
Geobacter metallireducens and Pelobacter carbinolicus that perform DIET and HIT, respectively,
and Geobacter sulfurreducens as the main electron acceptor. The transcript abundance
showed high presence of the pilus-associated cytochrome OmcS (i.e., essential genes for
DIET), in the coculture with G. metallireducens and a bit higher G. sulfurreducens uptake
hydrogenase genes in the P. carbinolicus culture. These results suggest the ability of the
meta-transcriptomics as a route to investigate unique gene expression patterns for DIET
and HIT.

By controlling the rate of the conversion of DNA to RNA of gene expression, organisms
can be adapted to sudden changes in the surroundings [84]. This refers to the potential
application of meta-transcriptomics to explain contradictory results observed in 16S-based
studies [142]. For example, meta-transcriptomics make the changes in genetic profiles
tangible due to the increase or decrease of system stability caused by the substrate loading
rate. Transcriptional level control through meta-transcriptomics in anaerobic cultures
can be used to track the changes in metabolic profiles, shifts in the balance of the major
functional groups and responses to inhibitory factors (e.g., pH, VFA, partial H2 pressure
and ammonia concentration) [12,142,143]. In this way, by identifying different pathways
and linking them to operational conditions, it can be possible to push the AD towards a
stable operation condition with high efficiency [144].

6.4. Meta-Proteomics

Through meta-proteomics measures, the level of cellular localization and regulation
occurring at the protein/enzyme level can be observed, which can be significantly different
from those observed at the genome and transcript level [145,146]. Hanreich et al. [147]
conducted a combined metagenomics and meta-proteomics analysis to investigate the
hydrolyses of plant carbohydrates in AD. The metagenomic results of this study revealed
a minor population of methanogens, while the results of meta-proteomics showed high
expression of the methanogens meaning that the methanogens were highly active even
with minor abundance [147].

Meta-proteomics, like meta-transcriptomics, can aid process efficiency and stability
by providing information about the enzymes and their effects on the AD process and
identifying biomarkers as predictive indicators of process failure [147]. Heyer et al. [96]
applied meta-proteomic analysis to full-scale agricultural biogas plants. They extracted
proteins through sodium dodecyl sulfate polyacrylamidegel electrophoresis (SDS–PAGE)
and then used mass spectrometry (MS) to identify the proteins. The study revealed that
the protein profiles were specific for each biogas plant and were stable for a long period
until disruption (e.g., process acidification) occurred within the system [93,95,96]. This
study was able to predict the acidification of AD due to disappearance of major bands in
the SDS-PAGE. Moreover, the methyl CoM reductase of Methanosarcinales was identified
as a reliable biomarker of future process failure. Heyer et al. [96] concluded that the
MS methods are expensive and time-consuming methods (significant time is required
for sample preparation and analysis), while the approaches based on gel electrophoresis
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and cluster analysis can be conducted in shorter time frames, with regular application
methodologies using capillary electrophoresis allowing significantly faster analysis. This
could allow meta-proteomics to be employed in order to monitor full-scale anaerobic
digesters.

6.5. Meta-Metabolome

The meta-metabolome can also provide more detailed information regarding key
metabolic pathways. This is mainly due to higher changes in metabolites related to changes
at the transcriptome or proteome level [148,149]. A suitable metabolic biomarker for
biodegradation is one that is produced along with biodegradation and is released from
the microbial cell, is specific for the bioprocess being monitored and is chemically and
biologically stable [98].

Scaglia et al. [150] measured tens of thousands of meta-metabolomes by LC-MS in an
AD process fed by manure; however, the application of metabolomics to the whole AD
process is limited due to the large range of metabolites and lack of proper knowledge about
all biological pathways. Therefore, it is important to use different levels of metabolomics
combined with performance data for screening of the under-lying mechanisms [12]. For
example, acetyl CoA contributes to syntrophic acetate oxidation as well as conversion
of CO2 to acetate. Determining only this enzyme (i.e., through meta-proteomics) cannot
reflect an exact picture of the process pathway; therefore, other biomarkers must be used
to give a better overview of the biological pathways [151].

7. Application of Microbial Diversity Analysis in AD Models

By mathematical modeling of AD, a biological process can be designed with the
aim of the utilization of a specific type of substrate. Modeling can also help to predict
the performance of the biological process and biogas obtained, process conditions and
variations over time [152]. Mathematical models of AD have been developed based
on the scientific findings regarding the well-known pathways, the interactions among
microorganisms, the presence or absence of specific organisms and the final products of
each step. These models can be used to evaluate several parallel phenomena leading to in
depth insight into the AD process [152].

7.1. Metabolic Models of AD

Metabolic modeling is a tool to characterize and predict the function of the micro-
bial community based on knowledge and assumptions of cellular metabolisms that are
gained from genome-scale assessments or observations at process level [153–156]. Conse-
quently, the metabolic modeling for AD is categorized as cellular-level modeling (CLM) or
biochemical process modeling (BPM).

The meta-omic approaches can be employed in CLM to demonstrate the cellular fluxes
at a specific metabolic state by using assumed or genome-level determination of metabolic
limitations of cells in the given condition; however, the pathway or transition to a new
metabolic state is not mathematically clear. In this way, the potential impacts of genetic or
chemical limits on a metabolic branch can be investigated [154,157]. Through identification
of new microbial groups and their function in the AD of different substrates, several
models for metabolic reactions have been continuously developed [158]. BPM is focused
on the process function of various biological processes including AD. BPM considers the
functional groups (e.g., acidogens, acetogens and methanogens) [153]. The well-known
examples of BPM in wastewater and AD are the activated sludge model (ASM) [159] and
the anaerobic digestion model (ADM) [18].

In AD models, the main research gaps appear in the acidogenesis, acetogenesis and
methanogenesis steps. These gaps include regulation mechanisms in the fermentation of
sugar; reduction and oxidation of amino acids (Stickland fermentation); electron trans-
fer modes; interspecies signaling and anabolic dependency; competition and acetogen/
methanogen type; and thermodynamic limitations of methanogenic archaea [160]. A better
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understanding of the functional clades can improve our understanding of the AD process
and help bridge these research gaps.

7.2. Development of Metabolic Models and Main Gaps in the Field

The basic mathematical models of AD include different microbial functional groups
that make a combination of different metabolic pathways possible. These consist of fermen-
tation, acetogenesis, and hydrogenotrophic and aceticlastic methanogenesis [153]. These
fundamental models from the 1980s have been developed and have been employed for
different AD systems. Finally, in 2002, all the models amalgamated as the IWA AD model
No. 1 (ADM 1) [18]. ADM 1 is a four-stage process model including different subgroups
that represents the microbiological species utilizing different products in each step of AD;
however, the basic ADM 1 has been modified to meet new pathways (e.g., acetate oxidation
pathways) and other by product gases such as H2S [161]. ADM 1 is established to de-
scribe different phenomenon such as pH regulation and acid/base interrelation [18]. This
BPM can also present the growth, inhibition and decay of the functional groups including
methanogenesis archaea and functional clades of bacteria mediation acidogenesis and
acetogenesis [155,162]. Even though these BPMs have been validated for different AD,
questions regarding community composition and functions within the major clades have
not been answered yet.

The BPM approaches generally consider a mixed microbial culture and introduce
proton and electron regulations of NADH for thermodynamic restrictions. Over 30 years
ago, Mosey employed this method to regulate the propionate versus acetate production
via NADH [163]. The process was controlled through different factors including pH and
hydrogen concentration [163]. This method is further developed to predict the fermentation
products due to introducing multiple competing regulation mechanisms (e.g., electron
bifurcation and acetogenesis). In addition to NADH, the electron carriers in this system
extended to FADH and Ferredoxin (Fd). NADH and FADH count as intracellular electron
carriers, while Fd is considered as the electron bifurcation element that is capable of direct
hydrogen production [155,164].

Unlike sugar fermentation models, models for amino acid fermentation are not well
developed since sugar fermentation is a more attractive field for industrial biotechnology
compared to amino acids and hydrolyzed proteins. Ramsay and Pullammanappallil
(2001) reviewed BPM of pared Stickland fermentation (i.e., Stickland reactions involve the
oxidation of amino acids to a carboxylic acid with one carbon shorter than original amino
acid), in which one amino acid acts as the electron acceptor and the other is the electron
donor, and some specific amino acids act as electron acceptors, donors or both [165–167].
In ADM 1, the protein fermentation stoichiometry is stable, but because of the uncoupled
oxidation of amino acids it significantly deviates from Stickland fermentation [18].

Modeling of methane production (the final electron sink) from acetate require obligate
syntropy between bacteria and archaea [168]. Alternatively, other organisms such as
sulfate, nitrate and metal reducing organisms can replace the methane producing archaea
to generate different final electron sinks such as hydrogen sulfide [168]. In order to achieve
efficient syntrophic oxidation reduction among bacteria and archaea, not only should the
amount of electron carriers (e.g., hydrogen and formate) maintain at very low levels, but
the presence of specific organics and their close physical coupling are also important [169].
Nonetheless, several research questions still exist including the competing level of other
electron acceptors such as sulfur-reducing bacteria, non-substrate coupling, role of different
acetate consumers and multiple factors in selecting methanogenic partner (e.g., substrate
capacity and affinity, cellular geometry and spatial orientation). A multi-species CLM
approach investigates the two latter factors [170]. A complex metabolic interaction network
of hydrogen, formate and acetate transfer particularly for complex substrates was observed
in this study. The complexity of this network was increased by interdependencies such
as amino acid synthesis. The usage of antimicrobials by specific species increased the
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stability of the interspecies network leading to stable collaboration among community
members [170].

The main acetate consuming organics in the AD are subjected to competition [168].
These functional clades are the obligate aceticlastic Methanothrix, hydrogen or acetate
consuming Methanosarcina or other syntrophic acetate oxidizing organisms (e.g., acetate
oxidizing bacteria). The Methanothrix are dominant at low ammonia (moderate tempera-
ture), and Methanosarcina and acetate oxidation take over in higher ammonia or elevated
temperatures [171]. The competition among these acetate-consuming organisms results in
process stability in different operational conditions and performance of process models
that gives complete dominance of a given clade [171]. The main function of Methanosarcina
(i.e., an aceticlastic methanogen that potentially acts as hydrogenotrophic electron acceptor)
is still unclear [172]. In addition, the bacterial community interaction with the acetate-
removing community needs to be investigated in future research. Some genetic-scale model
(CLM) has been developed to investigate Methanosarcina and several key hydrogenotrophic
methanogens due to their importance in methane cycling, while Methanosaeta has received
less attention [157].

Unlike CLM approaches, BPM literature has extensively analyzed sulfate reduction
processes where the sulfur-reducing bacteria competes with methanogenesis to harvest
electrons and generate hydrogen sulfide as the final electron sink (instead of methane) [173].
Even though some models have been developed in this field, the most challenging as-
pect of including sulfur reduction is introducing physical chemistry and linking them to
iron/phosphorous cycles [153]. Direct electron transfer has been inferred in AD based
on CLM analysis. In contrast, BPM-based approaches scarcely distinguish direct versus
mediated electron transfer [153,174].

There is a considerable gap between CLM and BPM for mixed culture anaerobic
metabolic modelling limiting their application in full-scale AD plants. Even in acetogenesis
and methanogenesis where both models are mature in terms of approach and value
obtained. The BPMs do not consider the genetic restrictions. This is particularly important
when it comes to physical interactions between syntrophic organisms or amino acid transfer.
CLMs lack mass transfer and process-related principles such as advection, diffusion and
migration. Both BPMs and CLMs are limited by scale and community complexity. This
suggest that the best model to describe and predict AD can be a mixed CLM and BPM
approach, where the information from microbial community analysis forms rules for BPM
and translate BPM principles (e.g., suffusion and ion chemistry including migration) to be
used in CLM [153].

7.3. Examples of Hybrid Cellular-Level Modeling/Biochemical Process Modeling (CLM/BPM) for
Enhanced Predictivity of AD Models

Ramirez et al. (2009) started to include the species diversity within a functional group
in the ADM1 model. In this way, they could estimate which organism can take over a bio-
chemical reaction in different operational conditions leading a robust AD process; however,
more effort is required to include microbial diversity in ADM1 [175]. In a recent study,
intracellular microbial activity data from meta-genomic and meta-transcriptomic analy-
sis was linked with ADM1 in order to investigate the model performance on predicting
biogas production from lignocellulosic materials. In addition, the flux-balance analysis of
the methanogens actively was continuously updated in ADM1. As a result, this hybrid
model could provide detailed information regarding the activity pathways in anaerobic
digestion compared to the original ADM1 and could predict the intracellular activity of
microbial species that are compatible with experimental data obtained from meta-genomic
and meta-transcriptomic analysis [176].

Determined and mapped proteins from meta-proteomic analysis of AD samples not
only support the assumptions used in the ADM1 but also revealed some indications of
new pathways for biogas production including syntrophic acetate oxidation pathway and
other interspecies microbial interactions [94]. Consequently, meta-proteomics can help to
identify the changes in functional level and can provide data on the metabolic activity of
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individual groups. Linking this information with a BPM (e.g., ADM1) may enhance the
accuracy of the model and indicate the active pathways for biogas production [147,177].

8. Future Perspectives

The main goal for community analysis in AD is to develop a stable and robust process.
Therefore, an effort has been made to correlate the structure of microbial community with
the process-controlling factors. These correlations cannot directly determine the drivers or
barriers of AD; however, they can direct the future research toward developing reasonable
process control tools. An extensive number of scientific studies could demonstrate the
response of microbial communities against the operation conditions including ammonia
concentration, temperature and pH. However, further research needs to be conducted
to identify the interaction between different species within the system. This needs a
comprehensive database of genetic information of bacteria and archaea that are active
in AD.

Application of meta-omic techniques in AD depends on the development of the
methods and how quick these methods can identify different aspects of the AD. Meta-
proteomics seems to be a promising technique that can be used in AD process; however,
research is required to develop an AD biomarker database for various operational failures.

Currently developed AD models consider the microbial community to be one inde-
pendent population and the models lack information regarding the interaction between
different organisms. Even though some researchers could address this weakness, this is a
crucial step to develop a general model for AD that simultaneously considers cellular-level
activities and biochemical process-level phenomena.

9. Conclusions

AD involves diverse communities with high complexity in terms of functional interac-
tions among the individuals or groups of organisms. A joint method including meta-omics,
virtualization techniques and chemical analyses may provide a powerful tool for gaining
highly valuable information from AD. Such a comprehensive method can provide a multi-
disciplinary tool allowing the identification of different species, recognition of their role in
the process, distinguishing their function and developing a stable AD process.

The 16S rRNA-based methods have the possibility of integration to an AD process
in which the substrate residence time is higher than 2 h (approximate time for real-time
sequence amplicon production). This can be a strong tool to correlate variations made
by different factors in AD (e.g., feed type, inhibition and operational condition), to the
community composition in order to recognize the main contributors in biogas production.
Metagenomics expresses the potential of each functional group and can help us to under-
stand the main differences between two similar community compositions. In AD, the main
application of metagenomics is to identify the major contributors in biogas production
linked to the operational condition; however, the integration of metagenomics in AD is not
yet possible due to its slow process rate.

Meta-transcriptomics are suitable tools to determine low-abundance microbes and
their contribution to system stability. It can also reveal the multi-functional microbes in
the process. Meta-transcriptomes are able to track fast changes in AD, such as variations
that happen due to rapid adaptation of the culture. This means that the results of meta-
transcriptomics linked to the operational conditions can help to establish an efficient
anaerobic digester. At the cellular level, meta-proteomics are powerful techniques to
determine the variations in proteins and enzyme levels. Some of the enzymes that can be
identified with meta-proteomics can serve as biomarkers to predict future failures within
the biological system. In comparison with meta-proteomics, metabolomics can provide
detailed snapshots from different pathways. Metabolomics has a high potential to be
integrated in AD as a predictive tool in order to enhance the biogas production and avoid
process failure; however, the lack of an AD biomarker database has limited the application
of meta-metabolome in AD.
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