
1.  Introduction
The winter polar vortex plays a key role in controlling the atmospheric response to energetic particle pre-
cipitation (EPP). In particular, the polar vortex modulates the EPP Indirect Effect (EPP IE), defined as 
descent to the stratosphere of reactive odd nitrogen (NOx = NO + NO2) produced by EPP (EPP-NOx) (Ran-
dall et al., 2006, 2007). Downward transport of EPP-NOx from the thermosphere into the mesosphere oc-
curs mainly via rapid eddy and molecular diffusion (Garcia et al., 2007; Meraner & Schmidt, 2016; Smith 
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transport of reactive odd nitrogen (NOx = NO + NO2) produced by EPP (EPP-NOx) from the polar winter 
mesosphere and lower thermosphere to the stratosphere where it can destroy ozone. Previous studies of 
the EPP IE examined NOx descent averaged over the polar region, but the work presented here considers 
longitudinal variations. We report that the January 2009 split Arctic vortex in the stratosphere left an 
imprint on the distribution of NO near the mesopause, and that the magnitude of EPP-NOx descent in the 
upper mesosphere depends strongly on the planetary wave (PW) phase. We focus on an 11-day case study 
in late January immediately following the 2009 sudden stratospheric warming during which regional-
scale Lagrangian coherent structures (LCSs) formed atop the strengthening mesospheric vortex. The LCSs 
emerged over the north Atlantic in the vicinity of the trough of a 10-day westward traveling planetary 
wave. Over the next week, the LCSs acted to confine NO-rich air to polar latitudes, effectively prolonging 
its lifetime as it descended into the top of the polar vortex. Both a whole atmosphere data assimilation 
model and satellite observations show that the PW trough remained coincident in space and time with 
the NO-rich air as both migrated westward over the Canadian Arctic. Estimates of descent rates indicate 
five times stronger descent inside the PW trough compared to other longitudes. This case serves to set the 
stage for future climatological analysis of NO transport via LCSs.

Plain Language Summary  Energetic particles from the sun and the magnetosphere impinge 
upon Earth's upper atmosphere and create reactive odd nitrogen (NOx) in the mesosphere and lower 
thermosphere. Descent in the winter polar vortex effectively transports this NOx down to the stratosphere 
where it can destroy ozone. State-of-the-art models currently underestimate this vertical transport by a 
factor of 4. Previous studies have examined the NOx descent averaged over the entire polar region, but 
this study considers longitudinal variations. We examine a case study during late January 2009 and find 
a closed circulation coincident with the trough of a planetary wave over the north Atlantic at 90 km 
with shear zones inhibiting horizontal mixing to the north, east, and south. This circulation (1) contains 
elevated NOx, (2) is associated with five times stronger descent compared to other longitudes, and (3) is 
the natural upward continuation of the westward tilting polar vortex in the stratosphere and mesosphere. 
Thus, this meteorological feature near the mesopause provides a transport pathway for air to enter the top 
of the polar vortex. This is the first work to illustrate the zonally asymmetric nature of NOx descent in the 
polar winter upper mesosphere and couple it to the vortex below.
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et al., 2011; Smith, 2012). Below the mesopause, air gets swept into the global wave-driven residual cir-
culation (Andrews et  al.,  1987), which is characterized by rising motion over the summer pole, strong 
cross-equatorial flow from the summer hemisphere to the winter hemisphere, and descent in the winter 
polar vortices (Fisher et al., 1993; Kvissel et al., 2012; Manney et al., 1994; Rosenfield et al., 1994; Schoeberl 
et al., 1992). In the lower mesosphere and stratosphere, NO reacts with ozone, maintaining an equilibrium 
with NO2 via the NOx catalytic cycle (e.g., Garcia & Solomon, 1994). Thus, any excess stratospheric NOx 
from the EPP IE has the potential to impact ozone distributions and thus net radiative heating rates, tem-
peratures, winds, and wave filtering (e.g., Baumgaertner et al., 2011; Sinnhuber et al., 2018).

The EPP IE is especially pronounced following prolonged sudden stratospheric warmings (SSWs) (e.g., Lim-
pasuvan et al., 2016; McLandress et al., 2013; Siskind et al., 2010) when strong mesospheric descent trans-
ports unusually large amounts of EPP-NOx down to the polar stratosphere. SSWs are dramatic wintertime 
dynamical events, driven by upward propagating planetary waves, that result in a warming of the polar 
stratosphere, a reversal of the westerly polar night jet stream, and a displaced or split polar vortex (Baldwin 
et al., 2020; Butler et al., 2017; Scherhag, 1952). While many studies have used zonal averages to show the 
descent of EPP-NOx (e.g., Bailey et al., 2014; Hauchecorne et al., 2007; Natarajan et al., 2004; Paivarinta 
et al., 2016; Pérot et al., 2014; Pérot & Orsolini, 2021; Randall et al., 1998, 2006, 2007, 2009; Reddmann 
et al., 2010; Rinsland et al., 2005; Siskind et al., 1997, 2000), only a few have shown how the NOx distribution 
depends on latitude and longitude (Randall et al., 2005; Salmi et al., 2011; Siskind et al., 2021); and none 
have shown how NOx descent varies in space and time. This work fills this gap by analyzing zonal asym-
metries in nitric oxide (NO, the primary constituent of NOx at mesosphere and lower thermosphere (MLT) 
altitudes), and by quantifying the dependence of NO descent on both latitude and longitude.

Salmi et al. (2011) showed polar maps of enhanced NOx near 50, 60, and 70 km in February and March 
following the 2009 SSW, which suggested that zonal averaging could be appropriate to delineate the region 
of elevated NOx at those altitudes. However, Newnham et al. (2020) compared zonal asymmetries in Solar 
Occultation For Ice Experiment (SOFIE) NO from 70-90 km during 17 geomagnetic storms from 2008–2014 
to the climatologically preferred longitude sector of the mesospheric polar vortex (Harvey et al., 2018) and 
hypothesized enhanced vertical coupling when the two are in-phase. Indeed, climatologically, maximum 
observed electron fluxes occur over the Scandinavian longitude sector (Newnham et  al.,  2020) and the 
mesospheric polar vortex is present most often in the longitude sector over nearby Greenland (Harvey 
et al., 2018), suggesting an in-phase relationship between the two is common. This is consistent with maxi-
mum mesospheric descent rates being displaced toward northern Greenland following the 2004 SSW (Win-
ick et al., 2009). Recent analysis of three-dimensional descent also confirms the highest NO concentrations 
near 300°E longitude following the 2013 SSW (Siskind et al., 2021). In contrast to Salmi et al. (2011), results 
presented here confirm that zonally asymmetric vertical coupling occurred at an altitude higher than their 
analysis, near the mesopause, following the 2009 SSW. This work identifies a region of enhanced NO and 
strong descent at the mesopause over the north Atlantic and Canadian Arctic in the wake of the SSW and 
shows that this region is located directly above the reforming mesospheric polar vortex.

At MLT altitudes (60–110 km) EPP-NOx consists primarily of NO, which is initially distributed over a range 
of geomagnetic latitudes that span auroral and subauroral regions. A notable distinction exists between NO 
created inside versus outside the polar night. In sunlight at MLT altitudes, NO has a chemical lifetime of 
several days, whereas in the polar night NO may persist for weeks or months (Bender et al., 2019; Brasseur 
& Solomon, 2005; Minschwaner & Siskind, 1993). In theory, NO that remains confined to polar darkness, 
where its lifetime is long, may descend to the stratosphere while NO that is transported to sunlit latitudes 
will be destroyed. It is therefore of primary interest to identify mechanisms that act to confine NO to high 
latitudes in winter. Motivated by Sun-Earth coupling via the EPP IE, and by the fact that models underes-
timate the EPP IE (Funke et al., 2017; Meraner et al., 2016; Orsolini et al., 2017; Pettit et al., 2019; Randall 
et al., 2015; Sheese et al., 2013; Sinnhuber et al., 2018; Smith-Johnsen et al., 2018), this work examines the 
effect of Lagrangian coherent structures (LCSs) on the transport of NO in the polar winter MLT. We hypoth-
esize that confinement of NO to high latitudes by LCSs effectively increases the NO lifetime and facilitates 
NO transport into the top of the polar vortex. Since descent occurs in three dimensions (Callaghan & Sal-
by, 2002; Demirhan Bari et al., 2013; Kinoshita et al., 2010), longitudinal variability can be highly relevant, 
and this is assessed in our analysis.

HARVEY ET AL.

10.1029/2020JD034523

2 of 18

Resources: V. Lynn Harvey, Nicholas 
M. Pedatella
Software: V. Lynn Harvey, Seebany 
Datta-Barua, Ningchao Wang
Supervision: V. Lynn Harvey
Validation: V. Lynn Harvey
Visualization: V. Lynn Harvey, 
Seebany Datta-Barua, Ningchao Wang, 
Willem E. van Caspel
Writing – original draft: V. Lynn 
Harvey
Writing – review & editing: V. Lynn 
Harvey, Seebany Datta-Barua, Nicholas 
M. Pedatella, Ningchao Wang, Cora E. 
Randall, David E. Siskind, Willem E. 
van Caspel



Journal of Geophysical Research: Atmospheres

LCSs are transport barriers that define different characteristic regions of a flow; they are objective and quan-
tifiable as surfaces of maximum finite-time Lyapunov exponent (FTLE) (Haller, 2015). The FTLE is a scalar 
field that measures the degree of stretching after a given interval of time of a fluid particle at a certain point, 
relative to its initial extent. The basic equations may be found in numerous resources (e.g., Shadden, 2005), 
and are summarized here. A flow map, F, is defined as a mapping of particles at initial locations 0x  in a fluid 
to final positions over an interval of time,  0,ft t  using velocity v. The mapping equation is:

        0 0 0 00 0
; , ,

t f
t f

ft t
F x x t x t x v x t dt� (1)

The flow map traces each fluid particle from an initial position 0x  at a chosen start time 0t  to a final position 
fx  at a chosen final time ft . The flow map can be Taylor expanded about a point 0x  as

        0 00 0

t tf f
t tF x F x x xJ� (2)

where the three dots represent higher-order terms in the Taylor expansion. The Jacobian, J, of the flow map 
is a linearization about 0x , consisting of the matrix of partial derivatives of the final position coordinates 
with respect to the initial position coordinates. The Jacobian consists of ratios of the final position sepa-
ration to initial separation of particles infinitesimally near 0x  at time 0t  and thus quantifies the amount of 
stretching that occurred between 0t  and ft . In this work, we calculate LCSs in two dimensions (longitude 
vs. latitude). Future work will calculate LCSs in three dimensions, a more ideal framework for studying the 
effect of LCSs on vertical transport.

FTLEs are defined as the normalized maximum singular value of the Jacobian matrix of a flow map. An 
FTLE is computed for every initial particle 0x  in the domain. LCSs are then identified as ridges in FTLE 
maps. FTLEs have long been used to study mixing at the edge of the polar vortex (Bowman, 1993; Pierce 
& Fairlie, 1993). LCSs are similar to the popular Lagrangian descriptor “Function M” to define the strat-
ospheric polar vortex edge (e.g., Curbelo et al., 2017; de la Camara et al., 2012; Madrid & Mancho, 2009; 
Smith & McDonald, 2014). The salient difference between those studies and this work is that they were at 
stratospheric altitudes, and the focus here is near the mesopause. LCSs have also been identified recently 
in the thermosphere at midlatitudes, where they act to channel the transport of water vapor plumes associ-
ated with space traffic (Wang et al., 2017). Using the same methodologies as Wang et al. (2017), we address 
whether LCSs reside near the polar winter mesopause and if so, whether they focus the descent of EPP-NOx 
into the top of the polar vortex. To accomplish this, we present a case study as a demonstration of the ap-
proach and to underpin climatological studies that will be the subject of future work.

This study is structured as follows. Section 2 briefly describes the whole atmosphere model, the trajectory 
model, and the observations used in this work. Section 3 presents an overview of the meteorology during 
and after the January 2009 SSW that serves as our case study. Section 4 demonstrates the impact of the split 
Arctic vortex on the spatial distribution of NO near the mesopause. Section 5 then presents the case study 
of regionally enhanced NO, bounded horizontally by multiple LCSs, situated above the mesospheric polar 
vortex. The LCSs are in the vicinity of the trough of a westward traveling 10-day planetary wave (PW). An 
analysis of vertical transport suggests that descent in the PW trough is five times stronger than at other 
longitudes. Throughout the study, we make every effort to evaluate the model with observations. Section 6 
summarizes the conclusions and gives future directions.

2.  Models and Observations
The Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension (WAC-
CMX) spans the Earth's surface to ∼500 km and simulates relevant processes from the troposphere to the 
thermosphere and ionosphere (Liu et al., 2010). These include major-species diffusive transport, ion drag, 
Joule heating, nonlocal thermodynamic equilibrium, and ionospheric physics and chemistry. The WAC-
CMX + DART configuration used here (see Pedatella et al., 2013; Pedatella, Raeder, et al., 2014) employs 
the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter to constrain model me-
teorology up to ∼100 km via data assimilation (Anderson, 2001). For the present study, WACCMX + DART 
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assimilated conventional meteorological observations (i.e., radiosonde temperature and winds, satellite 
drift winds, etc.), refractivity from GPS radio occultation in the troposphere and stratosphere, and Sounding 
of the Atmosphere using Broadband Emission Radiometry (SABER) and Microwave Limb Sounder (MLS) 
temperature observations from ∼20 to ∼100 km.

The model spatial resolution is 1.9° × 2.5° horizontally and 1–3.5 km in the vertical. Horizontal winds are 
output hourly and NO volume mixing ratio (VMR) is output every 6 h. The model incorporates a state-
of-the-art gravity wave scheme (Richter et al., 2010) and this is important for MLT dynamics since those 
altitudes are only constrained by sparse observations. The turbulent Prandtl number that governs thermal 
diffusion is set to Pr = 2 as suggested by Garcia et al. (2014). The Heelis empirical convection pattern (Heelis 
et al., 1982) is used to account for geomagnetic activity, though geomagnetic activity levels were low during 
the case study presented here. In the polar MLT, auroral ionization is calculated using the empirical oval 
of Roble and Ridley  (1987), which depends on a specified hemispheric power or geomagnetic Kp index. 
The model is forced with observed, time-varying values of the solar F10.7 cm radio flux and the Kp index. 
Neither medium-energy electrons (Pettit et al., 2019) nor D-region ion chemistry (Andersson et al., 2016) 
is included.

To identify LCSs in WACCMX + DART, hourly model horizontal flow fields at the 0.001 hPa pressure level 
(near 90 km) are input to the Ionosphere-Thermosphere Algorithm for LCS (ITALCS) trajectory calculation 
(Wang et al., 2018). An FTLE value is computed at every model longitude and latitude based on 24 h of in-
tegration, and these FTLE values are output every 6 h during the month of January 2009. Hourly trajectory 
positions originating from each model grid point are also archived. Analyses shown here will be limited to 
the Northern Hemisphere (NH).

A fundamental advantage of using WACCMX + DART flow fields to drive the ITALCS trajectory model is 
the direct constraint of the MLT region by assimilating SABER and MLS observations. As demonstrated by 
Pedatella, Raeder, et al. (2014), the assimilation of middle atmosphere temperature observations improves 
the specification of MLT dynamics even when stratospheric PWs are large. Data assimilation alleviates the 
climatological mesospheric temperature bias in the model and leads to an improved representation of short-
term tidal variability (Pedatella et al., 2016). Also, Siskind et al. (2015) and Pedatella et al. (2018) show that 
running WACCM and WACCMX with data assimilation in the mesosphere results in more NO descent dur-
ing February 2009 than running these models without data assimilation, partly correcting the well-known 
model underestimate noted above.

In this study, we compare model dynamics and chemistry to observations to ensure model fidelity. 
SABER observations (Russell et al., 1999) are used to evaluate the model geopotential height (GPH) fields. 
SABER GPH is derived from retrieved temperature and pressure assuming hydrostatic balance (Remsberg 
et al., 2008). Here, we use version 2.0 temperature data, which have 2 km vertical resolution and precision 
estimates of less than 4K throughout the mesosphere (García-Comas et al., 2008; Remsberg et al., 2003). Re-
cent comparison of SABER and lidar temperatures shows best agreement between 85 and 95 km (Dawkins 
et al., 2018), the altitude range of interest here.

We also utilize Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) (Bernath 
et al., 2005) and SOFIE (Gordley et al., 2009; Russell et al., 2009) NO VMR measurements to evaluate the 
model representation of NO. ACE-FTS version 3.5 and SOFIE version 1.3 data have vertical resolutions 
in the mesosphere of 3–4 km (Boone et al., 2013) and 2 km (Marshall et al., 2011), respectively. ACE-FTS 
and SOFIE NO data have reported uncertainty estimates of ∼80% at 60 km (the highest altitude reported) 
(Sheese et al., 2016) and 27%–37% at 90 km (Hervig et al., 2019), respectively. Both ACE-FTS and SOFIE 
sample high northern latitudes (63–71°N) during the case study presented here. Both are solar occultation 
instruments; and while spatial coverage is sparse, they are well suited to observe zonal asymmetries since 
they take measurements around a circle of latitude each day.

Since our focus is near 60°N, we leverage hourly Super Dual Auroral Radar Network (SuperDARN, here-
after SD) high-frequency radar measurements of the zonal wind (Hall et al., 1997) to evaluate the model 
zonal winds near 100 km. During the 2009 case study, there were six operational SD radars spanning ap-
proximately 180° of longitude. SD measures the phase shift of meteor echoes to derive the neutral wind ve-
locity carrying the meteor ablation trails. The vertical SD meteor echo distribution extends between 75  and 
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125 km altitude and is approximately Gaussian, with a mean height of ∼100 km altitude and a full width 
at half maximum of 25–35 km (Chisham & Freeman, 2013; Chisham, 2018). Hourly wind measurements 
are constructed by least-squares fitting a single horizontal wind vector to hourly binned meteor echo line-
of-sight velocities.

To compare SD measurements to the modeled winds, WACCMX-DART winds are first interpolated to an 
equidistant vertical grid between 75  and 125 km altitude with 2.5 km spacing. The model winds are then 
vertically averaged with a weighting function representing the SD meteor echo distribution. The vertically 
averaged winds are sampled at the model gridpoints closest to the locations of operational SD stations. To 
calculate the temporal evolution of the mean zonal winds at each station, for both the SD observations and 
model winds, a function representing a mean wind and 24, 12, and 8 h waves are least-squares fitted to the 
hourly data using a 4-day sliding window following Hibbins and Jarvis (2008) and Hibbins et al. (2011).

Finally, MERRA version 2 reanalysis data (Bosilovich et al., 2015; Molod et al., 2015) are used to define 
the polar vortex in the stratosphere and mesosphere using the definition described by Harvey et al. (2002). 
The 6-h instantaneous three-dimensional analyzed meteorological fields in the M2I6NVANA collection are 
used here (Global Modeling and Assimilation Office, 2015). The data are provided four times daily with a 
horizontal resolution of 0.5° latitude by 0.625° on 72 model levels that extend from the Earth's surface to 
0.015 hPa (∼75 km). This reanalysis assimilates MLS temperature and ozone observations above 5 hPa be-
ginning in August 2004 (Gelaro et al., 2017), which constrains the dynamics in the upper stratosphere and 
lower mesosphere.

3.  The 2009 SSW
The January 2009 vortex split SSW has been extensively studied as it remains the strongest and most pro-
longed SSW in the satellite era (e.g., Coy et al., 2011; Harada et al., 2010; Manney et al., 2009; Schneide-
reit et al., 2017), and vertical coupling to the thermosphere (e.g., Sassi et al., 2013, 2016) and ionosphere 
(e.g., Goncharenko, Chau, et al., 2010; Goncharenko, Coster, et al., 2010; Jin et al., 2012; Liu et al., 2011; 
Pancheva & Mukhtarov, 2012; Pedatella et al., 2016) is apparent during solar minimum. An overview of 
this event is given in Figure 1 with an emphasis on the MLT. The altitude-time perspective of spatially 
averaged quantities given in Figures 1a and 1b is often used to visualize the time evolution of SSWs and 
mesospheric coolings (Labitzke, 1972) as well as the vertical transport of NO. Figures 1a and 1b show that 
WACCMX + DART reproduces the observed SSW (which began on January 24), in agreement with Pedatel-
la et al. (2018). The model qualitatively reproduces observed features, despite differences in absolute values, 
for example, in the amplitude of the mesospheric cooling and the temperature of the elevated stratopause. 
The elevated stratopause is indicative of strong planetary and gravity wave-driven descent in February that 
resulted in large amounts of NO transported to the stratosphere despite low solar and geomagnetic activity 
levels (e.g., Randall et al., 2009).

Previous studies of the EPP IE have generally included analyses of NO descent using zonal averages, with-
out regard for spatial inhomogeneities in dynamic or chemical quantities. However, day-to-day wind and 
NO spatial patterns in the upper mesosphere have not yet been shown. This work fills this gap at the 90 km 
altitude level and the January 20–30 time period, indicated by the white horizontal lines in Figures  1a 
and 1b. Since this case study focuses on an altitude and time period following the mesospheric cooling 
event and preceding the elevated stratopause, there is an intensification in polar descent during the time 
period analyzed.

Figures 1c and 1d give NH polar maps of GPH at 0.001 hPa (∼90 km) on January 23, immediately follow-
ing the peak stratospheric warming and mesospheric cooling. These maps demonstrate large zonal varia-
bility and that SABER (panel c) and the model (panel d) are in agreement with respect to the location of 
high-pressure and low-pressure systems near the mesopause; both the observations and the model indicate 
a region of low pressure over the northeast Atlantic and Arctic ocean basins and relatively high pressure 
over east Asia and the southeast United States. This level of agreement between the model and the observa-
tions holds for the duration of this case study. Note, however, since the model assimilates SABER this is not 
an independent validation. Both the observations and the model indicate maximum zonal GPH variations 
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of 2–3 km in the 50°N–70°N latitude band. This is generally consistent with previously reported large PW 
amplitudes at this latitude, altitude, and time (Yuan et al., 2012, see their Figure 4).

Comparison of model output to coincident observations with no spatial or temporal averaging is a strin-
gent test of the model. Figures  1e and  1f show SuperDARN radar (panel e) and model (panel f) zonal 
winds centered on 100 km. This analysis further evaluates the model by comparing with an independent 
observational source (that was not assimilated). While there are differences between the evolution of the 
radar versus the model zonal winds at the six radar locations and the amplitudes of the zonal winds are up 
to a factor of two larger in WACCMX + DART than in observations, the model does simulate a shift from 
westerly (positive values) to easterly (negative values) zonal winds before the vortex split on January 20 and 
then a shift back to westerly after the SSW. Further, the model is in excellent agreement with the Pyk radar 
(solid blue line) over Iceland, which sampled the flow along the poleward flank of the PW trough that we 
will present in Figure 3. At that location, both the model and the radar indicate a shift from ∼10 m s−1 west-
erlies around January 22 to ∼20 m s−1 easterlies around January 25 and then back to westerlies by the end 
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Figure 1.  (Top panels) Altitude-time plots of 70°N–90°N average temperature (in color) and zonal mean NO VMR 
(thick black contours, in ppbv) based on (a) SABER and SOFIE observations and (b) WACCMX + DART from 
January 12 to February 10, 2009. Major SSW conditions were met on January 24. The NO VMR in panel (b) is the 
WACCMX + DART values at the SOFIE measurement latitudes. The white horizontal lines at 90 km from January 20 
to 30 denote the altitude and time that is the focus of this work. (Middle panels) NH polar plots of daily average GPH in 
(c) SABER and (d) WACCMX + DART on January 23, 2009 at 0.001 hPa (∼90 km). The locations of the six SuperDARN 
radars operating during this time are indicated by the black diamonds in panel (c). These six radars are, from west to 
east, in Kodiac Alaska USA (Kod; 57.6°N, 152.2°W), Prince George British Columbia Canada (Pgr; 54°N, 122.6°W), 
Saskatoon Saskatchewan Canada (Sas; 52.2°N, 106.5°W), Rankin Inlet Nunavut Canada (Rkn; 62.8°N, 92.1°W), 
Pykkvibaer Iceland (Pyk; 63.8°N, 20.6°W), and Hankasalmi Finland (Han; 62.3°N, 26.6°E). (Bottom panels) time-series 
of 4-day average zonal winds near 100 km based on (e) SuperDARN and (f) WACCMX + DART. GPH, geopotential 
height; NH, Northern Hemisphere; SSW, sudden stratospheric warming; VMR, volume mixing ratio.
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of the month (note that no Pyk observations are available from 5 UT on 
Day 34 to 18 UT on Day 37). Overall, Figure 1 is intended to demonstrate 
that while there are quantitative differences between the model and the 
observations, there is qualitative agreement in terms of both the zonal 
mean evolution and the synoptic-scale meteorology in the MLT during 
this dynamically active time.

4.  Imprint of the Split Vortex on NO at the 
Mesopause
Since WACCMX  +  DART captures certain key aspects in the MLT for 
this case, we next show how the split vortex in the stratosphere and 
mesosphere impacts the NO distribution near the mesopause. Figure 2 
illustrates enormous zonal asymmetries that occur throughout the strat-
osphere and mesosphere on January 21 at 0 UT. At this time the polar 
vortex (stacked circular regions colored by temperature) is split from 34 
to 73 km and there are two vertically deep anticyclones (black circular 
regions) located over the oceans. SSWs are known to exhibit significant 
zonal asymmetries due to the large PW structures that drive them (Mat-
suno, 1970) and zonal averaging obscures these spatial inhomogeneities.

The Arctic polar vortex and anticyclones in Figure 2 are based on MER-
RA-2 data and are independent of the NO and GPH polar map at 90 km, 
which is from WACCMX  +  DART. White contours at 90  km delineate 
two regions of negative eddy (deviations from the zonal mean) GPH as-
sociated with cyclonic flow in the model. These low GPH regions are co-
incident with the two areas of elevated NO VMR. That the split vortex 
extends to this altitude was alluded to by Iida et al. (2014), who showed 
two low MLS GPH regions in polar maps at 90 km on January 19 (2 days 
earlier). The new result here is that this split circulation resulted in a split 
distribution of NO. Unfortunately, ACE-FTS and SOFIE measurements 
(which occurred between 64°N and 69°N on this day) did not intersect 
the regions of high NO VMR (located between 45°N and 50°N) in the 

model thus the simulated split NO pattern cannot be confirmed using chemical observations. In the weeks 
leading up to this split, the modeled NO in the upper mesosphere generally maximized over the pole (not 
shown). Then, on January 19 at 18 UT both the stratospheric vortex and the GPH and NO fields at 90 km 
split simultaneously and in similar orientations, with high NO VMR regions in the same longitude sectors 
as the two polar vortex lobes below. The 90 km NO and eddy GPH fields remained split for 3.5 days (not 
shown), thus outlasting variability that occurs on diurnal time scales. This result suggests that PW-driven 
zonal asymmetries in the stratosphere and mesosphere can leave an “imprint” on the NO distribution at 
the mesopause.

5.  Case Study: NO Transport as Evidenced by Lagrangian Coherent Structures
Next, we show the effect of LCSs on the spatial distribution of NO near 90 km on 1 day in WACCMX + DART. 
Figure 3 gives polar maps on January 26 at 0.001 hPa (near 90 km) to illustrate the horizontal circulation 
and the spatial patterns in temperature and NO in the wake of the vortex split. Figure 3a shows the GPH 
near 90 km, similar to Figure 1d but three days later. Also shown here are bold light gray, dark gray, and 
black contours illustrating the vortex edge location at 30, 50, and 70 km, respectively, which progressively 
shifts west with increasing altitude. The region of low pressure that resides over the north Atlantic near 
90 km is thus seen to be a natural continuation of this westward tilting mesospheric vortex as indicated 
by the three contour rings (in light gray, dark gray, and black). Horizontal winds flow roughly parallel to 
both the vortex edge and GPH contours. Vertical continuity in the vortex wind system is consistent with 
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Figure 2.  3-D representation of the Arctic polar vortex (colored by 
temperature) and stratospheric anticyclones (colored black) on January 21, 
2009, at 00 UT based on MERRA-2. An NH polar map of 90 km NO VMR 
from WACCMX + DART hovers above the split vortex. White contours in 
the NO map indicate where model GPH deviates by more than 1 km below 
the zonal mean, indicative of PW troughs. GPH, geopotential height; NH, 
Northern Hemisphere; PW, planetary wave; VMR, volume mixing ratio.
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Figure 3.  NH polar maps at 0.001 hPa (∼90 km) on January 26, 2009 at 12 UT of (a) WACCMX + DART GPH (in color) and MERRA-2 polar vortex edges at 
30 km (light gray), 50 km (dark gray), and 70 km (black), (b) simulated FTLE (light and dark gray shading) and 24-h forward trajectory paths (colored lines) 
for air that originated at the locations given by the open colored circles at 65°N, spaced every 10° in longitude; the pink dotted lines highlight FTLE ridges of 
interest and these are repeated in panels (c) and (d), (c) NO VMR in WACCMX + DART (color contoured), and NO VMR observed by SOFIE (diamonds) and 
ACE-FTS (octagons) (note, the ACE-FTS measurement north of Hudson Bay corresponds to a NO VMR of 4.6 ppmv which is outside the color bar range), and 
(d) WACCMX + DART temperature (in color) with black stippling and boundary lines indicating where the deviation of WACCMX + DART atomic oxygen is 
at least 25% larger than the zonal mean at each latitude. Both warm temperatures and high atomic oxygen are proxies for descent. FTLE, finite-time Lyapunov 
exponent; NH, Northern Hemisphere; PW, planetary wave; VMR, volume mixing ratio.
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Bhattacharya and Gerrard (2010) who showed mesopause winds to be correlated with stratopause winds 
when the vortex is displaced from the pole, as it is on this day.

Figure 3b shows the FTLE field (light to dark gray shaded) and 24-h forward trajectories (colored lines) that 
originated at 65°N, also near 90 km. High FTLE values, or FTLE ridges (dark gray shading), indicate barriers 
to horizontal transport due to large shear sustained over time. These FTLE ridges are hereafter referred to 
as LCSs and their spatial distribution reveals the complex nature of the flow field at this altitude and time. 
The LCSs that are of interest in this work are indicated by the pink dotted lines that trace FTLE ridges lo-
cated along the poleward, eastern, and equatorward flanks of the north Atlantic low-pressure center shown 
in Figure 3a. Another LCS of interest extends from western Greenland to Alaska. The concentric trajectory 
paths inside the low-pressure center over the north Atlantic indicate easterly flow over Iceland, in agree-
ment with observed (SuperDARN radar at Pyk) and modeled zonal winds near 100 km, shown in Figures 1e 
and 1f. The trajectories illustrate that air inside the north Atlantic low-pressure center remains confined to 
the 50°N–70°N latitude band (yellow and orange lines), whereas air outside the low (green, blue, and purple 
lines) is rapidly transported to low latitudes. A well-known property of LCSs is that air parcels on the same 
side of an LCS experience slow separation for a given amount of time compared to air parcels on opposite 
sides of an LCS (du Toit & Marsden, 2010). This property has implications for the distribution of NO, in that 
high latitude air bounded by LCSs is not subject to transport to tropical latitudes. In this case, this seques-
tration acts to increase the NO chemical lifetime since photolysis rates will tend to be lower between 50°N 
and 70°N than at low to mid-latitudes. On this day, the latitude distribution of NO lifetime at 0.001 hPa 
(∼90 km) is: 5 days at 20°N, 6 days at 50°N, 10 days at 61°N, 20 days at 67°N, 30 days at 68°N, 40 days at 
69°N, and >50 days at 70°N (Brasseur & Solomon, 2005; Minschwaner & Siskind, 1993). Thus, NO con-
tained within a circulation spanning 50°N–70°N will experience more photolysis along the Equatorward 
flank and negligible photolysis along the poleward flank. If we assume that air spends as much time at 50°N 
as it does at 70°N, then to first order NO that circulates between 50°N and 70°N will live five times longer 
((55 + 6)/2 = ∼30 days) than NO that is transported equatorward of 50°N (6 days). These LCSs persist for a 
week as the low-pressure center migrates to the west, remaining in the 50°N–70°N latitude band; the region 
occupied by the closed circulation maintains a fairly constant area of ∼2 million km2. The closed circulation 
persists despite enhancements in the migrating semi-diurnal solar (He et al., 2017) and lunar tides (Chau 
et al., 2015; Pedatella, Liu, et al., 2014). Even with SSW-induced tidal enhancements, the migrating diurnal 
and semi-diurnal tidal amplitudes are small (<0.5K) poleward of 40°N at 90 km (Sassi et al., 2013).

Next, we show that the FTLE ridges of interest in Figure 3b are spatially coincident with large horizontal 
NO gradients in the model, and to a lesser extent in the observations. Figure 3c reveals regionally enhanced 
model NO over the north Atlantic with maximum mixing ratios located inside the low-pressure center and 
sharp horizontal gradients coincident with large horizontal gradients in GPH in Figure 3a and the pink 
dotted lines in Figure 3b. ACE-FTS and SOFIE NO observations are superimposed using filled octagons 
and diamonds, respectively. Between 50°N and 70°N in the western hemisphere where WACCMX + DART 
NO VMR values are generally enhanced, the model underestimates observed NO VMR by about a factor 
of 2, a common trait among models. However, daily average WACCMX + DART NO at the ACE-FTS and 
SOFIE measurement latitudes is within measurement uncertainties. The observations confirm a distinct 
PW-1 pattern in NO with high values over the north Atlantic and the Canadian Arctic and generally lower 
values over Asia. The observations indicate elevated NO VMR values along the extreme poleward flank of 
the region of enhanced model NO over the north Atlantic. Both the model and the observations also show a 
tongue of high NO VMR values (>1 ppmv) that extends westward over the Canadian Arctic. These elevated 
NO values lie along the poleward side of the FTLE ridge that extends to the west from Greenland to Alaska. 
This westward extension of elevated NO VMR values is likely related to the ongoing westward migration of 
the entire pattern that will be shown next.

Finally, coincident with the region of high model NO VMR (Figure 3c) are warm model temperatures (Fig-
ure 3d) suggestive of adiabatic heating. Temperatures at 60°N, 0.001 hPa over the north Atlantic are 20–40K 
warmer than at other longitudes around this latitude circle. The black stippled region in Figure 3d is where 
model atomic oxygen is 25% higher than the zonal mean at each latitude. Atomic oxygen (O) is a dynamical 
tracer at these altitudes; it has a steep vertical gradient (increasing VMR with increasing altitude) such that 
high O is a proxy for descent from the lower thermosphere (Smith et al., 2010; Winick et al., 2009). The 
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model is self-consistent in that regions of high O correspond to regions of warm temperatures, and both 
suggest descending motion over the north Atlantic. These regional enhancements in the NO and descent 
would be obscured in zonal averages. Indeed, standard transformed Eulerian mean (TEM) estimates of 
vertical transport are unable to distinguish variations around a latitude circle.

To summarize, all of the combined aspects presented here paint the following picture: There is a closed 
circulation coincident with low GPH over the north Atlantic at 90 km with LCSs inhibiting horizontal mix-
ing to the north, east, and south. This circulation (1) contains elevated NO, (2) is associated with enhanced 
descent, and (3) is the natural upward continuation of the westward tilting polar vortex in the stratosphere 
and mesosphere. Thus, this meteorological feature provides a transport pathway for air to enter the top of 
the polar vortex. This is the first work to illustrate the zonally asymmetric nature of NO descent in the polar 
winter upper mesosphere and couple it to the vortex below.

Next, we examine how the PW patterns in NO and GPH evolve in longitude and time at the ACE-FTS and 
SOFIE measurement latitudes. Figure 4 gives longitude-time Hovmöller diagrams of NO (color) and eddy 
GPH (deviation from the zonal mean, contours) at 90 km to illustrate east-west movement of the PW in NO 
and GPH between 63°N and 71°N latitude during late January 2009. WACCMX + DART NO and eddy GPH 
are shown in the top row, interpolated to the ACE-FTS (Figure 4a) and SOFIE (Figure 4b) measurement 
latitudes. ACE-FTS and SOFIE NO observations are shown in panels (c) and (d), respectively, along with 
eddy GPH from SABER. The latitudes of ACE-FTS and SOFIE measurements are indicated along the right-
hand side of each panel and reflect a gradual poleward migration in time of the solar occultations observed 
by the two satellite instruments. SOFIE maintains about a 5° latitude poleward offset from ACE-FTS, so 
including both instruments in this analysis provides some indication of the latitude structure. The white 
and black dashed contours in these plots are positive and negative eddy GPH values, respectively. Hereafter, 
positive (negative) eddy GPH is referred to as the PW ridge (trough). This figure gives an evaluation of both 
the model chemistry and dynamics.

During this time period, WACCMX + DART NO VMR is biased 18% lower than measured by ACE-FTS but 
only 3% lower than measured by SOFIE. However, here the focus is on the longitudinal variability rather 
than absolute magnitudes, and both the model and the observations show a westward traveling PW-1 pat-
tern in NO and eddy GPH. The PW in SABER eddy GPH peaks on January 24 with amplitudes of 3,096 and 
2,723 m at the ACE-FTS and SOFIE measurement latitudes, respectively. This traveling PW is also present 
at 62.5°N at 80  and 50 km (Iida et al., 2014; see their Figure 6), with maximum amplitudes of 2,200 and 
1,400 m, respectively. On January 26, the day shown in Figure 3, highest model NO is in the 270°–360° lon-
gitude sector located over the Atlantic. This figure illustrates that this PW-1 pattern then travels westward 
in time. The westward migration is most evident from January 24 to 29, during which the PW travels ∼180° 
of longitude; thus, it has a period of ∼10 days, in agreement with the analysis of MF radar meridional wind 
data at 69°N and 85 km (Matthias et al., 2012). Such a westward-propagating PW-1 with a period of about 
10 days has also been found in WACCM composites (Limpasuvan et al., 2016) and case studies (Orsolini 
et al., 2017) of other SSW events with elevated stratopauses. In both the model and in the observations, there 
is coordinated westward movement of high NO in the PW trough (green colors follow the black dashed 
contours) and extremely low NO remains coincident with the PW ridge (black and purple colors follow the 
white contours). There are subtle differences between the model and the observations, such as the larger 
amplitude PW in model GPH (contours, top panels) compared to SABER (contours, bottom panels), and the 
highest ACE-FTS and SOFIE NO VMRs are not always coincident with the lowest GPH values, as they are 
in the model. Over this 5-day period, LCS calculations (not shown) indicate that air parcel trajectories that 
originate inside the PW trough remain confined to the PW trough. These results demonstrate that PWs drive 
large zonal asymmetries in the distribution of NO near the polar winter mesopause.

6.  Descent of NO Enhanced in the PW Trough
Next, we examine model NO VMR within two populations: the PW ridge and the PW trough. This analysis 
is similar to previous studies that separated trace gas measurements based on whether they were located 
inside or outside the polar vortex (e.g., Abrams et al., 1996; Lossow et al., 2009; Nassar et al., 2005; Siskind 
et al., 2000). These studies found distinctly different tracer-tracer relationships and different rates of descent 
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in different air mass types. The goal here is to determine whether descent rates in the upper mesosphere 
depend on longitude as defined by PW phase. Thus, on each day from January 24 to 29, we categorize the 
model grid points (at the SOFIE latitudes shown in Figure 4) by PW phase. One category consists of grid 
points located in the PW ridge (with positive eddy GPH values) and the other category consists of grid points 
located in the PW trough (with negative eddy GPH values). On each day we calculate daily mean NO pro-
files from WACCMX + DART in both air mass types.
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Figure 4.  Longitude-time Hovmöller diagrams from January 20 to 30, 2009 of 0.001 hPa NO VMR (in color) and the deviation of GPH from the zonal mean 
where positive values in white indicate PW ridges and negative values in black dashed indicate PW troughs. GPH data is from WACCMX + DART (top) and 
SABER (bottom). The top panels show NO VMR in WACCMX + DART at the (a) ACE-FTS and (b) SOFIE measurement latitudes. The bottom panels are NO 
VMR measured by (c) ACE-FTS and (d) SOFIE. The ACE-FTS and SOFIE measurement latitudes are given along the right side of panels in the left and right 
columns, respectively. GPH, geopotential height; NH, Northern Hemisphere; PW, planetary wave; VMR, volume mixing ratio.
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Figure 5a (left panel) shows daily average WACCMX + DART NO profiles on January 24 (black) and Jan-
uary 29 (red) in the PW ridge. Figure 5b shows daily average NO profiles on the same days but in the PW 
trough. It is clear that there are much larger temporal differences in the NO profiles in the trough than in 
the ridge. Descent rates are inferred based on the vertical displacement of the NO profiles. This method to 
infer descent rates has been widely used in previous study (Bailey et al., 2014; Hendrickx et al., 2015; Kvissel 
et al., 2012; Lee et al., 2011; Siskind et al., 2015; Straub et al., 2012). This technique is valid here since (1) 
geomagnetic indices are low and we can assume negligible NO production due to particle precipitation; (2) 
chemical loss of NO is insignificant at latitudes near-polar night, that is, polar NO is mainly controlled by 
dynamics (Salmi et al., 2011); (3) tidally driven vertical motions are likely negligible given diurnal and sem-
idiurnal migrating tidal amplitudes that are less than 0.5K at 90 km poleward of 40°N (Sassi et al., 2013). 
Further, Orsolini et al. (2017) demonstrated that the tidal contribution from migrating tides to the vertical 
component of the residual circulation is small compared to the dominant PW-1 contribution after SSW 
onset (see their Figure 9).

Figure 5c shows daily average profiles of derived descent rates in the PW ridge and trough. These results 
indicate that, between 80 and 90 km, the 5-day average descent rate in the PW trough is a factor of 5 stronger 
than in the PW ridge (−0.64 compared to −0.13 km/day). The same procedure applied to profiles of atomic 
oxygen (not shown) yields similar results (−0.65 km/day in the trough vs. −0.15 km/day in the ridge). That 
the derived descent rates based on NO and O profiles are similar lends confidence that they represent the 
“true” rates of descent (Ryan et al., 2018). These results are consistent with Shepherd et al. (2010) who re-
ported “a dramatic influx of atomic oxygen from the thermosphere” over this same 5-day period at Eureka 
(80°N, 86°W), which is also located in the PW trough.

In terms of the processes responsible for the descent, Meraner and Schmidt (2016) used HAMMONIA to 
quantify the role of advective and diffusive processes in the downward transport of NOx during 2009. They 
found that large-scale advection is responsible for most of the NO transport from the thermosphere to the 
mesosphere during this SSW. This is consistent with the results of Smith et al. (2010), who showed that 
high temperatures coincident with elevated atomic oxygen abundances are indicators of descent driven by 
large-scale advection. They add that there is also likely a component of the descent driven by molecular 
diffusion, which is enhanced where it is warmer. Regardless of the driving mechanism(s), we conclude that 
83% (100 × 0.64/(0.64 + 0.13)) of all NO descent from 80 to 90 km in late January of 2009 occurred in the 
longitude sector of the PW trough (assuming from Figure 4 that the ridge and trough occupy comparable 
areas). This is the case in the model and is confirmed when the ACE-FTS and SOFIE observations are sepa-
rated in the same way (not shown). Thus, we conclude that zonal asymmetries should be considered when 
comparing models of NO descent with observations.
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Figure 5.  Daily average WACCMX + DART NO VMR profiles on January 24 (black) and January 29 (red) at the 
SOFIE measurement latitudes and located in the PW (a) ridge and (b) trough. Panel (c) gives vertical profiles of derived 
vertical velocities in the PW ridge (plus signs) and trough (solid line) of the planetary wave. Negative values indicate 
descent. PW, planetary wave.
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7.  Conclusions
This work used WACCMX + DART to show that the January 2009 split Arctic vortex in the stratosphere left 
an imprint on the horizontal distribution of NO at the mesopause. We then presented an 11-day case study 
in late January during the recovery phase of the 2009 SSW. During the short period of time between the 
onset of the warming in the stratosphere and the formation of the elevated stratopause around 80–90 km 
altitude about 10 days later, the reforming mesospheric vortex extends up into the MLT region. The vortex 
edge in this region is defined not by potential vorticity but by FTLE ridges. We showed for the first time the 
effects of LCSs on the horizontal transport of NO. We then demonstrate that, near 90 km, LCSs appear in 
the flow over the north Atlantic in the vicinity of a trough of a westward traveling 10-day PW. This trough 
is coincident with a region of elevated NO at 90 km, and both the PW trough and elevated NO are located 
directly above the westward tilting polar vortex in the stratosphere and mesosphere. Because the vortex 
extends all the way up into the MLT, downward transport from the thermosphere to the upper mesosphere 
is possible and takes place in this region. Enhanced descent in the PW trough and inhibited horizontal 
transport of NO by the LCS comprise an efficient transport pathway for air to enter the top of the polar vor-
tex. That is, following the 2009 SSW, air descended over the north Atlantic and Canadian longitude sectors 
rather than, as is often assumed, descending uniformly in longitude.

New science results are as follows:

�1)	� The split stratospheric polar vortex “imprints” on the spatial distribution of model NO VMR at the 
mesopause.

�2)	� Elevated NO VMR values in the upper mesosphere remain horizontally confined to high latitudes by 
LCSs for 11 days.

�3)	� The LCSs occur in the vicinity of the trough of a 10-day westward traveling PW-1.
�4)	� From January 24 to 29, 2009 descent in the upper mesosphere (from ∼75 to 95 km) is five times stronger 

in the longitude sector of the PW trough than in the PW ridge.
�5)	� The descent is likely driven by large-scale vertical advection; that is, most of the residual circulation 

vertical velocity, a zonally averaged quantity by definition, is focused in the longitude sector of the PW 
trough.

Future work will quantify how often LCSs coincide with traveling PW troughs at the polar winter meso-
pause and how often descent depends on PW phase. In particular, this work sets the stage for broader stud-
ies that seek to determine whether mesospheric dynamics drive zonal asymmetries in NO descent during 
more typical polar vortex conditions and in the Southern Hemisphere.

Data Availability Statement
High-end computing resources were provided by NASA to run WACCMX  +  DART on the Pleiades su-
percomputer at the NASA Ames research center. Model output for January 20–30, 2009 at 0.001 hPa are 
provided at https://zenodo.org/record/4563306#.YDhpgeBlDxs. SABER data are available at saber.gats-inc.
com. SOFIE data are available at https://spdf.gsfc.nasa.gov/pub/data/aim/sofie/. ACE-FTS data are availa-
ble at https://databace.scisat.ca/level2/. MERRA-2 data are available at the Data and Information Services 
Center, managed by the NASA Goddard Earth Sciences (GES) at https://gmao.gsfc.nasa.gov/reanalysis/. 
The authors acknowledge the use of SuperDARN data. The SuperDARN data are available from Virginia 
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