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Introduction

0.1 Background, motivation and objectives

A particle can be defined as ¨a minute quantity or fragment¨ or ¨the smallest discrete
portion of something¨ that holds its basic mechanical properties. The use of particle
suspensions and particle technologies have a profound application in a variety of industries
like coal, electronics, metals and minerals, pharmaceuticals, agriculture, paints etc. In
fluid mechanics, the term particle can be interpreted as droplets, bubbles or solid particles
suspended in fluids. Measurements of particle/droplet velocity and size are important
in research applications, such as the analysis and characterization of sprays, combustion
of liquid fuels, mixing in vessels for the chemical industry (Black et al., 1996; Tropea,
2011). Besides these applications, measurement of particle size and velocity is also key to
understanding and predicting the response of particles in a turbulent flow (Calzavarini
et al., 2009; Mordant et al., 2004; Qureshi et al., 2008; Voth et al., 2002).

Particles suspended in a flow can be also used to understand the physics of the flow,
when the particles have the ability to follow the instantaneous motion of the flow over a
sequence of time. Such particles are called tracer particles. There are two approaches by
which this can be done; an Eulerian approach or a Lagrangian approach. The Lagrangian
description of fluid flows is physically more natural than the Eulerian one since it is
related most directly to the motion of fluid elements as is done in Newtonian mechanics.
The traditional problems for which Lagrangian description is especially appropriate are
turbulent diffusion, transport and mixing in a great variety of applications, e.g. geophysical,
cloud formation, atmospheric transport, tracers on the ocean surface, combustion systems,
Monin and Yaglom (1971, ch. V, pp. 527-693), Tennekes and Lumley (1972), Kim and
Stinger (1992), Babiano et al. (1987). Another aspect is associated with the dynamics
of inviscid fluids, theoretical problems associated with Euler equations, vortex dynamics,
dynamics of interfaces and surface waves, Saffman (1991), Moffatt (2000), and Lundgren
and Koumoutsakos (1999).

Techniques that provide the Lagrangian description of fluid flows is generally known
as Lagrangian particle tracking (LPT). The method is usually based on three steps: the
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identification of illuminated tracer particles from multiple camera views, a triangulation
step in which the probable 3D location of the particles is calculated, and the linking of
subsequent particle locations to form probable particle trajectories. This is commonly
implemented as a Particle Tracking Velocimetry (PTV) and it is a well-established
measurement technique used for the study of 3D Lagrangian particle motion in turbulent
flows (Maas et al., 1993; Virant & Dracos, 1997). The goal of establishing such particle
tracks is often to calculate Lagrangian velocities (Nishino et al., 1989) and accelerations
(Malik et al., 1993). In all these the basic ingredient is the motion of fluid particles, which
is essentially Lagrangian in its nature as contrasted to the Eulerian description in which
the observation of the system is made in a fixed frame as the fluid goes by.

To reconstruct particle trajectories, it must be possible to both accurately triangulate
the locations of tracer particles, and then unambiguously link particles to form trajectories.
At high particle seeding densities, required for the spatial resolution of the fine scales
present in high-Reynolds number flows, both of these operations become challenging.
The number of potential particle image matches increases non-linearly with seeding
density, resulting in ambiguity during the triangulation procedure giving erroneous particle
locations. Difficulties also arise in correctly pairing the same particle with its appearance
in subsequent images given many nearest-neighbour candidates. There is therefore an
inherent tension between the conditions for accurate Lagrangian particle tracking (LPT)
and the high particle densities required to capture the fine scales of high-Reynolds number
flow.

Recent particle tracking implementations seek to overcome these restrictions, focusing
either on accurate tracking in densely-seeded flows, or on the reconstruction of the Eulerian
field from sparse Lagrangian data. In the latter category a technique described as ‘pouring
time into space’ was recently introduced by Schneiders & Scarano (2016), making use
of both the instantaneous velocity and the velocity material derivative to improve the
consistency of the reconstructed instantaneous velocity fields within the framework of
sparse tracks. Another approach is the so-called ‘FlowFit’ method (Gesemann et al.,
2016), which employs a system of smooth B-splines and invokes physical constraints
during velocity, acceleration and pressure field reconstruction. The method is thus able
to increase the spatial and temporal resolution by ‘supersampling’ the starting scattered
data, additionally reducing noise during the process. On the other hand several novel
approaches have emerged recently to track particles successfully at higher tracer particle
densities. Notable is the ‘Shake-The-Box’ method (Schanz et al., 2016) extending the
Iterative Particle Reconstruction (IPR) methodology of Wieneke (2012). Attempts have
also been made recently to find 3D particle locations directly from the reconstructed
intensity volumes from tomographic PIV, for example the Tomo-3D-PTV of Novara &
Scarano (2013), although this approach is susceptible to errors when particle tracking is
undertaken since many ghost particles are reconstructed at high seeding densities. The
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concept of particle prediction as introduced in the ‘Shake-The-Box’ method (Schanz et al.,
2016) is extended into the domain of tomographic PIV by Lynch & Scarano (2015) with
an efficient ‘motion-tracking-enhanced’ intensity field reconstruction. The number of ghost
particles is thus significantly reduced, and combined with a suitable tracking scheme, such
an approach could increase the particle density at which Tomo-3D-PTV could be applied.
The present LPT methodology is aimed to increase the accuracy up to an equivalent
particle image density similar to the upper particle image density limit tackled by the
four-camera setup of Schanz et al. (2016), using a scanning laser sheet to illuminating
tracer particles.

The case of particles in turbulent flow has been and remains a challenge to the fluid
dynamicist. When compared to pure turbulence, the theoretical and experimental studies
on particle-turbulence are still in their early stages. The difficulty arises in the interaction
of particles of different sizes with the turbulent flow. When the size of the particles are
small compared to the smallest turbulent length scale of the flow (Gouesbet & Berlemont,
1999; Maxey & Riley, 1983) or when there is only and vanishing difference between the
density of the fluid and the particle, the particles then behave like fluid elements and are
called fluid tracers. This property is crucial for several experimental techniques like PIV,
PTV etc where these particles are used to resolve the velocity fields (eg:Lawson & Dawson
(2015)).

For finite sized or heavy particles, both large scale and small turbulent eddies can
contributes to particle dispersion, depending on the local Stokes number (Bachalo (1994)).
These interactions can cause the particles to clusters (Wood et al. (2005)) or can create
a void, which can alter the turbulent characteristics of the continuous medium in which
they are immersed. This variation in the flow characteristics are higher for polydisperse
particle size distribution as compared to monodisperse case (Sommerfeld (1990)). The
range of sizes is important in some studies on the effects of particle interactions with
turbulence in a multiphase regime, whilst in others appropriate mean values suffice. The
particular mean required is usually determined by the use to which the data is to be put.
The most common of these is the volume to surface area mean, D32, the Sauter Mean
Diameter (SMD), which is used in mass transfer work where the surface area governs the
resistance and the volume determines the concentration. The type of distribution can also
be important particularly in the comparison of theory and experiment. Two main types
of distributions are temporal (vary with time at one point in space) and spatial (vary in
space at one point in time).

Particle size measurement technique is broadly divided into optical and non optical
methods (Barth & Flippen, 1995; Black et al., 1996; Hirleman & Bohren, 1991; Tayali &
Bates, 1990). Non optical methods, relies on either physical separation of samples such
as seiving, sedimentation, impactors etc. Impact devices use a coating of fine material
such as magnesium oxide or soot on to which the particles impact, leaving crater-like
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impressions. Optical techniques relies on imaging, microscopy or holography. These are
relatively simple techniques, where the particles are illuminated by a light source, chosen
based on the particle velocity and size. In imaging or microscopy technique, particles are
exposed to the illumination, with the exposure time also depending upon the velocity
and diameter of the particle. Particles can be imaged perpendicular to the direction
of the flow using either back or side illumination. In holography technique, a dynamic
three-dimensional distribution of particles is stored in a hologram from which a stationary
image can be produced for detailed study of size and relative position of the particles.
Typical measurement accuracies from these optical techniques range between 5 − 15%
(Black et al., 1996; Tropea, 2011) with measurable sizes ranging between 0.5 − 10000.

The evolution of laser diagnostics has played a profound role in the development of a
new kind of method, which was based on the light scattering properties of the particles.
The laser based method also allowed for the measurement of velocity of the particle
simultaneously. Currently, laser based measurement techniques is considered to be the
most popular way of measuring the particle velocity and size. This is purely due to its
properties such as its coherence, spectral power and its monochromatic nature.

One major challenge faced by laser based methods, when a Gaussian intensity profile
laser is used for sizing is that, the same particle passing through different locations of the
laser beam/sheet can scatter different amounts of light. This essentially means that a large
particle at the edge of the laser sheet and a small particle at the center of the sheet can
scatter same amount of light, and this effect was termed as the ¨trajectory effect¨ (Black
et al. (1996)). This effect is unavoidable even in a top-hat beam intensity profile, as the
profile is not uniform over the entire sheet width as their tails are nonetheless similar to a
Gaussian profile.

It is therefore required to develop a volumetric technique where either exact particle
location within the laser sheet is known for each particle at every instant and a relative
correction of the measured intensity is performed or to approximately obtain the particle
intensity corresponding to the laser sheet center (Gaussian center). The method should
also needs to accurately estimate the 3D location of the particle at each time instant at
a higher particle concentration, for the tracking purpose, to simultaneously measure its
velocity.

This report focuses in developing a novel laser based experimental technique, to
measure the velocity and size of particles in the Mie scattering regime, in a turbulent
flow. This is the first known experiment conducted that provides the velocity, acceleration
and size of particles in a 3D space. This work aims to take the advantage of volumetric
particle tracking methods which samples the same particle several times as it traverses
the measurement volume. This provides the possibility of measuring the particle size
numerous times, which should in principle increases accuracy. The technique is introduced
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through its application on tracer particles in turbulent flows; which could be further used
in studying interactions of neutral and heavy particles in turbulence.

0.2 Outline of the thesis

The present work is structured in the following way:
In Chapter 1, a literature review on the fundamentals in particle tracking and Mie

scattering theory are presented followed by a discussion on the relevant particle tracking
and sizing techniques.

The fundamental principles of the scanning technique are presented in Chapter 2; the
working principle is discussed together with the main aspects involved in the experimental
setup. The methodology to assess the particle tracks and sizes is explained in detail,
following which the steps for data processing is also outlined.

In Chapter 3 a performance assessment by means of computer generated synthetic
scanning data for both tracking and sizing are presented. Various parameters that may
affect the 3D particle triangulation and tracking within the measurement volume are
considered, addressing both controllable and uncontrollable effects. A discussion on the
experimental design of the sizing technique, where the limits in the design are derived and
the parameters to optimize this limit is also presented. Results from the triangulation,
tracking and sizing from the synthetic experiment are also presented.

In Chapter 4, the application of the technique on a real laboratory data set from
an rotating turbulent flow (Ekmann pumping flow) is given. The tracking technique is
validated comparing the measured Lagrangian statistics with Lagrangian statistics in
similar turbulent flows. The sizing technique is validated by comparing the measured size
distribution to size distribution of the tracer particles provided by the manufacturer, used
in the flow for the measurement.

Finally the main results and conclusions of the thesis are summarized in Chapter 5.

0.3 Papers included in the thesis

The results in the first three sections of Chapter 3, described in this thesis regarding
scanning Lagrangian particle tracking and their associated parametric testing and numerical
simulation were previously published in the journal Experiments in Fluids, in an article
written in collaboration with Kozul, Worth, and Dawson. Instead of rewriting this article,
it is reproduced in the Chapter 3 as it appeared in the journal. The sections 3.2, 3.3 and
3.4, and respective figures in these sections have been adapted to the format of this thesis.
Kozul is the first author of this paper. Koothur contributed equally by developing concept
of particle tracking and MATLAB scripts for it. The contents and results of sections 3.2
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and 3.3 were performed and written by Koothur. Kozul improved the running speed of the
triangulation and particle tracking scripts using GPU functions, and contributed by testing
the developed scanning particle tracking technique by performing numerical simulation
in HIT as discussed in section 3.4. Dawson (main supervisor) and Worth (co-supervisor)
have been Koothur’s supervisors for the PhD and have contributed to the papers through
rigorous technical discussions, suggestions and comments and reviewing the manuscript.

Paper 1
Kozul, M., Koothur, V., Worth, N. A. Dawson, J. R. 2019. A scanning particle tracking
velocimetry technique for high-reynolds number turbulent flows. Experiments in fluids,
60, 137.
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Chapter 1

Literature review

This chapter provides an overview of the most relevant laser diagnostic techniques that are
used to measure the velocity, acceleration and size of particles/droplets statistics in flow.
Before discussing/comparing these techniques, the fundamentals behind these techniques
which are; the understanding of epipolar geometry required to obtain the 3D location of a
particle and the scattering theory knowledge essential in the particle sizing approaches are
introduced.

1.1 Particle tracking

Particle image velocimetry and particle tracking velocimetry provides the two most common
ways of measuring the velocity in a flow based on the motion of particles (Adrian (1991)).
While PIV characterizes the flow in an Eulerian point of view, PTV characterizes them in
a Lagrangian point of view. The particle tracking technique can provide the measurements
of the flow velocity, when the particles used are tracer particles; or can be used to measure
the velocity of the particles itself when the particles are inertial and have their dynamics
(Sato & Yamamoto, 1987; Virant & Dracos, 1997; Voth et al., 2002). Particle tracking can
be implemented in two ways. In the first method, pair of images are recorded in rapid
succession followed by a time interval before next the pair. This method provides a single
vector for each particle in the pair. In the second method, a long sequence of images
are captured, separated by small equal intervals. Such a measurement provides location,
velocity and acceleration of the particle over n,n-1 and n-2 measurements along a single
trajectory.

In general, particle tracking method is usually based on three steps: the identification
of illuminated particles from multiple camera views, a triangulation step in which the
probable 3D location of the particles is calculated, and the linking of subsequent particle
locations to form probable particle trajectories (Maas et al., 1993; Malik et al., 1993;
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Novara & Scarano, 2013; Schanz et al., 2016; Wieneke, 2012). Unlike in other methods,
particle tracking is based on the coordinate measurement of individual particles, which
requires a reliable identification, multi-image matching and coordinate determination.

The particle image position is first obtained in the 2D image-plane, e.g. by a 2D-
Gaussian intensity peak fit. The particle image positions, a standard 2D peak finding
algorithm first identifies pixels above a prescribed threshold, and then fits two 1D Gaussian
functions (Ouellette et al. (2006)) to neighbouring pixels. The method was found to retrieve
the particle image position at sub-pixel accuracy.

To reconstruct a particle’s 3D location, first a relationship between the multiple
cameras, the 3D point and its projections on the camera’s image plane has to be derived.
A geometry that relates this relationship is called epipolar geometry (Hartley & Zisserman
(2003)). The standard epipolar geometry setup involves two cameras observing the same
3D point P , as shown in figure 1.1. The projection in each of the image planes is located
at p and q respectively. The line between the two camera center of projection is referred
to as the baseline. The plane defined by the two camera center of projections and P is the
epipolar plane. The locations of where the baseline intersects the two image planes are
known as the the epipoles e and f . Finally, the lines defined by the intersection of the
epipolar plane and the two image planes are known as the epipolar lines. The epipolar
lines have the property that they intersect the baseline at the respective epipoles in the
image plane.

In real-world situations, however, the exact location of the 3D location P is unknown,
but its projection in one of the image planes (eg: I) is known. The camera locations,
orientations and camera matrices are also known for both the cameras. With the knowledge
of camera locations of C and D and the image point p, the epipolar plane can be defined
with which the epipolar line of p. Then by the definition, P ’s projection into the second
image q must be located on the epipolar line of p in the second image J .

The projection of P onto the image plane can be modelled in different ways, which
includes using; polynomials (Soloff et al., 1997), camera pinhole with distortion (Tsai, 1987;
Willert, 2006) and pinhole with Scheimpflug corrections (Fournel et al., 2004; Louhichi
et al., 2007). In a pinhole model, the projection of point P onto the image plane is modelled
as

p ≈ GjRj [I3| − xc,j ]P (1.1)

I3 is the 3×3 identity matrix and Gj is a 3×3 upper triangular matrix which represents
intrinsic camera parameters, such as focal length and magnification. The variables xc,j

and Rj are extrinsic camera parameters which represent the camera’s position in object
space and orientation with respect to the object space coordinate system respectively.
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1.1 Particle tracking

Figure 1.1: The general setup of an epipolar geometry. The shaded gray region represents
the epipolar plane and the red lines represents the epipolar lines.

For the identification of particle 3D location, in recent years, two main approaches have
been used: Triangulation (Hartley & Zisserman, 2003; Maas et al., 1993) and, more recently,
iterative reconstruction (Schanz et al., 2016; Wieneke, 2012). The basic idea behind the
triangulation-based algorithms is that a particle is seen along different projection rays when
viewed by two cameras at different angles, as explained above. The 3D position is then
found from the intersection of these projection rays. The iterative particle reconstruction
algorithms work quite differently, compared to the triangulation-based method. Here
the triangulation method is used, only for the first few frames, after which the position
is predicted using the Kalman-filter approach. The predicted position is then used to
generate an artificial image where the particles are modelled as a Gaussian distributed
pixel intensity at the particle location and the modelled image is then compared to the
measured image for each particle individually. This comparison is then used to optimize
the particle position. The particle tracking techniques which follows either one of these 3D
particle location-identifying methods and the problems associated with them are discussed
in the following section.

1.1.1 Comparison of the relevant particle tracking techniques

Lagrangian particle tracking (LPT) seeks to uncover the physics of a particular fluid flow
by following individual particle tracers over a sequence of time-resolved recordings. The
goal of establishing such particle tracks is often to calculate Lagrangian velocities (Nishino
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Figure 1.2: Particle track obtained using 3D PTV. The spherical markers represents the
particle position and the color code represents the magnitude of accelaration (Porta et al.
(2001)).

et al., 1989) and accelerations (Malik et al., 1993). Major developments in the field of
particle tracking in 3D are discussed below:

3D particle tracking

3D particle tracking by (Maas et al., 1993; Malik et al., 1993; Virant & Dracos, 1997) are
early attempts at Lagrangian particle tracking in a 3D space. Their technique was based
on gathering the particle positions from projections on few images by triangulation, using
epipolar lines. Particle positions for each time-step were then matched in successive time-
steps using a search either in the image or in world space. Several studies demonstrated that
accurate Lagrangian statistics can be constructed following particles over long trajectories
(Porta et al., 2001; Voth et al., 1998); as shown in figure 1.2, using this technique.

The major disadvantage of this technique is its limitation to higher seeding densities,
due to the general issue of ambiguities in the triangulation procedure. To reconstruct
particle trajectories, it must be possible to both accurately triangulate the locations of
tracer particles, and then unambiguously link particles to form trajectories. High particle
seeding densities are required for high spatial resolution, for example if aiming to measure
the fine scales present in high-Reynolds number flows, both of these operations become
challenging. The number of potential particle image matches increases non-linearly with
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1.1 Particle tracking

Figure 1.3: Accelaration check to show a better assessment on the accuaracy of the velocity
derivatives. The x-axis represents the Lagrangian accelaration and the y-axis represents
the sum of local and convective accelaration (Hoyer et al. (2005)).

seeding density, resulting in ambiguity during the triangulation procedure giving erroneous
particle locations. Difficulties also arise in correctly pairing the same particle with its
appearance in subsequent images given many nearest-neighbour candidates. There is
therefore an inherent tension between the conditions for accurate particle tracking and
the high particle densities required to capture the fine scales of high-Reynolds number
flow. Implementations of the technique exploiting three-dimensional particle tracking
velocimetry (3D-PTV) using three (e.g. Maas et al., 1993) or four (e.g. Lüthi et al., 2005)
cameras helps resolve ambiguities to an extent, however these 3D-PTV methods are
typically limited to relatively low particle image densities NI of ≈ 0.005 particles per pixel
(ppp) (cf. Maas et al., 1993) in order to maintain confidence in the deduced particle tracks.

3D scanning particle tracking

3D scanning particle tracking technique (Hoyer et al. (2005)) expands on the classical 3D
particle tracking technique mentioned above. In this technique, the flow field is recorded
by sequential tomographic high-speed imaging of the region of interest. The 3D scanning
particle tracking technique was developed to predominantly overcome the problem of
reduced spatial resolution due to lowered seeding density in the classical 3D particle
tracking technique. Better spatial resolution is essential in turbulence studies, to measure
higher order velocity gradients accurately.
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Figure 1.4: (a) Particle linking procedure in TOMO-PTV, using the cross correlated
velocity field as the predictor. (b) Polynomial fits of nth orders, to reduce the truncation
error for complex trajectories (Novara & Scarano (2013)).

The merits of the 3D scanning particle tracking technique over the classical 3D particle
tracking technique in terms of spatial resolution was compared experimentally (Hoyer
et al., 2005; Lüthi et al., 2005). Several checks on the spatial resolution, such as the
acceleration check as shown in figure 1.3, on a quasi-homogeneous isotropic turbulence
(Lüthi et al. (2005)), shows that the 3D scanning particle tracking offered Hoyer et al.
(2005), an enhanced data quality when compared to the classical 3D PTV by Lüthi et al.
(2005). The 3D scanning particle tracking proves to be an excellent tool for turbulence
investigation.

Tomographic particle tracking

Tomographic particle tracking was attempted as an outcome of the advancements in
Tomographic PIV (Elsinga et al. (2006)). Schröder et al. (2008) tracked the particles
from the reconstructed tomographic field, to get the material derivative. The concept of
3D PTV was later added to reduce the error in the reconstructed tomographic particle
field (Wieneke (2012)). In this method, correlation-based velocity fields are used as
the predictor field, which allowed us to evaluate the particle trajectories(Figure 1.4a)).
The tomographic particle tracking method was extended by Novara & Scarano (2013)
for accurate measurements of material derivatives. The truncation errors for complex
trajectories are reduced using polynomial fitting functions that describe the particle
position in time with sequences based on several recordings (Figure 1.4 b)). The polynomial
regression approach also helped in the reduction of the random errors due to the particle
position measurement, leading to accurate acceleration measurements. The limitations
of TOMO-PIV are in turn limitations for TOMO-PTV as well, which is the influence
of ghost particles, especially when the seeding densities are increased. The Iterative
Particle Reconstruction (IPR) technique introduced by Wieneke (2012) when applied to
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1.1 Particle tracking

Figure 1.5: A comparison isosurfaces of vortices obtained from (a) TOMO-PIV and
(b) combination of STB and ’FlowFit’ interpolation scheme. The colorcode represents
streamwise velocity (Schanz et al. (2016)).

the TOMO-PTV, demonstrated increased position accuracy compared to the reconstructed
intensity field from TOMO-PIV, but still, the number of ghost particles was seen rapidly
increasing as soon as the particle image density approached 0.05 ppp.

Shake the Box

’Shake-The-Box’ ((Schanz et al., 2016)) method is also an advancement in the tomographic
method, where the IPR methodology of Wieneke (2012) is extended. Initialised individual
tracks are prolonged to the next time step via extrapolation, where the predicted particle
locations are corrected by ‘shaking’ them in space and image matching in time. Since ghost
particles are decorrelated and do not typically generate consistent tracks persisting over
several successive recordings, essentially ghost-free, and very accurate, particle tracks are
generated for particle image densities of up to ≈ 0.125 ppp. Temporal information is thus
exploited in addition to the purely spatial information offered by conventional tomographic
PIV (Elsinga et al., 2006). STB offers better spatial coherence when compared to TOMO-
PIV, as seen in figure 1.5, where the large structures are more unevenly represented with
many small scale structures lacking from TOMO PIV representation when compared to
STB representation. The better spatial coherence is due to the combination of ghost-free
reconstructions, position accuracy, a lack of spatial filtering induced by a correlation
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window and the possibilities of pouring physical constraints, like divergence penalization,
into the cost function of the interpolation.

The concept of particle prediction as introduced in the ‘Shake-The-Box’ method (Schanz
et al., 2016) is extended into the domain of tomographic PIV by Lynch & Scarano (2015)
with an efficient ‘motion-tracking-enhanced’ intensity field reconstruction. The number of
ghost particles is thus significantly reduced, and combined with a suitable tracking scheme,
such an approach could increase the particle density at which Tomo-3D-PTV could be
applied.

Recent particle tracking implementations seek to overcome these restrictions, focusing
either on accurate tracking in densely-seeded flows or on the reconstruction of the Eulerian
field from sparse Lagrangian data. In the latter category a technique described as ‘pouring
time into space’ was recently introduced by Schneiders & Scarano (2016), making use
of both the instantaneous velocity and the velocity material derivative to improve the
consistency of the reconstructed instantaneous velocity fields within the framework of
sparse tracks. Another approach is the so-called ‘FlowFit’ method (Gesemann et al.,
2016), which employs a system of smooth B-splines and invokes physical constraints
during velocity, acceleration and pressure field reconstruction. The method is thus able
to increase the spatial and temporal resolution by ‘supersampling’ the starting scattered
data, additionally reducing noise during the process. On the other hand several novel
approaches have emerged recently to track particles successfully at higher tracer particle
densities.

1.2 Scanning technique

The recent developments in particle tracking are mostly based on a Tomographic approach.
Tomographic techniques are much more computationally expensive with a large part of
this cost lying in the tomographic reconstruction. An alternative approach to volumetric
measurements in flow is to use a scanning technique introduced by Brücker (1995). Scanning
technique has been developed over the past two decades, for example as discussed in
section 1.1.1. Whilst specific implementations differ, the general concept is similar: one
or more cameras capture particle images as a light sheet is quickly moved across a
measurement volume. The most common approach has been to perform multiplanar
stereo PIV measurements at different depths through the volume, which are then“stacked”
together to recover the velocity field (Brücker, 1995; Soodt et al., 2012; Toshio & Jun,
2004). But these approaches suffered the same errors as in stereo PIV and the resolution
was constrained by the finite thickness of the laser sheet, with the added complexity of
scanning.

A modification to the existing scanning technique was introduced by Lawson & Dawson
(2015), with an aim to increase the seeding density of volumetric reconstructions and
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1.3 Particles sizing in the Mie scattering regime

reduce the incidence of ghost particles, in order to improve the spatial resolution and
reduce the noise of the measurement. The technique has the added benefit that just one
or two cameras are required to make volumetric measurements. This made its general
application quite attractive as it reduces the number of laser sheets needed to make accurate
measurements, which reduces the time needed to complete the scan. Scanning PIV by
Lawson & Dawson (2015) was applied to make time-resolved, volumetric measurements at
the centre of a large, von-Kárman swirling water flow. This provided access to the full
velocity gradient tensor, pressure gradients and pressure Hessian fields in three dimensions.

1.3 Particles sizing in the Mie scattering regime

In the above techniques, the intensity information is discarded which can be used for
particle sizing. In this section, the general concept of particle sizing in the Mie scattering
regime is discussed. To aid the discussion, the concept of Mie scattering and the interaction
of light with particles in a Mie scattering regime, using generalized Mie scattering are
discussed. In the last part of this section, a review of the techniques which are based on
Mie scattering is done.

Elastic and inelastic scatterings happen when a monochromatic light impinges on a
molecule are; elastic and inelastic scattering. Within the elastic scattering mode, Lorenz-
Mie theory (Bohren & Huffman, 1983; Kerker, 1969; van de Hulst, 1981) was used to
relate particle scattering to its dimensionless diameter α, given as

α = πdp/λ, (1.2)

where dp is the particle diameter and λ is the wavelength of the incident light. The
major assumption was that the illumination was uniform across the particle. Three
different regimes are defined, as provided in table 1.1 and shown in figure 1.6.

Table 1.1: Three domains of elastic scattering

α«1 Rayleigh: Wavelength large compared to the particle
α ≈ 1 Mie: Wavelength and particle about the same size
α»1 Geometric: Particle large compared to the wavelength

If the size is small in comparison to the incident wavelength, i.e. the Rayleigh regime,
the emitted wavelets are in phase and thus the scattered intensity varies marginally for
different scattering angles. The elastic scattering magnitude is, however, highly dependent
on the diameter of the particle and is proportional to λ−4. In the opposite case, where
the wavelength and the particle size are of comparable dimensions, i.e. the Mie regime a
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Figure 1.6: Relationship of the scattered intensity with respect to particle diameter, in
the three scattering regimes. Adapted (Tropea (2011))

Figure 1.7: Scattered light by a 1µm (left) and a 10µm oil particle in air. Adapted (Raffel
et al., 2018)

phase mismatch develops and the wavelets interfere constructively or destructively. Hence,
in contrast to Rayleigh scattering, Mie scattering has a high angular dependency and
exhibits preferential scattering directions relative to the illumination direction.

One of the most important results of Lorenz-Mie theory is that the light scattered
by a spherical particle is inhomogeneously distributed in space, depending on particle
diameter, refractive index and incident light characteristic. Figure 1.7 illustrates how
the scattering intensity varies for different (spherical) particle diameters, illuminated by
λ = 532 nm (corresponding to the frequency doubled radiation emitted by a Nd:YAG
laser source). Noticeable is the increase in the number of scattering lobes as well as the
more pronounced forward scattering peak appearing as the particle diameter increases.
By using the generalized Lorenz-Mie theory as in (Bohren & Huffman, 1983; van de Hulst,
1981), it can be shown that the scattered light intensity is an oscillating function of the
scattering angle.
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1.3 Particles sizing in the Mie scattering regime

Figure 1.8: Mie scattering geometry. Adpated LePera (2012)

The theory for Mie scattering was explained by Maxwell, Debye and Fourier in different
ways, but the theory from Mie became generalized, hence given the name generalized
Mie theory (GLMT) (Bohren & Huffman (1983),Kerker (1969),van de Hulst (1981)).
Following Bohren and Huffman’s notation and development Bohren & Huffman (1983),
the geometry of this problem is given in Figure 1.8. The reference plane is denoted in
black, the scattering plane in gray. The scattering plane is defined as the plane containing
the propagation axis and the observer vector r. The location of the observer is defined in
the spherical polar coordinate system (R, θ, ϕ), where r is the vector distance between the
scattering particle and the observer, θ is the angle (on the scattering plane) between the
light-propagation-axis and the observation, and ϕ is the angle between the reference plane
and the scattering plane. The angle between the scattering plane and the polarization
direction is denoted as γ. Scattering near θ = 0o is often called ¨forward¨ scattering while
scattering near θ = 180o may be called ¨backward¨ scattering.

Light scattered by a spherical particle is in-homogeneously distributed in space de-
pending upon its size as shown in figure 1.7, characterized by its diameter dp, refractive
index n, incident light of intensity Io and wavelength λ, at the angle θs. The particle size
is usually denoted by the size parameter α = πdp/λ, which takes into account, the size
and the wavelength. The flux of scattered light intensity (in Wm−2), in direction θs at a
distance of R from the scattering sphere is given by

Is{n, θs} = Ioλ
2

4π2R2 (i1{α, n, θs} + i2{α, n, θs}), (1.3)

where i1 and i2 are the intensity functions. The details on how the scattering intensity is
obtained is given in the Appendix A
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Figure 1.9: Mie theory calculations of scattered intensity as a function of angle for water
particles with refractive index n 1.33. The particle size parameters α are (a) 10, 50 and
100 (b) 59 and 60.

Using this theory it can be shown that the scattered light intensity from a spherical
particle in a non-absorbing medium is an oscillating function of the angle in the range
0 ≤ θs ≤ π, as shown in figure 1.7. In the scattering angle range 30 ≤ θs ≤ 70, the Mie
scattering theory is also valid in cases where the size of the particle is much larger than the
incident wavelength (α >> 1) (Mounaïm-Rousselle & Pajot, 1999). Figure 1.9a) shows the
angular variation of scattered intensity for a water particle with refractive index n = 1.33
for three different size parameters of 10, 50 and 100, for an incident light wavelength of
532nm, obtained using the equation 1.3. The oscillating pattern is very sensitive and
unique to the diameters of particles with the same physical property, as shown in figure
1.9b) for two water particles with very close size parameters of 59 and 60.

1.3.1 Description of particle diameter

Before discussing different relevant techniques that are used to measure the size of particles
in flow, a discussion on various types of particle diameters used to specify particle size in
a variety of situations encountered by using particle-size measurement systems, is given.
In general, a particle diameter measured from an experiment represented as an equivalent
spherical diameter which can be related to some aspect of the particle. If the particle
under consideration is spherical, then all diameters become equal. The different variation
in particle shape leads the different representations of a diameter such as the volume
diameter, surface diameter etc. In volume diameter, the diameter is that of a sphere
having the same volume as the actual particle, whereas in surface diameter the diameter
is that of a sphere having the same surface area as the actual particle. Each of these
diameter definitions stems from the application of one or more methods of size analysis.
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1.3 Particles sizing in the Mie scattering regime

Most of the laser-based particle size measurement techniques generally determine the
distribution of such equivalent spherical particle sizes. In many applications of particle
size measurements, it is convenient to work only with mean or average diameters instead
of the complete drop size distributions. The mean particle size of the distribution can
then be defined in different ways. Some of the most common are:

1. Arithmetic mean (d10) - the normal average particle diameter of the size distribution.

2. Surface mean (d20)- diameter of a sphere with the average surface area of the particles
in the size distribution.

3. Volume mean (d30)- diameter of a sphere with the average volume of the particles
in the size distribution.

4. Sauter mean (SMD or d32) - diameter of a sphere having the surface area of the
average particle size in the distribution.

5. Weight mean (d43) - diameter of a sphere having the average weight of all the
particles in the size distribution.

Each of these mean diameters is defined to be the most useful or convenient measure to use
given the phenomena under investigation. For example, d32 is used in combustion-related
fields, d43 is used in the field of chemical kinetics but the most common mean diameter
reported in most of the techniques discussed below is d30.

1.3.2 Comparison of the relevant particle sizing techniques

Techniques that use Mie scattering theory is reviewed. Numerous techniques using Mie
scattering have been developed in the field of particle sizing, hence the techniques presented
in this review has been limited to only some of them which has some similarity with the
technique which is to be presented in this work. Based on the type of measurement it can
be classified into

• Techniques that measure individual particles

• Techniques that measure an ensemble of particles

The techniques described below have been grouped in the above way, with the scattering
theory used in the technique mentioned accordingly.

Individual particle sizing techniques

Phase Doppler Technique

Phase Doppler technique is an interferometric technique (Bachalo & Houser, 1984) that
measures the size and velocity of spherical particles simultaneously, using the spatial
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Figure 1.10: Optical schematic of a Phase Doppler Technique (Tropea et al., 1996).

fringe pattern of the light scattered by the particle crossing a laser Doppler probe. It was
developed as a point-wise measurement technique. The GLMT is used here; collection of
light of a given wavelength at certain scattering angles and building a relationship between
the phase difference and particle diameter. The phase Doppler method utilizes an optical
system as illustrated in figure 1.10. Particles passing through the intersection of the two
laser beams scatter light which forms an interference fringe pattern in the surrounding
space. The spatial frequency of the interference fringe pattern is inversely proportional
to the particle diameter but also depends upon the laser wavelength, beam intersection
angle, particle refractive index and the location of the receiver. Dynamic measurements
of the spatial frequency of the interference fringe pattern can be achieved using pairs of
detectors placed at appropriate locations and separations. The detector position is chosen
at an off-axis scattering angle (ψ) for which one scattering order dominates, as shown in
figure 1.10.

Interferometric particle imaging

Interferometric particle imaging (IPI) also known as Mie scattering imaging (MSI) (Graß-
mann & Peters, 2004) or Global phase Doppler (GPD) technique (Damaschke et al., 2005),
is a planar measurement technique using interferometry as in PDA (König et al., 1986).
The technique is based on the evaluation of the scattered light, based on geometric optics,
in an out of focus plane. In IPI a laser sheet is passed through the measurement volume
and the scattered intensity is captured at a defocused plane. Within the aperture image
scattered light according to Mie theory is received which appears in terms of interference
fringes. Information on the particle diameter and the refractive index can be retrieved
in terms of fringe spacing and position. The generation of focused and defocused images
from a spherical particle by using an optical system is shown in figure 1.11.
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1.3 Particles sizing in the Mie scattering regime

Figure 1.11: Generation of focused and defocused images from a spherical particle by
using an optical imaging system (Damaschke et al., 2005).

Figure 1.12: Optical Schematic of a Laser sheet droplet sizing.
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Laser sheet droplet sizing

Laser sheet droplet sizing (LSD) is also known as Planar droplet sizing (PDS) (Domann &
Hardalupas, 2001). In this method, the Mie scattered light is approximated as proportional
to the surface area (D2) and the fluorescence signal to volume (D3). Hence a ratio between
a PLIF and planar Mie scattering image would give an approximate diameter D of the
particle (Domann & Hardalupas, 2003). An example of a typical experimental arrangement
for the LSD technique is illustrated in Figure 1.12. To explain in more detail, consider
a volume element containing an ensemble of N fluorescing droplets with a certain size
distribution. The LIF signal detected from this element is given by

SLIF = CLIF

N∑
i=1

D3 (1.4)

where CLIF is a measurement constant that depends on factors such as collection
optics, index of refraction, scattering angle, etc. The corresponding elastically scattered
signal can be expressed according to

SMie = CMie

N∑
i=1

D2 (1.5)

If these signals are measured simultaneously, i.e. on the same ensemble of particles, the
ratio of these signals is proportional to the Sauter Mean Diameter (SMD), often denoted
D32.

SLIF

SMie
= K

CLIF

∑N
i=1 D

3

CMie

∑N
i=1 D

2
= K.SMD (1.6)

The value of K in the above equation is usually determined from a calibration mea-
surement using a second sizing approach, e.g. Phase Doppler Anemometry (PDA).

Ensemble droplet sizing techniques

Ensemble techniques provide information on the entire population of particles within a
measurement volume or area, but no information about individual droplets. By their nature,
this type of measurement is either a spatial average, temporal average, or very often both.
One of the most popular ensemble droplet sizing technique is a laser diffraction analysis,
also known as laser diffraction spectroscopy or low angle laser light scattering (LALLS),
developed by Malvern Instruments Ltd. In this technique particle size distributions are
measured by measuring the angular variation in the intensity of light scattered as a relatively
broad (10mm) collimated laser beam is passed through the spray/aerosols/particles being
examined. The scattered light is focused forward on multiple detectors that measure the
angular distribution of the intensity of the scattered light. Large particles scatter light at
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small angles relative to the laser beam and small particles scatter light at large angles.
The angular scattering intensity data is then analyzed to calculate the size of the particles
responsible for creating the scattering pattern, using the Mie theory of light scattering.
The Fraunhofer pattern of the scattered light, an “Airy disk”-like series of concentric
rings of alternating maximum and minimum intensities, contains information on the mean
size, shape and width of the distribution, including any shoulders and tails (Dumouchel
et al. (2009)). Mie theory and diffraction analysis are typically combined to determine the
character of the spray. These instruments can analyze across a wide size range, typically
as low as 0.1µm and up to 2000µm and recognize even complicated, bi-modal droplet
distributions and high-density sprays. The particle size is reported as a volume equivalent
sphere diameter.

1.3.3 Limitations of the existing particle sizing techniques

The most important drawback of a point-wise measurement like PDA is that they are
unable to quantify the temporal and spatial fluctuations of the particle concentration
and size. The method also relies on looking at reflected or refracted light with an extra
requirement that involves avoiding the collection of diffracted light. Even though the
IPI technique is not a point wise measurement technique, still the techniques are limited
to small cross-sectional areas. Similar to the PDA technique, this method also relies on
reflected and refracted light but in a defocused plane. One major disadvantage of an IPI
technique is that since the images are captured in an out-of-focus plane, there is always
a limitation to maximum particle concentration that could be measured. This is since
the imaging is performed in an out of focus plane, the blurring effect caused overlapping
of particle images, as a result of which there will be overlapping of the fringe pattern.
This would then lead to incorrect sizing of the particles. Laser sheet particle sizing
measures the Sauter Mean Diameter (SMD) that does not represent the average particle
diameter but is always biased towards larger diameters due to the volume-dependence of
the LIF signal. LSD is related to the volume- and area-dependence of the inelastically and
elastically scattered light, respectively. With a too high dye concentration, the volume
of the particle is not equally illuminated due to absorption, and consequently, the D3

dependence in Eq. 1.4 is no longer valid. The D2 relation in Eq. 1.5 is questionable
(especially for small particles) due to the appearance of signal oscillations. Another
limitation or draw-back of LSD techniques is the need for calibration, which requires the
use of additional sizing techniques like a phase Doppler anemometry (PDA). A major
limitation of a LDA technique is the range of spatial resolution. This is because the
measurement technique is a line-of-site method, so the resulting size characterization is a
spatial integration of all the particles within the measurement region of the instrument.
All the above technique also suffers from the effect of laser extinction, scattering signal
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extinction and most importantly the effect of multiple scattering with increasing particle
concentration. But one of the fundamental issues with sizing techniques arises because of
the Gaussian nature of light intensity. The issue is related to the trajectory of particle
through the Gaussian beam/sheet, hence termed as trajectory effect (Bachalo, 1994; Black
et al., 1996; Sankar et al., 1994). Lasers operated in the standard TEM00 mode are
characterized by a Gaussian intensity profile. Particles in the flow field generally pass
through the beam, where scattered light information is collected for particle size analysis.
The problem the Gaussian beam creates for particle-size measurement is that the light
scattered by a particular particle size passing through different locations in the beam or
sheet can scatter different amounts of light. Thus a large particle passing through the edge
of the beam or sheet and a small particle passing through the center of the beam or sheet
can scatter the same amount of light. This creates a dependence of particle size on its
trajectory through the sample volume. In PDA and IPI this would lead to phase difference
which is a mixture between that expected for the various scattering orders, again typically
involving reflected and first-order refracted light lead to incorrect sizing of the particles.
In LSD and LDA, this would lead to measuring inaccurate scattering intensities.

1.4 Summary

The key aspects from the literature review can be summarized as follows:
Particle tracking is achieved through three steps: identifying particle location in 2D,

identifying its 3D location and linking them in time. The accuracy of tracking depends
on the efficacy of identifying the 3D particle location, which can be achieved through
either triangulation or iterative reconstruction. The accuracy of the triangulation method
reduces with increasing seeding densities, due to matching ambiguities. Even though the
iterative reconstruction method offers better accuracy for increased seeding densities, the
number of iterations required to achieve better accuracy increases with increasing seeding
densities, making them computationally expensive.

Scattering intensity from particles in the Mie regime shows a high angular dependency,
with a noticeable increase in the scattering lobes as the particle diameter increases. In
order to produce Mie scattering from a particle, the wavelength of the incident light should
be of the same order as the size of the particle. In conventional laser diagnostics, the
most common is to use a laser with a wavelength of 532nm, whose beam profile is usually
Gaussian in nature. A major problem in the measurement of scattered intensity from a
light source with such a profile is commonly termed as ‘trajectory effect’, which causes
scattering intensity to be dependent on the particle’s location within the illuminating
beam/sheet. The scattered intensity is also a function of the particle location in a laser
sheet. This means that the multi-angular intensity measurement for the same particle
would be different, as compared to the expected value when using a plane wave.
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1.4 Summary

The aim of this study is to develop a new tracking and sizing technique that:

1. Uses a single wavelength light source exploiting variables in the intensity of particles.

2. Uses a scanning method to minimize the line of sight errors involved in tomographic
methods.

3. Uses a novel laser sheet calibration method to increase the accuracy of reconstruction
in the scanning method.

4. Uses particle tracking that enables multiple viewing of the particles, that gives
information of the scattered intensity with respect to the scattering angle.
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Chapter 2

Methodology

As explained in chapter 1, the aim of this work is to use a scanning technique to measure
the velocity of the particles in a flow via tracking and size them. A scanning technique to
measure the velocity of flows was first introduced by Brücker (1995), as a PIV variant.
Since then numerous variations on this technique have been developed (Lawson & Dawson,
2015; Soodt et al., 2012; Toshio & Jun, 2004). The general approach was to reconstruct
two-particle 3D fields with small time separation and cross-correlate them to get the
velocity fields. A scanning technique offers higher seeding density when compared to a
tomographic technique. The advantages, which the scanning technique offers due to the
multiple illumination of the same particle, in developing the tracking and sizing, is why
the scanning technique has been chosen in this work. The main disadvantage being that
the flow speed and timescales are restricted by available scanning speeds. However, this
may not be the most stringent constraint, since the finite acquisition rate of cameras or
the laser source may play a more significant role.

In this chapter, the first section is dedicated to briefly discuss the design of the scanning
technique (Lawson, 2015). The methodology of triangulation, tracking and sizing followed
by the post-processing of the particle tracks to estimate the Lagrangian quantities is
then discussed. Finally, a brief discussion on procedures to verify the results from the
post-processing of the tracks is given.

2.1 Scanning system

The camera configuration in a scanning experiment is similar to a stereo PIV system
configuration. The particles are recorded using two or more than two high speed cameras,
as illustrated in the figure 2.1a, which view the laser sheet bundle from three angles of
θ1, θ2 and θ3, with respect to the laser sheet. Each is equipped with lenses, using a high
f-number, which could provided sufficient depth of field to keep particle images in focus
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Figure 2.1: a Schematic of a typical scanning setup. b Schematic of the optics used in a
typical scanning experiment (Lawson (2015)).

over the scan depth. The cameras are equipped with Scheimpflug adapters, to make the
focal plane parallel to the laser sheet plane.

A set of optics are used in a scanning experiment to generate approximately parallel
laser sheets with controlled laser sheet thickness. Figure 2.1b shows a schematic of the
standard optical setup used to achieve this (Lawson, 2015). The first pair of lenses (L1
and L2), with variable focal length, act as a convergent compound lens. In combination
with the divergent lens L3, the arrangement forms a telescope, which allows the thickness
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of the beam to be decreased by up to a factor of six and the collimation to be varied
independently.

After passing through a spherical divergent lens (L4), the beam reflects off the gal-
vanometer mirror (dynAXIS XS, Scanlab GmbH) at G. A galvanometer mirror is preferred
over a rotating mirror drum, rotating polygon mirrors, a rotating prism as it is free from
vibrations, that can cause uncertainty in the laser sheet position. After reflecting from
the galvanometer mirror the beam passes through a pair of cylindrical lenses (L5 and
L6), which expand it to a sheet. Finally, a convergent lens L7 acts to make the laser
sheets parallel, since the mirror surface (G) is placed one focal length away from L7. The
divergent lens (L4) was introduced to control the position of the beam waist induced by
L7. By coordinating the steady rotation of the mirror with the laser triggering, parallel
laser sheets can be generated which traverse the measurement volume at a constant rate.

A number of parallel laser sheets, Ns, of thickness w, generated from the scanning
optics, travel across the volume at a constant rate over the course of which Ns images
are acquired by each of the cameras, at a frame rate 1/TF . At the end of a scan, there
is a “retrace period” of duration TRET where the mirror returns to its starting position.
The timing of the displacement generated by the scanning optics is synchronised with
the pulsed laser such that the spacing between subsequent laser sheets is ∆z. Figure 2.2
illustrates a typical timing diagram for a scanning acquisition.

The interval between subsequent acquisitions is ∆T ≈ NSTF + TRET , which specifies
the time separation between subsequent volumes. In order to “freeze” the flow, the ratio
of ∆T and w/∆zTF is kept large (Brücker et al., 2012).

Figure 2.2: Typical timing diagram of a scanning acquisition (Lawson, 2015).

2.2 Calibration

In this section, the basis for the camera model and the calibration procedure for the
camera and the laser is discussed.
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Figure 2.3: Schematic of a pinhole camera model (Tsai (1987)).

2.2.1 Camera model

A pinhole model is chosen for the camera calibration. The projection of a point in 3D
to 2D can be done in four steps Tsai (1987). In figure 2.3, in order to project the 3D
coordinate (xw, yw, zw), it has to first converted from the world coordinate system to the
camera coordinate system (x, y, z). This is done by the rotation Rj and the translation
matrix Tj as,


x

y

z

 = Rj


xw

yw

zw

 + Tj (2.1)
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Next, the point in the camera coordinate is converted to the image coordinate as,

Xu = f
x

z
and Yu = f

y

z
, (2.2)

where f is the focal length. A correction for the radial distortion has to be applied,
which is given by

Xd = Xu +Xu(k1r
2 + k2r

4 + ...) and Yd = Yu + Yu(k1r
2 + k2r

4 + ...) (2.3)

with r =
√
X2

d + Y 2
d .

Finally, the image coordinate is transformed to the pixel coordinate as

X = sxXd

dx
and Y = Xd

dy
(2.4)

where dx and dy are the number of pixels in x and y, and sx is the skew parameter that
represents the scale factor of the pixel array.

2.2.2 Camera calibration

The objective of the camera calibration procedure is to get the camera rotation, translation
and camera matrix, which can be used to map the object space to the image space. A
bundle calibration technique similar to Brücker et al. (2012), is used to calibrate the
cameras.

To calibrate the cameras, images of a calibration plate are captured as the plate is
moved across the measurement volume. The spacing of markers on the calibration plate,
the position of the calibration plate and the orientation of the plate must be known to
calibrate the cameras. With knowledge of the orientation of the calibration plate, simple
geometry can be used to calculate object space coordinates of calibration markers (x, y, z),
whilst their image space counterparts (X,Y ) can be identified using pattern matching.
Using points from these two coordinate systems a pinhole camera model fit is applied.

There will be some residual error after the pinhole model has been fit. A bundle
adjustment procedure which is as an iterative algorithm Triggs et al. (2000), is applied to
minimize the residual error. Each iteration consists of two steps: resection and intersection.
In the resection step, a camera pinhole model is fitted to the object space coordinates
of the calibration markers, calculated from the internal model of the plate position and
orientation. Then, it is supposed that knowledge of the plate position and orientation is
wrong. The intersection step is a least-squares optimization which minimizes the residual
error between the marker positions projected in image space and their measured positions.
This creates an update of the position and orientation of the plate in each pose, which is
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Figure 2.4: Measured (o) and re-projected (x) measured marker positions for one position
of the calibration plate, before (red) and after (blue) bundle calibration. The inset shows
a zoomed in version of the marked region in either sub figure (Lawson, 2015).

used for the next iteration. The algorithm converges to a solution in under five iterations.
Figure 2.4 shows the difference between the model before and after a bundle adjustment
procedure and measured marker positions re-projected marker positions after bundle
calibration (in blue). After bundle calibration, the re-projected (modeled) markers agree
much more closely with the measured marker positions, which indicates that that the
systematic disparity has been eliminated.

2.2.3 Laser sheet calibration

Calibration of the laser sheet is performed, to get the position, orientation and width of
all the parallel scanned laser sheets across the measurement volume. A self-calibration
method described by Knutsen et al. (2017) is used due to its simplified approach. Here
the position of the particles in the 3D space obtained by triangulation is related to its
corresponding fractional sheet number fs, which describes a particle’s position relative
to laser sheet and a laser sheet model is then fit this data. The concept of fractional
sheet number will be described in detail in section 2.3.2. The details of the laser sheet
calibration are given in Appendix B.

2.3 Data processing

In this section, the principles and steps of the new method for simultaneous particle
tracking and sizing based on a scanning laser light source introduced and described. The
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Figure 2.5: Flow chart for scanning particle tracking and sizing.
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steps involved in the scanning particle tracking and sizing routine is depicted as a flow
chart, in figure 2.5.

2.3.1 Detection of particle image locations

Laser light scattered from seeding particles is collected via the cameras’ optics in the
form of particle images. To reduce the impact of noise, image preprocessing is applied.
Importantly the preprocessing is chosen in such a way that the intensity information of
each particle over the course of a scan is preserved. Image noise is then reduced by using
a Gaussian low-pass filter, with 3 × 3 pixel (px) window size and a standard deviation of
0.5 px, which also reduces the incidence of false particle detection. To identify particle
image locations at sub-pixel accuracy, a standard 2D peak-finding algorithm is applied,
which first identifies pixels above a prescribed threshold (presently based on the average of
the 10 brightest pixels), and then fits two 1D Gaussian functions (Ouellette et al., 2006)
to neighbouring pixels.

One of the challenges of higher seeding densities is the effect of overlapping particles
within images. Cierpka et al. (2013) shows that with increasing particle density, the
percentage of particles overlapping also increases, which could lead to a shift in 2D peak
identification, possibly resulting in significant positional errors. In scanning PIV, since
the whole volume is subdivided into many smaller volumes (i.e. laser sheet thicknesses),
the incidence of overlapping particle images is significantly reduced when compared to
methods that illuminate the entire volume simultaneously for image taking. The present
sub-pixel identification method attempts to avoid erroneous particle identification due to
the remaining overlapping particles by rejecting particle locations if more than one peak
is identified within a radius of 2-3 px.

2.3.2 Triangulation

Once the 2D locations in both camera views are identified, starting from an identified
particle location in one camera image, an epipolar line in the other camera images can
be calculated based on existing knowledge of the camera calibrations. Particle images
in the second camera image coinciding with the epipolar line are candidates to be the
particle’s match in the second view. The length of this epipolar line is determined by
the estimated depth range of the particle in the object space coordinate. In typical
triangulation procedures (Maas et al., 1993) this depth is chosen to be that of the
illuminated measurement volume, classically the entire volume of interest. At high seeding
densities, there can be many possible particle matches from the other view(s), the number
being linearly proportional to the length of the epipolar line (Maas et al., 1993). A better
estimate of the particle’s location along the depth coordinate z in object space will restrict
the length of the epipolar line and thus reduce the number of possible matches.
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2.3 Data processing

Figure 2.6: Schematic comparison of particle matching in classical triangulation used by
Maas et al. (1993), in scanning technique used by Hoyer et al. (2005) and in the present
study

Using a scanning technique (Hoyer et al., 2005) reduces this depth to a fraction of
the entire measurement volume. Having restricted the particle’s location to the known z

position of a nominal laser sheet ns, Hoyer et al. (2005) used the thickness of the laser sheet
as the length of the epipolar line for triangulation of individual particles. Such a scheme
represents a great improvement in comparison to using the whole measurement volume
depth, since the triangulation process begins with a much better estimate of the particle’s
location along the scan direction z, reducing ambiguous matching to other particles. Yet
the chances of incorrect matching between camera images remains an issue, especially
when seeding density increases for better spatial resolution of high-Reynolds number flows.

Figure 2.6, shows a comparison of the length of the epipolar lines used for particle
matching, in the above mentioned two cases and that intended in this study. The present
method seeks to improve this scanning setup by further tightening the particle’s location
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Figure 2.7: Variation in intensity of a particle as a function of nominal sheet number.
A Gaussian fit gives the fractional sheet number and peak intensity at that fitted sheet
number for the particle in the scan.

along the scan direction. In addition to the nominal sheet number ns introduced above,
a fitted fractional sheet number fs is central to the current triangulation method. The
nominal sheet number corresponds to the sheet number in which the particle is identified,
changing value as the particle is illuminated by subsequent (overlapping) laser sheets as
the laser sheet scans through the volume. The fractional sheet number fs indicates the
hypothetical sheet number where the particle location would coincide with the center of
the laser sheet (location of peak intensity, assuming a Gaussian intensity distribution) as
the laser sheet scans over it. To find fs, instances of the same particle being illuminated
by successive, overlapped sheets are grouped using a nearest neighbour approach. A
search region of only 1-2 px is used as particle displacement during a scan is minimal given
high scanning speeds. This is considerably larger than the expected displacement of the
particles during image taking for the neighbouring sheets, however a slightly relaxed search
radius may account for error during the peak finding step. This search region remains well
below the average distance between particles, which can be estimated by r2D = 0.5N−1/2

I,s

(Adrian, 1991).

Once the particle’s appearance in successive scan images is identified, the variation
in its intensity during the scan is collated. Given a laser sheet whose intensity varies
approximately as a Gaussian across its thickness, the fractional sheet number fs of the
particle is then estimated by fitting a Gaussian curve to these intensities and nominal
sheet numbers ns. The peak of the fitted Gaussian, as shown in figure 2.7, corresponds to
the estimated fractional sheet number, which we assume corresponds accurately to the
particle’s location along the scan direction. This technique was originally intended for
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laser sheet self-calibration (Knutsen et al., 2017) discussed in section 2.2.3, but is here
repurposed for finding the particle locations themselves along the scan direction.

The triangulation algorithm then follows that used by Maas et al. (1993), but now
using a reduced search depth giving a shortened epipolar line. The first and last sheet
images are excluded since they contain many particles at the edge of the measurement
volume not illuminated more than once (obtaining a reasonably accurate fs requires at
least three readings of a particle’s intensity). A schematic representation of a three-camera

2
1

3

Figure 2.8: Schematic representation of three camera triangulation in the scanning
technique. The epipolar lines of view a in view b is represented as ea−b

triangulation is shown in figure 2.8. Starting with a particle A in camera 1, its fs is
used to fix a projection volume dz = z(fs) ± ∆z, where in practice a small tolerance ∆z

about the z location corresponding to the deduced fs is used. This line of sight is then
projected onto the image plane of the other cameras. Any particle image that is within a
tolerance away from the projection of the line of sight is then added into a list. Such a list
is created for each combination of two cameras. These lists are checked for closed paths
which then contain the particle images belonging to a particle. In figure 2.8, the path is
1A → 2B → 3D → 1A. The estimated 3D locations are projected to all the camera views
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to estimate the re-projection error, which is the difference between the actual location
of the particle in the original image to that in its projected image from the candidate
triangulation location. The 3D location is only retained as a triangulated particle if the
reprojection error is below a certain threshold.

Finally, particles triangulated in a current sheet are removed from particle lists in
subsequent sheets where they were identified during the calculation of their fs. That is,
when a particle is triangulated in sheet ns, it is removed as a potential particle from sheets
ns + 1 and so on. Doing so means subsequent sheets have comparatively fewer particles
on which a triangulation is attempted, accelerating the procedure along the scan direction
z. In addition, an iterative triangulation for the whole volume may be attempted by using
residual images. These are formed by subtracting the projected image of triangulated
particles from the original image. For example, a 2 px radius about the projected location
is identified within the original image, and this intensity distribution is subtracted to form
the residual image for that sheet. If needed, it is possible to use a more sophisticated
method for subtracting projected images of triangulated particle locations exploiting a
calibrated optical transfer function (Schanz et al., 2013), since overlapping images of
particles not yet triangulated is also deleted in such a process. However, in this instance,
a small fraction of particle images are overlapped due to the division of the volume into
thin slices via scanning. Hence such a method is not expected to greatly improve upon a
simpler subtraction of all intensity in the proximity of the projected image location.

2.3.3 Estimating the scattered intensity (Is) of the particles

Scanning a laser sheet with increased overlap will measure the scattered intensity from
the same particle multiple times, recording its intensity variation across a laser sheet. The
effect of scanning a laser sheet with a Gaussian profile is shown in figure 2.7. The Gaussian
fitting procedure explained in the previous section not only gives us the fractional sheet
number (fs), but also the fitted peak intensity corresponding to fs. Since the fractional
sheet number is the best approximation to particle location based on laser sheet center,
the fitted peak intensity (Is) at the fractional sheet number (fs) should be the closest
approximation to the scattered intensity at the centre of the laser sheet. This procedure
helps us to avoid the trajectory effect reported in Chapter 1.

2.3.4 Building the trajectories

Estimated 3D locations in sets separated by the time interval ∆t, now allows linking
particles in time. The tracking procedure aims to correctly link the same particle between
subsequent time steps. For particle tracking, the scheme of Malik et al. (1993) as shown
in figure 2.9, was used. This algorithm was implemented in Matlab. The linking process
is guided by three heuristic criteria:
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1. Nearest neighbour: Here particle displacement is limited in all directions. For a
particle xp(t), every particle in the next time step, within a maximum distance
|| xp(t) − xp(t+ ∆t) ||≤ xmax can be considered as a link. The location xp(t+ ∆t)
closest to xp(t) + xmax is considered as the link. The success of linking particles in
tracking depends upon the tracking parameter γ, which is the probability of finding
only one or a small number of particles within the search volume. Based on the
maximum radius rs of the search volume, Malik et al. (1993) defined it as

γ = do

rs
(2.5)

where do is the mean inter-particle distance. An equivalent to this, in terms of the
maximum possible displacement of a particle in a flow |xmax|, was given by Pereira
et al. (2006) as

γ = do

|xmax|
(2.6)

2. Minimum acceleration: Here the Lagrangian acceleration of a particle is limited.
Using the particle positions at t− ∆t and t− 2∆t and the one at the current frame
t, the velocity is calculated and the position at x̂p(t+ 1∆t) can be predicted. For all
particles in the search radius around the estimate, the acceleration can be calculated.
The trajectory showing minimal acceleration is considered to be more likely to be
physically correct.

3. Least change in acceleration: The position, velocity v̂p, and acceleration âp, of the
particle in frame n+ 1 is estimated using the step described above. The position in
frame n+ 2 can be estimated as x̂p(t+ 2∆t) = x̂p(t) + v̂p(2∆t) + âp(2∆t). For all
points in a search region around x̂p(t+ 2∆t) the change in acceleration, is calculated.
The best match for the frame n+ 1 is the particle showing the minimum change in
acceleration from the prediction in frame n + 2. In cases of multiple choices, the
trajectory resulting in the smallest change in acceleration is deemed the most likely
one.

2.3.5 Particle trajectory processing

A detailed description of the particle tracking methodology is given in the next chapter. In
this section, the steps involved in estimating the Lagrangian velocity, acceleration, spatial
and temporal derivatives from the tracks are explained.
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Figure 2.9: Schematic representation of the particle tracking algorithm.
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The Lagrangian velocity ui at a time step t is obtained as

ui(t) = 1
2

(
xi(t+ ∆t)

∆t − xi(t− ∆t)
∆t

)
(2.7)

and the Lagrangian acceleration ai can be obtained using

ai(t) = 1
2∆t

(
xi(t+ ∆t)

∆t − 2xi(t)
∆t + xi(t− ∆t)

∆t

)
(2.8)

Lüthi et al. (2005) presented a method that yielded filtered Lagrangian velocities
and accelerations from the trajectories using a moving-spline interpolation scheme, since
the velocities and especially the accelerations obtained from a simple central difference
of position data showed significant noise, caused mainly by positioning errors. The
interpolated positions were derived from a third-order polynomial moving-spline function
fitted from an over-determined set of ten points prior and post the current point along the
trajectory ((t− 10∆t) and (t+ 10∆t)). The position, velocity and acceleration, x̂i, ûi and
âi, after filtering is obtained as

x̂i(t) = ci,0 + ci,1t+ ci,2t
2 + ci,3t

3 (2.9)

ûi(t) = ci,1 + 2ci,2t+ 3ci,3t
2 (2.10)

âi(t) = 2ci,2 + 6ci,3t (2.11)

The filtered velocities obtained from the above step, the spatial (∂ui/∂xj) and temporal
velocity derivatives (∂ui/∂t), are interpolated for every particle trajectory point. The
procedure involves two steps: a local linear interpolation of the velocity field and a
weighted polynomial fit to the derivatives along particle trajectories, making use of the
auto-correlations of the Lagrangian derivatives.

Spatial velocity derivatives

Assuming that to a good approximation the velocity field in the proximity of position x0

is linear, for ûi(x0), i = 1, 2, 3, the linear ansatz

ûi(x0) = ci,0 + ci,1x1 + ci,2x2 + ci,3x3 (2.12)

with,

ci,1 = ∂ui

∂x1
, ci,2 = ∂ui

∂x2
, ci,3 = ∂ui

∂x3
(2.13)
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Figure 2.10: Schematic definition of (a) camera angle θ0 and azimuthal angle ϕ0 (b)
scattering angle θs and the corresponding azimuthal angle ϕs of particle in the field of
view.

Information from n = 4 points are enough to solve the expression 2.13, but as the
sensitivity of ci,j to errors of ûi are high, it will therefore be used to determine the weights
of individual equations of Aci = vi, with information from n >> 4, is used to obtain ci,
as

ci = (AT vi)(AT A)−1, (2.14)

where Ai is the position vector and vi is the velocity vector.

Temporal velocity derivatives

For ûi(x0), i = 1, 2, 3, the linear ansatz

ûi(x0) = ci,0 + ci,1x1 + ci,2x2 + ci,3x3 + ci,4t (2.15)

with,
ci,1 = ∂ui

∂x1
, ci,2 = ∂ui

∂x2
, ci,3 = ∂ui

∂x3
, ci,4 = ∂ui

∂t
(2.16)

Again, a system of weighted linear equations is used to obtain ci (expression 2.15) with
the weighted information of n points that are in the proximity of x0.

2.3.6 Estimating the scattering angle (θs) of the particles

The scattering angles of a particle along its track has to be estimated for the sizing step.
To estimate this, the parameters of the camera projection function from 3D to 2D for
the cameras involved, represented by the camera matrices are used. The positions of the
cameras are determined by the scattering angle θo, azimuthal angle ϕo and the distance R
to the cameras, with respect to the center of the cameras field of view as shown in figure
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2.10. The scattering angle and the azimuthal angle for any particle located at (xp, yp, zp)
in the field of view can be derived as

tanθs =
(R2

psin2θo + y2
p − 2ypRpsinθocosϕo)1/2

Rpcosθo − xp
, (2.17)

sinϕs = (Rpsinθosinϕo)
(Rpcosθo − xp)tanθs

(2.18)

where Rp = R+ zp.

2.3.7 Estimating particle sizes

As explained in section 1.3, the scattered light intensity is an oscillating function of the
scattering angle. The angular distribution of the scattered intensity of a particle in a
fringe changes rapidly with its size, due to the increase in oscillations with an increase in
particle size. This increase in oscillations has a nearly linear relationship with the size of
the particle, as shown in figure 2.11a, for a polystyrene particle with refractive index 1.586.
This demonstrates that the angular distribution of scattered light is any fringe should
be unique for any particle size, for a given refractive index. A measurement of scattered
intensity distribution at convenient angles within a fringe can thus give a useful estimate
of the size of the particle.

In addition, the positions of the fringe maxima are linear with the number of maxima,
as shown in figure 2.11b. The slopes represent the average width ∆θ, between these
maxima in the oscillations. The slope values decrease with particle size, whereas the linear
correlation coefficients are always greater than 0.99, for all the sizes, which means that
this width ∆θ changes minimally with the scattering angles. This also means that the
half the width ∆θ/2, can represent the average width.

The particle tracks for each particle in the volume gives us the variation of fitted
scattering intensity with respect to the scattering angle obtained using the 3D location
of the particle along the track. We apply a fit using appropriate theoretical curves, on
this data. The theoretical scattering intensities were calculated using the equations in
Append. A. It is difficult, if not impossible, to calculate the absolute theoretical scattering
intensity with any real accuracy, because it depends on many factors, such as the density
of the particle in the medium and the absolute intensity of the incoming beam. Therefore,
we decided to have our fitting routine applied to the normalized data. The intensities
are normalized by the highest intensity along the scattering angle for each particle. All
initial scattering intensities were calculated using an in-house MATLAB program, which
generates angular scattering distributions for some scaling factor, given a size parameter
(α). The program was used to generate tables of scattering intensities over relevant ranges
of angles and size parameters in increments of 0.001 deg and 0.12, respectively.
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Figure 2.11: (a) Number of peaks in the oscillation of scattering intensity per unit
scattering angle, for increasing particle size (b) Relationship between the number of fringes
to the fringe position in the Mie pattern for increasing particle size.

The fitting program takes as input the theoretical scattering tables and the measured
angular scattering data. To the given measured angular scattering data, the best-fitting
curve from the theoretical scattering tables is obtained by minimizing the sum of the
squares of the offsets (χ2) of the points from the curve. The sum of the squares of the
offsets is used instead of the offset absolute values because this allows the residuals to be
treated as a continuous differentiable quantity. The accuracy of the fit is in principle only
limited by the spacing of the size parameters in the theory table constructed. Figure 2.12(a)
and (b), markers in the plot shows the scattered intensity for the selected scattering angle
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Figure 2.12: Scattering data for particles with (a) 50.4µm diameter (α = 59.5) and (b)
56.2µm diameter (α = 66.4); incident laser light (λ = 532nm). The best fit is to particles
with 50.4µm and 56.6µm.

in the x-axis for two closely sized, numerically generated polystyrene particles with of size
50.4µm and 56.2µm, with small jitter in the real intensity values for these particle sizes.
The solid line shows the application of the scattering intensity variation (best fit) obtained
after applying the Mie fitting procedure explained above. The best fit retrieves the sizes
of these particles with an accuracy level within 0.5 µm.
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2.4 Data verification

Estimation of the quantities described above from the particle tracks involves a lot of
steps including measurements, image processing, polynomial fittings etc. It is therefore
essential to check the final accuracy of these measured quantities.

The incompressibility of water, naturally helps to check with divergence criteria, where
the trace of ∂ui/∂xj should be zero i.e.:

∂ui

∂xi
+ ∂uj

∂xj
+ ∂uk

∂xk
= 0 (2.19)

Numerous variations on these tests exist. Examples include measuring the root mean
square (RMS) divergence, the correlation coefficient between longitudinal velocity gradients,
and examining single and joint PDFs of normalised and unnormalised longitudinal velocity
gradients. These provide a rough estimate of the error in velocity gradients.

Another check, involves everything that could be measured, namely, Lagrangian
accelerations, ai = Dui

Dt , local accelerations, al,i = ∂ui

∂t and convective accelerations,
ac,i = uj

∂uj

∂xj
. An approach, similar to divergence check can be used as an overall check of

the applied procedures, i.e.:

Dui

Dt
= ∂ui

∂t
+ uj

∂uj

∂xj
(2.20)

The left-hand side of the equation is derived from the trajectory of a single particle,
whereas the right-hand terms need common information from neighboring particles. In a
spatially under-resolved low-pass-filtered flow field, the divergence check might still be
satisfactory with underestimated velocity gradients. The acceleration check provides a
better assessment of the accuracy of velocity derivatives, because ai, compared to the
other two quantities, is obtained in a more straightforward manner.

2.5 Summary

The general setup of a scanning system is described with a detailed description of the
scanning optics and timing in the scanning acquisition are given. the calibration procedure
for the camera and the laser sheets have also been discussed.

The methodology of the scanning particle tracking and sizing have been described.
The present scanning technique permits to extend the seeding density at which a ‘classic’
LPT methodology such as that of Maas et al. (1993), where sequential particle fields
are triangulated following which particles are linked to form tracks, can be used. 3D
particle field reconstruction is completed for each individual sheet location along the
scan, permitting higher particle densities and more accurate triangulation by restricting
individual particle locations to the thin illuminated volume where the particle was imaged.
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2.5 Summary

The triangulation process is improved by using a fitted sheet number (Knutsen et al.,
2017) as opposed to the nominal sheet number for particles identified in each image.

The size of the particle is estimated by minimizing the squared difference between
normalized intensity along a track and normalized theoretical intensity along the same
track obtained from GLMT, over a range of particle sizes.
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Chapter 3

Validation of the scanning
particle tracking and sizing
technique via numerical
simulation

3.1 Introduction

In this Chapter, the scanning particle tracking and sizing technique are validated using
synthetic experiments. Before validating the technique, a study of the effect of experimental
parameters on the tracking technique is studied. The present work mainly aims in improving
the triangulation part of the full tracking scheme, hence the influence of various scanning
parameters upon the performances of the proposed triangulation method for instantaneous
3D particle fields is studied. Particles triangulated within fields at subsequent times are
then linked to form tracks according to the scheme of Malik et al. (1993).

Section 3.2 describes the procedure to generate synthetic images for a scanning setup.
In section 3.3, different experimental parameters for particle tracking, with the effect
of controllable experimental parameters such as the seeding particle density, laser sheet
overlap, sheet thickness and scanning laser sheet speed, all being set prior to performing
an experiment, and uncontrollable factors such as the effect of noise in the images and
deviations of the laser sheet intensity profile from an assumed ideal Gaussian one, are
studied. For the study of controllable experimental parameters, ideal noise-free images were
used. The results are quantified in terms of both accuracy (mean error in the triangulated
particle locations with respect to ‘ground truth’ particle locations) and efficacy (fraction
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Table 3.1: Nomenclature. [L] is the length and [T ] the time unit adopted in the physical
experiment or DNS database

Parameter Symbol Unit

Nominal sheet number ns

Fitted sheet number fs

Number of laser sheets Ns

Sheet e−1 width w [L]
Sheet overlap ∆z [L]
Meas. volume dimensions Lx, Ly, Lz [L]
Particle density (3D) NV ppv
Equiv. particle image density NI ppp
Particle image density, per sheet NI,s ppp
Particle image diameter D [L]
Number of particles N

Number in a single sheet Nps

Number of overlapping Nos

particles in a single sheet
Magnification M px/[L]
Sheet speed us [L]/[T ]
rms turbulent velocity u′

rms [L]/[T ]
Kolmogorov lengthscale η [L]
Kolmogorov timescale τη [T ]

of ‘ground truth’ particles triangulated) of the triangulation procedure. In section 3.4
results of a synthetic tracking experiment are presented. The accuracy of the tracking for
a high seeding density case is presented and discussed.

In section 3.5, the experimental design considerations for the particle sizing routine
is detailed. This includes the measurement area, minimum and maximum measurable
diameter for a given configuration, effect of camera angle, camera solid angle and finally
the number of cameras required for efficient sizing. Before concluding this chapter, the
results from a numerical experiment with known sizes with effects of noise in scattering
intensity and scattering angles is given in section 3.6.
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3.2 Synthetic particle image generation for the scanning setup

3.2 Synthetic particle image generation for the scan-
ning setup

Synthetic images were generated for a simulation of the scanning configuration, which
was set up to mimic the previously-realised experiment of Lawson & Dawson (2014).
The scanning parameters were chosen based on the dimensions of the simulated volume.
Two cameras were simulated at angles θ = 30◦ and −30◦, whose sensor sizes were set
to 1024 × 1024 px. Particles were randomly distributed within the volume, based on the
required volumetric seeding density NV in particles per voxel (ppv). The laser sheet
positions along the scan were set based on a laser sheet thickness w, sheet spacing ∆z and
number of sheets Ns, required to scan the depth along the scanning direction Lz. Particles
located within the sheet thickness at each sheet position were then projected to image
coordinates using a pinhole camera model (Hartley & Zisserman, 2003).

The intensity I(z) of a particle as a function of its z-position within a laser sheet
follows the form (Scharnowski & Kähler, 2016):

I(z) = Imax. exp
[
−

∣∣∣∣( 2z
∆z0

)s∣∣∣∣] , (3.1)

where ∆z0 = w is the width at which I(z) drops to Imax/e, and s is the shape factor,
s = 2 being presently used to yield a Gaussian beam profile. The maximum intensity at
the light sheet centre, Imax, at a scattering angle of (π/2 − θ) is modelled as

Imax = 4
πk2R2 Iλi(θ)2, (3.2)

where Iλ is the input light energy density (set to 2.546 × 104 J/m2), i(θ) is the Mie
scattering coefficient, R is the distance of the particles from the camera sensor and
k = 2π/λ is the wave number for wavelength λ = 532 nm.

Random background white noise was added to the images at a range of levels (section
3.3.2) with the mean of each noise level set as a percentage of the maximum intensity in
the original noise-free image.
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Table 3.2: Relevant scanning PTV parameters for testing of experimental setup

Parameter Symbol Value
Taylor microscale Re Reλ 418

Measured volume width Lx/η 128
Measured volume height Ly/η 128
Measured volume depth Lz/η 32
Camera 1 viewing angle θ1 30◦

Camera 2 viewing angle θ2 −30◦

Image resolution (px) − 1024 × 1024
Particle image diameter D/η 0.02

Laser sheet thickness Lz/w variable
Laser sheet spacing M∆z variable
Laser sheet overlap w/∆z variable
Laser sheet speed us/u

′
rms variable

3.3 Study of experimental parameters for particle track-
ing

3.3.1 Controllable experimental parameters

Seeding density

To study the effect of increasing seeding density on the efficacy and accuracy of the
triangulation method, six seeding densities NV (in ppv) ranging NV = 1.8 × 10−5 −
4.4 × 10−4 ppv were considered. An approximate particle image density NI (in ppp),
representing the equivalent particle image density assuming full-field illumination so as to
permit comparison with volumetric 3D-PTV methods, is found by conversion of NV using
an adjusted scanning depth ℓz (in px) accounting for the viewing angle:

NI ≈ NV ℓz = NV
Lz

cos θ , (3.3)

such that our tested range corresponds to NI ≈ 0.05 − 0.125 ppp. The Iterative Particle
Reconstruction (IPR) of Wieneke (2012) is able to reconstruct particle fields from single
recordings up to around NI ≈ 0.05 ppp. Building upon IPR by additionally exploiting
time information yielded from a sequence of recordings, the ‘Shake-The-Box’ method
(Schanz et al., 2016) was shown to be highly effective in creating accurate and virtually
ghost-free particle tracks over the range NI = 0.01 − 0.125 ppp. With regards to the
sheets, Lz/w = 12, w/∆z = 5 were set for this section. Setting Lz/w = 12 means
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3.3 Study of experimental parameters for particle tracking

Figure 3.1: Fraction of successfully triangulated particles, given the known ‘ground truth’
locations: the nominal sheet number ns as in Hoyer et al. (2005), and the fitted sheet
number fs

the actual particle image densities tackled by the present method corresponds to ≈
NI/(Lz/w) = NI,s ≈ 0.0034 − 0.010 ppp. That the actual particle image densities faced
by the triangulation algorithm are so reduced via partition of the volume using scanning
means the ‘classic’ triangulation of Maas et al. (1993), improved using a fitted sheet number
fs, performs satisfactorily. These two sheet parameters are shown in figure 3.3(b) below to
maximise the fraction, for a modest number of sheets, of ‘fitted’ particles, denoting those
particles viewed three or more times such that their position along the scan direction z

is estimated accurately by calculating their fitted sheet number fs via Gaussian curve
fitting. In addition us/u

′
rms = ∞ was used for this section, such that all images are taken

at the same time. In the present method, particle triangulation is aided by tightly fixing
the location of each particle along the scan direction z via use of the fitted sheet number
fs. A tolerance of 1/4 th of the sheet thickness w about the estimated z location (from
fs) is used for triangulation.

If a triangulated particle is found within a 1 px radius of a known ‘ground truth’
particle location then the particle is deemed to be correctly ‘detected’, this being the same
threshold used by Schanz et al. (2016). We note that increasing the search range would
increase the number of ‘found’ particles, at the expense of triangulation accuracy. For the
purposes of analysis, it is however necessary to define a threshold. Figure 3.1 shows the
fraction of particles successfully triangulated over a range of NV via the present scanning
technique. Triangulation where the search depth is the entire volume generally becomes
unfeasible (i.e. returns a larger fraction of ghost particles than ‘true’ particles) at particle
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Figure 3.2: Positional error in ‘truly’ detected triangulated particle location for the current
scanning PTV: ◦, mean error and ▽, standard deviation in error

image densities of NI ≈ 0.005 ppp (for the present synthetic setup this corresponds to
a volumetric density of NV ≈ 1.8 × 10−5 ppv using (3.3)). A significant improvement
is found over the method of Hoyer et al. (2005), which used ns, as the particle density
increases. The vast majority of successfully triangulated particles are fitted with a fs prior
to triangulation; in those cases which they have not the particles’ nominal sheet number ns

may be used. The fraction of detected particles decreases rapidly with increasing seeding
density for high NV . At the highest seeding density considered (NV = 4.4 × 10−4 ppv),
the fraction of particles found is only around 0.6.

Figure 3.2 plots the mean and standard deviation of the positional error between the
correctly triangulated (‘detected’) and ground truth particle locations. It is seen that as
NV increases, the fraction of successfully detected particles decreases as per figure 3.1.
Interestingly, the positional error does not increase with increasing NV for successfully
detected particles, in fact decreasing slightly, however this is at least partially due to the
criterion used for deciding on which particles are ‘detected’, currently set to be those within
a 1 px radius of a ‘ground truth’ particle (i.e. there is an upper bound on the value that the
error in figure 3.2 may take). That the mean positional error is ≈ 0.17 px then suggests that
most correctly detected particles are in fact closer than 1 px to the ‘ground truth’ particle
location. However, the percentage of ghost particles increases with increasing NV . For the
tested equivalent particle image densities NI ≈ {0.005, 0.01, 0.025, 0.05, 0.1, 0.125} ppp
(assuming full-volume illumination) the percentage of ghost particles detected is {0.23,
0.38, 1.7, 4.4, 12, 17.3}% (as a percentage of the total number of particles triangulated).
Although out-performed on positional error by the iterative ‘Shake-The-Box’ method,
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3.3 Study of experimental parameters for particle tracking

which is also able to effectively eliminate ghost particles at the densities considered here,
the mean positional error with the current two-camera method compares favourably to
that incurred with the iterative MLOS-SMART tomographic reconstruction method, which
increases with increasing NV . Additionally, the percentage of ghost particles reconstructed
is much smaller, which with MLOS-SMART exceeds 250% at NI ≈ 0.125 ppp (Schanz
et al., 2016).
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Figure 3.3: (a) Number of sheets Ns required as a function of sheet overlap w/∆z for
different sheet thicknesses Lz/w; (b) fraction of particles successfully fitted
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Here the effect of sheet overlaps w/∆z and thickness Lz/w is considered. The tri-
angulation efficacy of our method is directly dependent on the percentage of particles
illuminated multiple times over the course of a scan. In order to fit a Gaussian profile,
the particle’s intensity must be measured at least three times. Hence it is necessary to
understand how the fraction of successfully fitted particles depends on these parameters.

Figure 3.3 shows the result of this parametric study. Sheet overlap ratios of w/∆z = {3,
4, 5, 6, 7, 8} are considered, corresponding to overlap percentages {66, 75, 80, 83, 85,
87.5}%. For a fixed Lz, sheet thicknesses Lz/w = {5, 10, 15, 20} are considered. Figure
3.3a shows how many sheets (Ns) are required for a fixed Lz as a function of sheet thickness
Lz/w and sheet overlap w/∆z. For higher Ns, the image acquisition rate would need to be
increased such that the flow remains ‘frozen’ as the scan is carried out. For the purposes
of this section, sheet speed us/u

′
rms = ∞ was used. Figure 3.3b shows how increasing

sheet overlap but decreasing sheet thickness (increasing Lz/w) improves the fraction of
fitted particles. The large increase for lower w/∆z is expected since more particles will be
identified the minimum three times required in order to deduce fs from a Gaussian fit.
The further slow increase at higher w/∆z is attributable to more measurements giving
a better estimate of fs (higher Ns for increasing Lz/w and increasing w/∆z as shown
in figure 3.3a), and also possibly due to a lower effective seeding density with higher Ns

as the scan progresses due to the residual triangulation method (i.e. where a particle,
identified over multiple neighbouring sheets during the calculation of fs, is removed from
the particle lists of subsequent sheets where it appears if successfully triangulated in a
previous sheet). However gains beyond w/∆z = 5 and Lz/w = 10 are marginal yet further
increasing these requires more sheets. The values w/∆z = 5 and Lz/w = 12 were thus
selected for the density study above in section 3.3.1 and for the synthetic particle tracking
experiment in section 3.4.

Overlapping particle images

To study the effect of sheet width and particle density on the incidence of overlapping
particle images, all NV as considered in section 3.3.1 and the four sheet widths (Lz/w)
from section 3.3.1 are investigated. The extent of overlapping particles directly affects
peak-finding within the camera images and thus the correct identification of individual
particles. The number of particles Nps within a single image (i.e. the slice illuminated by
the laser sheet) is calculated based on the sheet width as

Nps = N × w

Lz
. (3.4)
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3.3 Study of experimental parameters for particle tracking

Figure 3.4: Fraction of overlapping particles for different sheet thicknesses Lz/w

The number of overlapping particles Nos in each sheet image of area A = Lx × Ly is then
given by (Cierpka et al., 2013)

Nos = (Nps − 1) + A

Acrit

(
exp

[
−(Nps − 1)Acrit

A

]
− 1

)
, (3.5)

where Acrit = π(D/2)2 for particle image diameter D.
Figure 3.4 shows the percentage of overlapping particles for different sheet widths

at the seeding densities studied. A high fraction of overlapping particles will degrade
the efficacy of individual particle identification in images for the ensuing triangulation.
The fraction of overlapping particle images is essentially zero for the lowest density case
NV = 1.8 × 10−5 ppv (NI ≈ 0.005 ppp) at all sheet thicknesses. For the higher density
cases, a substantial reduction from around 10% overlapping particle images to around 5%
is achieved with Lz/w = 10 − 15.

Finite sheet speed

A source of error specific to a scanning setup is the effect of a finite scanning laser sheet
speed. Where figure 3.1 considers an infinite sheet speed, figure 3.5 considers a range
to better understand the effect of finite sheet speed on triangulation accuracy. For both
the present parameter assessment and the synthetic experiment presented in section 3.4,
velocity fields from the forced homogeneous isotropic box turbulence case are sourced from
the Johns Hopkins Turbulence Database (JHTDB) (Li et al., 2008a), with rms velocity
u′

rms, and are used to advect the particles. Subsequent scans of the measurement volume
are separated by a time ∆t during which the particles are advected by the local fluid
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Figure 3.5: Error in linearly-corrected triangulated particle locations for different sheet
speeds us/u

′
rms; ◦, mean error and ▽, standard deviation in error; curves in black, NV =

1.8 × 10−4 ppv (NI ≈ 0.05 ppp); curves in blue, NV = 1.8 × 10−5 ppv (NI ≈ 0.005 ppp)

velocity. For a finite sheet speed, requiring a finite time to scan the volume, the particles
are also advected during the scan. In an experiment, this time is determined by the frame
rate fscan and the number of sheets Ns. A decreasing us/u

′
rms means that the particles

move increasingly during the scan, giving triangulated locations for a single scan that
correspond to an increasing spread of times between particles in the first and last sheets.

Sheet speed ratios of us/u
′
rms ≈ {25, 50, 100, 150, 200} were considered to study the

effect of finite sheet speed. Following 3D particle reconstruction, a linear (i.e. first-order)
positional correction is applied to all particles using their fitted sheet numbers to recover
their approximate locations at a simultaneous time corresponding to the end of the scan.
That is, particles in the final sheet will be subject to no correction, whereas particles in
the first sheet will have a 3D positional correction applied by adding ∆x = tscanuloc to
their triangulated positions, where tscan is the time taken to complete the scan, and uloc

is the local velocity vector at the beginning of the scan.
In the step where triangulation/Gaussian fitting is performed as explained in section

2.3.2, when the same particle within the scan is identified is successive images, and are
grouped together to fit a Gaussian and identify its relative position at the center of the
sheet, the local velocity of the particle is estimated using their displacement within these
successive sheets and the time for which the particle was found, which is determined by
the frame rate fscan and the number of sheets Nsloc

for which the particle was found.
Thus

uloc = δz

Nsloc
fscan

(3.6)
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3.3 Study of experimental parameters for particle tracking

Figure 3.5 shows the mean error in pixels between the ‘ground truth’ particle locations
(recorded at the end of the scan) and the corrected particle locations for the different sheet
speed ratios. When the sheet speed is us/u

′
rms ≳ 100, the mean error in the corrected

particle locations is ≈ 0.2 px for both low (NV = 1.8 × 10−5 ppv, NI ≈ 0.005 ppp) and
higher (NV = 1.8 × 10−4 ppv, NI ≈ 0.05 ppp) seeding density cases. These values are only
≈ 0.03 px greater than the positional error shown for the infinite-us study in figure 3.2 in
section 3.3.1. All other things being equal, the error will likely increase with a larger Lz

(i.e. more sheets) since particles in latter sheets have more time to move during the scan,
possibly eventually exceeding that which can be corrected linearly as herein.

3.3.2 Uncontrollable experimental parameters

Noise

Four levels of random noise are introduced to the ideal images in order to study its impact
on the triangulation procedure, being 5, 10, 15 and 20% of the maximum illumination in
the noise-free image, with a variance/RMS value of 0.25 times the mean values respec-
tively. This was applied to all seeding densities considered in section 3.3.1. Prior to the
triangulation step, 2D intensity peaks must be located within the images, presently carried
out using the peak-finding algorithm described in section 2.3.1. Figure 3.6a shows the
mean error in the 2D peak location estimation when images are subject to these varying
levels of noise. A higher intensity threshold for peak-identification was used in this section
than for others so that particles for the 20% noise case could be better distinguished. This
in general results in fewer triangulated particles as weaker intensity spots are disregarded.
The mean error in 2D intensity peak location was < 0.3 px for all cases and all noise levels
investigated. The error appears to grow in a fairly steady manner both with the noise level
and particle density for the ranges considered, except for the highest NV where it increases
rather more rapidly. This is presumably due to the intensity peaks becoming more difficult
to distinguish with high levels of background noise when there are many closely-spaced
particle images. Figure 3.6b shows the fraction of successfully triangulated particles (using
the same criterion used for figure 3.1, i.e. if a triangulated location is within a 1 px radius
of a known ‘ground truth’ particle location, the particle is considered ‘found’) for the
studied range of seeding densities. The performance of the present triangulation procedure
is shown to be robust in the presence of mild to moderate noise. However above noise
levels of ≈ 15% and particle densities NV ≈ 3.5 × 10−4 ppv, the method triangulates
< 50% of ground-truth particle locations.

Deviation of the laser sheet profile from an ideal Gaussian

The shape of the laser sheet profile is determined by shape factor s in (3.1), which when
set to s = 2 gives a Gaussian profile. Accurate sheet fitting requires some variation of the
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Figure 3.6: (a) Mean error in 2D particle image detection as a function of particle density
NV for four different random noise levels {5%, 10%, 15%, 20%}, curves darkening with
increasing noise level; (b) fraction of successfully triangulated particles, given the known
‘ground truth’ locations; curves and NV range same as in (a)

laser’s intensity over the range of nominal sheet number ns being used to find fs. This is
now varied to s = {2, 4, 10} for the seeding density NV = 1.8 × 10−4 ppv (NI ≈ 0.05 ppp).
As s increases the profile approaches a top-hat profile. Figure 3.7a shows the intensity
variation of a particle over five sheets, demonstrating how the shape of the laser beam
profile changes with s. For a single particle, the fitted sheet numbers (fs) obtained for
s = {2, 4, 10} within (3.1) are essentially exactly the same. The mean error is shown
in figure 3.7b also doesn’t vary significantly for the different profile shapes considered
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Figure 3.7: (a) Intensity variation of a single particle over five sheets within a scan, for three
different sheet shape factors s; (b) error in triangulated particle location for the different
shape factors for the medium-density case with NV = 1.8 × 10−4 ppv (NI ≈ 0.05 ppp): ◦,
mean positional error; ▽, standard deviation of positional error

presently. Therefore the actual profile of the laser sheet found doesn’t significantly affect
the efficacy of the triangulation method for the values of s considered here, as long as there
is some intensity variation over the laser sheet’s thickness, and it is correctly characterized
prior to the experiment.
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3.4 Verification of tracking via synthetic experiment

The JHTDB was used for a synthetic experiment on which the present methodology has
been tested thus far. The initially random distribution of particles is advected in time
subject to the time-evolving velocities from the forced and isotropic DNS fields. For this
purpose, the Lagrangian tracking ‘GetPosition’ function as supplied in the JHTDB toolbox
(Yu et al., 2012) is used. Scanning PIV images for two camera angles were created using
a code based on the EUROPIV Synthetic Image Generator (Lecordier & Westerweel,
2004). The main details of the synthetic experiment may be found in table 3.3. An image
resolution of 1024 × 1024 px was used. Parameters were chosen such as to be dynamically
similar to the scanning PIV experiment of Lawson & Dawson (2014). Aside from the
sheet overlap, which has been increased slightly for the synthetic experiment in order to
deduce the fitted sheet number fs for individual particles, the remaining parameters are
also chosen to be similar, so that our synthetic experiment represents a setup realisable in
the laboratory (i.e. feasible sheet speed us/u

′
rms). The present scanning PTV setup places

specific demands upon laser sheet speed and sheet overlap for the triangulation to be
effective, which may impose practical restrictions upon laboratory experiments. The sheet
overlap must be higher than in previous similar setups (Lawson & Dawson, 2014, 2015)
such that fs may be calculated for a majority of particles. Both the sheet overlap and sheet
speed requirements of the current methodology are met in the recent experiments in water
presented in Lawson et al. (2019) for a Taylor microscale Reynolds number of Reλ ≈ 315.
Samples from within the JHTDB are separated in time by the large eddy turnover time
TL = L/u′

rms, where L is the integral scale, and in space by a distance ≈ 1.5L within the
computational domain, such that the samples may be considered independent.

Table 3.3: Parameters for the synthetic experiment. Those not listed here are as in table
3.1

Nsamples Ns NV NI

15 62 1.8 × 10−4 ppv 0.05 ppp
∆t/τη us/u

′
rms w/∆z Lz/w

0.094 157 5.0 12

3.4.1 Lagrangian statistics

The present experimental scanning method as used by Lawson & Dawson (2014) was
first developed to yield Eulerian statistics on a regular grid via PIV cross-correlation.
Lagrangian statistics are the goal of the present technique. The present method tracks
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3.4 Verification of tracking via synthetic experiment

a single particle for over 20 ∆t (≈ 2 τη) to an accuracy of < 1 px when compared to the
final location found using pseudo-tracking directly within the time-evolving DNS. Particle
movement during the scan (due to the finite sheet speed) remains small enough such that a
linear positional correction using the local velocity is adequate to interpolate their position
to that corresponding to a simultaneous time for the whole domain before the tracking
algorithm is applied, as was done in section 3.3.1. The search region about a predicted
location is presently set to a radius of approximately 1/3 of the mean inter-particle distance.
Once tracks of the desired length are established via the particle tracking algorithm, the
cubic spline interpolation scheme of Lüthi et al. (2005) explained in section 2.3.5 is used.
All components of the particle velocities and accelerations may then be calculated at any
point along these trajectories.

Figure 3.8a and c shows tracks for two samples of the synthetic experiment with a
comparison to the “true” tracks in figure 3.8b and d. Figure 3.8a shows a larger number
of smaller eddies whereas the sample of figure 3.8c is seemingly dominated by a single
larger structure on the order of the measurement volume itself.

Accelerations

Tracks of length of trl ≈ 0.75 τη in time are used to calculate accelerations as in Voth
et al. (2002). Components of Lagrangian acceleration a = (ax, ay, az), the distributions of
which are shown in figure 3.9. As demonstrated in Voth et al. (2002), the presence of large
accelerations signalling extreme events is characteristic of turbulence. For reference the
curve fit of Voth et al. (2002) is plotted, although their data was taken in a sparsely-seeded
flow. For the present high-density synthetic experiment (NI ≈ 0.05 ppp), find the tails
to be considerably narrower than that suggested by Voth et al. (2002). However wider
tails are recovered if the experiment is repeated at a lower density (NI ≈ 0.005 ppp). To
avoid ambiguity in the particle matching, the search radius about a predicted location
in a subsequent time step is restricted to 1/3 of the inter-particle distance as mentioned
above. Hence the sparse case will permit larger accelerations to be recorded since the
algorithm in the dense case is unable to distinguish one potential track from another if the
particle’s actual location differs from the predicted location by an amount on the order of
the inter-particle spacing. The sparse case, with a larger inter-particle spacing, therefore
admits larger ‘deviations’ from a predicted path, and hence more extreme accelerations.
The difference in the acceleration PDFs is therefore not the result of a difference in
spatial or temporal resolution, but rather exposes an inherent limit on the magnitude of
acceleration measurable in dense fields. Presently, the particle tracking algorithm proposed
by Malik et al. (1993) is used unaltered with a conservative search radius such as to avoid
ambiguous particle matching. However, it is possible that a more sophisticated tracking
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Figure 3.8: Particle tracks for two different samples, demonstrating variations in structures
for the selected ‘slab’ of turbulence. Tracks are coloured by the magnitude of the velocity
vector u = (u, v, w) along each track at each point in time. Subfigures a) and c) are the
tracks obtained from measurement and subfigures b) and d) are their respective “true”
tracks. 65
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Figure 3.9: Probability density function (PDF) of the components of Lagrangian accel-
eration normalized by the standard deviation for each component: for the present LPT
methodology: • ax, • ay, • az; from pseudo-tracking directly within the DNS fields: △△△ ax,
△△△ ay, △△△ az; repeating the synthetic experiment with a lower equivalent particle image density
NI ≈ 0.005 ppp: ax, ay, az. Accelerations are computed from tracks of length ≈ 0.75 τη

in time from which measurements are bootstrapped along the lengths to increase statistical
convergence; 201, fit from Voth et al. (2002): P (a) = C exp(−a2/((1+ |aβ/σ|γ)σ2)), where
β = 0.539, γ = 1.588, and σ = 0.508; , Gaussian distribution with the same standard
deviation as P (ax)

scheme, perhaps involving a multi-pass approach for ‘unclaimed’ particles, could admit
larger particle accelerations in dense fields.

In general, long tracks formed over a time corresponding to at least ≈ 2τη are necessary
in order to yield smooth Lagrangian statistics (Lüthi et al., 2005), particularly spatial
velocity derivatives. Tracks of this length are used to reproduce the acceleration ‘test’ as
in Hoyer et al. (2005). The Lagrangian accelerations (ai = Dui/Dt) are related to the
local accelerations (al,i = ∂ui/∂t) and convective accelerations (ac,i = uj∂ui/∂xj) via the
following relation:

Dui

Dt = ∂ui

∂t
+ uj

∂ui

∂xj
. (3.7)

Spatial derivatives for the convective accelerations require information from neighbouring
particles. At present, the scheme of Lüthi et al. (2005) is used with information from
the closest 20 particles to the point in space where the spatial derivative is obtained,
along with information from times t and t ± 2 ∆t. The average inter-particle distance
in the present fields (at the time of initial seeding) is approximately 1.3 η, whereas for
Lüthi et al. (2005) it was around 4.2 η, and Hoyer et al. (2005) used particle fields with
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Figure 3.10: Acceleration check (joint PDF) relating Lagrangian, local and convective
accelerations; in black, for the high density (NI ≈ 0.05 ppp) case; in blue, for the low
density (NI ≈ 0.005 ppp) case. The high correlation coefficient (value of Q) between the
two sides of (3.7) for the high density case demonstrates good spatial resolution

average particle separations of 2.4 η. As detailed by Hoyer et al. (2005), relation (3.7) is a
strict test of spatial resolution. In figure 3.10 there is a very high correlation between the
left- and right-hand sides of (3.7) for the ax component by considering their joint PDFs,
confirming the adequate spatial resolution of the present high density (NI ≈ 0.05 ppp)
synthetic experiment. The value of the correlation is somewhat decreased for the lower
density (NI ≈ 0.005 ppp) case. Some degradation is to be expected since the fidelity of
the velocity gradient tensor, terms of which appear in (3.7), is reduced at lower seeding
density. However, for the same number of independent samples, the lower density case
represents a smaller number of measurements, meaning the results are less converged.
Similar results are found for the other two spatial dimensions.

3.5 Experimental design for particle sizing

Several assumptions were needed to implement this technique. The particles are assumed
to be spherical in shape and homogeneous. Homogeneity refers to no change in the
refractive index within the particle or other properties of the particle with time. Since the
measurement technique developed is based on scattering intensity variation of particles at
different scattering angles, the application of this technique in cases where the particle
size changes throughout of measurement mainly due to evaporation or due to shear are
not considered in this study.
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3.5.1 Measurement area and configuration

The measurement area required to measure the size distribution in the flow is directly
related to the smallest particle size in the flow. The basic criteria to fix the measurement
area dimensions is that it should be greater than the distance between two scattering peaks
of the smallest particle, to fit a curve. The imaging resolution M , plays an important
role in determining the distance between two scattering peaks from a particle in the
measurement.

Figure 3.11a, shows the displacement in pixels ∆disp, required to cover two scattering
peaks ∆θ, for increasing particle size. The three lenses of focal lengths: 18, 50 and 100
mm were chosen to vary the camera distance R, but maintaining a fixed magnification M ,
at a fixed camera resolution of 512 × 512 pixels and imaging area of 100 × 100mm2. The
displacement ∆disp can be calculated by modifying equation 2.17, to get

∆disp = MRtan∆θ (3.8)

The figure 3.11a, implies that decreasing the focal length increases the possibility to
measure smaller sized particle. This is because the relative displacement required to cover
two scattering peaks is directly proportional to the distance R of the particle from the
imaging source. For a fixed magnification M , this is lower for a lens with a smaller focal
length.

3.5.2 Camera angle

The effect of camera angle can be directly related to the minimum required displacement
∆disp, required to cover two scattering peaks. As the camera angle with respect to the
laser sheet increases, the effective distance of the camera from the measurement volume
also increases. The displacement ∆disp, is directly proportional to the distance of the
particle R, from the camera, hence as the camera angle with respect to the laser sheet
increases, the ∆disp required also increases. Figure 3.11b shows the displacement required
for the same particle from three camera angles of 30, 45 and 60 degree with respect to the
laser sheet, increases with increasing angle.

3.5.3 Measurable size range

Theoretically, the measurement technique can be applied for a wide range of size, starting
from particles whose size are above the Rayleigh regime to particles whose size is of the
order of a millimetre, as the Mie theory is still applicable even at this upper size range.
However, the size range that could be measured is also directly related to the number of
measurements that can be made successfully for each particle size or the measurement
angular range ∆θs.
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Figure 3.11: (a) The effect of increasing distance of imaging, on the minimum particle
displacement required to cover two scattering peaks, for increasing water particle diameters
(b) The minimum particle displacement required to cover two scattering peaks for three
different angles with respect to the laser sheet.

The number of peaks Npks for a given angular range ∆Θs is directly proportional to
particle size dp, thus

Npks = C.dp.∆Θs, (3.9)

where the constant C can be estimated for a given imaging configuration and particle size.
In the lower size ranges as the angular separation between two peaks is larger, the

particle displacement or the angular measurement ∆Θ must be larger. For example, in
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the figure 3.11a and b, ∆θ is the angular spacing between two peaks. Using a Nyquist
like criteria (Damaschke et al. (2002)), the minimum diameter that can be measured for a
given resolution M can be estimated. If one considers a Nyquist criterion such that there
is at least one peak within the total scattering angle range within the measurement area,
Npks > 1, which then gives the minimum measurable diameter as

dp,min = 1
∆ΘsC

. (3.10)

As the particle size increases, the frequency of the peaks increases. This means that
the measurement angular resolution (θm) required to resolve between two peaks must
increase as the size of the particle increases. Again a similar Nyquist like criteria would
help to decide the maximum particle size that can be measured for a given resolution of
M . If one considers a Nyquist criterion such that spacing between two peaks must cover
at least 5 pixels, then this results in

R tan ∆θmM > 5. (3.11)

The measured scattering angle range (∆θm) can be related to the number of peaks
Npks, as

Npks

∆Θs
× ∆θm = 1, (3.12)

and combining 3.9 and 3.11, and substituting in 3.12, the maximum diameter, for a
given configuration is

dp,max = 1
Ctan−1( 5

MR )
. (3.13)

3.5.4 Camera aperture

A camera aperture is treated as a section of a sphere. The aperture’s solid angle, and
area in steradians, controls the particle intensity at the focus. The scattered intensity Isav

received by a camera at (R,θs,ϕs) with solid angle averaging can be expressed as

Isav
=
ˆ
Is(θs, ϕs)dΩ (3.14)

where dΩ = sinθsdθsdϕs is the solid angle subtended by the detector aperture at the
origin and the integration is performed over the aperture.

Figure 3.12 shows the effect of increasing the solid angle on the amplitude of the
variation, for a particle of size 50 µm and refractive index of 1.586. The effect of angular
integration over a solid angle of the collecting lens is to smooth out the scattered intensities.
In the Scanning method, since the depth of field has to be increased to keep the particle
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Figure 3.12: The effect of increasing solid angle on the amplitude of the scattering intensity
variation with scattering angles for a particle of size 50µm.

images in focus inside the volume, the camera aperture is somewhere between the mid to
smallest opening, which as a result would restrict the solid angle from higher values. This
prevents the flattening of the angular distribution of the scattered intensity.

3.5.5 Number of Cameras

The minimum number of cameras required to perform triangulation is two. The fraction of
particles that could be sized directly depends on the fraction of particles that get tracked
successfully. The successful tracking of particles depends upon the fraction of particles that
are successfully triangulated. The higher the fraction of successfully triangulated particles,
the higher the number of tracked and finally sized particles. For the measurement volume
chosen to study the effect of increasing seeding density in section 3.3.1, it can be seen
that as NV is increased the fraction of correctly determined particles falls off. Hence a
general question will be: Is there a payoff to be made here if we want to increase the
spatial resolution of our measurements, i.e. increase the seeding density?. The number of
particles within the measurement volume for the given examples of seeding densities i.e
for NV = 4 × 10−4 and 2 × 10−4 were 107370 and 53687 respectively. Considering the
percentage of successfully triangulated particles for these seeding densities, 70% of 107370
(75159) is obviously greater than 80% of 53687 (42855), which holds true for a single time
step. But when considering the tracking process or linking particles from one time step to
another, since lower percentage of particles are lost in triangulation for a lower seeding
density case the probability of more longer tracks is high for a seeding density of NV
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Figure 3.13: Comparison of the fraction of successfully triangulated particles using two
camera, three and four camera views, at a seeding density of 0.05ppp.

2 × 10−4 than for NV 4 × 10−4. So yes there is a payoff of less longer tracks for higher
seeding density (spatial resolution) than for lower seeding density.

Similarly, in the triangulation step, the difficulty in triangulating a high fraction of
particles in the volume arises with increasing seeding density. One of the problems with
higher seeding density is the effect of particles overlapping in the images. Section 3.3.1
shows that with an increase in particle density, the percentage of particles overlapping also
increases, which could lead to a shift in the 2D peak identification, resulting in significant
positional errors.

A mitigation to these problems is the use of three or more cameras in a setup.
This modification did improve the percentage of truly triangulated particle, as particles
overlapped in one view may not be overlapped in the other views, which could be
triangulated successfully from the non-overlapped views. Nevertheless, if a particle is
overlapped in all the views along the scan, it is discarded. Albeit, the payoff mentioned
above still holds true.

The triangulation efficiency using two cameras was compared to a three-camera and
four-camera triangulation method. We place a third camera at an angle θc3, and the
fourth camera at an angle θc4 with respect to the laser sheet. Three cases in an increasing
3D seeding density in particles per voxel(ppv) of {6.6 × 10−5, 3.3 × 10−4, 6.6 × 10−4} were
selected for this study, to compare the fraction of successfully triangulated particles using
two, three and four cameras. The corresponding seeding density in particles per pixel(ppp)
is {0.01, 0.05, 0.1}. As shown in figure 3.13, it is quite evident that as the number of
camera views increases, the fraction of particles triangulated increases.
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The result plotted in Fig. 3.1 were the result of two camera triangulation. In the later
stages of development of the technique this issue of loosing more particle with increasing
seeding density was resolved to an extent by introducing more than two camera views and
hence performing 3 or 4 camera triangulation. Section 3.6.5 and figure 3.13 discusses this
improvement.

3.6 Synthetic experiments with known sizes

A synthetic scanning experiment was performed, in order to simulate a particle sizing
experiment. The synthetic experiment is designed in such a way that it mimics a real
scanning experiment by Lawson & Dawson (2014). A forced homogeneous isotropic box
turbulence from the Johns Hopkins Turbulence Database (JHTDB) (Li et al., 2008a), with
Reλ = 418 and η = 0.0028, were used to advect the particles.

Table 3.4: Numerical scanning experiment parameters

Parameter Symbol Value
Camera distance from the volume Do/η 600
Focal length of the lens Di/η 50
Image resolution px 512 × 512
Camera 1 viewing angle θ1 35o

Camera 2 viewing angle θ2 -30o

Camera 3 viewing angle θ3 -40o

Camera 4 viewing angle θ4 45o

Camera pixel spacing size/η 0.02
Volume width Lx/η 175
Volume height Ly/η 175
Volume depth Lz/η 44
Number of sheets Ns 60
Laser sheet thickness w/η 3.64

The camera and scanning parameters were normalized using η, such that they are
dimensionally similar to the normalized values from the laboratory scanning experiment
by Lawson & Dawson (2014). The size of the imaging volume was changed when compared
to the one used in the actual experiment. This was done based on the particle size and
corresponding imaging area required to size them, estimated using 3.8, for a resolution of
Di/Do from the table 3.4. Table 3.4 shows the scanning experiment parameters chosen in
this study.
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The particles in the volume were assigned a diameter values of 0.02 < dp < 0.08, in
equal amounts, with an increment of dp = 0.01. The particle diameter is also normalized,
dp = ddns/η. Properties of PMMA micro spheres with a specific gravity of 1.22 and
refractive index n = 1.49, was assigned to every particle in the volume. The Stokes number
for the biggest normalized diameter chosen in this study was 0.105, which follows the flow.
The synthetic particle generation for the scanning setup, described in section 3.2, has
been followed here as well. Particles were randomly distributed within the volume, with
a relatively high particle image density of 0.05 particles per pixel. For all the scanning
numerical experiment performed in this study, a sheet overlap ratio of w/∆z = 5 and sheet
thickness Lz/w = 12. These were found to be a good choice of values that could increase
the fraction of fitted particles while reducing the percentage of overlapping particles and
maintaining a smaller number of sheets required in the scan.

The accuracy of the sizing method proposed is dependent on the triangulation and
tracking in the scanning method. In this section, since the best scanning configuration for
better triangulation and tracking accuracy is chosen, only the effect of parameters, that
could influence the sizing method.

3.6.1 Effect of noise in scattered intensity

In section 3.3.2, the effect of random noise on triangulation was studied. In this section,
two common types of noise sources in digital cameras, photon shot noise and Gaussian
background noises is considered. The photon shot noise was modeled using a Poisson
distribution, where a random realization from the Poisson distribution with a mean equal
to the intensity of the noise-free image, was set as the intensity for every pixel. Gaussian
background noise is modeled with a specified mean intensity µg, and variance σg, and
were added to the noise-free images. Four mean intensity values 2, 5, 7 and 10% of the
maximum intensity count Imax(4096 in this study), with variance σg of 0.25 times µg,
were taken respectively. Figure 3.14 shows examples of particle image with added noise
using a uniform distribution and Gaussian distribution.

Before discussing the results of the effect of noise on sizing, it should be noted that
increasing noise also affects the fraction of truly triangulated particles, which in turn
reduces the track lengths when compared to the ideal case. Figure 3.15 shows that how
the fraction of the successfully tracked (track length, trl > 10) and sized particles, for
increasing noise.One can notice that, even for the ideal case, the number of successfully
tracked particles is only around 80% of the actual number assigned in the volume. This
effect, also known as particle dropout happens because, the number of particles that
are tracked across a specific time interval is always finite in a fixed volume and decays
exponentially as the track length is increased. This decreasing trend escalates drastically
with increasing noise. In the following assessment on the effect of noise on sizing accuracy,
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Figure 3.14: Examples of particle images with added noise.
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Figure 3.15: Number fraction of truly sized particles, for noise levels of 0, 2, 5 and 10 %.

the expected size distributions are hence from those particles which have been successfully
tracked (trl > 10) and not based on the initial size distribution, assigned in the volume.

An example of the particle tracks (trl = 13) obtained from all the noise cases for a
particle is shown in figure 3.16a. The maximum track length obtained for the highest
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Figure 3.16: Comparison of: (a) Lagrangian track of a particle for different noise cases;
(b) scattering intensity distribution w.r.t scattering angle of the corresponding particle
with the best Mie fit, for the different noise cases.

noise case is trl = 13. The scattered intensity distribution with respect to the scattering
angles obtained from the track locations for all the noise cases, along with the best Mie fit
for the corresponding particle is shown in figure 3.16b. In general, the scattered intensity
distribution for all the cases agrees well with the Mie fit, with a small percentage of jitter
in the intensity values with respect to the expected intensity. The jitter in the scattered
intensity at a scattering angle for all the cases is shown in an inset of figure 3.16b. As
expected, at higher noise levels besides the deviation in the scattered intensity, there is
also a slight deviation in the scattering angle, which arises due to the 2D location detection
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Figure 3.17: Percentage deviation in the measured scattered intensity from the actual
scattered intensity for increasing noise.

step. The percentage deviation in the measured scattered intensity from all samples, for
the different noise cases, is quantified and plotted in terms of mean and standard deviation,
in figure 3.17.

The influence of noise in the scattered intensity on the sizing measurement accuracy is
shown in the plot in figure 3.18a for the different noise levels chosen in this study. We
have plotted the comparison of the fraction successfully tracked and sized particles to
the actual number for each of the noise levels. The trend of decreasing fractions of both
tracked and sized particles with noise for each particle size range is similar to that in
figure 3.15. Albeit, both tracked and sized numbers has a decreasing trend with decreasing
particle size, for all the noise cases. This trend is clearly due to the effect of noise on
smaller intensities of the smaller particles. As the background noise increases, the signal
to noise ratio of the smaller particles decreases, as a result of which the weaker intensities
from the smaller particles are not identified and triangulated.

Figure 3.18b shows the mean and RMS error in the measured particle sizes, obtained
using the particle sizing algorithm. A higher prediction interval of 97% on the fit, to
estimate the residual χ2, was used in this section, so that irregularities in intensities from
particles for the higher noise case could also be accounted for within the prediction interval.
The mean error was less than 0.005/η for all the cases of noise levels simulated. The error
appears to grow in a fairly steady manner. The RMS error also shows a fairly steady
growth between 0.015/η and 0.02/η across the increasing noise levels.
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Figure 3.18: (a) Comparison of fraction of successfully tracked and sized particles for
increasing noise cases. Here I,G,P stands for ideal case, Gaussian noise and Poisson noise
cases respectively.(b) Mean and rms error, normalized by η, for different levels of noise.

3.6.2 Effect of noise in scattering angle

The fitting algorithm in the proposed particle sizing approach is dependent on the scattering
angles, which are calculated using the camera calibration model. In a laboratory experiment,
camera calibration may also suffer from inaccuracies, so a parametric test on the effect of
the camera misalignment can be used to study the effect of jitter in scattering angles on
the measured particle diameters is performed. To study this effect, two sets of camera
calibrations are generated. In the first set true camera calibration is generated using which
the particle images are generated. The second set of camera calibration was generated
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by shifting the camera angle in the first set to an expected misalignment in pixels. We
chose four sets of misalignment; 0.25o, 0.5o, 0.75o and 1o, which corresponds to 0.6,
1.2, 1.8 and 2.4 px respectively, for the chosen camera configuration in this study. The
misaligned camera calibration models were used for triangulation, tracking and sizing. In
the triangulation step, to account for the shift due to misalignment, the threshold on the
re-projection error is increased with increasing misalignment case.
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Figure 3.19: Comparison of: (a) Lagrangian track of a particle for different misalignment
cases; (b) scattering intensity distribution w.r.t scattering angle of the corresponding
particle with the best Mie fit, for the different camera misalignment cases.

An example of the particle tracks (trl = 20) obtained from all the noise cases for a
particle is shown in figure 3.19a. As compared to figure 3.16a the maximum track length
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obtained here for all the cases are the same hence one of the particles with the highest
track length of trl = 20 is shown in figure 3.19a. The scattered intensity distribution with
respect to the scattering angles obtained from the track locations for all the misalignment
cases, along with the best Mie fit for the corresponding particle is shown in figure 3.19b.
The scattered intensity distribution for all the cases agrees very well with the Mie fit,
with a small percentage of jitter in the scattering angle values. There is no jitter in the
scattered intensity at a scattering angle for all the cases is shown in an inset of figure
3.19b.
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Figure 3.20: a Comparison of fraction of successfully tracked and sized particles for
increasing misalignment cases. Here M stands for misalignment.b Mean and rms error,
normalized by η, for different levels of camera misalignment.
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Figure 3.21: Rms error in the measured sizes for the varying size ranges, at different
camera misalignment cases.

The influence of noise in the scattering angle on the sizing measurement accuracy is
shown in the plot in figure 3.20a for the different misalignment cases chosen in this study.
We have plotted the comparison of the fraction successfully tracked and sized particles to
the actual number for each of the noise levels, similar to figure 3.18a. Here, the fraction of
successfully tracked particles shows a decreasing trend with increasing misalignment. As
discussed in the previous section, in this case also a higher prediction interval of 97% is
used to account for the shift in the scattering intensity distribution due to the shift in
the scattered angle obtained from the camera calibration values for the misaligned case.
The mean and the corresponding RMS errors for different camera misalignment are shown
in figure 3.20b. There is a steady increase in the variation between the expected and
measured sizes with increasing misalignment; the mean error value is less than 0.005/η for
all the cases. The RMS error, in this case, is somewhat higher than in the case of image
noise. To understand this we have plotted the RMS error from each size ranges chosen in
this study, as shown in figure 3.20b. An interesting observation from figure 3.21 is that, for
a given misalignment, the RMS error increases with increasing particle size. The increase
in error with increasing particle size can be related to the increasing scattering peaks with
increasing particle size where, along the same track the bigger particle has more scattering
peaks when compared to smaller particles. When there are more scattering patterns, a
misalignment in the camera can increase the chances of a mismatch, during the fitting
procedure.
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3.7 Numerical experiment in a turbulent channel flow

The suitability of the particle tracking and sizing technique developed is tested by per-
forming a synthetic scanning experiment. To do this, the DNS dataset of a turbulent
channel flow at a friction velocity Reynold number Reτ = 1000, from the John Hopkins
Turbulence Database (Graham et al. (2016); Li et al. (2008b)), were used to advect the
particles.

Table 3.5: Flow parameters

Parameter Symbol Value
Friction velocity uτ 4.99×10−2

Viscosity ν 5×10−5

Viscous length scale (ν/uτ ) δν 1.0006×10−3

Friction velocity Reynolds number Reτ 9.9935×102

Channel half-width h 1

The database for the turbulent channel flow in the JHTDB was produced from a DNS
of wall-bounded flow with periodic boundary conditions in the longitudinal and transverse
directions (stream-wise and span-wise directions) and no-slip conditions at the top and
bottom walls. The details of the flow parameters can be found in table 3.5. The DNS
domain length is 8πh× 2h× 3πh.

3.7.1 Numerical experiment parameters

The camera and scanning parameters were normalized using h. The scanning particle
tracking and sizing experiment is performed in a measurement volume of 2πh× 2h × 0.5πh.
The measurement volume is long enough in the stream-wise direction for a sufficiently
long time of particle tracking and also long enough to capture two scattering peaks of the
particle sizes chosen in this study, as discussed in section 3.5.1, estimated using 3.7, for a
resolution of Di/Do from the table 3.6. Table 3.6 shows the imaging parameters chosen
in this simulation.

Three particle sizes with mean diameters dp = 23, 42 & 80 and standard deviation
sd = 4, 6.9 & 9.3 respectively were chosen in the volume, in equal amounts, as shown
in figure 3.23. These three sizes were chosen such as to be similar to the experiment
performed in this study, detailed in the next Chapter. The Microbeads AS particles used
in the experiment had diameters of 23, 42 and 80 µm with standard deviations of 4.03,
6.902 and 9.3 respectively. The particle diameter is also normalized, dp = ddns/h and the
particle diameter and their standard deviations are in µ DNS units. Properties of PMMA
micro spheres with a specific gravity of 1.22 and refractive index n = 1.49, was assigned
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Table 3.6: Imaging parameters

Parameter Symbol Value
Camera distance from the volume Do/h 200
Focal length of the lens Di/h 18
Camera 1 viewing angle θ1 35o

Camera 2 viewing angle θ2 −30o

Camera 3 viewing angle θ3 −40o

Camera 4 viewing angle θ3 45o

Image resolution px 1536 × 512
Volume width Lx/h 2π
Volume height Ly/h 2
Volume depth Lz/h π/2

to every particle in the volume. The Stokes number for the biggest normalized diameter
chosen in this study was 0.14, which follows the flow. The synthetic particle generation for
the scanning setup, described in section 3.2, has been followed here as well. Particles were
randomly distributed within the volume, with a relatively high particle image density of
0.05 particles per pixel, as shown in figure 3.22.

Table 3.7: Sizing particle parameters

Parameter Symbol Value

Mean diameter (particle size 1) dp/h 0.023
Mean diameter (particle size 2) dp/h 0.042
Mean diameter (particle size 3) dp/h 0.08
Standard deviation (size 1) 0.004
Standard deviation (size 2) 0.0069
Standard deviation (size 3) 0.0093
Seeding density ppp 0.05
Stokes number(size 1) St 9.2×10−3

Stokes number(size 2) St 3.6×10−2

Stokes number(size 3) St 1.4×10−1

Specific gravity(all particles) 1.22
Refractive index(all particles) n 1.49

The ’GetPosition’ function as supplied in the JHTDB toolbox is used to advect the
particles forward in time using their Lagrangian velocities. Particles are advected for 40
time-steps, again long enough to get the Lagrangian stats and get the size of the particles.

83



Numerical simulation

Figure 3.22: Measurement domain chosen for the numerical experiment for the turbulent
channel flow with particle seeding density of 0.05 ppp (around 35000 particles).
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Figure 3.23: Particle size distribution inserted in a sample of volume.

Particles do leave the volume and new particles enter the measurement volume over this
period. The tracking time step ∆t = 0.032.

For all the scanning numerical experiment performed in this study, a sheet overlap
ratio of w/∆z = 5 and sheet thickness Lz/w = 12. These were found to be a good choice
of values that could increase the fraction of fitted particles while reducing the percentage
of overlapping particles and maintaining a smaller number of sheets required in the scan.
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3.7 Numerical experiment in a turbulent channel flow

Table 3.8: Scanning parameters

Number of sheets Ns 60
Sheet overlap ratio w/∆z 5
Mean laser sheet thickness Lz/w 8
Sheet speed us/urms 150
∆t 0.032

A total of 10 samples separated in time by one channel flow through time and in space
by a distance of πh within the computational domain were chosen, such that they can be
considered independent.

The synthetic particle images are generated as explained in section 3.2. To make the
numerical experiment conditions closest to a real experiment, 3% noise were added to the
particle images and a small misalignment 0.6 px to the camera calibration, as explained
in section 3.6.

3.7.2 Results from particle tracking

In the particle tracking algorithm, a central difference scheme was used to estimate the
velocity and acceleration at each time step and guess the particle location for the next time
step. Linear approximation for velocity and acceleration was used in the post-processing
step only to filter the data against any sort of measurement error or error in the identified
particle location. A comparison between the velocity and acceleration estimated using
the linear approximation method and that estimated using a central difference scheme
is performed to check if the similarity of the results from these two schemes. Velocity
is estimated using the first-order central difference scheme and acceleration using the
second-order difference scheme. For the particle location at the two edges of the tracks
forwards and backwards difference schemes were used.

Figure 3.24 compares the pdfs of velocity and acceleration components estimated using
linear approximation method and central difference scheme. The general trend shows a
very good match between the velocity components estimated using linear approximation
and first-order central difference scheme. It is well known that the central difference
gives a much more accurate approximation of the derivative compared to the forward and
backward differences. Along a track, only apart from the first and the last points, since
the derivative along all the other points are estimated using central difference scheme
any deviation in the derivative estimated from that estimated using linear approximation
could be mainly from the points at the edges of the track. For the velocity estimated this
is low as there is a very good match between the velocity estimated by the two methods.
This is not true for the acceleration calculated as shown in fig 3.24(b). The acceleration
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Figure 3.24: Comparison of the two schemes of linear approximation and central difference
in estimating(a) velocity components (b) acceleration components for all points along
a track and (c) acceleration components excluding the two end points of a track. The
markers represent those calculated using linear approximation and solid lines represents
values calculated using central difference scheme.

86



3.7 Numerical experiment in a turbulent channel flow

estimated using the forward and backward difference scheme at the edges of the track
varies considerably from that estimated using the linear approximation scheme discussed
in the section 2.3.5. This is proved by plotting the acceleration omitting the two edges of
the tracks where forward and backward difference scheme was used. Hence the approach
of using the linear approximation method to estimate the derivatives is justified as this
method helps in estimating the values of the flow even at the edges of the tracks.

To show that the measured velocity using linear approximation was compared to the
true velocity at those locations using the ’GetVelocity’ function provided in the JHTDB
toolbox. The Lagrangian velocities measured (u+

i lag) at every time step was compared
to the actual DNS Lagrangian velocities (u+

i DNS). Figure 3.25 (a) and (b) shows the
mean and standard deviation of their differences for every time step. Both the plots show
the accuracy and suitability of using the linear approximation method to estimate the
derivatives for the tracking technique in this study.

Mean velocity

A simple interpolation procedure introduced by Agui & Jimenez (1987) is used to interpolate
the velocities to uniformly distributed grid points in the measurement volume, to perform
a qualitative comparison of the Eulerian field with the Lagrangian particle track. The
Agui & Jimenez (1987) method was to use simple convolution with an adaptive Gaussian
window, to estimate the velocity ueul at a location x, as

ueul(x) =
∑

i αiui∑
i αi

(3.15)

where ui are the measured Lagrangian velocities at points xi and

αi = exp(−|x− xi|2

d2
o

). (3.16)

H is the grid spacing, which is chosen based on the mean inter-particle distance for a
particle concentration C, calculated as

do = 1
4C

−1/3 (3.17)

Figure 3.26(a) and (b) shows tracks and snapshot of an instantaneous 3D velocity field
obtained by such an interpolation method, from one of the samples. The grid spacing
in-terms of wall units was d+

o = 20. The track-length of the tracks shown in figure 3.26 (a)
is t+ = 1 and the velocity field snapshot is at time t+ = 0.5. A qualitative comparison
shows a good match between the particle tracks and the interpolated velocity field with
the features of flow captured as it is.
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Figure 3.25: (a) Mean of the difference between measured and real DNS velocity; (b) rms
of difference between measured and DNS velocity.
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3.7 Numerical experiment in a turbulent channel flow

Figure 3.26: (a) Lagrangian tracks of the turbulent channel flow obtained from scanning
particle tracking and (b) a snapshot of an instantaneous 3D velocity field obtained by
interpolating the Lagrangian velocities to grid points.
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To check the accuracy of the measurement, the mean velocity profile obtained from
both the Lagrangian and the interpolated Eulerian field was compared to the mean velocity
profile obtained from DNS (Graham et al. (2016)) . For the Lagrangian measurement,
binning of the trajectories based on their distance from the wall was done, to estimate the
mean in each of the bins. Since the number of trajectories was very less, close to the wall
as compared to the buffer layer, as compared in figure 3.27, a width of the wall distance
bins was chosen as 2 wall-units so that bins include more trajectories and are thus more
statistically converged, but at the expense of increasingly unjustified spatial "smoothing",
as reflected at y+ = 2 in figure 3.28. The mean velocity profile obtained from the Eulerian
grided velocity fields is also compared in figure 3.26 (a). The spatial resolution of the
Eulerian velocity fields is limited to y+ = 20 when compared to a higher spatial resolution
of y+ = 2 obtained from the Lagrangian tracks. The mean stream-wise velocity profile
from DNS is plotted in figure 3.28 (a). This result also supports the conclusion that the
scanning tracking measurement is very well suited for measurements in a turbulent channel
flow.

Spatial velocity gradients

The spatial velocity gradient and the convective acceleration were estimated using the
information from neighboring particles, for which the scheme of Lüthi et al. (2005) was
used with information from the closest ′n′ particles to the point in space where the spatial
derivative is to be estimated. To check the effect of mean filtering, the pdfs of the estimated
diagonal components of the velocity gradients calculated using information from four
choices of distance from the point of calculation; 3do, 4do, 5do and 6do, were compared to
reference case velocity gradients from DNS. Since the spatial resolution is directly related
to seeding density, to study this three different seeding density were considered. Apart
from the seeding density given in table 3.7 a lower seeding density and a higher seeding
density cases were also generated as given in table 3.11. The respective inter-particle
distance do obtained from the tracks at these seeding densities are also provided in table
3.11. The choice of 3do was purely due to the need for a minimum of 4 particles within
the distance chosen to estimate the velocity gradients using the methodology discussed
in the section 2.3.5. For a distance of 2do the average number of particles closer to the
point of calculation within 2do was approximately 3 which was not enough to estimate
the spatial derivatives.

Table 3.9: Mean inter-particle distance for different seeding densities

Seeding density(ppp) 0.025 0.05 0.1
Inter-particle distance (d+

o ) 25 20 15
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3.7 Numerical experiment in a turbulent channel flow

Figure 3.27: (a) Measured particle tracks within the viscous sub-layer (y+ < 101) and (b)
buffer layer (101 < y+ < 102).
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Figure 3.28: Mean velocity profile from Lagrangian and interpolated Eulerian fields,
plotted with the DNS of equal Reynolds number.

The ’GetVelocitygradient’ function as supplied in the JHTDB toolbox (Li et al. (2008b))
is used to estimate the velocity gradients at the measurement points for the reference DNS.
Figures 3.29-3.31 shows the comparison of pdfs of the estimated diagonal components of
velocity gradients to the reference DNS velocity gradients for the four chosen distance
from the measurement point. The tails of the pdfs become successively narrower as the
radius of choosing the nearby particles is increased (a)–(d). The figure shows the average
number of particles within the search radius for each case. On average around 12 particles
are present within a search radius of 3do for all the seeding density, as shown in figure
3.32.

To check the effect of mean filtering on the measured velocity gradients using the
best possible choice of distance 3do, the enstrophy ⟨ω2⟩+ = (⟨ω2

x⟩+ + ⟨ω2
y⟩+ + ⟨ω2

z⟩+) and
dissipation rates ⟨ϵ⟩+ = 2⟨sijsij⟩ terms, whose calculation depends on the quality of the
velocity gradients estimated is compared with that obtained from DNS. The respective
values obtained using 3do for all three cases of seeding densities are compared with their
reference values from DNS as shown in table 3.10. The comparison shows that the
percentage deviation with the reference values decreases with seeding density but has the
effect of mean filtering in the estimation of velocity gradients.

Mean acceleration profile

The mean acceleration profile from the measurement was estimated using the binning
method used to get the mean velocity profile. The measured mean acceleration profile is
compared to the mean profile obtained from DNS at Reτ = 1440 (Nickolas et al. (2017)).
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3.7 Numerical experiment in a turbulent channel flow

Figure 3.29: Comparison of probability density functions for the diagonal components of
the velocity gradient tensor from the reference DNS to that calculated using ’n’ nearest
particles within a distance of (a) 3do, (b) 4do, (c) 5do and (d) 6do, from the point of
estimation for a seeding density of 0.025 ppp.
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Figure 3.30: Comparison of probability density functions for the diagonal components of
the velocity gradient tensor from the reference DNS to that calculated using ’n’ nearest
particles within a distance of (a) 3do, (b) 4do, (c) 5do and (d) 6do, from the point of
estimation for a seeding density of 0.05 ppp.
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3.7 Numerical experiment in a turbulent channel flow

Figure 3.31: Comparison of probability density functions for the diagonal components of
the velocity gradient tensor from the reference DNS to that calculated using ’n’ neartrst
particles within a distance of (a) 3do, (b) 4do, (c) 5do and (d) 6do, from the point of
estimation for a seeding density of 0.1 ppp.
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Figure 3.32: Average number of particles within the selected search radius for nearby
particle for different seeding densities: △△△ ppp = 0.025, ppp = 0.05, o ppp = 0.1.
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Table 3.10: Comparison of enstrophy and dissipation rate between different seeding
density cases and DNS

Quantity Reference DNS case ppp = 0.025 ppp = 0.05 ppp = 0.1
⟨ω2⟩+ 0.0017 0.0010 0.0013 0.0015
⟨ϵ⟩+ 0.0018 0.0012 0.0014 0.0016
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Figure 3.33: Mean acceleration profile obtained from the tracking measurement compared
to the profile obtained from DNS at Reτ = 1440 by Nickolas et al. (2017).

The profile of the normalized mean acceleration ⟨A+
i ⟩ = ⟨Ai⟩/u3

τ/ν in figure 3.33 shows
to be in good agreement with the DNS profile. The contributions towards the mean
stream-wise (⟨Ax⟩) and wall-normal (⟨Ay⟩) acceleration given as

⟨Ax⟩ = −1
ρ

∂⟨P ⟩
∂x

+ ν
d2⟨Ux⟩
dy2 and ⟨Ay⟩ = −1

ρ

∂⟨P ⟩
∂y

(3.18)

A negative dip in the mean stream-wise acceleration profile close to the wall, due to
the d2⟨Ux⟩/dy2 is captured in the mean profile of the measured stream-wise acceleration.
Similarly, positive values in the middle of the channel are also obtained in the measured
profile, the major contributor being the mean stream-wise pressure gradient term.

The large wall-normal pressure gradient compared to stream-wise pressure gradient
is also clearly captured from the measurement, seen in the positive mean wall-normal
acceleration component profile.

3.7.3 Results from particle sizing

The novelty of the technique lies in the fact that the discarded intensity information can be
used to get the size information of the particles from their measured tracks. For the range
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Figure 3.34: (a) Example of scattering peaks within the measurement domain for particles
of size dp = 20, 40 & 80.

of particle sizes chosen in this simulation i.e. 18 < dp < 85, the displacement required to
distinguish between the Mie fits of each particle sizes in this range is estimated based on
the camera configuration. The displacement required is estimated as

∆disp = MR× tan(∆θ/2) (3.19)

where ∆θ is the average distance between two scattering peaks for each particle sizes.
The reason for choosing half of ∆θ is discussed in section 2.3.7. R is the camera distance
from the particle location. ∆θ is estimated by calculating the mean of the difference
between scattering peak locations for each particle size, assuming they have travelled
across the measurement volume. M is the magnification of the lens (M = 0.1, in this
simulation). In this simulation, the diagonal length of the measurement volume is the
maximum distance a particle can travel. This corresponds to a minimum scattering angle
of 40o and a maximum angle of 58o, when combining all the four camera views. Hence the
mean of the difference between possible subsequent scattering peaks between the possible
minimum and maximum scattering angle for each particle size is taken as ∆θ.

Figure 3.35 (a), shows the minimum displacement required to apply the Mie fit for
each of the particle sizes chosen in this simulation, for the chosen configuration, estimated
using equation 3.19.

To estimate the track length required to perform the fitting procedure for particle sizing,
the mean displacement for each track length based on ∆t and the mean velocity Uc = 1 is
calculated and plotted as shown in figure 3.35 (b). Based on the mean displacement for
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Figure 3.35: (a) Minimum displacement required for each particle sizes to apply the mie
fit, to retrieve their sizes. (b) Mean displacement estimated for each track length using
the mean flow velocity Uc = 1.

98



3.7 Numerical experiment in a turbulent channel flow

each track length from figure 3.35 (b), the ideal track length that satisfies the minimum
displacement requirement are tracks with track length greater than 15, but since a track
length of 10 satisfies the minimum displacement for larger sized particles, in this study to
see the effect of smaller track lengths on the accuracy of the measured sizes, tracks with
track length greater than 10 (t+ = 1) is taken.

Using all measured tracks with track length greater than 10, the distribution of the
expected (true) and the measured sizes is compared in figure 3.36 (a) and (b). The
measured size distribution does not represent the expected size distribution completely,
the measure size distribution shows extending tail for all the three size groups.

To find out the reason for the differences between the measured and expected size
distribution, various parameters like track length, minimum displacement and missing
intensities on the wrongly sized particles were examined. The wrongly sized particles were
estimated by choosing all the measured particles (and their tracks), whose magnitude of
difference with the true size was more than 1. Around 34% of the total measured sizes
are wrongly measured sizes. Figure 3.37 (a) and (b) shows the difference between the
expected distribution of those wrongly sized particles to their measured distribution.

Effect of track length

Figure 3.37, shows the number distribution of wrongly sized particles for each track length.
Even though the number reduces as the track length increases, this does not truly represent
the reason for the error in these measured sizes, as only around 40% of these particles
have track length less than 15. Hence the notion of shorter tracks leading to wrongly sized
particles does not complete the reason for wrong fits (wrongly sized particles).

Effect of missing intensities

The track data set mainly consist of the 3D location, scattering angle from each camera
based on the 3D location and the Gaussian fitted scattering intensities from each camera
views. In the triangulation process (four-camera triangulation), in some cases, 2D particle
locations (intensities) from one or two camera views will be missing, wherein in such
cases, three or two camera triangulation are performed. The reason for the missing 2D
particle location is due to the effect of overlapping particles within images as discussed in
section 2.3.1. During the triangulation step also there are chances of missing avoiding a
2D particle location from one or two camera views as the re-projection error from those
views could be above a certain re-projection error threshold (as discussed in section 2.3.2).

Effect of particle displacement

The third parameter that was examined was the total displacement of each of the wrongly
sized particle along their tracks is calculated. The calculated displacement for each wrong
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Figure 3.36: A comparison between the (a) expected size distribution from the measured
tracks and (b) measured size distribution using the Mie fitting routine.
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Figure 3.37: Number distribution of wrongly sized particles for the chosen track lengths.

particle is then compared to the minimum displacement required by the real particle
size for the Mie fitting step. All the particles that were wrongly sized did not fulfill the
minimum displacement required for Mie fitting as shown by the number distribution in
figure 3.38 (a). A similar number distribution plotted for the rightly sized particles clearly
in figure 3.38 (b) shows that all the rightly sized particles had fulfilled the criteria of
minimum displacement for Mie fitting.

Table 3.11: Comparison of particle sizing error before and after interpolation

Error within ±1 Error > ±1
before interpolation 59085 63985
after interpolation 86886 36184

mean error rms error
before interpolation 7.478 21.308
after interpolation 0.7829 10.44

The missing intensity and displacement information was interpolated using a spline
interpolation method and the Mie fitting routine was applied. Table 3.11 compares the
sizing error before and after interpolation of the missing intensity information. Figure
3.39(a) and (b) shows a comparison of the expected size distribution particle with the
size distribution obtained after interpolating the missing intensity and displacement
information.

101



Numerical simulation

d
p

N
u
m

b
er

 d
is

tr
ib

u
ti

o
n

d
p

N
u
m

b
er

 d
is

tr
ib

u
ti

o
n

Figure 3.38: A comparison between the (a) number distribution of the wrongly sized
particle that did not fulfill the minimum displacement criteria for Mie fitting and (b) that
in the case of the rightly sized particles.
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Figure 3.39: A comparison between the (a) expected size distribution from the measured
tracks and (b) measured size distribution using the Mie fitting routine on interpolated
data.

3.8 Summary

A novel method for Lagrangian particle tracking based on a scanning laser technique.
Particles are first triangulated in the 3D measurement domain and then linked in subsequent
volumes in time to form tracks from which Lagrangian velocities and accelerations can
be calculated. The main contribution of the present work is to improve the particle
triangulation efficacy. We demonstrated the use of a fitted sheet space number, which
serves to further restrict the particle search depth in the scanning direction. The new
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method accurately triangulates a large fraction of true particle locations for very high
particle densities, up to an equivalent particle image density NI ≈ 0.125 ppp, where typical
volumetric triangulation typically suffers from large fractions of falsely detected particles
when NI ≈ 0.005 ppp. The fraction of successfully triangulated particles remains high in
the presence of mild to moderate noise, and particle movement during the scan for finite
scanning laser sheet speeds can be corrected if the sheet speed is at least two orders of
magnitude larger than the characteristic velocity scale of the flow. The technique was
tested via synthetic experiment using a DNS database, mimicking the conditions of a
previous scanning setup, for which we were able to calculate Lagrangian velocities and
accelerations. Spatial resolution was demonstrated by a very good correlation of the
Lagrangian acceleration with the local and convective accelerations. An inherent upper
limit on the magnitude of accelerations measurable was found for very dense fields using
the current tracking algorithm due to a reduced mean inter-particle distance. To avoid
ambiguity when forming particle tracks, the more dense a particle field is, the smaller the
permissible search radius about a particle’s predicted location at a subsequent time step.
A more advanced particle tracking algorithm could possibly permit larger accelerations to
be detected at higher densities.

The new scanning PTV method presents a robust technique for obtaining Lagrangian
statistics in densely-seeded measurement volumes, required for the adequate spatial
resolution of flows with high Reynolds number.

The experimental design consideration for particle sizing, such as the measurement area,
camera angle, measurable size ranges, camera aperture and the number of cameras have
been discussed. The scanning sizing technique was applied to synthetic data, with known
sizes, to demonstrate the ability of the technique to retrieve the particle sizes accurately.
The addition of noise did not reduce the accuracy of the sizing technique drastically. The
error increases with decreasing particle size, due to the dominating influence of the noise
on their scattered intensity. Whereas, misalignment in the cameras showed an opposite
trend, where the error increases for larger particles, due to the mismatch arising due to
the increasing scattering patterns. The numerical assessment shows that serious errors
can occur when the signal to noise ratio decreases but the size measured are not affected
seriously when the is calibration error is within 2.4 px. Finally, the suitability of the current
technique for different types of flows was shown by conducting numerical simulations on
HIT and turbulent channel flows. The particle sizing technique showed its suitability in
retrieving back the sizes from a flow mixed with multiple size distributions.
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Chapter 4

Validation of the scanning
particle tracking and sizing
technique via laboratory
experiment

4.1 Introduction

Having introduced the experimental methodology in Chapter 2, and its optimisation and
validation via numerical tests in Chapter 3, the technique is implemented in a laboratory
experiment, the details and results of which are covered in this Chapter. The chapter
begins by introducing the experimental set-up, before presenting the results from both
Lagrangian tracking and the novel particle sizing technique.

4.2 Experimental setup

Figure 4.1 shows a diagram of the setup used for the scanning tracking and sizing
experiment. The measurement volume is located at the mid-plane. Nearly neutrally
buoyant seeding particles are recorded with three cameras. Illumination is provided by a
Photonics Industries DM Green series Nd-YAG laser, whose beam is steered into a set
of optics that expand the beam into a sheet and scan it across the measurement volume.
The entire process is coordinated by Davis software provided by LaVision GmbH, which
generates trigger signals for the cameras as well as for the scanning optics. The parameters
of the cameras and the scanning experiment are provided in table 4.1. The recorded
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single time series measurement consists of 600 scan volumes separated by dt = 20ms. A
total of 8-time series measurements were taken in order to increase the data sample for
convergence, with each time series measurement separated by a data transfer and storage
time of approx 15 minutes.

Table 4.1: Scanning experiment parameters

Parameter Symbol Value
Camera distance from the volume Do (mm) 800
Focal length of the lens Di (mm) 105
Image resolution px 728 × 728
Camera 1 viewing angle θ1 ≈-32o

Camera 2 viewing angle θ2 ≈34o

Camera 3 viewing angle θ3 ≈48o

Volume width Lx (mm) 128
Volume height Ly (mm) 128
Volume depth Lz (mm) 26
Number of sheets Ns 66
Mean laser sheet thickness w (mm) 2.4

This section now details the experimental setup, specifically, the flow facility, scanning
optics and seeding.

Scanning optics

Laser

Synchronisation device

3

2

1

Measurement volume

Scan

direction

nominal

sheet

numbers

ns

z

x

Figure 4.1: Schematic of the experimental setup.
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4.2.1 Flow facility

The flow between two counter-rotating disks or impeller has been measured in a large
number of experimental studies in order to investigate small scale turbulent structures
(Lawson & Dawson, 2015; Worth & Nickels, 2011). Rotating the disks in opposite directions
at equal velocities causes the fluid nearest the impellers to spin in opposite directions,
establishing a strong shear plane in the centre of the tank, which creates the majority
of the turbulence. The accelerated flow nearest to the impeller is expelled at the walls,
which provides energy injection in the centre mixing layer of the tank. The energy is
then advected towards the impeller via Ekman pumping for further reinjection (Kuzzay
et al., 2015). As a result of this, two secondary toroidal recirculation regions are formed,
stretching the flow in the central region. The flow has been shown to be anisotropic even
at fine scales (Lawson & Dawson, 2015).

Globally inhomogeneous phenomena emerge when one varies the speed of one impeller
with respect to the other. Figure 4.2 (Poncet et al., 2008) shows the flow structures for
varying ratios of speeds between the impellers in a plane parallel to the axis of rotation.
In the exact counter-rotating regime, the flow is symmetric and two cells with the same
size coexist, with a shear plane in the center (figure 4.2(a)). For small rotating speed
differences, the structure of the mean flow is strongly dominated by the faster disk as seen
in figure 4.2(b). Varying the ratio of speed displaces the shear layer towards the slower
disk as seen in figures 4.2(c) and (d). The present flow structure resembles that observed
in the rotor-stator configuration with streamline patterns parallel to the rotating axis
towards the rotating impeller, when the other impeller is stationary, as shown in figure
4.2(e).

Figure 4.2: Flow structures seen when the impeller speed ratio is varied (Poncet et al.,
2008).
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The contribution of Ekman pumping in the generation of von-Karman mixing thus can
be studied by making one of the impellers stationary. This leads to an Ekman pumping
flow to the rotating impeller from the non-rotating impeller instead of that from the
center of the tank, which creates a mean upwelling flow in the tank center. Such a
flow is chosen for this study for the following reasons; 1) using a known flow to test the
technique 2) the central region of the flow has mean velocity as compared to the case of
two counter-rotating impellers. This is ideal for the particle sizing part of the measurement
technique, as particles must move a certain minimum distance across the measurement
region to provide the scattering peaks as discussed in section 3.5.1. Also, the simple 2D
nature of the flow, makes it easier to track the particles in order to demonstrate and
validate the current scanning tracking and sizing technique.

Figure 4.3 illustrates the large mixing tank facility. It is a dodecagonal perspex tank
which is 2m in height and has a diameter of 2m. To generate an Ekman flow, the water in
the tank is stirred by a rotating impeller fixed at the top of the tank, which is equipped
with eight vanes. The radius of the impeller Rimp is 0.8m. The bottom impeller is
kept stationary. Baffles at each of the twelve corners of the tank damp net rotation and
contribute to the generation of turbulence. A stepper motor drives the impellers at the
rate of ΩI = 2 rpm. The impeller velocity uimp is the tip velocity calculated based on the
impeller radius and the impeller rotation rate.

Figure 4.3: Schematic of large mixing tank facility.

4.2.2 Camera configuration

Imaging is performed using three Phantom v2012 cameras, as illustrated in figure 4.5. A
three-camera setup has been used for the laboratory experiment owing to its advantages
in improved triangulation efficacy, as discussed in section 3.5.5. The cameras are equipped
with Sigma 105 mm macro-lenses, using f = 22 which provided sufficient depth of field to
keep particle images in focus over the scan depth. Scheimpflug adapters are used and the
measurement volume is offset 200 mm from the centre of the tank. A cropped resolution
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4.2 Experimental setup

Figure 4.4: Image of the impeller used to rotate the water in the mixing tank.

of 728 × 728 pixels is used in order to increase the magnification required for the sizing
approach, as discussed in section 3.5.1.

Figure 4.5: Image of the camera configuration used for the scanning experiment.

4.2.3 Scanning optics

To generate approximately parallel laser sheets with control over the laser sheet thickness,
an optical set-up similar to Lawson & Dawson (2014) is used, schematically shown in
figure 2.1. An image is shown in figure 4.6. The set of optics used to generate the parallel
sheets followed the same configuration as that detailed in section 2.1. A total of 66 parallel
laser sheets with a mean thickness of 2.4mm was generated using this configuration.

4.2.4 Seeding and water temperature

Two different mean sizes of polystyrene particles are used in the experiment. The specific
products are TS-80 Microbeads AS and TS-40 Microbeads AS, with batch numbers, 3I-080-
1771 and 2B-040-1518, and mean diameters of 80µm and 40µm respectively. The density
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Figure 4.6: Side and top view images of the scanning optics.

of the particles is 1.05kg/L. Two different particle sizes were chosen for the validation of
the particle sizing approach.

4.2.5 Characteristic scales of the flow

The characteristic scales of the flow are given in table 4.2. The Kolmogorov length scale η
is defined as

η =
(
ν3

ϵ

)1/4

, (4.1)

and the corresponding Kolmogorov timescale τη is defined as

τη =
(ν
ϵ

)1/2
. (4.2)

The dissipation rate ϵ was estimated using the simplest method of calculating it directly
from the relation

ϵ = 2νsijsij (4.3)

where sij is the strain rate tensor and ν is the kinematic viscosity of water at 20oC.
The Taylor Reynolds number Reλ is obtained as

Reλ =
√
u2λ

ν
(4.4)

with √
u2 =

√
u2

x + u2
y + u2

z (4.5)

and the Taylor microscale length λi is estimated as

λi =

√
u2

i

(∂ui/∂xi)2
. (4.6)
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Table 4.2: Characteristic scales of the flow. fI is the impeller rotation frequency and ∆t
is the separation time between subsequent scan volumes.

fimp ϵ τn η Reλ τη/∆t
(Hz) (mm2/s3) (s) (mm)
0.03 22.09 0.2 0.45 575 10

4.3 Particle tracks

4.3.1 Algorithm parameters for tracking

Three-camera triangulation was performed to get the 3D locations of the particle. To
estimate the camera background noise, camera dark images with no particles were recorded.
The recorded dark image had a Gaussian profile with a mean intensity value ≈2% of
the maximum intensity count of 4096. Hence a particle intensity threshold of 0.02 times
the maximum intensity from each of the sheet images from all three views, was used to
identify the 2D particle location. In order to deduce the fitted sheet number fs and the
peak particle intensity to be used in particle sizing, repeated images of the same particle
in adjacent (overlapping) laser sheets must be grouped as being measurements of the
same particle. For this purpose, a tolerance of 1 px was used for the displacement of
the particle during the scan, but it should be noted that this is much smaller than the
expected displacement of the particle over that time and much smaller than the average
inter-particle distance. This tolerance accounts for small measurement errors and the
small particle movements during the time adjacent images are taken. At infinite scanning
speed, the particle would not move during the scan for example. The triangulation was
iterated 3 times, to triangulate the particles from the residual images. The RMS fit error
from the camera calibration was 0.5, 0.56 and 0.57 px for the three cameras respectively.
The maximum allowed triangulation error was hence set to 2px, in order to account for
misalignment errors.

To track the particles in time, a predictor velocity field was used. The predictor velocity
field was calculated by cross-correlating the 2 camera reconstructed intensity fields, using
in-house code as detailed in Lawson (2015). A search radius of 5vx was used to link the
particles in consecutive volume.

4.3.2 Track length

Particle trajectories which are longer than the relevant Kolmogorov scales, η, and τn, are
the key prerequisite for Lagrangian flow analysis and, as will be shown in the later sections,
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they also significantly enhance the accuracy of the applied processing to obtain velocity
derivatives.
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Figure 4.7: (a) The fraction of particles dropping out of the measurement volume at every
time step. (b) The fraction of particle tracks for a certain length.

Since the flow in the center of the tank has a mean component, the particles do not
stay in the measurement volume for a long duration. This effect is known as particle
dropout. This is reflected in the measured tracks, as the number of particle tracks at
increasing track lengths diminishes exponentially. Figure 4.7(a) shows the fraction of
particles dropping out from a volume at each time step. The track length is represented
as a function of the fit time (Lüthi et al., 2005; Voth et al., 2002) which is ∆t, normalized
by the Kolmogorov timescale τη. The particle drop out rate is constant across the time
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4.4 Velocity fields and statistics

step, but since this effect is cumulative the number of tracks with a certain track length
decreases exponentially. Figure 4.7(b) shows the exponential decrease of the fraction
of particle tracks for increasing track lengths. In a single set of total track length 60τη

successive short track sets with a track length of 3.5τη were measured.
The decrease in the fraction of the tracked particle is shown in the two plots in figure

4.8, both obtained from the same set but with two different track lengths. The particle
tracks are color coded with velocity magnitude normalized by the impeller velocity, which
in this study is uimp = 166mm/s. Figure 4.8(a) shows particle tracks with track length
1τη and figure 4.8(b) shows particle tracks with track length 2τη. The track sets show a
large scale mean shear structure whose order is of the measurement volume. The large
scale structure of the flow from the tracks shows a predominant upward pumping mode
accompanied by a cylindrical shearing mode, along the rotational direction of the impeller.

4.4 Velocity fields and statistics

To have a qualitative Eulerian picture of the large scale properties of the flow, a temporal
average obtained by averaging samples separated by large time intervals of the velocity
field is obtained. To represent the mean velocity field on regularly spaced grid points from
the Lagrangian tracks an adaptive Gaussian windowing technique by Agui & Jimenez
(1987) is used. To do this, tracks with track lengths 1τη from track sets separated by 3.5τη

were selected and the velocities at their midpoints locations were used to interpolate onto
regularly spaced grids with grid spacing equal to twice the mean interparticle distance, in
this case, the mean distance between track midpoints was approximately 1η.

Figure 4.9 (a), (b) and (c) shows the mean-field of all three velocity components in
an x-y plane at the central z-plane, i.e. the centre of the measurement volume and figure
4.9 (d) the magnitude of velocity normalized by the impeller velocity. A comparison
of the mean velocity fields between the three components shows that the axial velocity
component (uy) is almost an order of magnitude higher than the other two components.
The predominant upwelling of the flow is caused due to Ekman pumping between the
bottom stationary and top rotating impeller.

The nature of the flow is also checked by quantifying the Lagrangian velocity distribu-
tion. The velocity components along the tracks are obtained using the fitting procedure,
hence one would expect possible errors in the velocities estimated at the endpoints along
the tracks which could lead to misinterpreting the statistics presented in this study. The
effect of velocities calculated at the two edges of the tracks by comparing the pdfs obtained
by chopping off the edges of the tracks obtained. Figure 4.10 shows the comparison of
pdfs the Lagrangian velocity normalized by impeller velocity obtained for a track length
of trl = 2η. In figure 4.10(a), the pdfs are obtained from all points along tracks with
trimmed edges. The distribution obtained from the middle of the track clearly shows the
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Figure 4.8: Example showing particle tracks from a single set with three different fixed
track lengths of (a) 1τη and (b) 2τη. The particle tracks are color coded with magnitude
of velocity normalized by the impeller velocity, uimp = 166mm/s.
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Figure 4.9: Spatial distribution of the time averaged mean velocity components (a) ux (b)
uy (c) uz and (d) the magnitude of velocity

√
u2

x + u2
y + u2

z, normalized by the impeller
velocity uimp in a x-y plane at the center z-plane of the measurement volume.
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least irregularities in the distributions. The distributions are quite similar meaning the
sample at one timestep is large enough since multiple time steps are needed for tracking,
the statistics in this study were obtained from all points along tracks with the edges of
the tracks trimmed.

In all cases, the transverse components distributions fall on top of each other showing
symmetry. The distribution of the axial velocity component uy shifted towards the positive
value in figure 4.10(a), shows the dominance of the vertical velocity due to the upwelling.

Table 4.3: Velocity statistics calculated at the mid point from tracks with track length
2τη .

⟨ux⟩/uimp ⟨uy⟩/uimp ⟨uz⟩/uimp

−0.03 0.5 −0.028
⟨u′2

x ⟩ ⟨u′2
y ⟩ ⟨u′2

y ⟩
10.2 7.2 10.6
Su′

x
Su′

y
Su′

z

0 0 0
Fu′

x
Fu′

y
Fu′

z

3.4 4.2 3.4

The fluctuating velocity field was first computed by performing Reynolds decomposition
using the mean velocity field obtained as discussed above and instantaneous velocity fields
obtained using the interpolation scheme discussed (Agui & Jimenez, 1987). The RMS
of the fluctuating velocity field was then obtained as ui,rms = (ui − ui)21/2. The spatial
RMS field of the fluctuating velocities as shown in figure 4.11 gives an overview of the
fluctuations in the flow. The fluctuations in the transverse directions are higher than those
in the axial direction. A qualitative assessment of the spatial distribution of the RMS
fluctuations shows that the fluctuations in the transverse directions are higher than that
in the axial direction.

In the Lagrangian frame to calculate the fluctuating velocities, the mean ⟨ui⟩ is
subtracted from the Lagrangian velocities, u′

i = ui − ⟨ui⟩. The fluctuating velocities along
the three velocity components were calculated in two ways:

1. Subtracting the mean obtained over the entire time steps or track length.

2. Subtracting the mean at each time step.

The pdfs of the fluctuating velocity components normalized by the impeller velocity
uimp for both the methods is shown in figures 4.12(a) and (b). The pdfs obtained from
both methods hardly shows any differences. This also suggests that the number of samples
every time step is a large enough sample physically for statistical convergence, meaning
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Figure 4.10: Comparison of pdfs of the Lagrangian velocity components normalized by
impeller velocity uimp for a track length of 2τη using (a) all points along track and (b)
middle point of the track.
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Figure 4.11: Spatial variation in rms of fluctutaing velocity components normalised by the
impeller velocity, in a x-y plane at the center z-plane of the measurement volume.

the mean at every time step is similar to the mean at all the time steps, whose values are
given in table 4.3. This hence gives the confidence to remove endpoints, and even just use
the middle track points as shown in figure 4.10(b). For the velocity statistics discussed in
the remaining part of this section, fluctuating velocities obtained by subtracting the mean
at each time step has been used.

The fluctuating velocity normalised by impeller rotation velocity is fitted to zero-mean
Gaussian distributions using a least-squares approach. Symmetry similarities identified in
figure 4.11 between the transverse components ux and uz is also seen the pdfs in figures
4.12(a) and (b). This cause of this effect was previously found discussed in Voth et al.
(2002), the mean strain field generated by the Ekman pumping has the effect of amplifying
the axial vorticity leading to an increase in transverse turbulent fluctuations. This effect
can be seen by comparing the figure 4.11, with the normalized RMS fields in the transverse
directions, ux,rms ≈ 0.08 and uz,rms ≈ 0.075, to that of the axial direction, uy,rms ≈ 0.04,
producing a ratio of ≈ 0.5 . This result is in broad agreement with Voth et al. (2002) who
also found a ratio of 0.5 between axial and transverse RMS fluctuations, because of this
poloidal mode or the Ekman pumping mode.
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Figure 4.12: Comparison of pdfs of the fluctuating velocity components normalized by
impeller velocity uimp obtained (a) by subtracting the mean velocity obtained over the
entire measurement time window or track length (b) by subtracting the mean at each
time step.

To describe the level of variability about the mean, the variance or the second moment
of the fluctuating quantity u′

i = ui− < ui > is calculated. Figure 4.13 shows the calculated
variance of the velocity components for increasing track length. Since the flow is dominated
in the axial direction and symmetry is expected in the transverse direction, as seen in the
pdfs of the transverse components in figure 4.13, the value of the variance of the transverse
fluctuating components should be close to each other. In figure 4.13, the ratio of the
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velocity variance in transverse and axial directions is about 1.34, when compared to the
value of 1.5 reported in the literature (Lawson, 2015; Voth et al., 2002; Worth, 2010).

t
 /

Figure 4.13: Measured velocity variance as a function of normalized track length ∆t/τη.

Skewness is the third moment of u′
i normalized by the variance. Figure 4.14(a) shows

the skewness of velocity components for an increasing track length for the available ranges.
All three velocity components show a very small deviation from a zero skewness value for
all the track lengths available. This shows that the velocity fluctuations along the track
length are less intermittent.

The deviations in the pdfs of the velocity fluctuations from the Gaussian curve fitted
in figure 4.12 can be quantified by measuring the flatness value of the distributions. Figure
4.14(b) shows the flatness value (F) of these velocity fluctuations for increasing track
lengths. Flatness is the fourth moment of u′

i, normalized by the variance. Gaussian type
flatness was reported by Voth et al. (2002), for particles in a von Karman flow, with
measured flatness F around 2.8-3.2. The transverse components have a near to Gaussian
flatness of 3, while the flatness value of the axial component has a slightly higher value of
4. The velocity flatness depends on the details of the large scales of the flow. In this flow,
the flatness of the axial component with the smaller RMS is larger than Gaussian flatness
and the flatness of the transverse components component with the larger RMS is closer to
Gaussian flatness.

The statistics of velocity components were shown to be anisotropic and inhomogeneous
at the measured region, which is the centre of the tank. The next section examines statistics
of velocity gradients and in a later section that of acceleration, both being fundamentally
small-scale quantities, and explores where, and to what extent, this behaviour holds in
this flow.
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Figure 4.14: (a)Skewness of the velocity fluctuations and (b) flatness of the velocity
fluctuations for increasing normalized track length ∆t/τη.

4.5 Velocity gradients

Elements of the velocity gradient tensor, Aij = ∂ui/∂xj , play an important role in
the dynamics of turbulence, with the antisymmetric part of the velocity gradient tensor
manifesting the rotational nature of turbulence, thereby vorticity and the symmetric part
representing dissipative nature of turbulence, and thereby strain. Apart from vorticity
and strain/dissipation, the characteristics of the field of velocity derivatives in turbulent
flows reflect the physics of the turbulence as it is much more sensitive to the structure of
the turbulence.
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The spatial gradients at a point x0 are estimated using the procedure explained in
section 1.3.2, using weighted contributions from particles according to their distance
||xi −x0|| from spatial location in question x0. Information from the closest 20 particles to
the point in space where the spatial derivative is obtained is used along with information
from times t and t± 2 ∆t. The average inter-particle distance in the present fields from
the tracked particles is approximately 3 η.

4.5.1 Quality of velocity gradients

The quality of velocity gradients measurement is checked using the continuity equation. A
divergence criterion where the trace of ∂ui/∂xj , should be zero is a check of continuity
and hence is used here.

Figure 4.15 shows the joint PDFs of − ∂ui

∂xi
versus ∂uj

∂xj
+ ∂uk

∂xk
. In all the cases, a higher

amount of data points are close to the diagonal. Also, in all the cases, a correlation is
examined between the terms on the left-hand side to those on the right-hand side. A
correlation coefficient of Q = 1 denotes adherence to the incompressibility claim.

In all the cases, plotted in figure 4.15, the correlation coefficient Q is close to unity. The
good correlation from the joint PDFs of the divergence terms demonstrates the accuracy
of the filtering method involved in estimating these quantities. A close to unity correlation
coefficients, hence proves that the steps involved in measuring these terms using the
weighted polynomial (Lüthi et al., 2005), clearly enhances the measurement quality and
the accuracy of the terms obtained.

Since the velocity gradients, ∂uj/∂xj inherently describes differences in the velocity
component values at closely spaced points, contributions from the large scales cancel
almost entirely (Ishihara et al., 2007; Mullin & Dahm, 2006). Hence the one-dimensional
PDFs of the velocity gradients here are used to check the spatial resolution of the measured
tracks. Figure 4.16(a) shows the one-dimensional PDFs of the diagonal components of
the velocity gradient tensor. The tails of the PDFs are wide and extends up to 10/τη.
This shows that the spatial resolution is not coarsened. Since any nonlinear function of a
Gaussian is non-Gaussian, the non-Gaussian PDFs of the longitudinal velocity gradients
with exponential tails also validates the accuracy of the measurement, as the PDFs of the
velocities are Gaussian. Similar PDFs of the transverse velocity gradients are shown in
figure 4.16(b).

4.5.2 Vorticity and strain

As shown above, the scanning particle tracking technique is successful in providing the
full set of spatial velocity derivatives of the flow. To demonstrate the capability of the
technique to recover most of the relevant results on the turbulent fine-scale structure,
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4.5 Velocity gradients

Figure 4.15: J-PDF of the continuity equation terms, -∂ui/∂xi = ∂uj/∂xj + ∂uk/∂xk.
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Figure 4.16: (a) PDFs of the longitudnal velocity gradients ∂ui

/∂xi. (b) PDFs of the tranverse velocity gradients ∂ui/∂xj . i ̸= j

statistics of vorticity and strain that are specific to fluid turbulence as demonstrated by
Lüthi et al. (2005) are now considered for the present data.

One distinctive feature of a 3D turbulent flow is the positive net enstrophy and
strain production terms (Tsinober, 2009). The non-linear term responsible for enstrophy
production is ωiωjsij , which is the interaction between vorticity ω and the strain rate
tensor sij . The strain production term −sijsjkski plays an equal role along with enstrophy
production term in processes like energy dissipation and vortex stretching. Hence a check
on the positive rates of these two terms can be regarded as the most basic distinction
of turbulence to a random Gaussian velocity field, which can be conducted to verify the
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Figure 4.17: (a) PDFs of enstrophy production ωiωjsij and strain production -4/3sijsjkski

terms. The symbols represent similar result from Lüthi et al. (2005) for a von Karman
flow. (b) Logarithmic joint PDF of ωiωjsij and -4/3sijsjkski.

measured tracks. Shtilman et al. (1993) using DNS of homogeneous turbulence showed
that features of turbulence concerning vorticity and strain most of which are not observed
in a Gaussian flow field, are specific to genuine fluid turbulence. Such a result was
reproduced by Lüthi et al. (2005) to show the accuracy of their particle tracking technique.
A similar result is reproduced here to demonstrate the capability of the particle technique
in recovering most of the relevant results on the turbulent fine-scale structure, statistics of
vorticity and strain that are specific to fluid turbulence. Figure 4.17 the PDFs of ωiωjsij

and -4/3sijsjkski shows positive skewness for both enstrophy and strain production terms.

125



Experimental Results

The results are compared to that obtained by Lüthi et al. (2005) for a von Karman flow.
In figure 4.17(b) the logarithmic joint PDF of ωiωjsij and -4/3sijsjkski also shows the
positive skewness of these terms. In addition to this, it also shows the weak correlation
between these two terms by showing how strong production of enstrophy inhibits strong
production of strain and vice versa.

4.6 Acceleration measurements

The particle accelerations are measured using the steps detailed in section 2.3.5. This
section begins by validating the accuracy of the measured acceleration from the tracks
using single point kinematic relations, which is followed by several statistical results of the
measured acceleration and comparing them to known or expected acceleration statistics.

4.6.1 Quality of the temporal derivatives

A stronger check on the accuracy of the measurement involving all the terms that could
be measured, namely, Lagrangian accelerations, ai = Dui/Dt, local accelerations, al,i =
∂ui/∂t and convective accelerations, ac,i = uj∂uj/∂xj , is performed as explained in section
2.3.5. This test is more difficult to pass compared to that shown for the continuity equation
in figure 4.15 as all the terms in this test are derived in a different manner.

Figure 4.18, shows the joint pdf of Lagrangian acceleration and the sum of local
and convective acceleration. The correlation coefficient Q, close to unity shows the high
accuracy in the temporal gradients measured by the tracking method.

4.6.2 Acceleration alignment

The alignment between the Lagrangian accelerations, ai = Dui

Dt , and the summation of
local accelerations al,i = ∂ui

∂t and convective accelerations ac,i = uj
∂uj

∂xj
, is shown in figure

4.19 in terms of the PDF of the cosine of the angle between the two vectors. The PDF is
strongly positively skewed, indicating that the two terms are statistically aligned.

In the same figure, the PDF of the cosine of the angle between the local acceleration
and the advective term is also shown. The PDF is negatively skewed, indicating that the
two terms are anti-aligned: the two terms partly compensate each other while contributing
to the Lagrangian acceleration of the fluid particle. This observation hence also validates
the accuracy of the measurement (Tsinober, 2009).

4.6.3 Acceleration variance

Estimation of acceleration can be subjected to errors due to erroneous tracks. Hence a
primary concern in measuring accelerations is to determine whether the track lengths used
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Figure 4.18: J-PDF of the acceleration terms from all three velocity components, Dui/Dt

= ∂ui/∂t+ uj∂ui/∂xj .
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Figure 4.19: PDF of the cosine of the angle between the Lagrangian acceleration vector
along trajectories, and the summation of the local acceleration and the advective accelera-
tion (circles). PDF of the cosine of the angle between the local acceleration and advective
acceleration (stars).

to estimate the acceleration are long enough to eliminate contributions from measurement
error and still short enough not to average over the structure of the true trajectory. To
examine this, the RMS acceleration is calculated as a function of normalized track length
(∆t/τη). Figure 4.20 shows the measured acceleration variance < a2

i >
1/2, for the three

different components as a function of the normalized track length ∆t/τη. There is a sharp
turn up for times shorter than 1τη. The high variance at shorter track lengths could
be either due to erroneous tracks or extreme accelerations captured for shorter tracks.
The slow fall off at longer times is at least partly a result of the tracks averaging over
the true trajectories. Around 1.5τη, the RMS values of the transverse components are
approximately the same for all track lengths. The RMS of the axial component is slightly
higher than the transverse components, with the ratio between the transverse to axial
component RMS being 0.7. To evaluate the statistics, the acceleration measurements
obtained from trajectories with track length above 1.5τη have been used.

4.6.4 Acceleration probability density functions

The PDFs of the transverse (ax), (az) and axial (ay) Lagrangian acceleration (ai) are
shown on a log-linear plot in figure 4.21. The acceleration is normalized by the measured
RMS acceleration, and track lengths greater than 1.5τη are used. The first thing that
stands out is the long stretched exponential tails, which demonstrates a strong deviation
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Figure 4.20: Measured acceleration variance as a function of normalized track length
∆t/τη.

from Gaussian behaviour as shown previously by Voth et al. (2002). As in the numerical
simulation case in section 3.4.1, the reference curve fit of Voth et al. (2002) is given as

a
x

a
y

a
z

Figure 4.21: PDFs of the three components of acceleration components normalized by rms.
The solid line represents a stretched exponential form given by Voth et al. (2002).

P (a) = C exp(−a2/((1 + |aβ/σ|γ)σ2)), (4.7)
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where β = 0.539, γ = 1.588, and σ = 0.508 (Voth et al. (2002)). When compared
to the transverse components, the PDF of the axial component deviates from the PDF
function given by Voth et al. (2002) for a counter rotating impeller flow. Even though
the PDFs of all the three components collapse until a width of 10arms, the acceleration
components are also not isotropic as the ratio of rms of axial component ay to transverse
components ax is approximately 1.3. The intermittency in the acceleration components is
studied in the next section.

4.6.5 Acceleration intermittency

Studying the flatness of the probability distributions of acceleration shown in figure 4.21
would be an effective way to measure of the extreme events relative to the events close to
the mean. The flatness value given by Fi = <a4

i >

<a2
i
>

is reported to be in the range of 23 to
30 by Mercado et al. (2012) showing increasing trend with increasing Reλ as reported by
Voth et al. (2002). The flatness value obtained by Mordant et al. (2004) was 55 ± 8 at
Reλ = 690.

The flatness value Fi obtained in the current study is shown in the table 4.4. The flatness
values obtained from fourth-order moments of the transverse acceleration components
show good agreement with those reported by Voth et al. (2002), Mordant et al. (2004) and
Mercado et al. (2012), but the extreme intermittency in the acceleration along the axial
direction is clearly seen in the high flatness value. The skewness of all three acceleration
components was close to zero, showing their symmetry.

Table 4.4: Flatness value from the experiment.

Fx Fy Fz

67 60 71

Since the transverse component acceleration PDFs match with the expected PDF in a
von Karman flow, the relative contribution to the second (a2

iP (ai)/ < a2
i >) and fourth

moments (a4
iP (ai)/ < a4

i >) of these acceleration components is shown in figure 4.22.
The area under these curves gives the fourth moment, and the scatter is often used to
determine the level of convergence of the moment. The fourth moment shows a better
convergence when compared to the results from Beck (2001) and Voth et al. (2002), with
tracer particles in a von Karman flow.

To show the convergence of second and fourth moments, the positive part of the
PDFs of the second and fourth moments of acceleration shown in figure 4.22 for all three
components is shown in figure 4.23. One can derive an equation for the acceleration
moments from the fit 4.7. This is plotted against the present data on figure 4.23 and
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Figure 4.22: The relative contribution to the second (a2
xP (ax)/ < a2

x >) and fourth
moments (a4

xP (ax)/ < a4
x >) of the acceleration components.

Figure 4.23: Contributions to the (a) second (a2
xP (ax)/ < a2

x >) and (b) fourth moments
(a4

xP (ax)/ < a4
x >) of the acceleration components.

reasonable agreement is found. The fourth moment shows a very good convergence up to
10arms beyond which it starts to diverge somewhat, nevertheless following the stretched
exponential trend.

4.7 Particle size

The accuracy of the obtained particle tracks and the extra information of scattered intensity
corresponding to the center of the Gaussian sheet of individual particles can be now used
to measure the size of the individual particles as previously shown in Chapter 3. Two
different mean sizes of polystyrene particles are used in the experiment; TS-80 Microbeads
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AS and TS-40 Microbeads AS, with batch numbers, 3I-080-1771 and 2B-040-1518, with
mean diameters of 80µm and 40µm respectively. The density of the particles is 1.05kg/L.

For the sizing routine, the MATLAB program as discussed in section 2.3.7, was used to
generate tables of scattering intensities over relevant ranges of angles and size parameters
in increments of 0.001 degrees and 0.12 respectively. In the fitting procedure, a higher
prediction interval of 97% was chosen such that the least-squares of difference between
the data and the fit (χ2) was below a certain value. In this study particle sizes obtained
by setting three values of least squares of difference of 0.09, 0.05 and 0.01 corresponding
to a difference between the fit and the data of 0.3, 0.2 and 0.1 was compared. Figure 4.24
shows an example of a typical fitting routine applied on particle scattering intensity data
for a single particle from the three cameras. The measured intensities along the tracks
for all the three cameras are obtained following the methodology discussed in section
2.3.3. Both the measured scattering intensity and the scattering intensity in the Mie fit
are normalized by the respective highest scattering intensity along the track for the three
cameras.

On average, a track length trl = 1τη provides a scattering angle range (∆θm) of 2o.
For a 80µm polystyrene particle the average half distance between two fringes in terms of
scattering angle is 2.5o. Hence selecting all tracks with trl > 1τη will satisfy our condition
that scattered intensity over at least half the fringe distance (∆θ/2) is measured over the
length of the track. For the 40µm particle case, the average fringe distance is slightly
greater than 5o, hence trl > 2τη had to be selected, which also reduces the number of
samples.

4.7.1 Results from two camera combinations

The experiment was performed using three cameras. The fitting procedure for particle
sizing can be done with intensities only from one camera. But since at least two cameras
are required for tracking we will now look systematically at how results look with the
minimum of two cameras and evaluate the improvement/advantage of using three cameras.
For the two-camera setup, stricter conditions of

1. Sizes obtained using individual cameras should match.

2. The least-squares difference between the data and the fit should be below 0.05.

3. The size obtained by fitting a curve over the combination of data from both the
cameras should match the one obtained using individual cameras.

Cameras 1 and 2 are separated by an angle of 2o, which means the combination of the
measured scattering angles from both the cameras is approximately continuous. Figure
4.25(a) and (b) shows an example of the data fit from the two-particle sizes considered
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Figure 4.24: Example of best Mie fit for a particle intensity variation over the scattered
angle obtained from the three cameras views.
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Figure 4.25: Sample scattering intensity data and best Mie fits over the scattering intensity
from camera 1 and camera 2 for a particle from (a) particles with nominal mean diameter
of 80µm and (b) particles with nominal mean diameter of 40µm.

in this study. Cameras 2 and 3 are separated by an angle of 14o. Figure 4.26(a) and (b)
shows an example of the fit of the same particles considered in figure 4.25. Cameras 1 and
3 are separated by an angle of 16o. Figure 4.27(a) and (b) shows the example fit from this
case.

Figures 4.28(a)-(b) shows the pdfs of size distributions obtained from the three combi-
nations (1&2, 2&3 and 1&3 respectively) for the first batch of particles with a nominal
mean diameter of 80µm compared to the expected size distribution from the manufacturer,
Microbeads AS. Similarly figure 4.29(a)-(b) shows the pdfs of size distributions obtained
from the three combinations for the second batch of particles with a nominal mean diameter
of 40µm. The total number of particles sized for the particles with the nominal size 80µm
are approximately 350000 and 120000 for the particles with a nominal size of 40µm. The
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Figure 4.26: Example representing the of scattering intensity data and best Mie fits over
the scattering intensity from camera 2 and camera 3 for a particle from (a) particles with
nominal mean diameter of 80µm and (b) particles with nominal mean diameter of 40µm.

camera combination 1&2 gave the highest percentage of acceptable fits according to the
chosen conditions.

The measured SMD on the other hand is the same for all three combinations, but the
percentage of particles successfully sized as shown in table 4.7 is lower when using a two-
camera combination involving camera 3. Camera 3 is placed at an angle of approximately
45 degrees from the plane of the laser sheet. The intensities from camera 3 are hence
weaker compared to that from camera 1 and 2. As a result of this, the chances of particles
not detected from the third view is high compared to the first and the second view. Hence
in many cases intensity variations (data points) along a track from camera 3 are lower
compared to those on camera 1 and 2. To remind, the particles which are not triangulated
using three cameras were triangulated using two camera triangulation technique.
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Figure 4.27: Example representing the of scattering intensity data and best Mie fits over
the scattering intensity from camera 1 and camera 3 for a particle from (a) particles with
nominal mean diameter of 80µm and (b) particles with nominal mean diameter of 40µm..

In the figures 4.30, the respective particle is tracked or linked in time 35 times
successfully. But since the particle intensity was not detected in the third camera view at
the 20th time step, only the first 19 of the 35 intensity data from camera 3 could be used
to fit the data. This becomes a major hindrance in measuring the particle size successfully
when using only two camera combination especially when the track length is shorter and
the data point in one of the view is drastically low compared to that from the other view.
As the data points decrease the chances of mismatch in the fit is high. To show this, in
figure 4.30(a) to (b) Mie fits from two-particle sizes close to the expected particle size is
also plotted. In the case of two camera combination, the data from camera 3 individually
fits well with Mie fit from the particle with size 81.4µm, whereas the data from camera 1
and camera 2 when plotted individually matches with the fit from the particle with size
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Figure 4.28: Number distribution and the corresponding SMD determined using the scan-
ning technique, compared to the distribution obtained by the manufacturer (Microbeads
AS), using the Coulter principle, for the first batch of particles with nominal mean diameter
of 80µm with a least squares difference of 0.09 for the three two-camera combinations (a)
1&2 (b) 2&3 and (c) 1&3.
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Figure 4.29: Number distribution and the corresponding SMD determined using the scan-
ning technique, compared to the distribution obtained by the manufacturer (Microbeads
AS), using the Coulter principle, for the first batch of particles with nominal mean diameter
of 40µm with a least squares difference of 0.09 for the three two-camera combinations (a)
1&2 (b) 2&3 and (c) 1&3.
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Figure 4.30: Comparison fit from three particle sizes over the intensity data distribution
from three two camera combinations; (a) Camera 1 and 2 (b) Camera 2 and 3 (c) Camera
2 and 3. In all the plots, the fit from particle shown in red is the real fit.
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Table 4.5: Comparison of particle size measurement for the three combinations using two
different least squares difference tolerance (χ2).

80µm 40µm
Camera combination % accepted SMD % accepted SMD

1&2 46.76 78 24.5 45.8
2&3 22.17 78.1 7.6 45.8
1&3 16.17 78.2 6.1 45.8

79.4µm. But when the data from camera 3 is combined with the data from camera 1 or
camera 2, the best fit with the least-squares is obtained for the size 79.4, hence the size is
accepted.

4.7.2 Results from all three camera combination

Figure 4.31 shows some typical examples of particle tracks for the first batch of particles
with a nominal size of 80µm, with different track lengths and the corresponding scattered
intensity from the three different views plotted on a single axis, with the obtained best
Mie fit plotted over the range of scattering angles obtained from the three views. Here the
intensities are normalized by the highest intensity across the three views. Three different
track lengths 1.5τη, 2.5τη and 3.5τη have been chosen to represent the fitting on this batch
of particles.

For this batch from the ensemble over the 8-time series measurements, a total of
approximately 350000 particles are available. Figure 4.34(a)-(c) shows a comparison of the
particle size distribution obtained by setting the three least-squares difference tolerance
of 0.09, 0.05 and 0.01 respectively. The fraction of particle sizes accepted along with the
measured mean particle sizes in terms of arithmetic means (D10), SMD and volumetric
mean (D30) is given in table 4.6. Figures 4.34(a)-(c) and table 4.6 clearly shows both the
shape of the distribution and the measured mean diameter are largely insensitive to the
tolerance used except the fact that a considerably high percentage of samples are lost by
tightening the χ2 tolerance. The small peak towards the left tail of the distribution is
seen in all three distributions in figures 4.34, which could be due to the presence of real
particles of those sizes in the measurement tank or could be due to the effect of shorter
tracks as discussed in the section 4.7.1. to check this the effect of different track lengths
on this small peak is studied.

4.7.3 Effect of track length on sizing

to check if the second peak seen in the size distribution of the particles with nominal
diameter 80, the effect of different track lengths on the measured size distribution is studied.
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Figure 4.31: Examples of particle tracks and corresponding best Mie fits over the scattering
intensity to estimate the particle size for the batch number 3I-080-1771 particles, from
three track lengths of (a)-(b) 1.5τη; (c)-(d) 2.5τη and (e)-(f) 3.5τη.
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Figure 4.32: Sauter mean diameter obtained using particle size measurements from
increasing track lengths.

Figure 4.33 shows the Sauter mean diameters obtained from the measured particle sizes
for different track lengths ranging from 1τη to 3.5τη. The measured SMD varies only
gradually though the value is more close to the expected value of 80µm as the track length
increases.

Since the accuracy of measured SMD improves with long tracks, it would be ideal to
remove the measurements from shorter tracks, but in the current experiment, the sample
size decreases drastically for longer tracks. To show this, the size distributions obtained
from three-track length band ranges are shown in figure 4.33. The fraction of the peak
count for the second peak to the left seems to be smallest for the middle and the last
band, but still present. This shows that the presence of secondary peaks even for longer
tracks, which again could be due to unequal data from the third camera, as discussed
in the previous section, leading to mismatch or are real particles which got left in the
measurement tank from previous experiments.

Table 4.6: Comparison of particle size measurement for the particles with nominal size of
80µm using different least squares difference tolerance (χ2).

χ2 % accepted D10 SMD D30

(µm) (µm) (µm)
0.09 73.4 74.2 78 76.1
0.05 33.4 75 78.3 76.7
0.01 4 75.5 78.3 77.4

142



4.7 Particle size

40 60 80 100 120 140

d
p
 ( m)

0

5000

10000

15000

N
u

m
b

er
 d

is
tr

ib
u

ti
o

n

Figure 4.33: Comparison of size distributions from three track length bands.

The results from the scanning measurement technique were directly compared to the
measurement results from the manufacturer, Microbeads AS. The size distribution supplied
by the manufacturer was measured using Multisizer 3 from Beckman Coulter using the
Coulter principle. The measured arithmetic mean (D10) and the standard deviation was
78µm and 13.25µm, respectively. The measurement report provided by the manufacturers
consisted of calculation results between 5.6µm and 168.0µm. We obtained the result, using
calculations between the size ranges of 20µm and 120µm.

Table 4.7: Comparison of particle size measurement for particles with nominal size of
40µm using two different least squares difference tolerance (χ2).

χ2 % accepted D10 SMD D30

(µm) (µm) (µm)
0.09 70.34 44.8 46.1 45.5
0.05 33.75 44.5 45.9 45.2

Figure 4.35 shows examples for two track lengths, for the batch of particles with
nominal size 40µm. From the ensemble over the 8-time series measurements, a total of
approximately 120000 particles are sized with a mean percentage deviation of the measured
scattered intensity of 11%. Table 4.7 shows a comparison of the size distributions obtained
using two χ2 tolerances of 0.09 and 0.05. The resulting size distribution comparison is
presented as a histogram in figure 4.36. The arithmetic mean (D10) and the standard
deviation, supplied by the manufacturers’ measurement technique was 43.3µm and 6.06µm
respectively. The result was obtained, using calculations between the size ranges of 20µm
and 60µm.
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Figure 4.34: Number distribution and the corresponding SMD determined using the scan-
ning technique, compared to the distribution obtained by the manufacturer (Microbeads
AS), using the Coulter principle, for the first batch of particles with nominal size of 80µm
with a least squares difference of (a) 0.09 (b) 0.05 and (c) 0.01.
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Figure 4.35: Examples of particle tracks and corresponding best Mie fits over the scattering
intensity to estimate the particle size for the particles with nominal size of 40µm, from
two track lengths of (a)-(b) 2.5τη and (c))-(d) 3.5τη.
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Figure 4.36: The number distribution the corresponding SMD determined using the scan-
ning technique, compared to the distribution obtained by the manufacturer (Microbeads
AS), using the Coulter principle, for the second batch of particles with nominal size of
40µm, obtained using two least squares difference tolerance of 0.09 and 0.05.
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To a first approximation, these values obtained from both the batches of particle
from the experiment are in agreement with product manufacturers (Microbeads AS),
specification. From the results obtained using three-camera combinations, it can be
inferred that difference between the expected and measured particle sizes can be reduced
considerably by increasing the measured scattering intensity variation data, which requires
more camera views. Another way to increase the scattering intensity variation data is to
have longer track lengths.

4.7.4 Sizing different sized particles simultaneously

Finally, the third set of experiment was performed where the flow was seeded with both
particles with mean diameters 40µm and 80µm. The seeding density in this experiment was
slightly lowered compared to the seeding densities used in the previous two experiments.
This was done to reduce the overlapping of larger 80µm particles on the smaller 40µm
particles. The mean interparticle distance was approximately 6η. From the ensemble
over the 8-time series measurements, a total of approximately 140000 sized particles
were accepted with the least-squares tolerance of 0.09. The resulting size distribution
comparison is presented as a histogram in figure 4.37. The SMD of the distribution
corresponding to the peak in the left side in figure 4.37 was 43.4µm and that for the
distribution with a peak on the right side was 78.4µm. The bin size chosen to represent the
measured distribution was 2µm, which is also the measurement accuracy of the accepted
sample.

4.8 Summary

A novel tracking and sizing technique based on a scanning laser methodology were
demonstrated by taking measurements of a turbulent flow using a three-camera setup.
The obtained Lagrangian tracks showed very good accuracy, proved using the joint PDFs
of the continuity terms and the acceleration terms. Tracks with track-length greater than
trl = 1τη were used to obtain the Lagrangian statistics, again, but statistic could also be
calculated with a subset of tracks that are all the same length. Lagrangian measurements
allow the direct measurement of velocity and acceleration in all three dimensions and
characterize the flow from the Lagrangian perspective. The skewness and flatness of
the velocity fluctuations showed a near to Gaussian value, showing that the measured
velocity represents an actual turbulent flow. Joint pdfs of continuity and acceleration terms
demonstrated high accuracy in the measurements. Small-scale anisotropy, characterized by
the skewness and flatness of acceleration. The acceleration is found to be more intermittent
along the tracks when compared to the velocity fluctuations. Profiles of the first through
fourth moments of acceleration show significant anisotropy at the centre of the tank.

146



4.8 Summary

20 40 60 80 100 120

d
p
 ( m)

0

5000

10000

15000

N
u
m

b
er

 d
is

tr
ib

u
ti

o
n

Figure 4.37: Number distribution from sizing two different sizes simultaneously, determined
using the scanning technique, compared to the distribution obtained by the manufacturer
(Microbeads AS), using the Coulter principle, for particles with nominal size of 40µm and
80µm.
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The novel method to measure the sizes of particles in the Mie regime, in a volume has
been used to estimate the particle sizes from the deduced particle tracks. Two different
nominal sizes of particles were used to test the method. Comparison of size distribution
obtained from the measurements to that provided by the manufacturers (Microbeads AS)
had a good agreement and showed that the size distribution obtained from the scanning
sizing technique can be a useful tool for measurements of particle sizes inflows.
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Chapter 5

Summary and conclusions

In this chapter, the main results and conclusions of this thesis are summarized and put
into perspective regarding the development of scanning particle tracking and sizing.

5.1 Scanning particle tracking

A new variant for Lagrangian particle tracking technique based on a scanning laser
technique has been introduced, tested and applied to a laboratory experiment. The
technique is aimed at performing Lagrangian particle tracking at higher seeding densities.
The main contribution of the present work is to improve the particle triangulation efficacy
at higher seeding densities. The use of a fitted sheet space number, which serves to further
restrict the particle search depth in the scanning direction. The new method accurately
triangulates a large fraction of true particle locations for very high particle densities, up
to an equivalent particle image density, where typical volumetric triangulation typically
suffers from large fractions of falsely detected particles when the seeding density increases.

A parametric study identified optimal parameters for the scanning tracking measure-
ments. The important control parameters are divided into controllable parameters like
seeding density, the number of cameras, laser sheet thickness, sheet spacing and scan
speed; uncontrollable parameters included noise level and deviation from the Gaussian
profile of the laser. The technique can be measured with two cameras but the use of more
than two cameras seems to improve the fraction of successfully triangulated particles even
at the highest seeding density, thereby increasing aiding better particle tracking. The
optimal sheet thickness is about one-twelfth the total scan depth and five times the sheet
spacing. The fraction of successfully triangulated particles remains high in the presence of
mild to moderate noise, and particle movement during the scan for finite scanning laser
sheet speeds can be corrected if the sheet speed is at least two orders of magnitude larger
than the characteristic velocity scale of the flow.
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The technique was tested via synthetic experiments using a DNS database, mimicking
the conditions of a previous scanning setup, for which the Lagrangian velocities and
accelerations are calculated. Spatial resolution was demonstrated by a very good correlation
of the Lagrangian acceleration with the local and convective accelerations. An inherent
upper limit on the magnitude of accelerations measurable was found for very dense fields
using the current tracking algorithm due to a reduced mean inter-particle distance. To
avoid ambiguity when forming particle tracks, the more dense a particle field is, the
smaller the permissible search radius about a particle’s predicted location at a subsequent
time step. A more advanced particle tracking algorithm could possibly permit larger
accelerations to be detected at higher densities.

There are many questions regarding how Lagrangian statistics results apply to in-
homogeneous turbulence. This thesis has presented Lagrangian statistics in an Ekman
pumping flow obtained from moderately high seeding density experimental measurements.
These measurements have allowed the investigation of single-particle, three-component
Lagrangian statistics in position, velocity, and acceleration. The measurements from this
central domain which is highly sheared, anisotropic and inhomogeneous, has allowed us to
quantify how the Lagrangian statistics in the flow deviates from their expected values in
homogeneous isotropic turbulence.

5.2 Scanning particle sizing

A novel method to measure the sizes of particles in the Mie regime, in a volume has been
introduced. By using a scanning technique, existing problems in laser sheet based particle
sizing, termed as ¨trajectory effect¨, was completely removed. Other concerns, such as
limitations in particle concentration, blurring effect and overlapping particles were also
tackled to an extent. In combination with the scanning particle tracking technique Kozul
et al. (2019), the technique provides the position, velocity, acceleration and size/mass of
the particles with high accuracy.

The measurement technique and experimental design consideration such as the mea-
surement area, camera angle, measurable size ranges, camera aperture and the number
of cameras have been discussed. The scanning sizing technique was applied to synthetic
data, with known sizes, to demonstrate the ability of the technique to retrieve the particle
sizes accurately. The addition of noise did not reduce the accuracy of the sizing technique
drastically. 2% background Gaussian noise or Poisson noise produced results in an accept-
able RMS error range. Of this, the error increases with decreasing particle size, due to
the dominating influence of the noise on their scattered intensity. Whereas, misalignment
in the cameras showed an opposite trend, where the error increases for larger particles,
due to the mismatch arising due to the increasing scattering patterns. The numerical
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assessment shows that serious errors can occur when the signal to noise ratio decreases or
when there is a serious calibration error.

Scanning measurements from a three-camera setup from an upwelling flow were used
to demonstrate the application of the sizing technique to experimental data. The obtained
Lagrangian tracks showed very good accuracy, proved using the joint PDFs of the continuity
terms and the acceleration terms. The tracks, with track-length greater than 10, were
used to obtain the individual particle sizes.

The scanning sizing technique estimates the particle sizes from the estimated tracks.
Comparison with manufacturers (Microbeads AS) measurement results showed that the
scanning sizing technique can be a useful tool for measurements of particles/droplet sizes
in flows.

5.3 Future Work

The tracking technique used in this work follows the nearest neighbour scheme (Malik
et al., 1993). This requires a predictor velocity, which in this work, the cross-correlated
velocity field obtained from Scanning PIV (Lawson & Dawson, 2014) was used. The
nearest neighbour tracking technique also has an inherent upper limit on the magnitude
of the measurable accelerations due to a reduced mean inter-particle distance, at higher
seeding densities. The criteria 2 and 3 in the current particle tracking heuristics could
bias the result by avoiding large/intermittent accelerations. Increasing the search radius
was an option to include intermittent acceleration events, but with increasing search
radius the possibility of mismatch and hence erroneous tracks increases proportionally.
An alternative would be, improving the particle tracking algorithm, which could also be a
future scope of this current study. One such alternative to the 2 current tracking heuristic
(a small modification to criteria 2) has been added to appendix C. The modification
is: instead of choosing the candidate particle with minimum acceleration in step 2, all
possible candidates within the search radius in step 2 are now projected forward in time.
In the next step, among all candidates, the candidate nearest to the respective predicted
location is chosen as the correct link. This procedure now avoids the condition of minimum
acceleration. Modifying the current tracking algorithm with a more advanced particle
tracking algorithm such as ’Shake the Box’ (Schanz et al., 2016) could also possibly permit
larger accelerations to be detected at higher densities.

The particle sizing algorithm currently works only for particles that are assumed to
be spherical in shape. In future works, efforts can be put into developing the current
technique to measure non-spherical particles using the Mie theory (Bohren & Huffman,
1983) for non-spherical particles.
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Summary and conclusions

5.4 Prospectives

The development of an efficient algorithm to simultaneously measure the velocity and
size of individual particles in a flow based on the scanning technique by Lawson (2015)
can play an important role in understanding and predicting the response of particles
in a turbulent flow. The study of Lagrangian turbulence and of turbulent transport of
material particles has received growing interest in recent years (Toschi Bodenschatz
2009). However, in many situations, the size of the particles is not small with respect to
turbulence scales, in particular the dissipative scale. One example is the plankton which,
while neutrally buoyant, cannot be considered as a tracer because of its size in the order
of few dissipative scales (Calzavarini et al., 2009). When finite-sized or heavy particles
interact with turbulent flows both large scale and small turbulent eddies can contribute
to particle dispersion, depending on the local Stokes number (Bachalo (1994)). These
interactions can cause particle clustering and segregation, which can alter the turbulent
characteristics of the continuous medium in which they are immersed. This variation in
the flow characteristics is higher for poly-disperse particle size distribution as compared to
mono-disperse case (Sommerfeld (1990)).

The overall development of the current technique to measure the size and velocity of
particles will benefit the future research of particle interactions in turbulent flows. In this
context, the experimental technique proposed in this thesis assumes particular relevance.
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Appendix A

Generalized Mie theory for a
spherical particle

The theory scattering was explained by Maxwell, Debye and Fourier in different ways, but
the theory from Mie became generalized, hence given the name generalized Mie theory
(GLMT) (Bohren & Huffman (1983),Kerker (1969),van de Hulst (1981)). Following Bohren
and Huffman’s notation and development Bohren & Huffman (1983), the geometry of this
problem is given in Figure A.1. The reference plane is denoted in black, the scattering
plane in gray. The scattering plane is defined as the plane containing the propagation axis
and the observer vector r. The location of the observer is defined in the spherical polar
coordinate system (R, θ, ϕ), where r is the vector distance between the scattering droplet
and the observer, θ is the angle (on the scattering plane) between the light-propagation-axis
and the observation, and ϕ is the angle between the reference plane and the scattering
plane. The angle between the scattering plane and the polarization direction is denoted
as γ. Scattering near θ = 0o is often called ¨forward¨ scattering while scattering near
θ = 180o may be called ¨backward¨ scattering.

Light scattered by a spherical particle is in-homogeneously distributed in space de-
pending upon its size, characterized by its diameter dp, refractive index n, incident light
of intensity Io and wavelength λ, at the angle θs. The particle size is usually denoted by
size parameter α = πdp/λ, which takes into account, the size and the wavelength. The
flux of scattered light intensity (in Wm−2), in direction θs at a distance of R from the
scattering sphere is given by

Is{n, θs} = Ioλ
2

4π2R2 (i1{α, n, θs} + i2{α, n, θs}), (A.1)

where i1 and i2 are the intensity functions, given by,
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Generalized Mie theory for a spherical particle

Figure A.1: Mie scattering geometry. Adpated LePera (2012)

i1 = | 2n+ 1
n(n+ 1) [anπn + bnτn]|2 (A.2)

i2 = | 2n+ 1
n(n+ 1) [anτn + bnπn]|2. (A.3)

Here the index 1 refers to as perpendicular or s polarization and the index 2 refers to
parallel or p polarization. πn and τn are the actual angular coefficients that contain the
scattering angle, independent of n and α, and contributes to the angular behaviour of the
scattered intensity. an and bn, are the scattering coefficients, which contain information
on the size and the optical properties of the particle. The equations for an and bn are
complicated functions of spherical Bessel functions and their derivatives. Fortunately, the
Bessel functions satisfy simple recurrence relations with logarithmic derivatives, and thus
can be simplified into the following:

an =
[ Dn(nx)

n + n
x ]ψn(x) − ψn−1(x)

[ Dn(nx)
n + n

x ]ξn(x) − ξn−1(x)
(A.4)

bn =
[nDn(nx) + n

x ]ψn(x) − ψn−1(x)
[nDn(nx) + n

x ]ξn(x) − ξn−1(x) , (A.5)

here ψn and ξn are the Ricatti-Bessel functions. A more complete discussion is covered in
Bohren & Huffman (1983), whose notation has been adopted.
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Appendix B

Laser sheet calibration

The self-calibration method described by Knutsen et al. (2017) works by combining
information about the position of particles in object space (from triangulation) with its
”sheet space number”, which describes a particle’s position relative to laser sheet. A
laser sheet model is then fit to this data. The model, describes the orientation, width
and position of the laser sheets throughout a scan, can be identified without requiring a
complex traversing calibration target, which simplifies the procedure substantially.

The variation in illumination of the same particle in successive images throughout the
scan, are exploited, as this provides information on the particle’s position relative to the
laser sheet. If the sheet’s profile remains relatively constant and successive sheets are
approximately uniformly spaced, then the intensity of light scattered from a single particle
as the sheet is scanned across should correspond to the profile of the laser sheet. Figure
B.1, illustrates a single particle captured with different illumination in four different images
(sheets), with a Gaussian curve fitted to the points. Plotting this intensity variation of the
various particles against the ”sheet space number”, n, and fitting a Gaussian distribution
provides a measure of the sheet’s position and width (see Figure 3). The centre of the fitted

Figure B.1: Illustration of light scattered from a single particle throughout the course of a
scan , and its calculated center position based on a Gaussian fit. (Knutsen et al. (2017)).
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Laser sheet calibration

Gaussian distribution is the ”sheet space” position of the particle, which represents the
fractional sheet number where the scan would pass exactly through the particle location.
A computationally inexpensive 3-point Gaussian fit (Willert & Gharib, 1991) is used to fit
the sheet number and width of each particle efficiently.

Object matching is performed through a triangulation procedure. The sheet-space
position of each particle together with its triangulated position are then used to find the
sheet location and orientation through a piecewise-linear least squares fit to equation
B.1. Here np is the sheet number of the particle in question, and n is the current sheet
number of the sheet and image being investigated. The right hand side of equation B.1 is
effectively the equation of plane for sheet n, with four fit coefficients An, Bn, Cn and Dn

and object space coordinates xp, yp and zp. To see this, note that when the particle is
coplanar with the sheet, the left hand side vanishes.

np − n = Anxp +Bnyp + Cnzp +Dn (B.1)

The local spacing between planes ∆zn is

∆zn = (A2
n +B2

n + C2
n)−1/2 (B.2)

With en = [An;Bn;Cn]Tn as the unit normal of the plane and xp as the particle object
space position, equation B.1 can be written as

np − n = enxp + d0,n

∆zn
= d

∆zn
(B.3)

where d0,n = Dn∆zn and d is the normal distance of the particle from the sheet center.
As the sheet normal and spacing are not constant throughout the course of a scan, a
piece-wise linear fit is performed whereby particles near sheet n and its neighbors are
used to to fit that sheet. This introduces a degree of smoothing and extrapolation of the
coefficients of the first and last sheet, which can be controlled by adjusting the domain of
the fit. This results in a gradually changing sheet normal and spacing, which is typical of
many scanning mechanisms.

Since the width of the fitted Gaussian distribution from the scattered light from each
particle is a measure of the laser sheet width, the e−2 beam width at each particle location
can be estimated from its fit. The width of a sheet wn is obtained by averaging the average
e−2 width fitted for all particles near that sheet.
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Appendix C

Modified particle tracking
heuristics

The minimum acceleration criteria discussed in section 2.3.4, biases the result by avoiding
possible high/intermittent acceleration events.

The algorithm was tested using numerical simulation of the direct numerical simulation
(DNS) data of turbulent channel flow as discussed in section 3.7. All the experimental
parameters except ∆t was kept the same as in section 3.7. A smaller value of ∆t = 0.004
was chosen to make the experiment time resolved, that would not miss out the possible
high acceleration events of the flow. The particle tracking heuristics used in this study as
discussed in section 2.3.4 was also performed to compare the differences both algorithm
brings out in the estimated results.

A comparison of the estimated acceleration components using both the algorithm clearly
shows that the new modifies algorithm can capture the high/intermittent acceleration
events.

163



Modified particle tracking heuristics

Figure C.1: Schematic representation of the particle tracking algorithm.
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Figure C.2: Comparison of acceleration pdfs obtained using (a) the particle tracking
technique used in this thesis to (b) the modified particle tracking technique.
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