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Introduction

1.1 Structure-preserving numerical integration

Since the discovery of calculus in the 1700s, it has long been understood that
differential equations govern almost everything that happens in our universe.
From biology, cosmology, finance and engineering, knowing how to solve dif-
ferential equations is paramount to mankind’s ability to understand and control
the world around us. As most differential equations that are relevant to real-
world applications are not easily amenable to analytic techniques, one must
look for numerical methods to calculate fast, accurate and reliable solutions.
Since the birth of commercial computers in the late 20th century research into
numerical methods for ordinary differential equations (ODEs), to which we
will now limit our discussion to, has exploded. Some of the most successful
numerical methods for solving ODEs are the Runge-Kutta and linear multi-step
methods and there have been thousands of researchers whom have dedicated
their careers to advance our collective knowledge in these areas. Such methods
are efficient, accurate and can be applied to a general initial value problem
(allowing for some regularity assumptions [16]) of the form

ẋ(t ) = f (x(t )) ∈Rn , x(0) = x0. (1.1.1)

The word general is an important distinction here and we will call a numerical
method that can be applied to such an ODE a general-purpose method. When
designing general-purpose methods one is often concerned with reducing the
local and global error, which given some time h, is usually defined as the
distance (in some norm) between the numerical solution Φh(x0) and the exact
solution x(h). That is, after one step

local error = ‖Φh(x0)−x(h)‖, (1.1.2)

or after n steps
global error = ‖Φn

h (x0)−x(nh)‖. (1.1.3)

The theory of general-purpose numerical methods has been extremely success-
ful and, due to the immense amount of research on this topic over the last 50

1



Introduction

years, is nearing a certain level of maturity. More recently, however, there has
been a growing interest in studying the numerical solution of ODEs with a
prescribed structure. By structure, we mean a particular property of the ODE
that relates to a feature of the exact solution. Some examples of common ODEs
with structure are as follows.

1. Hamiltonian ODEs:
ẋ(t ) = J−1∇H(x(t )), (1.1.4)

where J is constant and skew-symmetric and for the Hamiltonian function
H : R2n →R.

2. Volume preserving ODEs:

ẋ(t ) = f (x(t )) (1.1.5)

where ∇· f (x(t )) = 0.

3. Contractive ODEs:
ẋ(t ) = f (x(t ))− A x(t ) (1.1.6)

where ∇· f (x(t )) = 0 and A is positive semi-definite.

4. ODEs with multiple first integrals, e.g., in n = 3 dimensions the Nambu
system:

ẋ(t ) =∇H(x(t ))×∇K (x(t )), (1.1.7)

where H ,K : Rn →R.

While it is often an impossible task to find the exact solution x(t ) that solves the
above ODEs, knowing their structure can reveal a number of qualitative features
that pertain to the exact solution. For the above examples, those features are as
follows.

1. Hamiltonian ODEs: The trajectory of the ODE preserves the Hamilto-
nian function and the symplectic 2-form , that is

d

dt
H(x(t )) = 0 and ω=∑dpi ∧dqi (1.1.8)

is preserved along the trajectory of (1.1.4) [27, 45].

2. Volume preserving ODEs: The exact solution x(t ) satisfies

det

(
∂x(t )

∂x0

)
= 1 (1.1.9)

that is, volumes in phase space remain constant along the flow of (1.1.5)
[25, 55].

2



1.1 Structure-preserving numerical integration

3. Contractive ODEs: The exact solution x(t ) satisfies

det

(
∂x(t )

∂x0

)
= e−Tr(A)t (1.1.10)

that is, volumes in phase space monotonically contract along the flow of
(1.1.6) [21, 32].

4. The Nambu system: The functions (first integrals) H(x(t )) and K (x(t ))
are preserved along the trajectory of (1.1.7) [47], that is

d

dt
H(x(t )) = 0 and

d

dt
K (x(t )) = 0. (1.1.11)

In addition to the above examples, there are other classes of ODEs of the form
ẋ(t ) = f (x(t )) whose structure is more subtle in the sense that one cannot
generally write the vector field f (x(t )) in a way that elucidates the geometric
properties of its solution. Examples of two such classes of ODEs that are
relevant to this thesis are as follows.

1. Measure preserving ODEs: Where one or more measures of the form∫
dx1 ∧ ...∧dxn

m(x)
(1.1.12)

are preserved along the flow, for some function m : Rn →R.

2. ODEs with one or more Darboux polynomials: Where one or more pairs
of polynomial functions p(x(t )) and c(x(t )) exist satisfying

ṗ(x(t )) = c(x(t ))p(x(t )). (1.1.13)

In this case, p(x(t )) is preserved along their zero level sets i.e., when
p(x(0)) = 0 [20].

Generally, when general-purpose numerical methods are applied to one of the
above ODEs the geometric features of the exact solution (e.g., (1.1.8) - (1.1.13))
are not preserved in the numerical solution. The non-conservation of such prop-
erties becomes an issue especially when integrating ODEs over long times. This
is because these geometric properties usually have a clear physical meaning that
is important for the numerical solution to inherit. For this reason "geometric"
and "structure-preserving" are used synonymously when describing numerical
integration methods. We will now illustrate the application of geometric inte-
gration methods with two examples from the thesis.

3



Introduction

1.1.1 Example 1: Geometric integration of particle suspensions

The first example is presented in figure 1.1, which shows the final positions of
104 small spheroidal particles having evolved in a viscous cellular flow field
for six of seconds of simulation time. In figure 1.1a we have used a geomet-
ric method called MRBF1+CP1 to calculate the particle positions, which are
represented by black dots and figure 1.1b uses a higher order general-purpose
method to do the same. In both figures, the green dots represent the "exact" so-
lution. The method MRBF1+CP1 was purpose-built for the particular equations
that govern the dynamics of these small particles, which are of the form (1.1.6).
By this, we mean that the numerical solution replicates a number of physical
features that the exact solution possesses, such as the constant contractivity of
phase space volume from equation (1.1.10), among others. These features are
not present in the numerical solution of the general-purpose method shown in
figure 1.1b and the consequence of this is that the particles erroneously cluster
in regions where they shouldn’t as seen by the mismatch of green and black
dots. Of increased interest is the fact that the general-purpose method is order-
two and is more costly than the geometric method, which is order-one and
faster. This is a perfect example where only focusing on reducing the error in
a conventional sense (e.g., equations (1.1.2) and (1.1.3)) is less important than
preserving important physical properties that pertain to the exact solution as we
do in geometric numerical integration.

0 1 2
0

0.5

1

1.5

2

(a) Geometric method

0 1 2
0

0.5

1

1.5

2

(b) General-purpose method

Figure 1.1: A comparison of a geometric method versus a general-purpose method
for computing the spatial distribution of particles in a viscous flow field. The green
dots represent the positions of the particles of the "exact" solution and the black dots
are calculated by the geometric method (figure (a)) and a higher-order general-purpose
method (figure (b)).
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1.1 Structure-preserving numerical integration

1.1.2 Example 2: Geometric integration of a free rigid-body

In our second example, we consider the numerical integration of the free rigid-
body equations (also known as the Euler top),

ẏ1 =α1 y2 y3, (1.1.14)

ẏ2 =α2 y3 y1, (1.1.15)

ẏ3 =α3 y1 y2, (1.1.16)

with α1 = −1/2, α2 = −1/3, α3 = 5/6 and for initial conditions satisfying
‖y(0)‖ = 1. Here, the vector y represents the angular momentum of a freely
spinning rigid-body. We note that this system can be formulated as a Nambu
system (1.1.7) and possesses the following first integrals

H(y) =
(
α3 −α2

)
y1

2

α1
+
(
α1 −α3

)
y2

2

α2
+
(
α2 −α1

)
y3

2

α3
, (1.1.17)

K (y) = y2
1 + y2

2 + y2
3, (1.1.18)

which correspond to the conservation of kinetic energy and momentum, respec-
tively. To the above system we first apply Kahan’s method (which is introduced
in section 1.3.4) then Ralston’s method, which are both second-order explicit
Runge-Kutta methods for this system. Figure 1.2a presents the solution of Ka-
han’s method. We observe here that the orbits remain closed and very close to
the isosurface H(y) = 1. This remarkable property is explained by the fact that
the Kahan map possesses the following rational integrals when applied to this
system

Hh(y) = H(y)

1−α3α2h2 y1
2/4

, (1.1.19)

Kh(y) = K (y)

1−α3α2h2 y1
2/4

, (1.1.20)

which depend on the time-step h. These integrals were derived using the
method of discrete Darboux polynomials, which is discussed in this thesis
and introduced in section 1.3. In other words, the Kahan map is an integrable
map and preserves nearby modified integrals of the continuous system, which
explains its favorable solution compared to the Ralston method, which does
not preserve any integrals. The non-preservation of these integrals result in a
numerical solution that drifts off the isosurface K (y) = 1, as seen in figure 1.2b.
Such a solution becomes increasingly non-physical as t →∞. For a comprehen-
sive overview of geometric numerical integration we refer to the books [5, 15]
among the extensive literature.
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(a) Geometric method (b) General-purpose method

Figure 1.2: The numerical solution of the rigid body equations for 500 steps using a
step size of h = 1/2. The grey surface denotes K (y) = 1.

1.1.3 Outline of thesis

This thesis is composed of a number of chapters spanning multiple topics in
the broad field of geometric integration and numerical analysis. Each chapter
is based on an article that is either published or in the submission process. The
exception is chapter 8 which is based on an unsubmitted pre-print.

The thesis begins with two chapters that are based on geometric numerical meth-
ods for one-way coupled particle suspensions with Stokes drag force. Chapter
2 is based on a paper [48] that develops a basic splitting method for a partic-
ular spheroidal particle model. In chapter 3, we propose a geometric method
that is designed to preserve a number of properties of the exact solution for
particle suspensions and is based on the previous chapter. The algorithm is
implemented for spherical and spheroidal particle models and give excellent re-
sults when calculating spatial distributions of particle suspensions [49]. These
methods are applicable to other particle shapes within the same setting, for
example, slender rigid particles, given that one can calculate the forces and
torques on the particle. This brings us to the next two chapters, which were
written in collaboration with Dr Laurel Ohm, now at the Courant Institute, New
York. The first of these two chapters focus on a validation and comparisons
of a new particle model inspired by slender body theories due to Ohm [37, 38].
In the sequel, we further develop the model to make it suitable to numerical
implementation and inversion. Having done so, we perform numerical tests and
experiments on the model and propose an algorithm based on linear algebra and
quadrature for computing the forces and torques on slender rigid particles [1].
This chapter concludes our discussion of particles in Stokes flow.
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1.2 Small particles in viscous flow

The next three chapters lie within the related fields of integrable systems and
geometric numerical methods. Here, we introduce the idea of discrete Darboux
polynomials. These articles were written with the group at La Trobe University,
Melbourne, lead by Prof Reinout Quispel whom conceived the idea. In the first
of these three chapters, the idea of discrete Darboux polynomials for rational
maps are introduced and a systematic algorithm for deriving rational integrals
of a map is presented [8]. In the second article, the method is elaborated on
and implemented in a number of novel examples, where we uncover many in-
teresting properties of some well known integrable maps [7]. The third chapter
is based on a preprint and extends the theory of discrete Darboux polynomials
to Runge-Kutta maps.

The final chapter in this thesis lies within an adjacent area of geometric inte-
gration and was written with Dr Christian Offen and Prof Robert McLachlan,
at Massey University, New Zealand. Here, we investigate the use of symplec-
tic integration for the numerical solution of Lie-Poisson PDEs when written in
their Clebsch variables. That is, when reformulated as a Hamiltonian system on
a symplectic manifold. We focus our numerical examples from fluid dynamics,
namely the Burgers equation and related PDEs [31].

The remainder of the introduction will serve to introduce the topics of particles
in Stokes flow and discrete Darboux polynomials.

1.2 Small particles in viscous flow

One of the central topics to this thesis is numerical methods for calculating
the dynamics of particle suspensions in viscous flows. Particles immersed in
viscous flow could be interpreted as, for example, paper fibers [19], biopoly-
mers [17], soot [42], plankton [50], ice crystals [22], pollen [26], microcontam-
inants [13] or indoor pollutants [35]. Accurately computing the dynamics of
fluid-structure interactions is a difficult and computationally demanding task
(e.g., using the boundary integral method [41, 57]) so to be able to simulate
suspensions of hundreds of thousands of particles, one needs to lay out a few
assumptions to derive a model for the forces and torques that is computationally
tractable. To this end, we will consider particles of size less than the smallest
fluid length scale (e.g., the Kolmogorov scale for turbulent flows). Under this as-
sumption, the local flow around the particle is Stokesian to good approximation
and it is justified to assume that the particles do not influence the surrounding
fluid field. We also assume that the particle suspension is dilute enough that
particle-particle collisions are infrequent and therefore ignored and that the par-
ticles are heavy enough that Brownian motion is negligible. This is called a

7
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one-way coupled system and has been a topic of interest for many influential
studies, including [4, 12, 14, 18, 28, 34, 39, 40, 44, 46, 51–53] and references
therein.

When considering the literature in particle-laden flows over the past four decades,
there has been an astounding number of studies dedicated to developing fast and
accurate numerical methods for the direct numerical simulation of the Navier-
Stokes equations. This has resulted in advanced and continually improving
software and databases [56] for this purpose. However, far less attention has
been given towards the development of fast and accurate solvers for the equa-
tions of motion that govern the dynamics of the particulate phase. We note that
of the aforementioned references use general-purpose methods for this purpose
such as Runge-Kutta integration and standard polynomial interpolation. One
of the topics in this thesis is to develop specialized methods for the equations
of motion for the particulate phase.

In the remainder of this section we will outline the equations of motion and
introduce the particle models that feature in the next four chapters of the thesis
as well as briefly introduce splitting methods.

1.2.1 The equations of motion

The dynamics of such particles are governed by the rigid body equations with a
hydrodynamic Stokes force and torque. The non-dimensionalised translational
dynamics is given by

v̇ =St−1F, (1.2.1)

ẋ =v, (1.2.2)

where x is the particle’s location, v the velocity of its center of mass and St
is the particle Stokes number, which is a dimensionless measure of the par-
ticle’s relative inertia. Under our assumptions, the only relevant force is the
hydrodynamic Stokes drag, which is linear in the slip velocity*. This is given
by

F = K (u(x)−v), (1.2.3)

where u(x) is the fluid velocity at the particle’s location x and K is a positive
definite resistance tensor that depends on the particle shape, which we will
discuss in the next section. The angular velocity ω evolves according to

Jω̇= Jω×ω−T, (1.2.4)

*The slip velocity is defined as the difference between the background fluid velocity and the
particle velocity u(x)−v
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1.2 Small particles in viscous flow

where J is the diagonal body frame moment of inertia tensor and T is the
hydrodynamic torque. The rotation matrix Q ∈ SO(3), which specifies the
particle’s orientation, transforms a vector in the body frame (i.e., a frame that is
co-rotating and co-translating with the particle) to one in a co-translating frame
and is calculated by solving the matrix ODE

Q̇ =Qω̂, (1.2.5)

where ·̂ : R3 → so(3) is defined by⎛⎜⎝ ω1

ω2

ω3

⎞⎟⎠ 	→ ω̂=

⎛⎜⎝ 0 −ω1 ω2

ω1 0 −ω3

−ω2 ω3 0

⎞⎟⎠ , (1.2.6)

such that ω̂v =ω×v.

1.2.2 Particle models

Spherical particles

The spherical particle model is understandably the simplest and can be de-
scribed purely by the translational equations of motion (1.2.1) and (1.2.2) due
to its isotropic shape. Maxey and Riley derived the equations of motion for a
finite-sized sphere immersed in viscous flow [30]. For small particles in low
Reynolds number flow, however, this expression simplifies to one of the form
(1.2.3) with K = I . It is in this setting that the equations of motion are more
suited to analytical methods such as calculating Lyapunov exponents [3], an-
alyzing caustics [54] or perturbative methods [29], all of which shed light on
physical features of the exact solution. For example, the centrifuge effect, which
was first discovered by Maxey [29], tells us that particles disperse in regions of
high fluid vorticity. It is due to features of the exact solution, like the centrifuge
effect, that explain phenomena we observe in particle suspensions, such as the
preferential concentration in turbulent flows [46]. As these collective properties
are of interest to researchers studying the physics of particle-laden flows, it is
also of interest to preserve these features in the numerical solution. This will
be addressed in chapter 3.

Spheroidal particles

The surface of a spheroid (i.e., an ellipsoid with one rotational axis of symmetry)
is defined by the equation

x2

a2 + y2

a2 + z2

c2 = 1, (1.2.7)
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where a and c are the distinct semi-axis lengths. The spheroid’s shape can be
uniquely characterized by the dimensionless aspect ratio λ = c/a > 0, which
distinguishes between spherical (λ = 1), prolate (λ > 1) and oblate (λ < 1)
particles (the latter two shapes are also called as rods and disks). Like the
spherical case, the geometry is relatively simple and there exist closed form
expressions for the resistance tensor, where in a reference frame co-translating
with the particle, is given by K =QT KbQ for the diagonal body frame resistance
tensor Kb given by Brenner [6] and Oberbeck [36]. Due to the anisotropy
of the particle, one must now keep track of the particle’s rotational variables
by solving equations (1.2.4) and (1.2.5). Here, a closed form expression for
the torque vector T is given by Jeffery [23]. As the equations of motion for
spheroidal particles in turbulence are more complex than the spherical case,
there has been less theoretical studies on their collective behavior in complex
flows. There have, however, been many numerical studies on the statistical
behavior of these particles in a variety of flow fields, e.g., [12, 34]. None-
the-less, the numerical methods we develop for the spherical particles are still
applicable to non-spherical particles and are addressed in chapters 2 and 3.

Slender particles

Another particular particle shape that we are concerned with in this thesis are
slender particles, i.e., particles with a very high aspect ratio. Denoting by ε

the maximum radius of a particle and 2L its length, then a slender particle
is characterized by ε/L 
 1. The forces and torques on such a particle can
be modeled using a number of techniques, such as bead models [43] or if the
particle is straight, the aforementioned spheroid model. Slender body theory
(SBT), on the other hand, offers a more computationally efficient and accurate
approach to these long fibers and is based on integrating fundamental solutions
to the Stokes equations along the particle centerline and exploiting the small
parameter ε. For a particle whose centerline is parametrised by a C 1 non-
intersecting curve X (s) : [−L,L] →R3, SBT results in expressions for the force
density f(s) of the following form

v−X (s)×ω−u(X (s)) =αI +
∫L

−L
Kε(s, t )f(t )dt (1.2.8)

where α is a regularization parameter and Kε(s, t ) is a shape-dependent integra-
tion kernel. Such equations, where the force density is the quantity of interest
is called a Fredholm integral equation [2] and are typically ill-posed. In our
application, the force and torque on the particle is required to determine the
particle’s dynamics. These are given by integrating the force density along the
center line

F =
∫L

−L
f(s)ds and T =

∫L

−L
X (s)× f(s)ds. (1.2.9)

10



1.2 Small particles in viscous flow

By numerically inverting the integral operator in equation (1.2.8) and solving
for F and T we can derive expressions for the resistance tensor K and similarly
for the torque that are linear in the slip velocity. Due to this, the dynamical
equations are amenable to the same numerical methods proposed in chapters
2 and 3. In chapters 4 and 5 we consider these slender particles. Inspired
by the work of Ohm [37], an integral model is proposed and its computation,
validation and comparisons to other models are studied as well as an algorithm
for computing its dynamics.

1.2.3 Splitting methods for particles

Splitting methods are the central topic of chapters 2 and 3 and are also applied
in 4 and 5. A splitting method is a numerical method for integrating an ODE
that can be decomposed into a sum of two or more integrable vector fields, for
example

ẋ = f (x)+ g (x) ∈Rn . (1.2.10)

Denoting by φ
[ f ]
h (x0) and φ

[g ]
h (x0) the exact flows of the vector fields f (x)

and g (x), respectively, then one can then create a numerical approximation
x1 ≈ x(h) to the exact solution at time h by computing alternating compositions
of φ[ f ]

h and φ
[g ]
h . For example the first order Lie-Trotter splitting method

x1 =φ
[ f ]
h ◦φ[g ]

h (x0) (1.2.11)

or the second order Strang splitting method

x1 =φ
[ f ]
h
2

◦φ[g ]
h ◦φ[ f ]

h
2

(x0). (1.2.12)

Splitting methods are particularly favorable when they can be applied due to the
fact they are explicit and can be used to design structure-preserving methods.
In our application, we also observe better stability compared to other explicit
methods of equal order. A good introduction to splitting methods is found
in [33].

The ODEs for particles with Stokes drag can be concisely written as a the
following dissipative ODE (i.e., similar to the form (1.1.6))

ẏ = f (y)−St−1 (A y +b
)

(1.2.13)

Where f (y) here represents the free rigid-body ODEs and A y +b represents
the Stokes force and torque. These equations have a natural splitting into the
following two subsystems

ẏ = f (y), and ẏ = St−1 (A y +b
)

. (1.2.14)
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The vector field f (y) represents the free rigid body equations, whose flow is
known exactly [9] and the other vector field is affine and can therefore be com-
puted by the variation of parameters formula. This particular splitting method
is developed and analysed in chapters 2 and 3.

1.3 The method of Discrete Darboux polynomials

Understanding the integrability properties of ODEs has long been an area of
interest in the mathematical sciences. Darboux polynomials, also known as
second integrals or weak integrals, have been a successful tool for studying
integrable systems, especially for those with one or more rational integrals. In
chapters 6, 7 and 8, we depart our discussion of small particle dynamics and
instead focus our attention on discrete Darboux polynomials, which lies at the
intersection of geometric numerical integration and discrete integrable systems.
One can always view a numerical method applied to an ODE as a discrete map.
However, understanding the integrability properties (e.g., preserved integrals
or measures) of discrete maps is not always straight forward, yet it is important
for designing structure-preserving methods. As we have seen in example 2,
one can explain interesting properties of the Kahan map when applied to free
rigid-body ODEs by knowing its preserved integrals.

The section begins by briefly introducing Darboux polynomials for ODEs then
discrete Darboux polynomials for maps. We then present two more examples
of the use of discrete Darboux polynomials, one with the forward Euler method
and one with the Kahan map.

1.3.1 Darboux polynomials (ODE case)

A Darboux polynomial for a polynomial ODE ẋ = f (x) ∈Rn is a function P (x)
that satisfies

Ṗ (x) =C (x)P (x) (1.3.1)

where the polynomial C (x) is called the cofactor of P (x). Darboux polynomials
are important because they can give insight into the structural properties of
ODEs that are otherwise difficult to find. For example, given an ODE, it is
not an easy task to know if it has a preserved quantity or not. However, if
one can find two Darboux polynomials, say P1(x) and P2(x) that correspond to
the cofactors C1(x) and C2(x), then it is easy to show that P1(x)α1 P2(x)α2 is a
Darboux polynomial with cofactor α1C1(x)+α2C2(x). Moreover, if

α1C1(x)+α2C2(x) = 0 (1.3.2)
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then
d

dt

(
P1(x)α1 P2(x)α2

)= 0 (1.3.3)

defines a first integral. So the problem of finding first integrals can be made
simpler by finding second integrals. A good introduction to Darboux polyno-
mials is found in [20].

1.3.2 Discrete Darboux Polynomials (mapping case)

In chapters 6, 7 and 8 we study discrete Darboux polynomials, which, as the
name suggests, is a discrete analogue of equation (1.3.1) for a rational map
Φh(x), defined by the following

p(Φh(x)) = c(x)p(x), (1.3.4)

where p(x) is polynomial and c(x) is rational. Similarly to the continuous
case, discrete Darboux polynomials can be used to find integrals of the map
Φh by recognizing that p1(x) and p2(x) are discrete Darboux polynomials
with cofactors c1(x) and c2(x) then p1(x)α1 p2(x)α2 is also a discrete Darboux
polynomial with cofactor c1(x)α1 c2(x)α2 . Moreover, if

c1(x)α1 c2(x)α2 = 1 (1.3.5)

is satisfied then
p1(x)α1 p2(x)α2 (1.3.6)

defines a (possibly rational or even irrational) first integral of the map Φh(x).
A systematic method of detecting and determining integrals of mappings and
ordinary difference equations has long been an difficult problem. The method
of discrete Darboux polynomials is a step towards addressing this.

1.3.3 An example

Consider the following ODE

d

dt

⎛⎜⎜⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎝

x2
2 + (x1 +2 x4 +1

)
x2 +x4

2 +x4

−2 x1x2 +x3 +x4(−2 x1 −1
)

x2 + (σ+1) x3 +σx4

2 x1x2 +x2 −x3

⎞⎟⎟⎟⎟⎠ (1.3.7)

where σ ∈R.

Now consider integrating the above system with the forward Euler method.
This method is arguably the most well-known method in numerical analysis,
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for example, it is a Runge-Kutta method, affinely equivariant and preserves
linear integrals. However, when an ODE possesses non-linear integrals, it is
not always known when the forward Euler method can preserve these integrals.
However, using the method of discrete Darboux polynomials we can show that
in some cases, it can preserve a nearby modified integral.

Denote by φh : R4 →R4 the map defined by the forward Euler discretisation of
the above ODE. Using our method we find that φh has the following discrete
Darboux polynomials pi (x) that correspond to the discrete cofactor ci (x)

pi (x) ci (x)
i = 1 x3 +x4 1+σh
i = 2 x2 +x4 1+h

(1.3.8)

Using equation (1.3.5) we see that

Hh(x) = (x2 +x4)σh

x3 +x4
(1.3.9)

defines an h-dependent integral of φh with

σh = ln
(
1+σh

)
ln
(
1+h

) . (1.3.10)

That is, Hh(φh(x)) = Hh(x). In fact, as we will show in chapter 8, it turns out
that all Runge-Kutta methods possess a similar integral but with a different
exponent σh and gives rise due to the existance of iteration-index-dependent
integrals. As the forward Euler method approaches the exact solution as h → 0,
we can take the continuum limit

lim
h→0

(
Hh(x)

)= H(x) :=
(
x2 +x4

)σ
x3 +x4

. (1.3.11)

Indeed we find that the original ODE does possess the non-rational integral
H(x). In other words, the forward Euler method doesn’t preserve the non-
rational integral of the ODE exactly, but instead preserves the integral with a
modified exponent.

1.3.4 Kahan’s method

When applied to an ODE with that possesses one or more preserved quantities,
(e.g., those of the form (1.1.4) or (1.1.7)), a preserved measure (1.1.12) or a
Darboux polynomial (1.1.13) it is rare that a general-purpose numerical method
shares these features. There are of course exceptions, including linear integrals,
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1.3 The method of Discrete Darboux polynomials

for example. Remarkably, however, Kahan’s method has been shown to pre-
serve many interesting geometric features of the exact solution when applied
to quadratic ODEs:

ẋi =
∑
j ,k

ai , j ,k x j xk +
∑

j
bi , j x j + ci . (1.3.12)

Kahan introduced his method in 1993 [24] and is defined by the map φh : x 	→
φh(x) = x ′ where x ′ is given by the following linearly implicit equation

x ′
i −xi

h
=∑

j ,k
ai , j ,k

x ′
j xk −x j x ′

k

2
+∑

j
bi , j

x ′
j −x j

2
+ ci . (1.3.13)

Celledoni et al. [10, 11] have studied this map extensively and have shown that
it can preserve certain integrability and geometric properties of original ODE,
often by showing the existence of preserved modified integrals or measures. As
we will show in chapters 6, 7 and 8 the Kahan map also preserves certain (often
modified) measures and Darboux polynomials of the ODE under study. This
can be used to uncover new properties of the Kahan map.

We illustrate this with an example. Consider the Kahan discretisation of the
following family of Nambu systems in the variables x = (x, y, z)T

ẋ = c
(∇H ×∇Kα

)
, (1.3.14)

where c = y2−α, H = x
y , Kα = yαQ(x), Q(x) is an arbitrary homogeneous and

quadratic polynomial in x and α ∈R is a free parameter. Note that vector field
is scaled by the factor c to make it quadratic and therefore applicable to the
Kahan map. Using our method, we can show that the Kahan map preserves the
rational integral H exactly, due to x and y being discrete Darboux polynomi-
als of the same cofactor. However, what about the integral Kα? This integral
is proportional to yα which makes Kα generally non-rational. However, our
algorithm can also detect for which values of α does the Kahan map preserve
the integral Kα. This gives us the following solutions for α and the correspond-
ing additional second integral of the Kahan discretisation summarized in the
following table

α Integrals
-2 H and K−2

-1 H and K−1

0 H and K̃0

1 H and K̃1

2 H and K̃2
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So when α = −2,−1, (i.e., for rational K ) the Kahan map preserves both in-
tegrals exactly, whereas for α = 0,1,2, the Kahan map preserves a modified
integral of the form

K̃i = K

1+O(h2)
. (1.3.15)

One can also show that the Kahan map also preserves a measure (i.e., of the
form equation (1.1.12)) when applied to this ODE. It is straight forward to
show that a preserved measure corresponds to a Darboux polynomial whose
cofactor is the Jacobian determinant of the map. That is,

m(Φh(x)) = det

(
∂Φh(x)

∂x

)
m(x). (1.3.16)

Indeed, we find non-trivial solutions for m(x). We conclude that Kahan map
yields an integrable discretisation for this ODE.

1.4 Summary of papers

Paper 1: A novel approach to rigid spheriod models using operator split-

ting

Benjamin K Tapley, Elena Celledoni, Brynjulf Owren, Helge I. Andersson

Numerical Algorithms 81, no. 4 (2019): 1423-1441.

In this application-focused paper we consider the numerical integration of the
equations of motion for a spheroidal particle immersed in viscous flow (i.e.,
equations (1.2.1)-(1.2.5)), where the resistance tensor K and torque vector T
come from the spheroidal particle model and are given by Brenner [6] and
Jeffrey [23]. We develop a splitting scheme based on splitting the ODE into a
free rigid body vector field and a vector field that takes into account the viscous
Stokes force as in equation (1.2.14). We study the convergence via numerical
tests for a variety of Stokes numbers.

Paper 2: Computational geometric methods for preferential clustering of

particle suspensions

Benjamin K Tapley, Helge I Andersson, Elena Celledoni, Brynjulf Owren

Submitted to Journal of Computational Physics

In this paper, we develop a geometric method for simulating suspensions of
spherical and non-spherical particles in a discrete flow field such as a numer-
ical solution to the Navier-Stokes equations. We study the effect of breaking
the divergence-free condition in simulations and propose a simple and effective
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method for diverge-free interpolation using matrix-valued radial basis functions.
Furthermore, the equations of motion possess many features that are used to ex-
plain the preferential clustering of particles that we observe in experiment. We
propose a composition method, based on the splitting scheme of the previous
chapter, that preserves a number of relevant physical features in the numerical
solution. We conduct numerical experiments in a cellular flow field and show
that low-order fast geometric methods can outperform higher-order expensive
general-purpose methods.

Paper 3: A slender body model for thin rigid fibers: validation and com-

parison

Laurel Ohm, Benjamin K Tapley, Helge I Andersson,
Elena Celledoni and Brynjulf Owren

Proc. of MEKiT’19, 10th Nat. Conf. on Comp. Mech., 2019

In this article, we consider a model, based on slender body theory, for calcu-
lating the forces and torques for a slender fiber in Stokes flow. We implement
basic numerical methods to validate the accuracy of the model and compare
it to other known slender body models. We also compare the dynamics of a
prolate ellipse to using the slender body model to known dynamics using the
Jeffery model.

Paper 4: An integral model based on slender body theory, with applications

to curved rigid fibers

Helge I Andersson, Elena Celledoni, Laurel Ohm,
Brynjulf Owren and Benjamin K Tapley

Physics of Fluids 33 (4), 041904

This paper is an extension of the previous. Here, we further develop the previ-
ously proposed model to better suit it to numerical inversion. The result is a
second-kind Fredholm integral equation. We implement a spectral quadrature
method for calculating the force and torque on a rigid slender particle. We
propose a fast and algorithm for computing the dynamics of rigid fibers. As the
Fredholm integral equation needs to be inverted, we explore the invertibility
and convergence properties of the numerical method and show that the algo-
rithm is well conditioned.

Paper 5: Using discrete Darboux polynomials to detect and determine

preserved measures and integrals of rational maps

Elena Celledoni, Charalambos A Evripidou, David I McLaren, Brynjulf Owren,
G R W Quispel, Benjamin K Tapley and Peter H van der Kamp
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Journal of Physics A: Mathematical and Theoretical 52 31LT01

This letter introduces the idea of discrete Darboux polynomials, which is an ana-
logue to Darboux polynomials of ODEs but applied to mappings. We present
results on the preservation of Darboux polynomials by the Kahan map as well
as a number of examples where one can determine expressions for the rational
integrals that are preserved by this map using the method of discrete Darboux
polynomials. We also present results on an algorithm that can detect extra Dar-
boux solutions on a given map with free parameters. The algorithm can tell us
the conditions that these free parameters must satisfy to yield extra Darboux
polynomial solutions, which can lead to extra integrals.

Paper 6: Detecting and determining preserved measures and integrals of

rational maps

Elena Celledoni, Charalambos A Evripidou, David I McLaren, Brynjulf Owren
G R W Quispel and Benjamin K Tapley

Submitted to Journal of Physics A: Mathematical and Theoretical

This paper is the sequel to the previous letter. We present many novel exam-
ples of the integrability properties of Kahan map using the method of discrete
Darboux polynomials. In particular, we show examples of the Kahan map pre-
seving an irrational integral, a quartic rational integral and many more. We
also present details of the algorithm that detects conditions of the free param-
eters that yield extra Darboux polynomial solutions and apply it to a number
of systems including the coupled Euler tops, the extended McMillan map and
a new class of Nambu systems for which the Kahan map preserves integrability.

Paper 7: On the preservation of affine second integrals by Runge-Kutta

methods

Benjamin K Tapley

Pre-print

Most of the examples we have considered in the previous two papers have
come about from Kahan’s method applied to integrable ODEs. In this paper,
we generalise the theory of discrete Darboux polynomials by considering their
preservation by Runge-Kutta methods. By limiting our discussion to affine
Darboux polynomials, we are able to make more general statements about how
Darboux polynomials are preserved when discretised. In particular, we show
that all Runge-Kutta methods preserve all affine second integrals with a modi-
fied discrete cofactor. We also discuss the preservation of higher affine integrals
and show that Runge-Kutta methods can preserve some rational integrals for
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1.4 Summary of papers

certain ODEs.

Paper 8: Symplectic integration of PDEs using Clebsch variables

Robert I McLachlan, Christian Offen and Benjamin K Tapley

Journal of Computational Dynamics 6.1, pp. 111–130

In this paper we consider the numerical integration of PDEs that can be for-
mulated as Lie-Poisson systems. Our approach is to reformulate the PDE as a
Hamiltonian system on a symplectic manifold by writing the system in the so-
called Clebsch variables. The advantage is that this lifted system has symplectic
structure, to which we apply a symplectic integrator. Compared to integration
on the original Poisson manifold, our approach leads to better conservation
properties and we observe better stability.
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A novel approach to rigid spheriod models

using operator splitting

Abstract. Calculating cost-effective solutions to particle dynamics in viscous
flows is an important problem in many areas of industry and nature. We
implement a second-order symmetric splitting method on the governing
equations for a rigid spheroidal particle model with torques, drag and gravity.
The method splits the operators into a vector field that is conservative and one
that takes into account the forces of the fluid. Error analysis and numerical
tests are performed on perturbed and stiff particle-fluid systems. For the
perturbed case, the splitting method greatly improves the solution accuracy,
when compared to a conventional multi-step method, and the global error
behaves as O (εh2) for roughly equal computational cost. For stiff systems, we
show that the splitting method retains stability in regimes where conventional
methods blow up. In addition, we show through numerical experiments that
the global order is reduced from O (h2/ε) in the non-stiff regime to O (h) in
the stiff regime.

2.1 Introduction

Simulating the dynamics of particles in a fluid is of importance to many indus-
trial applications such as paper making [11], pharmaceutical processing [27]
and soot emission from combustion processes [34] as well as natural processes
including the transportation of plankton in the sea [35], the formation of ice
clouds [18] and the dispersion of pollen in the atmosphere [22]. With growing
needs for larger models and longer simulation times, there is an increasing de-
mand for effective numerical methods that minimise computational cost. Over
the past 50 years, splitting methods have been used to model problems in molec-
ular biology, physics and fluid dynamics, for example, and have been shown
to supersede classical integration schemes in terms of both quantitative and
qualitative accuracy [31]. In this paper, we employ splitting methods on the ax-
isymmetric rigid-body equations with Stokes viscous force, torque and gravity.
Splitting methods are often used when the differential equation has geometric
properties that should be preserved under disretisation, such as being Hamil-
tonian or divergence-free; or possessing a symmetry or a first integral. The
idea behind splitting methods is to split the system into two or more simpler
sub-systems and compute the numerical flow as the composition of the analytic
flows of the subsystems at discrete time-steps. As these methods are purpose-
built for the problem under study, they have the ability to mimic the qualitative
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behaviour of the continuous solution resulting in efficiency and stability im-
provements over standard, all-purpose integration techniques.

The particle-fluid system is modelled under the assumptions that the particle
size is smaller than the smallest fluid length scale (e.g., the Kolomogrov scale)
and that the particle shape can be approximated by a triaxial ellipsoid. Under
the first assumption, the particle-Reynolds number is likely to be low and the
fluid can be approximated by Stokes flow conditions where the dominant forces
are drag, torque and gravity. We adopt the second assumption for numerous
reasons. Due to the inherent complexity of fluid dynamics, ellipsoids are the
only shape where the fluid forces are exactly known at leading order without
making overly restrictive assumptions. For example, slender body theory can
tell us the forces on the particle only but only if the particle is very long and
thin [1, 23, 30] and perturbation theory can tell us the translational [14] and
rotational [29] forces only for nearly spherical particles. Other than these two
cases, the only shape where the forces are known at leading order are ellip-
soids, which are modelled by Stokes viscous force, derived by Brenner [3], and
torques, derived by Jeffery [21]. Such models have been adopted in studies
such as [17, 25, 28]. Additionally, modelling general non-spherical particles
as axisymmetric spheroids, such as rigid rods [17] or disks [25], is a common
leading order approximation, for example, ice-cloud particles are hexagonal
plates and columns but are modelled as oblate and prolate spheroids [18]. For
a comprehensive review on particle modelling the reader is referred to [12]. In
this paper we pay particular attention to two cases, one where the fluid forces
are seen as a perturbation to an otherwise free rigid-body system and the second
is a stiff system, where the fluid forces dominate the free rigid-body equations.

For non-spherical particles, the orientation couples with the translational dy-
namics and therefore greatly increases the model complexity. As a result, a sys-
tem of 13 coupled ordinary differential equations (ODEs) need to be solved per
time-step: three each for the position, velocity and angular momentum vectors
and four for the rotation quaternion. A typical approach to solving these ODEs
has been to integrate the system using Runge-Kutta methods and/or linear multi-
step methods such as a second-order explicit Adams-Bashforth method [25,28].
These methods, although straightforward to implement, present a number of
drawbacks when calculating long-time numerical solutions to ODEs: (1) sta-
bility restrictions on the time-step h; (2) not time symmetric; and (3) limited
ability to conserve properties specific to the underlying physics of the system.

Such issues can only be overcome by enforcing small time-steps, thus increas-
ing the total cost of the solution method, which limits the feasibility of large
(e.g., N > 106 particles) or long (e.g., T ∈ [0,103] seconds) simulations [12].
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2.2 Governing equations

Alternatively, one could approach the problem with a purpose-built algorithm,
such as a splitting method, which takes advantage of particular properties of
the vector field under study. Here, we show that when compared to a conven-
tional two-step Adams-Bashforth method, the splitting method is both cheaper,
more accurate and more robust thus allowing for larger time-steps to achieve
the same accuracy.

The next section of the paper reviews relevant theory in particle modelling.
We then introduce the numerical splitting method and present an error analy-
sis. Section 2.5 presents some numerical experiments and the last section is
dedicated to conclusions.

2.2 Governing equations

To describe the forces on the particle we first establish three reference frames.
First, we define an inertial frame by variables x = (x, y, z)T that is an inertial
coordinate system as shown in figure 2.1. Secondly, we define a translating
frame by variables x′′ = (x ′′, y ′′, z ′′)T that is translating with the particle and has
its origin co-located with the particles center of mass. Lastly, we introduce a
body frame denoted by variables x′ = (x ′, y ′, z ′)T that is translating and rotating
with the particle. Henceforth, all primed and double primed variables are re-
spectively defined in the body and translating frame and unprimed variables are
defined in the inertial frame.

x
x'x''

Figure 2.1: A prolate spheroid (λ= 3) with coordinate lines of the inertial frame (thick
black arrows), translating frame (thin black arrows) and the body frame (thin blue
arrows).
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Jeffery and Brenner derived forces for general rigid ellipsoids, which have three
distinct semi-axis lengths; however, for simplicity we will focus on spheroids,
which are axisymmetric. In the body frame, a spheroid is defined by

x ′2

a2 + y ′2

a2 + z ′2

c2 = 1, (2.2.1)

where a and c are the distinct semi-axis lengths. The particle shape is char-
acterised by the dimensionless aspect ratio λ = c/a > 0, which distinguishes
between spherical (λ= 1), prolate (λ> 1) and oblate (λ< 1) particles (the latter
two shapes are also called as rods and disks). The axisymmetric moment of
inertia tensor for a spheroid in the body frame is

I ′ = ma2diag

(
(1+λ2)

5
,

(1+λ2)

5
,

2

5

)
, (2.2.2)

where m = 4
3πλa3ρp is the particle mass and ρp is the particle density.

A spheroid immersed in a fluid will experience forces on its surface that have
magnitude governed by many parameters such as the particles density ρp , semi-
major axis length a, aspect ratio λ, fluid density ρ f , dynamic viscosity ν and
fluid relaxation time τ f , which is defined in section 2.2.3. Hence, it is a logical
step to non-dimensionalise our equations by introducing a dimensionless Stokes
number. The particle Stokes number is formally defined as the ratio of the
particle and fluid relaxation times St = τp /τ f . In this paper, we will adopt the
definition

St = Dλ2a2

ντ f
, (2.2.3)

where D = ρp

ρ f
is the particle-fluid density ratio. The Stokes number is a di-

mensionless measure of the relative importance of particle inertia, that is, as
St →∞ the particle behaves as a free body and as St → 0 the particle behaves
as if itself were part of the fluid. Henceforth, all equations are presented in their
non-dimensional form and all parameters have dimension equal to 1.

The linear momentum, angular momentum and position can be described by the
column vectors p, m′, x ∈R3, and the orientation can be represented using Euler
parameters [15], i.e. a vector q = (e0,e1,e2,e3) ∈R4 satisfying the constraint

1 = e2
0 +e2

1 +e2
2 +e2

3, (2.2.4)

that uniquely determines the orientation of the body frame relative to the axes
of translating frame (and hence to the inertial frame subject to an additional
translation). The Euler parameters were first used for particle modelling by Fan
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[10] and are used in place of the conventional Euler angles to avoid singularities.
Each q uniquely determines a rotation matrix Q ∈ SO(3) that transforms a vector
in the body frame x′ to a vector in the translating frame x′′ via

x′′ =Qx′. (2.2.5)

There is a 2-to-1 correspondence between Euler parameters and 3×3 rotation
matrices given by the so called Euler-Rodriguez map E : q 	→ Q [5]. Setting
e = (e1,e2,e3), the rotation matrix E (q) =Q is constructed via

Q = 1+2e0ê+2êê, (2.2.6)

where 1 is the 3×3 identity matrix and we have introduced the hat map ·̂ : R3 →
so(3) defined by ⎛⎜⎝ ω1

ω2

ω3

⎞⎟⎠ 	→ ω̂=

⎛⎜⎝ 0 −ω1 ω2

ω1 0 −ω3

−ω2 ω3 0

⎞⎟⎠ , (2.2.7)

where so(3) is the Lie algebra of SO(3) containing 3×3 skew-symmetric matri-
ces satisfying ω×v = ω̂v for ω,v ∈R3. This gives the following expression for
Q explicitly in terms of the Euler parameters

Q =

⎛⎜⎝ e2
0 +e2

1 −e2
2 −e2

3 2(e1e2 −e0e3) 2(e1e3 +e0e2)
2(e1e2 +e0e3) e2

0 −e2
1 +e2

2 −e2
3 2(e2e3 −e0e1)

2(e1e3 −e0e2) 2(e2e3 +e0e1) e2
0 −e2

1 −e2
2 +e2

3

⎞⎟⎠ . (2.2.8)

2.2.1 Translational dynamics

The Stokes viscous force, derived in [3] and gravity force terms, are given in
their non-dimensional form by

Fh = 3λ

4St
QK ′QT(u−v), (2.2.9)

Fg =−mg, (2.2.10)

where v is the inertial frame linear velocity, which is related to linear momentum
via p = mv. Note that in our non-dimensional formalism we take m = 1 to
be a dimensionless constant; however, we will leave m in our equations for
consistency with the literature. The inertial frame fluid velocity vector u =
u(x, t ) is taken at the location of the particle x and the inertial frame gravity
acceleration vector is g = (0,0, g )T for some positive constant g that is typically
defined as g = 1− 1/D to account for the buoyancy force. The body frame
resistance tensor K ′, derived by Oberbeck [26], is given by
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K ′ = 16πλ diag

(
1

χ0 +α0
,

1

χ0 +β0
,

1

χ0 +λ2γ0

)
(2.2.11)

where the constants χ0, α0, β0 and γ0 were calculated for ellipsoidal particles
by Siewert [4] and are presented in table 3.A.1. Note that the inertial frame
resistance tensor K is calculated from the similarity transformation K =QK ′QT.

λ< 1 λ= 1 λ> 1

χ0
λ2(π−κ0)�

1−λ2
2 −κ0λ�

λ2−1

α0 =β0
−λ
(
κ0−π+2λ

�
1−λ2

)
2(1−λ2)3/2

2
3

λ2

λ2−1 +
λκ0

2(λ2−1)3/2

γ0

(
λ(κ0−π)+2

�
1−λ2

)
(1−λ2)3/2

2
3

−2
λ2−1 −

λκ0

(λ2−1)3/2

κ0 2arctan

(
λ�

1−λ2

)
1 ln

(
λ−

�
λ2−1

λ+
�
λ2−1

)

Table 2.1: The values for the constants χ0, α0, β0 and γ0 for λ< 1, λ= 1 and λ> 1.

It will be convenient for the formulation of the methods to rewrite equation
(2.2.9) as

Fh =−A1p+b1, (2.2.12)

where

A1 = 3λ

4mSt
K and b1 = m A1u(x, t ). (2.2.13)

Here, b1 is implicitly dependent on time through the fluid. This leads to the
following ODE for momentum

ṗ =−A1p+b1 −mg. (2.2.14)

The inertial frame position vector x is calculated by solving

ẋ = v. (2.2.15)

2.2.2 Rotational dynamics

The rotational dynamics of an ellipsoidal particle are governed by the free rigid-
body equations [20] with torques N′ = (N ′

x , N ′
y , N ′

z )T that describe the rotational
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forces acting on an ellipsoid in creeping Stokes flow in the body frame [21].
These are presented in their non-dimensional form

N ′
x = 16πλ

3(β0 +λ2γ0)

[
(1−λ2)S′

y z + (1+λ2)(Ω′
x −ω′

x )
]

, (2.2.16)

N ′
y =

16πλ

3(α0 +λ2γ0)

[
(λ2 −1)S′

zx + (1+λ2)(Ω′
y −ω′

y )
]

, (2.2.17)

N ′
z =

32πλ

3(α0 +β0)
(Ω′

z −ω′
z ), (2.2.18)

where ω′ = (ω′
x ,ω′

y ,ω′
z )T is the body frame angular velocity, which is related to

body frame angular momentum by m′ = I ′ω′. The dimensionless body frame
shear S′ = (S′

y z ,S′
zx ,S′

x y )T and fluid rotation Ω′ = (Ω′
x ,Ω′

y ,Ω′
z )T terms are

S′
i j =

1

2

⎛⎝∂u′
i

∂x ′
j

+
∂u′

j

∂x ′
i

⎞⎠ and Ω′
i =

1

2
(∇′ ×u′)i . (2.2.19)

We write equations (5.C.6), (5.C.7) and (5.C.8) compactly as

N′ = −A′
2m′ +b′

2, (2.2.20)

where

A′
2 =

12λ2

St
diag

(
(1+λ2)

(β0 +λ2γ0)
,

(1+λ2)

(α0 +λ2γ0)
,

2

(α0 +β0)

)
I ′−1, (2.2.21)

and

b′
2 =

12λ2

St
diag

(
(1−λ2)

(β0 +λ2γ0)
,

(λ2 −1)

(α0 +λ2γ0)
,0

)
S′ + A2I ′Ω′. (2.2.22)

Here, b′
2 is implicitly dependent on time through the shear and rotation terms.

The dimensionless equation governing the angular momentum of the particle
in the body frame is therefore

ṁ′ = m′ ×ω′ − A′
2m′ +b′

2, (2.2.23)

where the cross-product term is the Poisson bracket for the free rigid-body [20]
that arises from the fact that m′ is represented in the (non-inertial) body frame.
The rotation matrix Q is calculated by solving the matrix ODE

Q̇ =Qω̂′, (2.2.24)

which arises from the quaternion formulation for the rigid-body, see [5] for
details. When designing a splitting method, it is notationally convenient to
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express the ODEs as vector equations. To do so we will denote qi to be the i th
column of QT, then

q̇i =−ω̂′qi for i = 1,2,3 (2.2.25)

which represents three vector equations. It is important to stress, that to ensure
that the orthogonality of Q is preserved, it is equation (3.2.4) that is being solved
during the implementation of the splitting method and not equation (2.2.25).

2.2.3 Fluid field

This paper is only concerned with the performance of numerical methods in
calculating solutions to particle dynamics, so as to measure this in isolation
of the costs associated with discrete fluid field interpolation, an analytic fluid
field that is known everywhere in time and space is used. The inertial frame
fluid velocity vector u = (u, v, w)T is modelled by an analytic solution to the
Navier-Stokes equations derived by Ethier and Steinman [9]

u =−α f [eα f x sin(α f y ±β f z)+eα f z cos(α f x ±β f y)]e−β
2
f t , (2.2.26)

v =−α f [eα f y sin(α f z ±β f x)+eα f x cos(α f y ±β f z)]e−β
2
f t , (2.2.27)

w =−α f [eα f z sin(α f x ±β f y)+eα f y cos(α f z ±β f x)]e−β
2
f t , (2.2.28)

for positive constants α f and β f . The fluid model has time scale τ f =β−2
f and

is chosen as it has non-zero, non-trivial velocities that depend on every direction
in each component of u and its Jacobian ∇u, and is derived from the full Navier-
Stokes equation (i.e., without neglecting the convective, diffusive, unsteady or
pressure terms). We assert that this fluid field provides a reasonable test of
the solution methods in a non-trivial fluid and insights into their performance
when the flow is transitioned to a realistic field, for example in [17, 25, 28]. In
addition, we will conduct long-time experiments on an oscillating shear flow
field defined by uS = (0,0, x cos(2πt )/τ f )T.

2.3 Numerical methods

2.3.1 Splitting

Splitting methods can be used when an ODE can be expressed as the sum of
two or more operators,

ẏ(t ) = f (y) = f1(y)+ f2(y), (2.3.1)
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where y ∈Rn and f1, f2 : Rn →Rn . Ideally, the splitting is chosen in such a way
that the flows* ϕ[1]

h and ϕ[2]
h of the systems ẏ(t ) = f1(y) and ẏ(t ) = f2(y) can be

computed exactly. In this case, numerical approximations can be generated by

Φh =ϕ[1]
h ◦ϕ[2]

h , or Φ∗
h =ϕ[2]

h ◦ϕ[1]
h , (2.3.2)

which are known as Lie-Trotter splittings [19] and are each others adjoints. Tay-
lor expansion shows that the method is first-order. Another numerical method
can be generated by

Φ[S]
h =ϕ[1]

h/2 ◦ϕ[2]
h ◦ϕ[1]

h/2, (2.3.3)

which is the Strang splitting method [13]. Note that this can be written as
the composition of the above Lie-Trotter methods with half time-steps Φ[S]

h =
Φh/2 ◦Φ∗

h/2, hence the method is of second-order and is symmetric [6, pg. 45].
Similarly, Φ[S]

h =Φ∗
h/2 ◦Φh/2 is also a second-order symmetric method. Sym-

metric methods of arbitrarily high order can be generated by composition of the
above methods, however, we refer the reader to [16, 24] for a more complete
description of high-order splitting methods. For a full review of splitting theory,
we refer the reader to [31].

2.3.2 System of differential equations

Let y(t ) = (pT,m′T,qT
1 ,qT

2 ,qT
3 ,xT)T ∈R18 be the solution to the ODE in the form

of equation (2.3.1). The particles dynamics is governed by the following system
of first-order coupled ODEs

ṗ =−A1p+b1 −mg,

ṁ′ = m′ ×ω′ − A′
2m′ +b′

2,

q̇i =−ω̂′qi , for i = 1,2,3

ẋ = v,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
f (y) (2.3.4)

where the RHS of the equations in (2.3.4) arises due to the vector field f (y).
The kinetic and potential energies K and U , and Hamiltonian H are given by

K (y) =1

2
pTm−1p+ 1

2
m′TI ′−1m′, (2.3.5)

U (y) =1

2

(
qT

1 q1 +qT
2 q2 +qT

3 q3

)
+mxTg, (2.3.6)

H(y) =K (y)+U (y), (2.3.7)

*We denote by ϕh the flow operator such that y(h) = ϕh (y0) is the solution of the ODE at
time t = h with initial conditions y0 at t = 0.
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where
∑3

i=1 qT
i qi = 3 is a constant. The gradient of the Hamiltonian is

∇H(y) =
(
vT,ω′T,qT

1 ,qT
2 ,qT

3 ,mgT
)T

, (2.3.8)

and is related to the solution vector y by the following non-injective mapping

∇H = My+g1, (2.3.9)

where the matrix M := diag(m−11, I−1,1,1,1, ) ∈R18×18 is diagonal and singular
and g1 = (0, · · · ,0,mgT)T ∈R18. Now ẏ can be written as

ẏ = f (y) = S∇H − Ay+b, (2.3.10)

where S ∈R18×18 is a skew-symmetric matrix given by

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
m̂′

−ω̂′

−ω̂′

−ω̂′

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.3.11)

A ∈R18×18 is a diagonal matrix given by

A = diag(A1, A′
2, , . . . , ), (2.3.12)

b ∈R18 is a vector given by

b = (bT
1 ,b′T

2 ,0, . . . ,0)T ∈R18, (2.3.13)

and ∈ R3×3 is the zero matrix. Note from equations (2.2.13) and (5.C.9) that
matrices A1 and A′

2 are positive definite, hence A is positive semi-definite
and therefore represents a linear dissipation. Additionally, vectors b1 and b′

2
represent the forces of the fluid on the particle, hence b is a non-conservative
force term. As the energy of such a system is necessarily non-constant, we
can calculate the exact energy dissipation by taking the time derivative of the
Hamiltonian

Ḣ =∇H Tẏ =∇H T(−Ay+b), (2.3.14)

where we have used the fact that ∇H TS∇H = 0 for skew-symmetric matrix
S. With the forethought that we would like a dissipation-preserving splitting
scheme, we split f (y) into the following two sub-systems

ẏ = f1(y) = S∇H , (2.3.15)

ẏ = f2(y) =−Ay+b. (2.3.16)
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The first system is Hamiltonian and hence Ḣ [1] = 0 while the second system dis-
sipates energy according to Ḣ [2] =∇H T f2(y) =∇H T(−Ay+b). Hence, the nu-
merical flow given by equation (2.3.3) preserves, up to the order of the method,
the energy dissipation of the continuous system given by equation (2.3.14).
Equations (2.3.15) and (2.3.16) correspond to the following systems of ODEs

ṗ =−g

ṁ′ = −ω̂′m′

q̇i =−ω̂′qi

ẋ = v

(ṫ = 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
f1(y) and

ṗ =−A1p+b1

ṁ′ = −A′
2m′ +b′

2

q̇i = 0

ẋ = 0

(ṫ = 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
f2(y), (2.3.17)

where f1(y) represents a free rigid-body vector field with gravity, while f2(y)
represents a purely energy dissipative (exponential decaying) vector field with
a non-conservative force that leaves Q and x constant. Note that we freeze the
flow of time in the second system to remove any implicit time dependence that
b1 and b′

2 may have through the fluid vector field.

Solutions to f1(y)

The original system of ODEs is split such that the resulting sub-systems have
solutions that can be computed analytically. The first system is solved using the
well known solutions for axisymmetric rigid bodies [6, chapt. VII.5]. Note that
this method can be generalised to triaxial ellipsoids, see for example [5,20,33].
First, the angular velocity ω′ is solved by

ω′(h) = R ′
z (μh)ω′

0, (2.3.18)

where μ=ω′
z (0)

I ′x−I ′z
I ′x

and R ′
z (μh) is a planar rotation of angle μh about the z ′

axis of the body frame

R ′
z (μh) =

⎛⎜⎝ cos(μh) sin(μh) 0
−sin(μh) cos(μh) 0

0 0 1

⎞⎟⎠ . (2.3.19)

This immediately yields the angular momentum

m′(h) = I ′ω′(h). (2.3.20)

Next, setting w(h) = (0,ω′(h)T)T ∈ R4, the rotation matrix Q = E (q) is solved
by computing the quaternion

q(h) = q0 ·expq

(
h

2
w(h/2)

)
, (2.3.21)
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where expq is the quaternion exponential and the · represents multiplication
of two quaternions (see [5] for details). Here, w(h/2) is evaluated at a half
time-step to maintain symmetry. The linear momentum p is solved by

p(h) =−mgh +p0, (2.3.22)

and the position x is calculated by integrating the velocity

x(h) =−1

2
gh2 + 1

m
p0h +x0. (2.3.23)

These solutions to p, m′, Q and x at time h are represented by the flow map
ϕ[1]

h in equation (2.3.3).

Solutions to f2(y)

The m′ and p equations in f2(y) of equation (2.3.17) are solved using the
variation of constants formula

p(h) = exp
(

A1h
)(

p0 + A−1
1 b1

)
− A−1

1 b1, (2.3.24)

′′′(h) = exp
(

A′
2h
)(′′′

0 + A′−1
2 b′

2

)
− A′−1

2 b′
2. (2.3.25)

Where vectors b1 and b′
2 are constant in this system as we have enforced ṫ = 0.

Additionally, the rotation matrix Q and the position vector x are also kept
constant in this system. These solutions at time h are represented by the flow
map ϕ[2]

h in equation (2.3.3).

2.4 Error Analysis

The dissipative system f2(y) that represents the fluid forces is inversely propor-
tional to the Stokes number St which can be taken to be small (St << 1) or
large (St >> 1), depending on the application. In addition, the choice of λ can
greatly effect the magnitude of matrix A and vector b. In fact it can be shown
that ||A|| ≤ c1λ

4/St for λ > 1 and ||A|| ≤ c2
�
λ/St for λ < 1 (see table 3.A.1)

and for some positive constants c1 and c2. This leads us to consider at least
two main cases: one where f2(y) = ε f̃2(y) is a perturbation and another where
f2(y) = 1

ε f̃2(y) is a stiff term for 0 < ε<< 1. For the remainder of this section
we will set b = 0 (i.e. that f2 consists only of a linearly dissipative term) and
assume that gravity is negligible such that ∇H ≈ My. We will use backward
error analysis to study the error in the non-stiff case, and we will illustrate the
behaviour of the error in the stiff case by numerical tests. We will let γi repre-
sent the eigenvalues of the dissipation matrix A, of which six are non-zero and
are the diagonal elements of matrices A′

1 =QT A1Q and A′
2, given in equations
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(2.2.13) and (5.C.9) respectively.

The local error for the energy H is given by the scalar

δH (y0) = H(y(h))−H(y1). (2.4.1)

If gravity is negligible, the particles energy is only kinetic, hence H = 1
2 yTMy =

1
2∇H Ty. Using the fact that the numerical approximation y1 differs from the
exact solution y(h) by the local error y1 = y(h)+δ(y0), it follows that the local
energy error reduces to

δH (y0) =−∇H Tδ(y0)+O (||δ||2). (2.4.2)

The next section will be dedicated to calculating the local solution error δ(y0)
and local energy error δ[H ](y0) for the numerical method for the perturbed case.
For the stiff case we will explore the global error using numerical experiments.

2.4.1 Non-stiff case

Here, we will look at a modified vector field that coincides exactly with the
flow of the numerical method and compare this to the exact vector field. For
γi << 1, we can write the ODE as ẏ = f1(y)+ f2(y) = f1(y)+ε f̃2(y). Here, we
have introduced the scaled variables, denoted by the tilde, in our case ε f̃2 = εÃy.
For arguments sake, we will analyse the error for the Lie-Trotter splitting as
the results are more concise and analogous to the Strang splitting method. The
numerical flow corresponding to the Lie-Trotter operator is

Φ[LT ]
h (y0) =ϕ[1]

h ◦ϕ[2]
h (y0), (2.4.3)

The local error can be determined by taking the difference between the exact and
numerical flow over one time-step starting from the initial conditions y(0) = y0.
It follows that the local error for the Lie-Trotter method is

δ[LT ](y0) =ϕh(y0)−Φ[LT ]
h (y0) = h2

2
[ f1, f2]y0 +O (h3), (2.4.4)

where we have Taylor expanded the flows and use the bilinear Lie bracket of
vector fields [6, chapt. IV], which expressed in coordinates is given by

[ f1, f2] =
n∑

i , j=1

(
f i

1 ∂i f j
2 − f i

2 ∂i f j
1

)
∂ j , (2.4.5)

where f j
1 is the j th element of f1 and ∂i = ∂/∂yi . Inserting equations (2.3.15)

and (2.3.16) into (2.4.4) we can write the local error explicitly

δ[LT ](y) = εh2

2
(S∇2H Ãy− ÃS∇H −∇Ã(S∇H , y, ·)−∇S(Ãy,∇H , ·))+O (h3),

(2.4.6)
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where the tri-linear tensor ∇S is calculated by taking the gradient of S and
satisfies the skew-symmetric relationship ∇S(u,v,w) =−∇S(u,w,v) in its last
two components for vectors u,v,w ∈R18, hence ∇S(Ãy,∇H , ·) is interpreted as
a column vector. If we insert equation (2.4.6) into equation (2.4.2) we can
compute the local energy error

δ[LT ]
H (y) =εh2

2
(∇H TS∇2H Ãy−∇H T ÃS∇H −∇Ã(S∇H , y,∇H)−∇S(Ãy,∇H ,∇H))+O (h3),

=εh2

2
(∇H TS∇2H Ãy−∇H T ÃS∇H −∇Ã(S∇H , y,∇H))+O (εh3),

(2.4.7)

where, we have used the fact that ∇S(Ãy,∇H ,∇H) vanishes due to the skew-
symmetry of its last two components.

To compute the global error of the Lie-Trotter method, we first assume that both
vector fields f1 and f2 are one-sided Lipschitz with L1 and L2 as their respective
one-sided Lipschitz constants. We will also use a result of [8, pg. 37], which
states that for a first-order ODE that has two solutions y1(h) and y2(h), their
difference is bounded by the inequality

||y1(h)−y2(h)|| ≤ eLh ||y1(0)−y2(0)||, (2.4.8)

for one-sided Lipschitz constant L. The global error at time t = tn+1 is

e [LT ]
n+1 =y(tn+1)−yn+1

=Φ[LT ]
h (y(tn))+δ[LT ](y(tn))−Φ[LT ]

h (yn), (2.4.9)

which is computed by decomposing Φ[LT ]
h =ϕ[1]

h ◦ϕ[2]
h into its flow operators as

follows

||Φ[LT ]
h (y(tn))−Φ[LT ]

h (yn)|| = ||ϕ[1]
h ◦ϕ[2]

h y(tn)−ϕ[1]
h ◦ϕ[2]

h yn ||
≤ eL1h ||ϕ[2]

h y(tn)−ϕ[2]
h yn ||,

≤ e(L1+L2)h ||e[LT ]
n ||, (2.4.10)

where we have used inequality (2.4.8) twice. If we then assume that the local
error is bounded by εh2d ≥ ||δ[LT ](y(t ))||, ∀t ∈ [0,T ] for some constant d and
for sufficiently small h, then

||e [LT ]
n+1 || ≤ e(L1+L2)h ||e [LT ]

n ||+ ||εh2d ||, (2.4.11)

this implies that the global error is bounded as follows

||e [LT ]
n+1 || ≤ εh2||d

n∑
i=0

(
eh(L1+L2)

)i ||, (2.4.12)
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where n = T /h. Taylor expanding the exponential shows the sum is O (1/h).
We can therefore conclude that the global error magnitude is ||e [LT ]

n+1 || ∼O (εh).

The same argument of calculating the local error can be applied to the Strang
method and although straightforward, involves the computation of nested com-
mutator brackets. The results, however, are analogous and the local error δ[S](y)
is presented in appendix 2.A. We find that the local error for the Strang splitting
is ||δ[S](y)|| ∼ O (εh3) at leading order and terms proportional to O (ε2h3) can
be ignored for ε< h. It then follows that the global error of the Strang method
is |e [S]

n+1| ∼O (εh2).

For conventional one-step or multistep methods, such as the Adams-Bashforth
two-step method, the perturbed and non-perturbed parts of the vector field are
treated together, which means that the method does not see any error advantages
due to the small parameter ε. As such, the global error is independent of ε.
Using Taylor series it can be shown [8, chapt. III] that the global error of the
Adams-Bashforth two-step method is

||e [AB ]
n+1 || ∼

5h2

12
|| f ′′(yn)||+O (h3), (2.4.13)

which is O (h2) as opposed to the Strang splitting method which is O (εh2).

2.4.2 Stiff case

In this section we will examine the error of the splitting method when the vector
field f2(y) is stiff (i.e., when γi >> 1). The differential equation can then be
represented by ẏ = f1(y)+ 1

ε f̃2(y). A classical error analysis can be used in the
non-stiff regime h < ε, and this shows that the global error behaves according
to O (h2/ε). However, in practise, one would like to use a step size h > ε and
in this situation, the flow operator ϕ[2]

h becomes somewhat more difficult to
analyse because ||1

ε f̃2(y)|| ≥ 1 and we cannot expand the flow of f2 in its Taylor
series, hence the classical error analysis fails when taking a Taylor expansion
about the initial point of this flow operator. Many authors have studied the
local error of various first- and second-order splitting methods in this situation
using other means, such as singular perturbation theory [2,32] or Lie series [32].
In these studies, it is shown that in the regime h < ε the local error behaves
according to the classical theory; however, for h > ε different order reduction
phenomena are observed depending on the splitting operator. These studies
were performed in the context of designing robust splitting methods that use
step size control based on local error estimates; however, we are primarily in-
terested in the behaviour of the global error. There has been somewhat less
research into how the global error behaves in the stiff case or how the order
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reduction in the local error evolves when measuring the global error of ODEs.
Here, we present numerical experiments relating the local and global error to
the step size h and stiffness parameter ε. The results are presented in the next
section.

2.5 Numerical Results

Numerical tests were performed for a perturbed and stiff fluid-particle system
in the 3D flow field described by equations (2.2.26), (2.2.27) and (2.2.28). Nu-
merical solutions are calculated using the second-order splitting method (SP2)
and the second-order Adams-Bashforth two-step method (AB2) for compari-
son. The perturbed system uses the values λ= 0.1, St = 100, and the maximum
eigenvalue of the dissipation matrix A is γmax ≈ 0.0806. The stiff system
uses the values λ = 10, St = 1, and γmax ≈ 24,062. Both systems use grav-
ity and 3D fluid terms of g = 0.99, α f = 2π and β f = π. The initial condi-
tions for both experiments are p0 = (1,1,1)T, m0 = (1,1,1)T, x0 = (0,0,0)T and
q0 = (1/

�
2,0,1/

�
2,0)T is the initial rotation quaternion. The error presented

in the following figures is

error = ||yn −y(tn)||
||y(tn)|| , (2.5.1)

where y(tn) is a reference solution calculated using the classical Runge-Kutta
fourth-order method with a comparatively small time-step (e.g., h = 2−14).

Figure 2.2 shows the second-order convergence of the SP2 solution compared
to the AB2 solution for step sizes h = 2−n for n = 2,4,6,8,10,12,14. We ob-
serve that both methods achieve the correct order of convergence, however the
error of the SP2 solution is significantly lower in the perturbed case compared
to the AB2 solution. In the stiff case, the SP2 solution achieves the correct order
of convergence for low time-steps and reduced order for larger time-steps. For
large time-steps the AB2 solution becomes unstable as denoted by the nearly
vertical line.

Figure 2.3 shows the relative computational cost of the two methods measured
in simulation wall-clock time for MATLAB serial code implementation. We
observe that the SP2 method yields numerical solutions that have over an order
of magnitude less error for the same computational cost over the one second
interval for the perturbed case.

Figure 2.4a shows the local error ||δ[ST ]|| for varying stiffness parameters ε that
are calculated via ε= 1/γ̄, where γ̄= ||(γ1,γ2, . . . ,γ18)||/18 for eigenvalues γi
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Figure 2.2: Second-order convergence of the splitting method (blue line) and the AB2
method (red line).
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Figure 2.3: Simulation wall-clock time of the splitting method (Blue line) and the
AB2 method (red line.
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Figure 2.4: Convergence plots for varying stiffness parameters for the local error (a)
and global error (b). Order-two and order-one reference lines are plotted on both figures
as well as order-three for (a).

of A. Here, we observe the order reduction phenomenon sometimes referred to
as the "hump" [7, p. 113] where we see no increase in error when the step size is
increased. This usually occurs in the region ε< h <�

ε as was observed in [32]
for the Van der Pol oscillator when the Strang splitting operator used contains
the non-stiff flow operator in the middle. In the non-stiff regime, the local error
behaves according to classical theory: it is order-three and proportional to 1/ε.
In the stiff regime, we observe various order reduction phenomena including
convergence to an ε-independent low-order line. In addition to the predictions
made by [32], we observe that the order is also reduced to about 1.5 in the
region just below the "hump". This is most clearly observed by the blue line
of figure 2.4a and is again emphasised in figure 2.5. Figure 2.4b presents the
corresponding global errors. As expected, we observe that the solutions are of
order two and proportional to 1/ε in the non-stiff regime. As the time-step is
increased the order converges to an ε-independent order-one line. Although
we perform no rigorous error analysis to explain this, our experiments suggest
that there is some ε-independent upper bound of the form u ≤ hc(y0) for some
value c that can depend on the initial conditions y0. This is highlighted by the
dashed order-one reference line.

Figure 2.5 presents the orders of the lines in figure 2.4 and the corresponding
values of ε by vertical dotted lines. We observe in figure 2.5a that for h < ε, the
method has local order three and as the step size increases, we see some strange
ε dependent order reduction phenomena. The global order of figure 2.5b shows
a similar phenomenon in the transition region, where the lines go from order
two to one in the stiff regime.

The reference energy H and dissipation Ḣ are calculated from equations (2.3.7)
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Figure 2.5: The global order for the stiff equation for varying values of ε (same as
figure 2.4), which are displayed as vertical dotted lines.

and (2.3.14) using the reference solution and is compared against the numerical
energy and dissipation from the SP2 and AB2 solutions in an oscillating shear
flow uS , described in section 2.2.3, over a 20 second time interval with time-
step h = 0.001. The system uses the same input parameters as the perturbed
case in the previous experiment. Figure 2.6a presents the energy of the particle
as its dynamics evolves over the 20 second interval. The solution errors are
displayed in figure 2.6b, the energy errors are displayed in figure 2.6c and the
dissipation errors are displayed in figure 2.6d, in all cases, the SP2 solution
errors are approximately two orders of magnitude lower than those of the AB2.

47



A novel approach to rigid spheriod models using operator splitting

0 5 10 15 20
-50

-40

-30

-20

-10

0

10
en

er
gy

(a)

0 5 10 15 20

10-4

10-2

er
ro

r

SP2 error
AB2 error

(b)

0 5 10 15 20
time

10-8

10-6

10-4

10-2

100

en
er

gy
 e

rro
r

(c)

0 5 10 15 20
time

10-10

10-5

100

di
ss

ip
at

io
n 

er
ro

r

(d)

Figure 2.6: The particle energy (a), solution error (b), energy error (c) and dissipation
error (d) as functions of time for the splitting solution (blue line) and Adams-Bashforth
solution (red line) compared to the reference solution (black line) for a perturbed
system.

2.6 Conclusion

We have proposed a splitting method for particle dynamics in viscous flows,
obtained by splitting the vector fields of the forced rigid-body dynamics equa-
tions into a conservative vector field and a vector field that accounts for the
fluid forces. Using backward error analysis, we have shown for perturbed sys-
tems, the global error is proportional to O (εh2) which is an order ε lower than
conventional methods. For the stiff case, the splitting method produces solu-
tions that are stable in the unstable regime of the conventional method and
retains stability for all h ≤ 1. Via numerical experiment, we confirm results
from the literature [32], on the local error order reduction phenomena for the
splitting method. In the non-stiff regime, the global error is observed to behave
according to O (h2/ε) and transitions to O (h) in the stiff regime.
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Appendix

2.A Local error for Strang splitting

The local error for the Strang operator is given by

δ[S](y0) =ϕh(y0)−Φ[S]
h (y0)

=h3(
1

12
[ f1, [ f1, f2]]− 1

24
[ f2, [ f2, f1]])y0 +O (h4), (2.A.1)

and can be computed explicitly by inserting equations (2.3.15) and (2.3.16)

δ[S](y) = h3

12

(−∇2 A(S∇H − 1

2
Ay,S∇H ,y, ·)−∇A(c1,y, ·)−∇A(2S∇H − 1

2
Ay,S∇H , ·)

+∇A(S∇H ,
1

2
Ay, ·)+∇A(y,S∇H − 1

2
Ay, (·)S∇2H)

− 1

2
∇A(S∇H ,y, (·)A)+∇A(S∇H ,y, (·)∇2HS)

−∇S(S∇H − Ay,∇H , (·)A)+∇S(c2,∇H , ·)
+∇S(S∇H − Ay,∇2H Ay, ·)+∇S(Ay,∇2HS∇H , ·)
−∇S(Ay,∇H , (·)∇SH 2)+ AS∇2H(S∇H − Ay)+2S∇2H AS∇H

−S∇2HS∇2H Ay− 1

2
(S∇2H A2y+ A2S∇H)

)+O (h4), (2.A.2)

where we have used the fact that the matrix S is linear in y and vectors c1 =
∇S(S∇H−Ay,∇H , ·)+S∇H (S∇H−Ay)+AS∇H+∇A(S∇H ,y, ·) and c2 =∇A(S∇H−
1
2 Ay,y, ·)+ A(S∇H − 1

2 Ay)+ 2
h2 δ

[LT ](y) and A = εÃ for the perturbed case.
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Computational geometric methods for

preferential clustering of particle suspensions

Abstract. A geometric numerical method for simulating suspensions of
spherical and non-spherical particles with Stokes drag is proposed. The
method combines divergence-free matrix-valued radial basis function
interpolation of the fluid velocity field with a splitting method integrator that
preserves the sum of the Lyapunov spectrum while mimicking the centrifuge
effect of the exact solution. We discuss how breaking the divergence-free
condition in the interpolation step can erroneously affect how the volume of
the particulate phase evolves under numerical methods. The methods are
tested on suspensions of 104 particles evolving in discrete cellular flow field.
The results are that the proposed geometric methods generate more accurate
and cost-effective particle distributions compared to conventional methods.

3.1 Introduction

Since the influential work of Maxey and Riley [32] in deriving the equations
of motion of an inertial spherical particle immersed in viscous flow, there have
been a multitude of studies exploring the collective behavior of suspensions of
particles. In particular, the remarkable phenomenon of preferential concentra-
tion of inertial particles in turbulence has attracted the attention of many authors.
This phenomenon, sometimes referred to as the “centrifuge effect", is also at-
tributed to Maxey [30] who showed that particles disperse in regions where
the fluid velocity strain rate is low compared to the vorticity. The theoretical
mechanisms for particle clustering has since been further explored by means
of Lyapunov exponent analysis [5], caustics [52] and perturbative methods
to name a few. Sophisticated numerical simulations [44] have also advanced
and verified our understanding of this phenomenon for a variety of flows and
extended such observations to non-spherical particles [35]. As the need for
large-scale simulations increase, the demand for cost-effective numerical meth-
ods is growing. However, despite the fact that numerical simulations are so
well documented, there have been few studies that explore the extent to which
the numerical methods used in simulations accurately reproduce the geometric
properties that explain the preferential clustering of particles. In this paper we
discuss some features of the equations of motion that influence the preferential
concentration of particles and determine to what extent these features can be
replicated by well designed numerical methods. In doing so, we propose an
efficient numerical algorithm that is designed to replicate these features. The
method combines matrix-valued radial basis functions for the divergence-free
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interpolation of the discrete fluid field with a splitting method that is designed
specifically for the equations of motion under study.

Interpolation methods are necessary for simulating suspensions of particles
as the flow field is usually generated by a direct numerical simulation of the
Navier-Stokes equations and is therefore only available at discrete points in
space, meaning that it must be approximated at the location of the particle. To
achieve this in a simple and efficient manner many authors use a variant of a tri-
polynomial interpolant, for example [7, 12, 14, 37–39, 44, 47, 48, 50]. Previous
studies [4, 53] have explored the extent to which these interpolation methods
accurately reproduce statistical properties of the turbulent flow field. However,
all the interpolation methods considered in the aforementioned references are
based on polynomials that create an approximation to the fluid velocity field
that is not divergence-free. One major consequence is that the hydrodynamic
Stokes force that determines the particle path lines is instead calculated from
a non-conservative fluid velocity field. These non-conservative interpolation
methods are still used in practice today despite the fact that the theoretical
mechanisms that explain the preferential concentration are derived with the
assumption of incompresibility. Furthermore, it is often argued (e.g., [47]) that
interpolation errors are “averaged out" and it is concluded that one can acheive
statistically similar results using a fast low-order interpolation method. This
claim is supported by the fact that linear interpolation produces similar statis-
tics to simulations using cubic interpolation [53]. However, neither linear nor
cubic interpolation preserves the divergence-free condition of the fluid field and
therefore it is not truly understood whether or not errors to the divergence of
the fluid field are averaged out in the same way that standard truncation errors
are. The implications of these divergence-errors have not been studied in detail,
however there is numerical evidence suggesting that breaking this condition can
lead to erroneous clustering in PDF methods, first presented in [34] and also
in [19]. Divergence free interpolation has been used to good effect in particle-
laden flow simulations [17,18] as well as in other particle simulation problems,
such as in geodynamic modelling [49] and magnetospheric physics [29], for
example. One of the goals of this study is to explain, from a numerical analysis
point of view, the consequences of breaking the divergence-free condition in
the flow field. We also show the benefit of divergence-free interpolation using
in simulations of suspensions of inertial particles as well as show how these
errors affect the numerical time integration.

In addition, we study some numerical integration methods and how their er-
rors affect the preferential concentration of particles. Two popular classes
of methods are explicit Runge-Kutta [7, 39] and Adams-Bashforth methods
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[12, 37, 38, 48, 50]. As the accuracy of the time stepping algorithm is limited
by the interpolation error we consider only explicit order one and two meth-
ods. Such methods often do a reasonably good job at integrating the ODEs
under study as they are efficient and easy to implement. However, the exact
solution to the ODEs that govern the dynamics of particles with Stokes drag
possess a number of physical features that can be exploited to increase the ac-
curacy of the time stepping methods without increasing its order or cost. Such
features include constant contractivity of phase space volume, the centrifuge
effect, rigid body motion, linear dissipation and, in some cases, perturbative
forces. These features are able to be exploited by a carefully designed split-
ting method. In this work we propose, as an alternative to Runge-Kutta and
Adams-Bashforth methods, a splitting method that is especially designed to
reduce the error in the centrifuge effect, which combined with divergence free
interpolation techniques allow us to obtain a higher lever of accuracy in the
distribution of particles in viscous flows.

3.1.1 Main contributions and summary of paper

We now highlight the main contributions and give a brief outline of the paper.
We begin by outlining the equations of motion and the centrifuge effect in sec-
tion 3.2. In section 3.3 we develop and analyze a contractive splitting method
whose flow preserves the sum of the Lyapunov spectrum of the exact solution
and show that conventional methods cannot do this. The splitting method is
then applied to the equations of motion for spherical particles and the so-called
“centrifuge-preserving" methods are presented, which are constructed to mini-
mize the error of the centrifuge effect.

Section 3.4 presents the use and implementation of matrix-valued radial basis
function interpolation to construct a divergence-free interpolation of the dis-
crete flow field. We show that a vector field approximated by matrix-valued
radial basis functions are compatible with the Stokes equations due to the fact
they they are identical to the method of regularized Stokeslets. This results
in a more physically realistic approximation to the underlying Navier-Stokes
equations.

In section 3.5 we focus our attention to how physical volume of the particle
phase Ψ evolves over a small time h. Upon expanding Ψ in h under the exact
solution, we recover the centrifuge effect at O(h4). When expanding Ψ under
the numerical solution, we find that errors to the divergence of the fluid velocity
field appear at O(h2), overshadowing the centrifuge effect. However, when a
divergence-free interpolation method is used, all the numerical methods under
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consideration replicate the qualitative behavior of the centrifuge effect. That
is, physical volumes of particles will contract in regions where the vorticity is
lower than the strain rate and vice versa, however, they do so at a slightly er-
roneous rate. To account for this error, we show that the centrifuge-preserving
methods contract physical volume at the same rate as the exact solution to lead-
ing order in h, hence also preserving the quantitative behavior of the centrifuge-
effect.

Section 3.6 is dedicated to simulations of particle suspensions evolving in a
discrete cellular flow field where we compare the proposed geometric methods
against conventional methods. What we observe is that a computationally inex-
pensive combination of divergence-free interpolation and centrifuge-preserving
splitting methods yield far more accurate spatial distributions of particles com-
pared to standard methods of higher cost. We present many examples where our
geometric algorithm produced distributions of particles that are more similar
to the “exact" distribution despite having higher error per particle than distri-
butions produced by slow conventional methods. The main conclusion here
is that numerical solutions that preserve the sum of the Lyapunov spectrum,
the contractivity of phase space volume, the divergence-free condition and the
centrifuge effect in simulations is of great benefit.

Section 3.7 is dedicated to conclusions.

3.2 The equations of motion

The translational dynamics of a small particle immersed in a viscous fluid is
governed by the rigid body equations with a Stokes force term

v̇ =αK (u(x)−v) (3.2.1)

ẋ =v (3.2.2)

where u(x) is the fluid velocity at the particle’s location x, v the velocity, K is
a positive definite resistance tensor and α= 1/St is the inverse particle Stokes
number, which is a dimensionless measure of particle inertia. Note that unless
mentioned we will assume that u(x) does not explicitly depend on t . Doing so
improves the readability and presentation of the paper and does not affect the
forthcoming results.

For spherical particles, K = I is the identity, the rotational variables are constant
and the above ODEs uniquely specify the dynamics of each particle. For non-
spherical particles, the resistance tensor K =QT KbQ, where Kb is the diagonal
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positive definite body frame resistance tensor and Q ∈ SO(3) is a rotation matrix
that transforms a vector in the body frame to one in the inertial frame. The
angular velocity ω evolves via

Jω̇= Jω×ω−T, (3.2.3)

where J is the diagonal body frame moment of inertia tensor and T is the
hydrodynamic torque. The rotation matrix Q is calculated by solving the matrix
ODE

Q̇ =Qω̂, (3.2.4)

where ·̂ : R3 → so(3) is defined by⎛⎜⎝ ω1

ω2

ω3

⎞⎟⎠ 	→ ω̂=

⎛⎜⎝ 0 −ω1 ω2

ω1 0 −ω3

−ω2 ω3 0

⎞⎟⎠ , (3.2.5)

such that ω̂v =ω×v. The expressions for Kb and T for spheroidal particles are
given in 5.3.

3.2.1 The centrifuge effect

Here we will outline the centrifuge effect of the particle equations of motion,
which is one of the mechanisms for particle clustering that is referred to through-
out the paper. In [30], Maxey assumes α� 1 and expands the the spherical
particle ODEs (3.2.1) and (3.2.2) in powers of α−1 to derive a first-order ODE
expression for x

ẋ = u(x)−α−1

(
∂u

∂t
+u ·∇u

)
+O(α−2) (3.2.6)

where we have ignored the effect of gravity. Taking the divergence gives

∇·v = ∂ui

∂xi
− 1

α

(
∂

∂t

∂ui

∂xi
+ ∂ui

∂x j

∂u j

∂xi
+ui

∂

∂xi

∂u j

∂x j

)
+O(α−2) (3.2.7)

where there is an implied summation over repeated indices, which is the con-
vention that is assumed throughout the paper. Assuming that the fluid field is
divergence-free, we arrive at the familiar relationship between the fluid field
rate of strain, rate of rotation and the divergence of the particle velocity field

∇·v =− 1

α

∂ui

∂x j

∂u j

∂xi
=− 1

α

(
‖S‖2

F −‖Ω‖2
F

)
+O(α−2) (3.2.8)
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where the rate of strain and rotation tensors S and Ω are given by

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
and Ωi j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
(3.2.9)

and ‖ · ‖F is the Frobenius matrix norm. In other words, the divergence of the
particle velocity field ∇·v is positive when the vorticity is large compared to
the strain rate tensor meaning that the particulate phase disperses in these re-
gions. Conversely, particles concentrate in regions where the strain rate is large
compared to the vorticity. This phenomenon is the “centrifuge effect" of the
exact solution to (3.2.1) and (3.2.2).

Finally, we remark that while the centrifuge effect was derived for spherical
particles, one can make similar observations for non-spherical particles. In this
scenario, the resistance tensor can be decomposed into a spherical part and
a non-spherical part, e.g., for a spheroidal particle with rotational symmetry
(see 5.3) we can write Kb = a I +b ez eT

z , where ez = (0,0,1)T and b → a in
the spherical limit. In other words, the centrifuge effect still plays a central
role in the preferential clustering of non-spherical particles in addition to the
non-spherical effects due to bez eT

z term in the resistance tensor.

3.3 Numerical integration of dissipative vector fields

The dynamics of small inertial particles (both spherical and non-spherical) can
be modeled as the flow of a vector field with linear dissipation. Such vector
fields arise due to the fact that for low Reynolds number flow the drag forces are
linear in the slip velocity, for example the Stokes drag force for small ellipsoids,
spheres or rigid slender particles [3]. We begin this section with a discussion of
such linearly dissipative vector fields and their contractive properties of phase
space volume. We then discuss the application of some conventional explicit
methods for integrating such ODEs. In particular, we show that conventional
methods cannot preserve the contractivity of phase space volume. A splitting
scheme is then shown to preserve the exact contractivity of phase space volume.
The section concludes with the application of the splitting scheme to spherical
particles.
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3.3 Numerical integration of dissipative vector fields

3.3.1 Linearly dissipative vector fields and contractivity of phase

space volume

A linearly dissipative vector field in n dimensions is given in general by

ẏ = f(y)− Ay (3.3.1)

where A is a positive definite matrix and f(y) is volume preserving, that is, it
satisfies ∇ · f(y) = 0 (e.g., any Hamiltonian vector field). Note that the ODEs
of both non-spherical and spherical particles can be cast in this form, where
f(y) represents the free rigid-body vector field plus the conservative part of the
Stokes force and −Ay represents the dissipative part of the Stokes force.

The quantitative behavior of particle clustering can be explained in part by
analyzing the Lyapunov exponents λi of the ODE, see for example [5]. It is
therefore desirable that the numerical solution of the ODE reproduces similar
Lyapunov exponent characteristics. Whilst there do not currently exist numer-
ical methods that preserve individual Lyapunov exponents we can however
construct a numerical method that preserves the sum of the Lyapunov spectrum∑n

i=1λi . From a backward error analysis point of view, a numerical method
that preserves the Lyapunov spectrum is one that is the exact solution to an
ODE with the same Lyapunov spectrum sum as the ODE being solved. For the
equations of motion for spherical particles (equations (3.2.1) and (3.2.2)), the
sum of the first three Lyapunov exponents characterizes the divergence of the
velocity field and the sum of the spatial Lyapunov exponents characterizes the
rate at which particle clouds contract or expand [17]. Generally speaking, the
sum of the Lyapunov spectrum describes the rate at which phase space volume
exponentially contracts or expands [21]. That is, by letting y(t ) denote the exact
solution of (3.3.1) with initial conditions y(0) = y0 and

Y = det

(
∂y(t )

∂y0

)
(3.3.2)

the n dimensional phase space volume, then

Y =
n∏

i=1
etλi . (3.3.3)

It is also known that linearly dissipative systems contract phase space volume at
a constant rate, as we will now show. Taking the Jacobian of y(t ) with respect
to y0 gives

d

dt

∂y(t )

∂y0
= (f′ − A)

∂y(t )

∂y0
. (3.3.4)
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We now recall Jacobi’s formula, which relates the derivative of the determinant
of a square matrix M(t ) by the following

d

dt
det(M(t )) = det(M(t ))Tr

(
M(t )−1 d

dt
M(t )

)
. (3.3.5)

Differentiating (3.3.2) with respect to time and applying (3.3.5) gives

d

dt
Y =−Y Tr

(
A
)

, (3.3.6)

as f′ has zero trace. This is solved by

Y = e−t Tr(A). (3.3.7)

By equating this with (3.3.3) we obtain the relation

n∑
i=1

λi =−Tr(A). (3.3.8)

As the trace of A is by definition positive, the phase space volume Y is strictly
monotonically contracting in time. Equation (3.3.8) implies that a numerical
integration method that preserves phase space volume Y also preserves the sum
of the Lyapunov exponents of the underlying ODE. It is therefore logical to
imply that a numerical flow of (3.3.1) that preserves the contractivity of phase
space volume will better reproduce the clustering properties of the exact solu-
tion than one that doesn’t. The rest of this section is dedicated to analysing to
what extent some common numerical integration methods for particle dynamics
can preserve this constant contractivity of phase space volume.

3.3.2 Preservation of the contractivity of phase space volume by

numerical methods

Denote by Φh a numerical method for solving (3.3.1) such that Φh(y0) ≈ y(h)
for time step h 
 1. For Φh to be called contractivity preserving when ap-
plied to (3.3.1), we require that det

(
∂Φh (y)

∂y

)
= e−h Tr(A) [20]. It is known that

no standard methods (e.g., one with a B-series [15]) can preserve phase space
volume for divergence free vector fields [23]. The same is also expected when
it comes to preserving contractivity of phase space volume for dissipative vec-
tor fields [33]. Instead, a weaker requirement is that they contract phase space
volume when the exact solution does so, that is, det

(
∂Φh (y)

∂y

)
< 1 when applied

to (3.3.1). Such a numerical method that possesses this property is called con-
tractive.
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3.3 Numerical integration of dissipative vector fields

We now consider some popular numerical methods for particle dynamics. We
consider explicit methods used in the literature, namely, explicit Runge-Kutta
methods, Adams-Bashforth methods and a splitting method scheme.

Runge-Kutta methods and phase volume contractivity

Take an order-p Runge-Kutta method Φ[RK ]
h (y0) with stability function R(z)

applied to an ODE of the form (3.3.1) with linear f(y), say

ẏ = By− Ay, (3.3.9)

where B is a square and traceless matrix. Then the numerical solution by the
Runge-Kutta method is given by

Φ[RK ]
h (y0) = R(h(B − A))y0. (3.3.10)

Recall that R(z) is an order-p Padé approximation to the exponential function.
We therefore have

Φ[RK ]
h (y0) = exp

(
h(B − A)

)
y0 +O(hp+1) (3.3.11)

which means that over one time-step, the phase space volume contracts via

det

⎛⎝∂Φ[RK ]
h (y0)

∂y0

⎞⎠= e−hTr(A) +O(hp+1). (3.3.12)

That is, for such a linear system, a Runge-Kutta method will only preserve the
phase volume contractivity up to the order of the method. So for a non-linear
dissipative ODE of the form (3.3.1), one can hardly expect a Runge-Kutta
method to preserve phase space volume exactly. In fact, due to this error ex-
plicit Runge-Kutta methods usually have a time-step restriction on h to even be
contractive at all [20]. This is illustrated by the following examples of some low
order explicit Runge-Kutta methods applied to equations (3.2.1) and (3.2.2).

Example 1. We apply the forward Euler method Φ[FE ]
h to the ODEs (3.2.1) and

(3.2.2). Note that these ODEs are non-linear due to u(x). Setting y := (v,x),
we have for the contractivity of phase space volume under the forward Euler
method

det

⎛⎝∂Φ[FE ]
h (y0)

∂y0

⎞⎠= 1−3αh +αh2

(
3α− ∂ui

∂xi

)
+O(h3), (3.3.13)
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which is an order one approximation to the exact contractivity

det

(
∂y(h)

∂y0

)
= e−3αh . (3.3.14)

The Forward Euler method must therefore satisfy the following time-step re-
striction for it to be contractive

h � 3

3α− ∂ui
∂xi

. (3.3.15)

Violating this restriction means that the forward Euler method will expand
phase space volume despite the ODE dictating that it is always contracting.
Furthermore, it can be seen that large values of |∂ui

∂xi
| will place further restric-

tions on the size of h.
�

Example 2. Consider the following second order explicit Runge-Kutta method

Φ[RK ]
h (y0) = y0 +h

(
(1− 1

2θ )f(y0)+ 1
2θ f(y0 +θhf(y0)), (3.3.16)

where θ = 1
2 , 2

3 and 1 correspond to the explicit midpoint method, Ralston’s
method and Heun’s method, respectively. We apply this to the ODEs (3.2.1)
and (3.2.2). Setting y := (v,x), we have for the contractivity of phase space
volume under Φ[RK ]

h

det

⎛⎝∂Φ[RK ]
h (y0)

∂y0

⎞⎠= 1 − 3αh + 9α2 h2

2!
(3.3.17)

+
(

3α(θ−1)
∂2ui

∂xi∂x j
v j + 3α2 ∂ui

∂xi
− 24α3

)
h3

3!
+ O(h4)

(3.3.18)

which is an order two approximation to the exact contractivity (3.3.14), which
is expected for an order two method. The time-step h must be chosen small
enough such that the O(h3) error term does not violate the contractivity condi-
tion. Violating this restriction means that the method will expand phase space
volume despite the ODE dictating that it is always contracting. Furthermore, it
can be seen that large values of |∂ui

∂xi
| and vi will place further restrictions on

the size of h. �
We remark that we can make similar observations for the above methods ap-
plied to the ODEs for non-spherical particles. That is, the phase space volume
is conserved only to the order of the method.
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3.3 Numerical integration of dissipative vector fields

Multi-step methods and phase volume contractivity

Another popular numerical method used for particle dynamics are multi-step
methods. Consider the explicit k-step Adams-Bashforth methods. Such meth-
ods are of global order-k and can be seen as a map Φ[AB ]

h
: (y0, ...,yk−1) →

(y1, ...,yk ) such that

yk = yk−1 +h
k−1∑
i=0

bi f(yi ), (3.3.19)

yi = yi−1, for i = 1, ...,k −1 (3.3.20)

where the coefficients bi satisfy
∑k−1

i=0 bi = 1. That is, Φ[AB ]
h takes a point in a

kn dimensional phase space to another point in the same space. Due to this and
the fact that the initial vectors in the domain yi for i = 0, ...,k −1 are indepen-
dent of one another, it’s less clear how to define the notion of numerical phase
space volume that relates to that of the underlying ODE. However, in practice
these initial vectors yk for i = 0, ...,k −1, are usually computed by an order-k
one step method, for example a Runge-Kutta method. Therefore, the vectors
yi depend on the vectors y j for j < i . This implies that each yi has the same
series expansion as the exact solution up to O(hk ). While a detailed analysis of
multi-step methods and the preservation of phase volume lie outside the scope
of the paper, we can illustrate this concept by the following example, which
considers the phase volume properties of a second order Adams-Bashforth us-
ing a second order Runge-Kutta method to compute the initial vectors.

Example 3. Consider the second-order Adams-Bashforth method Φ[AB ]
h

: (y1,y0) →
(y2,y1) where

y2 =y1 + h

2

(
3f(y1)− f(y0)

)
(3.3.21)

Now define y1 = Φ[RK ]
h (y0) in the domain by the second order Runge-Kutta

method (3.3.16). Applying Φ[AB ]
h to the ODEs (3.2.1) and (3.2.2) and taking

the Jacobian determinant of y2 with respect to y0 gives

det

(
∂y2

∂y0

)
= 1 − 6αh + 36α2 h2

2!
(3.3.22)

+
(
α

(
3θ− 21

2

)
∂2ui

∂xi∂x j
v j + 21α2

2

∂ui

∂xi
− 24α3

)
h3

3!
+ O(h4)

(3.3.23)

which is an O(h2) approximation to the exact contractivity (3.3.14). Note that
here we have taken the the contractivity over two time-steps 2h. Like the
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previous example, we observe that the contractivity is affected by non-zero
values of ∂ui

∂xi
and vi . �

3.3.3 A splitting scheme that preserves the contractivity of phase

space volume

We now analyze the splitting method based on the following splitting of equa-
tion (3.3.1)

ẏ = f(y)−b(y) and ẏ =−Ay+b(y) (3.3.24)

where b(y) is any vector that is constant along the flow of the second vector field.
A similar splitting was proposed in [45] for non-spherical particle dynamics.
Denote their exact flow operators by ψ[1]

h and ψ[2]
h , respectively. In the context

of small particles immersed in a viscous fluid, the first vector field represents
the free rigid body equations and the second is due to the Stokes viscous drag
forces. The free rigid body vector field can be solved exactly. That is, by a
forward Euler step for the spherical case or otherwise using trigonometric or
Jacobi elliptic functions depending whether or not the body is axially symmetric
[11]. Due to the existence of an exact solution, we immediately have volume
preservation ∣∣∣∣∣∣∂ψ

[1]
h (y0)

∂y0

∣∣∣∣∣∣= 1. (3.3.25)

The second vector field is solved by the variation of parameters formula

ψ[2]
h (y0) = e−h A(y0 + A−1b)+ A−1b. (3.3.26)

Taking the Jacobian determinant gives∣∣∣∣∣∣∂ψ
[2]
h (y0)

∂y0

∣∣∣∣∣∣= e−hTr(A), (3.3.27)

which is consistent with the exact solution (3.3.7). As the Jacobian of the com-
position of two or more maps is the product of the Jacobians of the maps, any
splitting method based on the alternating compositions of the flows ψ[1]

h and
ψ[2]

h will be contractivity preserving.

In forthcoming numerical experiments, we will consider only order one and
two methods including the order one Lie-Trotter method

Φ[LT ]
h =ψ[1]

h ◦ψ[2]
h , (3.3.28)

and the order two Strang method

Φ[SS]
h =Φ[LT ]

h
2

◦Φ[LT ]∗
h
2

. (3.3.29)
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3.3 Numerical integration of dissipative vector fields

Here, we denote by Φ[LT ]∗
h =ψ[2]

h ◦ψ[1]
h the conjugate of the Φ[LT ]

h .

3.3.4 Application to spherical particle dynamics and the centrifuge-

preserving methods

To construct a contractivity preserving splitting method for spherical particles,
we split the ODEs (3.2.1) and (3.2.2) in to the following two vector fields(

v̇
ẋ

)
=
(

0
v

)
, and

(
v̇
ẋ

)
=
(
α(u(x)−v)

0

)
. (3.3.30)

Their exact flow operators are

ψ[1]
h

(
v
x

)
=
(

0
x+hv

)
and ψ[2]

h

(
v
x

)
=
(

e−αh(v−u(x))+u(x)
x

)
.

(3.3.31)
Indeed, letting y0 = (vT

0 ,xT
0 )T we see that∣∣∣∣∣∣∂ψ

[1]
h (y0)

∂y0

∣∣∣∣∣∣= 1 and

∣∣∣∣∣∣∂ψ
[1]
h (y0)

∂y0

∣∣∣∣∣∣= e−3αh (3.3.32)

hence any composition of the above flows will preserve contractivity. For the
construction of the splitting method for non-spherical particle dynamics, we
refer the reader to [45].

A draw back of splitting methods is that composing methods of order higher
than two requires the use of negative time steps. As the ODEs in question are
dissipative, such higher order methods would therefore require strict time step
restrictions, which is preferably avoided. The idea behind geometric numeri-
cal integrators is that preserving relevant properties of the exact solution upon
discretisation can lead to better qualitative and long time numerical solutions.
With this in mind, instead of improving the accuracy of the method in a conven-
tional sense by increasing the order, we propose as an alternative the following
composition methods

Φ
[CP1]
h =Φ[LT ]

(1−
�

6
6 )h

◦Φ[LT ]∗�
6

6 h
(3.3.33)

Φ
[CP2]
h =Φ[LT ]

3h
12

◦Φ[LT ]∗
5h
12

◦Φ[LT ]
4h
12

(3.3.34)

which are order one and order two methods, respectively. We propose that
the above splitting methods are particularly well suited to calculation of par-
ticle dynamics as their numerical solution preserves the centrifuge effect of
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the exact solution when considering the contraction of physical volume of the
particle field. We will therefore refer to the methods (3.3.33) and (3.3.34) as
the “centrifuge-preserving" methods. This favorable property is discussed in
more detail in section 3.5.2. In section 3.6.4 we show through numerical sim-
ulations that integrators possessing this property predict more accurately the
spatial distribution of particles (both spherical and non-spherical) compared to
methods without this property.

3.4 Divergence-free interpolation with matrix-valued

radial basis functions

To construct a divergence-free approximation to the discrete fluid field, we
propose using matrix-valued radial basis functions (MRBFs). In this section,
we will give a brief outline on their use and implementation. We then further
motivate their use by showing that the interpolated vector field generated by
MRBFs is a solution to the Stokes equation.

The interpolation problem is as follows. Given a set of vector-valued data
{ui ,xi }n3

i=1 generated by an accurate direct numerical simulation to the Navier-
Stokes equations, construct a divergence-free vector field that locally interpo-
lates the data. In our context, ui = u(xi ) is the fluid velocity vector at the grid
node located at xi = (xi , yi , zi )T. When implementing a polynomial interpola-
tion method, one usually chooses the n×n×n cube of data points neighboring
the particle, where n = 2,3 or 4. This is because polynomial interpolation of
degree n −1 requires n data points in each dimension to specify a unique inter-
polating polynomial. MRBFs are not restricted by this particular choice of data
points, however to keep the interpolation methods comparable we will adopt
this convention. The MRBF interpolating vector field s(x) is then constructed
by

s(x) =
n3∑

i=1
Θi (x)ci , (3.4.1)

where

Θi (x) = (∇∇T −∇2I )θ(ri (x)) ∈R3×3 (3.4.2)

is called an MRBF, θ(ri (x)) is a (scalar-valued) radial basis function, ri (x) =
‖xi −x‖ is the distance from the point xi and I is the identity matrix in three
dimensions. The n3 vector-valued coefficients ci ∈ R3 are chosen such that
s(xi ) = u(xi ), which amounts to solving the following 3n3 dimensional linear
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3.4 Divergence-free interpolation with matrix-valued radial basis functions

system ⎛⎜⎜⎝
Θ1(x1) · · · Θn(x1)

...
. . .

...
Θ1(xn) · · · Θn(xn)

⎞⎟⎟⎠
⎛⎜⎜⎝

c1
...

cn

⎞⎟⎟⎠=
⎛⎜⎜⎝

u1
...

un

⎞⎟⎟⎠ ∈R3n3
. (3.4.3)

The particular RBF we use in the forthcoming experiments is the Gaussian
θ(r ) = exp(−ε2r 2), where ε is some user defined parameter that controls the
flatness of the RBF. In general, one should choose ε as small as possible as this
leads to less interpolation error, although more ill conditioned systems.

It can be easily seen that s(x) is divergence free. Using the double curl identity
in R3 we have

∇·s =
3n∑

i=1
∇·
(
(∇∇T −∇2I )θ(ri )ci

)
=

3n∑
i=1

∇·
(
∇×∇× (θ(ri )ci

))= 0. (3.4.4)

Finally, we list some advantages of MRBF interpolation over standard tri-
polynomial interpolation: (1) they work equally well on scattered data points,
meaning that they are just as well suited to interpolate data generated by a di-
rect numerical simulation involving complex geometries on unstructured grids;
(2) they have faster convergence of their derivatives [9, 51], compared to tri-
polynomial interpolation [10]; and (3), they are compatible with the Stokes
equations, meaning that they construct a more physically realistic fluid field for
fluid simulations. We will discuss point (3) in the next section.

3.4.1 MRBFs as regularised Stokeslet solutions to the Stokes equa-

tions

In addition to the fact that the underlying flow field should be divergence-free,
we are given extra knowledge that can be exploited; namely that the data is a
numerical solution to the incompressible Navier-Stokes equations

ρ

(
∂u

∂t
+ (u ·∇)u

)
−μ∇2u = −∇p +F and ∇·u = 0. (3.4.5)

We are only interpolating in space and hence approximating steady-state solu-
tions to (3.4.5) and as the grid-spacing Δx is comparable to the smallest length
scales of the flow (e.g., the Kolmogorov scale for turbulent flows), the Reynolds
number is small and the non-linear terms of equations (3.4.5) can be ignored.
Under the above assumptions, a good approximation for the local flow in a
grid-cell can be given by the steady Stokes equations, which reads

μ∇2u−∇p = −F and ∇·u = 0, (3.4.6)
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where we have set μ = 1. Cortez [13] presents what’s called the regularised
Stokeslet solution to the Stokes equation, which is an approximation to Green’s
function of the Stokes equation for body force F = φε(x) f0, where f0 ∈ R3 is
constant. Here, φε(x) is the so-called “blob" function, which is a radially sym-
metric smooth approximation of the Dirac delta function δ(x) that decays to
zero at infinity whilst satisfying∫

φε(x)dx = 1 and lim
ε→0

(φε(x)) = δ(x). (3.4.7)

Now define the functions Gε(x) and Bε(x) as the solutions to

∇2Gε(x) =φε(x) and ∇2Bε(x) =Gε(x), (3.4.8)

which are smooth approximations to Green’s function and the biharmonic equa-
tion ∇4B(x) = δ(x), respectively. Then Cortez’s regularised Stokeslet solution
reads

uε(x) = (f0 ·∇)∇Bε(x)− f0Gε(x) (3.4.9)

with pressure term
pε(x) = f0 ·∇Gε(x). (3.4.10)

Using the definition for Gε(x), we can rewrite the regularised Stokeslet (3.4.9)
as

uε(x) = (∇∇T −∇2I )(Bε(x)f0), (3.4.11)

which is identical to an MRBF element if we can identify Bε(x) with a positive-
definite RBF ψ(||x||) (e.g., the Gaussian ψ(||x||) = exp

(
−ε2||x||2

)
) and the force

vectors are identified with the interpolation coefficient vectors ci from equation
(3.4.1). This means that a vector field that is constructed from a linear combina-
tion of MRBFs, (i.e., equation (3.4.1)) corresponds to a linear combination of
regularised Stokeslet solutions, with force fi =μci . This leads to the following
solution to the Stokes equation, now written in terms of MRBFs

s(x) = uε(x) =
N∑

i=0
Θi (x)fi , and pε(x) =

N∑
i=0

fi ·∇(∇2θ(ri )). (3.4.12)

One implication of this is that the interpolated background fluid field is related
to the gradient of a scalar pressure field, when MRBF interpolation is used.
The benefit of this can be illustrated by inserting equation (3.4.5) into equation
(3.2.6) to derive an expression for ∇·v(x) in terms of the pressure field [16]

∇·v(x) =∇·u(x)+α−1(∇2pε(x))+O(α−2). (3.4.13)

This equation tells us that the pressure field is also related to the preferential
concentration of particles. Moreover, this suggests that particles cluster in re-
gions of maximum pressure (∇2pε(x) < 0) [16]. Indeed, in [28], numerical
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3.5 Numerical errors and preferential concentration of spherical particles

evidence is found to support the correlation between the Laplacian of the pres-
sure field ∇2pε(x) and the spatial distribution of the particles. However, if the
background fluid field is interpolated by a standard polynomial method, then
there is no background scalar pressure field, which could erroneously influence
the particle path lines.

3.5 Numerical errors and preferential concentration of

spherical particles

In what follows we will consider how volumes of inertial spherical particles
evolve under the flow of the ODEs (3.2.1) and (3.2.2). The goal of this section
is to relate the numerical interpolation and integration errors to the clustering
mechanisms of the exact solution. This is done by first expanding the exact
solution into its elementary differentials. We then discuss the effects of integra-
tion errors and interpolation errors on the evolution of volumes of particles. In
what follows, we will initially assume that u(x) is an arbitrary vector field that
is not necessarily divergence-free until explicitly mentioned.

3.5.1 Expanding the exact solution

We start this section by defining the notion of volume of the particle suspension.
Given an open and bounded set Dt ⊂ R3 at time t , then its volume at t = 0 is
given by

vol(D0) :=
∫

D0

dx0 (3.5.1)

where x(0) = x0. This can be thought of as the volume occupied by a suspension
of inertial particles confined to the region D0. The idea is to consider how this
volume expands or contracts in time. Consider now the same volume after
evolving under the ODEs (3.2.1) and (3.2.2) for time t

vol(Dt ) =
∫

Dt

dx(t ) =
∫

Dt

det

(
∂x(t )

∂x0

)
dx0. (3.5.2)

Hence, the quantity

Ψ := det

(
∂x(t )

∂x0

)
(3.5.3)

determines how volumes of particles contract or expand over time. That is,
given a volume of particles, if Ψ > 1 the volume is expanding, Ψ < 1 the
volume is contracting and Ψ = 1 the volume is preserved. These three cases
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correspond to the particulate phase dispersing, concentrating or remaining a
constant density, respectively. Note that we will refer to Ψ as the physical vol-
ume, to distinguish between phase space volume.

To illustrate the connection between ∇·v and Ψ, we can take the Jacobian of
equation (3.2.2) with respect x0 [22]

∂ẋ

∂x0
= ∂x

∂x0

∂v

∂x
. (3.5.4)

Applying Jacobi’s formula (3.3.5) yields a differential equation for Ψ

∂

∂t
Ψ= (∇·v)Ψ. (3.5.5)

It is clear that if ∇·v < 1, then Ψ is decreasing and if ∇·v > 1 then Ψ is increasing.

We will now show this more concretely, by expanding the exact solution into
its elementary differentials, which we now recall. Denote by y(t ) the exact
solution of an ODE

ẏi (t ) = fi (y(t )), for i = 1, ...,n (3.5.6)

For some small time 0 < h 
 1, yi (h) has the following elementary differential
expansion [15]

yi (h) = yi (0)+h fi
∣∣

t=0 +
h2

2

(
∂ fi

∂y j
f j

)∣∣∣∣
t=0

(3.5.7)

+ h3

3!

(
∂2 fi

∂y j∂yk
f j fk +

∂ fi

∂y j

∂ f j

∂yk
fk

)∣∣∣∣
t=0

+ h4

4!

(
∂3 fi

∂y j∂yk∂yl
f j fk fl (3.5.8)

+3
∂2 fi

∂y j∂yk

∂ fl

∂yl
fl fk +

∂ fi

∂y j

∂2 f j

∂yk∂yl
fk fl +

∂ fi

∂y j

∂ f j

∂yk

∂ fk

∂yl
fl

)∣∣∣∣
t=0

+ ...

(3.5.9)

for i = 1, ...,n. We note that the expansion is convergent if h is small compared
to ‖f‖.

The elementary differentials of the ODEs (3.2.1) and (3.2.2) are calculated and
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the terms up to O(h3) are presented

vi (h) =vi +hα(ui − vi )+ h2

2

(
−α2(ui − vi )+α

∂ui

∂x j
v j

)
(3.5.10)

+ h3

3!

(
αv j vk

∂2ui

∂x j∂xk
+α3(ui − vi )−α2 ∂ui

∂x j
(u j −2v j )

)
+ ... (3.5.11)

xi (h) =xi +hvi + h2

2

(
α(ui − vi )

)+ h3

3!

(
α
∂ui

∂x j
v j −α2(ui − vi )

)
+ ... (3.5.12)

where the variable appearing on the right hand side are evaluated at t = 0. Here
we assumed nothing about the size of α, but instead take h 
α such that the
series converges. Taking the determinant of the Jacobian of x(h) from equation
(3.5.12) with respect to x0 yields an expansion for Ψ with repect to h

Ψ= 1+hΨ1 +h2Ψ2 +h3Ψ3 +h4Ψ4 +O(h5) (3.5.13)

where

Ψ1 = 0, Ψ2 = α

2
χ3, Ψ3 = α

6

(
χ5 −αχ3

)
(3.5.14)

Ψ4 = α

24

(
χ1 +αχ2 +α2χ3 +3αχ2

3 −2αχ4 −2αχ5

)
. (3.5.15)

The elementary differentials χi are given by

χ1 = vi v j
∂3uk

∂xi∂x j∂xk
, χ2 = ui

∂2u j

∂xi∂x j
, χ3 = ∂ui

∂xi
(3.5.16)

χ4 =
∂u j

∂xi

∂ui

∂x j
= ‖S‖2

F −‖Ω‖2
F , χ5 = v j

∂2ui

∂xi∂x j
. (3.5.17)

This can be verified by expansion of (3.5.5) into its Taylor series. If we insist
that the fluid field is divergence-free then the Ψi and χi all vanish except for
Ψ4 and χ4. We are then left with

Ψ
∣∣∇·u=0 = 1− α2

12
h4
(
‖S‖2

F −‖Ω‖2
F

)
+O
(
h5
)

(3.5.18)

which relates the fluid rate of strain and rotation with the contractivity of physi-
cal volume in the same way as the centrifuge effect (3.2.8). That is, if the rate
of vorticity is greater than the rate of strain, physical volumes of particles will
contract and vice versa.
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3.5.2 Expanding the numerical solution and numerical errors

In this section, we perform a similar analysis to that of section 3.5.1 but instead
of the exact flow of the ODE, we consider now how physical volumes of parti-
cles evolve under the numerical flow. That is, we will look at how errors to the
divergence of the fluid field affect the evolution of volumes of particles under
the numerical solution to the equations of motion. We do so by expanding the
numerical methods into their elementary differentials and comparing the expan-
sions with the exact solution. We then look at how errors to the divergence of
the fluid field affect the evolution of physical volume under the numerical flow.
The results are that if a divergence-free interpolation method is used, the nu-
merical methods preserve the same qualitative behavior of the centrifuge effect.
Moreover, we show here that the centrifuge-preserving methods replicate the
centrifuge-effect from equation (3.5.18) up to the accuracy of the interpolation
method when the fluid field is divergence-free.

Consider the map Φ[n]
h

: (v0,x0) → (v1,x1), where the superscript [n] denotes the

numerical method in consideration. We calculate Ψ[n] = det
(
∂x1
∂x0

)
and expand

the solution in h yielding an expression of the form

Ψ[n] = 1+hΨ[n]
1 +h2Ψ[n]

2 +h3Ψ[n]
3 +h4Ψ[n]

4 +O(h5) (3.5.19)

The values of Ψ[n]
i for i = 2,3,4 for the Forward Euler (FE1), Lie-Trotter (LT1),

order one centrifuge-preserving (CP1), Ralston (RK2), Adams-Bashforth two-
step (AB2), order two centrifuge-preserving (CP2) and Strang splitting (SS2)
methods are presented in table 3.5.1. Note that Ψ[n]

1 = 0 for all the above meth-
ods.

We make a number of observations from this table. First, the divergence of
the fluid field affects Ψ[n] at O(h2) for each method. The one exception to this
is FE1, which satisfies Ψ[FE ] = 1 and therefore erroneously preserves physical
volume. When the divergence of the fluid field is zero, all the χi = 0 except χ4.
For example, setting ∇·u = 0 gives for the SS2 method

Ψ[SS]
∣∣∇·u=0 = 1− α2

8
h4
(
‖S‖2

F −‖Ω‖2
F

)
+O
(
h5
)

. (3.5.20)

This means that the numerical solution generated by the Strang splitting method
(3.3.29) reproduces the qualitative nature of the centrifuge effect, in the sense
that Ψ[SS]

∣∣∇·u=0 > 1 when ‖Ω‖F > ‖S‖F . This qualitative centrifuge effect is
seen by all the methods (other than FE1) by setting ∇·u = 0 in table 3.5.1. How-
ever, we note here that the coefficient of the O(h4) term in equation (3.5.20) is
different to that of the exact solution (3.5.18). Meaning that, while the method
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Method Ψ[n]
2 Ψ[n]

3 Ψ[n]
4

Exact

solution
α
2 χ3

α
6

(
χ5 −αχ3

) α
24

(
χ1 +αχ2 +α2χ3 +3αχ2

3

−2αχ4 −2αχ5
)

FE1 0 0 0

LT1 αχ3
α2

2 χ3 −α2

6

(
3χ4 −αχ3 −3χ3

2
)

CP1 α
�

6
6 χ3

α
(�

6−1
)

6 χ5 − α2
�

6
12 χ3

α
36

(
(α2χ3 −3αχ5 + 7

2χ1)
�

6

+(3χ3
2 −3χ4 +3χ5

)
α−6χ1

)
AB2 3α

16θχ3
3α
32

(
χ5 −αχ3

)
α

128

(
3θχ1 +16αχ2

3 −16αχ4

)
RK2 α

2 χ3 0 α2

8

(
χ2

3 −χ4

)
CP2 α

2 χ3
3α2

16 χ3 + α
6 χ5

α
576

(
33α2χ3 +72αχ3

2 +24αχ2

−48αχ4 −60αχ5 +32χ1
)

SS2 α
2 χ3

α
4

(
χ5 −αχ3

)
α
48

(
3χ1 +4α2χ3 +6αχ2

3 −6αχ4 −6αχ5

)
Table 3.5.1: The terms in the series expansion (3.5.19) for the physical volume Ψ[n]

under various numerical methods. Note that Ψ[n]
1 = 0 for all the methods.

contracts physical volume when the exact solution does, it does so at an erro-
neous rate. This issue is circumvented by the centrifuge-preserving methods
(CP1 and CP2), where we have chosen the time-step coefficients in such a way
such that they yield the exact same expansion as (3.5.18) up to O(h4) and hence
contracts physical volume at the same rate as the exact solution to leading order.

We now discuss the effect of interpolation errors in simulations of spherical
particles in numerically calculated flows. Say that ue (x) is the true solution to
the underlying Navier-Stokes equations that satisfies ∇·ue (x) = 0. As this exact
solution is generally not available, we consider the following three cases

1. Case (a): the fluid field has interpolation errors δ(x) that are not diver-
gence free u(x) = ue (x)+δ(x), where ∇ ·δ(x) �= 0 (e.g., using standard
polynomial interpolation)

2. Case (b): the fluid field has interpolation errors δ(x) and is divergence
free u(x) = ue (x)+δ(x), where ∇·δ(x) = 0 (e.g., using MRBF interpola-
tion)

3. Case (c): the fluid field is free of errors u(x) = ue (x) and ∇·u(x) = 0 (e.g.,
when the velocity field is available in closed form, also referred to as
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“exact" interpolation.)

We pay particular attention to how errors resulting in ∇ ·δ(x) �= 0 affect how
the numerical methods evolve physical volume. To quantify this we define the
physical volume error by

ΔΨ[n] =Ψ−Ψ[n]. (3.5.21)

Here, Ψ is used to denote the physical volume over time h of the exact solution
with fluid field corresponding to case (c), that is, the physical volume of the true
solution in the absence of any errors, whereas Ψ[n] is the physical volume of
the numerical solution with fluid field corresponding to one of the three cases
given below. The results are presented in table 3.5.2. We see here that the
physical volume errors in case (a) are O(h2) and proportional to ∇·δ(x) for all
the methods. In case (b), the physical volume errors are proportional to O(h4)
except for the centrifuge-preserving methods, which have physical volume er-
ror proportional to O(h4δ4), where δ4 =

∣∣χ4(u)−χ4(u+δ)
∣∣=O(|δ|) 
|χ4(u)|

is the error of χ4 from the interpolation method, which we assume is small. In
case (c), δ4 = 0 and the centrifuge-preserving methods have physical volume
error proportional to O(h5), while the other methods are O(h4). It is due to
this behavior that we expect all the methods to more accurately evolve physical
volume, when a divergence-free interpolation method is implemented such as
with MRBFs. In this case, we expect the centrifuge-preserving methods to
perform especially well due to table 3.5.2.

|ΔΨ[n]|

Method
Case (a)

(∇·u(x) �= 0)
Case (b)

(∇·u(x) = 0)
Case (c)

(u(x) = ue (x))

FE1 α
2 h2|χ3| α2

12 h4|χ4| α2

12 h4|χ4|
LT1 αh2|χ3| 5α2

12 h4|χ4 + δ4
2 | 5α2

12 h4|χ4|
CP1 α

�
6

6 h2|χ3| α2

12 h4|δ4| O(h5)

AB2 3α
16θh2|χ3| α2

24 h4|χ4 + δ4
8 | α2h2

24 h4|χ4|
RK2 α

2 h2|χ3| α2

24 h4|χ4 + δ4
8 | α2

24 h4|χ4|
CP2 α

2 h2|χ3| α2

12 h4|δ4| O(h5)

SS2 α
2 h2|χ3| α2

24 h4|χ4 + δ4
8 | α2

24 h4|χ4|

Table 3.5.2: The errors of the physical volume after one time step for the numerical
methods under consideration.
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In addition to the erroneous contraction of physical volume, we note from ex-
amples 1 - 3 that large divergence errors impose more stringent restrictions on
the time step for the numerical methods to be contractive.

3.6 Numerical simulations

In this section we test our numerical methods for simulating suspensions of
particles in viscous flows. The section begins by outlining the flow field and
summarizing the methods and numerical parameters. We then outline the com-
putational cost and verify the convergence of the methods. Next we simulate
suspensions of 104 particles in Taylor-Green vortices. This is the most im-
portant part of the section and is comprised of three experiments. The first
compares the integration methods with exact evaluation of the fluid field. The
second compares the effect of different interpolation errors with the CP2 in-
tegration. The third and final experiment explores how a combination of the
proposed interpolation and integration methods can be used to generate cost-
effective accurate particle distributions compared to conventional methods.

3.6.1 Preliminaries

Here we will briefly outline the numerical methods that are under consideration
in the forthcoming numerical experiments, the fluid field and finally the particle
models.

The integration methods under consideration and their properties are summa-
rized in table 3.6.1.

FE1 LT1 CP1 AB2 RK2 SS2 CP2
Order 1 1 1 2 2 2 2

Contractivity-preserving No Yes Yes No No Yes Yes
Centrifuge-preserving No No Yes No No No Yes

Table 3.6.1: Summary of the properties of the integration methods under consideration

We will abbreviate the divergence-free MRBF interpolation with the nearest
(n +1)× (n +1)× (n +1) data points by MRBFn and the non-divergence-free
order n tripolynomial interpolation by TPn. The MRBF shape parameters are
set to ε1 = 0.31, ε2 = 0.23 and ε3 = 0.16 corresponding to the MRBF1, MRBF2
and MRBF3 schemes, respectively, and are chosen empirically. We will com-
pare the methods against a reference solution that uses exact evaluation of the
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analytic fluid field and the classical fourth order Runge-Kutta method for time
integration with a time step that is 10 times smaller then that of the other meth-
ods. Note that such a reference solution is only available in the case that the
flow field is known in closed form.

The discrete fluid field is generated by evaluating a closed form solution to
the Navier Stokes equation on a regularly spaced grid with uniform sampling
in each direction Δx = Δy = Δz = 1/10. We use a stationary Taylor-Green
vortex solution that was proposed in [46] and has been used by other authors
to study the behaviour of particles in cellular flow fields [6, 24, 31, 40]. The
particular Taylor-Green flow field used in the experiments is given by u(x) =
(u(x), v(x), w(x))T where

u(x) =2cos(2πx)sin(2πy)sin(2πz), (3.6.1)

v(x) =− sin(2πx)cos(2πy)sin(2πz), (3.6.2)

w(x) =− sin(2πx)sin(2πy)cos(2πz). (3.6.3)

We will perform experiments on both spherical and non-spherical particles. De-
noting by λ the aspect ratio of the particle, then λ= 1 corresponds to spherical
particles, λ> 1 corresponds to a prolate spheroid and λ< 1 corresponds to an
oblate spheroid. For λ = 1, the equations of motion are given by equations
(3.2.1) and (3.2.2), while for λ �= 1 the equations of motion are (3.2.1), (3.2.2),
(5.5.1) and (3.2.4). For details about the moment of inertia tensor J , torque
term T, resistance tensor K for the λ �= 1 cases we refer to 5.3. Finally, we note
that for all of the following experiments, the particles are given a random initial
location within in a box of width 0.01 centered at the point x0 = (1/3,1/5,1/7)T

in the domain and a random initial orientation for non-spherical particles.

3.6.2 Computational cost

Here, we outline the main computational costs associated with the methods.
The two main steps in the algorithm are the interpolation step and the time
integration step, which we examine separately. The wall clock times Tw for
104 time steps of the considered integration methods using exact evaluation of
the fluid field are measured and presented in table 3.6.2 and Tw for 104 time
steps of the various interpolation methods using the FE1 method are presented
in table 3.6.3.

We note that the centrifuge-preserving methods are slightly more costly due to
extra evaluations of the Φ[LT ]

ah operator. However, we note that one could speed
up many of these splitting methods by observing that they are conjugate to a
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lower stage faster method, for example(
Φ[SS]

h

)N =ψ[1]
h
2

◦
(
Φ[LT ]∗

h

)N ◦ψ[1]
−h
2

,

hence repeated evaluations of the operator Φ[SS]
h when implemented in this way

effectively has the same cost as Φ[LT ]∗
h . Similar observations are made for the

centrifuge preserving methods.

For the interpolation step, there are two main calculations that contribute the
most to the computational cost. The first being the solution of a linear system
of size 3n3 ×3n3 to find the interpolation coefficients. Guassian elimination
is used for this purpose due to simplicity and the fact that the systems are not
so large (at most 192×192 for the MRBF3 and TP3 methods). However, we
note the existence of the exact matrix inverses for the coefficient matrices of
these linear systems. This can be found in [27] for the TP method and [2] for
the MRBF method, the latter being due to the fact that the coefficient matrix
has a block toeplitz structure for MRBF interpolation on Cartesian grids. The
next most significant cost is evaluation of the sums of basis functions, that is,
the sum in (3.4.1) and a similar equation for the TP methods. MRBF interpo-
lation involves evaluation of more complex basis functions (i.e., matrix-vector
products containing exponentials of polynomials), which is more costly than
evaluating sums of monomials for the TP interpolation. This cost is more of a
burden for the MRBF2 and MRBF3 methods as seen in table 3.6.3.

FE1 LT1 CP1 AB2 RK2 CP2 SS2
Tw (s) 1.1817 1.3610 1.6577 2.0524 2.0376 2.5001 1.6455

Table 3.6.2: The wall clock times for 104 time steps using different integration methods
and exact interpolation.

MRBF1 MRBF2 MRBF3 TP1 TP2 TP3
Tw (s) 3.3796 5.0776 12.0333 3.7263 4.2226 5.7551

Table 3.6.3: The wall clock times for 104 time steps using the FE1 method and different
integration methods.

We see here that the MRBF1 and TP1 methods are roughly equal in cost. The
MRBF2 method is about double that of TP1 and MRBF1 and is more expensive
than the TP2 method. The MRBF3 method is double the cost of the TP3 method.
We recall that we are not constrained to these three choices of MRBF methods
and one is free to use any number of data points to achieve an optimum balance
of accuracy and cost. This freedom is due to the fact that MRBF interpolation
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was designed for interpolation on scattered data points [51]. This option is not
available for the TPn methods, where n +1 grid points in each dimension are
required to ensure the existence of a unique degree n interpolating polynomial.

3.6.3 Convergence

In this section, we will verify the convergence of the integration methods first
with exact interpolation then with various combinations of the interpolation
methods for spherical (λ= 1) and non-spherical (λ= 10). In these experiments,
we set St = 1 and compute the particles’ dynamics for time T = 1.

The convergence of the error, measured in the 2-norm, of the integration meth-
ods are presented in figures 3.6.1a and 3.6.1b. We observe here that the FE1
and LT1 methods have similar accuracy as do the RK2 and SS2 methods. It is
noted that the benefits of preserving contractivity in the various splitting meth-
ods are expected to be seen after longer times. One remarkable observation
here is that for this Stokes number the first order CP1 method is competitive
with the second order RK2 and AB2 methods at large time steps, furthermore,
the CP2 method is the most accurate by a factor of about 5 in both scenarios.

Figures 3.6.1c and 3.6.1d show the convergence of the CP2 and RK2 methods
with different interpolation methods. We see that the methods initially converge
at their expected order, but as h goes to zero we see that the integration error
becomes overshadowed by the h-independent interpolation error. We observe
that the MRBF solutions yield more accurate solutions than the TP solutions
using the equal number of data points. However, the TP3 solution is expected
to perform better for longer simulations where particles cross grid cells. This is
because the piece-wise fluid field constructed from the TP3 method is globally
C 1(R3), meaning that the spatial derivatives of the fluid velocity are everywhere
continuous. This is not true for the other methods.

Finally, we remark that the centrifuge-preserving methods perform equally well
for non-spherical particles.

3.6.4 Simulating suspensions of particles

Up until now we have mainly focused on the average error in the positions of
individual particles. It is well known that standard methods such as polynomial
interpolation and Adams-Bashforth integration do a good job at minimizing
this truncation error in some norm. However, while it is indeed important that
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Figure 3.6.1: Figures (a) and (b) show the convergence of the numerical integration
methods using exact interpolation for the λ = 1 and λ = 10 equations, respectively.
Figures (c) and (d) show the convergence of the CP2 and RK2 methods with the six
interpolation methods for the λ = 1 and λ = 10 equations, respectively. The dashed
lines are O(h) and O(h2)

this conventional measure of error is kept at a minimum, in practice one is
usually more interested in properties of distributions of many indistinguishable
particles meaning that the individual error of each particle is less important.
Due to this, it is more desirable that an algorithm reproduces accurately the
spatial statistical properties of many particles rather than minimizing the abso-
lute errors of each individual particle. With this in mind, the main goal here is
to test to what extent the aforementioned errors affect suspensions of particles
when viewed as a single discrete probability distribution. We will show that
distributions of particles calculated by our proposed geometric methods will
more closely resemble that of the exact solution, despite sometimes having
higher average error per particle in the conventional sense.

In our context, a distribution P = {(xi , wi )}nc

i=1 is a set of nc non-empty equally
sized cells, where xi is the location of the cell center and wi is a weight that
is equal to the number of particles in that cell. We let Pn denote a distribution
where the particle locations are calculated by a numerical method, Pref refers to
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the distribution obtained by the reference solution and we use 300 ≤ nc ≤ 400
depending on the spread of particles. We will determine the accuracy of Pn

using three measures which we now outline.

The first is the first Wasserstein distance, which is a natural metric to compare
the distance between two discrete probability distributions of equal size (also
known as the Earth Mover Distance). The first Wasserstein distance between
two probability distributions is denoted by W1(P1,P2) and is a measure of the
cost of transporting the distribution P1 into P2 in the cheapest way possible. The
cost is measured as the distance between cell centers, measured in the 2-norm
and weighted by the number of particles being transported. For mathematical
details about the first Wasserstein distance, we refer the reader to [41] and the
numerical computation of the first Wasserstein distances are computed using
a publicly available MATLAB code [1]. We denote by W1(Pn) =W1(Pn ,Pref)
the first Wasserstein distance between Pn and Pref.

The second is the relative entropy (also known as the Kullback-Leibler di-
vergence) [26], which is a measure of how much information is lost from a
reference distribution P2 when an approximate distribution P1 is used. The
relative entropy is calculated by

E(P1,P2) = ∑
xi∈ΩP

P1(xi ) log

(
P1(xi )

P2(xi )

)
, (3.6.4)

where P (xi ) = wi is the number of particles in the cell at xi and ΩP is the sup-
port of the two distributions. If there is an empty cell in one distribution and
not the other, say at x = x0 we use P (x0) = 10−1, to avoid singularities. This
modestly penalizes the approximate solution for predicting a non-zero proba-
bility of having a particle in a cell that should have zero particles according to
the reference distribution. We denote by E(Pn) = E(Pn ,Pref)/np the relative
entropy between Pn and Pref scaled by the number of particles np = 104.

Finally, the third means of determining the accuracy of the distribution is by
the average error of the particle positions Δxn . This conventional measure of
error is calculated by taking the difference between the final position of the
numerical and reference solution starting from the same initial conditions and
averaging over all the np = 104 particles, that is

Δxn = 1

np

np∑
i=1

‖xn,i −xref,i‖2, (3.6.5)

where xn,i is the i th particle calculated by the numerical method and xref,i is the
i th particle under the reference solution. As the rotational variables are strongly
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coupled with the translational variables, errors in the rotational dynamics will
also influence the final positions of the particles, hence this is a reasonable mea-
sure of the error of the algorithms’ overall accuracy in computing the dynamics
of a single particle. We recall that this error is that which the conventional
methods are designed to reduce when referring the the global order of accuracy
of a method.

In the forthcoming experiments, we will use various combinations of integra-
tion and interpolation methods to compute the paths of 104 particles in the
discrete Taylor-Green vortices starting with random positions and orientations
within a cube of width 1/100 centered at the point (1/3,1/5,1/7)T . We perform
three experiments. The first compares how the various numerical integration
methods and their errors affect the spatial distribution of suspensions of parti-
cles in the absence of interpolation errors. The second experiment investigates
how interpolation errors affect the spatial distribution of particles using the CP2
method. Finally, we look at how a combination of MRBF interpolation and
centrifuge-preserving integration can be used to calculate fast and accurate sus-
pensions of particles compared to the conventional AB2+TPn methods, similar
to the methods used in [12, 37, 38, 48, 50], for example.

Comparison of integration methods

In this experiment we use the seven integration methods outlined in table 3.6.1
to simulate a suspension of particles evolving in the Taylor-Green flow with
exact interpolation. The methods are each tested in six separate simulations,
three with Stokes numbers of St = 1/5,1,10 for spherical particles (λ= 1) and
three with the same Stokes numbers for non-spherical particles (λ= 1/10). At
the end of the simulation the relative entropy E(Pn), first Wasserstein distance
W (Pn) and the average spatial error Δxn between the numerical distribution
and the reference distribution are calculated and presented in table 3.6.4. The
time step h and total simulation time T are also presented in this table. We
start by discussing some qualitative features of the final distributions, examples
of which are given in figure 3.6.2. We then discuss the results of table 3.6.4 in
detail.

Figure 3.6.2 depicts the final distribution of the particles for the various inte-
gration methods. The particle positions are plotted modulo 2 for presentation
purposes and represented by black dots, while the reference solution is plotted
using green dots. Figures 3.6.2a to 3.6.2f correspond to the St = 10, λ= 1 simu-
lation and is viewed along the y direction. We see here that the CP2 solution is
able to predict the correct clustering in all the regions that are predicted by the
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green reference solution. The LT1, CP1 and SS2 solutions are visually similar
to each other, however do not correctly predict clustering of particles in some
regions, given by regions of green dots that are void of black dots. The RK2 and
AB2 solutions do a worse job as seen, again, by even more regions with a higher
concentration of green dots compared to black dots. Similar observations are
again seen in figures 3.6.2g to 3.6.2l, which correspond to the St = 1, λ= 1/10
simulation, viewed along the z direction. In this simulation, the particles more
closely follow the streamlines of the fluid field and more quickly concentrate
in regions of high strain as seen by the regions of dense green dots. In these fig-
ures, it is even more easily seen that the four contractivity preserving methods
do a good job at correctly clustering particles in regions where the reference
solution does, while we see with the FE1 and RK2 solutions multiple regions
exhibiting an erroneous concentration of black dots that are void of green dots.
The AB2 solution is unstable for these parameters.

To quantify the above observations, which have up until now been visual, we
turn our attention to table 3.6.4. We start by outlining some general observations
that are common to all six simulations. Looking first at the order one methods,
we observe that the LT1 and CP1 methods, which are contractivity preserving,
outperform the FE1 method in almost all measures in each simulation despite
the fact that their order of accuracy is the same. What is striking here is that in
most simulations the LT1 and CP1 methods generally have a lower Δxn , W (Pn)
and E(Pn) compared to the conventional RK2 and AB2 methods despite being
of lower order and computational cost. Similar observations are made if we
turn our attention towards the order two methods. That is, the SS2 method in
most cases has lower Δxn , W (Pn) and E(Pn) than the RK2 and AB2 methods,
and better still is the CP2 method. The advantage of the CP2 method over the
SS2 is more pronounced than the advantage of the CP1 method over the LT1.
The CP2 method has the lowest Δxn , W (Pn) and E(Pn) in all six simulations
and is clearly the best method here in all three metrics.

For the St = 1, λ= 1/10 simulation, the CP1 solution has a larger Δxn than the
SS2 solution, but a lower W (Pn) and E(Pn) which suggests that for these sim-
ulation parameters, the centrifuge-preserving property is more advantageous
for producing more accurate distributions than simply reducing the accuracy
of the method in the conventional sense. In this simulation, the CP1 method
is the second best in all measures, the best being the CP2 method. It is also
noteworthy that in other simulations the CP1 method has roughly equal, and
sometimes lower Δxn , W (Pn) and E(Pn) than the SS2 solution, which further
suggests that the centrifuge-preserving property is advantageous.
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Figure 3.6.2: Figures (a) through (f) show the spatial distribution of the particles in
the x −z plane for the St = 10, h = 1/5, T = 20, λ= 1 simulation from table 3.6.4 (The
exact+FE1 is not shown). Figures (g) through (l) show the spatial distribution of the
particles in the x − y plane for the St = 1, h = 1/20, T = 8, λ = 1/10 simulation (the
exact+AB2 solution is not shown). The reference solution is plotted in green in all
figures.
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One of the most remarkable observations is made for the St = 10, λ= 1/10 ex-
periment. Here, the values of Δxn are quite severe and roughly the same for all
methods, due to the fact that the time step is quite large and the non-spherical
ODEs are more stiff. Despite this, the contractivity preserving methods have a
much lower W (Pn) and E(Pn) and the centrifuge preserving methods are better
still. This highlights the fact that preserving the aforementioned physical fea-
tures in the numerical solution results in spatial distributions that more closely
resemble the reference solution, despite having the same Δxn .

Finally, we mention that all the splitting schemes have better stability properties
and are still able to produce accurate clusters of particles for low Stokes num-
bers and reasonably large time steps as noted by the λ= 1/10 simulations for
St = 1/5 and St = 1 where we begin to see some of the conventional methods
losing stability.

Comparison of interpolation methods

In this experiment we compare the MRBF and TP interpolation methods in
combination with the CP2 method to simulate a suspension of particles evolv-
ing in the Taylor-Green flow. Six separate simulations are performed, three
with Stokes numbers of St = 1/10,1,10 for spherical particles (λ= 1) and three
with the same Stokes numbers for non-spherical particles (λ= 5). At the end of
each simulation the average spatial error Δxn , relative entropy E(Pn) and the
first Wasserstein distance W (Pn) between the numerical distribution and the
reference distribution are calculated and the results are presented in table 3.6.5.
The time step h and total simulation time T are also presented in this table.
Some spatial distributions produced by the different interpolation methods are
presented in figure 3.6.3.

Directing our attention towards figures 3.6.3a to 3.6.3f, which show the final
distribution of the St = 1/10, λ= 5 simulation looking down the z-axis. It can
be seen here that the three MRBF solutions look visually very similar to the
reference solution, as does the TP3 solution. If we look towards the correspond-
ing part of table 3.6.5, we see that the TP3 solution has a Δxn of 0.3468, which
is lower than the MRBF1 solution, which has a Δxn of 0.5389. Despite this,
the MRBF1 solution, which we note performs exceptionally well here, has a
lower E(Pn) and W (Pn) meaning that the final distribution is more similar to
the reference distribution even though the Δxn is greater.

Figures 3.6.3g to 3.6.3l show the final distribution of the St = 1, λ = 1 simu-
lation looking down the x-axis. Here we see that the TP1, TP2 and MRBF1
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Figure 3.6.3: Figures (a) through (f) show the spatial distribution of the particles in
the x − y plane for the St = 1/10, h = 1/100, T = 6, λ= 1 simulation from table 3.6.5.
Figures (g) through (l) show the spatial distribution of the particles in the y − z plane
for the St = 1, h = 1/40, T = 12, λ= 1/10 simulation. The reference solution is plotted
in green in all figures.
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solutions differ visually from the reference solution, whilst the TP3, MRBF2
and MRBF3 solutions look quite similar. From the corresponding section of ta-
ble 3.6.5, we see that the MRBF2 solution’s Δxn is 0.5004 compared to the TP3
solution, which is 0.3332, but both have a similar E(Pn) and W (Pn). Further-
more, there are many examples here of the MRBF solutions having higher Δxn ,
but lower E(Pn) and W (Pn). This can be seen in all three λ = 1 simulations,
where the MRBF2 solution has larger Δxn than the TP3 solution but similar or
lower E(Pn) and W (Pn). For the λ= 5 simulations and for St = 1 and St = 10,
the MRBF2 solution outperforms the TP3 solution in all three measures. Such
examples indicate that preserving the divergence-free condition is important to
acheive accurate spatial distributions.

We now make some general observations about table 3.6.5. We see that in all
but one simulation, the MRBF1 solutions outperform the TP2 solution in all
three measures. It is noteworthy that the MRBF1 solution is as fast as TP1
interpolation where both require only eight data points for the interpolation as
opposed to 27 data points for the TP2 interpolation, which is a slower method.
Additionally, in all six simulations the MRBF3 interpolation method outper-
forms all the TP solutions in all measures.

To summarize, we have seen many examples of the MRBF solutions producing
distributions that are more similar to the reference solution than the TP solu-
tions, despite having worse Δxn . These observations are consistent with the
fact that the CP2 method, among others, loses accuracy in ΔΨ[n] when evolving
particles in a non-divergence-free flow field. That is, the physical volume Ψ[n]

is more strongly affected when the divergence-free condition is broken, despite
the fact that the order of accuracy of the method remains unaffected.

Comparison of interpolation and integration methods

Our final experiment explores the benefit that is gained by combining MRBF in-
terpolation with the centrifuge- and contractivity-preserving methods compared
to the standard methods used in the literature. We will compare the methods
TP1+FE1, MRBF1+CP1, TP2+AB2, TP3+AB2, MRBF2+CP2 and TP2+CP2.
The first two methods are the cheapest and are of roughly equal cost. The
method TP2+ABn are used in, for example [12, 37, 38, 48, 50] and subsequent
studies. We include TP3+AB2 to test whether increasing the interpolation ac-
curacy is worthwhile use of computational resources. We also consider the
MRBF2+CP2 solution, which is an accurate and economical combination of
our proposed geometric methods. Finally, the TP2+CP2 method is considered
to emphasize the negative implications of using a non-divergence-free interpo-
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lation method with the CP2 method.

Six simulations are performed, three with Stokes numbers of St = 1/10,1,10
for spherical particles (λ= 1) and three with the same Stokes numbers for non-
spherical particles (λ = 10). At the end of the simulation, the average spatial
error Δxn , relative entropy E(Pn) and the first Wasserstein distance W (Pn) be-
tween the numerical distribution and the reference distribution are computed
and presented in table 3.6.5 along with the time step and total simulation times
used.

Figures 3.6.4a to 3.6.4f show the final distribution of the St = 1/10, λ = 10
simulation looking down the z-axis. We see that the only methods that look
similar to the green reference solution are the MRBF1+CP1, MRBF2+CP2 and
TP3+AB2 solutions. That is, both of our geometric methods and the most costly
conventional method. It is worth noting that the TP2+CP2 and the TP2+AB2
solutions look very similar, despite one being generated by the CP2 method.
This is likely due to the fact that the CP2 method loses its centrifuge-preserving
properties when the fluid field is not divergence-free as seen in table 3.5.2 as
well as the interpolation method being the dominant source of error. Turning
our attention towards the corresponding part of table 3.6.6 (i.e., the top-right)
we make a few remarks. The most striking one here is that the MRBF1+CP1
solution has a larger Δxn than the TP3+AB2 solution, but its E(Pn) and W (Pn)
are both far lower. This is in agreement with the fact that the TP3+AB2 method
is better in reducing error in the conventional sense, (i.e., the average 2-norm
of the particle position errors Δxn), but does a poorer job at reproducing the
mechanisms that are responsible for the preferential distribution of particles
(i.e., the centrifuge effect and the sum of the Lyapunov spectrum). We can
make similar remarks for the St = 1/10, λ= 1 experiment where, despite hav-
ing higher Δxn , the MRBF1+CP1 method has a lower E(Pn) and W (Pn) than
the TP3+AB2 method. These significant observations are prevalent in both
St < 1 experiments, which corresponds to a more stiff vector field with greater
relative influence of fluid inertia.

We finish with some general observations. First, the MRBF1+CP2 solutions
outperform the TP1+FE1, TP2+AB2 and TP2+CP2 methods in all three mea-
sures. Second, the TP2+AB2 and TP2+CP2 methods perform about the same in
each simulation, suggesting there is little advantage from using the CP2 method
in conjunction with the TP2 solution. Finally, we note that the MRBF2+CP2
method is more accurate than the TP2+AB2 and the TP3+AB3 in all cases. The
only exception is the St = 1, λ= 1 simulation where the MRBF2+CP2 method
has worse Δxn than the TP3+AB3 solution.
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Figure 3.6.4: Figures (a) through (f) show the spatial distribution of the particles in
the x − y plane for the St = 1/10, h = 1/100, T = 6, λ= 10 simulation from table 3.6.6.
Figures (g) through (l) show the spatial distribution of the particles in the z − y plane
for the St = 1, h = 1/40, T = 8, λ= 1 simulation. The reference solution is plotted in
green in all figures.
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3.7 Conclusions

A novel combination of geometric numerical methods for calculating accurate
distributions of inertial particles in viscous flows is proposed. The algorithm
consists of MRBFs to construct a divergence-free approximation of the back-
ground flow field and a geometric splitting method for the time integration.

The splitting method is shown to preserve the sum of the Lyapunov spectrum
and hence the contractivity of phase space volume. By expanding the exact
solution we derive an expression for how a physical volume of particles change
over a small time step h, with which we recover the centrifuge effect at O(h4).
We show that when a divergence-free interpolation method is used, one can
implement a so-called centrifuge-preserving splitting method that preserves
not only the qualitative but also the quantitative behavior of this centrifuge ef-
fect. Moreover, it is shown that errors to the divergence of the fluid field can
overshadow this effect when a conventional polynomial interpolation method
is used, for example.

It is shown through numerical experiments that MRBF interpolation yields par-
ticle distributions that are more similar to the exact solution than standard TP
interpolation. In many examples, this is observed even when the MRBF solu-
tion has higher error per particle. This is, in part, explained by the fact that:
(1) MRBF interpolation is divergence-free meaning that the numerical time
integration methods mimic the qualitative centrifuge effect; and (2) MRBF in-
terpolation produces a vector field that solves the Stokes equations, meaning
that the background flow field more physically resembles that of the exact so-
lution (e.g., the flow field is related to the gradient of a scalar pressure function).

Furthermore, we see that the proposed centrifuge-preserving methods are supe-
rior to the standard methods in terms of error per particle and how closely the
particle distribution resembles the exact distribution. This is true, remarkably
so, even when comparing the order-one CP1 method to the order-two RK2
and AB2 methods. In particular, for experiments with low particle inertia, the
MRBF1+CP1 method produces more accurate distributions of particles than the
expensive TP3+AB2 solutions, despite having slightly worse error and being an
order one integration method that uses far less data points for the interpolation
step.

These observations strongly suggest that preserving certain physical features of
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ODEs under study in the numerical solution is of importance when simulating
inertial particles in discrete flow fields. Of particular interest for future stud-
ies would be to implement the proposed methods in a physically realistic flow
fields generated by a direct numerical simulation of homogeneous isotropic
turbulence or turbulent channel flow, for example.
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λ= 1 λ= 1/10

Pn E(Pn) W (Pn) Δxn E(Pn) W (Pn) Δxn

St = 1
5

exact+FE1 7.0143 0.4466 0.5534 – – –
exact+LT1 0.4596 0.0070 0.0098 2.3929 0.1793 0.2086

h = 1
50

exact+CP1 0.1212 0.0049 0.0065 2.3100 0.1750 0.2048
exact+AB2 4.0952 0.0697 0.0585 – – –

T = 4
exact+RK2 1.6791 0.0234 0.0215 – – –
exact+CP2 0.0581 0.0022 0.0027 0.5339 0.0666 0.0983
exact+SS2 0.1169 0.0048 0.0062 2.2956 0.1739 0.2039

St = 1
exact+FE1 6.9916 1.6321 2.5224 0.9086 0.6445 1.7383
exact+LT1 0.1538 0.0929 1.0000 0.6645 0.4788 1.2536

h = 1
20

exact+CP1 0.1061 0.1034 1.0084 0.5716 0.4293 1.2554
exact+AB2 0.4833 0.2715 1.4977 – – –

T = 8
exact+RK2 0.2696 0.1566 1.3083 1.3583 0.4631 1.4790
exact+CP2 0.0786 0.0558 0.5512 0.2505 0.2892 1.0857
exact+SS2 0.1435 0.0890 1.0044 0.6374 0.4858 1.2535

St = 10
exact+FE1 6.8070 2.7326 2.8528 1.3145 1.9214 4.8392
exact+LT1 0.3531 0.1626 0.6588 0.1002 0.5384 5.1653

h = 1
5

exact+CP1 0.3014 0.1619 0.6479 0.0658 0.5721 5.1883
exact+AB2 0.7651 0.3095 0.8671 0.8826 1.9070 4.9994

T = 20
exact+RK2 0.5804 0.2522 0.9074 0.1593 0.7891 5.2612
exact+CP2 0.0733 0.0667 0.2919 0.0711 0.2761 4.9678
exact+SS2 0.3157 0.1567 0.6700 0.0992 0.5433 5.2206

Table 3.6.4: The relative entropy E(Pn), first Wasserstein distance W (Pn) and Δxn

between the numerical distribution Pn and the reference distribution. The numerical
distributions are calculated by various integration methods that use exact interpolation
as shown in the second column. The first column contains the Stokes number St , time
step h and simulation time T used in the six simulations. The first row contains the
aspect ratio λ of the particle shape. Values with a − mean that the numerical solution
is unstable.
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λ= 1 λ= 5

Pn E(Pn) W (Pn) Δxn E(Pn) W (Pn) Δxn

St = 1
10

MRBF1+CP2 0.1285 0.0860 0.3063 0.0514 0.0478 0.5389
MRBF2+CP2 0.1002 0.0388 0.1256 0.0967 0.0657 0.3578

h = 1
100

MRBF3+CP2 0.0380 0.0164 0.0614 0.0337 0.0242 0.1732
TP1+CP2 7.9636 0.7427 0.7957 3.1871 0.5657 1.1261

T = 4
TP2+CP2 3.7166 0.2975 0.3959 1.5779 0.3409 0.8653
TP3+CP2 0.3349 0.0625 0.1197 0.0778 0.0704 0.3468

St = 1
MRBF1+CP2 0.9861 0.5802 1.4746 0.0402 0.0965 1.3596
MRBF2+CP2 0.0444 0.0439 0.5004 0.0351 0.0698 0.7334

h = 1
40

MRBF3+CP2 0.0367 0.0353 0.2442 0.0258 0.0564 0.3755
TP1+CP2 1.6501 0.7003 1.5487 0.4281 0.3222 1.8162

T = 8
TP2+CP2 1.5784 1.2164 1.8284 0.0585 0.1871 1.7269
TP3+CP2 0.0404 0.0440 0.3332 0.0310 0.0714 0.8375

St = 10
MRBF1+CP2 1.5452 0.0979 0.1223 0.1401 0.0726 0.1998
MRBF2+CP2 0.1071 0.0109 0.0154 0.0178 0.0183 0.0548

h = 1
10

MRBF3+CP2 0.0416 0.0041 0.0065 0.0112 0.0084 0.0216
TP1+CP2 5.8812 0.1545 0.1674 0.6419 0.1957 0.5617

T = 12
TP2+CP2 4.0693 0.1540 0.2427 0.0955 0.0537 0.2222
TP3+CP2 0.7464 0.0135 0.0125 0.0339 0.0242 0.0946

Table 3.6.5: The relative entropy E(Pn), first Wasserstein distance W (Pn) and average
error per particle Δxn between the numerical distribution Pn and the reference distri-
bution. The numerical distributions are calculated by various interpolation methods
that use CP2 integration as shown in the second column. The first column contains the
Stokes number St , time step h and simulation time T used in the six simulations. The
first row contains the aspect ratio λ of the particle shape.
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λ= 1 λ= 10

Pn E(Pn) W (Pn) Δxn E(Pn) W (Pn) Δxn

St = 1
10

MRBF1+CP1 0.1305 0.1050 0.3351 0.0423 0.0431 0.5453
TP1+FE1 7.9359 0.6340 0.7866 3.2075 0.7961 1.2645

h = 1
100

MRBF2+CP2 0.1249 0.0414 0.1242 0.0706 0.0456 0.3513
TP2+CP2 2.7166 0.2998 0.3990 1.2931 0.3131 0.8785

T = 6
TP2+AB2 2.6957 0.2836 0.3805 1.2585 0.2852 0.8833
TP3+AB2 2.9179 0.1339 0.2512 0.1326 0.0804 0.4506

St = 1
MRBF1+CP1 0.9463 0.5888 1.4858 0.0395 0.1000 1.3961

TP1+FE1 4.3703 1.4721 2.1060 0.4507 0.5446 1.9263

h = 1
40

MRBF2+CP2 0.0507 0.0525 0.5055 0.0306 0.0753 0.7845
TP2+CP2 1.6212 1.2123 1.8251 0.0534 0.1630 1.7856

T = 8
TP2+AB2 1.1982 1.0943 1.7759 0.0532 0.1595 1.7693
TP3+AB2 0.0589 0.0532 0.4793 0.0376 0.0865 1.0213

St = 10
MRBF1+CP1 1.2748 0.3379 0.5122 0.0727 0.1190 0.7322

TP1+FE1 6.1882 0.7767 0.8750 1.9416 0.6882 1.5169

h = 1
10

MRBF2+CP2 0.0979 0.0348 0.0663 0.0262 0.0438 0.2688
TP2+CP2 3.2931 0.4742 0.7083 0.0754 0.1176 0.8004

T = 16
TP2+AB2 3.2219 0.4063 0.6304 0.0774 0.1194 0.7933
TP3+AB2 0.2631 0.0575 0.0865 0.0397 0.0594 0.4864

Table 3.6.6: The relative entropy E(Pn), first Wasserstein distance W (Pn) and average
error per particle Δxn between the numerical distribution Pn and the reference distribu-
tion. The numerical distributions are calculated by various combinations of integration
and interpolation methods as shown in the second column. The first column contains
the Stokes number St , time step h and simulation time T used in the six simulations.
The first row contains the aspect ratio λ of the particle shape.
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Appendix

3.A Non-spherical particle model

Here, we give details of the specific rigid spheroid model that is used in the
numerical experiments. The surface of a spheroid is defined by the equation

x2

a2 + y2

a2 + z2

c2 = 1, (3.A.1)

where a and c are the distinct semi-axis lengths. The particle shape is char-
acterised by the dimensionless aspect ratio λ = c/a > 0, which distinguishes
between spherical (λ= 1), prolate (λ> 1) and oblate (λ< 1) particles (the latter
two shapes are also called as rods and disks).
An inertial particle immersed in a fluid will experience forces on its surface that
have magnitude governed by many parameters such as the particles density ρp ,
length a, fluid density ρ f , kinematic viscosity ν and fluid time scale τ f . The
particle Stokes number is formally defined as the ratio of the particle and fluid
time scales St = τp /τ f . For a spherical particle the Stokes number is

St0 = 2Da2

9ντ f
, (3.A.2)

where D = ρp /ρ f is the particle-fluid density ratio. Note that this definition
only depends on the particle size and inertia. For spheroidal particles, the
following shape dependent Stokes numbers are used, which are derived by
Shapiro and Goldenberg [42] and Zhao, et al. [54]

St =
{

St0λ log(λ+
�
λ2 −1)/

�
λ2 −1 for λ> 1

St0 (π−k0)/(2
�

1−λ2) for λ< 1
(3.A.3)

where k0 = log((λ−
�
λ2 −1)/(λ+

�
λ2 −1)). Note that St → St0 as λ → 1

from above or below. All the following equations are implemented in their
non-dimensional form and all parameters have dimension equal to 1.
The particle experiences a hydrodynamic drag force due to Brenner [8],

F =QKbQT(u−v), (3.A.4)
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where u = u(x, t ) is the fluid velocity evaluated at the particle center of mass x
and v = p/m is the particle velocity. The body frame resistance tensor Kb was
calculated by Oberbeck [36], is diagonal, positive definite and given by

Kb = 16πλ diag

(
1

χ0 +α0
,

1

χ0 +β0
,

1

χ0 +λ2γ0

)
(3.A.5)

where the constants χ0, α0, β0 and γ0 were calculated for ellipsoidal particles
by Siewert et al. [43] and are presented in table 3.A.1

λ< 1 λ= 1 λ> 1

χ0
λ2(π−κ0)�

1−λ2
2 −κ0λ�

λ2−1

α0 =β0
−λ
(
κ0−π+2λ

�
1−λ2

)
2(1−λ2)3/2

2
3

λ2

λ2−1 +
λκ0

2(λ2−1)3/2

γ0

(
λ(κ0−π)+2

�
1−λ2

)
(1−λ2)3/2

2
3

−2
λ2−1 −

λκ0

(λ2−1)3/2

κ0 2arctan

(
λ�

1−λ2

)
1 ln

(
λ−

�
λ2−1

λ+
�
λ2−1

)

Table 3.A.1: The expressions for the constants χ0, α0, β0 and γ0 for λ< 1, λ= 1 and
λ> 1.

The torque vector T depends on the particle shape and the local fluid velocity
derivatives, and is given in non-dimensional form by [25]

Tx = 16πλ

3(β0 +λ2γ0)

[
(1−λ2)Sy z + (1+λ2)(Ωx −ωy )

]
, (3.A.6)

Ty = 16πλ

3(α0 +λ2γ0)

[
(λ2 −1)Szx + (1+λ2)(Ωy −ωz )

]
, (3.A.7)

Tz = 32πλ

3(α0 +β0)
(Ωz −ωz ). (3.A.8)
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A slender body model for thin rigid fibers:

validation and comparisons

Abstract. In this paper we consider a computational model for the motion
of thin, rigid fibers in viscous flows based on slender body theory. Slender
body theory approximates the fluid velocity field about the fiber as the flow
due to a distribution of singular solutions to the Stokes equations along the
fiber centerline. The velocity of the fiber itself is often approximated by an
asymptotic limit of this expression. Here we investigate the efficacy of simply
evaluating the slender body velocity expression on a curve along the surface
of the actual 3D fiber, rather than limiting to the fiber centerline. Doing so
may yield an expression better suited for numerical simulation. We validate
this model for two simple geometries, namely, thin ellipsoids and thin rings,
and we compare the model to results in the literature for constant and shear
flow. In the case of a fiber with straight centerline, the model coincides with
the prolate spheroid model of Jeffery. For the thin torus, the computed force
agrees with the asymptotically accurate values of Johnson and Wu and gives
qualitatively similar dynamics to oblate spheroids of similar size and inertia

4.1 Introduction

Understanding the dynamics of particles immersed in viscous fluids is of impor-
tance in many areas of nature and industry. The first problem one encounters
when simulating the dynamics of particles with complicated shapes is deter-
mining an appropriate model. As the forces and torques of arbitrarily shaped
particles are not known in general, one must make a number of assumptions
on the particle size and shape to accurately and cheaply specify the forces
and torques on the particle. If the particle length scale is small (for example,
smaller than the Kolmogorov scale in turbulent flows), the local fluid velocity
can be accurately approximated by creeping Stokes flow and then the problem
is amenable to a number of mathematical techniques that are available in the
literature. One popular technique involves implementing slender body theories
to model long and thin particles. An advantage of using slender body models
is that they have the freedom to model flexible and arbitrarily shaped parti-
cles (with free ends or closed loops) provided that the particle is thin and the
parametrization of centerline is known. The theoretical assumptions on which
slender body models are based are also valid for long particles whose centerline
lengths are comparable or extend beyond the limiting length scales of the fluid
field. In particular, slender body theory has the potential to model particles
that are longer than the Kolmogorov scale, where conventional models such as
the Jeffery model for ellipsoids are not valid. This is a major advantage over
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current state-of-the-art particle simulations in, for example, [23, 30]. We also
refer to [28] and references therein for a review of other available models and
methodologies for treating anisotropic particles in turbulent flows.

In this article, we will consider a model based on slender body theory for rigid
fibers that have either free ends or are closed loops. The purpose of this paper is
primarily to provide a numerical validation of the proposed slender body model.
For this reason, we will primarily focus on two simple geometries: long ellip-
soids and thin rings (also referred to as thin tori). These geometries are chosen
as there are verified ellipsoid and torus models available in the literature with
well-studied dynamics, see for example [23, 29] for prolate ellipsoids and [15]
for thin torus models. This will serve as grounding for future work that will
focus on more interesting and complex particle shapes (e.g., helical particles,
complex closed loops or very long particles) in more complex flows (e.g., 3D
numerical turbulence) that can be approached with more advanced numerical
methods [25,26]. Such studies could impact our understanding of the transport
and deposition of microplastics in the ocean, since a large percentage of these
microplastics are thin fibers [20].

The slender body approximation expresses the fluid velocity away from the fiber
centerline as an integral of singular solutions to the Stokes equations along the
fiber centerline. As such, the approximation itself is singular along the fiber
centerline, and there exist various methods to obtain a limiting integral expres-
sion for the velocity of the slender body itself [7, 16, 17]. For the purposes
of particle simulations, we are primarily interested in solving for the forces
and torques on the particle given a flow about the body. In the case of slender
body theory, this involves inverting the limiting integral expression for the fiber
velocity to find the force per unit length. Thus we need to be careful that the
limiting expression is suitable for numerical inversion. In particular, we hope
to avoid the high wavenumber instabilities that arise in some of the existing
centerline expressions which require additional regularization to overcome. Of-
ten the methods for regularization lack a physical justification.

Here we consider approximating the fiber velocity by simply evaluating the
slender body fluid velocity expression on a curve along the actual slender body
surface, away from the fiber centerline. Numerical evidence suggests that this
method does not require further regularization to yield an invertible matrix
equation for any discretization level or fiber centerline shape. We also show
that our model agrees well with exact or asymptotically accurate expressions
for the forces and torques on fibers with simple geometries in simple flows.
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The next section presents the mathematical theory for the slender body formal-
ism, as well as a brief review of rigid body mechanics and spheroidal particle
models. Section 4.3 is dedicated to numerical experiments, and the final section
is for conclusions.

4.2 Particle modeling

We begin by reviewing the rigid body dynamics that are relevant to particle
modeling. The theoretical basis for the slender body model is then presented
for rigid free ended fibers and rigid closed loops. Finally, we present the Jeffery
model for torques on an ellipsoid, which is used for comparison purposes.

4.2.1 Dynamics

The angular momentum m of a rigid particle with torque N is governed by the
ordinary differential equation

ṁ = m ×ω+N , (4.2.1)

where ω= J−1m is the angular velocity and J is the diagonal moment of inertia
tensor. All the above quantities are given in the particle frame of reference.
The particle orientation (with respect to a fixed inertial frame of reference) is
specified using Euler parameters q ∈ R4 which satisfy the constraint ||q||2 = 1
and are determined by solving the ODE

q̇ = 1

2
q ·w, (4.2.2)

where w = (0,ωT)T ∈R4 and · here denotes the Hamilton product of two quater-
nions [10]. A vector in the particle reference frame xp can be rotated to a vector
in an inertial co-translating reference frame xT =Qxp where Q is the rotation
matrix that is the image of q under the Euler-Rodriguez map. We refer the
reader to [10] for details on quaternion algebra and rigid body mechanics.

4.2.2 Slender body theory

We begin by describing the slender body geometries that will be considered
in the free end and closed loop settings. To condense notation, we will use
I to denote the interval [−1/2,1/2] in the free end setting and the unit circle
T= R/Z in the closed loop setting. We take X : I → R3 to be the coordinates
of an open or closed non-self-intersecting C 2 curve in R3, parameterized by
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arclength s. We let es(s) = d X
d s denote the unit tangent vector to X (s). The curve

X (s) will be the centerline of the slender body, and we assume that all cross
sections of the slender body are circular.

Let 0 < ε
 1. In the closed loop setting, we consider fibers with uniform radius
ε on each cross section. In the free end setting, we consider the actual endpoints
of the fiber to be ±

�
1/4+ε2 rather than ±1/2, and define a radius function

r ∈ C 2(−
�

1/4+ε2,
�

1/4+ε2) such that 0 < r (s) ≤ 1 for each s ∈ [−1/2,1/2],
and r (s) decays smoothly to zero at the fiber endpoints ±

�
1/4+ε2. We will

mostly be concerned with the prolate spheroid, for which we have

r (s) = 1

( 1
4 +ε2)1/2

(
1

4
+ε2 − s2

)1/2

. (4.2.3)

Notice that the interval [−1/2,1/2] extends from focus to focus of this prolate
spheroid, and that r = O (ε) at s =±1

2 (see figure 4.2.1). In numerical applica-
tions, we will also briefly consider the case of a free end fiber with uniform
radius (except for hemispherical caps at the fiber endpoints – see section 4.3.2),
but we note that the slender body approximation is better suited for the prolate
spheroid. Throughout this paper, for the sake of conciseness, we will often
write one expression to encompass both the free end and closed loop settings,
in which case we note that in the closed loop setting we define r (s) = 1 for each
s ∈T.

The idea behind slender body theory is to approximate the fluid velocity about
the fiber as the Stokes flow due to a one-dimensional curve of point forces in
R3. The basic theory originated with Hancock [12], Cox [8], and Batchelor [2]
with later improvements by Keller and Rubinow [16] and Johnson [14]. Here
we will consider specifically the slender body theory of Johnson, which was
further studied by Götz [11] and Tornberg and Shelley [27]. Let u0(x, t ) denote
the (known) velocity of the fluid in the absence of the fiber at time t , and let
μ denote the viscosity of the fluid. The classical slender body approximation
uSB(x, t ) to the fluid velocity at any point x away from the fiber centerline X (s, t )
is then given by

8πμ
(
uSB(x, t )−u0(x, t )

)=−
∫
I

(
S (R)+ ε2r 2(s′)

2
D(R)

)
f (s′, t )d s′, R = x −X (s′, t );

(4.2.4)

S (R) = I

|R | +
RRT

|R |3 , D(R) = I

|R |3 − 3RRT

|R |5 . (4.2.5)

Here 1
8πμS (R) is the Stokeslet, the free space Green’s function for the Stokes

equations in R3, and 1
8πμD(R) = 1

16πμΔS (R) is the doublet, a higher order
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εr(s)

es(s)

er(s)

es(s)

Closed loop: r(s) = 1,

Free ends: 0 < r(s) ≤ 1,
s ∈ [−1/2, 1/2]

Rε(s1, s2)

X(s1) + εer(s1)

X(s2)

s ∈ T = R/Z

X(s)

Figure 4.2.1: A depiction of the geometries under consideration in the free end and
closed loop settings.

correction to the velocity approximation. The force density f (s, t ) is here con-
sidered as the force per unit length exerted by the fluid on the body. The sign
convention is opposite if we instead consider f to be the force exerted by the
body on the fluid. Note that in the free end case, this force density is only
distributed between the generalized foci of the slender body (s =±1/2) rather
than between the actual endpoints of the fiber.

In the stationary setting, Mori et al. in [21] (closed loop case) and [22] (free
end case) prove a rigorous error bound for the difference between the velocity
field given by (5.3.1) and the velocity field around a three-dimensional flexible
rod satisfying a well-posed slender body PDE. In particular, for the closed
loop, given a force density f ∈C 1(T), the difference between uSB and the PDE
solution exterior to the slender body is bounded by an expression proportional
to ε
∣∣logε

∣∣. In the free end case, given a force density f ∈C 1(−1/2,1/2) which
decays like a spheroid at the fiber endpoints ( f (s) ∼

�
1/4− s2 as s →±1/2),

the difference between the free end slender body approximation uSB and the
well-posed PDE solution of [22] is similarly bounded by an expression propor-
tional to ε

∣∣logε
∣∣. Thus the Stokeslet/doublet expression (5.3.1) is quantitatively

a good approximation of the flow field around a slender body.

115



A slender body model for thin rigid fibers: validation and comparison

To approximate the velocity of the slender body itself, we would like to use
(5.3.1) to obtain an expression for the relative velocity of the fiber centerline
∂X (s,t )

∂t depending only on the arclength parameter s and time t . In the case of a
rigid fiber, given the velocity ∂X (s,t )

∂t = v+ω×X (s, t ), v,ω ∈R3, of the filament
centerline, we would like to then be able to invert the centerline velocity ex-
pression to solve for the force density f (s, t ) along the fiber. We use this f (s, t )
to compute the total force F (t ) and torque N (t ) exerted on the body as∫

I
f (s, t )d s = F (t ),

∫
I

X (s, t )× f (s, t )d s = N (t ). (4.2.6)

Since the expression (5.3.1) is singular at x = X (s, t ), deriving a limiting expres-
sion for the fiber centerline must be done carefully. There are various ways to
use (5.3.1) to obtain a centerline expression depending on s only, including the
methods of Lighthill [17], Keller and Rubinow [16], and the method of regular-
ized Stokeslets [3,6,7]. Each method expresses the velocity of the slender body
centerline ∂X (s,t )

∂t as an integral operator acting on the force density f (s, t ). A
brief overview of these methods is given in appendix 4.A.

Because solving for the force density f (s, t ) given ∂X (s,t )
∂t involves inverting

an integral operator at each time step, we need to take particular care that the
operator – at least when discretized – is suitable for inversion. In particular, we
need to avoid the high wavenumber instabilities that limit discretization of the
integral operator and hinder some of the asymptotic methods described in ap-
pendix 4.A. At the same time, we would like the centerline expression to have
a clear physical meaning and connection to the Stokeslet/doublet expression
(5.3.1).

Thus we will use the following expression to approximate the velocity ∂X (s,t )
∂t

of the slender body itself. Taking er (s, t ) to be a particular unit vector normal
to X (s, t ) (we will discuss the choice of er later), we essentially evaluate (5.3.1)
at x = X (s, t )+εr (s)er (s, t ), a curve along the actual surface of the slender body.
For S , D as in (5.3.1), we have

8πμ

(
∂X

∂t
−u0(X (s, t ), t )

)
=−
∫
I

(
Sε(s, s′, t )+ ε2r 2(s′)

2
Dε(s, s′, t )

)
f (s′, t )d s′;

(4.2.7)

Sε =S (Rε(s, s′, t ))− ε2r 2er eT
r∣∣Rε(s, s′, t )
∣∣3 , Dε =D(Rε(s, s′, t ))+ 3ε2r 2er eT

r∣∣Rε(s, s′, t )
∣∣5 ,

(4.2.8)

Rε(s, s′, t ) = X (s, t )−X (s′, t )+εr (s)er (s, t ). (4.2.9)
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Here we are relying on the fact that for any point x on the actual fiber surface,
the expression (5.3.1) for uSB(x) is designed to depend only on arclength s to
leading order in ε – in particular, on each cross section of the slender body,
the angular dependence about the fiber centerline is only O (ε logε) (see [21],
proposition 3.9, and [22], proposition 3.11). This is because the leading order
angular-dependent terms (the ε2r 2er eT

r term in both the Stokeslet and the dou-
blet, which is O (1) at s = s′) cancel each other asymptotically to order ε log(ε)
(see estimates 3.62 and 3.65 in [21] and estimates 3.40 and 3.43 in [22]). We
therefore eliminate these two terms from the formulation (5.3.4), in part due
to this cancellation and in part because their omission appears to improve the
stability of the discretized integral operator (5.3.4) when n, the number of
discretization points, is large. This apparent improvement in stability merits
further study in future work.

Thus to approximate the velocity of the fiber centerline, we evaluate (5.3.1) on
the actual slender body surface along a normal vector er (s, t ) ∈C 2(I ) extending
from X (s, t ) but cancel the ε2r 2er eT

r terms that would otherwise appear. Note
that the choice of normal vector er is somewhat arbitrary, and does have an
O (ε logε) effect on the resulting approximation. These effects can and should
be studied further in future work. However, we use this normal vector as a
physically meaningful means of avoiding the high wavenumber instabilities
that appear in other asymptotic methods (see appendix 4.A). Numerical evi-
dence suggests that the discretized centerline equation (5.3.4) yields a matrix
equation that is solvable for f (s, t ) given ∂X (s,t )

∂t , as all eigenvalues of the matrix
are positive even for very large n. This is not necessarily the case for some
of the other centerline equations (again, see appendix 4.A) unless additional
regularizations are added, which may affect the physical meaning of the equa-
tions. The possibility of resolving very fine scales along the length of the fiber
is desirable especially when dealing with turbulent flows.

4.2.3 Spheroid model

The above slender body model is valid for arbitrary parameterizations of the
centerline X (s, t ) and a wide choice of radius functions. However, to validate
the model we will focus on a simple case where the centerline is a straight line
and the radius function corresponds to an ellipsoid. In this case the torques
have a known expression due to Jeffery [13] and the motion of such a particle
in simple flows is well-known [4, 19] which makes this choice of geometry a
perfect arena for model validation. We will now briefly review some theory
related to spheroids immersed in viscous fluids.
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An axisymmetric spheroid in the particle frame is given by

x2

a2 + y2

a2 + z2

b2 = 1, (4.2.10)

where a and b are the distinct semi-axis lengths. The particle shape is char-
acterized by the dimensionless aspect ratio λ = b/a > 0, which distinguishes
between spherical (λ= 1), prolate (λ> 1) and oblate (λ< 1) particles (the latter
two shapes are also called as rods and disks). In the case of a slender prolate
spheroid, we take a = ε. The axisymmetric moment of inertia tensor for a
spheroid in the body frame is

J = ma2diag

(
(1+λ2)

5
,

(1+λ2)

5
,

2

5

)
, (4.2.11)

where m = 4
3πλa3ρp is the particle mass and ρp is the particle density. Jeffery

[13] calculated the torque N of an ellipsoid in creeping Stokes flow, which in
the above axisymmetric case reads

Nx = 16πλμa3

3(β0 +λ2γ0)

[
(1−λ2)Sy z + (1+λ2)(Ωx −ωx )

]
, (4.2.12)

Ny = 16πλμa3

3(α0 +λ2γ0)

[
(λ2 −1)Szx + (1+λ2)(Ωy −ωy )

]
, (4.2.13)

Nz = 32πλμa3

3(α0 +β0)
(Ωz −ωz ), (4.2.14)

where Si j = 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
is the fluid shear tensor and Ω = 1

2∇×u is the fluid

rotation, both taking constant values in shear flow. The values α0, β0 and γ0

are λ-dependent parameters that were calculated in [9].

There are a number of distinctions to make between this model and the slender
body model. First, Jeffery assumes that the particle is small enough that the
fluid Jacobian ∇u is constant across the volume of the spheroid. In shear flow,
∇u is constant everywhere, hence this assumption is true and the model validity
is independent of the size of the particle. However, in more complex flows such
as turbulence, the Jeffery model is only valid for a,b << η for Kolmogorov
length η. On the other hand, the slender model requires only that the maximal
cross sectional radius ε << η to be valid. Hence, the slender body model is
valid for particles with lengths larger than η whilst satisfying the Stokes flow
assumptions. Second, the Jeffery torque depends on the fluid velocity deriva-
tives only, while the slender body model derives the torques from the velocity
field along the centerline. Because of this, we cannot expect the models to
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coincide when the particle is aligned exactly in the shear plane (i.e., the plane
where u = 0 but ∂u j

∂xi
�= 0).

4.3 Numerical experiments

This section presents numerical results for the slender body model and compar-
isons with other similar models. We begin with a validation of the slender body
expression (5.3.4) by comparing the total force F given by inverting (5.3.4) for
a stationary slender body velocity with the exact expression for the Stokes drag
on a particular object (when available) or with an expression valid asymptoti-
cally as ε→ 0. We consider the slender prolate spheroid (section 4.3.2; exact
expression given by Chwang and Wu [5]), the straight, uniform cylinder with
hemispherical endpoints (section 4.3.2; asymptotic expression given by Keller
and Rubinow [16]), and the slender torus (section 4.3.3; asymptotic expression
given by Johnson and Wu [15]). In each case we expect O (ε logε) agreement
between the force F computed using (5.3.4) and the exact or asymptotically
accurate expressions; however, we find that this trend is clearly visible only in
the closed loop setting. We then examine the rotational dynamics of a prolate
spheroid in shear flow using expression (5.3.4) and compare it with the Jeffery
model for ellipsoids [13]. We look at the dynamics of the two models for a
range of aspect ratios and orientations and then explore the effect of the dis-
cretization parameter on the periodic Jeffery orbits. We finally compare the
dynamics of thin rings to oblate spheroids for a range of fluid viscosities.

4.3.1 Computational considerations

In many applications, one needs to simulate the dynamics of thousands or
millions of particles; hence computational cost plays a role in determining
the model choice. One thing to consider is that the slender body model in-
volves inverting a 3n×3n matrix at each time step, where n is the user-defined
discretization parameter that arises from discretizing the integral in equation
(5.3.4). On the other hand, the Jeffery model requires an accurate approxima-
tion of the fluid Jacobian at the location of the particle center of mass, while the
slender body model only requires the fluid velocity values at the n locations on
its centerline. When the fluid velocity is defined at discrete locations in space,
such as in direct numerical simulations of turbulent flows, the Jeffery model
is faced with the problem of approximating the fluid Jacobian at the location
of the particle center of mass, which is more costly than just interpolating the
velocity field. In practice, however, one should use the Jeffery model when
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computing dynamics of small, thin ellipsoids when possible and the slender
body model for more complicated shapes or longer particles. As the purpose of
this article is focused on the theoretical and numerical validation of the slender
body model, computational cost and numerical methods will be left for future
work.

4.3.2 Free ended fibers in constant flow

We validate the free end formulation of (5.3.4) in the case of a slender body with
straight centerline X (s) = sex , s ∈ [−1/2,1/2], aligned with the x-axis. Here we
will consider both the slender prolate spheroid with radius function r (s) as in
(5.1.2) and a slender cylinder with hemispherical caps at the fiber endpoints. In
both cases, we take the actual filament length to be 2

�
1/4+ε2, but distribute

the force density f (s) only along [−1/2,1/2]. As in the closed loop setting,
we use (5.3.4) to calculate the drag force F on the slender body as it translates
with unit speed, and compare this F to either exact or asymptotically accurate
expressions for the Stokes drag on a prolate spheroid or cylinder. In both cases
we will use the unit normal vector er (s) = cos(2πs)e y + sin(2πs)ez , which ro-
tates once in the y z-plane perpendicular to X (s) = sex for s ∈ [−1/2,1/2]. This
normal vector is chosen because it represents a sort of average normal direction
along the length of the filament.

In the free end setting, we also need to make sure that the computed force
density f (s) is decaying sufficiently rapidly at the fiber endpoints to ensure
that the solution makes sense physically. The inclusion of the decaying radius
function r (s) in the slender body velocity expression (5.3.4) ensures this decay
by making the integral kernel very large near the fiber endpoints.

In the case of a prolate spheroid, we can actually compare the total force F
given by (5.3.4) to the analytical expression for Stokes drag on a spheroid cal-
culated by Chwang and Wu [5] (see table 4.3.1). We consider the drag force on
a slender prolate spheroid translating with unit speed in either the y-direction
(perpendicular to the semi-major axis) or the x-direction (parallel to the semi-
major axis). In all cases, the integral term of (5.3.4) is discretized using the
trapezoidal rule with uniform discretization along the filament centerline. We
use n = 2/ε discretization points.

We also look at a plot of the computed force per unit length f (s) along the
filament (figure 4.3.1) to verify that the force density makes sense physically.

From figure 4.3.1, we can see that the force density f (s) decays rapidly as
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F ·e y for u = e y F ·ex for u = ex

ε Expression (5.3.4) Chwang-Wu Expression (5.3.4) Chwang-Wu ε
∣∣logε

∣∣
0.01 -2.4498 -2.4618 -1.5245 -1.5302 0.0461

0.005 -2.1579 -2.1673 -1.3051 -1.3094 0.0265
0.0025 -1.9281 -1.9358 -1.1408 -1.1442 0.0150
0.00125 -1.7426 -1.7491 -1.0133 -1.0159 0.0084

Table 4.3.1: Comparison of the computed (via expression (5.3.4)) and exact (from
Chwang and Wu [5]) Stokes drag force F on a slender prolate spheroid of length
2
�

1/4+ε2 with semi-major axis aligned with the x-axis. Columns 2 and 3 compare
the y-component of F for a spheroid translating with unit speed in the y-direction,
while columns 4 and 5 compare the x-component of F for translation in the x-direction.
Note that for both directions, the force difference decreases with ε, but not quite at the
expected ε logε rate.

s →±1/2, but does not vanish identically at |s| = 1/2. However, it should be
noted that in [22], we are given the force density f (s), s ∈ [−1/2,1/2], and use
it to solve for the corresponding slender body velocity. In that case, the force
must vanish identically at ±1/2 to yield a unique velocity. Since in this case we
are using the fiber velocity to solve for the force density, it appears that what we
are doing instead here is ignoring a certain (small) amount of force contribution
from the very ends of the fiber (between 1/2 ≤|s| ≤

�
1/4+ε2). Whether or

not this is a good approximation is unclear – it is possible that the same force
density could result from flows that differ slightly at the actual fiber endpoints.
However, it appears that because f (s) decays so rapidly at s =±1/2, any force
contribution beyond this would be negligible. This may indicate that sufficient
decay in the slender body radius toward the endpoints of the fiber ensures that
the endpoints (beyond |s| = 1/2) are not contributing a significant amount to the
total force and thus can be safely ignored.

To test the formulation (5.3.4) for a different choice of radius function r (s),
we next consider the drag force on a straight cylinder with uniform radius
everywhere along its length except for hemispherical caps at the fiber endpoints.
In particular, we take the cylinder to be the same length as the prolate spheroid
(actual fiber endpoints at s = ±

�
1/4+ε2) with a radius that decays smoothly

to zero at the endpoint via a hemispherical cap of radius ε centered at dε =�
1/4+ε2 −ε:

εr (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε, −dε ≤ s ≤ dε√
ε2 − (s +dε)2, s <−dε√
ε2 − (s −dε)2, s > dε

dε :=
√

1/4+ε2 −ε.

(4.3.1)
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Figure 4.3.1: Force per unit length f (s), s ∈ [−1/2,1/2], along the prolate spheroid
with semi-major axis aligned with the x-axis. The left figure shows the y-component
of the force density for the cylinder translating with unit speed in the y-direction, while
the right figure shows the x-component of the force density for the cylinder translating
in the x-direction. Note that in both flows the force density f (s) decays to near zero at
s =±1/2, as expected.

As in the case of the prolate spheroid, we distribute the force density f (s) along
the interval [−1/2,1/2]. Using (5.3.4) to find F in the same way as in the case
of the prolate spheroid, we compare the resulting drag force with the asymp-
totic expression derived by Keller and Rubinow [16] in table 4.3.2.

The computed drag force in table 4.3.2 agrees well with the asymptotic expres-
sion of Keller and Rubinow [16]; however, the computed force-per-unit-length
f (s) is not as physically reasonable at the fiber endpoints. According to [22],
in the case of a cylinder with hemispherical caps, we actually want a faster
rate of decay in the force near the fiber endpoints – in particular, we need
f (s)/(1/4− s2) ∈C (−1/2,1/2). However, as shown in figure 4.3.2, flow about
the cylinder results in wild oscillations in f (s) near the fiber endpoints. Pos-
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F ·e y for u = e y F ·ex for u = ex

ε Eqn (5.3.4) Keller-Rubinow Eqn (5.3.4) Keller-Rubinow ε
∣∣logε

∣∣
0.01 -2.6433 -2.6401 -1.6864 -1.6712 0.0461

0.005 -2.3085 -2.3024 -1.4216 -1.4094 0.0265
0.0025 -2.0472 -2.0417 -1.2274 -1.2189 0.0150
0.00125 -1.8384 -1.8342 -1.0796 -1.0738 0.0084

Table 4.3.2: Comparison of the computed (via expression (5.3.4)) and asymptotic
(from Keller and Rubinow [16]) Stokes drag force F on a cylinder of length 2

�
1/4+ε2

with hemispherical endpoints and with centerline along the x-axis. Columns 2 and
3 compare the y-component of F for a cylinder translating with unit speed in the y-
direction, while columns 4 and 5 compare the x-component of F for translation in
the x-direction. Here the expected ε logε scaling of the difference between forces is
less apparent, particularly in the y-direction. This may be due to endpoint effects (see
figure 4.3.2).

sibly this indicates that this method (and likely others based on slender body
theory) are really designed to treat prolate spheroids with sufficient decay in
radius near the fiber endpoints.

4.3.3 Closed loops in constant flow

To validate the slender body approximation (5.3.4) in the closed loop setting
(I = T), we compute the Stokes drag about a translating thin torus of length
1 with centerline in the x y-plane and axis of symmetry about the z-axis. We
compare the computed drag force for various values of ε to the asymptotic
expression of Johnson and Wu [15] (see table 4.3.3). Note that for the thin
filaments that we consider here, the Johnson and Wu expression for the drag
force corresponds well with the semianalytic expression for a torus translating
in the z-direction, derived by Majumdar and O’Neill [18] with corrections by
Amarakoon, et al. [1]. The Majumdar-O’Neill expression, consisting of an
infinite sum of Legendre functions, holds for general values of s0, where s0 is
defined to be the ratio of the outer radius of the torus (measured centerline to
longitudinal axis) to the cross sectional radius. In [1], Amarakoon, et al. numer-
ically verify the reported O (s−2

0 ) accuracy of the Johnson-Wu expression. In
our case, we are mainly concerned with the parameter region s0 = 1/(2πε) > 10,
so the Johnson-Wu expression agrees with the exact expression for Stokes drag
in the z-direction to at least two digits.

Since the torus centerline X (s) is planar, we choose the normal vector cos(2πs)ex+
sin(2πs)e y to also lie in the x y-plane. The integral term in (5.3.4) is discretized
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Figure 4.3.2: Force per unit length f (s), s ∈ [−1/2,1/2], along the uniform cylinder
with hemispherical caps at the endpoints and centerline aligned with the x-axis. The
left figure shows the y-component of the force density for the cylinder translating with
unit speed in the y-direction, while the right figure shows the x-component of the force
density for the cylinder translating in the x-direction. Comparing with figure 4.3.1, it
is clear that the shape of the radius function r (s) at the fiber endpoint has a large effect
on f (s). In particular, despite the decay in f (s) at the very endpoint of the fiber, the
oscillations leading up to the endpoint brings the physical validity of this force density
into question.

using the trapezoidal rule, and the number of discretization points n along the
fiber centerline is taken to be n = 2/ε. Given zero background flow and uni-
form unit speed in the z-direction (columns 2 and 3, table 4.3.3) and y-direction
(columns 4 and 5, table 4.3.3), the discretized operator (5.3.4) is inverted to find
the force per unit length f (s), which is then summed over s to find the drag force
F . We plot the calculated f (s) in figure 4.3.3 to verify that the computed force
density makes physical sense. For all computations, we take the viscosity μ= 1.

Our method agrees quite well with the asymptotic expression of Johnson and
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F ·ez for u = ez F ·e y for u = e y

ε Eqn (5.3.4) Johnson-Wu Eqn (5.3.4) Johnson-Wu ε
∣∣logε

∣∣
0.01 -2.4093 -2.3503 -1.8740 -1.8292 0.0461

0.005 -2.1076 -2.0806 -1.6309 -1.6103 0.0265
0.0025 -1.8788 -1.8664 -1.4484 -1.4389 0.0150
0.00125 -1.6979 -1.6922 -1.3051 -1.3007 0.0084

Table 4.3.3: We consider a translating slender torus of length 1 with centerline lying
in the x y-plane, and compare the resulting Stokes drag force given by the slender
body model (expression (5.3.4)) to the asymptotic expression calculated by Johnson
and Wu [15]. Columns 2 and 3 compare the z-component of the drag force for a
slender torus translating with speed 1 in the z-direction (“broadwise translation”),
while columns 4 and 5 show the y-component of the drag for translation in the y-
direction (“translation perpendicular to the longitudinal axis”). Here we can see an
approximate ε logε scaling in the difference between the two expressions.

Wu – as expected, table 4.3.3 shows roughly an O (ε logε) difference between
the slender body approximation to the drag force and the asymptotic expres-
sion. This is encouraging since both (5.3.4) and the Johnson-Wu asymptotics
are based on the Stokeslet/doublet expression (5.3.1). We have chosen these
particular values of ε so that our method can also be compared with the regu-
larized Stokeslet method of Cortez and Nicholas [7].

4.3.4 Free ended fibers in shear flow

In this section we calculate the angular momentum of a prolate spheroid with
aspect ratio λ = 1/ε in the shear flow field u(z) = (z,0,0)T. The torques are
derived using both slender body theory (equation (5.3.4)) and the Jeffery model
(equation (4.2.13)) for comparison. Figure 4.3.4a shows how the torque of the
ellipsoid varies as a function of its orientation. Here, θ2 is the second Euler
angle and θ2 = [−π/2,π/2] corresponds to a full revolution about the y-axis.
We see that the torques agree at θ2 =±π/2 and the discrepancy between the two
models increases as the orientation approaches alignment in the shear plane;
in particular, the torque in the slender body model goes to zero but the Jeffery
torque remains bounded away from zero. Since the fluid velocity is exactly zero
along the particle centerline, the slender body model does not yield a torque on
the particle. On the other hand, in the Jeffery model, the spheroid is aware of
the non-zero fluid velocity gradient, and hence experiences a non-zero torque
at this orientation.

Figure 4.3.4b shows the difference between the y-component of the torques due
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Figure 4.3.3: Force per unit length f (s), s ∈T, along the slender torus with centerline
in the x y-plane. The left figure shows the z-component f (s) · ez for a slender body
translating with unit speed in the z-direction, while the right picture shows the y
component f (s) ·e y for translation with unit speed in the y-direction.

to Jeffery and slender body theory as a function of ε for different values of n.
The particles are oriented with θ2 =π/2, perpendicular to the shear plane. We
see roughly O (ε log(ε)) convergence for the five largest values of ε. For smaller
values of ε, the model converges at a slower rate. This is similar to the observed
convergence in the force values (table 4.3.1), which are calculated for ε≤ 10−2.
In addition, the two models show better agreement as the discretization param-
eter n is increased.

Figure 4.3.5 shows the the y-component from equation (5.5.1) of the torques
due to slender body theory and Jeffery. The ODE for angular momentum is
solved using one of MATLAB’s built in functions such as ode15s. The par-
ticles are aligned as before with initial conditions m0 = (0,0.1,0)T and Euler
angles (0,π/2,0)T; hence the only non-zero component of the angular momen-
tum is my . We observe that for a relatively low aspect ratio (i.e., figure 4.3.5a)
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Figure 4.3.4: (a) The y-component of the torque for a prolate spheroid with λ= 100 for
different orientations in shear flow. The values θ2 = 0,±π/2 correspond to alignment
parallel and perpendicular to the shear plane, respectively. (b) The difference ΔNy

between the y-component of the torques due to Jeffery and slender body theory for a
prolate spheroid of aspect ratio λ= 1/ε aligned in the z-direction in shear flow.

the models do not agree so well, however λ= 5 is not considered to be in the
“slender" regime and we therefore do not expect good agreement here. As λ

increases, the dynamics become almost indistinguishable.

We now turn our attention to figure 4.3.6, which displays how the choice of the
discretization parameter n affects the solution quality. Figure 4.3.6a shows my

for the slender body model for different numbers of discretization points n and
figure 4.3.6b shows its 40 highest Fourier modes. The main observation here
is that the model becomes more accurate as n increases. In particular, if n is
chosen to be too low (here, too low corresponds to roughly less than 1/(2ε))
then the model does not resolve the low frequency modes, which can be seen
by the spike at k = 16 in figure 4.3.6b, where only the n = 50 and 100 lines are
able to reasonably capture this mode correctly.

4.3.5 Closed loops and oblate spheroids in shear flow

In this section we compare the rotational dynamics of a thin torus modeled by
slender body theory to the rotational dynamics of an oblate disk of similar shape
and mass. This comparison differs from the prolate spheroid comparisons in
that here the particle shapes are different and we do not expect the two solutions
to coincide. The slender torus experiences a force only along its centerline,
whilst the oblate spheroid experiences a force all across its surface. In addition,
the moment of inertia tensor for a torus of inner radius 2ε and of outer radius a
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Figure 4.3.5: The y-component of the angular momentum of a particle in shear flow
calculated from slender body theory (blue) and Jeffery (black, dashed). The aspect
ratio takes different values in the range λ ∈ [10,100]. The simulation parameters are
μ= 0.06, n = 2

ε
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Figure 4.3.6: The y-component of the angular momentum of a particle in shear flow
(a) and the first 40 Fourier modes (b). The colored lines are calculated from slender
body theory with discretization parameter varying in the range n ∈ [12,100] and the
dashed line is due to Jeffery. The simulation parameters are μ= 0.01 and λ= 50 and
m0 = (0,0.11,0)T.

(measured from the center of mass to the centerline) is given by

JT = mT diag

(
4 a2 +5ε2

8
,

4 a2 +5ε2

8
,

4 a2 +3ε2

4

)
. (4.3.2)

Setting the mass of the torus to mT = 2mp /5, where mp is the mass of the
spheroid, we have the relation J − JT =O (ε2) for an oblate spheroid with semi
minor axis length b = ε. Due to the particle shape, the oblate spheroid experi-
ences a much stronger torque; hence for the torques to be of the same magnitude,
a viscosity of μT = 200μ is chosen for the torus. The particles are placed at
rest in the shear flow with the initial Euler angles (0.01,0.01,0.01). We do this
for two reasons: the first being that the Euler angles (0,0,0) correspond to a
neutrally stable orbit where the ellipsoid exhibits a tumbling motion forever.
The second reason is that these angles correspond to exact alignment in the
x y plane, where the slender model will not experience a force since the fluid
velocity is exactly zero.

Challabotla et al. [4] conduct a similar experiment with oblate spheroids in
shear flow and observe two phases of rotation: (1) an unstable wobbling phase
of length proportional to the particle inertia, and (2) a stable rolling phase,
where the spheroid aligns and rolls perfectly in the shear plane. Figure 4.3.7
shows m(t ) for the thin ring with ε= 1/100 and oblate spheroid with λ= 1/100
for three different values of μ (and the corresponding values of μT ). For the
spheroid model, we observe the temporary initial wobbling phase followed by
the stable rolling phase where the particle rotates in the shear plane with a
constant mz component. In addition, as the relative particle inertia increases
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(that is, as the μ decreases), the wobbling phase is prolonged. These two obser-
vations are in agreement with the results in [4]. If we turn our attention to the
thin ring, we observe some similarities: there is an initial wobbling phase fol-
lowed by a somewhat different rolling phase. In the rolling phase, the particle’s
symmetry axis (the z-axis in the particle frame) precesses about the y-axis in
the inertial frame. This is seen as oscillations in the mx and my components
about a mean zero value, which in turn affects the mz component. A possible
explanation for this precession is the fact that the slender ring does not experi-
ence a torque in the x or y directions (i.e., a restoring torque) when the axis of
symmetry aligns perfectly with the y-axis in the inertial frame, since the gradi-
ent of the fluid velocity is not used in the calculation of the slender body torque.
Hence the ring is susceptible to wobbling/precession at this orientation. This
is in contrast with the spheroid, which experiences a non-zero torque in shear
flow because of the positive fluid velocity gradient, regardless of the particle
orientation. These discrepancies may not appear in more complex 3D flows
and geometries.

4.4 Conclusion

In this paper we consider a model for thin, rigid fibers in viscous flows based on
slender body theory. We investigate using the slender body approximation for
the fluid field away from the fiber centerline as an approximation for the motion
of the fiber itself by evaluating the expression on a curve along the slender body
surface. Numerically, this yields a matrix equation for the force density along
the length of the fiber that appears to be suitable for inversion even for very fine
discretization of the fiber centerline.

For simple geometries and simple flows, we compare the slender body model to
exact or asymptotically accurate expressions for the total force and torque act-
ing on the particle. For the thin prolate spheroid, we compare the Stokes drag
force predicted by slender body theory to the exact expression of Chwang and
Wu [5]; for the cylinder, we compare with the asymptotic expression of Keller
and Rubinow [16]; and for the thin torus, we compare with the asymptotic force
expression of Johnson and Wu [15]. In the case of the prolate spheroid and the
thin torus, we find essentially O (ε logε) agreement between our model and the
exact or asymptotically accurate force values (tables 4.3.1 and 4.3.3), which is
the accuracy predicted by rigorous error analyses [21, 22].

We also compared the torques on a thin prolate spheroid in shear flow for which
the exact torques are given by Jeffery [13]. In the case of a thin torus, we qual-
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Figure 4.3.7: The angular momentum components of a thin ring (left column) and an
oblate spheroid (right column) for μ0 = 0.01, 0.001 and 0.0001 (from top to bottom).
The particle parameters are ε = 1

100 , λ = 1
100 , μT = 200μ, mT = 2

5 m, m = 1, a = 1,
n = 1

2ε
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itatively compared the dynamics of the torus with the Jeffery torques on an
oblate spheroid of similar size. For the prolate spheroid, we found good agree-
ment between our model and the Jeffery model, especially as the aspect ratio
of the particle increases. In particular, in the slender body model, the dynamics
appear to be better resolved for finer discretization of the filament (large n). For
the thin torus, we observe somewhat similar results to those of Challabotla [4]
for oblate spheroids; namely, we observe an initial “wobbling" phase followed
by a steady “rolling" phase. The main difference is that in the rolling phase, the
thin torus precesses about the directions perpendicular to the shear plane, while
the spheroid maintains a constant angular momentum. This may be due to the
fact that the slender model does not explicitly experience torque through the
gradient, but only the values of the fluid velocity at the location of the centerline.

In the future, we aim to use this model to simulate elongated particles to deter-
mine the length scale at which the Jeffery model for prolate spheroids begins
to lose validity in turbulent flows. We also aim to study the aggregation proper-
ties of many slender particles with more complicated shapes in turbulence (for
example, helices or arbitrary closed loops). On the theoretical side, we would
also like to obtain a more complete characterization of solvability conditions
for the centerline equation. This would involve a spectral analysis of the equa-
tion (5.3.4) as well as the slender body PDE of [21, 22].
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Appendix

4.A Other limiting slender body velocity expressions

Here we provide a brief overview of other methods used to obtain an expression
for the motion of the fiber centerline ∂X (s,t )

∂t .

One such method is that of Lighthill [17] in which, away from s = s′, we simply
plug x = X (s) into the integral expression (5.3.1) (note that the doublet has
negligible effect away from s = s′). Near s = s′, under the assumption that the
centerline is essentially straight and the force density is approximately constant
within this small region, the expression (5.3.1) can be evaluated exactly to
obtain

8πμ
(
uL(s, t )−u0(X (s, t ), t )

)= 2(I−es eT
s ) f (s, t )+

∫
|R0|>δ

(
I∣∣R0
∣∣ + R0RT

0∣∣R0
∣∣3
)

f (s′, t )d s′;

R0(s, s′, t ) = X (s, t )−X (s′, t ), δ= εr (s)
�

e/2.
(4.A.1)

Here uL(s, t ) approximates ∂X (s,t )
∂t , the actual motion of the fiber centerline, and

u0(X (s, t ), t ) is the fluid flow at the spatial point x = X (s, t ) in the absence of
the fiber.

Another popular method is that of Keller and Rubinow [16] in which the expres-
sion (5.3.1) is evaluated on the actual slender body surface (i.e. at a distance
εr (s) from X (s, t )) and the method of matched asymptotics is used to obtain an
expression for ε= 0. In the far field (away from s = s′), (5.3.1) is simply Taylor
expanded about ε = 0. In the near field (near s = s′), the expression (5.3.1)
is rewritten in terms of the rescaled variable ξ = (s − s′)/ε and then expanded
about ε = 0. The far- and near-field expressions are then matched to create
a centerline velocity expression that includes a local operator and a singular
finite-part non-local operator:

8πμ
(
uKR(s, t )−u0(X (s, t ), t )

)=−Λ[ f ](s, t )−K [ f ](s, t ). (4.A.2)
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In the free end setting, the operators Λ and K are given by

Λ[ f ](s, t ) := [(I−3eseT
s )+ (I+eseT

s )L(s)
]

f (s, t )

K [ f ](s, t ) :=
∫1/2

−1/2

⎡⎣( I

|R0|
+ R0RT

0

|R0|3
)

f (s′, t )− I+es(s)es(s)T

|s − s′| f (s, t )

⎤⎦ d s′,

(4.A.3)

where L(s) = log
(2(1/4−s2)+2

�
(1/4−s2)2+4ε2r 2(s)

ε2r 2(s)

)
. Note that we define L in this

way to avoid singularities at the fiber endpoints; thus this L differs slightly from
the expression given by [11] or the expression in [27].
In the closed loop setting, Λ and K are given by

Λ[ f ](s, t ) := [(I−3eseT
s )−2(I+eseT

s ) log(πε/4)
]

f (s, t )

K [ f ](s, t ) :=
∫
T

⎡⎣( I

|R0|
+ R0RT

0

|R0|3
)

f (s′, t )− I+es(s)es(s)T

|sin(π(s − s′))/π| f (s, t )

⎤⎦ d s′.

(4.A.4)
However, a spectral analysis of the Keller-Rubinow operator −(Λ+K ) in the
case of simple fiber geometries (see Götz [11] for the straight centerline and
Shelley and Ueda [24] for the circular centerline) shows that the Keller-Rubinow
expression is not suitable for inversion. In particular, the operator −(Λ+K ) has
a vanishing or nearly vanishing eigenvalue at some wavenumber k ∼ 1/ε. This
high wavenumber instability limits the level to which the fiber can be discretized
for numerics. It seems likely that more complicated centerline geometries also
lead to a similar conclusion. Therefore in order to use the Keller-Rubinow
expression for numerical simulations, the kernel of the operator K must be
regularized. For example, in [24, 27], the denominators in the kernel of K are

replaced by
√∣∣R0

∣∣2 +δ2 and
√

sin2(π(s − s′))/π2 +δ2, where δ = δ(ε) is cho-
sen according to the fiber radius to maintain the same asymptotic accuracy as
the Keller-Rubinow expression. This regularization, however, lacks a physical
justification and clear connection to the expression (5.3.1).

Another common technique for describing the motion of the fiber centerline is
to instead use the method of regularized Stokeslets (see [3, 6, 7]) to obtain an
alternate version of (5.3.1). In this method, the Stokeslet is approximated by
the (smooth) solution to

−μΔu+∇p = f φδ(x), divu = 0

where φδ is a smooth, radially symmetric function with
∫
R3 φδ = 1. The pa-

rameter δ determines the spread of φδ and, in the case of slender body theory,
is usually chosen such that δ ∼ ε. The slender body approximation is then
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4.A Other limiting slender body velocity expressions

constructed as in (5.3.1), but now the resulting expression is not singular at
x = X (s), and the velocity of the slender body itself may be approximated by
simply evaluating the regularized expression along the fiber centerline. The
method of regularized Stokeslets can be used to construct regularized versions
of the Lighthill and Keller-Rubinow expressions [7]. However, from the outset,
the method of regularized Stokeslets approximates a slightly different problem
from (5.3.1), and it is not entirely clear that these solutions should be close for
any δ. The choice of regularization parameter δ greatly affects the resulting dy-
namics; however, a systematic justification for this parameter choice is lacking.
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An integral model based on slender body

theory, with applications to curved rigid fibers

Abstract. We propose a novel integral model describing the motion of both
flexible and rigid slender fibers in viscous flow, and develop a numerical
method for simulating dynamics of curved rigid fibers. The model is derived
from nonlocal slender body theory (SBT), which approximates flow near
the fiber using singular solutions of the Stokes equations integrated along
the fiber centerline. In contrast to other models based on (singular) SBT,
our model yields a smooth integral kernel which incorporates the (possibly
varying) fiber radius naturally. The integral operator is provably negative
definite in a non-physical idealized geometry, as expected from partial
differential equation (PDE) theory. This is numerically verified in physically
relevant geometries. We propose a convergent numerical method for solving
the integral equation and discuss its convergence and stability. The accuracy
of the model and method is verified against known models for ellipsoids.
Finally, a fast algorithm for computing dynamics of rigid fibers with complex
geometries is developed.

5.1 Introduction

The dynamics of thin fibers immersed in fluid play an important role in many
biological and engineering processes, including microorganism propulsion [8,
28,43,49], rheological properties of fiber suspensions used to create composite
materials [16, 20, 41], and deposition of microplastics in the ocean [31]. Here
the term ‘fiber’ is used to refer to a particle with a very large aspect ratio. In
many of the applications mentioned, the cross sectional radius of the fiber is
small compared to the length scales of the surrounding fluid, which can be
well approximated locally by Stokes flow. This allows for the development
of computationally tractable mathematical models describing the interaction
between the fiber and the surrounding fluid.
Due to the linearity of the Stokes equations, the three dimensional flow about
a body can be fully described by an expression over only the two dimensional
surface of the body [42]; however, for flexible particles with complex shapes
or for multiple interacting particles, this quickly becomes both analytically and
computationally prohibitive. In the case of slender fibers, a more tractable
option is to exploit the thinness of the fiber by approximating it as a one dimen-
sional curve. This idea forms the basis for slender body theory (SBT). Models
based on slender body theory in general are popular because they yield simple,
efficient expressions for the velocity of filaments in fluid, allowing for the sim-
ulation of many interacting fibers with complex, semiflexible shapes. The most
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basic form of SBT (placing singular point forces known as Stokeslets along the
fiber centerline) dates back to works by Hancock [21], Cox [14], and Batche-
lor [4]. Later developments in singular SBT, due to Keller and Rubinow [25],
Lighthill [29], and Johnson [24], involved adding higher order corrections to
the point force to account for the finite radius of the fiber. The most natural
choice of higher order correction is often referred to as the doublet (see dis-
cussion following equation (5.3.1)). We will refer to these methods based on
distributing Stokeslets and doublets along the fiber as classical nonlocal SBT
to distinguish from some more recent developments.

Classical SBT gives rise to an expression which exactly satisfies the unforced
Stokes equations away from the fiber, and, to leading order (with respect to
the fiber radius) satisfies the boundary conditions for a well-posed boundary
value problem for the Stokes equations [35, 36]. This expression has served
as the basis for various numerical methods [45, 54, 55]. However, one issue
with classical SBT is that the velocity expression is singular along the fiber
centerline, and the usual methods for obtaining an expression for the velocity
of the fiber itself – involving a nonstandard finite part integral – give rise to high
wavenumber instabilities [18, 45, 55]. To address this, Tornberg–Shelley [55]
regularize the integral kernel using an additional parameter proportional to the
fiber radius.

To more generally avoid some of the difficulties of integrating a singular ker-
nel, Cortez [10, 12, 13] developed the method of regularized Stokeslets. Here,
instead of placing singular solutions of the Stokes equations along the fiber
centerline, regularized Stokeslets are used. Regularized Stokeslets satisfy the
Stokes equations with forcing given by a smooth approximation to the identity
– or blob function – whose width is controlled by a parameter which can be cho-
sen to be proportional to the fiber radius. Unlike classical SBT, this results in an
expression for the fluid velocity that is nonsingular along the actual centerline
of the fiber, allowing for a simpler representation of the fiber velocity. Many
recent computational models for thin fibers rely on the method of regularized
Stokeslets [5,11,48,58,59]. However, many choices of blob function are possi-
ble and there is not a canonical procedure for choosing one. Additionally, many
commonly used blob functions introduce an additional nonzero body force into
the fluid away from the fiber surface [61].

Most recently, Maxian et al. [32] developed a fiber model that is asymptoti-
cally equivalent to SBT but based on the Rotne-Prager-Yamakawa (RPY) ten-
sor [44, 60] commonly used to model hydrodynamically interacting spheres.
The model also places a curve of (singular) Stokeslets plus doublets along
the fiber centerline, but replaces the region around the singular part of the
Stokeslet/doublet kernel with the RPY regularization. The RPY kernel is
divergence-free and known to be positive definite, making it a good choice
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for modeling particles in close proximity. The discontinuous kernel, how-
ever, makes the model more difficult to compare to the PDE solution of (Refs.
[35, 36]), which is one of the main goals of the model presented here.

We aim to make use of the fact that classical SBT closely approximates the
solution to a well-posed boundary value problem [35, 36] for the fluid velocity
outside of the fiber, although the conventional way to obtain an expression for
the velocity of the filament itself gives rise to instabilities which must later
be corrected. Regularized Stokeslets yield a simpler expression for the fiber
velocity, but can introduce errors outside of the filament and give rise to a
fiber velocity which may fundamentally differ from the aforementioned PDE
solution (see Remark 5.1). Thus we consider a different approach to deriving a
fiber velocity expression from classical SBT. Beginning with the fundamental
premise of classical SBT – placing singular Stokeslets along the fiber centerline
along with doublets to cancel the angular dependence across each fiber cross
section – we aim to devise a model which is analytically and computationally
attractive (in that it does not exhibit high wavenumber instabilities) with a
physically meaningful derivation.

Our integral model is based on classical SBT but involves a smooth kernel
which incorporates the (possibly varying) fiber radius in a natural way. Since
the integral kernels are smooth, the model resembles the method of regularized
Stokeslets with an arclength-dependent regularization similar to (Ref. [58]);
however, we derive our model from usual (singular) Stokeslets and doublets.
As such, we avoid introducing a nonzero body force throughout the fluid outside
of the fiber [61], and avoid introducing additional parameters into the basic first-
kind formulation of the model. The model relies on the asymptotic cancellation
of angular-dependent terms along the fiber surface (see Section 5.3 for details),
leaving an expression that retains a dependence on the fiber radius in a natural
way.

Furthermore, we include a systematic way of comparing mapping properties
among different fiber models based on (Ref. [34]), which involves calculating
the spectra of the integral operators from various models in the toy scenario of
a straight-but-periodic fiber with constant radius. In this model geometry, our
integral operator is negative definite, as is the well-posed partial differential
equation (PDE) operator of (Refs. [35,36]) which it is designed to approximate
(see Ref. [34]). This is in contrast to other models based on (non-regularized)
slender body theory which give expressions for the fiber velocity involving
further asymptotic expansion with respect to the fiber radius [24,25,29]. These
models exhibit an instability as the eigenvalues of the operator cross zero at a
high but finite wavenumber.

The model we derive initially yields a first-kind Fredholm integral equation
for the force density along the fiber centerline. Such integral equations are
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known for being ill-posed (see Ref. [26, Chapt. 15.1]), as they do not neces-
sarily have a bounded inverse at the continuous level. Numerical discretization
alone can provide sufficient regularization to invert first-kind integral equations
at the discrete level, but to make our model more suitable for inversion, we
use an integral identity to regularize the expression into a second-kind equa-
tion. The second-kind regularization preserves the asymptotic accuracy of the
model while improving the conditioning and invertibility of the corresponding
numerical method. The regularization also serves to ensure that the discretized
operator is negative definite, even in the presence of numerical errors, by bound-
ing the spectrum away from zero. We distinguish this type of regularization
from the method of regularized Stokeslets, since our regularization is not a key
component of the model derivation. In particular, we can directly compare our
model with regularization to our model without, which we will do repeatedly
throughout the paper. We also distinguish this regularization from the proce-
dure used by Tornberg and Shelley [55], since we are not correcting for a high
wavenumber instability. This allows us to compare the numerical behavior of
our regularized and unregularized models at the discrete level even for very
fine discretization. Moreover, the regularization used here affects all directions
(both normal and tangent to the slender body centerline) in the same way.

The solution of the resulting second-kind Fredholm integral equation is a force
density along the slender body centerline which we integrate to find the total
force and torque on the rigid fiber. We implement a numerical method based on
the Nyström method for solving second-kind Fredholm integral equations (see
Ref. [2, Chapt. 12.4]). Numerical tests confirm its convergence. Not surpris-
ingly, we note significant improvements in the conditioning of the second-kind
versus first-kind formulation of the model. We also numerically verify the
spectral properties of the model in different geometries.

The model applies to both semiflexible and rigid fibers; however, the invert-
ibility properties of the second kind model make it particularly well suited for
simulating rigid filaments. We present an algorithm for dynamic simulations
of a rigid fiber using Gauss-Legendre quadrature. The rigidity of the fiber can
be exploited such that only matrix-vector products need to be performed within
the time loop. We compare the dynamics of our model to the well-studied
dynamics of a slender prolate spheroid [6, 9, 23]. We then apply our model
to compare the dynamics of curved fibers whose centerlines deviate randomly
from straight lines by varying magnitudes.

The structure of the paper is as follows. Section 5.2 presents the slender body
model, which is derived in greater detail and justified via spectral comparisons
with other slender body theories in Section 5.3. In Section 5.4 we discuss a
method for numerically solving Fredholm integral equations and integrating the
result, and demonstrate the convergence of the method for our model. Section
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5.2 Slender body model

5.5 outlines a fast algorithm for computing the dynamics of a rigid slender fiber
in viscous flow. We apply the dynamical algorithm to simulate the dynamics of
fibers with complex shapes. Finally, we comment on conclusions and outlook
for the model in Section 5.6.

5.1.1 Fiber geometry

We begin by introducing some notation for the slender geometries considered
throughout the paper. Fix ε, L with 0 < ε
 L and let Xext : [−

�
L2 +ε2,

�
L2 +ε2] →

R3 denote the coordinates of a C 2 curve in R3, parameterized by arclength s.
Defining es(s) = d Xext

d s /
∣∣∣d Xext

d s

∣∣∣, the unit tangent vector to Xext(s), we parameter-
ize points near Xext(s) with respect to the orthonormal frame (es(s),en1 (s),en2 (s))
defined in (Ref. [36]). Letting

er (s,θ) := cosθen1 (s)+ sinθen2 (s),

we define the slender body Σε as

Σε := {x ∈R3 : x = Xext(s)+ρer (s,θ), ρ < εr (s), s ∈ [−
√

L2 +ε2,
√

L2 +ε2]
}
.

(5.1.1)
Here the radius function r ∈ C 2(−

�
L2 +ε2,

�
L2 +ε2) is required to satisfy

0 < r (s) ≤ 1 for each s ∈ (−
�

L2 +ε2,
�

L2 +ε2), and r (s) must decay smoothly
to zero at the fiber endpoints ±

�
L2 +ε2. There are many admissible radius

functions r which can be considered. For the simulations in this paper, we will
use a thin prolate spheroid as our geometrical model for a slender fiber. In this
case, the radius function r (s) is given by

r (s) = 1�
L2 +ε2

√
L2 +ε2 − s2. (5.1.2)

We consider the subset

X := {Xext(s) : −L ≤ s ≤ L} (5.1.3)

extending from focus to focus of the prolate spheroid (5.1.2), and define X (s)
to be the effective centerline of the slender body so that r =O(ε) at the effective
endpoints s =±L.
The slender body model described in Section 5.2 may also be used in the case
of a closed curve, in which case we take X (L) = X (−L) and consider s ∈R/2L.
We may take the radius function r ≡ 1 in this case.

5.2 Slender body model

To describe the motion of the thin fiber Σε (5.1.1) in Stokes flow, we will
use an expression derived from classical nonlocal slender body theory [18, 24,
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55]. Letting f (s, t ) denote the force per unit length exerted by the fiber on the
surrounding fluid at time t , we approximate the velocity ∂X

∂t of the fiber relative
to a given background flow u0 by

8πμ

(
∂X

∂t
−u0(X (s, t ), t )

)
=−2log(η) f (s, t )−

∫L

−L

(
Sε,η+ ε2r 2(s′)

2
Dε

)
f (s′, t )d s′,

(5.2.1)

Sε,η(s, s′, t ) = I

(|X |2 +η2ε2r 2(s))1/2
+ X X

T

(|X |2 +ε2r 2(s))3/2
(5.2.2)

Dε(s, s′, t ) = I

(|X |2 +ε2r 2(s))3/2
− 3X X

T

(|X |2 +ε2r 2(s))5/2
(5.2.3)

where X (s, s′, t ) = X (s, t )− X (s′, t ). Here η ≥ 1 is a parameter which can be
chosen to yield either a first kind (η = 0) or a second-kind (η > 0) Fredholm
equation for f . Notice that η must also appear in the first term of Sε,η in order to
retain the asymptotic consistency of the model (5.2.1). This is due to an integral
identity (5.3.6) used to convert the integral model from a first-kind equation
for f . The model accounts for a varying radius r (s) through the denominators
of each term as well as the coefficient of Dε. Note that since r (s) is nonzero
for −L ≤ s ≤ L, the integral kernel is smooth for each s ∈ [−L,L]. We provide a
more detailed derivation of (5.2.1)–(5.2.3) in Section 5.3.
The model given by equations (5.2.1)–(5.2.3) and the analysis in Section 5.3
can be used to describe both flexible and rigid fibers. In Section 5.5 we apply
our model to the dynamics of a rigid fiber, since the invertibility properties
of (5.2.1)–(5.2.3) make the model especially suitable for simulating rigid fila-
ments.
In the case of a rigid fiber, at each time t we additionally impose the constraint

∂X

∂t
= v+ω×X (s), (5.2.4)

where v, ω ∈ R3 are the linear and angular velocity of the fiber (see Refs. [19,
33, 54]). The total force F (t ) and torque T (t ) exerted on the slender body at
time t are computed from the line force density f (s, t ) via∫L

−L
f (s, t )d s = F (t ),

∫L

−L
X (s, t )× f (s, t ) = T (t ). (5.2.5)

When v and ω are prescribed and one aims to solve for F and T , this is known
as the resistance problem. Conversely, the case when F and T are given and
the rigid fiber velocity is sought is known as the mobility problem. Note that
for both the resistance and mobility problems along a thin fiber, using (5.2.1) to
relate fiber velocity to force involves inverting the integral equation to solve for
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5.3 Derivation and justification of the slender body model

the force density f . Thus we are particularly concerned with the invertibility of
(5.2.1). In Section 5.5, we use (5.2.1), (5.2.4), and (5.2.5) to solve the resistance
problem, which is of interest when the density of the fiber is much larger than
the density of the fluid.

5.3 Derivation and justification of the slender body model

Our model for the motion of the fiber is based on classical nonlocal slender
body theory, where the fluid velocity uSB(x, t ) at any point x away from the
fiber centerline X (s, t ) is approximated by the integral expression

8πμ
(
uSB(x, t )−u0(x, t )

)=−
∫L

−L

(
S
(
x−X (s′, t )

)+ ε2r 2(s′)
2

D
(
x−X (s′, t )

))
f (s′, t )d s′

S (x) = I

|x| +
xxT

|x|3 , D(x) = I

|x|3 − 3xxT

|x|5 .

(5.3.1)
where u0(x, t ) is the fluid velocity in the absence of the fiber and μ is the fluid
viscosity. The force-per-unit-length f (s, t ) exerted by the fluid on the body is
distributed between the generalized foci of the slender body at s = ±L. The
expression 1

8πμS (x) is the free space Green’s function for the Stokes equations
in R3, commonly known as the Stokeslet, while 1

8πμD(x) = 1
16πμΔS (x) is a

higher order correction to the velocity approximation, often known as a doublet.
The doublet coefficient ε2r 2

2 is chosen to cancel the leading order (in ε) angular
dependence in the fluid velocity at the surface of the actual 3D filament. This
coefficient can be obtained via matched asymptotics, or by the following heuris-
tic. Since the purpose of the doublet is to cancel the angular dependence over
each 2D cross section of the fiber, we consider Stokes flow in R2 due to a point
force at the origin of strength f . In polar coordinates x = (ρ cosθ,ρ sinθ)T, the
velocity due to the Stokeslet at ρ > 0 is given by

uS (ρ,θ) = 1

4π

⎛⎝− logρI+ 1

2

(
1+cos2θ sin2θ

sin2θ 1−cos2θ

)⎞⎠( f1

f2

)
,

where I is the 2D identity matrix. To eliminate the θ-dependence on the circle
ρ = ε, we note that

ΔuS (ρ,θ) = ∂2uS

∂ρ2 + 1

ρ

∂uS

∂ρ
+ 1

ρ2

∂2uS

∂θ2

=− 1

2πρ2

(
cos2θ sin2θ
sin2θ −cos2θ

)(
f1

f2

)
.
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Therefore the θ-dependence in the velocity due to the Stokeslet at r = ε can be
canceled by adding a doublet term ( 1

2ΔuS ) with coefficient ε2

2 :

uSB = uS + ε2

4
ΔuS .

The expression (5.3.1) is valid for describing flows around fibers which are not
highly curved (i.e. with maximum centerline curvature 
 1/ε) and do not come
close to self-intersection (

∣∣X (s)−X (s′)
∣∣/∣∣s − s′

∣∣ ≥ C for C independent of ε).
The force density f must also be sufficiently regular. Given these constraints,
in the stationary setting, the velocity field given by (5.3.1) is an asymptotically
accurate approximation to the velocity field around a three-dimensional semi-
flexible rod satisfying a well-posed slender body PDE, defined in (Refs. [35,
36]) as the following boundary value problem for the Stokes equations:

−μΔu+∇p = 0, div u = 0 in R3\Σε∫2π

0
(σn)

∣∣
(ϕ(s),θ)Jε(ϕ(s),θ)ϕ′(s)dθ =− f (s) on ∂Σε

u
∣∣
∂Σε

= u(s), unknown but independent of θ

|u|→ 0 as |x|→∞.
(5.3.2)

Here σ = μ
(∇u+ (∇u)T

)− pI is the fluid stress tensor, n(x) denotes the unit
normal vector pointing into Σε at x ∈ ∂Σε, Jε(s,θ) is the Jacobian factor on ∂Σε,
and ϕ(s) := s

�
L2+ε2

L is a stretch function to address the discrepancy between the
extent of f and the extent of the actual slender body surface. Given a force
density f ∈ C 1(−L,L) which decays like r (s) at the fiber endpoints ( f (s) ∼
r (ϕ(s)) as s → ±L), the difference between the slender body approximation
uSB and the solution of (5.3.2) is bounded by an expression proportional to
ε
∣∣logε

∣∣. Note that r (s) need not be spheroidal (5.1.2) for this error analysis to
hold, but r (s) must decay smoothly to zero at the physical endpoints of the fiber
at s =±

�
L2 +ε2.

A key component of the well-posedness theory for the slender body PDE to
which (5.3.1) is an approximation is the fiber integrity condition on u

∣∣
∂Σε

. The
fiber integrity condition requires the velocity across each cross section s of
the slender body to be constant; i.e. the velocity u(x) at any point x(s,θ) =
X (s)+ εr (s)er (s,θ) ∈ ∂Σε satisfies ∂θu(x(s,θ)) = 0. This is to ensure that the
cross sectional shape of the fiber does not deform over time. An important
aspect of the accuracy of slender body theory is that the expression (5.3.1)
satisfies this fiber integrity condition to leading order in ε. Specifically, by
Propositions 3.9 and 3.11 in (Refs. [35, 36]), respectively, we have that for
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5.3 Derivation and justification of the slender body model

x(s,θ) ∈ ∂Σε,∣∣∣∂θuSB(x(s,θ))
∣∣∣≤C

(
ε| logε|∥∥ f

∥∥
C 1(−L,L) +ε

∥∥∥∥∥ f

r

∥∥∥∥∥
C 0(−L,L)

)
; (5.3.3)

i.e. the angular dependence in uSB(x) over each cross section s of the slender
body is only O (ε logε).
Another important general feature of the slender body PDE (5.3.2) is that the
operator mapping the force data f (s) to the θ-independent fiber velocity u|∂Σε

(s)
is negative definite (see (Ref. [34]); note that the sign convention for f is
opposite).
Now, the velocity expression (5.3.1) is singular at x = X (s, t ) and can be used
only away from the fiber centerline; however, (5.3.1) presents a starting point
for approximating the velocity of the slender body itself. Various methods can
be used to obtain an expression for the relative velocity of the fiber centerline
∂X (s,t )

∂t which depends only on the arclength parameter s and time t . The most
common way to go from equation (5.3.1) to an expression independent of θ
is to perform an asymptotic expansion about ε = 0 [18, 24, 40, 55]. However,
as alluded to in the introduction, this leads to issues at high frequency modes
along the fiber (we will come back to this point later). Here we consider a
different approach to deriving a limiting centerline expression from (5.3.1)
which evidently results in a negative definite integral operator mapping f to
u|∂Σε

. We then regularize this first-kind integral equation in an asymptotically
consistent way to yield the second-kind integral equation (5.2.1). We detail our
approach here and provide further justification in Section 5.3.1 using a model
geometry.
The first step in approximating ∂X (s,t )

∂t is to evaluate (5.3.1) on the surface of
the slender body at x = X (s, t )+εr (s)er (s,θ, t ). Written out, the velocity field
along the fiber surface is given by

8πμ

(
uSB(x(s,θ, t ), t )−u0(X (s, t ), t )

)
=

−
∫L

−L

(
I

|R | +
X X

T +εr (X eT
r +er X

T
)+ε2r 2er eT

r

|R |3

+ ε2r 2(s′)
2

(
I

|R |3 −3
X X

T +εr (X eT
r +er X

T
)+ε2r 2er eT

r

|R |5
))

f (s′, t )d s′,

(5.3.4)
where unless otherwise specified, we have r = r (s), X = X (s, s′, t ) = X (s, t )−
X (s′, t ) and R = R(s, s′,θ, t ) = X +εr (s)er (s,θ, t ). Now, along the fiber surface,
the expression (5.3.4) satisfies the fiber integrity condition to leading order in
ε; i.e. the terms containing er (s,θ, t ) in (5.3.4) vanish to O (ε logε), by equation
(5.3.3). Because of this, to obtain an approximation to the velocity of the fiber
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itself which depends only on arclength, we could simply select a single curve
along the length of the filament – i.e. fix θ = θ∗ or even θ = θ∗(s) – and use the
expression (5.3.4) evaluated along this curve as the approximate velocity of the
fiber [40]. This yields an integral expression with a smooth, divergence-free
kernel with clear physical meaning. However, this also involves a choice of θ∗

and subsequent computation of a normal vector at each point along the fiber,
which is unnecessarily complicated given that we know from (5.3.3) that the
terms containing θ are small.
In particular, both the Stokeslet and doublet include a θ-dependent term with
ε2r 2er eT

r in the numerator. Due to the form of R in the denominator, both
of these terms are O (1) at s = s′; however, upon integrating in s′, these terms
cancel each other asymptotically to order ε logε. In particular, by Lemmas 3.5
and 3.7 in (Refs. [35, 36]), respectively, we have∣∣∣∣∫L

−L
ε2r 2er eT

r

|R |3 f (s′)d s′ −2er er · f (s)

∣∣∣∣≤Cε
(∥∥ f
∥∥

C 1(−L,L) +
∥∥∥ f

r

∥∥∥
C 0(−L,L)

)
,∣∣∣∣−∫L

−L
ε2r 2(s′)

2
3ε2r 2er eT

r

|R |3 f (s′)d s′ +2er er · f (s)

∣∣∣∣≤Cε
(∥∥ f
∥∥

C 1(−L,L) +
∥∥∥ f

r

∥∥∥
C 0(−L,L)

)
.

As we can see, the O(1) contributions from both of these terms exactly cancel,
leaving only higher order (in ε) contributions. Furthermore, the terms εr (X eT

r +
er X

T
) in both the Stokeslet and doublet approximately integrate to zero in s′,

since, by Lemmas 3.4 and 3.6 in (Refs. [35, 36]), respectively, we have∣∣∣∣∣∫L
−L ε

mr m(s′) εr (X eT
r +er X

T
)

|R |m+3 f (s′)d s′
∣∣∣∣∣≤Cε

(∣∣logε
∣∣∥∥ f
∥∥

C 1(−L,L) +
∥∥∥ f

r

∥∥∥
C 0(−L,L)

)
, m = 0,2.

Finally, the er term in each denominator from
∣∣R(s,θ, t )

∣∣2 =
∣∣∣X ∣∣∣2 + 2εr er ·

X + ε2r 2 is also only O(ε logε), since, again using Lemmas 3.4 and 3.6 in
(Refs. [35, 36]),∣∣∣∣∣∫L
−L

(
εm r m (s′) f (s′)

|R |m+1 − εm r m (s′) f (s′)

(|X |2+ε2r 2)
m+1

2

)
d s′
∣∣∣∣∣≤Cε

(∣∣logε
∣∣∥∥ f
∥∥

C 1(−L,L) +
∥∥∥ f

r

∥∥∥
C 0(−L,L)

)
, m = 0,2.

Due to these cancellations and the fact that dropping these terms still approx-
imates the slender body PDE solution of (Refs. [35,36]) to at least O(ε logε), we
may eliminate all terms containing er (s,θ, t ) in (5.3.4) to obtain a θ-independent
expression which approximates the velocity of the fiber itself:

8πμ

(
∂X

∂t
−u0(X (s, t ), t )

)
=−
∫L

−L

(
I

(|X |2 +ε2r 2(s))1/2
+ X X

T

(|X |2 +ε2r 2(s))3/2

+ ε2r 2(s′)
2

(
I

(|X |2 +ε2r 2(s))3/2
− 3X X

T

(|X |2 +ε2r 2(s))5/2

))
f (s′, t )d s′.

(5.3.5)
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The expression (5.3.5) serves as the model underlying our final slender body
velocity expression (5.2.1). One further limitation to note about the centerline
expressions (5.2.1) and (5.3.5) is that because the model is essentially 1D, in
certain special cases (i.e. when the fiber is straight and its axis is perfectly
aligned with the flow), the slender body approximation, in contrast to a truly
3D fiber, does not pick up on fluid gradients (see Section 5.5.2).
In Section 5.3.1, we show that in a simplified setting, (5.3.5) results in a negative
definite operator mapping the force density f to the fiber velocity ∂X

∂t , whereas
other models which rely on further asymptotic expansion of (5.3.4) about ε= 0
do not, and incur high wavenumber instabilities. This phenomenon is well
known for the Keller–Rubinow model [18,25], but for other possible centerline
expressions, including models similar to Lighthill [29], this high wavenumber
instability has not been documented previously. It seems that our model (5.3.5)
may be the simplest that can be obtained by expanding from (5.3.4) while still
guaranteeing a negative definite operator.
Now, since the integral operator in (5.3.5) has a smooth kernel, the expression
(5.3.5) yields a first-kind Fredholm integral equation for f when the fiber ve-
locity ∂X

∂t is supplied. Describing the motion of a rigid fiber involves inverting
this expression to solve for f , which in general is an ill-posed problem for a
first-kind equation. Thus we want to regularize the integral operator (5.3.5) to
create a second-kind integral equation while keeping the same order of accuracy
in the map f 	→ ∂X

∂t .
We first note that, for η> 1, we have the following identity:∫L

−L

(
1

(|X |2 +ε2r 2(s))1/2
− 1

(|X |2 +η2ε2r 2(s))1/2

)
g (s′)d s′ = 2log(η) g (s)+O (ηε log(ηε)).

(5.3.6)

Proof. By Lemma 3.8 in (Ref. [36]), for a > 0 sufficiently small, we have∫L

−L

(
g (s′)

(|X |2 +a2r 2(s))1/2
− g (s′)

|X |
+ g (s)∣∣s − s′

∣∣
)

d s′

= log

(
2(L2 − s2)+2

√
(L2 − s2)2 +a2r 2(s)

a2r 2(s)

)
+O (a log a).

(5.3.7)
Subtracting (5.3.7) with a = ηε from (5.3.7) with a = ε and using that∣∣∣∣∣log

(
(L2 − s2)+

�
L2 +ε2r 2

(L2 − s2)+
√

L2 +η2ε2r 2

)∣∣∣∣∣=
∣∣∣∣∣log

(
(L2 − s2)+

�
L2 +ε2r 2

(L2 − s2)+
√

L2 +η2ε2r 2

)
− log(1)

∣∣∣∣∣≤Cε2,

we obtain (5.3.6).

Using (5.3.6), we replace the first term in the integrand of (5.3.5) to obtain
(5.2.1). We can compare the expression (5.2.1) to that of Tornberg and Shelley
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[55], where a regularization of the Keller–Rubinow model is used to obtain a
second-kind integral equation for f . One thing to note is that, due to the form
of the local term in our model (5.2.1), the effect of the regularization parameter
η is the same in all directions (both tangent and normal to the fiber centerline).
This is not necessarily the case for the Tornberg and Shelley model (see Section
5.3.1 for a spectral comparison given a simplified fiber geometry).

5.3.1 Spectral comparison of slender body integral operators

In this subsection we provide evidence that our model (5.2.1) is well suited for
approximating the map ∂X

∂t 	→ f needed to simulate the motion of a rigid fiber.
Here we consider the spectrum of the integral operator taking the force density
f to the fiber velocity ∂X

∂t in the non-physical but nevertheless instructive case of
a straight, periodic fiber with constant radius ε. In this scenario we can explicitly
calculate the eigenvalues of both the slender body PDE operator (5.3.2) as well
as the integral operator (5.3.5) and related models. This allows us to directly
compare the properties of different models in the same simple setting and serves
as a starting point for understanding more complicated geometries. In particular,
we expect this analysis to roughly capture the high wavenumber behavior of
these models in different geometries – on length scales much smaller than the
variation in curvature and fiber radius. The high wavenumber behavior is of
particular interest for the invertibility and stability of the slender body theory
integral operator.
For comparison, we first recall the form of the eigenvalues of the slender body
PDE (5.3.2), calculated in (Ref. [34]). In Section 5.3.1, we consider the model
(5.3.5), before regularization, and show that the integral operator is negative
definite. We compare the spectrum of (5.3.5) to three other possible models
based on slender body theory which do not result in negative definite operators.
Then in Section 5.3.1, we consider the regularized version of our model (5.2.1)
and compare its spectrum to the regularized model of Tornberg and Shelley [55].
We note that in our model, a uniform regularization parameter appears to give
the best approximation of the slender body PDE spectrum in directions both
normal and tangent to the slender body centerline, whereas in the Tornberg–
Shelley model, the parameter required by the tangential direction may not be
optimal in the normal direction.

Spectrum of the slender body PDE

Here we consider a straight, periodic fiber with constant radius ε. We take
the fiber centerline to be 2-periodic and lie along the z-axis, X (z) = zez , z ∈
R/2Z, and for simplicity take μ= 1 and zero background flow. We consider the
stationary setting and omit the time dependence in our notation; in particular,
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5.3 Derivation and justification of the slender body model

we denote the fiber velocity by u(z) to distinguish from the fluid velocity away
from the fiber.
We consider this scenario because we can explicitly calculate the eigenvalues
of the slender body PDE (5.3.2) as well as various possible integral expressions
for approximating the map f 	→ u. In particular, the eigenvectors of this map
can be decomposed into tangential (ez) and normal (ex ,e y ) directions and are
given by fm(z) = eiπkz em , m = x, y, z. We may then explicitly solve for λm

k
satisfying

u(z) =λm
k fm(z), m = x, y, z (5.3.8)

for both the slender body PDE operator and various approximations based on
slender body theory. To avoid logarithmic growth of the corresponding bulk
velocity field at spatial infinity, we will ignore translational modes (k = 0) in
the following spectral analysis. Clearly these modes are important, especially
for a rigid body; however, we are mainly interested in the high wavenumber
behavior of these operators. High wavenumber instabilities are a known issue
for nonlocal slender body theory [18, 45, 55], and the following analysis likely
captures the behavior of these models at high wavenumbers (small length scales)
even in curved geometries.
To begin, the eigenvalues of the slender body PDE operator (5.3.2) mapping f
to u were calculated in (Ref. [34], Proposition 1.4). Note that the sign conven-
tion in this paper is opposite, as we are considering f to be the hydrodynamic
force exerted by rather than on the slender body. For the slender body PDE, the
eigenvalues satisfying (5.3.8) in the tangential and normal directions, respec-
tively, are given by

λm
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2K0K1+πε|k|

(
K 2

0 −K 2
1

)
4π2ε|k|K 2

1
, m = z

−2K0K1K2+πε|k|
(

K 2
1 (K0+K2)−2K 2

0 K2

)
2π2ε|k|(4K 2

1 K2+πε|k|K1(K 2
1 −K0K2)

) , m = x, y
(5.3.9)

where each K j = K j (πε
∣∣k∣∣), j = 0,1,2, is a j th order modified Bessel function

of the second kind. Note that both sets of eigenvalues λz
k and λx

k ,λy
k are strictly

negative and decay to 0 at a rate proportional to 1/
∣∣k∣∣ as

∣∣k∣∣→ ∞. We will
compare our approximation and various other slender body approximations to
(5.3.9).

Pre-regularization comparison

Before we consider the regularized version (5.2.1) of our model, we consider
the base model (5.3.5) and compare its spectrum to other existing models based
on slender body theory, before regularization. In the straight-but-periodic sce-
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nario, our model (5.3.5) becomes the periodization of the expression

u(z) =− 1

8π

∫1

−1

(
I

(z2 +ε2)1/2
+ z2ez eT

z

(z2 +ε2)3/2
+ε2

2

(
I

(z2 +ε2)3/2
−3

z2ez eT
z

(z2 +ε2)5/2

))
f (z−z)d z.

(5.3.10)
For this geometry, we may calculate the eigenvalues λm

k satisfying (5.3.8),
which are given by

λm
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− 1

8π

∫1

−1

2z4 +2ε2z2 + 3
2ε

4

(z2 +ε2)5/2
e−iπkz d z, m = z

− 1

8π

∫1

−1

z2 + 3
2ε

2

(z2 +ε2)3/2
e−iπkz d z, m = x, y.

(5.3.11)

These integrals may be computed explicitly to obtain

λm
k =

⎧⎪⎪⎨⎪⎪⎩
− 1

8π

(
(4+π2ε2k2)K0(πε

∣∣k∣∣)−2πε
∣∣k∣∣K1(πε

∣∣k∣∣)), m = z

− 1

8π

(
2K0(πε

∣∣k∣∣)+πε
∣∣k∣∣K1(πε

∣∣k∣∣)), m = x, y.

(5.3.12)
Here K0 and K1 are zero and first order modified Bessel functions of the second
kind, respectively. The eigenvalues λm

k lie along the curves plotted in Figure
5.3.1. Importantly, these eigenvalues satisfy the following lemma.

Lemma 5.1. For all
∣∣k∣∣ ≥ 1 and m = x, y, z, the eigenvalues λm

k given by
(5.3.12) satisfy λm

k < 0.

Proof. The case m = x, y is immediate, since K0(t ) > 0 and K1(t ) > 0 for any
t > 0.
For the tangential direction m = z, we first note that, by Lemma 1.16 in (Ref.
[34]), we have

1 ≤ K1(t )

K0(t )
≤ 1+ 1

2t

for all t > 0. Letting g (t ) = (4+ t 2)K0(t )− 2tK1(t ), it suffices to show that
g (t )/K0(t ) > 0. But

g (t )

K0(t )
= 4+ t 2 −2t

K1(t )

K0(t )
≥ 3+ t 2 −2t > (t −�

3)2 ≥ 0.

Now, at a continuous level, regularization is necessary to make sense of in-
verting the integral operator (5.3.10), since K0 and K1 decay exponentially as∣∣k∣∣→∞. However, at a discrete level, numerical approximation of (5.3.10) will
be invertible, albeit with a large condition number, due to Lemma 5.1. This
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negativity does not hold for other popular slender body approximations which
rely on further asymptotic expansion of (5.3.5) with respect to ε to obtain a
limiting centerline velocity expression. In particular, we consider the models
of Keller and Rubinow [25] and of Lighthill [29].

The Keller–Rubinow model, proposed in (Ref. [25]) and further studied by
(Refs. [18, 24, 45, 55]), is equivalent to a full matched asymptotic expansion
of (5.3.4) about ε= 0. In the straight-but-periodic setting, the Keller–Rubinow
expression for the slender body velocity is given by

8πu(z) =−
(
(I−3ez eT

z )−2log(πε/8)(I+ez eT
z )

)
f (z)−(I+ez eT

z )
π

2

∫1

−1

f (z − z)− f (z)∣∣sin(πz/2)
∣∣ d z.

(5.3.13)

The eigenvalues of the periodic Keller–Rubinow operator taking f to u have
been calculated in (Refs. [18, 45, 55]) and are given by

λm
k =

⎧⎪⎪⎨⎪⎪⎩
1

4π

(
1+2log(πε

∣∣k∣∣/2)+2γ
)
, m = z

− 1

8π

(
1−2log(πε

∣∣k∣∣/2)−2γ
)
, m = x, y.

(5.3.14)

Here γ≈ 0.5772 is the Euler gamma.

In both the tangent and normal directions, however, the Keller–Rubinow approx-
imation runs into stability issues at moderately high wavenumbers, apparent
in Figure 5.3.1 at

∣∣k∣∣= 2e−γ−1/2

πε ≈ 0.217/ε (tangent) and
∣∣k∣∣= 2e−γ+1/2

πε ≈ 0.589/ε
(normal). In particular, the curve containing the eigenvalues λm

k crosses zero
and becomes negative. This is an issue both because the slender body PDE
eigenvalues (5.3.9) are strictly negative, and because, for arbitrary ε, there is
no clear way to guarantee that λm

k �= 0, especially for more complicated fiber
geometries. Thus some sort of regularization of (5.3.13) is necessary before
approximating the inverse map u 	→ f .

In addition to the Keller–Rubinow model, we consider what we will term the
modified Lighthill approach to deriving a fiber velocity approximation. This
approach, due to Lighthill [29], also begins with the classical SBT expression
(5.3.4) but uses asymptotic integration of the doublet term to arrive at an ex-
pression for the fiber velocity. We explore the Lighthill method in detail in
Appendix 5.A, but plot the resulting spectrum in Figure 5.3.1.

The takeaway here is that, at least in the case of a straight, periodic fiber, our
model (5.3.5), before regularization, captures the negative-definiteness of the
the slender body PDE and provides a better approximation than other models
based on classical SBT.
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(a) (b)

Figure 5.3.1: Log-scale plot of the tangential (a) and normal (b) eigenvalues λm
k of

the operator mapping f 	→ u in various slender body models for a straight-but-periodic
fiber. Our model (blue) results in strictly negative eigenvalues in both the tangential and
normal directions, as does the slender body PDE (dotted). The Keller–Rubinow approx-
imation (green) exhibits instabilities at wavenumbers

∣∣k∣∣≈ 0.2/ε (tangential direction)
and
∣∣k∣∣≈ 0.6/ε (normal direction) as the eigenvalues of the operator mapping f 	→ u

become positive. For the modified Lighthill models, the normal direction eigenvalues
λx

k and λ
y
k (red) remain negative at high wavenumber, but in the tangential direction,

the eigenvalues of Modified Lighthill 1 (red) become positive when
∣∣k∣∣> 0.5/ε. Fur-

thermore, the tangential eigenvalues of Modified Lighthill 2 (magenta) do not agree
with the slender body PDE at low wavenumber.

Regularized comparison

To make our model truly suitable for inversion, we need to regularize the in-
tegral kernel as in (5.2.1). In the straight-but-periodic setting, the operator in
(5.2.1) becomes the periodization of

8πu(z) =−2log(η) f (z)−
∫1

−1

(
I

(z2 +η2ε2)1/2
+ z2ez eT

z

(z2 +ε2)3/2

+ ε2

2

(
I

(z2 +ε2)3/2
−3

z2ez eT
z

(z2 +ε2)5/2

))
f (z − z)d z.

(5.3.15)
The eigenvalues of (5.3.15) are then given by

λm
k =

⎧⎪⎪⎨⎪⎪⎩
− 1

8π

(
2log(η)+2K0(ηπε

∣∣k∣∣)+ (2+π2ε2k2)K0(πε
∣∣k∣∣)−2πε

∣∣k∣∣K1(πε
∣∣k∣∣)), m = z

− 1

8π

(
2log(η)+2K0(ηπε

∣∣k∣∣)+πε
∣∣k∣∣K1(πε

∣∣k∣∣)), m = x, y.

(5.3.16)
For η> 1, the spectrum of our operator is bounded away from 0 and (5.3.15) is
a second-kind integral equation for f .
We can compare the behavior of (5.3.15) with the Tornberg–Shelley regulariza-
tion of the Keller–Rubinow model. In (Refs. [45, 55]), the high wavenumber
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5.3 Derivation and justification of the slender body model

instability in (5.3.13) is removed by replacing the denominator of the integral
term, which vanishes at z = 0, with an expression proportional to ε at z = 0.
Using the relation∫1

−1

(
π∣∣2sin(πz/2)

∣∣ − 1

|z|
)

d z =−2log(π/4) (5.3.17)

to rewrite (5.3.13), a regularization δε, δ > 0, is added to the denominator to
obtain

8πu(z) =−
(
(I−3ez eT

z )+2log(δ)(I+ez eT
z )

)
f (z)−(I+ez eT

z )
∫1

−1

f (z − z)

(z2 +δ2ε2)1/2
d z.

(5.3.18)
Here we have also used that the second term in the original Keller–Rubinow
integral expression can now be integrated up to O(ε2) errors to nearly cancel
the logarithmic term in (5.3.13), leaving only log(δ). The idea is to then choose
δ such that all eigenvalues of the operator taking f 	→ u are negative. Since the
integral kernel is now smooth, (5.3.18) is now a second-kind integral equation
for f .
The eigenvalues of this δ-regularized Keller–Rubinow operator are given by

λm
k =

⎧⎪⎪⎨⎪⎪⎩
− 1

4π

(
−1+2logδ+2K0(δπε

∣∣k∣∣)), m = z

− 1

8π

(
1+2logδ+2K0(δπε

∣∣k∣∣)), m = x, y.
(5.3.19)

Since K0 is positive, λz
k is guaranteed to be negative and bounded away from 0

as long as δ>�
e (see Figure 5.3.2).

Note that in our model (5.3.15), the regularization parameter η affects the spec-
trum of the operator mapping f to u in the same way in both the tangential
and normal directions. In particular, in both directions, η> 1 is required to ob-
tain the desired second-kind integral equation. In the Tornberg–Shelley model,
the bound δ > �

e ≈ 1.649 is required to ensure negativity of the tangential
eigenvalues, but this lower bound does not apply to the normal direction; in
fact, δ> e−1 ≈ 0.368 is sufficient for ensuring strictly negative normal eigenval-
ues. This may mean that the η-regularization in our model is more physically
reasonable; see Figure 5.3.2.
In (Ref. [34]), it is shown that using the δ-regularized model (5.3.18) to ap-
proximate the map u 	→ f yields ε2 convergence to the slender body PDE for
sufficiently smooth u. It is also shown that the constant in the resulting error
estimate has the form C1δ

2(1+ log(δ))+C2/(−1+ log(δ)) for constants C1 and
C2. We expect that a similar error estimate and analogous η dependence hold
for our model (5.3.15); i.e. the constant should look like C1η

2 +C2/log(η). If
C1 ≈ C2, this yields an optimal η of approximately 1.5. This should give a
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(a) (b)

Figure 5.3.2: Log-scale plot of the tangential (a) and normal (b) eigenvalues λm
k of our

regularized model (5.3.15) (blue) with η= 1.5 and the Tornberg–Shelley δ-regularized
model (5.3.18) (red) with δ = �

e +0.5. Note that the regularization parameter η in
our model affects the tangential and normal eigenvalues in a similar way; in particular,
η> 1 is required in both cases to ensure that (5.3.15) is a second-kind integral equation.
In the δ-regularized model, the tangential direction requires δ > �

e, but the normal
direction does not, resulting at least visually in a greater disparity between the λx

k ,λy
k

for the PDE (dotted) and the δ-regularized approximation.

rough guideline for a good choice of η for more general curved geometries, at
least in the periodic setting.

Remark 5.1. We can also consider using the method of regularized Stokeslets
to rederive the Keller–Rubinow model (see Ref. [13]). Here the following
choices of blob functions are used in place of Dirac deltas to derive the regular-
ized Stokeslet and doublet, respectively:

φS(R) = 15

8π

δ4ε4

(|R |2 +δ2ε2)7/2
, φD (R) = 3

4π

δ2ε2

(|R |2 +δ2ε2)5/2
.

Note that we have modified the notation from (Ref. [13]) to emphasize that
the blob “width” will be taken to be proportional to the fiber radius ε, and
to more easily compare with the δ-regularization of Tornberg–Shelley. For
the straight-but-periodic fiber, this method yields a nearly identical expres-
sion to (5.3.18), but with a different logarithmic factor in front of the local
terms: − log(

�
δ2 +1/δ) in place of log(δ). Due to the low wavenumber ex-

pansion (5.A.6) of the Bessel function K0, however, we note that the log(δ)
term in (5.3.19) exactly cancels the leading order dependence of K0(δπε|k|) on
δ, yielding an expression consistent with the slender body PDE (5.3.9) when∣∣k∣∣ is small. When δ
 1, we have − log(

�
δ2 +1/δ) ≈ log(δ), but recall that

δ > �
e is required for (5.3.19) to be negative for all k. Thus this particular

choice of blob function in the method of regularized Stokeslets appears to yield
an expression for the fiber velocity which fundamentally differs from the slen-
der body PDE solution, although a different choice of blob function may yield
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5.4 Numerical discretization of the slender body model

closer agreement. Note that this low wavenumber descrepancy occurs whether
we start from the non-periodic or periodic regularized expressions mentioned
in (Ref. [13]), due to the identity (5.3.17).

5.4 Numerical discretization of the slender body model

We turn now to numerically simulating thin rigid fibers in flows. We begin
by generally discussing the numerical solution of Fredholm integral equations
where the result must be integrated (i.e. to find the total force and torque on a
rigid fiber). We apply these general methods to the slender body model (5.2.1)
and perform convergence tests. We note improvements in conditioning and
stability for the second kind (η> 1) versus first kind (η= 1) integral equation.
Finally, we look at the spectrum of the discretized integral operator in different
geometries to verify the negative definite nature of the operator.

5.4.1 Solving the second-kind Fredholm integral equation

Denote by K : L2([−L,L],R3) → L2([−L,L],R3) the integral operator

K[f](s) :=
∫L

−L
K (s, s′)f(s′)d s′. (5.4.1)

Then a Fredholm integral equation of the first kind reads

y(s) = K[f](s). (5.4.2)

It is well known that the inversion of such an integral operator is an ill-posed
problem, meaning that the solution may not be unique or not even exist [2,
22, 26]. Furthermore, small perturbations to the left hand side of (5.4.2) can
lead to relatively large perturbations of the solution f(s). The ill-posedness of
this problem can be circumvented by regularizing the integral operator into a
second-kind Fredholm integral equation, which takes the form

y(s) = (αI+K)[f](s) (5.4.3)

for some parameter α. Discretization of (5.4.3) yields a linear system with a
far better condition number. The connection between equation (5.4.3) and our
model is illustrated in Section 5.4.2.
Numerical methods for solving Fredholm integral equations are well docu-
mented [22, 57] and the approach we adopt is based on the Nyström method
(see Ref. [2, Chapt. 12.4]). For rigid fibers, after numerically inverting a second-
kind Fredholm integral equation, linear functionals (5.2.5) will also need to be
applied to the resulting f(s) to find the total force and torque.
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We consider the numerical approximation of a general linear functional of f(s),
given by

φM (f) =
∫L

−L
M(s)f(s)ds. (5.4.4)

Here M(s) ∈ R3×3 is a bounded, smooth operator and f(s) is found by numer-
ically inverting a second-kind Fredholm integral equation of the form (5.4.3).
The numerical method is obtained discretizing the equation (5.4.3) by replacing
the integral with a convergent quadrature formula with nodes −L = s1 < s2 <
... < sn = L and weights w = (w1, w2, ..., wn)T ∈Rn , and requiring the numerical
approximation f[n]

i ≈ f(si ) to satisfy

y(si ) =α f[n]
i +

n∑
j=1

w j K (si , s j )f[n]
j for i = 1, ...,n. (5.4.5)

Introducing the vectors f[n] = ((f[n]
1 )T , ..., (f[n]

n )T )T and y = (y(s1)T , ...,y(sn)T )T ,
equation (5.4.5) can be written compactly as

y = (α I +K W
)

f[n]. (5.4.6)

Here I denotes the 3n ×3n identity matrix, and

W = diag(w )⊗ I, and K =

⎛⎜⎜⎝
K (s1, s1) . . . K (s1, sn)

...
. . .

...
K (sn , s1) . . . K (sn , sn)

⎞⎟⎟⎠ ∈R3n×3n

(5.4.7)

with ⊗ : Rn1×m1 ×Rn2×m2 → R(n1n2)×(m1m2) the Kronecker product of matrices
and I the 3×3 identity matrix. We then approximate (5.4.4) by the same quadra-
ture formula

φM (f) ≈
n∑

i=1
wi M(si )f[n]

i = (�1T ⊗ I)M W f[n] :=φ[n]
M , (5.4.8)

where

M =

⎛⎜⎜⎝
M(s1) 0

. . .
0 M(sn)

⎞⎟⎟⎠ ∈R3n×3n (5.4.9)

and�1 = (1, . . . ,1)T ∈Rn . Here we have used φ[n]
M to denote the approximation of

φM (f) obtained by quadrature. After inserting the solution of (5.4.6), we obtain

φ[n]
M = (�1T ⊗ I)M W

(
αI +K W

)−1 y. (5.4.10)

Remark 5.2. The numerical approximation φ[n]
M shares the same convergence

as the underlying quadrature method. This is illustrated in appendix 5.B.
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5.4 Numerical discretization of the slender body model

5.4.2 Application to the slender body model and convergence tests

We apply the numerical method from Section 5.4.1 to approximate the force
and torque on a slender body. Note that the equations (5.2.5) are given by
setting M(s) = I and M(s) = X̂ (s) in the functional (5.4.4). That is,

F =φI(f) and T =φX̂(f). (5.4.11)

Letting α= 2log(η) and

K (s, s′) = Sε,η(s, s′)+ ε2r 2(s′)
2

Dε(s, s′), (5.4.12)

y(s) =−8πμ(v− X̂ (s)ω−u0(X (s, t ), t )), (5.4.13)

our model (5.2.1) is of the form (5.4.3), and we may write the discretization of
(5.2.1) in the form (5.4.6). Here we have introduced the hat operator ·̂ : R3 →
so(3) which maps vectors in R3 to 3×3 skew symmetric matrices by

ω=

⎛⎜⎝ ω1

ω2

ω3

⎞⎟⎠ 	→ ω̂=

⎛⎜⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞⎟⎠ . (5.4.14)

Here, so(3) is the Lie algebra of SO(3), and such that ω×v = ω̂v for ω,v ∈R3.

Denote the numerical approximations to (5.4.11) by

F [n] =φ[n]
I and T [n] =φ[n]

X̂
. (5.4.15)

Defining the matrices Φ and Ψ ∈R3×3n as

Φ=(�1T ⊗ I)W
(
αI +K W

)−1 , (5.4.16)

Ψ=(�1T ⊗ I)W X
(
αI +K W

)−1 , (5.4.17)

we may then write equations (5.4.15) as

F [n] =Φy and T [n] =Ψy. (5.4.18)

In the next section we perform convergence tests for our discrete model (5.4.18)
for both a thin ring and a prolate spheroid. With these geometries we are
able to calculate accurate reference solutions against which we can compare
the accuracy of our numerical solution. Furthermore, we will look at how
the conditioning of the linear system associated with the discretized integral
operator improves as the regularization parameter η is increased from η= 1 to
η> 1.
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An integral model based on slender body theory

Remark 5.3. For very large aspect ratios, e.g., L/ε≈O(103) or larger, the kernel
becomes very nearly singular meaning one must take n very large to accurately
resolve the O(ε) length scales in the kernel. In this case, the quadrature can be
improved by implementing special quadrature methods that take into account
the near singular nature of the integral kernel [1, 53]. For modest aspect ratios,
e.g., L/ε≈O(102), this is not an issue as one can accurately resolve the kernel
with a few hundred points. It has been shown that slender body theories are
good approximations for particles of aspect ratios larger than 20 [46].

Thin ring translating with unit velocity

As a convergence test, we use (5.4.18) to calculate the force on a thin ring of unit
length in the x y-plane translating in the z direction with unit velocity in zero
background flow. We will consider both the first- and second-kind formulations
of the model. In this setting, the force on the ring can be calculated to arbitrarily
high precision by evaluating elliptic integrals, which can be used as a reference
solution. For a circular centerline parametrized by

X (s) =
(

cos(πs)

2π
,

sin(πs)

2π
,0

)T
,

the z-component of our unregularized (η= 1) model becomes

8πμ=−
∫ 1

2

− 1
2

�
2π
(
3ε2π2 −cos

(
2π (s − s′)

)+1
)

(
2ε2π2 −cos

(
2π (s − s′)

)+1
)3/2

f z (s′)d s′. (5.4.19)

As in the straight-but-periodic geometry of Section 5.3.1, the eigenfunctions of
this operator are the Fourier modes f z

k (s) = exp(i 2πks). The force F = (F,0,0)T

is therefore given by

F =
∫ 1

2

− 1
2

f z (s)ds = 8πμ

λz
0

(5.4.20)

where λz
0 is the k = 0 eigenvalue. This can be found by evaluating the integral

in equation (5.4.19) with f z (s) = f z
0 (s) = 1, which gives

λz
0 =−cε

(
2φK

(
cε
)+φE

(
cε
))

. (5.4.21)

Here cε =
√(

ε2π2 +1
)−1, and

φK (x) =
∫1

0

1�
1−θ2

�
1−x2θ2

dθ and φE (x) =
∫1

0

�
1−x2θ2

�
1−θ2

dθ (5.4.22)

are the complete elliptic integrals of the first and second kind, respectively.
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5.4 Numerical discretization of the slender body model

For ε= 0.05,0.025,0.01 and 0.005, equation (5.4.19) is discretized using trape-
zoidal quadrature, and we numerically approximate F by equation (5.4.18).
Figure 5.4.1 plots the numerical error as a function of n for four different val-
ues of ε. We observe spectral convergence of the numerical error to machine
precision, which is consistent with the error estimates (5.B.21). We note that
the condition number of the unregularized discrete integral operator grows ex-
ponentially as n increases, as shown in Figure 5.4.2a. However, because we
are considering a rigid fiber with constant radius, computing F has a regular-
izing effect which lessens the impact of this ill-conditioning in the final force
calculation. This may be contrasted with the prolate spheroid, where, as we
will see in Section 5.4.2, the conditioning does have a noticeable effect on the
error. Nevertheless, we note that by setting η> 1 we can improve the condition
number of the linear system (see Figure 5.4.2b). We also note that there is a
1/ε dependence on n for a given accuracy. This can be circumvented by using
a special quadrature method that takes into account the kernel (see remark 5.3).

0 200 400 600 800 1000

10-15

10-10

10-5

100

Figure 5.4.1: The approximate drag force F [n] on a thin ring translating broadwise
with unit velocity converges with spectral accuracy to the true force F .

Prolate spheroid with artificial fluid velocity field

We next use (5.4.18) to compute the drag force for a stationary prolate spheroid
immersed in an artificial fluid velocity field. The particle centerline is aligned in
the z-direction, parameterized by X (s) = (0,0, s)T , s ∈ [−1,1]. The fluid velocity
field u(s) = (u(s),0,0)T is designed such that f(s) = ( f x (s),0,0)T is a known
analytic function. We choose this function to be a Gaussian f x (s) = exp

(
− s2

ε2

)
such that the force decays to zero at the fiber endpoints and use high order
Gauss-Lobatto quadrature for the discretization of the integral operator. Denote
the set of n quadrature nodes by {si }n

i=1. Inserting the above expression for
f x (s) into our model (5.3.10), the fluid velocity at si is found by solving the
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0 200 400 600 800 1000
100

1010

1020

(a) Unregularized (η= 1).

0 200 400 600 800 1000
100

101

102

(b) Regularized (η= 1.5).

Figure 5.4.2: The condition numbers associated with the discretized versions of the
unregularized (η= 1) and regularized (η= 1.5) slender body models for calculating the
force on a thin ring. Note the change in scale between the two figures.

integral

u(si ) = −1

8π

⎛⎜⎜⎝2log(η) exp

(
− s2

i

ε2

)
+
∫1

−1

ε2r
(
si
)2 + 1

2ε
2r
(
s′
)2 + (si − s′

)2(
ε2r
(
si
)2 + (si − s′

)2)3/2
exp

(
− s′2

ε2

)
d s′

⎞⎟⎟⎠
(5.4.23)

where the ellipsoidal radius function is given by equation (5.1.2). We also
take the viscosity μ = 1. To solve for u(si ) for i = 1, ...,n, the integral in
equation (5.4.23) is evaluated to machine precision using MATLAB’s built-
in integral function, which uses adaptive quadrature. For this fluid velocity
field, the total force F = (F,0,0)T on the ellipsoid is found by

F =
∫1

−1
exp

(
− s2

ε2

)
d s =�

πεerf

(
1

ε

)
. (5.4.24)

We compute numerical approximations to F using equation (5.4.18) for four
choices of ε. We initially set η= 1 and compute these numerical approximations
for the non-regularized, first-kind equation. The numerical errors are presented
in Figure 5.4.3a. We see that the error converges spectrally up to a certain
point where the method begins to diverge due to numerical instabilities and
poor conditioning of the discrete integral operator, which is plotted in Figure
5.4.3b.
However, by choosing η> 1, we can amend the condition number and therefore
improve the accuracy of the numerical solution. In Figure 5.4.4, we fix ε =
0.025 and calculate the numerical errors for four choices of η. We see from
Figure 5.4.4a that the numerical error converges spectrally to machine precision
for all such choices of η. Furthermore, we observe from Figure 5.4.4b that the
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5.4 Numerical discretization of the slender body model

condition number of the discrete integral operator is bounded by a value that
becomes smaller for larger η. We note that in practice, the modeling error is
much larger than machine precision as we will see in section 5.5.2.
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(b)
Figure 5.4.3: The errors (a) and condition numbers (b) associated with the unregular-
ized (η= 1) numerical method for the calculation of the force on a prolate spheroid for
different values of ε.
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Figure 5.4.4: The errors (a) and condition numbers (b) associated with the regularized
numerical method for the calculation of the force on a prolate spheroid for ε= 0.025.
Similar results are observed for other values of ε.

5.4.3 Spectrum of the slender body operator in different geome-

tries

One important unresolved question about the slender body model (5.2.1) is the
effect of different geometries, including curvature, endpoints, and non-uniform
fiber radius, on the spectrum of the integral operator. The main difficulty is
that the integral kernel (5.2.2),(5.2.3) is only well defined along the centerline
of the fiber. Since the kernel is so dependent on the shape of the fiber cen-
terline, it is difficult to prove general properties for it. Although we cannot
analytically determine the spectrum of the continuous operator in general, we
can determine the eigenvalues of the discrete operator (2log(η)I +K W ) (5.4.6).
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We consider first the unregularized version η= 1, recalling that in the straight-
but-periodic geometry of Section 5.3.1, the continuous operator was provably
negative definite. Ideally we would like to see evidence that this negative defi-
niteness persists in general geometries, as this would be the physically correct
behavior and also would agree with the underlying slender body PDE operator
(5.3.2).
We begin by calculating the eigenvalues {λi }3n

i=1 of K W for the thin ring. Letting
λmax = maxi (λi ), in Figure 5.4.5a we plot λmax versus n for five different
values of ε. Note that for very large n relative to ε−1 (roughly n = O(ε−2)),
we begin to see numerical error resulting in very small positive eigenvalues
of K W (denoted by red markers). However, the magnitude of these positive
eigenvalues are on the order of machine precision and may be attributed to
round-off errors.
We next consider the effects of endpoints and a non-uniform radius by calcu-
lating the eigenvalues of K W for a slender prolate spheroid (5.1.2), keeping in
mind the above level of numerical error. In Figure 5.4.5b we again plot λmax

versus n for four different values of ε. Again for n = O(ε−2) we begin to see
small positive eigenvalues which are significantly larger than for the thin ring
(around O(10−10)). However, the magnitude of the positive eigenvalues is still
very small and bounded as n increases. It is not clear whether this is a numeri-
cal artifact or an actual eigenvalue crossing 0 for the continuous operator. At
any rate, the non-regularized operator would never actually be used for simu-
lations with such large n because the condition number of K W is prohibitive
(see Figure 5.4.3b). It appears that a very reasonable choice of regularization
parameter η will ensure that none of these near-zero eigenvalues actually cross
zero.
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 = 0.00625

(a) Thin ring

0 200 400 600 800 1000

10-10

100
 = 0.1
 = 0.025
 = 0.05
 = 0.0125
 = 0.00625

(b) Spheroid
Figure 5.4.5: Magnitude of the maximum eigenvalue of the non-regularized discrete
slender body operator K W . Blue markers mean λmax < 0 while red markers mean that
λmax > 0.

As a final test, we calculate the spectrum of K W for randomly but system-
atically generated curvy fibers with complicated shapes (Figure 5.4.6). Here
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5.5 Dynamics of curved rigid fibers

the magnitude of the fiber’s deviation from a straight line is controlled by a
small parameter δ ≥ 0. The fiber shapes are generated by interpolating m
points (xi , yi , zi ) ∈R3, i = 1, ...,m, with cubic splines. Here zi = (i −1) 2L

m while
xi , yi ∈ [−δ,δ] are given by a random number generator and are of size at most
δ. Setting δ= 0 corresponds to a straight fiber. Examples of the fiber centerline
for m = 10 and four different values of δ are given in Figure 5.4.6.

(a) (b) (c) (d)

Figure 5.4.6: The centerlines of four curved fiber shapes.

We fix ε= 0.1 and use the spheroidal radius function (5.1.2). Taking m = 10, we
generate 6 different curvy fibers for different magnitudes δ ∈ [0, 1

10 ]. For each
fiber we compute the spectrum {λδ

i }n
i=1 of its corresponding (non-regularized)

integral operator K W . We plot the most positive eigenvalue λδ
max = maxi (λδ

i )
for each fiber in Figure 5.4.7a. For each value of δ we note that there is an
eigenvalue crossing zero when n =O(ε−2). As δ increases and the magnitude
of the curviness of the fiber increases, we can note a slight increase in the
magnitude of the largest positive eigenvalue, but λδ

max is still small – roughly
O(10−8). Again, we can be assured to have a negative spectrum bounded
away from 0 by a reasonable choice of regularization η > 1. This effect is
displayed in Figure 5.4.7b, which shows the maximum eigenvalue λ

δ,η
max of the

now regularized discrete integral operator (2log(η)I +K W ) for a fixed value
of ε and δ and varying values of η. We see here that for all choices of η> 1 in
this range, the spectrum of (2log(η)I +K W ) remains negative definite.

5.5 Dynamics of curved rigid fibers

We next use the slender body model (5.2.1) and the discretization procedure
of Section 5.4 to simulate the dynamics of curved rigid fibers in Stokes flow.
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Figure 5.4.7: The magnitude λ
δ,η
max of the maximum eigenvalues for the unregularized

(a) and regularized (b) discrete integral operators for the curved fibers. For (b) we fix
ε= 0.1 and δ= 0.001 and consider different regularizations η. The color blue denotes
a negative maximum eigenvalue and red denotes a positive maximum eigenvalue.

After outlining the dynamical equations, we validate the model against known
dynamical models for a slender prolate spheroid. Finally, we compare the
rotational dynamics of randomly curved fibers as in Figure 5.4.6 to straight
fibers.

5.5.1 Dynamical equations

Assuming that the particle to fluid density ratio is large ρp /ρ f � 1, such as in
gas-solid fiber suspensions [15, 27, 30, 38], the dynamics of the slender body
are governed by the following rigid body equations. The angular momentum
m of a rigid particle with torque T (t ) is found by solving

ṁ = m ×ω+T , (5.5.1)

where ω = J−1m for moment of inertia tensor J . Each of these quantities are
defined in a reference frame whose axes are co-rotating and co-translating with
the fiber. The fiber orientation (with respect to a fixed inertial reference frame)
is specified using Euler parameters q ∈R4 which satisfy the constraint ||q ||2 = 1
and are determined by solving the ODE

q̇ = 1

2
q w, (5.5.2)

where w = (0,ωT)T ∈R4. Here, q w is the Hamilton product of two quaternions
[17]. That is, by letting q = (q0, q) and r = (r0,r ) denote quaternions for
q0,r0 ∈R and q ,r ∈R3, then their Hamilton product is given by

q r = (q0 r0 −q · r , q0r + r0q +q × r ). (5.5.3)
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5.5 Dynamics of curved rigid fibers

The translational dynamics are given by Newton’s second law

ṗ = F , (5.5.4)

where p = vm is the inertial frame linear momentum for a fiber of mass m.
The position of the fiber center of mass is found by solving

ẋ = v . (5.5.5)

The ODEs (5.5.1) - (5.5.5) are integrated using the second order Strang splitting
method of (Ref. [50]).
Recall the equations (5.4.18) for F [n] and T [n]. Since F [n] and T [n] depend
linearly on the linear and angular momenta p and m, we may update them
according to the linear equation(

F [n]

T [n]

)
= A

(
p
m

)
+b, (5.5.6)

where A is a negative definite dissipation matrix and b is due to the background
fluid velocity and is independent of p and m. We have that

A =

⎛⎜⎝ Φ
(
�1⊗ (I /m)

)
, Φ

(
−X (�1⊗ J−1)

)
Ψ
(
�1⊗ (I /m)

)
, Ψ

(
−X (�1⊗ J−1)

)
⎞⎟⎠ and b =−

(
Φu
Ψu

)
, (5.5.7)

where m and J are the filament mass and moment of inertia tensor, respectively.
We have also introduced the vector u = (u0(X (s1))T , ...,u0(X (sn))T )T contain-
ing the background fluid velocities at the location of the quadrature nodes along
the centerline.

Overview and cost of algorithm

The algorithm used to compute the dynamics of a slender fiber is as follows:

1. Define particle geometry X (s), ε, regularization parameter η and dis-
cretization n.

2. Choose a quadrature rule and compute the matrices W and K .

3. Compute the matrices Φ, Ψ and A from equations (5.4.16), (5.4.17) and
(5.5.7).

4. Time loop: for t = 0,Δt , ...,mΔt

a) Compute F [n] and T [n] using equation (5.5.6)

b) Numerically integrate the ODEs (5.5.1) - (5.5.5) .
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For step (2), we use the trapezoidal quadrature rule for closed fibers (i.e., a peri-
odic integration interval) or Gauss-Lobatto quadrature rule for fibers with open
ends. For step (4b), we use a splitting method [50]. We note that for simulations
where the fluid velocity field is calculated from a direct numerical simulation
of the Navier-Stokes equations, the fluid field needs to be approximated onto
the centerline of the particle using an interpolation method [51].
The above algorithm exploits the rigidity of the fiber by using the fact that A, Φ
and Ψ are constant in time and therefore can be computed outside of the time
loop. The calculation of these matrices, which involves solving a linear system,
is the most costly operation in the algorithm but only needs to be done once. If,
for example, Gaussian elimination is used, this step has complexity of O(n3).
Within the time loop, however, the most costly operation is the calculation of
F [n] and T [n], which involves only 3× 3n by 3n × 1 matrix-vector products,
which has O(n) complexity. We assume that the cost of numerically integrating
the ODEs is negligible compared to this. For a single fiber, the total complexity
of the algorithm is therefore O(n3 +nm), where m is the total number of time
steps used in the simulation. Hence, for simulations where many time steps are
needed, the algorithm scales by O(n). We remark that for problems where the
background flow is zero, the cost of computing F [n] and T [n] is independent
of n (after A has been computed) and therefore is O(1). This is relevant, for
example, when simulating fibers sedimenting in a still fluid under the influence
of gravity [37].

5.5.2 Numerical validation of model dynamics

Dissipation matrix of a prolate spheroid

Here we compare our model and numerical method with accurate closed form
expressions for the force and torque given by Brenner [6] and Jeffery [23].
These expressions are valid for an ellipsoid when the fluid Jacobian is approxi-
mately constant throughout the volume of the particle. When the flow is linear,
these terms are essentially exact and therefore serve as a good reference model
against which to validate our model.
The purpose of this numerical experiment is therefore twofold. Firstly, we
aim to show that our model converges to the reference model as ε→ 0. This
is primarily to validate the accuracy of the model. However, the numerical
approximation of the force and torques also introduces a numerical error that
is related to the discretization parameter n. Clearly, taking n too small means
that we will not exploit the accuracy of the model to its entirety. On the other
hand, it is unwise to take n as large as possible as this will incur unnecessary
computational costs that go to minimizing numerical error beyond the accuracy
of the model. So the second question we address here is what is an ideal choice
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5.5 Dynamics of curved rigid fibers

of discretization parameter to use such that the numerical error is roughly the
same as the modeling error.
Using η= 1+ε2, the dissipation matrix for our slender body model A is numer-
ically approximated by equation (5.5.7). The reference dissipation matrix Asph

is found using the closed form expressions from Jeffery and Brenner, which
are given in Appendix 5.C. Denote the six eigenvalues of A and Asph , by λi

and λ
sph
i , respectively. Note that due to symmetry of the spheroid, λ1 = λ2

and λ4 = λ5 and similarly for the eigenvalues of Asph . Furthermore, the slen-
der body model is essentially a one dimensional filament and therefore λ6 = 0
meaning that spinning motion about the centerline doesn’t dissipate. This is in
contrast to the Jeffrey term, which does dissipate spinning motion. We remark
that this phenomenon only occurs in the case where the centerline is perfectly
straight. Hence for curved fiber geometries where the application of the slen-
der body is most useful, this nonphysical phenomenon is not observed. Note
that for this geometry the dissipation matrices are diagonal and therefore the
eigenvalues are directly proportional to the calculation of F [n] and T [n] in zero
background flow.
The eigenvalues of A are calculated using equation (5.5.7) after discretizing
equation (5.4.3) on the Gauss-Lobatto nodes. The values |λi −λ

sph
i | for i =

1,3,4 are plotted in Figure 5.5.1 as a function of the discretization parameter
n. We see that λi converges exponentially to a point near λsph

i , which is likely
due to the slender body modelling error. As ε decreases, we make two observa-
tions. First, for large n the rate at which λi converges to λ

sph
i is approximately

−ε2η2 log(εη), as seen by the horizontal dash-dot lines. Second, as ε decreases,
the convergence rate slows down and one must use a larger value of n to reach
the most accurate solution. This means that one must pay careful attention to
the choice of n when taking ε to be very small. In fact, we observe empirically
that the convergence rate is approximately bounded by e−4εn . Motivated by
this, we will take n in future experiments to be approximately the intersection
of these two lines, that is

n ≈− log(−ε2η2 log(εη))

4ε
. (5.5.8)

Prolate spheroids rotating in shear flow

Now we calculate the dynamics of a prolate spheroid in shear flow u = (z,0,0)T

using our model and compare it with that of the accurate Jeffrey model. The
fiber is initially aligned at rest in the z-direction and its rotational dynamics
are calculated by integrating equation (5.5.1) on the interval t ∈ [0,100] using
the splitting method of (Ref. [50]) with a small step size of h = 0.01. The
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Figure 5.5.1: The difference in the dissipation matrix eigenvalues |λi −λ
sph
i |, i = 1,3,4

as a function of n for three different values of ε. The black dashed lines are e−4εn and
the horizontal dash-dot lines are −ε2η2 log(εη).

simulation was repeated with h = 0.05 with no significant changes to the results
and it is therefore concluded that time integration errors are negligible. We
repeat the experiment for 20 values of ε logarithmically spaced in the interval
[0.1,0.001] and choose n using equation (5.5.8) and η= 1+ε2. As the spheroids
are axisymmetric, they only experience a torque about their y axis, hence all of
other angular momentum components are zero (to machine precision). Three
examples of the rotational dynamics are shown in Figure 5.5.2. It is seen here
that as ε becomes smaller, the dynamics more closely resemble the Jeffery
model.

The relative difference between the angular momenta of the Jeffery and slender
body solutions are calculated and averaged over the simulation. This average
relative error is then plotted against the corresponding value of ε in Figure
5.5.3. We see that the average relative error decreases with ε. It is observed
that in the region 0.01 < ε< 0.1 the error converges at a faster rate than in the
region 0.001 < ε< 0.01. This could be partially explained by the fact that wider
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Figure 5.5.2: The y component of a spheroid rotating in shear flow for three different
values of ε. The solid line is the our slender body model and the dashed line is due to
Jeffery.

particles (larger ε) experience a greater resistive force as seen by the regions
where my nearly reaches zero. This means that the particle spends more time
in the shear plane where the fluid velocity is zero and hence the slender body
model does not experience a large torque. However, the fluid gradient is non-
zero in this orientation and therefore the Jeffery model, which depends only on
the fluid gradient, still experiences a constant torque. This means that compared
to the Jeffery model, thicker fibers will see a greater difference in the torque
term when the fiber is aligned in the shear plane than thinner fibers.

5.5.3 Dynamics of randomly curvy fibers

Understanding how different shaped particles rotate in shear flow is an impor-
tant step in understanding their dynamics in more complex flows [52]. Here
we simulate the dynamics of the randomly curvy fibers of Figure 5.4.6 as they
rotate in shear flow. In particular, we show how the rotational variables deviate
from a straight fiber as δ becomes larger.
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Figure 5.5.3: The relative difference in my between the slender body and Jeffery
solutions averaged over the interval [0,100].

We generate 100 different fiber shapes with m = 10 using 10 different values of
δ logarithmically spaced in the interval [5×10−5,5×10−2]. The 100 fibers are
placed in shear flow u = (z,0,0)T and their rotational dynamics are calculated
on the interval t ∈ [0,100]. The moment of inertia tensor is approximated by
placing point masses along the centerline and using the formula

Ji ,i =
k∑

j=1
m j (Xi (s j )− ci )2, for i = 1, ...,3 (5.5.9)

where Xi (s j ) is the i th component of the centerline function at the point s j

on the centerline and ci is the i th component of the fiber center of mass. We
weight m j by the cross sectional radius and use a very large value for k, e.g.,
k = 104. Here we take ε = 0.01 and use the spheroidal radius function (5.1.2)
along with η= 1+ε2.
Figure 5.5.4a shows the angular momentum m of three fibers compared to the
δ= 0 case. As the δ= 0 fiber is perfectly straight, it does not exhibit spinning
motion and its angular momentum is purely in the my component. This is in
contrast to the fibers with a non-zero value of δ, in which case some of the
momentum is transferred to mx . We therefore compare the value

√
m2

x +m2
y

between the fibers to account for this. We see here that the δ = 0.017783
solution is visually very similar to the δ= 0 solution. We notice a significant
difference between the other two solutions. Figure 5.5.4b shows the angle
θ between the z-axis of the particle reference frame (that is, a frame that is
rotating with the fiber) and the x-axis of a fixed inertial reference frame. As
the δ �= 0 fibers are not symmetric, they slowly rotate out of the xz-plane and
therefore after a long time, we see much more significant discrepancies in θ.
To quantify the effect that δ has on the angular momentum, we calculate the dif-
ference in the angular momentum Δm by subtracting off the δ= 0 solution and
averaging over the time interval t ∈ [92,100], which corresponds to roughly one
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period of rotation. This value is averaged over all the fibers with similar values
of δ and is expressed as a percentage of the δ = 0 solution, which we denote
by %Δm. The results are plotted in Figure 5.5.5a. We notice that the %Δm
is linearly proportional to δ. We observe that at the end of the simulation the
δ= 0.0003 fibers correspond to roughly 1% discrepancy in angular momentum
and δ= 0.0015 corresponds to roughly 7.5% discrepancy.

The difference in θ after one rotation as a function of δ is displayed in Figure
5.5.5b. The δ= 0.0003 solution corresponds to about a 3◦ difference in θ and
the δ= 0.0015 solution corresponds to about an 8◦ difference.
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Figure 5.5.4: The rotational variables of four fibers with different values of δ. Figure
(a) shows the angular momentum and Figure (b) is the angle between the fiber’s long
axis and the x-axis of the inertial frame.
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Figure 5.5.5: Figure (a) shows the difference in angular momentum Δm between the
curved fibers and the δ= 0 solution after 100 time units and averaged over all the fibers
with similar δ. The black dashed line is O(δ). Figure (b) shows the discrepancy Δθ in
the angle between the centerline and the x-axis after roughly one rotation.
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5.6 Conclusions

We have developed an integral model for the motion of a thin filament in a
viscous fluid based on nonlocal slender body theory. The model relies on
standard singular Stokeslets and doublets but makes use of the fiber integrity
condition – the near-cancellation of angular-dependent terms along the fiber
surface – in a novel way to yield an integral expression for the fiber velocity with
a smooth kernel which retains dependence on the (possibly varying) fiber radius
in a natural way. We include a systematic way of comparing mapping properties
of different models using the simplified geometry of a straight-but-periodic
filament. In this simple geometry, we can show that our integral operator is
negative definite and compares favorably to other models, and we expect similar
high wavenumber behavior for curved filaments with constant radius. It is
less clear how a non-constant radius affects the spectrum; however, numerical
tests indicate that the discretized integral operator is very close to negative
definite. Nevertheless, to ensure invertibility, we develop an asymptotically
consistent regularization to convert the first-kind Fredholm integral equation
for the force density along the fiber into a second-kind equation and show
that this second-kind regularization improves the stability and conditioning of
the discretized equation. We numerically solve the integral equation using the
Nyström method [2] and show how constraining the fiber motion to be rigid can
be exploited for fast computation of fiber dynamics. We validate the method
and model against the prolate spheroid model of Jeffery [23], and apply the
method to study the rotational deviation of randomly curved rigid fibers from
straight fibers.

While the fibers considered here are rigid, the model can also be used to sim-
ulate the dynamics of semiflexible filaments. The invertibility properties of
the integral equation make it particularly well suited for handling simulations
involving inextensible fibers, where an additional line tension equation must be
solved at each time step [32, 55]. We may also consider the effects of different
choices of radius functions on the model properties, similar to what is done
in (Ref. [58]), although we note the necessity of smooth decay in our radius
function near the fiber endpoints.

To build on the dynamic simulations for rigid fibers, we aim to consider the
effects of fiber shape on particle deposition and aggregation. We are especially
interested in more complicated background flows, including suspensions of
rigid fibers in turbulence. The novel modelling approach advocated herein
will enable earlier explorations based on the point-particle approach [7] to be
extended to curved fibers particles.
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Appendix

5.A Modified Lighthill model

Here we consider the modified Lighthill approach to deriving a fiber velocity
approximation from classical SBT (5.3.4). This approach takes advantage of
the fact that the doublet term of (5.3.5) only has an O(1) contribution to the
fiber velocity very close to s′ = s, and thus can be integrated asymptotically to
leave only a local term. This results in a model similar to that of Lighthill [29],
which was derived via different reasoning but also includes a local doublet term
and a nonlocal Stokeslet contribution (see Remark 5.4).
There are two ways to consider the nonlocal Stokeslet contribution. The first ex-
pression, which we will term Modified Lighthill 1, is given by the periodization
of

u(z) =− 1

8π

(
(I−ez eT

z ) f (s)+
∫1

−1

(
I

(z2 +ε2)1/2
+ z2ez eT

z

(z2 +ε2)3/2

)
f (z − z)d z

)
.

(5.A.1)
Here the local term (I−ez eT

z ) comes from asymptotically integrating the doublet
term of (5.3.4) (see estimate 3.65 of (Ref. [35]) for more detail). Note that in
(5.A.1), the Stokeslet term inside the integral is equal to f /ε when z = 0.
For the second expression, which we will call Modified Lighthill 2, the ez eT

z

component of the Stokeslet term is normalized to give the same order contribu-
tion at z = 0 as in (5.3.4); namely, (I+ez eT

z ) f /ε. This yields the periodization
of the expression

u(z) =− 1

8π

(
(I−ez eT

z ) f (s)+
∫1

−1

I+ez eT
z

(z2 +ε2)1/2
f (z − z)d z

)
. (5.A.2)

Remark 5.4. The actual model proposed by Lighthill in (Ref. [29]), written in
the periodic, straight setting, has the form

u(z) =− 1

8π

(
2(I−ez eT

z ) f (z)+
∫
|z|>q

I+ez eT
z∣∣z∣∣ f (z − z)d z

)
; q = ε

�
e/2.

(5.A.3)

187



Bibliography

At first glance, this looks like a slightly different model from (5.A.1) and
(5.A.2), due to the 2 in front of the (I − ez eT

z ) f (z) term. However, the ex-
tra factor here is precisely due to the removal of the section

∣∣z∣∣ ≤ q from the
integral term. Indeed, if we consider the integrand of (5.A.1), we note that∫q

−q

(
I

(z2 +ε2)1/2
+ z2ez eT

z

(z2 +ε2)3/2

)
f (z − z)d z = (2log(2q/ε)(I+ez eT

z )−2ez eT
z

)
f (z)+O(ε2/q2)

= (I−ez eT
z ) f (z)+O(ε2/q2)

for q as in (5.A.3). Now, this particular choice of q is not large relative to ε, so
the O(ε2/q2) error term is not small asymptotically. However, this is merely a
heuristic and we will not be considering the expression (5.A.3) in greater depth
here. Furthermore, the expressions (5.A.1) and (5.A.2) are more amenable to
calculating eigenvalues.

The eigenvalues of (5.A.1) are given by

λm
k =

⎧⎪⎪⎨⎪⎪⎩
− 1

4π

(
2K0(πε

∣∣k∣∣)−πε
∣∣k∣∣K1(πε

∣∣k∣∣)), m = z

− 1

8π

(
1+2K0(πε

∣∣k∣∣)), m = x, y.
(5.A.4)

Now the normal eigenvalues λx
k and λ

y
k are always negative. However, there

is still a high wavenumber instability in the tangent direction. In particular,
λz

k = 0 when πε
∣∣k∣∣ ≈ 1.55265, and becomes positive at higher wavenumbers

(see Figure 5.3.1). Thus the instability issue is not fully resolved by expanding
only the doublet term of (5.3.4).
For Modified Lighthill 2, the eigenvalues of (5.A.2) are given by

λm
k =

⎧⎪⎪⎨⎪⎪⎩
− 1

2π
K0(πε

∣∣k∣∣), m = z

− 1

8π

(
1+2K0(πε

∣∣k∣∣)), m = x, y.
(5.A.5)

Here the eigenvalues λx
k and λ

y
k in the normal directions are identical to (5.A.4),

but the tangential eigenvalues λz
k are very different. In fact, they are too dif-

ferent: Recall that near t = 0, the modified Bessel functions K0(t ) and K1(t )
satisfy

K0(t ) =− log(t/2)−γ+O(t 2); tK1(t ) = 1+O(t 2). (5.A.6)

Therefore, at low wavenumber (k =O(1)), the tangential eigenvalues of Modi-
fied Lighthill 2 (5.A.2) look like

λz
k = 1

2π
(log(πε

∣∣k∣∣/2)+γ)+O(ε2k2).
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This does not agree with the low wavenumber behavior of the slender body
PDE (5.3.9) (see Figure 5.3.1). It appears that the normalization in Modified
Lighthill 2 (5.A.2) results in the wrong model.
For the sake of completeness, we also consider a modification of our model
(5.3.5) in which the X X

T
terms are normalized as in Modified Lighthill 2

(5.A.2) to yield a nonzero contribution to the fiber velocity when s = s′. In
the case of the periodic straight centerline, the modified version of our model
becomes the periodization of

u(z) =− 1

8π

∫1

−1

(
I+ez eT

z

(z2 +ε2)1/2
+ ε2

2

I−3ez eT
z

(z2 +ε2)3/2

)
f (z − z)d z. (5.A.7)

The eigenvalues of (5.A.7) are given by

λm
k =

⎧⎪⎪⎨⎪⎪⎩
− 1

4π

(
2K0(πε

∣∣k∣∣)−πε
∣∣k∣∣K1(πε

∣∣k∣∣)), m = z

− 1

8π

(
2K0(πε

∣∣k∣∣)+πε
∣∣k∣∣K1(πε

∣∣k∣∣)), m = x, y.
(5.A.8)

Now, the eigenvalues λx
k and λ

y
k in the directions normal to the fiber are un-

changed from our original expression (5.3.12). However, the tangent eigenval-
ues λz

k are now given by the same expression as Modified Lighthill 1 (5.A.4),
which we recall exhibits a high wavenumber instability (Figure 5.3.1).

5.B Convergence and error bounds of numerical method

We are interested in obtaining an estimate for the error when approximating
(5.4.4) by its discrete approximation (5.4.10), which we denote by

d[n] =φM (f)−φ[n]
M =

∫L

−L
M(s)f(s)d s −

n∑
j=1

w j M(s j )f[n]
j . (5.B.1)

This error will depend on the error committed in the numerical approximation
of (5.4.3) by the solution f[n] of (5.4.6). For this reason, we first analyze the
convergence of Nyström’s method (see Ref. [2, Chapt. 12.4]) in using (5.4.6)
to approximate the solution of (5.4.3). At each quadrature node, we define the
error of this approximation as

e[n]
i := f(si )− f[n]

i , for i = 1, . . . ,n, (5.B.2)

and let e[n] := ((e[n]
1 )T , . . . , (e[n]

n )T )T denote the error vector. We want to show
that ‖e[n]‖∞ → 0 as n → ∞. Let f := (f(s1)T , . . . , f(sn)T )T and define τ[n] :=
(τT

1 , . . . ,τT
n )T with components

τi := y(si )−αf(si )−
n∑
j

Ki , j w j f(s j ), (5.B.3)
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the truncation error for the discrete second kind equation (5.4.6) – i.e. the
residual obtained replacing f[n] by f in (5.4.6). We obtain(

α I +K W
)

f = y−τ[n]. (5.B.4)

It is easily seen using (5.4.3) that

τi =
∫L

−L
K (si , s′)f(s′)d s′ −

n∑
j

Ki , j w j f(s j ), (5.B.5)

which is simply quadrature error, and for any convergent quadrature formula
we have

lim
n→∞‖τ[n]‖∞ = 0. (5.B.6)

We next bound the norm of the error e[n] by the norm of τ[n] to prove the
convergence of the method. Subtracting (5.4.6) from (5.B.4) we obtain a linear
system satisfied by e[n]: (

α I +K W
)

e[n] =−τ[n]. (5.B.7)

From (Ref. [2, Chapt. 12.4], Theorem 12.4.4 and equation (12.4.51)), we have
that for sufficiently large n, say n ≥ n∗, the matrix

(
α I +K W

)
is invertible and

‖(α I +K W
)−1 ‖∞ ≤C1 ∀n ≥ n∗. (5.B.8)

Thus we can conclude that

‖e[n]‖∞ ≤ ‖(α I +K W
)−1 ‖∞‖τ[n]‖∞ ≤C1 ‖τ[n]‖∞. (5.B.9)

Since C1 is independent of n for n ≥ n∗ and ‖τ[n]‖∞ → 0 as n →∞, this implies
that

lim
n→∞‖e[n]‖∞ = 0.

Consider now the quadrature error

δ[n] :=
∫L

−L
M(s)f(s)d s −

n∑
j=1

w j M(s j )f(s j ). (5.B.10)

From (5.B.1) we obtain

d[n] = δ[n] −
n∑

j=1
w j M(s j )e j , (5.B.11)

and using (5.B.7) the total discretization error for our methods is given by

d[n] = (�1T ⊗ I)W M(αI +K W )−1τ[n] +δ[n]. (5.B.12)

Since both δ[n] and τ[n] are quadrature errors, ‖(αI +K W )−1‖ ≤C1 for all n ≥
n∗, and M is bounded, the method converges at the same rate as the underlying
quadrature.
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5.B.1 Convergence of numerical method for closed loop geometry

By applying the formula (5.B.12), we now show how one can achieve spectral
convergence in the case of a closed fiber geometry with constant radius ε and
periodic integration domain. In this setting, we will use trapezoidal quadrature.
We begin by bounding the norms of the integration kernels to which we apply
the trapezoidal quadrature rules to, namely the integrals (5.4.1) and (5.4.4). Us-
ing this, and some smoothness assumptions, we are able bound the quadrature
errors τ[n]

i and δ[n] using classical error estimates. This leads to a bound on the
total error d[n] for both the force and torque calculation.
Let C2 be a constant such that

‖f(s′)‖∞ ≤C2 for s ∈ [−L,L]. (5.B.13)

From the definition of K (s, s′) (equations (5.2.2), (5.2.3), and (5.4.12)) in the
constant radius case, we observe that

‖K (s, s′)‖∞ ≤ 3

2ε
(5.B.14)

with equality when s = s′. From equation (5.4.11) we have ‖M(s)‖∞ = 1 for the
force calculation, while for the torque calculation, M(s) = X̂ (s) and therefore

‖M(s)‖∞ ≤ max
s∈[−L,L]

‖X (s)‖1. (5.B.15)

Therefore we can bound the integration kernels of (5.4.1) and (5.4.4) by

‖K (s, s′)f(s′)‖∞ ≤ 3

2ε
C2 (5.B.16)

and
‖M(s)f(s)‖∞ ≤ ‖M(s)‖∞C2. (5.B.17)

Note that in the constant radius case, K (s, s′) has the same regularity as X (s). If
we assume that X (s), f(s) and M(s) are analytic, then using [56, Theorem 3.2]
we can bound the trapezoidal rule quadrature error from equation (5.B.3) by

‖τ[n]
i ‖∞ ≤ 6LC2

ε(ean −1)
for i = 1, ...,n. (5.B.18)

Similarly, we can bound equation (5.B.10) by

‖δ[n]‖∞ ≤ 4L‖M(s)‖∞C2

ean −1
. (5.B.19)

Here a is some constant. Using equation (5.B.12), the total discretization error
is therefore bounded as

‖d[n]‖∞ ≤
(
‖(�1T ⊗ I)W M(αI +K W )−1‖∞ 3

2ε
+‖M(s)‖∞

)
4LC2

ean −1
. (5.B.20)
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Using that ‖M‖∞ ≤ ‖M(s)‖∞, ‖W ‖∞ = 2L
n and C1 is given by equation (5.B.8),

this simplifies to

‖d[n]‖∞ ≤
(

6C1L

2ε
+1

)
4L‖M(s)‖∞C2

ean −1
. (5.B.21)

Hence, the method shares the same exponential convergence as the underly-
ing trapezoidal rule. We remark that one could perform an analogous analysis
for open ended fiber geometries with, e.g., Gauss-Lobatto quadrature, and de-
rive similar results. Furthermore, we also remark that one could require less
stringent regularity assumptions on the integration on the kernels or the fiber
centreline X (s), e.g., M(s)f(s) ∈C 2m+2[−L,L]. Then (Ref. [3, Thm. 5.5]) can
be used to derive asymptotic error estimates for τ[n]

i and δ[n] of order O(h2m+2).
Nonetheless, we do observe spectral convergence in numerical experiments in
the following sections, as predicted by the bound (5.B.21).

5.C Dissipation matrix of a prolate spheroid

The non-dimensionalized body frame resistance tensor R1 for a spheroid with
aspect ratio λ was derived by Oberbeck [39] and is given by

R1 = 16πλ diag

(
1

χ0 +α0
,

1

χ0 +β0
,

1

χ0 +λ2γ0

)
. (5.C.1)

The constants χ0, α0, β0 and γ0 were calculated by Siewert [47] and are pre-
sented for a prolate (λ> 1) spheroid

χ0 = −κ0λ�
λ2 −1

, (5.C.2)

α0 =β0 = λ2

λ2 −1
+ λκ0

2(λ2 −1)3/2
, (5.C.3)

γ0 = −2

λ2 −1
− λκ0

(λ2 −1)3/2
, (5.C.4)

κ0 = ln

(
λ−

�
λ2 −1

λ+
�
λ2 −1

)
. (5.C.5)

The torques N = (Nx , Ny , Nz )T that describe the rotational forces acting on an
ellipsoid in creeping Stokes flow in the body frame were calculated by Jeffery
[23] and are presented in their non-dimensional form with zero background
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5.C Dissipation matrix of a prolate spheroid

flow

Nx =− 16πλ

3(β0 +λ2γ0)

[
(1+λ2)ωx

]
, (5.C.6)

Ny =− 16πλ

3(α0 +λ2γ0)

[
(1+λ2)ωy

]
, (5.C.7)

Nz =− 32πλ

3(α0 +β0)
ωz . (5.C.8)

Here ω = (ωx ,ωy ,ωz )T is the body frame angular velocity, which is related
to body frame angular momentum by m = Jω. Taking derivatives of N with
respect to m gives for the rotational dissipation matrix

R2 =−16λ

3
diag

(
(1+λ2)

(β0 +λ2γ0)
,

(1+λ2)

(α0 +λ2γ0)
,

2

(α0 +β0)

)
J−1. (5.C.9)

The full dissipation matrix used for the calculation in Figure 5.5.1 is given by

Asph =
(

R1 0
0 R2

)
. (5.C.10)
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Using discrete Darboux polynomials to detect

and determine preserved measures and

integrals of rational maps

Abstract. In this Letter we propose a systematic approach for detecting and
calculating preserved measures and integrals of a rational map. The approach
is based on the use of cofactors and Discrete Darboux Polynomials and relies
on the use of symbolic algebra tools. Given sufficient computing power, all
rational preserved integrals can be found. We show, in two examples, how to
use this method to detect and determine preserved measures and integrals of
the considered rational maps.

6.1 Introduction

The search for preserved measures and integrals of ordinary differential equa-
tions (ODEs) has been at the forefront of mathematical physics since the time
of Galileo and Newton.

In this Letter our aim will be to develop an analogous theory for the (arguably
more general) discrete-time case. This will lead to essentially linear algorithms
for detecting and determining preserved measures and first and second integrals
of (discrete) rational maps (both integrable and non-integrable).

But before we consider the discrete case, let us look at the continuous case, i.e.
ODEs.

Consider two polynomials P1 and P2:

P1(x) = ∑
ai1,...,in xi1

1 . . . xin
n

P2(x) = ∑
bi1,...,in xi1

1 . . . xin
n .

Then I := P1/P2 is a rational integral of the ODE dx
d t = f (x) if

Ṗ1P2 −P1Ṗ2 = 0

along solutions of the ODE. Here˙denotes d
d t .

For a polynomial ODE, the problem of finding P1 and P2, as posed, is bilinear
in the parameters ai1,...,in and bi1,...,in .
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Discrete Darboux polynomials for rational maps

6.1.1 Darboux polynomials (ODE case)

Let P (x) and C (x) be polynomials.

Then P (x) is called a Darboux polynomial of the polynomial ODE dx
d t = f (x), if

Ṗ (x) =C (x)P (x).

Here C (x) is called the co-factor of P .

Note that P (x(0)) = 0 implies P (x(t )) = 0 for all t . Hence the set P (x) = 0 is an
invariant set in phase space.

Consider two Darboux polynomials with the same co-factor C :

Ṗ1 =C P1

Ṗ2 =C P2
⇒ d

d t

(
P1

P2

)
= Ṗ1P2 −P1Ṗ2

P 2
2

= C P1P2 −P1C P2

P 2
2

= 0, (6.1.1)

i.e. the ratio of two Darboux polynomials with the same cofactor is a rational
integral. (The converse is also true).

However, finding C , P1 and P2 involves one bilinear problem, plus one linear
problem. (Nevertheless, this approach can still be useful).

More generally,

Ṗ1 =C1P1

Ṗ2 =C2P2
⇒ d

d t
(P1P2) = Ṗ1P2 +P1Ṗ2 = (C1 +C2)P1P2. (6.1.2)

A very nice introduction to Darboux polynomials for ODEs was given by
Goriely [6]. Note that Darboux polynomials were studied by Darboux, Poincaré,
Painlevé and others [6], and are also known by several other names, including
“second integrals" and “weak integrals".

6.1.2 Discrete Darboux Polynomials (mapping case)

Instead of polynomial ODEs dx
d t = f (x), we now consider rational maps xn+1 =

φ(xn) (cf [4, 5]).

Then we define P (x) to be a Discrete Darboux Polynomial of the rational map
xn+1 =φ(xn) if

P (xn+1) =C (xn)P (xn),

where the co-factor C is now a rational function whose form will be presented
in §1.3.

We use the shorthand notation

P ′ =C P
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6.1 Introduction

Note that, similarly to the continuous case, P (x) = 0 is an invariant set in phase
space.

Now consider again two Discrete Darboux Polynomials P1 and P2 with the
same co-factor C :

P ′
1 =C P1

P ′
2 =C P2

⇒ P ′
1

P ′
2

= P1

P2
,

i.e. the ratio of the two Discrete Darboux Polynomials with the same co-factors
is again an integral (and the converse is also true).

More generally

P ′
1 =C1P1

P ′
2 =C2P2

⇒ (P1P2)′ =C1C2(P1P2)

How is all this going to help us find integrals of a given map?

The answer comes in two parts:

1. In the discrete case we use a non-trivial ansatz for the co-factors C (x).
This ansatz works in all examples we have tried so far.

2. In the discrete case the co-factor of the product is the product of the co-
factors.
In the continuous case the co-factor of the product is the sum of the
co-factors.

The latter point is crucial: It means that in the discrete case we can use the fact
that the factorization of the co-factor C is unique. By contrast, in the ODE case
we have addition, where splitting into summands is not unique.

6.1.3 Ansatz

Ansatz: The co-factors we use are of the form

C (x) = 1

Dl (x)

∏
i

K ai

i (x)

where D(x) is the common denominator of the map, and the Ki (x) are factors
of the numerator of the Jacobian determinant J (x) of the map:

J (x) = 1

Dm(x)

∏
i

K bi

i (x)

Comments:
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1. There is a finite number of these co-factors up to a certain degree.

2. For each of this finite number of co-factors, we only need to solve a linear
problem (up to a chosen degree).

3. If C (x) = J (x), the corresponding Darboux polynomials are (inverse) den-
sities of preserved measures.

6.2 Determining preserved measures and first and sec-

ond integrals of rational maps

In this section we study the following two-dimensional ODE as an example:

d x

d t
= x(x +6y −3) (6.2.1)

d y

d t
= y(−3y −2x +3)

The Kahan-Hirota-Kimura (KHK) discretization of (6.2.1) reads (cf [2,3,8–11,
14])

x ′ = x(1+h(x +6y −3)+ h2

4 (9−6x))

D(x)
(6.2.2)

y ′ = y(1+h(3−2x −3y)+ 9h2

4 (1−2y))

D(x)

where the common denominator D(x) of the map is given by

D(x) := 1− h2

4
(9−12x −36y +4x2 +12x y +36y2) (6.2.3)

The Jacobian determinant J (x) of the mapping (6.2.2) is

J (x) = K1(x)K2(x)K3(x)

D3(x)
(6.2.4)

where

K1 = 1+h(x −3y)− 3

4
h2(3−2x −6y)

K2 = 1+h(x +6y −3)− 3

4
h2(3−2x) (6.2.5)

K3 = 1+h(3−2x −3y)+ 9

4
h2(1−2y)
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We have used cofactors C1 = K1
D , C2 = K2

D , C3 = K3
D , C4 = J to find the corre-

sponding Discrete Darboux Polynomials for the map (6.2.2):

p1,1 =x +3y −3

p2,1 =x

p3,1 =y

p4,1 =x y(x +3y −3)

p4,2 =1− h2

4
(9−12x −36y +4x2 +12x y +36y2)

Here pi , j denotes the j th Darboux polynomial corresponding to the cofactor
Ci .

A phase plot for the map (6.2.2), clearly exhibiting the linear Darboux polyno-
mials p1,1, p2,1, and p3,1, is given in Figure 1.

Figure 6.2.1: Phase plot for map (6.2.2) and for h = 1
17

It follows that the map (6.2.2) preserves the integral

Ĩ (x) = x y(x +3y −3)

1− h2

4 (9−12x −36y +4x2 +12x y +36y2)
(6.2.6)

and the measure

d xd y

1− h2

4 (9−12x −36y +4x2 +12x y +36y2)
(6.2.7)
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Taking the continuum limit h → 0, we obtain the cofactors C̃1 = x −3y , C̃2 =
x+6y−3, C̃3 = 3−2x−3y , C̃4 = 0, and the corresponding Darboux polynomials

p1,1 =x +3y −3

p2,1 =x

p3,1 =y

p4,1 =x y(x +3y −3)

p4,2 =1

It follows that the ODE (6.2.1) preserves the integral

I (x) = x y(x +3y −3) (6.2.8)

and the measure

d xd y. (6.2.9)

It thus turns out that our original ODE (6.2.1) is Hamiltonian, with H(x) =
x y(x +3y −3).

Interpreted conversely, one can say that the KHK discretization (6.2.2) pre-
serves the three affine Darboux polynomials of the ODE (6.2.1), as well as the
modified integral (6.2.6) and the modified density (6.2.7). These results are no
coincidences.

Indeed, the preservation of the three affine Darboux polynomials is the conse-
quence of the following theorem (whose proof we will present elsewhere).

Theorem 6.1. The KHK discretization preserves all affine Darboux polynomi-
als of a given quadratic ODE.

Theorem 6.1 is a very significant step towards the full resolution of the open
problem posed in 2002 in [12]: ‘How does one preserve more than n −1 inte-
grals and weak integrals (of an n-dimensional vector field)?’

The preservation of the modified integral and measure is an example of a general
result in [2] giving a modified integral for all systems with a cubic Hamiltonian
in any dimension.
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6.3 Detecting preserved measures and first and second integrals of rational maps

6.3 Detecting preserved measures and first and second

integrals of rational maps

In this section we consider the following three-dimensional ODE as an exam-
ple:

d x

d t
= x(y −μz)

d y

d t
= y(λz −x) (6.3.1)

d z

d t
= z(μx −λy),

where λ and μ are arbitrary parameters.

Applying the Kahan-Hirota-Kimura discretization to (6.3.1), we obtain

x ′ −x

h
= x ′(y −μz)+x(y ′ −μz ′)

2
y ′ − y

h
= y ′(λz −x)+ y(λz ′ −x ′)

2
(6.3.2)

z ′ − z

h
= z ′(μx −λy)+ z(μx ′ −λy ′)

2
.

Solving equation (6.3.2) for x ′, y ′, and z ′ we obtain the (rational) Kahan map
discretizing (6.3.1). Using the Jacobian determinant J (x) of the Kahan map as
cofactor, our algorithm finds that for all (μ,λ), the map preserves the measure
d xd yd z

x y z and the first integral x + y + z.

Moreover, the algorithm also detects the following special values of the pa-
rameters (μ,λ) where the map preserves an additional integral, and outputs the
formula for the integral (cf. Table 1).

6.4 Concluding remarks

In this Letter we have presented a method for detecting and determining first
and second integrals of rational maps. There are in the literature several other
methods for determining first and second integrals of discrete systems, cf. [4,
5, 13, 16] and references therein. There are also in the literature several other
methods for detecting first and second integrals of discrete systems, cf. [1,8,15]
and references therein.

However, to our knowledge none of the above combine all the following prop-
erties of the method presented in this Letter:
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Table 6.3.1: Integrable parameter values and corresponding functionally independent
additional first integrals detected by our algorithm.

(μ,λ) additional first integral
(−1,0) y/z

(1,0) y z/(1− h2

4 x2)

(0,1) xz/(1− h2

4 y2)
(0,−1) z/x

(1,1) x y z/(1− h2

4 (x2 + y2 + z2 −2x y −2xz −2y z))
(1,−1) x/y z

(−1,−1) z/x y
(−1,1) y/xz

1. It is algorithmic, and requires no other input than the rational map in
question. At heart the algorithm is linear and, to some extent apart from
birationality, requires no knowledge about the map (such as symplecticity,
measure preservation, time-reversal symmetry, integrability, Lax pairs,
etc) on the part of the user.

2. Up to a certain prescribed degree, it determines and outputs all:

(a) rational first integrals

(b) polynomial second integrals

(c) preserved measures of the form P (x)d x or d x
P (x) , where P is a poly-

nomial.

3. It can detect special parameter values where additional preserved first
and/or second integrals and/or measures exist, and output those integrals
and measures.

4. It works for both integrable and non-integrable cases.

5. It allows one to take the continuum limit, if appropriate.
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Detecting and determining preserved

measures and integrals of rational maps

Abstract. In this paper we use the method of discrete Darboux polynomials to
calculate preserved measures and integrals of rational maps. The approach is
based on the use of cofactors and Darboux polynomials and relies on the use
of symbolic algebra tools. Given sufficient computing power, most, if not all,
rational preserved integrals can be found (and even some non-rational ones).
We show, in a number of examples, how it is possible to use this method to
both determine and detect preserved measures and integrals of the considered
rational maps. Many of the examples arise from the Kahan-Hirota-Kimura
discretization of completely integrable systems of ordinary differential
equations.

7.1 Introduction

Suppose (x ′
1, x ′

2, . . . , x ′
n) = x′ =φ(x) =φ(x1, x2, . . . , xn) defines a rational map of

Rn , and let Rp [x] be the class of polynomials up to degree p in n variables.
We say that I is a preserved first integral of φ if and only if I (x′) = I (x). The
rational map φ preserves a measure of the form∫

1

m(x)
dx1 ∧·· ·∧dxn , m ∈Rp [x], (7.1.1)

if the condition
m(φ(x)) = J m(x), for all x ∈Rn , (7.1.2)

is satisfied, where J is the determinant of the Jacobian matrix of φ. The recip-
rocal of the density m is here assumed to be a polynomial (or the reciprocal of
a polynomial) and the preserved integrals are assumed rational. In this paper,
we devise a systematic approach for searching for such preserved measures and
integrals of a rational map.
Our interest in such properties of rational maps originates from the study of
Kahan’s numerical discretization of first order quadratic ordinary differential
equations and its analogue for higher order and higher degree on the one hand,
[3, 7–9], and from the study of discrete integrable systems [14] on the other.
Kahan [5] proposed a numerical method designed for quadratic systems of
differential equations in Rn written in component form as

dxi

dt
=∑

j ,k
ai j k x j xk +

∑
j

bi j x j + ci , i = 1, . . . ,n, (7.1.3)
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where ai j k ,bi j ,ci are arbitrary constants and all summation indices are rang-
ing from 1 to n. The method of Kahan, also known as the Hirota–Kimura
discretization [2, 4], is a one-step method (x1, . . . , xn) 	→ (x ′

1, . . . , x ′
n) where

x ′
i −xi

h
=∑

j ,k
ai j k

x ′
j xk +x j x ′

k

2
+∑

j
bi j

x j +x ′
j

2
+ ci , i = 1, . . . ,n, (7.1.4)

where h denotes the discrete time step. The method (7.1.4) is linearly implicit
and so is its inverse, hence it defines a birational map.
Much of the recent interest in Kahan’s method stems from its ability to preserve
modified first integrals and measures of the underlying quadratic differential
equation [7, 8]. But even in cases where there are strong indications that Ka-
han’s method preserves such a nearby invariant, it is not necessarily an easy
task to determine its closed form.

Consider a rational map xn+1 =φ(xn). We define the polynomial P (x) to be a
(discrete) Darboux polynomial of the map φ if there exists a rational function
C (x) s.t.

P (xn+1) =C (xn)P (xn),

where the form of C (xn) will be prescribed below.

Note that if
Pi (xn+1) =Ci (xn)Pi (xn), i = 1, . . . ,k,

then (∏
i

P ai

i (xn+1)

)
=
(∏

i
C ai

i (xn)

)(∏
i

P ai

i (xn)

)
,

so that if ∏
i

C ai

i (xn) ≡ 1

then ∏
i

P ai

i (xn)

is an integral of the map φ.

The remaining question is how to prescribe the form of the discrete cofactor
Ci (x).

In [10] we introduced the following Ansatz:

Given a rational map φ with Jacobian determinant

J (x) =
∏l

i=1 K bi

i (x)∏k
j=1 D

c j

j (x)
,
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where the Ki and D j are distinct factors, we try all cofactors (up to a certain
polynomial degree d) of the form

C (x) =±
∏l

i=1 K fi

i (x)∏k
j=1 D

g j

j (x)
,

where fi , g j ∈N0.

For each such cofactor we try all Darboux polynomials, (again up to a certain
degree). The algorithm has been implemented in a symbolic algebra system
(our codes are made with Maple version 2019) and the codes are adapted to run
on clusters of up to 32 cores with up to 768 GBs of memory if necessary.

We presented two examples in [10] of the use of the above approach in de-
termining Darboux polynomials of a given map (the first example arose from
the Kahan discretisation of a 2D Lotka-Volterra system, and the second from
discrete integrable systems), plus a third example illustrating the detection of
special parameter values with extra Darboux polynomials.

As additional supporting evidence for the usefulness of the above Ansatz we
also proved in [10] that given a quadratic ODE in dimensions 1,2,3, or 4, pos-
sessing an affine Darboux polynomial, the Kahan discretisation of the ODE
preserves the DP, and the numerator of the corresponding cofactor divided the
numerator of the Jacobian determinant of the map.

In the present paper we present 11 examples exhibiting various aspects of
discrete Darboux polynomials. Eight examples involve determining Darboux
polynomials, three additional examples involve parametric detection. In most
cases the map φ is obtained as the application of Kahan’s method (7.1.4) to a
quadratic differential equation (7.1.3). We also consider three examples which
are unrelated to Kahan’s method. Finally, we prove that for any quadratic
Hamiltonian ODE, the modified integral as well as the modified preserved
measure of the Kahan map are both found using the above Ansatz with C (x) =
±J (x).

7.2 Determining preserved measures and integrals

7.2.1 Example 1: finding measures and integrals of a specific 2D

vector field

In this subsection we study the following two-dimensional vector field:

d

dt

(
x1

x2

)
=
(

2x1x2 −4x2

−3x2
1 −x2

2 +4x1 +1

)
.
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The Kahan discretization of this vector field is given by

x ′
1 = x1 +h(2x1x2 −4x2)+h2(2x2

1 −2x2
2 −3x1 −2)

D(x)
,

x ′
2 = x2 +h(−3x2

1 −x2
2 +4x1 +1)+h2(4x1x2 −5x2)

D(x)
,

(7.2.1)

where the common denominator D(x) is given by

D(x) = 1+h2(3x2
1 −x2

2 −8x1 +4).

The Jacobian determinant J of the Kahan map φh (7.2.1) is given by

J =C1(x)C2(x),

where

C1(x) = 1+2hx2 +h2(5−4x1)

D(x)
,

C2(x) = 1−2hx2 +h2(7−20x1 +9x2
1 +x2

2)+h3(26x2 −16x1x2)+h4(28−28x1 +7x2
1 +3x2

2)

D2(x)
.

Defining C3 := J , we have used cofactors C1,C2 and C3 to find the correspond-
ing Darboux polynomials for the Kahan map (7.2.1):

p1,1 = x1 −2,

p2,1 = 1−x2
1 −x2

2 +h2(
13

3
− 16

3
x1 +x2

2 +
7

3
x2

1),

p3,1 = 1+h2(3x2
1 −x2

2 −8x1 +4),

p3,2 = (x1 −2)(1−x2
1 −x2

2 +h2(
13

3
− 16

3
x1 +x2

2 +
7

3
x2

1)).

Here and below, pi , j denotes the j th Darboux polynomial corresponding to
the cofactor Ci , i.e., pi , j satisfies

pi , j (x′) =Ci (x)pi , j (x).

Note also that here p3,1(x) ≡ D(x). So it turns out that the Kahan map (7.2.1)
possesses the second integrals p1,1(x), p2,1(x) and p3,1(x), and also preserves
the measure

dxdy

1+h2(3x2
1 −x2

2 −8x1 +4)
.

Finally, the Kahan map preserves the first integral

(x1 −2)(1−x2
1 −x2

2 +h2( 13
3 − 16

3 x1 +x2
2 + 7

3 x2
1))

1+h2(3x2
1 −x2

2 −8x1 +4)
,
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Figure 7.2.1: Plots of Darboux polynomials p1,1 and p2,1 of the Kahan map in Exam-
ple 2 (for h = 1

5 ), dotted red. Also shown are the corresponding second integrals of the
ODE, x1 −2 and 1−x2

1 −x2
2 , solid blue.

Taking the continuum limit h → 0, we now see in hindsight that the vector field
(7.2.1) possesses two second integrals, i.e. x1 − 2 resp. 1− x2

1 − x2
2 . It also

preserves the measure dx1dx2 and the first integral H = (x1 −2)(1− x2
1 − x2

2).
The fact that the affine Darboux polynomial x1 −2 is preserved by the Kahan
map φh is an example of theorem (1) of [10], which states that the Kahan
discretization preserves all affine Darboux polynomials in any dimension. On
the other hand, the fact that the vector field (7.2.1) preserves the integral H
and the measure dx1dx2 implies that (7.2.1) is a Hamiltonian vector field with
cubic Hamiltonian H . Therefore, the fact that the Kahan method preserves a
modified Hamiltonian H̃ , and the modified densities p3,1 and p3,2 is a special
case of the following theorem:

Theorem 7.1. Let H be cubic in Rn , let K be a constant rank 2l antisymmetric
n ×n matrix and let the vector field be given by f = K∇H(x). Then:

(i) φh(x) possesses the following two Darboux polynomials, both with co-
factor C1(x) = J:

p1,1 = H(x)det(A(x))+ 1

3
h∇H(x)t adj(A(x)) f (x),

p1,2 = det(A(x)).
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Here A(x) = I− 1
2 h f ′(x), and adj(A) denotes the adjugate of A.

(ii) moreover, the degree of p1,2 is at most 2l and the degree of p1,1 is at most
2l +3. If n = 2l the degree of p1,1 is at most 2l +1.

Proof. In the proof of Proposition 4 in [7], it is shown that φh possesses the
modified integral H̃ = p1,1

p1,2
. Proposition 5 in [7] is equivalent to the statement

that p1,2 is a Darboux polynomial with cofactor J . Combining these two results,
it follows that p1,1 is also a Darboux polynomial with cofactor J . Part (ii)
follows from proposition 4(i) in [7].

7.2.2 Example 2: An inhomogeneous Nambu system

We consider the following inhomogeneous Nambu system belonging to the
class of systems considered in [1]

d

dt

⎛⎜⎝ x1

x2

x3

⎞⎟⎠=
⎛⎜⎝ (x1 +3x2)(5x2 +12x3 +8)

−(x1 +x2)(5x2 +12x3 +8)
(x1 +x2)(8x2 +5x1 +7)

⎞⎟⎠ ,

which has the two integrals

H := x2
1 +2x1x2 +3x2

2,

K := 4x2
2 +5x2x3 +6x2

3 +7x2 +8x3,

and the preserved measure ∫
dx1dx2dx3.

We consider the Kahan discretization of these equations. The corresponding
Jacobian determinant can be factorized in two irreducible factors:

J =C1(x)C2(x).

Letting C1 and C2 play the role of cofactors, we find the Darboux polynomials
p1,1, p1,2, p2,1 and p2,2:

p1,1 = 50h2x2
1 +100h2x1x2 −720h2x2x3 −864h2x2

3 −480h2x2

−1152h2x3 −384h2 −3,

p1,2 = 50h2x2
2 +240h2x2x3 +288h2x2

3 +160h2x2 +384h2x3

+128h2 +1,

p2,1 = (270h2x2
1 +540h2x1x2 +270h2x2

2 −4x2
2 −5x2x3

−6x2
3 −7x2 −8x3)/270h2,

p2,2 = 142x2
2

135
+ 71x2x3

54
+ 71x2

3

45
+ 497x2

270
+ 284x3

135
+1.
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From these we obtain that the preserved integrals of the Kahan map are p1,1(x)
p1,2(x) , p2,1(x)

p2,2(x) ,
and any combination

1

p1,i (x)p2, j (x)
dx, i , j ∈ {1,2}

is a preserved measure.

7.2.3 Example 3: Quartic Nahm system in 2D

We consider the following example whose Kahan discretization was studied
in [6]

d

dt

(
x1

x2

)
=
(

2x2
1 −12x2

2
−6x1x2 −4x2

2

)
. (7.2.2)

This ODE has a preserved integral

H := x2(2x1 +3x2)(x1 −x2)2,

and a preserved measure ∫
dx1dx2

x2(2x1 +3x2)(x1 −x2)
.

The Jacobian determinant of the Kahan discretization has the following factors

J = L1 L2 L3

D3 ,

where the three affine Li are given by

L1(x) := 1+3hx1 −8hx2

L2(x) := 1−5hx1.

L3(x) := 1+3hx1 +12hx2

and the quadratic D is

D(x) := 1+hx1 +4hx2 −6h2x2
1 −8h2x1x2 −36h2x2

2

Among the cofactors Li
1L j

2Lk
3 /Dl for i , j ,k = 0,1 and l = 1, . . . ,3 we consider

C1 = L1
D , C2 = L2

D , and C3 = L3
D , satisfying J =C1(x)C2(x)C3(x). The correspond-

ing Darboux polynomials are

p1,1(x) = 2x1 +3x2, p2,1(x) = x2, p3,1(x) = x2 −x1

leading to the preserved measure

dx

p1,1(x)p2,1(x)p3,1(x)
.
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To find the modified integral, we search for Darboux polynomials whose co-
factors are of the form C i

1(x)C j
2 (x) for i , j = 1,2, ... (i.e., “super-factors" of J).

Using the cofactor

C4(x) :=C1(x)C2(x)C3(x)2,

we find

p4,1(x) = x2(2x1 +3x2)(x1 −x2)2,

p4,2(x) = 9h4x4
1 +272h4x3

1 x2 −352h4x1x3
2 +696h4x4

2 −10h2x2
1 −40h2x2

2 +1,

and p4,1(x)
p4,2(x) is an integral of the Kahan discretization, see the corresponding

example in [6].

7.2.4 Example 4: Lagrange top

Discretizations of the Lagrange top have been studied in [4] and [6], where it
was shown that the Kahan map preserves a number of modified integrals. The
Lagrange top reads

d

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1

m2

m3

p1

p2

p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(α−1)m2m3 +γp2

(1−α)m1m3 −γp1

0
αp2m3 −p3m2

p3m1 −αp1m3

p1m2 −p2m1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where mi and pi are the angular and linear momentum components and α and
γ are constant parameters. The Lagrange top admits four independent integrals

H1 = p2
1 +p2

2 +p2
3,

H2 = p1m1 +p2m2 +p3m3,

H3 = m2
1 +m2

2 +αm2
3 +2γp3,

H4 = m3.

For the Lagrange top, it suffices to treat m3 as a free parameter by working in the
variables x̄ = (m1,m2, p1, p2, p3)T and look for degree-six Darboux polynomial
densities in x̄. Using the cofactor C1(x) = J , we find the following five Darboux
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polynomial densities

p1,1 = −256γ+64h2γ
(
−2m3

2α2 +2m3
2α+γp3 −m1

2 −m2
2 −m3

2
)

+h4Q(4)
1,2 +h6Q(6)

1,3 +h8Q(8)
1,4,

p1,2 = −2048γ3 +256h2γ3
(
−2m3

2α2 +2m3
2α+4γp3 −m1

2 −m2
2 −2m3

2
)

+h4Q(4)
2,2 +h6Q(6)

2,3 +h8Q(8)
2,4 +h10Q(8)

2,5,

p1,3 = −2048m3 (6α−5)+h2(−8192α3m3
3 +10240α2m3

3 +6144αγm3p3 −1536αm1
2m3

−1536αm2
2m3 −4096αm3

3 −512γp1m1 −512γp2m2 −5120γm3p3 +1536m3m1
2

+1536m3m2
2 +1024m3

3)+h4Q(5)
3,2 +h6Q(7)

3,3 +h8Q(9)
3,4 +h10Q(11)

3,5 +h12Q(11)
3,6 ,

p1,4 = −256γm3 (2α−1)+64h2γ (−2α3m3
3 +3α2m3

3 +4αγm3p3 −αm1
2m3 −αm2

2m3

−3αm3
3 +γp1m1 +γp2m2 −2γm3p3 +m3

3)+h4Q(5)
4,2 +h6Q(7)

4,3 +h8Q(9)
4,4,

p1,5 = −65536+h2
(−32768m3

2α2 +40960m3
2α+16384γp3 −16384m1

2 −16384m2
2

−32768m3
2
)+h4Q(4)

5,2 +h6Q(6)
5,3 +h8Q(8)

5,4 +h10Q(10)
5,5 +h12Q(12)

5,6 +h14Q(12)
5,7 ,

where each Q(i )
j ,k is a polynomial of degree i in the variables x = (m1,m2,m3, p1, p2, p3)T.

Taking the quotients p1,1

p1,5
, p1,2

p1,5
, p1,3

p1,5
and p1,4

p1,5
yields four functionally independent

integrals. Taking functionally dependent combinations of these, we are able to
form the following integrals that are preserved by the Kahan discretization

H̃1 = p2
1+p2

2+p2
3+O (h2)

1+O (h2)

H̃2 = p1m1+p2m2+p3m3+O (h2)
1+O (h2)

H̃3 = m2
1+m2

2+αm2
3+2γp3+O (h2)

1+O (h2)

H̃4 = m3,

where the first three integrals are modified versions of the continuous integrals.

7.2.5 Example 5: An ODE with many linear Darboux polynomials

Consider the following quadratic ODE in 4 dimensions

d

dt

⎛⎜⎜⎜⎝
x1
x2
x3
x4

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎝

9 x1
2 +48 x3x1 −40 x1x4 +24 x2

2 −48 x2x3 +48 x2x4 +48 x3
2 +24 x4x3 −132 x4

2 +x1
−2 x1

2 −12 x3x1 +12 x1x4 −5 x2
2 +12 x2x3 −14 x2x4 −12 x3

2 −6 x4x3 +38 x4
2 +x2

−4 x1
2 −24 x3x1 +24 x1x4 −14 x2

2 +28 x2x3 −28 x2x4 −25 x3
2 −12 x4x3 +76 x4

2 +x3
−2 x1

2 −12 x3x1 +12 x1x4 −6 x2
2 +12 x2x3 −12 x2x4 −12 x3

2 −6 x4x3 +37 x4
2 +x4

⎞⎟⎟⎟⎟⎠ .

The Jacobian determinant of the Kahan discretization of this ODE is

J = L1
4L2

4

D1
2D2

2D3
2D4

2
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where

L1 = h −2

L2 = h +2

D1 = −2+ (2 x1 +8 x4 +1
)

h

D2 = −2+ (4 x2 −2 x3 +1
)

h

D3 = −2+ (2 x2 −2 x4 +1
)

h

D4 = −2+ (4 x1 +6 x3 +2 x4 +1
)

h

The following 14 linear discrete Darboux polynomials pi ,1 for i = 1, ...,14 are
found corresponding to the cofactors Ci

i pi ,1 Ci

1 x1 +4 x4 +1 L1/D1

2 x1 +4 x4 L2/D1

3 2 x2 −x3 +1 L1/D2

4 −2 x2 +x3 L2/D2

5 x2 −x4 +1 L1/D3

6 −x2 +x4 L2/D3

7 2 x1 +3 x3 +x4 +1 L1/D4

8 2 x1 +3 x3 +x4 L2/D4

9 x1 −2 x2 +x3 +4 x4 L1L2/(D1D2)
10 x1 −x2 +5 x4 L1L2/(D1D3)
11 3 x3 +x1 −3 x4 L1L2/(D1D4)
12 −x2 +x3 −x4 L1L2/(D2D3)
13 −2 x2 +4 x3 +2 x1 +x4 L1L2/(D2D4)
14 −2 x1 +x2 −3 x3 −2 x4 L1L2/(D3D4)

(7.2.3)

We know that if
∏

i Cδi

i = 1 is satisfied, then
∏

i pi
δi is an integral. Solving for

the δi , we find the following nine integrals of the Kahan map

H̃1 =
p1,1p4,1

p2,1p3,1
, H̃2 =

p1,1p6,1

p2,1p5,1
, H̃3 =

p1,1p8,1

p2,1p7,1
, H̃4 =

p9,1

p2,1p3,1
,

H̃5 =
p10,1

p2,1p5,1
, H̃6 =

p11,1

p2,1p7,1
, H̃7 =

p1,1p12,1

p2,1p3,1p5,1
,

H̃8 =
p1,1p13,1

p2,1p3,1p7,1
, H̃9 =

p1,1p14,1

p2,1p5,1p7,1
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of which 3 are independent e.g.,

H̃4 = x1 −2 x2 +x3 +4 x4(
x1 +4 x4

)(
2 x2 −x3 +1

) , (7.2.4)

H̃5 = x1 −x2 +5 x4(
x1 +4 x4

)(
x2 −x4 +1

) , (7.2.5)

H̃6 = 3 x3 +x1 −3 x4(
x1 +4 x4

)(
2 x1 +3 x3 +x4 +1

) (7.2.6)

Moreover, we see that e.g.,

dx

p9,1p11,1p12,1p14,1
(7.2.7)

is a preserved measure of the Kahan map. Hence the Kahan map is super
integrable. Since the integrals (7.2.4) and the measure (7.2.7) do not depend on
the time step, it follows that they are all preserved by the ODE (7.2.3). We hope
to present further examples of ODEs with many linear Darboux polynomials in
a forthcoming paper.

7.2.6 Example 6 A Kahan map having a non-rational integral

Consider the ODE having vector field

d

d t

⎛⎜⎜⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎝

−2 x4
2 + (−2 x1 −x3 +5

)
x4 −x1

2 +x1 +x2 +3 x3

−2 x4
2 + (−2 x1 −x3 +3

)
x4 −x1

2 −x1 +x2 +3 x3

−2 x4
2 + (−2 x1 −x3 −5

)
x4 −x1

2 −3 x1 −3 x2 +x3

2 x4
2 + (2 x1 +x3

)
x4 +x1

2

⎞⎟⎟⎟⎟⎠ (7.2.8)

The Kahan map for this ODE has 2 Darboux polynomials p1 resp. p2 with
constant cofactors C1 resp. C2, where

C1 = 1+h/2

1−h/2

C2 = 1+h +5h2

1−h +5h2

p1 = 3 x1 −3 x2 +x3 +x4

p2 = 5 x1
2 +9 x1x2 −3 x3x1 +16 x4x1 +5 x2

2 +3 x2x3

+22 x4x2 +9 x3
2 +18 x4x3 +28 x4

2

By definition,
pi (xn+1) =Ci pi (xn)

and since Ci constant, we can solve for pi :

pi (xn) =αi C n
i
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where the αi are integration constants.

It also follows that

I := p1(xn)lnC2/ lnC1

p2(xn)

is an (h-dependent) generally non-rational integral of the Kahan map. Note
that in the continuum limit h → 0 this implies that

p2
1(x)

p2(x)

is a (rational) integral of the ODE (7.2.8).

7.2.7 Example 7: A 4D polarization map

Here we consider the 4-dimensional map presented in [9] (choosing a = 2,b =
1,c =−3, d =−1,e = 1 in their notation).

x ′
1 = x2

x ′
2 = 2hx1

2x2 −6hx1
2x4 −12hx1x2x3 −4hx1x3x4 −2hx2x3

2 +2hx3
2x4 +x1

D(x)
x ′

3 = x4

x ′
4 = −4hx1

2x2 −2hx1
2x4 −4hx1x2x3 +12hx1x3x4 +6hx2x3

2 +2hx3
2x4 +x3

D(x)

where the quartic D is*

D(x) := −28h2x1
2x2

2 +4h2x1
2x2x4 −40h2x1

2x4
2 +4h2x1x2

2x3 −28h2x1x2x3x4

−8h2x1x3x4
2 −40h2x2

2x3
2 −8h2x2x3

2x4 −16h2x3
2x4

2 +1

The determinant of the Jacobian of the map has the factorized form

J = K1

D3

where

K1(x) := −128h3x1
3x2

3 +456h3x1
3x2

2x4 −120h3x1
3x2x4

2 +496h3x1
3x4

3

+984h3x1
2x2

3x3 +432h3x1
2x2

2x3x4 +936h3x1
2x2x3x4

2 +336h3x1
2x3x4

3

+408h3x1x2
3x3

2 −864h3x1x2
2x3

2x4 +216h3x1x2x3
2x4

2 −528h3x1x3
2x4

3

−488h3x2
3x3

3 −192h3x2
2x3

3x4 −264h3x2x3
3x4

2 −80h3x3
3x4

3

−84h2x1
2x2

2 +12h2x1
2x2x4 −120h2x1

2x4
2 +12h2x1x2

2x3 −84h2x1x2x3x4

−24h2x1x3x4
2 −120h2x2

2x3
2 −24h2x2x3

2x4 −48h2x3
2x4

2 +1

*Erratum: In eqs (4.1) of [9], 1−4h2Δ should read 1+4h2Δ.
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Using J as cofactor, the resulting functionally independent Darboux polynomi-
als are

p1 = D(x)

p2 = (
x1x4 −x2x3

)
(4hx1

2x2
2 +4hx1

2x2x4 −6hx1
2x4

2 +4hx1x2
2x3 −24hx1x2x3x4

−4hx1x3x4
2 −6hx2

2x3
2 −4hx2x3

2x4 +2hx3
2x4

2 +x1x4 −x2x3)

p3 = 26hx1
3x2

2x4 +10hx1
3x2x4

2 +2hx1
3x4

3 −26hx1
2x2

3x3 −60hx1
2x2x3x4

2

−8hx1
2x3x4

3 −10hx1x2
3x3

2 +60hx1x2
2x3

2x4 +14hx1x3
2x4

3 −2hx2
3x3

3

+8hx2
2x3

3x4 −14hx2x3
3x4

2 +2 x1
2x2

2 +2 x1
2x2x4 +2 x1x2

2x3 −18 x1x2x3x4

−2 x1x3x4
2 −2 x2x3

2x4 +x3
2x4

2

The map thus possesses the preserved measure
∫ dx

p1
and the (independent) first

integrals p2

p1
and p3

p1
, in agreement with [9].

7.2.8 Example 8: sine-Gordon maps

In this subsection we consider (k +1)-dimensional maps that arise as so-called
(1,k) reductions of the discrete sine-Gordon equation [17].

We start with the case k = 3, then treat the case k = 2, before giving a general
theorem for arbitrary k.

The (1,3) sine-Gordon map.

The (1,3) sine-Gordon map φ is given by

x ′
i = xi+1, i = 0,1,2,

x ′
3 = 1−αx1x3

x0(x1x3 −α)
,

where α is a parameter. Using C1(x) = J , we find the corresponding Darboux

polynomials:

p1,1 = x3x2x1x0,

p1,2 = x0
2x1x2x3

2 −αx0
2x2x3 −αx0x1

2x3 −αx0x1x2
2

−αx0x1x3
2 −αx0x2

2x3 −αx1
2x2x3 +x1x2,

p1,3 = x0
2x1

2x2x3 +x0x1
2x2

2x3 +x0x1x2
2x3

2 −αx0
2x1x2

−αx1x2x3
2 +x0x1 +x0x3 +x3x2.

It follows that φ possesses the (independent) first integrals p1,2

p1,1
and p1,3

p1,1
, and the

preserved measure
∫ dx

p1,1
. These results were found using different methods in

ref [17].
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The (1,2) sine-Gordon map.

The (1,2) sine-Gordon map φ is given by

x ′
i = xi+1, i = 0,1,

x ′
2 = 1−αx1x2

x0(x1x2 −α)
.

Using C1(x) =−J , we find the corresponding Darboux polynomials:

p1,1 = x0x1x2,

p1,2 = x0
2x1x2

2 −αx0
2x2 −αx0x1

2 −αx0x2
2 −αx1

2x2 +x1,

p1,3 = x0
2x1

2x2 +x0x1
2x2

2 −αx0
2x1 −αx1x2

2 +x0 +x2.

It follows that φ possesses the (independent) first integrals p1,2

p1,1
and p1,3

p1,1
, and the

preserved measure
∫ dx

p1,1
. Note that this is one extra first integral, that was not

found using the Lax representation approach of ref [17]. Moreover, we find that
there is an additional cofactor C2(x) = J , for which we find the corresponding
Darboux polynomial

p2,1 =−x0
2x1x2

2 +αx0
2x2 −αx0x1

2 +αx0x2
2 −αx1

2x2 +x1.

Normally, a sole Darboux polynomial does not yield an integral, but, because
C2 =−C1, we find that

I := p2,1

p1,1

is a so-called 2-integral [13], i.e. an integral of φ◦φ. In this case I (x′) =−I (x).
This result was not found using the Lax matrix approach in [17].

The (1,k) sine-Gordon map.

The (1,k) sine-Gordon map φk is given by

x ′
i = xi+1, i = 0, . . . ,k −1,

x ′
k = 1−αx1xk

x0(x1xk −α)
,

(7.2.9)

where �k+1
2 � functionally independent rational integrals for this map were found

using a Lax matrix approach in [17].

Denote these integrals by I n
k (x) = N n

k (x)
Dn

k (x) , n = 1, . . . ,�k+1
2 �, and define

ε := (−1)k+1 (7.2.10)
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Theorem 7.2. For all n and k, the Darboux polynomials N n
k and Dn

k are given
by

N n
k (x′) =C (x)N n

k (x),

Dn
k (x′) =C (x)Dn

k (x),

where the cofactor C (x) depends only on k, and is given by C (x) = ε|Dφk (x)|.
The proof is given in appendix A.

7.3 Detecting Darboux polynomials and integrals

Given a rational map x′ =φ(x) : Rn →Rn containing k free parameters denoted
by α = (α1,α2, . . . ,αk ), one could ask if there exist particular choices of α

such that φ preserves additional second integrals. This amounts to solving the
non-linear cofactor equation

p(x′) =C (x;α)p(x) (7.3.1)

for the Darboux polynomial indeterminants as well as the parameters, where
C (x;α) can be non-linear in α.

7.3.1 Example 9: Extended McMillan map

Consider the following rational map φ(x) defined by

φ

(
x1

x2

)
=
(
−x2 − f (x1)

x1

)
,

where

f (x1) = α1 x1
3 +α2 x1

2 +α3 x1 +α4

α5 x1
2 +α2 x1 +α6

,

and α = (α1, . . . ,α6) are free parameters. The integrability of a special case
of this map was studied in [18]. The Jacobian of the map φ is J = 1. If all
parameters α are arbitrary, the equation

m(φ(x)) = m(x) (7.3.2)

has only one solution m1(x) = 1. Solving the cofactor equation α yields the
condition α1 = 0. This is an integrable map known as the McMillan map [19].
Enforcing this condition, one now finds two solutions to equation (7.3.2)

m1(x) = 1,

m2(x) = α5 x1
2x2

2 +α2

(
x1

2x2 + x1x2
2
)
+α3 x1x2 +α6

(
x1

2 + x2
2
)

+α4
(

x1 + x2
)

,

where m2(x) is a preserved integral of φ, in agreement with [19].
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7.3.2 Example 10: Two coupled Euler tops

We now consider two coupled Euler tops whose vector field is given by

d

dt

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎜⎝

a2
1x2x3

a2
2x3x1

a2
3x1x2 +a2

4x4x5

a2
5x5x3

a2
6x3x4

⎞⎟⎟⎟⎟⎟⎟⎠ .

This system was first presented in [16], and its integrals after discretisation were
first explored in [6], where the authors present the following three independent
integrals of motion

H1 = a2
2x2

1 −a2
1x2

2, H3 = a2
6x2

4 −a2
5x2

5,

H2 = a2
3a2

5x2
2 −a2

2a2
5x2

3 +a2
2a2

4x2
4,

however we note the existence of a fourth independent integral given by

H4 =
(
a1x2 +a2x1

)a5a6(
a5x5 +a6x4

)a1a2
,

hence the system is super-integrable. To our knowledge, the integral H4 may
be new. The Jacobian determinant of the Kahan map has the following factors

J = L1 L2 L3 L4 L5

D6 .

The cofactors Ci = Li
D , for i = 1, ...,5 admit the following linear Darboux poly-

nomials

p1,1(x) = a5x5 +a6x4,

p2,1(x) = a5x5 −a6x4,

p4,1(x) = a1x2 +a2x1,

p5,1(x) = a1x2 −a2x1,

however, the cofactor C3 admits no polynomial solutions, even up to degree 6.
Now we look for quadratic Darboux polynomials with the cofactors C6 :=C1C2

and C7 :=C4C5 and get the following

p6,1(x) = p1,1p2,1, p6,2(x) = (2−ha5a6x3)(2+ha5a6x3), (7.3.3)

p7,1(x) = p4,1p5,1, p7,2(x) = (2−ha1a2x3)(2+ha1a2x3). (7.3.4)
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We note that p6,2(x) and p7,2(x) also factorise. In the ODE case, if a Darboux
polynomial factorises, each factor is also a Darboux polynomial. In the discrete
case that need not be the case, and indeed it often is not true as

p6,2(x) = q6,1(x)q6,2(x), p7,2(x) = q7,1(x)q7,2(x),

where the qi , j (x) satisfy

q6,1(x′) =C1q6,2(x), q6,2(x′) =C2q6,1(x)

q7,1(x′) =C4q7,2(x), q7,2(x′) =C5q7,1(x)

which implies that each qi , j (x) is in fact a discrete Darboux polynomial of the
second iterate of the Kahan map. The Darboux polynomials from equations
(7.3.3) and (7.3.4) yield two independent integrals p6,1(x)

p6,2(x) and p7,1(x)
p7,2(x) , in agree-

ment with [6]. We also note that no Darboux polynomial measures are found
up to degree 6 using J as the cofactor.

We now now attempt to solve the cofactor equation

p(x′) =C3(x;α)p(x). (7.3.5)

For a polynomial basis of degree 2, equation (7.3.5) admits three conditions
that yield non-trivial Darboux polynomials: a3 = 0, a4 = 0 and a2

1a2
2 = a2

5a2
6.

The first two correspond to the decoupling of two of the equations and these
two less interesting cases have three independent discrete integrals each. The
third condition is presented in [6]. In this case the Jacobian determinant of the
Kahan discretization now factors as

J = L6
3L7

3

D6 .

Using C8 = L6L7

D2 as the cofactor, we get the following six Darboux polynomials

p8,1(x) = a4
2x2

1 −a2
5a2

6x2
2,

p8,2(x) = a2
2x1x5 −a2

6x2x4,

p8,3(x) = a2
2x1x4 −a2

5x2x5,

p8,4(x) = a2
2a2

4x2
4 −a2

2a2
5x2

3 +a2
3a2

5x2
2,

p8,5(x) = a2
2a2

4x2
5 −a2

2a2
6x2

3 +a2
3a2

6x2
2,

p8,6(x) = 4−a2
5a2

6x2
3h2.

Hence, the following measures are preserved∫
dx

p8,i (x)p8, j (x)p8,k (x)
, for any i , j ,k = 1, . . . ,6,
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and the following integrals are preserved

p8,i

p8,k
, for i �= k,

of which four are independent. The choice k = 6 yields the integrals presented
in [6].

7.3.3 Example 11: A family of Nambu systems with rational inte-

grals

Here we will consider Nambu systems, of the form

ẋ = c
(∇H ×∇K

)
, (7.3.6)

where c = y2−α, H = x
y , K = yαQ, Q is homogeneous and quadratic and α is a

free parameter. We get the following Jacobian determinant for the Kahan map

J = L2
1L2

D4 .

The cofactor C1 := L1/D has the following two Darboux polynomials at degree
one

p1,1 = x and p1,2 = y,

hence the integral H is preserved exactly by the Kahan method. The cofactor
C2 := L2/D2 has the following Darboux polynomial

p2,1 =Q.

Using C3 = |Dφ(x)| we find that the Kahan discretisation has three preserved
measures corresponding to the densities

p3,1 = x2Q, p3,2 = x yQ and p3,3 = y2Q,

which yields only one independent integral H .
Now choosing integer coefficients for Q, we can use our detection algorithm
to search for any values of the parameter α such that the Kahan discretisation
yields extra Darboux polynomial solutions. To do this, we solve the cofactor
equation

p(x′) = |Dφ(x)|p(x)

for α and the Darboux polynomial p of degree 4. This gives us the following
solutions for α and the corresponding additional second integral of the Kahan
discretisation:
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α Integrals
-2 H and K
-1 H and K
0 H and K̃0

1 H and K̃1

2 H and K̃2

where

K̃0 = Q
12+h2(1853 x y+3485 xz+938 y2+2665 y z+1435 z2)

K̃1 = yQ
1−h2(226 x2+211 x y+119 xz+64 y2+91 y z+49 z2)

K̃2 = y2Q
48−h2(26616 x2+23472 x y+11424 xz+6840 y2+8736 y z+4704 z2)−h4 A

and

A = 6309873 x3 z −10784832 x2 y z +1918455 x2z2 +27341015 x y3 +37337147 x y2z

−7467243 x y z2 −559776 xz3 +14528513 y4 +37680292 y3z

+19891900 y2z2 −428064 y z3 −115248 z4

7.4 Concluding remarks

We have proposed a systematic approach to search for the preserved measures
and integrals of a rational map and applied it to a number of examples. The
method is based on the use of Darboux polynomials. We have shown that the
method can be used to both determine and detect measures and integrals. Some
of the examples have required the use of relatively large computer memory
space and computational time.
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Appendix

Proof of Theorem 2.

In [17] it was shown that �k+1
2 � functionally independent integrals of the (1,k)

sine-Gordon map (7.2.9) are given by the trace of the Lax matrix L1,k :

Tr L1,k (x,λ) = Tr

⎡⎣( qx0/xk λ−2/xk

x0 q

)
k−1∏
l=0

(
p −xl+1

−λ2/xl pxl+1/xl

)⎤⎦ (7..1)

where pq = α. The individual integrals are given by the coefficients of the
various powers of the spectral parameter λ in the expansion of the rhs.

It was also shown in [17] that the sine-Gordon map φk is either measure pre-
serving or anti measure preserving, i.e. satisfies

P (x′) = ε|Dφk (x)|P (x), (7..2)

where P (x) :=∏k
l=0 xl , and ε is given by (7.2.10).

It is easy to see that the rhs of (7..1) is equal to

Tr

⎡⎣ 1

xk

(
qx0 λ−2

x0xk qxk

)
k−1∏
l=0

1

xl

(
pxl −xl xl+1

−λ2 xl+1

)⎤⎦
= Tr

⎡⎣( qx0 λ−2

x0xk qxk

)
k−1∏
l=0

(
pxl −xl xl+1

−λ2 xl+1

)⎤⎦/

[
k∏

l=0
xl

]
(7..3)

We now recognize that the denominator of the integrals (7..3) equals the Dar-
boux polynomial P in (7..2). Bearing in mind that the matrices in the trace in
(7..3) are all polynomial, it follows using Theorem 1 that this trace is also a
Darboux polynomial with the same cofactor C = ε|Dφk (x)|, for all values of λ.
�
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On the preservation of affine second integrals

by Runge-Kutta methods

Abstract. One can elucidate integrability properties of ordinary differential
equations (ODEs) by knowing the existence of second integrals. However,
little is known about how they are preserved, if at all, under numerical
methods. Here, we present a number of novel results about the preservation
of affine second integrals of ODEs when discretised by Runge-Kutta methods.
In particular, we show that all Runge-Kutta methods preserve all affine second
integrals with a modified discrete cofactor. We also discuss the preservation
of higher affine integrals and show that Runge-Kutta methods can preserve
some rational integrals for certain ODEs.

8.1 Introduction

Consider an autonomous ODE in Rn

ẋ = f(x), (8.1.1)

then a second integral [6] of (8.1.1) is a function p(x) that satisfies

ṗ(x) = c(x)p(x) (8.1.2)

where the dot denotes d
dt and c(x) is called the cofactor of p(x). Polynomial

second integrals of polynomial ODEs are also referred to as Darboux polyno-
mials. In contrast to (8.1.2), a discrete second integral (or discrete Darboux
polynomial when ϕh(x) is rational polynomial) of a map ϕh : Rn → Rn is a
function p(x) that satisfies

p(ϕh(x)) = c̃(x)p(x) (8.1.3)

where c̃(x) is called the discrete cofactor of p(x). This is a discrete analogue of
equation (8.1.2) and was recently introduced in [1, 2].

In this paper we will consider ODEs with one or more affine second integrals
of the form p(x) = pT x+ r where p ∈ Rn and r ∈ R. Note that we can take the
constant r = 0 without loss of generality. In particular, we focus on the case
where the map ϕh comes about as a Runge-Kutta method applied to an ODE
that possesses one or more second integrals. Letting ϕh(x) denote one step of
an s-stage Runge-Kutta method applied to (8.1.1) with initial condition x and
Butcher tableau given by

C A

bT (8.1.4)
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then this defines the method

gi =x+h
s∑

j=1
ai j f(g j ), for i = 1, ..., s (8.1.5)

ϕh(x) =x+h
s∑

j=1
b j f(g j ) (8.1.6)

where ϕh(x) is the Runge-Kutta map with time-step h applied to the initial
point x and A = [ai j ]. For explicit Runge-Kutta maps the sum in equation
(8.1.5) runs from 1 to i −1 as A is strictly lower triangular.

The paper begins with some general results about the preservation of affine
second integrals with general cofactors. We then focus on the special case
where the cofactor is constant. The final section is on the preservation of affine
higher integrals.

8.2 Preservation of affine second integrals

We begin with an example of a planar ODE and its discretisation by a second
order Runge-Kutta method.

Example 4. Consider the following ODE in two dimensions

ẋ = x2 +2 x y +3 y2, ẏ = 2 y
(
2 x + y

)
, (8.2.1)

This ODE was studied in [5] and has the following three linear Darboux poly-
nomials

p1(x) = x + y, p2(x) = x − y, p3(x) = y, (8.2.2)

that correspond to the cofactors

c1(x) = x +5y, c2(x) = x − y, c3(x) = 4x +2y. (8.2.3)

The system is discretised using Ralston’s method with a time step of h = 0.001
and the phase portrait on the square [−10,10]2 is presented in figure 8.2.1a.
Here, the level sets pi (x) = 0 for i = 1,2,3 are represented by blue dashed lines.
We see that numerical solutions starting on one of these zero level sets remain
on the level set. This is exemplified in figure 8.2.1b which shows the errors
pi (xn)−pi (x0) for the numerical solutions starting from pi (x0) = 0 and for i =
1,2,3. Here, we see that the errors are all within machine precision, implying
that these three second integrals are preserved by the Ralston method. �
Second integrals are important as they divide phase space into sections with
qualitatively different behavior. We see that Ralston’s method has preserves
the Darboux polynomials pi (x), meaning that it produces a qualitatively similar
phase portrait. This fact is due to the following theorem.
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(a)

0 0.2 0.4 0.6 0.8 1

10-16

10-15

10-14

(b)

Figure 8.2.1: The phase portrait of the ODE (8.2.1) and the errors of the second
integrals pi (x) for initial conditions satisfying pi (x0) = 0. Note that p3(xn)−p3(x0) = 0
and therefore does not show on the semi-log axis. The initial conditions are shown by
black dots and are located on the grid (−10+ i ,−10+ j ) for i , j = 0, ...,20.

Theorem 8.1. If an autonomous ODE ẋ = f(x) possesses an affine second
integral p(x) = pT x with cofactor c(x) satisfying pT f = c(x)pT x then a Runge-
Kutta map ϕh of the ODE possesses the discrete second integral pT x that
satisfies pT ϕh(x) = c̃(x)pT x where the discrete cofactor is given by

c̃(x) = 1+hbT Dc (I −hA Dc )−11s (8.2.4)

and Dc := diag([c(g1), ...,c(gs)]) ∈Rs×s .

Proof. Let ϕh denote the Runge-Kutta map defined by equations (8.1.4), (8.1.5)
and (8.1.6). Now let G := (g1, ..., gs)T and F := (f(gi ), ..., f(gs))T denote the s×n
matrices whose i ’th rows are g T

i and fT
i , respectively. Then

p(ϕh(x)) = pT x+h
s∑

j=1
b j pT f(g j ) = pT x+hbT F p = pT x+hbT DcGp (8.2.5)

We have for Gp the following

Gp = 1s pT x+hA F p = (I −h A Dc
)−1

1s pT x (8.2.6)

due to the fact that F p = DcGp. Inserting (8.2.6) into (8.2.5) and dividing by
pT x we arrive at the desired result

pT ϕh(x)

pT x
= c̃ = 1+hbT Dc (I −hA Dc )−11s . (8.2.7)
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This is a generalisation of theorem 1 in [1]. The discrete cofactor c̃(x) of
theorem 8.1 depends only on the Butcher table coefficients, the vector field f(x)
and the (continuous) cofactor c(x). Furthermore, c̃(x) is in general rational and
implicitly defined due the dependence of Dc on gi . However, explicit Runge-
Kutta maps applied to polynomial ODEs yield polynomial maps and one would
therefore expect c̃ to be known explicitly and be polynomial.

Remark 8.2. For all explicit Runge-Kutta methods, c̃(x) is polynomial and
can be written explicitly. This can be shown by observing that the matrix
I −hA Dc = I +L where L := −hA Dc is strictly lower triangular and there-
fore (I +L)−1 = I + L̃ where L̃ is also strictly lower triangular. Moreover, as
det(I +L) = 1, its inverse is equal to its adjugate, that is (I +L)−1 = adj(I +L) =
I + L̃ and therefore L̃ is polynomial in the components of L.

An important implication of theorem 8.1 is that if an ODE possesses two linear
second integrals with the same cofactor, then so does ϕh . This leads to the
following corollary about the preservation of rational integrals.

Corollary 8.3. All Runge-Kutta methods preserve rational first integrals of the
form H(x) =Q(x)/R(x) for Q(x) and R(x) affine.

Proof. Any ODE with first integral H(x) = Q(x)/R(x) can be written as the
following system

ẋ = f(x) = S(x)∇
(

Q(x)

R(x)

)
(8.2.8)

for some skew-symmetric matrix S(x) = −S(x)T . Without loss of generality
we can let Q(x) = qT x and R(x) = r T x for constant vectors q,r ∈ Rn . Then
computing their time derivatives gives

d

dt
Q(x) = qT f =

qT S(x)
(
qT x r − r T x q

)
R(x)2 = qT S(x)r

R(x)2 Q(x) (8.2.9)

due to skew-symmetry of S(x). Similarly, we can show that

d

dt
R(x) = qT S(x)r

R(x)2 R(x) (8.2.10)

that is, Q(x) and R(x) are second integrals with cofactor qT S(x)r
R(x)2 . Due to theorem

8.1, all Runge-Kutta methods preserve these second integrals and they both
correspond to the same discrete cofactor. Therefore their quotient is an integral
of the Runge-Kutta map.
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Note that corollary 8.3 applies to general ODEs. The same statement can me
made for polynomial ODEs by scaling (8.2.8) by R(x)a , a ≥ 2 and a ∈N. We
now give two examples of explicit Runge-Kutta methods preserving a rational
integral. The first is of a simple Lotka-Volterra system, the second is of a non-
polynomial vector field.

Example 5 (A Lotka-Volterra system with a rational integral). Consider the
following 2D Lotka-Volterra system

ẋ =x(x − y), (8.2.11)

ẏ =y(x − y). (8.2.12)

x and y are clearly Darboux polynomials with cofactor c = x − y implying that
H(x) = x

y is a first integral of the ODE. Now consider the generic second order
explicit Runge-Kutta map ϕh defined by the Butcher Tableau

0 0 0
θ θ 0

1− 1
2θ

1
2θ

(8.2.13)

Note that setting θ = 1/2,2/3,1 yields the explicit midpoint, Ralston’s and
Heun’s method respectively. Then according to theorem 8.1 the discrete poly-
nomial cofactor is

c̃(x) = 1+ (x1 − x2
)

h + (x1 −x2
)2 h2 + θ

2

(
x1 −x2

)3 h3. (8.2.14)

Indeed we can show that the Runge-Kutta map satisfies

ϕh(x) = c̃(x)x (8.2.15)

meaning that x and y are discrete Darboux polynomials of ϕh with cofactor c̃.
This implies that H(x) = x

y is a first integral of ϕh . �
Example 6 (A non-polynomial ODE with a rational integral). Consider the
following ODE

ẋ = 2 x +α(
x − y

) 3
2

, ẏ = 2 y +α(
x − y

) 3
2

(8.2.16)

which has the following two second integrals

p1(x) = x + y +α, p2(x) = x − y (8.2.17)

that both correspond to the cofactor

c(x) = 2(
x − y

)3/2
. (8.2.18)
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This means that H(x) = (x + y +α)/(x − y) is a first integral of the ODE. Now
apply to this ODE the generic second-order explicit Runge-Kutta map ϕh from
example 5. Then ϕh possesses the discrete second integrals p1(x) and p2(x)
with cofactor

c̃(x) =

⎛⎝h
�

x − y +a(x)

(((
x − y

) 3
2 +2h

)
θ−h

)⎞⎠
a(x)θ

(
x − y

) 3
2

(8.2.19)

where

a(x) =
√((

x − y
) 1

2 +2hθ
(
x − y

)− 1
2

)
, (8.2.20)

in agreement with theorem 8.1 hence H(x) is an integral of ϕh . We can also
verify by direct computation that ϕh satisfies H(ϕh(x)) = H(x). �

8.2.1 Constant cofactor case

We now restrict our discussion to the special case of affine Darboux polynomials
with constant cofactor

ṗ(x) =λp(x), (8.2.21)

where λ is constant. If such a Darboux polynomial exists then we can solve for
p(x)

p(x) = K eλt , (8.2.22)

for some arbitrary constant K , and therefore

H = p(x)e−λt (8.2.23)

is a time-dependent integral of the ODE (8.1.1).

In the discrete-time case, p(ϕh(x)) = c̃p(x) implies that

p(x) = K c̃k , (8.2.24)

where k is the iteration index and

H̃ = c̃−k p(x), (8.2.25)

is an integral of the map ϕ◦k
h . We now consider the case where the map ϕh

comes about as a Runge-Kutta method applied to an ODE that possesses one
or more Darboux polynomials of the form (8.2.21).

We begin with an example of a Lotka-Volterra system with a time-dependent
integral and its discretisation under a Runge-Kutta method.
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Example 7 (An ODE with one time-dependent integral). Consider the follow-
ing Lotka-Volterra system

d

dt

⎛⎜⎝ x1

x2

x3

⎞⎟⎠=
⎛⎜⎝ x1

(
a1x2 −a2x3 +b

)
x2
(−a1x1 +a3x3 +b

)
x3
(
a2x1 −a3x2 +b

)
⎞⎟⎠ (8.2.26)

Then p1(x) = x1+x2+x3 is a Darboux polynomial corresponding to the cofactor
c1 = b, hence

H = p1(x)e−bt (8.2.27)

is a time-dependent integral of the ODE (8.2.26). Now consider discretisation
of the above ODE by a Runge-Kutta method ϕh with stability function R(z).
Then, p1(x) is also a discrete Darboux polynomial of a with the cofactor c̃1 =
R(bh), hence

H̃ = R(bh)m p1(x) (8.2.28)

where m is the iteration index, is a step-dependent integral of ϕh . �
We note that this example holds for any Runge-Kutta method ϕh . This is due
to the following corollary due to theorem 8.1.

Corollary 8.4. If an autonomous polynomial ODE ẋ = f(x) possesses an affine
Darboux polynomial p(x) with a constant cofactor λ, then a Runge-Kutta map
ϕh with stability function R(z) satisfies

p(ϕh(x)) = R(λh)p(x) (8.2.29)

where
R(z) = 1+ zbT (I − zA )−11 (8.2.30)

is the (constant) discrete cofactor, 1 is the ones vector and I is the s × s identity
matrix.

Proof. This can be seen by setting c(x) =λ in theorem 8.1. However, we note
that as Runge-Kutta methods are affinely equivariant [8], we can take p(x) = x1

without loss of generality, then equation (8.2.21) is identical to Dahlquist’s
famous test ODE [10] and R(z) is identical to the the stability function in the
context of A-stability of one-step methods. The rest follows from e.g., [10,
Proposition 3.1]. See appendix 8.A for details.

As the existence of Darboux polynomials with constant cofactors implies the
existence of time-dependent integrals of an ODE and therefore iteration-index-
dependent integrals of a Runge-Kutta map in the discrete-time case. One can
eliminate this time dependence (and iteration index dependence) by taking
quotients. This leads to the preservation of non-rational modified integrals by
Runge-Kutta methods.
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Corollary 8.5. Given an ODE with a first integral given by

H(x) = p1(x)σ

p2(x)
(8.2.31)

where p1(x) and p2(x) are affine Darboux polynomials with constant cofactors
c1 and c2 and

σ= c2

c1
, (8.2.32)

then any Runge-Kutta map ϕh with stability function R(z) preserves the modi-
fied integral

H̃(x) = p1(x)σ̃

p2(x)
(8.2.33)

with
σ̃= ln(R(hc2))

ln(R(hc1))
. (8.2.34)

Proof. According to corollary 8.4, ϕh preserves the Darboux polynomials
p1(x) and p2(x) with the modified cofactors R(hc1) and R(hc2). It follows
that H̃(x) is also a Darboux polynomial of ϕh with cofactor 1, and hence is a
first integral of ϕh .

This is demonstrated by the following example.

Example 8 (An ODE with a non-rational integral). Consider the following
ODE in three dimensions

d

dt

⎛⎜⎝ x1

x2

x3

⎞⎟⎠=
⎛⎜⎝ x1x2 +x2x3 +x1

−x1x2 −x2x3 +x2

(σ−1)
(
x1 +x2

)+σx3

⎞⎟⎠ (8.2.35)

where σ ∈ R. Discretising the above ODE by a Runge-Kutta method ϕh with
stability function R(z), we find the following affine Darboux polynomials and
their corresponding discrete constant cofactors

pi (x) c̃i (x)
i = 1 x1 +x2 R(h)
i = 2 x1 +x2 +x3 R(σh)

(8.2.36)

Therefore

H̃ = (x1 +x2)σ̃

x1 +x2 +x3
(8.2.37)

defines an h-dependent integral of ϕh with

σ̃= ln
(
R(σh)

)
ln
(
R(h)

) . (8.2.38)
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8.3 ODEs with affine higher integrals

We can take the continuum limit lim
h→0

(σ̃) = σ, which implies that lim
h→0

H̃(x) =
H(x), where

H(x) = (x1 +x2)σ

x1 +x2 +x3
. (8.2.39)

Indeed, the irrational integral H(x) is preserved by the flow of the original
ODE. �

8.3 ODEs with affine higher integrals

The notion of first, second, third* and higher integrals can be generalized by
considering solutions of the linear system for p(x) = (p1(x), p2(x), ..., pm(x))T ∈
Rm satisfying [6]

ṗ(x) = L(x)p(x) (8.3.1)

where L(x) ∈Rn×n . If Li j = 0 for j = 1, ...,n then pi (x) is a first integral and is
preserved from arbitrary initial conditions. If Li i �= 0 and Li j = 0 for j �= i then
pi (x) is a Darboux polynomial with cofactor Li i and is preserved for initial
conditions that begin on its zero level sets. If, for example, Li k �= 0 and Li j = 0
for j �= i ,k then pi (x) is preserved for initial conditions starting on the zero
level sets of pk (x). Here, if pk (x) is a first integral, then pi (x) is called a third
integral. In this sense, one can define the notion of higher integrals for ODE
systems. In this section we consider Runge-Kutta methods applied to ODEs
with a sub-system of affine higher integrals with constant coefficient matrix L.

Corollary 8.6. Consider an autonomous ODE in n dimensions that possesses a
system of m ≤ n linearly-independent affine polynomials p(x) = (p1(x), ..., pm(x))T ∈
Rm satisfying

ṗ(x) = Lp(x) (8.3.2)

where L is a m ×m matrix that is independent of x. Then a Runge-Kutta map
ϕh satisfies

p(ϕh(x)) = R(hL)p(x) (8.3.3)

where R(z) is the stability function of ϕh .

Proof. Let p(x) = Dx, where D is an m ×n matrix of rank m ≤ n. The numeri-
cal solution of ϕh applied to a linear ODE in n dimensions ṗ = Lp is given by
(see for example, [7, p. 194])

ϕh(p) = R(hL)p. (8.3.4)

As Runge-Kutta methods commute with linear transformations we have ϕh(p(x)) =
p(ϕh(x)), which yields the desired result.

*A third integral is a function K (x) that is preserved on a particular level set of a first integral
H(x), e.g., K̇ (x) = c(x)H(x)
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On the preservation of affine second integrals by Runge-Kutta methods

We remark that an ODE in n dimensions cannot possess more than n func-
tionally independent affine Darboux polynomials with constant cofactor. We
demonstrate corollary 8.6 in an example where L is given in Jordan form. But
first we will will briefly introduce a particular class of Runge-Kutta methods
called diagonal Padé Runge-Kutta methods.

Definition 8.1. A diagonal Padé Runge-Kutta map is an s-stage Runge-Kutta
map ϕh whose stability function R(z) = P (z)

Q(z) has equal degree in the numerator
and denominator, that is deg(P (z)) = deg(Q(z)). Such a stability function is an
order s approximation to ez with numerator and denominator given by

P (z) =
s∑

i=0
ai zi (8.3.5)

Q(z) =
s∑

i=0
(−1)i ai zi = P (−z) (8.3.6)

where ai are the constants

ai = s!(2s − i )!

(2s)!i !(s − i )!
. (8.3.7)

See, for example, [9] and references therein. Such a map has a stability function
that satisfies R(−z)R(z) = 1.

As an example of some well known Diagonal Padé Runge-Kutta methods, con-
sider the Runge-Kutta map ϕh(x) = x′ defined by

x′ −x

h
= (1−2θ)f(

x+x′

2
)+θf(x′)+θf(x) (8.3.8)

then its stability function is the diagonal Padé approximation

R(λh) = 1+ 1
2λh

1− 1
2λh

. (8.3.9)

Note that the three cases θ = 0, θ = 1
2 and θ =−1

2 respectively correspond to the
midpoint rule, trapezoidal rule and Kahan’s method, the latter being when f(x)
is quadratic [4].

Example 9 (A 3D ODE with a 2D linear subsystem in Jordan form). Consider
the following quadratic ODE in 3 dimensions

d

dt

⎛⎜⎝ x1

x2

x3

⎞⎟⎠=
⎛⎜⎝ x1x2 +x2x3 +σx2

−x1x2 −x2x3 +σx1(
x1 +x2

)+σx3

⎞⎟⎠ (8.3.10)
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8.3 ODEs with affine higher integrals

Setting p(x) = (x1 + x2 + x3, x1 + x2)T then the above ODE has the following
linear subsystem

ṗ(x) =
(
σ 1
0 σ

)
p(x) := Lp(x) (8.3.11)

If we apply Kahan’s method then we get

p(ϕh(x)) =

⎛⎜⎝ −hσ−2
hσ−2 4 h

(hσ−2)2

0 −hσ−2
hσ−2

⎞⎟⎠p(x) (8.3.12)

=
(

R(hσ) R ′(hσ)
0 R(hσ)

)
p(x) = R(hL)p(x), (8.3.13)

which is the form prescribed in corollary 8.6.
�

It is known that when the Kahan map is applied to a Hamiltonian ODE that it
preserves a modified Hamiltonian [4] and the midpoint rule preserves quadratic
first integrals. However, there exists some cases where the Kahan map (as well
as other diagonal Padé Runge-Kutta maps) preserves a quadratic first integral
exactly as we will show in the following example.

Example 10 (An ODE with a quadratic integral that is preserved exactly).
Consider the quadratic ODE in three dimensions

d

dt

⎛⎜⎝ x1

x2

x3

⎞⎟⎠=
⎛⎜⎝ 2 x2 +x1 +x3 +x3

(
x1 +x2

)+x1
2

−x1 −x2 −x3
(
x1 +x2

)−x1
2

x3
(
x1 +x2

)+x1
2

⎞⎟⎠ (8.3.14)

Setting p(x) = (x1 +x2, x2 +x3)T then this satisfies

ṗ(x) =
(

0 1
−1 0

)
p(x) (8.3.15)

If we apply the Kahan discretisation to the above ODE we find that p1(x) =
‖p(x)‖2 = (x1 + x2)2 + (x2 + x3)2 is a quadratic Darboux polynomial of ϕh

with cofactor c̃ = 1. Therefore H(x) = ‖p(x)‖2 is an integral of the map, i.e.,
H(ϕh(x)) = H(x). Moreover, we find that any diagonal Padé Runge-Kutta map
preserves this integral. This is due to the following corollary. �
Corollary 8.7. Given an ODE ẋ = f(x), if there exists m linear polynomials
p(x) = (p1(x), p2(x), ..., pm(x))T that satisfy

ṗ = ASp(x), where A =−AT and S = ST (8.3.16)

then H(x) = p(x)T Sp(x) is a first integral of the ODE and any diagonal Padé
Runge-Kutta map (e.g., one of the form (8.3.8)) preserves this integral exactly.
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On the preservation of affine second integrals by Runge-Kutta methods

Proof. Using the fact that R(z) = P (z)P (−z)−1 = P (−z)−1P (z), P (h AS)T =
P (−hS A) and P (hS A)S = S P (h AS) then it’s straight forward to show that H is
preserved under ϕh

H(ϕh(x)) =p(x)T R(h AS)T SR(h AS)p(x) (8.3.17)

=p(x)T P (−h AS)−T P (h AS)T SP (h AS)P (−h AS)−1p(x) (8.3.18)

=p(x)T P (hS A)−1P (−hS A)SP (h AS)P (−h AS)−1p(x) (8.3.19)

=p(x)T SP (h AS)−1P (−h AS)P (−h AS)−1P (h AS)p(x) (8.3.20)

=p(x)T Sp(x) (8.3.21)

=H(x) (8.3.22)

We can therefore make the following statement about linear ODEs with quadratic
integrals.

Corollary 8.8. For all linear ODEs with quadratic first integrals, all diagonal
Padé Runge-Kutta maps preserve the integral exactly.

Proof. A linear ODE with a quadratic integral H = 1
2 xT Sx can be written in the

form

ẋ = A∇H = ASx (8.3.23)

for A = −AT and S = ST , which is in the form of (8.3.16) and according to
corollary 8.7, all diagonal Padé Runge-Kutta maps preserve the integral H

This is a slight generalisation of proposition 5 in [3].

Corollary 8.7 also applies to ODEs with multiple quadratic integrals as shown
in the following example.

Example 11 (A 5D system with 2 quadratic integrals preserved exactly). Con-
sider the following ODE

d

dt

⎛⎜⎜⎜⎜⎜⎜⎝
x1
x2
x3
x4
x5

⎞⎟⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎜⎝

x3
2 +2 x3x4 +2 x3x5 +2 x4

2 +2 x4x5 +2 x5
2 −10 x1 −17 x2 −7 x3 −5 x4 +4 x5

−x3
2 −2 x3x4 −2 x3x5 −2 x4

2 −2 x4x5 −2 x5
2 +6 x1 +11 x2 +5 x3 +5 x4 −3 x5

x3
2 +2 x3x4 +2 x3x5 +2 x4

2 +2 x4x5 +2 x5
2 −x2 −x3 −4 x4 +2 x5

−x1 −2 x2 −x3 +2 x4
x1 +3 x2 +2 x3 +2 x4 −2 x5

⎞⎟⎟⎟⎟⎟⎟⎠
(8.3.24)
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8.3 ODEs with affine higher integrals

Let λ = 2+ i , where i 2 = −1 and discretise the ODE using Kahan’s method,
which is a diagonal Padé Runge-Kutta map. We find the following affine dis-
crete Darboux polynomials with constant cofactor.

j p j (x) c̃ j

1 −i x4 +x1 +2 x2 +x3 R(λh)
2
(
106+52 i

)
x2 +41 x3 −

(
52−24 i

)
x5 +
(
65+52 i

)
x1 +
(
12−15 i

)
x4 R(−λh)

3 i x4 +x1 +2 x2 +x3 R(λ∗h)
4
(
106−52 i

)
x2 +41 x3 −

(
52+24 i

)
x5 +
(
65−52 i

)
x1 +
(
12+15 i

)
x4 R(−λ∗h)
(8.3.25)

From the above four linear Darboux polynomials, we can construct the follow-
ing complex quadratic integrals

K1 = p1(x)p2(x), K2 = p3(x)p4(x), (8.3.26)

however if we observe that K1 = K ∗
2 then the following two independent real

integrals can be constructed

H1 = K1 +K2, H2 = i (K1 −K2). (8.3.27)

As these two integrals are independent of h, it follows that the ODE also pos-
sesses these integrals. �

8.3.1 Detecting the existence of affine higher integrals

Many of our results in this section so far rely on the fact that there exist a
change of coordinates p(x) = Dx that allow us to find a linear ODE subsystem
of higher integrals of the form ṗ = Lp. A logical question to ask is what is the
most general class of ODEs where this sub-system exists and how to calculate
this transformation. This is now addressed.

Theorem 8.9. If an ODE in n dimensions can be expressed in the following
form

ẋ = Ax+
k∑

i=1
bi (x)vi (8.3.28)

for the scalar functions bi (x) and the matrix V := [v1, ...,vk ] ∈ Rn×k has rank
n −m, where m < n, then there exists the linear transformations p =Qx ∈Rm

and y = Rx ∈Rn−m that decouple the ODE into an m dimensional linear ODE
for p and an n −m dimensional non-linear ODE for y

ṗ =Lp (8.3.29)

ẏ =g (p,y) (8.3.30)

(8.3.31)

for some matrix L.
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On the preservation of affine second integrals by Runge-Kutta methods

Proof. Given an ODE in the form (8.3.28), then choose the linear transforma-
tion p =Qx such that vi ∈ ker(Q). Multiplying the ODE (8.3.28) by Q gives

Qẋ =Q Ax+
k∑

i=1
bi (x)Qvi =Q Ax = ṗ, (8.3.32)

which gives the form of the decoupled linear part of the ODE (8.3.29). Now
we need to construct the n −m non-linear part of the ODE (8.3.30). To do this,
we simply choose some matrix R ∈ R(n−m)×n whose rows are independent to
the rows in Q. This then defines the one-to-one transformation

z :=
(

p

y

)
=
(

Q
R

)
x :=Gx (8.3.33)

Then the transformed ODE
ż =Gf(z)

is in the desired form.

A logical question now is how does one find such a linear transformation. We
will address this now by presenting a systematic algorithm to transform an ODE
given in the form (8.3.28) into its decoupled form (8.3.29) and (8.3.30).

Algorithm 8.1. Given an ODE ẋ = f(x)

1. Let i = 1.

2. Solve the condition ∇pi (x)T f(x) = λpi (x) for affine pi (x) and constant
λi .

(a) If there is no solutions, or they have all been used in successive
steps, then end the algorithm.

(b) If there are one or more solutions, pick one, set i → i +1 and
move to the next step.

3. Set pi−1(x) = 0 in f and solve the condition ∇pi (x)T f(x)
∣∣∣

pi−1(x)=0
=λi pi (x)

for pi (x) and λi .

(a) If there is a solution, then set i → i +1 and repeat step 3

(b) If there is no solution, go back to step 2 and pick a different
Darboux polynomial solution

4. Calculate Q =∇p(x)

5. Calculate L from ∇(Q. f ) = LQ
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8.3 ODEs with affine higher integrals

6. Choose a matrix R s.t.

G =
(

Q
R

)
(8.3.34)

has full rank. Then the ODE

ż =Gf(z) (8.3.35)

is in the desired form. End algorithm.

We will now demonstrate this algorithm with an example.

Example 12 (Example of algorithm 8.1). Consider the following vector field
in five dimensions

d

dt

⎛⎜⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎜⎝

−2 x1x3 +5 x2
2 +x4

2 −2 x5
2 +x2 +x5(−2 x3 +15

)
x1 +5 x2

2 +x4
2 −2 x5

2 +6 x2 +12 x3 +8 x4 +x5(
2 x3 +2

)
x1 −5 x2

2 −x4
2 +2 x5

2 +x3 +2 x4 −x5(
2 x3 −7

)
x1 −5 x2

2 −x4
2 +2 x5

2 −3 x2 −6 x3 −3 x4 −x5

x1x3 −2 x2
2 +x5

2

⎞⎟⎟⎟⎟⎟⎟⎠
(8.3.36)

We will now implement algorithm 1 to decouple this ODE into a set of linear
and non-linear equations. First look for an affine Darboux polynomial that has
a constant cofactor. We find the following Darboux polynomial

p1 = x1 +x2 +2 x4 (8.3.37)

with cofactor 1 is the only affine Darboux polynomial that has constant cofactor.
Now eliminate a variable from the vector field by setting p1 = 0, for example,
by substituting x1 =−x2 −2x4 into f.

d

dt

⎛⎜⎜⎜⎜⎝
x2

x3

x4

x5

⎞⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎝
(−2 x3 +15

)(−x2 −2 x4
)+5 x2

2 +x4
2 −2 x5

2 +6 x2 +12 x3 +8 x4 +x5(
2 x3 +2

)(−x2 −2 x4
)−5 x2

2 −x4
2 +2 x5

2 +x3 +2 x4 −x5(
2 x3 −7

)(−x2 −2 x4
)−5 x2

2 −x4
2 +2 x5

2 −3 x2 −6 x3 −3 x4 −x5(−x2 −2 x4
)

x3 −2 x2
2 +x5

2

⎞⎟⎟⎟⎟⎠
(8.3.38)

We now look for Darboux polynomials with constant cofactor on the resulting
four dimensional vector field and find

p2 =−x2 +x3 −2 x4 (8.3.39)

also with cofactor 1. We now substitute x2 = x3 −2x4 and compute constant
cofactor Darboux polynomials on the resulting three dimensional system

d

dt

⎛⎜⎝ x3

x4

x5

⎞⎟⎠=
⎛⎜⎜⎝ −(2 x3 +2

)
x3 −5

(
x3 −2 x4

)2 −x4
2 +2 x5

2 +x3 +2 x4 −x5

−(2 x3 −7
)

x3 −5
(
x3 −2 x4

)2 −x4
2 +2 x5

2 −9 x3 +3 x4 −x5

−x3
2 −2

(
x3 −2 x4

)2 +x5
2

⎞⎟⎟⎠
(8.3.40)
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On the preservation of affine second integrals by Runge-Kutta methods

this vector field has the polynomial p3 = x4 − x3 with cofactor 1. Substituting
x3 = x4 into the above three dimensional vector field, we find that there are
no more affine Darboux polynomials with constant cofactor. Setting p(x) =
(p1(x), p2(x), p3(x))T , we can write p(x) =Qx, where

Q =

⎡⎢⎢⎢⎣
1 1 0 2 0

0 −1 1 −2 0

0 0 −1 1 0

⎤⎥⎥⎥⎦ (8.3.41)

It must therefore be possible to write the original ODE as the following decou-
pled set of ODEs

ṗ =Lp (8.3.42)

ẏ =g (y,p) (8.3.43)

where L is triangular. Multiplying the ODE ẋ = f(x) by Q, we get the identity
Qf(x) = Lp. In other words, Qf(x) = Bx must be linear. The coefficients of the
matrix L can therefore be easily found by solving the linear problem B = LQ.
Doing so, we find

L =

⎡⎢⎢⎢⎣
1 0 0

1 1 0

−9 −6 1

⎤⎥⎥⎥⎦ (8.3.44)

We can now define the linear transformation(
p
y

)
=
[

Q
R

]
x (8.3.45)

where R is any 2×n matrix whose rows are independent to the rows of Q. We
will choose R = [0, I2]. Hence by the above linear transformation, the ODE
reads

ṗ = Lp, (8.3.46)

ẏ1 = 2 p1p3 −5 p2
2 − y1

2 +2 y2
2 −7 p1 −3 p2 −6 p3 −3 y4 − y5, (8.3.47)

ẏ2 = p1p3 −2 p2
2 + y2

2. (8.3.48)

�
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Appendix

8.A Derivation of stability matrix for corollary 8.4

Let ϕh denote the Runge-Kutta map defined by equations (8.1.4), (8.1.5) and
(8.1.6). Now let G = (g1, g2, ..., gs)T denote the s ×n matrix whose i ’th row is
g T

i . Then if f (x) =λx as in the case of our test equation (8.1.5) can be written
as

G = 1xT +hλA G = (I −hλA )−11xT (8.A.1)

We therefore have

gi =GT êi =
(
êi

T (I −hλA )−11
)

x (8.A.2)

where êi ∈Rs is the i ’th canonical unit basis vector with a 1 in the i ’th compo-
nent and 0 elsewhere. Inserting this into equation (8.1.6) gives

ϕh(x) =x +hλ
s∑

j=1
b j êi

T (I −hλA )−11x (8.A.3)

=(1+hλbT (I −hλA )−11)x (8.A.4)
:=R(λh)x (8.A.5)
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Symplectic integration of PDEs using Clebsch

variables

Abstract. Many PDEs (Burgers’ equation, KdV, Camassa-Holm, Euler’s
fluid equations,. . . ) can be formulated as infinite-dimensional Lie-Poisson
systems. These are Hamiltonian systems on manifolds equipped with Poisson
brackets. The Poisson structure is connected to conservation properties and
other geometric features of solutions to the PDE and, therefore, of great
interest for numerical integration. For the example of Burgers’ equations
and related PDEs we use Clebsch variables to lift the original system to a
collective Hamiltonian system on a symplectic manifold whose structure is
related to the original Lie-Poisson structure. On the collective Hamiltonian
system a symplectic integrator can be applied. Our numerical examples show
excellent conservation properties and indicate that the disadvantage of an
increased phase-space dimension can be outweighed by the advantage of
symplectic integration.

9.1 Motivation

Partial differential equations (PDEs) often exhibit interesting structure preserv-
ing properties, for example conserved quantities. In many examples, a deeper
understanding of the structures can be achieved by viewing the PDE as the
Lie-Poisson equation associated to an infinite-dimensional Lie group. This
means solutions to the PDE correspond to motions of a Hamiltonian system de-
fined on the dual of the Lie-algebra of a Fréchet Lie-group. Examples include
Euler’s equations for incompressible fluids, Burgers’ equation, equations in
magnetohydrodynamics, the Korteweg-de Vries equation, the superconductiv-
ity equation, charged ideal fluid equations, the Camassa-Holm equation and the
Hunter-Saxton equation [16]. Conserved quantities turn out to be related to the
fact that the Hamiltonian flow preserves the Lie-Poisson bracket. This makes
Lie-Poisson structures interesting for structure preserving integration. We will
give a brief review of Hamiltonian systems on Poisson manifolds in section 9.2.

An approach to construct Lie-Poisson integrators, which works universally in
the finite-dimensional setting, is to translate the Lie-Poisson system on a Lie-
group G to a Hamiltonian system on the tangent bundle TG with a G-invariant
Lagrangian. Using a variational integrator one obtains a Poisson-integrator for
the original system [12]. These integrators, however, can be extremely compli-
cated [15, p. 1526]. Moreover, the fact that exponential maps do not constitute
local diffeomorphisms for infinite-dimensional manifolds restricts the approach
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to a finite-dimensional setting. Other approaches for energy preserving integra-
tion of finite dimensional Poisson systems with good preservation properties,
e.g. preservation of linear symmetries or (quadratic) Casimirs, include [1, 3, 4].
For a recent review article on Lie-Poisson integrators we refer to [5].

Let us return to the infinite-dimensional setting. For numerical computations
a PDE needs to be discretised in space. In the Lie-Poisson setting this cor-
responds to an approximation of the dual of a Lie algebra g∗ by a finite-
dimensional space. The space g∗ typically corresponds to some space of Rk-
valued functions defined on a manifold. The most natural way of discretising g∗

is to introduce a grid on the manifold and identify a function with the values it
takes over the grid. In this way we naturally obtain a finite-dimensional approx-
imation of g∗. However, the approximation does not inherit a Poisson structure
in a natural way, as we will see in the example of the Burgers’ equation (remark
9.3). Therefore, finding a spatial discretisation with good structure preserving
properties is a challenge.

Lie-Poisson systems (g∗, {, }, H) can be realised as collective Hamiltonian sys-
tems (M ,Ω, H ◦ J ) on symplectic manifolds, where J : M → g∗ is a Poisson
map. The flow of (M ,Ω, H ◦ J ) maps fibres of J to fibres of J and is symplectic.
Therefore, it decends to a Poisson map on the original system (g∗, {, }, H). Since
the Hamiltonian vector field to H ◦ J on (M ,Ω) is J-related to the Hamiltonian
vector field to H on (g∗, {, }), motions of (M ,Ω, H ◦ J ) decend to motions of
(g∗, {, }, H).

The reason to consider a collective system for numerical integrations rather
than the Lie-Poisson system directly is that the symplectic structure can easily
be preserved under spacial discretisations and widely applicable, efficient sym-
plectic integrators are available [6]. The challenge of integrating (g∗, {, }, H) in
a structure preserving way thus shifts to finding a realisation, i.e. (M ,ω) and
J : M → g∗, such that all initial conditions of interest lie in the image of J and
such that the system (M ,Ω, H ◦ J ) is practical to work with.

A practical choice for a realisation is where J is a Clebsch map [10]: let X be
a Riemannian manifold and let M = T ∗C ∞(X ,Rk ) ∼=C∞(X ,Rk )×C∞(X ,Rk )∗,
where C∞(X ,Rk )∗ is identified with C∞(X ,Rk ) via the L2 pairing. The vector
space M is equipped with the symplectic form

Ω((u1,u2), (v1, v2)) =
∫

X
(〈u1, v2〉Rk −〈u2, v1〉Rk )dvolX ,

where 〈., .〉Rk denotes the scalar product in Rk . For an element ( f , g ) ∈ M we
denote the post-composition of f and g by the projection map to the j th compo-
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nent of Rk by q j ( f ) and p j (g ), respectively. In other words, q1, . . . , qk , p1, . . . , pk

are maps M →C ∞(X ,R) such that for x ∈ X

( f (x), g (x)) =
((

q1( f )(x), . . . , qk ( f )(x)
)
,
(
p1(g )(x), . . . , pk (g )(x)

))
.

Identifying tangent spaces of the vector space M with itself, we may write Ω as

Ω=
∫

X

⎛⎝ k∑
j=1

dq j ∧dp j

⎞⎠dvolX =
∫

X
〈dq ∧dp〉Rk dvolX ,

where q = (q1, . . . , qk ) and p = (p1, . . . , pk )*. If J : M → g∗ is a realisation
of a Lie Poisson system (g∗, {, }), then J is called a Clebsch map and (q, p)
are called Clebsch variables. In Clebsch variables Hamilton’s equations for
H̄ = H ◦ J : M →R are in canonical form, i.e.

qt = δH̄

δp
, pt =−δH̄

δq
,

where δH̄
δq and δH̄

δp are variational derivatives. The reason why Clebsch vari-
ables are a natural choice of coordinates for a structure preserving setting is
that if X is discretised using a mesh then the integral in the expression for
Ω naturally becomes a (weighted) sum over all mesh points and Hamilton’s
equations for the discretisation of the collective system (M ,Ω, H ◦ J ) are in (a
scaled version of the) canonical form. This means the system can be integrated
using a symplectic integrator like, for instance, the midpoint rule. The setting
is summarised in table 9.1.1.

The symplectic system in Clebsch variables has, after spatial discretisation,
twice as many variables as the discretisation of the PDE in the original variables.
An increase in the amount of variables needs some justification because it does
not only lead to more work per integration step but, thinking of multi-step
methods versus one-step methods, can also lead to worse stability behaviour
[6, XV]. Moreover, integrating a lifted, symplectic system with a symplectic
integrator instead of the original system with a non-symplectic integrator is not
necessarily of any advantage. If, for instance, we integrate the Hamiltonian
system

u̇ = F (u) = ∇p〈F (u), p〉
ṗ =−DF (u)T p =−∇u〈F (u), p〉

*The notation is natural when considering M as a Fréchet manifold over C∞(X ,R) or
C∞(X ,Rk ) with coordinates (q1, . . . , qk , p1, . . . , pk ) or (q, p), respectively.
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Continuous system Spatially discretised system

Collective Hamiltonian system on an
infinite-dimensional symplectic vector
space in Clebsch variables

qt = δH̄
δp , pt =−δH̄

δq .

Exact solutions preserve the symplectic
structure, the Hamiltonian H̄ = H ◦ J ,
all quantities related to the Casimirs of
the original PDE and the fibres of the
Clebsch map J (q, p) = u.

Canonical Hamiltonian ODEs in 2N
variables

q̂t =∇p̂
ˆ̄H , p̂t =−∇q̂

ˆ̄H .

The exact flow preserves the symplectic
structure and the Hamiltonian ˆ̄H .
Time-integration with the midpoint rule
is symplectic.

Original PDE, interpreted as a Lie-
Poisson equation

ut = ad∗
δH
δu

u.

Exact solutions preserve the Poisson
structure, the Hamiltonian H and all
Casimirs.

Non-Hamiltonian ODEs in N variables

ût = K (û)∇û Ĥ , K T =−K .

Exact solutions conserve Ĥ .
Time-integration with the midpoint rule
is not symplectic.

Table 9.1.1: Overview of the setting.
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rather than the system u̇ = F (u) directly then preserving the symplectic struc-
ture in a numerical computation does not have any effect: in this example the
symplectic structure is artificially introduced and not related to the original
system. This illustrates that using symplectic integrators is not an end in itself.
It is the presence of a Poisson structure and its interplay with the symplecticity
of the collective system which can justify doubling the amount of variables as
our numerical examples will indicate.

Let us provide examples for the application of Clebsch variables. Euler’s equa-
tion in hydrodynamics for an ideal incompressible fluid with velocity u and
pressure ρ on a 3-dimensional compact, Riemannian manifold X with boundary
∂X or a region X ⊂R3 are given as

ut +u ·∇u =−∇ρ, divu = 0, u|∂X is parallel to ∂X .

Elements in the dual of the Lie-algebra χ∗
vol to the Fréchet Lie-group of volume

preserving diffeomorphisms Dvol can be considered as 2-forms on X . Using
∇×u =̂du	 Euler’s equations correspond to motions on the Lie-Poisson system
to Dvol with Hamiltonian H(σ) = 1

2

∫
X 〈Δ−1σ,σ〉dvolX , where Δ is the Laplace-

DeRham operator and 〈,〉 the metric pairing of 2-forms [10].

A Clebsch map J : M → χ∗
vol can be obtained as the momentum map of the

cotangent lifted action of the action (η, f ) 	→ f ◦η−1 of Dvol on C ∞(X ,R). How-
ever, J is not surjective and flows with non-zero hydrodynamical helicity cannot
be modelled. To overcome this issue one can consider M =C ∞(X ,S2), where
S2 is the 2-sphere. The symplectic form σS2 on the sphere induces the symplec-
tic form Ω = ∫X σS2 dvolX on M . We can define J : M → χ∗

vol as J (s) = s∗σS2 ,
where s∗σS2 denotes the pull-back of σS2 to a 2-form on X which can be inter-
preted as an element in χ∗

vol. The map J is called a spherical Clebsch map and
initial conditions with non-zero helicity are admissible. However, the helicity
remains quantised [9]. Spherical Clebsch maps have been used for compu-
tational purposes in [2]: after a discretisation of the domain X , solutions to
the (regularised) hydrodynamical equations are approximated by integrating
the corresponding set of ODEs on the product Πmesh(X )S

2 while preserving
the spheres using a projection method (not preserving the symplectic form∑

mesh(X )σS2 , though).

In the case of Hamiltonian ODEs on (finite-dimensional) Poisson spaces (g∗, {, }),
no spatial discretisation is necessary. This setting applies to the rigid-body
equations, for instance [11]. In the ODE setting, the authors of [15] apply sym-
plectic integrators to the collective systems (M ,Ω, H ◦ J ) with the property that
the discrete flow preserves the fibres of J . Such integrators are called collec-
tive integrators. Their flow descends to a Poisson map on the original system
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(g∗, {, }, H) such that one obtains a Poisson integrator for (g∗, {, }, H).

In this paper, we show how the collective integrator idea can be used in the
infinite-dimensional setting, i.e. for Lie-Poisson systems to infinite-dimensional
Lie-groups. In particular, we will consider the inviscid Burgers’ equation

ut +uux = 0

with u(t , .) ∈C ∞(S1,R). The L2-norm of u(t , .) as well as the quantity∫
S1

√
|u(t , .)|dx

are conserved quantities. They constitute the Hamiltonian and Casimirs of
the Lie-Poisson formulation of the problem. Setting u = qx p we obtain the
following set of PDEs

qt =−1

3
q2

x p, pt =−1

3
(qx p2)x

with q(t , ·) ∈C ∞(S1,S1) and p(t , ·) ∈C ∞(S1,R) which is the collective system.
The variables q, p may be regarded as Clebsch variables (right in the middle
between classical and spherical Clebsch variables).
We will also experiment with the following more complicated PDE which fits
into the same setting as the inviscid Burgers’ equation.

ut = 3uux − 9

4
u2ux −ux uxx −3u2

x uxx −2uuxxx −2uux uxxx −6uu2
xx

It has the conserved quantity H(u) = ∫S1 (u2 +u2
x −1/2u3 +u3

x )dx as well as∫
S1

�|u|dx in time. In Clebsch variables we have

qt = δH̄

δp
= qx

(
qx p − 3

4
(qx p)2 − ((qx p)x + 3

2
(qx p)2

x )x

)
pt =−δH̄

δp
= p
(3

2
(qx p)2 −qx p + ((qx p)x + 3

2
(qx p)2

x

)
x

)
x

.

The PDEs are discretised in space by introducing a periodic grid on S1 and
replacing the integral in H by a sum. In this way we obtain a system of Hamil-
tonian ODEs in canonical form.

Integration using the symplectic midpoint rule yields an integrator with excel-
lent structure preserving properties like bounded energy and Casimir errors,
although it does not preserve the fibres of J and therefore does not descend to
a Poisson integrator. The good behaviour is linked to the symplecticity of the
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collective system which is preserved exactly by the midpoint rule. Therefore,
the conservation properties survive even when the equation is perturbed within
the class of Hamiltonian PDEs. This robustness can be an advantage over more
traditional ways of discretising the PDE directly since these make use of struc-
turally simple symmetries of the equation that are immediately destroyed when
higher order terms are introduced. Our numerical experiments indicate that the
advantage of symplectic integration can outweigh the disadvantage of doubling
the variables from u to (q, p).

9.2 Introduction

Let us briefly review the setting of Hamiltonian systems on Poisson manifolds.
For details we refer to [13].

Definition 9.1 (Poisson manifold and Poisson bracket). A Poisson manifold P
is a smooth manifold together with an R-bilinear map

{·, ·} : C ∞(P )×C ∞(P ) →C ∞(P )

satisfying

• { f , g } =−{g , f } (skew-symmetry),

• { f , {g ,h}}+ {g , {h, f }}+ {h, { f , g }} = 0 (Jacobi identity),

• { f g ,h} = f {g ,h}+ g { f ,h} (Leibniz’s rule).

The map {·, ·} is called the Poisson bracket.

Example 13. If G is a (Fréchet-) Lie-group with Lie-algebra g and dual g∗ then

{ f , g }(w) =
〈

w,

[
δ f

δw
,
δg

δw

]〉
, w ∈ g∗, f , g ∈C ∞(g∗) (9.2.1)

is a (Lie-) Poisson bracket on g∗, where 〈·, ·〉 denotes the duality pairing of g∗

and g, [·, ·] denotes the Lie bracket on g and δ f
δw ∈ g is defined by

∀v ∈ g∗ : D f |w (v) =
〈

v,
δ f

δw

〉

with Fréchet derivative D. �
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Definition 9.2 (Hamiltonian system and Hamiltonian motion). A Hamiltonian
system (P, {·, ·}, H) is a Poisson manifold (P, {·, ·}) together with a smooth map
H : P →R. The Hamiltonian vectorfield XH to the system (P, {·, ·}, H) is defined
as the derivation XH = {·, H }. If f : P →R is a smooth function, then the motion
of the system (P, {·, ·}, H) in the coordinate f is given by the differential equation
ḟ = { f , H }, where the dot denotes a time-derivative.

Example 14. A Hamiltonian system (M ,ω, H) on a symplectic manifold (M ,ω)
constitutes a Hamiltonian system on the Poisson manifold (M , {·, ·}). The Pois-
son bracket {·, ·} is defined by { f , g } =ω(X f , Xg ) where the vector fields X f and
Xg are defined by d f =ω(X f , ·) and dg =ω(Xg , ·). If M is 2n-dimensional with
local coordinates q1, . . . , qn , p1, . . . , pn and ω=∑n

j=1 dq j ∧dp j then

XH =
n∑

j=1

∂H

∂p j

∂

∂q j
− ∂H

∂q j

∂

∂p j
.

The motions of the system are given by

q̇ j = {q j , H } = XH (q j ) = ∂H

∂p j
,

ṗ j = {p j , H } = XH (p j ) =− ∂H

∂q j
.

with j = 1, . . . ,n. �
Remark 9.1. For Hamiltonian systems on a finite-dimensional, symplectic
manifold, there exist local coordinates such that the motions are given by

ż = S∇H(z),

for a constant, skew-symmetric, non-degenerate matrix S. The analogue for
finite-dimensional Poisson systems is that S is allowed to be z dependent and
degenerate (but still skew-symmetric).

Remark 9.2. Like in the symplectic case, the Hamiltonian is a conserved
quantity under motions of the corresponding Hamiltonian system on a Poisson
manifold. Additionally, the Poisson structure encodes interesting geometric
features of Hamiltonian motions. Casimir functions, which are real valued
functions f with { f , ·} = 0 are conserved quantities (with no dependence on the
Hamiltonian). While the only Casimirs are constants if the Poisson structure is
induced by a symplectic structure, non-trivial Casimir functions are admissible
in the Poisson case. Moreover, in a Poisson system a motion never leaves the
coadjoint orbit in which it was initialised. We refer to [13, Ch.10] for proofs
and more properties of Poisson manifolds.
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In what follows we will present an integrator for Hamiltonian systems on the
dual of the Lie-algebra of the group of diffeomorphisms on the circle. The
setting covers, for example, Burgers’ equation and perturbations. This shows
how to apply the ideas of [15] in the infinite-dimensional setting of Hamiltonian
PDEs.

9.3 Lie-Poisson structure on diff(S1)∗

Consider the Fréchet Lie-group G = Diff(S1) of orientation preserving diffeo-
morphisms on the circle S1. In the following we view S1 as the quotient R/LZ
for L > 0 with coordinate x obtained from the universal covering R→R/L. The
Lie-algebra g can be identified with the space of smooth vector fields on S 1,
where the Lie-bracket is given as the negative of the usual Lie-bracket of vector
fields [

u
∂

∂x
, v

∂

∂x

]
= (ux v − vx u)

∂

∂x
.

Here, the prime denotes a derivative with respect to the coordinate x on S1 =
R/LZ. [8, Thm.43.1] The dual g∗ of the Lie algebra† can be identified with the
quadratic differentials on the circle Ω⊗2(S1) = {u · (dx)2 |u ∈ C ∞(S1,R)}. The
dual pairing is given by〈

u(dx)2, v
∂

∂x

〉
=
∫

S1
u(x)v(x)dx.

[7, Prop. 2.5] The coadjoint action of an element φ ∈G on an element u(dx)2

is given as

Ad∗
φ−1

(
u(dx)2

)
= (u ◦φ) ·φ′2 · (dx)2 =φ∗

(
u(dx)2

)
.

We see that the coadjoint action on u(dx)2 preserves the zeros of u. The map
u will have an even number of zeros. Consider two consecutive zeros a,b ∈ S1.
The integral ∫b

a

√
|u(x)|dx

is constant on the coadjoint orbit through u(dx)2 since the action corresponds
to a diffeomorphic change of the integration variable in the above expression.
It follows that the map Φ : g∗ →R with

Φ(u(dx)2) =
∫

S1

√
|u(x)|dx

†which does not coincide with the functional analytic dual to g
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is a Casimir for the Poisson structure on g∗. [7] For H ∈C ∞(g∗,R) Hamilton’s
equations are given as

d

dt
u(t , x)(dx)2 = ad∗

δH
δu(t ,·)(dx)2

(
u(t , x)(dx)2

)
or, identifying g and g∗ with C ∞(S1,R),

ut = ad∗
δH
δu

u.

Here δH
δu denotes the functional or variational derivative of H and ad∗

η : g∗ → g∗

the dual map to adη : g→ g given by

adη(μ) = [η,μ].

[13, Prop. 10.7.1.]

Lemma 9.1. Hamilton’s equations can be rewritten as

ut =
(
∂

∂x
u +u

∂

∂x

)
δH

δu
. (9.3.1)

Proof. Let v ∈ g, u ∈ g∗ (both identified with C ∞(S1,R)). Denoting the dual
pairing between g and g∗ by 〈,〉, we obtain〈

ad∗
δH
δu

u, v

〉
=
〈

u,ad δH
δu

v

〉
=
〈

u,

[
δH

δu
, v

]〉
=
〈

u,

(
δH

δu

)
x

· v −
(
δH

δu

)
· vx

〉

=
〈

u ·
(
δH

δu

)
x

, v

〉
−
〈

u ·
(
δH

δu

)
, vx

〉

=
〈

u ·
(
δH

δu

)
x

, v

〉
+
〈⎛⎝u ·

(
δH

δu

)⎞⎠
x

, v

〉
,

whereas the last equation follows using integration by parts.

Example 15. On g∗ consider the Hamiltonian

H(u) =
∫

S1
H (ujet(x))dx

with H : RK+1 →R and the K -jet of the map u

ujet(x) := (u(x),ux (x),ux2 (x), . . . ,uxK (x))

:=
⎛⎝u(x),

∂u

∂x

∣∣∣∣∣
x

,
∂2u

∂x2

∣∣∣∣∣
x

, . . . ,
∂K u

∂xK

∣∣∣∣∣
x

⎞⎠ .
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By lemma 9.1, Hamilton’s equations are given as

ut =
(
∂

∂x
u +u

∂

∂x

)
K∑

j=0
(−1) j ∂

∂x j

(
∂H

∂ux j
(ujet)

)
.

For H (u) =−1
6 u2 we obtain the inviscid Burgers’ equation ut +uux = 0. �

Remark 9.3. Using formula (9.2.1) from example 13 identifying g∼=C ∞(S1,R)
and g∗ ∼=C ∞(S1,R), the Lie-Poisson bracket is given by

{F,G}(u) =
∫

S1

⎛⎝ d

dx

(
δF

δu

)
δG

δu
− δF

δu

d

dx

(
δG

δu

)⎞⎠ f dx,

where δF
δu denotes the functional or variational derivative of F at u. Discretising

S1 ∼=R/Z using a (periodic) grid with N grid-points, we naturally obtain RN as
a discrete analog of g∗. However, the above Poisson structure does not pass
naturally to RN .

9.4 The collective system

Let us construct a realisation J : M → g∗ where M is a symplectic vector space.
Consider the left-action of g ∈G = Diff(S1) on q ∈Q =C ∞(S1,S1) defined by
g .q = q ◦ g−1.

Lemma 9.2. The vector field v̂ generated by the infinitesimal action of an
element v ∈ g∼=X(S1) on Q is given by the Lie-derivative −Lv . Interpreting v
as an element in C ∞(S1,R), this becomes v̂q =−v ·q ′ ∈C ∞(S1,R) ∼= TqQ.

Proof. Let g : (−ε,ε) → Diff(S1) be a smooth curve with g0 = id and d
dt

∣∣∣
t=0

gt =
v ∈ g ∼= C ∞(S1,R). Let x ∈ S1. Deriving x = gt (g−1

t (x)) w.r.t. t at t = 0 we
obtain

d

dt

∣∣∣∣
t=0

g−1
t (x) =−v(x).

Let q ∈Q. We have

v̂q (x) = d

dt

∣∣∣∣
t=0

(gt .q)(x) = d

dt

∣∣∣∣
t=0

(
q ◦ g−1

t

)
(x) =−v(x)q ′(x).

Let M denote the cotangent bundle over Q, which is viewed as T ∗Q ∼= Q ×
C ∞(S1,R). The pairing of (q, p) ∈ M with an element v ∈ TqQ ∼=C ∞(S1,R) is
given by

〈(q, p), v〉 =
∫

S1
p(x)v(x)dx.
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A symplectic structure on M is given by

Ω((v q , v p ), (w q , w p )) =
∫

S1
(w p v q − v p w q )dx.

For (q, p) ∈ M and H̄ : M →R the maps δH̄
δq and δH̄

δp can be defined by

DH̄ |(q,p)(w q ,0) =
∫

S1

δH̄

δq
w q dx, DH̄ |(q,p)(0, w p ) =

∫
S1

δH̄

δp
w p dx,

where D denotes the Gâteaux derivative.‡ Now

DH̄ |(q,p)(w q , w p ) =Ω

⎛⎝(δH̄

δp
,−δH̄

δq

)
, (w q , w p )

⎞⎠
and Hamilton’s equations can be written in the familiar looking form

qt = δH̄

δp
, pt =−δH̄

δq
. (9.4.1)

We consider the cotangent lifted action of the aforementioned action of G on Q
to obtain a Hamiltonian group action of G on M given by

g .(q, p) = (q ◦ g−1, p ◦ g−1 · (g−1)x ).

Alternatively, interpreting the fibre component of elements in T ∗Q as 1-forms
the action is given by g .(q, pdx) =

(
q ◦ g−1, (g−1)∗(pdx)

)
.

Proposition 1 The momentum map J : M → g∗ of the cotangent lifted action of
G on M is given as

J (q, p) =−qx ·p.

Proof. Using the formula for the momentum map of cotangent lifted action
(see [11, p.283]) we obtain

〈v, J (q, p)〉 = 〈(q, p), v̂q〉 = 〈(q, p),−v ·qx〉 =−
∫

S1
v(x)p(x)qx (x)dx = 〈v,−qx ·p〉

as claimed.

‡Each maps δH̄
δq and δH̄

δp can depend on both q and p although this is not incorporated in the
notation.
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The manifold M is equipped with a Poisson structure defined by the symplectic
structure Ω. By construction, the momentum map J : M → g∗ is a Poisson map.
It is surjective (take q = id) and therefore called a full realisation of g∗. If
H is a Hamiltonian on g∗ then the Hamiltonian flow of the collective system
(M ,Ω, H ◦ J ) maps fibres of J to fibres and descends to the Hamiltonian flow of
the system (g∗, {·, ·}, H) because the Hamiltonian vector fields are J-related and
J is a Poisson map. More generally, a symplectic map on M that maps fibres
to fibres descends to a Poisson map on g∗.

Example 16. As in example 15 we consider the Hamiltonian

H(u) =
∫

S1
H (ujet(x))dx

on g∗. Hamilton’s equations of the collective system (M ,Ω, H ◦ J ) are given as
the following system of PDEs

qt = qx

K∑
j=0

(−1) j ∂ j

∂x j

(
∂H

∂ux j
(ujet)

)
,

pt =− ∂

∂x

⎛⎝p
K∑

j=0
(−1) j ∂ j

∂x j

(
∂H

∂ux j
(ujet)

)⎞⎠ .

Choosing H (u) =−1
6 u2 (Burgers’ equation) yields

qt =−1

3
q2

x p, pt =−1

3
(qx p2)x .

�

9.5 Integrator of the collective system

9.5.1 Spatial discretisation

We use a second-order finite-difference method in space to discretise the real-
isation J and the Hamiltonian H to obtain a system of Hamiltonian ODEs in
canonical form: as before, we consider S1 as the quotient R/LZ. We introduce
a uniform grid (x1, . . . , xN ), x j = j ·Δx, Δx = 1/N with N points and peri-
odic boundary conditions. Moreover, we consider the corresponding half-grid
(x1/2, . . . , xN−1/2). Both grids are illustrated in figure 9.5.1. In the discretised
setting, elements in Q =C ∞(S1,S1) and C ∞(S1,R) are approximated by their
values on the considered grid. This leads to an approximation of g∗ and Q
by the vector space RN and an approximation of M by T ∗RN ∼= R2N , which
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xN− 1
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x 1
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Figure 9.5.1: Uniform periodic grids on S1 ∼=R/LZ, L > 0.

we equip with coordinates (q̂ , p̂) = q1, . . . , q N , p1, . . . , pn in the usual way. Dis-
cretising the symplectic structure Ω we obtain

ω=Δx
N∑

j=1
dq j ∧dp j ,

which is the standard symplectic structure up to the factor Δx. For q ∈ Q we
obtain a second-order accurate approximation DΔx (q̂) of the spatial derivative
qx on the half-grid (1/2Δx,3/2Δx, . . . , (N −1/2)Δx) using compact central dif-
ferences as follows:(

qx ( 1
2Δx), qx ( 3

2Δx), . . . , qx ((N − 3
2 )Δx), qx ((N − 1

2 )Δx)
)T

≈ 1

Δx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 −1
−1 1 . . . 0 0

. . . . . .
. . . . . .

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=:T

⎛⎜⎜⎜⎜⎜⎜⎜⎝

q(Δx)
q(2Δx)

...
q((N −1)Δx)

q(NΔx)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

C (q)
0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The quantity C (q)/L is the winding number (degree) of the map q : S1 → S1§.
The values for qx are now available on the half-grid. Notice that the quantity
C (q) is constant if q evolves smoothly subject to the PDE (9.4.1) because C (q)
can only take values in LZ.

§Let π : R→ S1 denote the universal covering of S1 ∼= R/LZ and let q̃ : R→ R be any lift of
the map π◦q : R→ S1 to the covering space. Now C (q) = q̃(L)− q̃(0). If, for instance, q is the
identity map on S1 then C (q) = L.
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A discrete version of the map J : M → g∗ is given by Ĵ : R2N → RN with
Ĵ (q̂ , p̂) = DΔx q̂ .Sp̂. Its values correspond to the half-grid. The matrix S is
given as

S = 1

2

⎛⎜⎜⎜⎜⎝
1 1
1 1

. . . . . .
1 1

⎞⎟⎟⎟⎟⎠ .

It averages the values of p̂ to obtain second order accurate approximations
of p on the half-grid. In this way, we obtain approximations to u = qx p on
the half grid. Approximations for ux and higher derivatives are obtained by
successively applying TΔx and T T

Δx , i.e.

∂k u

∂xk
≈ ∂k

Δx u

∂Δx xk
:=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

DΔx q̂ .Sp̂ if k = 0

−T T ∂k−1
Δx u

∂Δx xk−1 /Δx if k is odd

T
∂k−1
Δx u

∂Δx xk−1 /Δx if k is even.

(9.5.1)

Here T T denotes the transpose of the matrix T and . denotes component-wise
multiplication. Now all approximations for even derivatives are available on
the half-grid and all odd derivatives on the full-grid. A Hamiltonian of the form∫

S1 H (u,ux ,uxx , . . .)dx is approximated by the sum

∫
S1

H (u,ux ,uxx , . . .)dx ≈Δx
N∑

j=1
H (u(x j−1/2),ux (x j−1/2),uxx (x j−1/2), . . .).

(9.5.2)
To evaluate (9.5.2), all approximations of ∂k u

∂xk where k is odd are multiplied by
S such that the approximation of the jet of u is available on the half-grid. The
second-order averaging with S can be avoided if H is of the form

H (ujet(x)) =H even(u(x),uxx (x),uxxxx (x), . . .)

+H odd(ux (x),uxxx (x),uxxxxx (x), . . .).

We can then approximate the Hamiltonian by∫
S1

H (u,ux ,uxx , . . .)dx ≈Δx
N∑

j=1
H even(u(x j−1/2),uxx (x j−1/2),uxxxx (x j−1/2) . . .)

+Δx
N∑

j=1
H odd(ux (x j ),uxxx (x j ),uxxxxx (x j ), . . .).

(9.5.3)
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Taking into account that the symplectic form ω is the canonical symplectic
structure scaled by Δx, defining Ĥ as

Ĥ(u) =
N∑

j=1
H (u(x j−1/2),ux (x j−1/2),uxx (x j−1/2), . . .) (9.5.4)

or as the corresponding term from (9.5.3) puts Hamilton’s equations into the
canonical form

˙̂q = ∇p̂
¯̂H(q̂ , p̂), ˙̂p =−∇q̂

¯̂H(q̂ , p̂) (9.5.5)

with collective Hamiltonian ¯̂H = Ĥ ◦ Ĵ : R2N → R. Here the dot denotes the
time-derivative. Finally, (9.5.5) is a 2nd order accurate, spatial discretisation of
(9.4.1).

Remark 9.4. An alternative to the described finite-difference discretisation
are spectral methods. Notice that q ∈C ∞(S1,S1) can be split into the winding
term C (q)id and the term q −C (q)id which has winding number zero. In a
pseudo-spectral discretisation, the derivative of q −C (q)id is calculated in a
Fourier basis and the winding term C (q)id is accounted for in the derivative qx

by adding the constant C (q)/L component-wise. The derivatives of u = qx p
can be calculated without complications.
A full spectral discretisation is also possible because embedding C ∞(S1,S1)
and C ∞(S1,R) into the Hilbert space L2 and choosing any orthonormal basis
will lead to a symplectic form ω which is in the standard form (splitting q as
above to allow for a Fourier basis). Therefore, Hamilton’s equations for the
basis coefficients appear in canonical form.

9.5.2 The integration scheme

A numerical solution to the original equation (9.3.1) can now be obtained as
follows.

1. Lift an initial condition

û(0) = (u(0)(x1), . . . , (u(0)(xN ))

to (q̂ (0), p̂(0)) ∈ Ĵ−1(û(0)), for example by setting

q̂ (0) = (Δx,2Δx, . . . , NΔx),

p̂(0) = û(0),

as we will do in our numerical experiments. Notice that q̂ (0) is a discreti-
sation of the identity map on S1. The exact and discrete derivative is the
constant 1 function or vector.
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9.6 Numerical experiments

2. The system of Hamiltonian ODEs (9.5.5) can be integrated subject to the
initial conditions (q̂ (0), p̂(0)) using a symplectic numerical integrator.

3. Approximations to u can be calculated from (q̂ , p̂) on the half-grid as
DΔx q̂ .Sp̂.

Remark 9.5. Conservation of ¯̂H in (9.5.5) exactly corresponds to conservation
of the discretised Hamiltonian Ĥ (9.5.2) or (9.5.3) because we consistently
relate u and (q, p) by (9.5.1). Therefore, using a symplectic integrator to solve
the system (9.5.5) of Hamiltonian ODEs we expect excellent energy behaviour
of the numerical solution. In the following numerical experiments we will use
the symplectic implicit midpoint rule. The arising implicit equations will be
solved using Newton iterations.

Remark 9.6. In contrast to the case of Hamiltonian-ODEs on Poisson mani-
folds, it is hard for a symplectic integrator to maintain the structure fibration
on the symplectic manifolds induced by the discretisation Ĵ of the realisation J .
Indeed, the implicit midpoint rule used in our numerical examples fails to do so.
This is why we do not obtain a (discretisation of a) Poisson integrator in this
way. However, the described energy conservation properties of remark 9.5 are
independent of this drawback. Moreover, our numerical examples will show
that we obtain excellent Casimir behaviour although this has not been forced
by this construction.

9.6 Numerical experiments

For the following numerical experiments, we consider Hamiltonian systems
(diff∗(S1), {·, ·}, H) with

H =
∫
S 1

(
C1u2 +C2u2

x +C3u3 +C4u3
x

)
dx. (9.6.1)

To gain a sense of the relative performance of the collective integration method
from section 9.5 we will now develop a conventional finite-difference approach
for comparison that is based on [14].

First, a finite-dimensional discrete Hamiltonian approximation is obtained by

Ĥ =Δx
N∑

j=1
(C1û2

j +C2(ûx )2
j +C3û3

j +C4
(
ûx
)3

j ), (9.6.2)

where ûx = T û/Δx is a compact finite-difference approximation. The PDE is
then written as a set of the Hamiltonian ODEs in skew-gradient form

˙̂u = K (û)∇û ĤΔx . (9.6.3)
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Here, K (û) = (U D (1) +D (1)U ) represents the discrete version of the coadjoint
operator in equation (9.3.1), where U = diag(û) is a diagonal matrix with û j on
the j th diagonal and the matrix D (1) is a centered finite-difference matrix with
the stencil [− 1

2Δx ,0, 1
2Δx ] on the main three diagonals and − 1

2Δx and 1
2Δx on the

top right and bottom left corners, respectively. This yields a skew-symmetric
tri-diagonal matrix K (û) given as

1

2Δx

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 u1 +u2 −un −u1

−u1 −u2 0 u2 +u3
. . . . . . . . .

−un−2 −un−1 0 un−1 +un

u1 +un −un−1 −un 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the diagonal dots denote the continuation of the stencil [−ui−1−ui ,0,ui+
ui+1] on the i th row. Note that

d

dt
Ĥ = (∇û Ĥ)T ˙̂u = (∇û Ĥ)TK (û)∇û Ĥ = 0, (9.6.4)

hence, Ĥ is a first integral of this ODE. Finally, equation (9.6.3) is integrated
using the implicit midpoint rule, which is solved using Newton iterations. This
method will henceforth be referred to as the conventional method.

The conventional and collective methods are both order-two in space as shown
by figure 9.6.1, which show errors for travelling wave solutions of the cubic
Hamiltonian system outlined in section 9.6.2. The Hamiltonian error at time
t = tn is calculated by (Ĥ(0)− Ĥ(tn))/Ĥ(0) and similarly for the Casimir error.
The solution error is ||ûn − ûe ||2

||ûe ||2
,

where ûn is the numerical solution, ûe is the exact solution evaluated on the grid
and || · ||2 is the discrete L2-norm. We see from figure 9.6.1b that the collective
method preserves the energy up to machine precision for this experiment. We
remark that the solution error observed in figure 9.6.1c is largely attributed to
phase error and does not reflect the ability of the method to preserve the shape
of the travelling wave.

9.6.1 Inviscid Burgers’ equation

Setting C1 = 1, C2 = 0, C3 = 0 and C4 = 0 in equation (9.6.1) yields the well-
known inviscid Burgers’ equation

ut = 6uux .
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Figure 9.6.1: Order-two convergence for the travelling wave solution of the extended
Burgers’ equation outlined in section 9.6.2. The plots correspond to the conventional
solution () and the collective solution () and an order-two reference line ( ).
The error is calculated after 512 timesteps, with L = 8, Δt = 2−14 and Δx = L/2k for
k = 1,2,3 and 4.
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Figure 9.6.2: Inviscid Burgers’ equation solutions of the conventional method ( )
and collective method ( ). The grid parameters are nx = 64, Δx = 0.125, L = 8
and Δt = 2−12. A shock forms at about t = 0.4.

In the following example, the equation is modelled with the initial conditions
u(0, x) = 1+ 1

2 cos(2πx/L), which develops a shock wave at about t = 0.4. Fig-
ure 9.6.2 shows three snapshots of the conventional and the collective solutions
before and after the shock and figure 9.6.3 shows the Casimir and Hamiltonian
errors over time. Over the short simulation time, both methods yield qualita-
tively similar solutions and it is difficult to tell them apart. Due to the presence
of shock waves in the inviscid Burgers’ equation, it is difficult to gain a sense
of the long term behaviour of the methods as no solution exists after a finite
time. From figure 9.6.3b we see that the conventional method has exceptional
Hamiltonian preservation properties and maintains the error at machine pre-
cision throughout the simulation. This can be explained by the fact that the
implicit midpoint rule preserves quadratic invariants, that is, Ĥ is preserved
exactly by the conventional method. Otherwise, the errors grow quadratically
until the shock develops, after which, they appear bounded. The Hamiltonian
error of the collective solution can also be reduced to machine precision by
reducing the time step Δt .
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Figure 9.6.3: The errors corresponding to the conventional ( ) and collective
( ) methods for the inviscid Burgers’ equation and O (t 2) reference lines ( ).

9.6.2 Extended Burgers’ equation

We now focus our attention to a cubic Hamiltonian problem that we have de-
signed to admit non-symmetric travelling wave solutions. The PDE being
modelled arises from setting C1 = 1/2, C2 = 1/2, C3 = −1/4 and C4 = 1/2 in
equation (9.6.1), which yields

ut = 3uux − 9

4
u2ux −ux uxx −3u2

x uxx −2uuxxx −2uux uxxx −6uu2
xx

and is henceforth referred to as the extended Burgers’ equation.

Travelling wave solutions

In this example, we look for solutions of the form u(x, t ) = f (s), where s =
x − ct for wave velocity c. This yields an ODE in s, which is solved to a
high degree of accuracy on the grid using MATLAB’s ode45. Figure 9.6.4
shows snapshots of travelling wave solutions to the extended inviscid Burgers’
equation and their Fourier transforms and figure 9.6.5 shows the corresponding
errors. The main observations concerning these figures is that the errors of the
collective solution are bounded whereas the conventional solution errors grow
with time. In particular, the high frequency Fourier modes of the conventional
solution erroneously drift away from that of the exact solution while the col-
lective solution does a reasonably good job at keeping these modes bounded.
These erroneously large high frequency modes can be seen with the naked eye
in figure 9.6.4c. This is again highlighted by figure 9.6.5c, which shows that the
highest frequency mode (i.e., the mode whose wavelength is equal to the grid
spacing Δx) grows exponentially in time. Figures 9.6.5a and 9.6.5b show the
behaviour of the Casimir and Hamiltonian errors. This highlights the ability of
the collective method to keep the errors bounded, while the errors of the conven-
tional solution grow linearly with time. Towards the end of the simulation, the
errors of the conventional solution become so large that the implicit equations
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Figure 9.6.4: Travelling wave solutions of the perturbed Burgers’ equation (top row)
and the positive Fourier modes (bottom row) at t = 109 (left column), t = 218 (middle
column) and t = 437 (right column). The plots correspond to the conventional method
( ), collective method ( ) and the exact travelling wave solution ( ).
The grid parameters are nx = 16, Δx = 0.5, L = 8 and Δt = 2−6.

arising from the midpoint rule become too difficult to solve numerically and the
Newton iterations fail to converge. The simulation ends with the conventional
method errors diverging to infinity.

Periodic bump solutions

In this example, we model solutions to the extended Burgers’ equation from
the initial condition

u(x,0) = 1+ 1

2
exp(−sin2(

πx

L
)).

Figure 9.6.6 shows snapshots of the solution and its positive Fourier modes and
figure 9.6.7 shows the behaviour of the Casimir and Hamiltonian errors over
time. Like the travelling wave example, we see that the high frequency modes of
the conventional solution grow with time, which can be seen as rough wiggles
in figure 9.6.6c. The conventional solution has bounded Hamiltonian error,
despite linear and exponential growth in the Casimir and highest frequency
Fourier modes, respectively. In particular, the collective solution has excellent
error behaviour, which appears to be bounded over the simulation period for all
three plots of figure 9.6.7.
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Figure 9.6.5: The errors corresponding to the conventional ( ) and collective
( ) methods for the travelling wave experiment. The reference lines ( ) are
O (t ) in figures (a) and (b) and exponential in figure (c).
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Figure 9.6.6: Periodic bump solutions of the extended Burgers’ equation (top row)
and the positive Fourier modes (bottom row) at t = 10 (left column), t = 100 (middle
column) and t = 1000 (right column). The plots correspond to the conventional method
( ) and the collective method ( ). The grid parameters are nx = 32, Δx =
0.25, L = 8 and Δt = 2−8.
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Figure 9.6.7: The errors corresponding to the conventional ( ) and collective
( ) methods for the periodic bump example. The reference line ( ) in figure
(a) is O (t ).

9.7 Conclusion

We have demonstrated that Hamiltonian PDEs on Poisson manifolds can be
integrated while maintaining the structure preserving properties of Poisson
systems very well. This is achieved by

1. realising the Poisson-Hamiltonian system as an infinite-dimensional, col-
lective Hamiltonian system on a symplectic manifold and lifting the ini-
tial condition from the Poisson system to the collective system,

2. discretising the collective system in space to obtain a system of Hamilto-
nian ODEs, and

3. using a symplectic integrator to solve the system.

The symplectic integrator will, in general, fail to preserve the fibration provided
by the realisation. Therefore, the presented integrators for Hamiltonian PDEs
cannot be expected to conserve the Poisson structure exactly. This is in contrast
to the case of Hamiltonian ODEs on Poisson manifolds, where the fibres can be
structurally simple for carefully chosen realisations and genuine Poisson inte-
grators can be constructed. Regardless, in the ODE as well as in the PDE case
the integrator is guaranteed to inherit the excellent energy behaviour from the
symplectic integrator which is applied to the collective system. Moreover, our
numerical examples for Hamitonian PDEs show excellent Casimir behaviour
as well. Indeed, energy as well as Casimir errors are bounded in long term
simulations.

Structure preserving properties of conventional numerical schemes typically
rely on the presence of structurally simple symmetries of the differential equa-
tion. If the discretisation is invariant under the same symmetry as the equation,
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then the numerical solution will share all geometric features of the exact so-
lution which are due to the symmetry. The simple form of the symmetries,
however, is immediately destroyed when higher order terms in the Hamilto-
nian are switched on. Although exact solutions still preserve the Hamiltonian,
numerical solutions obtained using a traditional scheme fail to show a good
energy behaviour. The advantage of the presented integration methods is that
their excellent energy behaviour is guaranteed no matter how complicated the
Hamiltonian is. Our numerical examples for the extended Burgers’ equation
demonstrate the importance of structure preservation: while growing energy
errors of the conventional solution cause a blow up, there are no signs of insta-
bilities for the collective solution.
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