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Abstract 

This work addresses with sensitivity and uncertainty of the energy conversion of an oscillation-body 

wave energy converter with an artificial neural-network-based controller. The smart controller applies 

the model predictive control strategy to implement real-time latching control to the wave energy 

converter. Since the control inputs are future wave forces, an artificial neural network is developed and 

trained by the machine learning algorithm to predict the short-term wave forces based on the real-time 

measurement of wave elevation. The sensitivity of wave energy conversion with respect to wave 

frequency and receding horizon length are investigated. Uncertainties of the neural network that lead to 

the prediction deviation are identified and quantified, and their influences on the energy conversion are 

examined. The control command is derived inappropriately in the presence of prediction deviation 

leading to the reduction of energy absorption. Moreover, it is the phase deviation that reduces the energy 

absorption. 

Keywords: wave energy; machine learning; artificial intelligence; artificial neural network; model 

predictive control; wave force prediction. 

1. Introduction 

Since the first proposal of wave energy concept (Salter, 1974), ocean waves are accepted as a 

prospective solution to the sustainable generation of power due to its high power density and all-day 

availability. The device used to harvest energy from ocean waves is known as the wave energy converter 

(WEC). The conversion mechanism of WEC can be briefly separated into three categories: body 

oscillation, pressure differential and overtopping. Evans et al. (1979) proposed the dynamic model for 

an oscillating-body WEC in regular waves, which was validated against model test measurement. 

Elhanafi et al. (2017) simulated the hydrodynamic performance of a floating-moored oscillating water 

column WEC, which utilized the change of air pressure in a chamber to drive a turbine. Margheritini et 

al. (2009) investigated the reliability and hydraulic performance of an innovative overtopping device 

‘Sea Slot-cone Generator’. The structure consists of reservoirs on the top of each other above the mean 

water level in which the water of incoming waves is stored temporarily. 
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Despite that WEC concepts with various types of energy extracting mechanisms have been proposed, 

most full-scale WEC products belong to the oscillating-body group (European Marine Energy Centre, 

2018a, b; Unitied States Department of Energy, 2015). A remarkable advantage of the oscillating-body 

WEC is its reliable power take-off (PTO) system, e.g. a direct-drive generator or a hydraulic motor. 

Nevertheless, the energy harvesting efficiency of an oscillating-body WEC is sometimes unsatisfactory, 

especially within the off-resonance range, since the power is extracted from the inertial motion of the 

floater. One of the solutions to this problem is the incorporation of a controller to control the floater 

motion. Budal and Falnes (1980) proposed the latching control, which increases the energy absorption 

by locking and releasing the floater alternately. They found that one condition for maximizing energy 

absorption was to keep the velocity in phase with the wave excitation force. Therefore, the latching 

control is a kind of phase control. Babarit and Clement (2006) applied the latching control to two WEC 

concepts to increase the energy absorption. Their simulation results showed that the energy harvesting 

was greatly enhanced in both regular and irregular waves. Another phase control is the so-called 

declutching control (Babarit et al., 2009). The declutching control tunes the phase by switching off the 

PTO system at some time instants. 

Early control strategies were mostly based on the assumption that the inputs (the wave force) to the 

controller are fully known. Since the energy absorption is increased over the entire interval concerned, 

such control algorithm is also called the optimal control. Apparently, the optimal control algorithm is 

not applicable in practice since the long-term (e.g., 1 hour) wave force information is very difficult to 

predict. Recently, the model predictive control algorithm has been widely applied in the increase of 

wave energy harvesting. Instead of increased the energy absorption over the entire interval, the model 

predictive control seeks the optimum over a short time horizon in the future. By receding the time 

horizon forward step by step, the model predictive control is implemented in a real-time manner. Since 

the model predictive control just requires short-term wave forces over the time horizon, it shows 

prospect in practical application. Son and Yeung (2017a) optimized the power extraction using 

nonlinear model predictive control. Son and Yeung (2017b) applied the real-time optimal damping 

control to a permanent-magnet linear generator. Williams (2004) adopted the pseudospectral method to 

implement the model predictive control. 

For either the optimal control or the model predictive control, the control inputs are future wave 

forces so that the controller becomes a non-causal system. The information of future wave force is 

important to the successful implementation of non-causal wave energy control (Fusco and Ringwood, 

2010). Henriques et al. (2016) examined the sensitivity of real-time latching control and showed that a 

long prediction length is  favourable.  Other researchers focused on the effect of prediction error. Fusco 

and Ringwood (2011) proposed a frequency-domain model to investigate the effect of prediction error 

on the energy absorption. Zhang et al. (2016) examined the wave force error effect on optimal control 

in time-domain. Li et al. (2018) utilized the grey model to predict the wave forces and investigated the 
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prediction error effect on control efficiency. They all proved that the prediction error has a negative 

effect on the energy absorption. 

Previous researchers attempted to predict the wave forces with deterministic approaches. Ge and 

Kerrigan (2016) predicted the wave force using autoregressive moving average model. Halliday et al. 

(2011) utilized the fast Fourier transformation to predict the random sea waves. Generally, a 

deterministic model reads past values to predict future values. Although the deterministic forecasting 

method has been manifested reliable in many problems, it is still difficult to apply directly in practice. 

A crucial point is that it is nearly impossible to measure the wave forces with the present sensor 

technology since wave forces are the sum of hydrodynamic pressure on the wetted surface of the floater. 

Practically, only signals such as wave elevations, PTO force, and floater motion can be measured. 

Although it is possible to estimate the wave force based on other variables using a numerical approach 

(for example, a retardation function), the estimation error may be significant. 

Thanks to the explosive growth of the artificial intelligence, the machine learning algorithm is being 

widely used for regression analysis, allowing us to predict the wave forces with other variables, e.g. the 

wave elevations. The application of machine learning for short-term prediction is initially seen decades 

ago in traffic science. Smith and Demetsky (1994) compared the neural network and nonparametric 

regression approaches for the prediction of the traffic flow in a highway. Yu and Xu (2014) utilized the 

backpropagation neural network to forecast the short-term natural gas loading at city Shanghai based 

on the local population. More recently, researchers begin to adopt the machine learning to improve the 

energy efficiency of renewable energy systems. Kalogirou (2001) presented a comprehensive review 

on the applications of artificial neural networks in renewable energy systems. One of the specific 

applications was the prediction of input to the control system. Fusco and Ringwood (2010) used the 

neural network to forecast the short-term future wave excitation forces for control of WEC. Sclavounos 

and Ma (2018b) use the neural network to predict the future wave excitation forces and control the 

WEC to increase the energy conversion. Similar approach was applied by Sclavounos and Ma (2018a). 

Their works proved that the neural network is effective in wave excitation force prediction and can be 

used in the wave energy control. Nevertheless, their predictions of future wave forces were all based on 

the measurement of wave forces in the past. As well known, the wave excitation forces are more difficult 

to measure in practice so that the force-based prediction models may not work effectively in practical 

application. Moreover, they all assumed ideal input and the uncertainty of input to the neural network 

was not considered. 

The present study applies the model predictive control strategy to enhance the energy efficiency of 

WECs and investigate the sensitivity and uncertainty of the energy absorption. To resolve the wave 

force prediction problem which prevents the practical application of optimal wave energy control, an 

artificial neural network is developed to predict the short-term wave forces using the wave elevation 

measurements. Moreover, the input uncertainty is considered. A numerical model for wave force 

estimation is also developed. Fig. 1 illustrates the workflow in this paper. Training examples are firstly 
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generated to train the neural network with machine learning algorithm. The trained neural network 

measures the real-time wave elevations to predict the short-term future wave forces, which are the inputs 

to the controller. Based on the forecasted wave forces, the controller gives the control command to the 

WEC to increase the energy absorption in random sea waves. 

 

Fig. 1 The flowchart in the present research. 

2. Numerical model 

2.1. Dynamic model of the wave energy converter 

A heaving point-absorber with a nonlinear PTO system is considered in the present research (see 

Fig. 2). The submerged floater is a cylinder column with a radius of 2.5 m. The draft of the floater is 5 

m. Only heave motion of the floater is allowed. The generator force is modeled with a linear damper C. 

C = 81360 kg/s is used. The energy absorption is improved by locking and releasing the floater 

alternately so that the velocity is in phase with the wave excitation force. It is known as the latching 

control (Budal and Falnes, 1980). The latching action is numerically modeled as a huge and finite 

damping force c. 
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Fig. 2. Wave energy converter. 

Based on the impulse response theory (Cummins, 1962), the time-domain motion equation of the 

floater is given by 
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where M is the mass of the floater and m is the added mass at infinite frequency. 𝑧(t), �̇�(t) and �̈�(t) are 

the displacement, the velocity, and the acceleration. B = 0.02×2√𝜌𝑔𝜋𝑅2(𝑀 + 𝑚) (2% critical damping) 

is an additional damping coefficient to represent the viscous effect. β(t) is the binary control command. 

When β = 1, the floater is locked; when β = 0, it is free to oscillate under the excitation of sea waves. 

H(t) is the so-called retardation kernel function representing the radiation force, which can be obtained 

either from the added mass a(ω) or the potential damping b(ω). Fwave(t) is the wave excitation force, 

estimated by 
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where Aj, ωj, and εj are the amplitude, the frequency and the random phase of regular wave component 

j. Ψ is the wave force transfer function. 

Although Eq. (1) has been widely used as the dynamic model of a WEC, such form makes it 

inconvenient to implement the control strategy. An alternative model is thus developed to simulate the 

dynamics of the point-absorber in random waves, in which the radiation force is represented by a state-

space model. The procedure is briefly introduced here and please refer to (Perez and Fossen, 2011) for 

more details regarding the development of the state-space model 

Denote f(t) the radiation force, the following three formulas can be equivalent to each other 
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where n is the order of ordinary differential equation Eq. (3). �⃑⃑� (t) is a state vector with dimension n×1. 

�⃑⃑� , �⃑⃑�  and �⃑⃑�  are matrices with dimensions n×n, n×1 and 1×n. The three formulas approach to each other 

as n→∞. It indicates that the convolution term can be approximated by the other two methods. 

Combining Eq. (3) and Eq. (5), we get 
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The retardation kernel function in Eq. (1) is a time-domain expression, and it can be transformed to 

the frequency-domain through the Fourier transformation 
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Then the rational transfer function is established to approximate H(ω) 
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Parameters p and q can be estimated by the least square method. The estimation of �⃑⃑�  , �⃑⃑�  and �⃑⃑�  is 

also called system identification (Taghipour et al., 2008). 

By using the state-space representation, Eq. (1) can be re-written as 
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Define a state vector x = [𝑧(𝑡), �̇�(𝑡), �⃑⃑� (𝑡)𝑇]𝑇 with dimension (n+2)×1. Then Eq. (9) is re-expressed 

as 
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Given the initial condition x(0) = 0, it becomes an initial-value problem and the floater movement 

histories are integrated using the 4th Runge-Kutta method. Then, the average energy absorption during 

simulation interval [0, T] is given by 

 2

0

1
( , )

T

P C z t dt
T

   (11) 

2.2. Real-time control algorithm 

We aim to increase the energy absorption by applying the latching action to the floater 
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That is to maximize P subject to constraint Eq. (10). We temporarily assume that the wave forces 

are already known and apply the Pontryagin’s maximum principle (Boltyanskiĭ et al., 1956) to 

maximize the energy absorption. Define a Hamiltonian H: 

  2( , , ) ( ) ( ) ( , , ) ( )H t Cz t t f t t    x x   (13) 

λ is the Lagrange multipliers with dimension 1×(n+2). The Hamiltonian reaches its maximum value on 

condition that  
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Since the wave forces across interval [0, T] are already known, the time series of floater movement 

can be estimated by Eq. (10). Afterward, the Lagrange multipliers at each time instant should be 

calculated. The Lagrange multipliers satisfy the following relationships. 
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An iterative process is applied to calculate λ. Firstly, run the simulation with β(t) = 0 to obtain the 

motions and the Lagrange multipliers free of latching action. Given the Lagrange multipliers, the control 

command is updated by Eq. (14). Iterate the process until the updated control command converges. 

Although the above procedure can derive the optimal control command, it is unable to be applied by 

the controller directly. This is because the control command is already determined before the dynamic 

process really happens. Such an off-line control is only applicable to numerical simulation whereas the 

control action must be implemented in a real-time manner in practice. In our work, we adopt the model 

predictive control strategy to control the point-absorber. Instead of seeking the optimal control 

command across the entire interval [0, T], the model predictive control tries to maximize the energy 

absorption over a finite time horizon [t, t+∆t]. ∆t is the prediction horizon. In the present study, ∆t = 2.5 

s is adopted. By receding the time horizon [t, t+∆t] forward step by step, the real-time control is 

implemented. Since the energy is increased over a part of the entire interval, the model predictive 
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control belongs to the sub-optimal control family. The application of model predictive control strategy 

allows us to implement the control action in a real-time manner. Moreover, the model predictive control 

just requires the wave forces within a short period ∆t. This feature makes great sense in practice since 

the short-term wave forces are predictable.  

3. Wave force prediction with neural network 

3.1. Neural network 

Fig. 3 sketches the structure of the developed artificial neural network, which is composed of an 

input layer, two hidden layers, and an output layer. Each layer consists of neurons to receive and send 

signals. For the problem in this study, the inputs are the measured wave elevation in the past and the 

outputs are the predicted vertical wave excitation forces over the prediction horizon [t, t+∆t]. In the 

present study, the predictive horizon ∆t is set to 2.5 s, and the time step is 0.01 s. Therefore, totally 250 

points future wave forces are predicted over the prediction horizon. 

 

Fig. 3. Structure of a neural network. 

As shown in Fig. 4 , the neuron processes the inputs by two sets of parameters, w = (𝑤11
2 , 𝑤12

2 ,…, 

𝑤𝑗𝑖
𝑘 ,…) and b = (𝑏1

2 , 𝑏2
2 ,…, 𝑏𝑗

𝑘 ,…). 𝑤𝑗𝑖
𝑘  is the weight for the connection from the ith neuron in the 

(k−1)th layer to the jth neuron in the kth layer. 𝑏𝑗
𝑘 is the bias of the jth neuron in the kth layer. Then, the 

activation of the jth neuron in the kth layer is determined by the activations of all neurons in the (k-1)th 

layer: 

   1,k k k k k k

j j j ji i j

i

a z z w a b      (16) 

where σ(x) is the activation function. The sigmoid function (σ(x) = 1/(1+e-x)) is selected here as the 

activation function. 𝑧𝑗
𝑘 is the weighted input to the activation function of neuron j in layer k. 
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Fig. 4 The artificial neuron 

The neural network is used for the short-term wave force prediction to implement the real-time 

control. A remarkable advantage of the neural network technology against traditional prediction 

approach is that it allows us to forecast variable A with variable B. It makes senses in practice since the 

wave force acting on the floater is nearly impossible to measure so that the prediction cannot be based 

on the wave force itself. In our work, the prediction of wave force is based on the past wave elevation, 

which can be measured easily with a wave probe fixed to a ground. Please note that for a floating WEC 

with horizontal motions, the position of the buoy should be known. However, it is out of the scope of 

the present research since the point-absorber is only allowed to oscillate vertically. 

3.2. Generation of the training examples 

In order to train the neural network, time series of wave elevations (input) and wave excitation forces 

(target) must be collected. The random wave elevations can be measured with a wave probe. Although 

we generate the wave elevations with numerical simulation in the present study, the uncertainty of wave 

elevation exists in the practical application due to the deviation of the wave probe and the wave noise. 

The wave noise is a complex physical phenomenon and depends on the sea site and the environment. 

The sensor deviation is determined by the hardware and is difficult to investigate theoretically. To focus 

on the present research, the wave uncertainty produced by the two factors altogether is simplified by 

adding a Gaussian-distribution noise to the raw elevations. The control input, namely the measured 

wave elevation with consideration of uncertainly produced by the two sources, is given by. 

 0.15 (0,1)       (17) 

where   is the measured wave elevation with noise and   is the raw wave elevation. (0,1)  is a 

random value following the Gaussian distribution. Please note that Eq. (17) may not represent the real 

situation completely. Fig. 5 compares the measured wave elevation and the raw wave elevation. 
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Fig. 5 Time histories of raw waves and measured waves. 

In the actual case, the targeted wave forces Ftarget are nearly impossible to measure although they 

can be generated easily with a numerical model. Therefore, the wave forces must be estimated based 

on other measurable variables. We estimate the wave forces using the floater motion. The inverse 

function of  Eq. (1) is 
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Eq. (18) gives a way of estimating the wave forces by the floater motion. We don’t use the inverse 

function of Eq. (10) because it is very difficult to value the state vector �⃑⃑� (t)  in an actual case. To check 

the uncertainty of the wave force estimation model, we first numerically generate time series of wave 

elevations and produce the wave forces according to Eq. (2). The generated wave forces are regarded 

as the real forces. Afterwards, the floater motion under the real wave forces are simulated with the state-

space model. Based on the simulated floater motion, the estimation of wave forces is acquired by Eq. 

(18). Fig. 6 and Fig. 7 compare the estimated wave forces with the real values. Generally, the agreement 

is satisfactory despite some very slight discrepancies. Therefore, Eq. (18) is a  reliable approach to 

acquire the training examples. 

 

Fig. 6. Time series of the real and the estimated wave forces. 
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Fig. 7. Power spectra of the real and the estimated wave forces. 

The forecasting of wave forces over the predictive horizon [t, t+∆t] is based on the wave elevations 

in the past [t-∆, t], and the length of collected wave elevations has an influence on the prediction 

performance. Consequently, we first seek the optimal ratio of ∆t and ∆ to guarantee the best prediction 

performance. The predictability index in (Fusco and Ringwood, 2010) is used here to evaluate the 

prediction performance 
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where f(t) is the wave force at time instant t; ( )f t t t   is the wave force ∆t ahead predicted at time 

instant t. According to the definition, an index around 1 indicates good prediction performance. Fig. 8 

demonstrates how the predictability index varies with the length of wave elevation collection. Generally, 

the prediction performance improves when a large number of wave elevation points are used to predict 

the future wave forces. Such variation trend is straightforward to understand since more information is 

collected for the prediction. When wave elevations over the past 4.0 s are collected for the forecasting, 

the predictability index is 0.8484.  

 

Fig. 8. Length of wave elevation points on the prediction performance. 
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The time series of predicted force ( )f t t t  are plotted in Fig. 9. As shown, the prediction 

performance is satisfactory and thereby ∆ = 4.0 s is used in the flowing part of this paper. It can be 

observed from Fig. 9 that the neural network is unable to predict the short-term wave force perfectly, 

due to the wave noise and the predicton algorithm itself. Since the control command is based on the 

predicted forces, the prediction deviation will have influences on the control performance. The 

following part will discuss this issue. 

 

Fig. 9. Histories of predicted wave force 2.5 s ahead ( 2.5 )f t t with ∆ = 4.0 s. 

In the present research, three random wave states are considered, and three neural networks are 

trained to be applied in each sea state. It guarantees the best performance of the neural network. For 

example, if we train a neural network using wave data characterized by sea state A but apply it in sea 

state B, the prediction performance may be poor. 

4. Simulation results 

4.1. Energy conversion 

In order to examine whether the real-time controller is effective in practice, we investigate its 

performance in random sea waves where the short-term wave forces are predicted with the neural 

network. Three sea states are selected and listed in Table 1, where Tn = 5 s is the natural period of the 

wave energy converter. 

Table 1 Wave conditions 

 Case 1 Case 2 Case 3 

Hs (m) 2 2.5 3 

Tp (s) 1.2 Tn  1.6 Tn 2.0 Tn 

 

Fig. 10 plots the energy harvesting histories in the three wave conditions. When the point-absorber 

is free to oscillate in the random waves, the PTO system keeps producing power. Comparatively, the 

controlled energy harvesting is zero over some time intervals, when the floater is locked. Although the 

PTO system stops operating frequently due to the control action, the power extraction ramps rapidly as 

soon as the floater is set free. Fig. 11 compares the average energy absorptions with and without the 
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active. It manifests that the smart controller can be successfully applied in practice. To estimate the 

efficiency of the present control algorithm, the power extraction with the complex conjugate control 

(representing the optimal mechanical power extraction) is also shown in Fig. 11. As shown, the heaving 

point-absorber generally converts 25% optimal energy with the present real-time latching control. 

Please note that it is assumed that the wave forces are fully known in the implementation of the complex 

conjugate control. A brief introduction of the complex conjugate control is given in the Appendix and 

please refer to (Falnes, 2002) for more details. 

 

Fig. 10. Power capture histories. (a) Case1; (b) Case2; (c) Case3. 
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Fig. 11. Average energy harvesting. 

To interpret how the energy absorption is enhanced, the floater velocity is plotted in Fig. 12. As 

shown, the point-absorber is locked and released alternately. The floater is locked when the velocity 

vanishes. Once the floater is released, the velocity ramps rapidly. Furthermore, the controller velocity 

is closely associated with the wave forces. The floater is locked when the velocity and the wave forces 

are reverse and released again when they become aligned. In the meanwhile, the velocity and the wave 

forces nearly reach their maximum at the same time instant. It seems that the resonance is achieved with 

the real-time control. As stated before, the latching control is a kind of phase control, which increases 

the energy absorption by making the velocity in phase with the wave force. According to Fig. 12, the 

velocity and the wave force are indeed in phase. In this circumstance, the wave forces will always 

accelerate the floater so that it will carry more kinetic energy. As shown in Fig. 13, the wave forces 

sometimes slow down the floater without the real-time control since the work done on the floater is 

negative occasionally. When the floater motion is controlled, one can see that the wave excitation forces 

mostly do positive work to the floater. 

 

Fig. 12. Responses of the point-absorber, Case1. 
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Fig. 13 Work on the floater done by the wave excitation force. Case1. (a) Without control; (b) With control. 

4.2. Sensitivity of the energy conversion 

4.2.1. Wave frequency 

We first investigate how the control performance reacts to the wave frequency. Regular waves are 
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Fig. 14. Average energy absorption in regular waves. 

 

Fig. 15. Responses of the floater in regular wave. (a) ω = 0.5 rad/s; (a) ω = 1.2 rad/s. 
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action is not effective at all as the energy absorption is identical to that without control. The performance 

of WEC is most sensitive to the horizon length within the middle segment. In this region, the energy 

absorption increases significantly with the receding horizon. As the horizon length continues increasing, 

the energy absorption gradually converges to a fixed level. Any further increase of receding horizon 

length has a very limited influence on the performance. 

 

Fig. 16. Variation of energy absorption with receding horizon length, Case3. 
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Consequently, the curve in  Fig. 16 converges to a fixed level at the tail region. 

 

Fig. 17. Control command with various receding horizon lengths, Case3. (a) ∆t = 1.0 s; (b) ∆t = 2.0 s; (c) ∆t = 3.0 s; (d) ∆t = 

4.0 s. 
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4.3. Uncertainty of the energy conversion 

As presented in Section 3.2, the measured wave elevations include noise. The discrepancies between 

the measured wave elevations and the real wave elevations may have an influence on the prediction 

performance. Even if we can remove the wave noise completely, the predicted wave forces are still not 

exact since we can’t expect the neural network to perform perfectly. Therefore, two aspects of 

uncertainty affect the control performance. The first one is the uncertainty of control input. The second 

one is the prediction uncertainty, representing the forecasting capacity of the neural network. Fig. 18 

shows the uncertainty effect on the control performance. The energy absorption is the largest when the 

uncertainty is removed. As plotted in Fig. 13, the wave forces occasionally do negative work to the 

floater due to the two aspects of uncertainties, so that the control efficiency is lower than the optimal 

level. Although the uncertainties have a negative influence on the control performance, the energy 

conversion is not reduced much. It implies that the smart controller can still work effectively in an actual 

case. 

 

Fig. 18. Uncertainty effect on the energy absorption. 

Wherever the uncertainties origin form, they ultimately lead to the prediction deviation and the 
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where �̅�𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒  are the defined wave forces involving only amplitude deviation, �̅�𝑝ℎ𝑎𝑠𝑒  are the 

defined wave forces involving only phase deviation. α and 𝜃 are parameters representing the level of 

amplitude and phase deviations, respectively. Eq. (20) reduces to Eq. (2) with α = 1 and 𝜃 = 0, meaning 

that the prediction deviation is eliminated. Such defined prediction deviation allows us to assess the 
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phase deviation and the amplitude deviation separately. Please note that Eq. (20) is the input to the 

controller whereas the point-absorber is still subject to the real wave forces estimated by Eq. (2). 

Fig. 19 demonstrates how the average energy absorption reacts to the amplitude deviation in regular 

waves. The energy absorption performance varies hardly with the amplitude deviation. It is not 

unexpected since the latching control is a kind of phase control so that the amplitude deviation is of 

minor importance. 

 

Fig. 19. Influence of amplitude deviation on the energy absorption. 

Nevertheless, the phase deviation has a significant influence on the power extraction. As shown in 

Fig. 20, the power extraction drops considerably with the phase deviation 𝜃. The average energy 

absorption drops significantly as the phase deviation amplifies. Fig. 21 interprets how the energy 

absorption drops with the phase deviation. When the phase deviation increases, the latched duration 

reduces indicating that the control action becomes weaker. In this circumstance, the velocity phase is 

not tuned sufficiently. Moreover, the latching action is applied earlier than it should be due to the phase 

deviation. It implies that the WEC is locked when it should be released. Due to these factors, the 

efficiency of the real-time control is reduced with the phase deviation. 

 

Fig. 20. Influence of phase deviation on the energy absorption. 
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Fig. 21. Influence of phase deviation on energy absorption, ω = 0.8 rad/s. 

5. Conclusions 
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way, the velocity is tuned and becomes in phase with the wave forces. Therefore, the wave forces will 
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The energy conversion is sensitive to wave frequency and the length of receding horizon. The energy 

absorption is only increased on condition that the wave frequency is sufficiently low. Furthermore, the 

wave energy converter absorbs more power if a longer receding horizon is applied. 

Due to uncertainties produced by the wave noise and the prediction algorithm itself, the prediction 

deviation is unavoidable. The prediction deviation has a negative effect on the control performance 

since the control command is derived based on the inaccurate wave forces. It is found that amplitude 

deviation has a very limited influence on the control efficiency. It is the phase deviation that reduces 
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the energy efficiency. In the presence of phase deviation, the floater is locked and released at wrong 

time instants. 

The present research just considers one degree of freedom (DoF) and the buoy is only allowed to 

oscillate vertically. In real practice, a WEC is typically positioned using mooring lines and the 6-DoF 

motions should be considered. The WEC converts the wave-frequency heave motion, which is hardly 

influenced by the mooring system, into the electricity power. Therefore, the 1-DoF assumption in the 

present research still makes sense. Nevertheless, the 6-DoF motions should be considered in the 

prediction of the future wave forces. More specifically, the horizontal motions (surge and sway) of the 

buoy should be known.  This can be achieved in practice with several approaches, e.g. the GPS. 
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Appendix 

The frequency-domain motion equation of the heaving point-absorber with unit wave amplitude is 

given by 

        wave PTOZ u F F       

where u is the velocity. Fwave and FPTO are the wave force and the mechanical force of the PTO, 

respectively. Z is the intrinsic impedance of the buoy 
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where λ is the radiation damping and μ is the added mass. B is the additional damping coefficient defined 

in Section 2.1. Fig. 22 plots the intrinsic impedance of the buoy. 

 

Fig. 22 Intrinsic impedance of the buoy. 

According to (Falnes, 2002), the optimal condition for the power extraction is 
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where Z* is the complex conjugate of Z. Then the optimal average power absorbed is 
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where f(ω) is the Fourier transform of the wave excitation Fwave(t). Given the wave spectrum S(ω) and 

the wave force transfer function ψ(ω), f(ω) can be expressed analytically as 

 ( )  ( ) ( ) ( )iWf e S         

where W(ω) is a random value between 0 and 2π. ( )  iWe   represents the random phase of each 

component. 

Please note that ( )  iWe   = 1 and thereby the optimal average power extraction is given by 
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