
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 A
rc

hi
te

ct
ur

e 
an

d 
D

es
ig

n
D

ep
ar

tm
en

t o
f A

rc
hi

te
ct

ur
e 

an
d 

Te
ch

no
lo

gy

M
as

te
r’

s 
th

es
is

Gaurav Chaudhary

Decoupling the thermal and visual
performance in glazing systems: a
novel methodology for the numerical
investigation of the case of double
skin facade systems.

Master’s thesis in Sustainable Architecture (M.Sc.)
Supervisor: Dr. Francesco Goia (NTNU, Norway)
Co-supervisor: Dr. Fabio Favoino (Politecnico di Tornio, Italy)

June 2019





1 
 

Gaurav Chaudhary 

 

 

 

 

 

 

 

Decoupling the thermal and visual performance in glazing 

systems: a novel methodology for the numerical investigation of 

the case of double skin facade systems. 

 

 

 

 

 

 

 
Trondheim, Spring 2019 
 
Master’s thesis for M.Sc. in Sustainable Architecture 
 
Supervisor:   Dr Francesco Goia  (NTNU, Norway) 
Co-supervisor:  Dr Fabio Favoino  (Politecnico di Torino, Italy) 
 
Norwegian University of Science and Technology 
Faculty of Architecture and Design 
Department of Architecture and Technology 

 

 

  



2 
 

  



3 
 

Abstract 

Dynamic transparent envelope technologies such as double skin facades (DSFs) have been used for a 

long time as an efficient building envelope system aiming to reduce building energy consumption and 

indoor air quality. Whereas, the true performance of a highly responsive and dynamic system like 

DSF depends by a great extent also on the control system which controls the various aspects of such a 

façade system. 

A DSF unit with an inbuilt shading system can be operated in various modes with option to control or 

regulate many components such as the airflow path and airflow rate in the cavity, shading state and 

slat angles, eventually, the width of air cavity itself in some newer DSFs. Despite the technological 

evolutions of the components of the DSF and of the DSF systems, operations and control strategies 

have not evolved much. In reality, although a DSF can have many working modes, only one or two 

are selected at each time at the design phase for each building and then used. There is a general lack 

of understanding of how adjustments in different components of a DSF affect the overall performance 

because of which it has become difficult to utilize their maximum potential. The ultimate goal of this 

thesis is to show how by considering a more comprehensive use of the DSF enabled by using different 

control components in a DSF, can be regulated to decouple, i.e. individually control, its thermal and 

visual performance; and de-facto change the paradigm of how DSF is used and perceived as a 

building component.  

Different configurations of DSFs (with variations in the type of outer/inner skin, gap width and 

reflectivity of blinds) were used in this study together with benchmark insulated glazing units (IGUs). 

These façade systems were tested for thermal and visual performance against a set of realistic 

boundary conditions and all possible variations of operation modes. The DSFs were modelled and 

simulated in steady-state conditions in EnergyPlus® whereas purpose-built Python® scripts were 

used to pre-process, post-process and analyses the thousands of simulation cases and output results. 

The methodology and procedure for all the work are presented in detail which can be used to replicate 

the work and results achieved in the thesis. 

From the analysis of results, it was seen that “Air Supply” and “Air Extract” modes presented a large 

range of thermal gain when compared to other airflow paths, whereas, higher airflow rate provided the 

maximum range which reduced with decreasing value of airflow rate. With the mathematical the 

model used for DSF in this thesis, no significant differences are measured in the thermal gain range of 

DSFs when air cavity depth was increased to even highest possible realistic value. The results 

outlined a trend that both range of performance and degree of freedom of decoupling was lowest 

when the temperature difference (between indoor and outdoor) was zero and the lowest solar 

radiation. Both these values increased with the increase of the temperature difference on the both 

sides of 0 with highest being at -45 °C and 20 °C, whereas the degree of freedom of decoupling 

reduced as incident solar radiation increased. 

This work also includes different applications of the methodology proposed in this study. Different 

ways are proposed for how the results can be used to effectively design a DSF for a given climate, 

compare the performance of different DSFs and operate a DSF in the most efficient manner. 

 

Keywords: Double Skin Façade, DSF, Decoupling, Performance, EnergyPlus 

  



4 
 

  



5 
 

 

 

 

 

 

 

 

 

 

Acknowledgements 

I would like to express my sincere gratitude to my supervisor Dr Francesco Goia and my co-
supervisor Dr Fabio Favoino for their continuous support and guidance throughout my thesis. I am 
grateful for their interest and encouragement; and appreciate their effort for allowing me to explore 
along with keeping my ideas on track. 
 
Besides my supervisors, I would like to thank all the members of the Technology Energy Building 
Environment research group in Department of Energy of Politecnico di Torino for hosting me in Italy 
for 5 months period. I would personally like to thank Ellika Taveres-Cachat, Miren Juaristi Gutiérrez, 
Francesco Isaia, Stefano Fantucci and Elisa Fenoglio for being my support team all throughout the 
semester and giving me constructive suggestions. 
 

 

 

  



6 
 

  



7 
 

Table of Contents 

Abstract ............................................................................................................................................... 3 

Acknowledgements ............................................................................................................................. 5 

Table of Contents ................................................................................................................................ 7 

List of figures ...................................................................................................................................... 9 

List of tables ...................................................................................................................................... 11 

Abbreviations .................................................................................................................................... 13 

Nomenclature .................................................................................................................................... 15 

1. Introduction ............................................................................................................................... 17 

1.1.1. Definition of DSFs ...................................................................................................... 17 

1.1.2. Classification of DSFs ................................................................................................. 17 

1.1.3. Energy performances of DSFs ..................................................................................... 18 

1.1.4. Quantification of performance of DSFs ...................................................................... 18 

1.2. Motivation and aims ............................................................................................................ 18 

1.3. Research questions and objectives ...................................................................................... 20 

1.4. Overview of research methodology ..................................................................................... 20 

1.5. Structure of thesis report ..................................................................................................... 21 

2. Research methodology and materials ...................................................................................... 23 

2.1. Description of workflow ..................................................................................................... 23 

2.1.1. Step 1: Modelling ........................................................................................................ 23 

2.1.2. Step 2: Pre-processing ................................................................................................. 23 

2.1.3. Step 3: Simulation ....................................................................................................... 24 

2.1.4. Step 4: Post-processing ............................................................................................... 24 

2.1.5. Step 5: Analysis .......................................................................................................... 24 

2.2. Simulation settings and input parameters ............................................................................ 26 

2.2.1. Simulation settings ...................................................................................................... 26 

2.2.2. Input parameters .......................................................................................................... 28 

2.3. Description of Performance metrics .................................................................................... 29 

2.3.1. Thermal metric ............................................................................................................ 31 

2.3.2. Visual metric ............................................................................................................... 32 

2.4. DSF configurations ............................................................................................................. 33 

2.4.1. Variations of Double Skin Façades (DSFs) ................................................................. 33 

2.4.2. Benchmark glazings .................................................................................................... 35 

2.5. Data post-processing scheme .............................................................................................. 36 

2.5.1. Level 1 ........................................................................................................................ 38 

2.5.2. Level 2 ........................................................................................................................ 40 

2.5.3. Level 3 ........................................................................................................................ 41 



8 
 

3. Results and discussion .............................................................................................................. 43 

3.1. Performance range of Insulated Glazing Units (IGUs) ........................................................ 43 

3.2. Performance range of Double Skin Facades (DSFs) ........................................................... 44 

3.2.1. General trends and dependency of operation modes.................................................... 44 

3.2.2. Effect of reflectivity of blinds in DSFs on performance range .................................... 47 

3.2.3. Effect of different glass configurations in DSFs on performance range ...................... 48 

3.2.4. Effect of different air cavity depth in DSFs on performance range ............................. 49 

3.2.5. Variations and trends in performance range for different boundary conditions ........... 51 

3.2.6. Decoupling performance of a DSF? ............................................................................ 53 

4. Applications ............................................................................................................................... 59 

4.1. Studying potential of different configurations of DSFs in different climate ........................ 59 

4.2. Designing advanced control strategies for DSFs ................................................................. 60 

4.2.1. Methodology of workflow ........................................................................................... 60 

4.2.2. Control algorithms ...................................................................................................... 61 

4.3. On-board real-time controller for DSF ................................................................................ 62 

5. Limitations and discussion ....................................................................................................... 63 

6. Conclusions ................................................................................................................................ 64 

References ......................................................................................................................................... 66 

Appendix 1: Python scripts developed for this study ..................................................................... 68 

Making simulation cases ................................................................................................................. 68 

Preparing multiple IDFs and EPWs ................................................................................................ 69 

Making batch file for EP simulations .............................................................................................. 70 

Batch file for EP simulations .......................................................................................................... 71 

Post processing the collected data ................................................................................................... 72 

Plotting 2D graphs .......................................................................................................................... 75 

Plotting 3D graphs .......................................................................................................................... 81 

For making video from data ............................................................................................................ 86 

 

  



9 
 

List of figures 

 

Figure 1:Possible airflows in double skin facades 

Figure 2: Illustration for four step process of workflow for this study 

Figure 3:G-value of an insulated glazing unit is defined as ratio of total solar heat transmittance to 

total incident shortwave solar radiation 

Figure 4: VT or Tvis of an insulated glazing unit is defined as ratio of total visible light transmitted to 

total incident visible light 

Figure 5: Heat flow schematic representation for a Double Skin Façade (DSF) 

Figure 6: Three different glass arrangements of DSFs used. 

Figure 7: Four different benchmark IGUs studied. 

Figure 8: Data presentation and post-processing scheme 

Figure 9: These illustrations show how trend of how (a) boundary conditions, and (b)operation modes 

parameters effects the thermal and visual performance 

Figure 10: Illustrations showing (a) trends observed from different plots (b) some examples of how 

these plots look 

Figure 11: Examples of scatter plots with different correlation 

Figure 12: Example of how the 3D surface plot between boundary condition and a correlation metric 

would look 

Figure 13: Scatter plot for Visual metric on Y axis against Thermal metric on X axis for a Simple 

Double-Glazing Unit. Figure (a) show how it perform at various boundary condition without any 

shading system, while Figure (b) shows the performance with shading sys system installed with 

different representing different slat angle of the blinds 

Figure 14: Performance comparison of different types of IGUs 

Figure 15: Scatter plot for Visual metric against Thermal metric for a DSF_2, Single-200mm airgap-

Double with high reflective blinds 

Figure 16: Illustration showing how big and wide is the performance range of a DSF compared to 

IGU for all boundary conditions. Both DSF and IGU has same 3 glass panes and shading system. DSF 

here is Single-200-Double and IGU is Low-e Triple glazing 

Figure 17: In the scatter plot shown in figure 15, color component was given to the markers for the 

data points to represent simulation cases with different Airflow Path 

Figure 18: In the scatter plot shown in figure 15, color component was given to the markers for the 

data points to represent simulation cases with different Airflow Speed 

Figure 19: In the scatter plot shown in figure 15, color component was given to the markers for the 

data points to represent simulation cases with different simulation cases with no blinds and if blinds 

present then with different slat angles 



10 
 

Figure 20: Performance range comparison for DSF with different reflectivity blinds: (a) Single-

200mm airgap-Double with high reflective blinds vs (b) Single-200mm airgap-Double with low 

reflective blinds 

Figure 21: Performance range comparison for DSF with different arrangement: (a) Double-200mm 

airgap-Single with high reflective blinds; (b) Single-200mm airgap-Double with high reflective 

blinds; and (c) Double-200mm airgap-Double with high reflective blinds 

Figure 22: Performance range comparison for DSF with same glass and blinds arrangement but 

different air gap: (a) Single-200mm airgap-Double with high reflective blinds; (b) Single-600mm 

airgap-Double with high reflective blinds 

Figure 23: Performance range of DSF_3, i.e. Single-200mm air-Double with high reflective blinds, 

for temperature difference (between indoor and outdoor) of -45 °C and solar radiation of 1000 W/m2. 

As can be seen on the right side of the plot area, area and Person correlation coefficient of each case 

was calculated and recorded for further analysis 

Figure 24: Illustration showing how big and wide is the performance range of a DSF compared to 

IGU for temperature difference (between indoor and outdoor) of -45 °C and solar radiation of 1000 

W/m2. Both DSF and IGU has same 3 glass panes and shading system. DSF here is Single-200-

Double and IGU is Low-e Triple glazing 

Figure 25: The shape of polygon has been plotted for fixed value of temperature difference (between 

indoor and outdoor) with changing solar radiation on Z-axis while thermal and visual metrics on x and 

y axis respectively. Sub-plot (a) represent all cases with temperature difference fixed as -45 °C, (b) -

25 °C, (c) -10 °C, (d) 0 °C, (e) 10 °C, (f) 20 °C 

Figure 26: Illustration showing the overall trend seen how performance ranges changes with changing 

boundary condition 

Figure 27: Area of the polygon, i.e. the boundary over performance range, on z-axis plotted against 

thermal and visual metrics on x and y axis respectively for DSF_3, i.e. Single-200mm air-Double with 

high reflective blinds. 

Figure 28: Pearson correlation coefficient, r, on z-axis plotted against thermal and visual metrics on x 

and y axis respectively for DSF_3, i.e. Single-200mm air-Double with high reflective blinds 

Figure 29: Area of the polygon, i.e. the boundary over performance range, on z-axis plotted against 

thermal and visual metrics on x and y axis respectively for three different glass arrangement for high 

reflectivity blinds 

Figure 30: Area of the polygon, i.e. the boundary over performance range, on z-axis plotted against 

thermal and visual metrics on x and y axis respectively for three different glass arrangement for low 

reflectivity blinds 

Figure 31: Pearson correlation coefficient, r, on z-axis plotted against thermal and visual metrics on x 

and y axis respectively for three different glass arrangement for high reflectivity blinds 

Figure 32: Pearson correlation coefficient, r, on z-axis plotted against thermal and visual metrics on x 

and y axis respectively for three different glass arrangement for low reflectivity blinds 

Figure 33: Potential of DSF for all orientations in different climates: (a) Rome: Köppen climate 

classification: Csa; (b) Oslo: Dfb; (c) Delhi: Cwa; and (d) Nairobi: Cwb 

Figure 34: Steps of workflow used for simulating a DSF with an advanced control algorithm 

Figure 35: Steps of workflow for predicting controls of DSF using ANN models 



11 
 

List of tables 

Table 1. Summary of layers for three different glass arrangement, with Layer1 being outermost and 

Layer 7 innermost. 

Table 2: Thermophysical properties of types of glass panes used. 

Table 3: Summary of different configurations of DSF, for example, “DSF_1” is Double - 200 mm Air 

– Single with High reflective blinds 

Table 4: Summary of layers for four different IGUs, with Layer1 being outermost and Layer 4 

innermost. 

 

 

 

 

  



12 
 

  



13 
 

Abbreviations 

ηPH  Pre-heating efficiency 

ASCII  American Standard Code for Information Interchange 

ANN  Artificial Neural Network 

CSV  Comma-separated values 

DBT  Dry-bulb temperature 

DGU  Double Glazing Unit 

DSF  Double Skin Façade 

EMS  Energy Management System 

EP  EnergyPlus 

EPW  Energy Plus Weather 

HTML  Hypertext Markup Language 

HVAC  Heating, ventilation, and air conditioning 

IAT   Indoor Air Temperature 

IDF  Input Data Format 

IGU  Insulated Glazing Unit 

RH  Relative Humidity 

UDI  Useful Daylight Illuminance 

VT  Visible Transmission 

 

  



14 
 

  



15 
 

Nomenclature 

r  Person correlation coefficient [-] 

Tvis  Visible light transmittance [%] 

U-value  Thermal transmittance of glass [W/m²K] 

VLT  Visible light transmittance [%] 

ε  Emissivity [%] 

g-value  Solar factor [-] 

F   Airflow rate [m3/s] 

Agap   Gap cross-sectional area [m2] 

hcv    Convective heat transfer coefficient from glass to gap air [W/m2K] 

hc   Glass-to-glass heat transfer coefficient for non-vented (closed) cavity [W/m2K] 

v    Mean air velocity in the gap [m/s] 

Xi   every data point in Thermal Metric array 

Yi   every data point in Visual Metric array 

��    mean of Thermal Metric array 

��    mean of Visual Metric array 

K  Luminous Efficacy [lm/W] 

Qsol,SW   Directly Transmitted shortwave radiation [W] 

Qsol,LW   Re-emitted longwave radiation from heat absorbed in glass [W] 

Qconv   Convective heat exchange between glass and zone air [W] 

Qincident   Total incident solar radiation [W] 

Qair   Convective heat gain to the zone air due to the gap airflow [W] 

Qvent   Extra energy to compensate for heating/cooling energy spent by HVAC [W] 

Cp    Heat capacity of the air [J/kg-K] 

∆T   Temperature difference of extra air brought inside the zone [°C] 

Cp,in  Heat capacity of the gap inlet air [J/kg-K] 

Cp,out   Heat capacity of the gap outlet air [J/kg-K] 

Tgap,in  Temperature of inlet stream of air from air cavity [°C] 

Tgap,out  Temperature of outlet stream of air from air cavity [°C] 

��   Air mass flow rate [kg/s] 

H  Glazing height [m] 

Ho   Characteristic height [m] 



16 
 

ρ   Density of air [kg/m3] 

s   Cavity gap width [m] 

  



17 
 

1. Introduction 

1.1. Literature review 

1.1.1. Definition of DSFs 

The Double Skin Façade is an architectural trend driven mostly by: the desire for an all glass façade 

for aesthetic reasons; reduction of energy use and need for improved indoor environment for practical 

reasons. The term “Double Skin Façade (DSF)” refers to a large spectrum of facades. According to 

the Source book of the Belgian Building Research Institute [1], “An active façade is a façade 

covering one or several storeys constructed with multiple glazed skins. The skins can be air tighten or 

not. In this kind of façade, the air cavity situated between the skins is naturally or mechanically 

ventilated. The air cavity ventilation strategy may vary with the time. Devices and systems are 

generally integrated in order to improve the indoor climate with active or passive techniques. Most of 

the time such systems are managed in semi-automatic way via control systems.”  

1.1.2. Classification of DSFs 

The cavity in DSFs can be used as a thermal buffer zone, as a ventilation channel or as a combination 

of the two. It may be naturally ventilated or mechanically ventilated. The natural ventilation in a DSF 

is driven by two main preserve differences which are caused by thermal buoyancy or directly by wind 

action. The former, thermal buoyancy occurs when hot air rises and cool air sinks. Air density 

changes when temperature changes and hence warmer air occupies a greater volume than cooler air 

and is lighter per unit of volume [2]. Regarding the later, it happens when wind travels from positive 

pressure to negative pressure. Areas on the windward side, i.e. where the wind hits the building, are 

characterized by a positive pressure which pushes the air into or against the building. Areas on the 

leeward side, i.e. the opposite side of windward, have a negative pressure which results in a suction of 

the air out or away from the building [3]. 

The cavity width may vary from “narrow cavity”, for width upto 40 cm, to “wide cavity”, for when 

width exceeds 40 cm. Narrower spaces may significantly influence airflow and air velocity whereas 

for the latter wider cavities often imply a higher amount of construction materials which, in turn, 

increase the embodied energy of the DSF [4]. The limit of 40 cm is determined by the minimum width 

required in the cavity for maintenance purposes.  

Other classifying dimensions of a DSF involve the origin of the airflow and its destination [5], which 

eventually define the airflow concepts [6], which have been illustrated in Figure 1.  

 

Figure 1:Possible airflows in double skin facades 

 



18 
 

1.1.3. Energy performances of DSFs 

The reduction in heating loads can be seen in many ranges throughout the review. This is achieved by 

the use of heat trapped in air cavity. Air buffer mode can be used to create to barrier for heat loss, 

whereas the trapped warmer air in the cavity can also be supplied to indoor spaces (Figure 1, Supply 

Air and Internal Air Curtain). Baldinelli [7] showed that reductions in heating loads can be as high as 

65% for a DSF when compared to single skin façade. Similar results have also been achieved in 

broader contexts, when DSFs have been compared to advanced single skins [8]. Significant 50% and 

40% reductions of heating load due to the greenhouse effect have been found by Pappas [9] and 

Andjelkovicet et. al.[10] respectively, when DSFs are compared to single skins. Many investigations 

have concluded a reduction in heating demand ranging from 20% to 30%. Such investigations vary 

from field experiments in residential houses [11] to the use of DSFs as a renovation strategy for 

existing ones or new buildings [12]. 

Cooling savings seen with use of DSF correspond either to the supply of fresh air using Air Supply 

mode or the extraction of the heat from the occupied spaces through Air Extract mode. Additionally, 

the DSF can still act as a natural fan which cools off the inner skin using Outdoor Air Curtain mode. 

Cutbacks in cooling loads as high as 93.3% are seen in investigations done by Baldinelli [7] and 70% 

as seen in investigations done by Stec and van Paassen [13]. Cooling savings in the range mid-range 

were seen by Kragh within a 30–40% range in two cases [14,15]. Similar findings show reductions of 

37.8% [15] and 38% [17]. 

1.1.4. Quantification of performance of DSFs 

While the conventional performance metrics like U-value and g-value are sufficient to represent the 

thermophysical behavior of an IGU, they do not encompass the total thermophysical gain/loss of an 

adaptive system like a DSF. The conventional metrics cannot be used because the thermophysical 

behavior of a DSF is too far from the assumptions under which these metrics can be measured or 

calculated, which is done for specific boundary conditions. There is a need for quantitative 

information about the performance of systems like a DSF when they are being used in buildings. This 

information can be used to support the decision-making process and during the comparison with 

alternative advanced and traditional façade systems. For this, the performance of DSFs can be 

expressed in terms of indicators which is helpful for the type of analysis or evaluation is being done. 

Many studies have highlighted the importance of developing different performance metrics for DSFs. 

The concept of pre-heating efficiency (ηPH) for transparent double skin façades using the air cavity to 

pre-heat the supply ventilation air has been used for the first time [18]. The same concepts have been 

developed further, adopting the dynamic insulation efficiency (ε) for transparent double skin façades, 

using the cavity air to remove solar loads transmitted through the glazing [19]. 

1.2. Motivation and aims 

Windows plays an important role in buildings. They have to fulfil functional as well as esthetical 

tasks. In terms of functionality, they provide protection against the weather, provide ventilation to the 

inside of the building, guarantee a sufficient level of daylight and provide thermal insulation.  

IGUs in combination with solar shading devices can became active construction elements which 

support the conditions of a building. IGUs minimize the heating energy demand of buildings by 

maintaining a positive energy balance, i.e. higher passive solar gains than transmission heat losses; 

and also maintain required daylighting levels using shading devices. Shading devices can either be 

fixed like drapes or curtains; or movable devices like blinds. Fixed devices provide two options of 

either blocking all solar radiation transmission or keeping all, whereas movable devices can be 

tweaked to get a desirable amount. These devices can be mounted external, internal or in the inter-



19 
 

pane space. Externally mounted elements shade the glazing itself and prevent the penetration of solar 

radiation to the interior. When external shading devices are used there is no significant heat gain from 

outside except due to the heat transfer due to the temperature difference between inside and outside. 

Internal elements partly reflect the solar radiation transmitted through the glazing back to the outside. 

The remaining portion is absorbed and transferred to the interior via convection and infrared radiation.  

The largest portion of heat gain through a window is due to the solar gain, i.e. shortwave radiation due 

to the sun. The short-wave solar radiation (wavelength 380 to 780 nm) is partly reflected and absorbed 

at the window panes. The remaining fraction of the solar radiation is being transmitted to the 

building’s interior. Since the visible spectrum of light is also within the shortwave range, it leads to 

the fact that the heat gain and the visible gain are linked. This direct correlation seen between the 

thermal and visual gain from the windows means when the shading device is used the shortwave 

transmission is blocked which stops all of visible gain and a major portion of heat gain.  

A question naturally arises because of the relationship seen before, “Are there any types of 

transparent façade systems where thermal gain and visual gain can be decoupled, i.e. can be 

controlled separately?” A double-skin façade, or DSF, seems to be answer to the question. To 

decouple thermal and visual gain one has two options: one is to act at material levels looking for 

materials capable of selectively differentiate between the transmission/absorption/reflection of 

electromagnetic radiation, like electrochromic or thermochromic glass panes; or to act to the absorbed 

part of the solar thermal radiation and to release it either towards the inside or the outside, according 

to the needs. 

A DSF is an envelope construction composed of two transparent ''skins'' that are separated by an air 

cavity. The DSF is a form of an active façade because it employs equipment, like fans or solar/thermal 

sensors. DSF also employs solar shading devices. For the protection and heat extraction reasons 

during the cooling period, shading devices are placed inside the cavity. Like in IGUs, shading devices 

in DSFs can also be used to control the amount of visible light transmission inside to the occupied 

space. Whereas, the air in the cavity can be used to control the amount of thermal gain to outside. 

When outside is colder than required inside temperatures the heated air in the cavity can be circulated 

to the occupied space to offset heating requirements, while in opposite outdoor conditions the air in 

the cavity can be vented out of the building to mitigate solar gain and decrease the cooling load. The 

amount of gain or loss can also be controlled with the amount of airflow rate in the cavity.  As can be 

seen, the two components, i.e. the shading devices and the air in the cavity, are independent of each 

other in terms of functionality and hence in theoretical terms, it can be said that these two components 

can be controlled individually to control the thermal and visual gain independently.  

Although the use of Double Skin Façades has increased radically in buildings all throughout the 

world, the operation modes which are used is majorly confined to a few combinations. Apart from the 

type of ventilation inside the cavity, i.e. if natural, fan-supported or mechanical; the origin and 

destination of the air differ depending mostly on climatic conditions, the use, the location, the 

occupational hours of the building and the HVAC strategy. Theoretically there are many modes in 

which DSFs can work, as seen in Figure 1, in reality, only one or two are selected at each time at the 

design phase for each building and then used. Therefore, it is a choice that limits the potentials of 

using this archetype, since it is applied only within a limited range of flexibility. There is a general 

lack of understanding of how adjustments in different components of a DSF affect the overall 

performance because of which it has become difficult to utilize their maximum potential. The ultimate 

goal of this thesis is to show how, by considering a more comprehensive use of the DSF enabled by 

using different control components in a DSF can be regulated to decouple, i.e. individually control, 

it's thermal and visual performance; and de-facto change the paradigm of how DSF is used and 

perceived as a building component.  

 



20 
 

 

1.3. Research questions and objectives 

In line of the aim of this thesis, the research questions of this thesis can be grouped in three part. They 

are as follows: 

Developing different kinds of metrics 
1. How to quantify thermal and visual performance of DSF? 

2. How to quantify the performance range and decoupling degree of a DSF? 

Analysis of the performance of a DSF 
3. How big is the thermal and visual performance range of a DSF? 

4. How does different operation modes affect the different performance of a DSF? 

5. How does performance range of a DSF change with boundary conditions? 

6. How decoupled is the thermal and visual performance of a DSF? 

Applications of this work 
7. How this work can be used to design and operate a DSF for a certain climate? 

In order to answer the research questions, certain objectives were decided for this work. There are as 

follows: 

1. Define performance metrics for thermal and visual gain through the DSF into an occupied 

zone. 

2. Define set of realistic boundary conditions and operation modes for a DSF through which 

mathematical model of DSF will be tested. 

3. Design and implement the pipeline of simulation, data collection, data processing and 

plotting. 

4. Create possible methodologies for future work about applications of work done in this thesis 

1.4. Overview of research methodology 

To check the performance range of double skin façades same approach is used as is typically used to 

test the performance of a new technology, i.e. test the technology over all possible modes and 

conditions it can function on and then analyses how the performance vary with variation in each mode 

and condition. The steps described below are the core workflow steps which have been used in this 

thesis. They are as follows: 

1. Step 1: Model different kinds of DSFs in a desired building energy simulation tool which has 

an in-built physical-mathematical model of DSF. 

2. Step 2: Run comprehensive steady state simulations to replicate as many configurations as 

possible (boundary condition and operational modes) for a DSF. 

3. Step 3: Gather the output from the simulations, which are in terms of physical quantities in 

performance metrics dedicatedly developed for this scope of the work  

4. Step 4: Analyze the dependency of performance metrics on boundary condition and 

operational modes, and how the two are intercorrelated. 

EnergyPlus version 8.6.0 was selected as the simulation platform to perform steady-state simulations, 

for various reasons. It is one of the newest and most advanced stand-alone building energy simulation 

programs. A dedicated component name “Airflow Windows” is present in EnergyPlus to model and 

simulate DSFs. Because of its popularity and number of people using all over the world, EnergyPlus 

has good online community support. Whereas the major reason why EnergyPlus was chosen was 



21 
 

because it is a console-based program that reads input and writes output to text files which makes it 

possible to be run via command line; and process input and output files using a text scripting 

language. 

This work would require multiple simulations in the order of tens of thousands. The management of 

such a large number of simulations and large sets of output data cannot be done but with the use of 

automated processing, which takes places several times during the whole thesis work. Automated 

processing was required for designing simulation input parameters, simulation and output file 

management, post-processing of output results into usable data, plotting advanced level of visual data 

representation, and performing statistical analysis of all results. For all automated work, programming 

and scripting language Python version 3.7.3 was selected, for the reason being it can run EnergyPlus 

from command line and has the biggest online community support compared to any other 

programming language. 

1.5. Structure of thesis report 

The report for this thesis is structured in the following way: 

Chapter 2 – Research methodology and materials: This chapter presents the detailed operative 

workflow of the work; types of IGUs and DSFs studied; simulation settings and mathematical model 

of DSF; and the data presentation schemes. 

Chapter 3 – Results and discussion: This chapter presents and discusses the results for IGUs and 

DSFs, for how their performance changes with boundary conditions and operation modes 

Chapter 4 – Applications: Here the different type of applications of the results and data gathered from 

this thesis are introduced. A detailed methodology of how to use predictive control algorithm along 

with the data gathered is introduced as one of the applications. 

Chapter 5 – Limitations and discussion: Followed by a discussion of the limitations part of this study, 

the reason behind why certain aspects of DSF modelling were not considered and how this would be 

different in a real-time controller. 

Chapter 6 – Conclusion: This chapter summarizes the overall work and results of this thesis 

Appendix: Includes all the Python scripts developed for the work.  



22 
 

  



23 
 

2. Research methodology and materials 

This chapter explains the methodology and different components required to do this study. First, the 

operative workflow for thesis is described in detail followed by simulation settings and input 

parameters used. The two-performance metrics proposed for this studied have been described after 

that which is followed by description of different types of façade system studied in this thesis. Finally, 

the data presentation scheme used in this study have been illustrated and discussed which gives a peek 

into how the results would look like. 

2.1. Description of workflow 

The operative workflow for this thesis can be grouped in 4 sequential steps. The four steps are as 

follows:  

1. Modelling: Defining and modelling different types of DSFs which are to be studied in this 

thesis.  

2. Pre-processing: This step involves developing input parameters for simulation cases for 

different set of boundary conditions and operation modes. 

3. Simulation: In this step, the input files for EnergyPlus simulations (i.e. IDF and EPW) were 

developed and simulations were run. 

4. Post-processing: Here, the simulation output from simulation runs is processed to get required 

performance metrics. 

5. Analysis: This step involves further post processing of simulation work and analysis of 

results. 

All four steps have been described in detail below. 

2.1.1. Step 1: Modelling 

The different types of DSFs to be studied in this thesis were defined and modelled separately on 

EnergyPlus. The glazing configuration, air cavity depth and shading were varied to make different 

types of DSFs.  

The output of this step was different IDF files for different types of DSFs. The input data file (IDF) is 

an ASCII file containing the data describing the building components, materials, constructions and 

HVAC system to be simulated. 

2.1.2. Step 2: Pre-processing 

This step involved making different input parameters for different simulation cases for each DSF. The 

list of possible discrete values for each type of input parameter was passed through a Python script 

which gives the output as a CSV file with all parameters as columns and all cases as rows. For all the 

parameters of boundary conditions and operation modes selected for this study, a total of 35,700 cases 

is computed. This is the number of simulation cases just for one of the nine different DSF 

configurations (in terms of glazing, cavity depth and shading) which were studied in this thesis. The 

output CSV file here was named as Cases_In.CSV. 

The Python script made for this task iteratively took 1 possible value from every 7 sets and made one 

simulation case out of that. Whereas, it added one case with Airflow rate set as 0 every time before 

cases with variable air speeds were made. Also, when Blind State was selected as “off”, the Slat angle 

and Reflectivity of Blinds would be set as null as there are no blinds. These iterative selections were 

done by multiple nested For Loops, While loops and combinations of If/Else statements. 

 



24 
 

2.1.3. Step 3: Simulation 

For every DSF type simulation case template of IDF and EPW (EnergyPlus weather) files were made. 

IDF and EPW files are used as input files for EnergyPlus simulation. The template files were used to 

make all simulation input files of cases designed in Step 1. These files had parameters values replaced 

with a distinctive keyword, for example, $@DBT@$ for Dry-bulb temperature in EPW file. To 

summarize, Dry-bulb temperature and Global diffuse solar radiation values were replaced as a 

distinctive keyword in EPW file. Whereas, the thermostat setpoint, Airflow rate, Airflow path, Slat 

angle, Reflectance of slats, and the shading control for the state of blinds were replaced as a 

distinctive keyword in IDF file.  

Energy Plus is a dynamic simulation program which is contrary to the steady-state simulation required 

for this thesis. Special settings and tricks were used in the simulation settings and both input files to 

assure that steady state conditions were achieved. 

A Python script was made which took text data of the template IDF file, replaced distinctive keywords 

with corresponding data from Cases_In.CSV file and saved the text data as Case_x.IDF with x as a 

case number. It then performed a similar process for template EPW file and saves each case input 

EPW file as Case_x.EPW. The result of this Python script was fully functional IDF and EPW files for 

each 35,700-simulation cases. 

Another Python script iteratively took Case_x.IDF and Case_x.EPW with the same x and launched 

EnergyPlus simulation for each case. To save time, this script runs multiple simulations over all 

available processors on the computer at the same time and will take care that no simulation is run 

twice. In every EnergyPlus simulation at least 15 output files are developed out of which only 

Output.CSV file and Output.HTML is useful. As the number of simulations is really high all the 

useless output files have to be deleted once each simulation is finished. This is done to save storage 

and prevent the computer from crashing mid-simulation. The same Python script deleted every useless 

output file and renamed Output.CSV and Output.HTML as Case_x.CSV and Case_x.HTML 

respectively after every simulation was finished. The final result of this Python script was an output 

CSV and HTML file for each 35,700-simulation cases. 

2.1.4. Step 4: Post-processing 

Each Output CSV files had hourly data for 21st June, i.e. Summer solstice. Being under steady state 

conditions for simulations, results for each timestep are identical and de-facto independent. Hence, 

any of the data time-rows could be selected and time-row for 12:00 was selected. Performance metrics 

were calculated from the data physical quantities retrieved from this time-row. The four physical 

quantities are as follows: Gap Convective exchange from airflow, Convective exchange with zone air, 

Directly Transmitted shortwave radiation and Re-emitted longwave radiation.  

A Python script was then used to gather all four physical quantities from all the output files and save it 

in one file. This script iteratively opened every Case_x.CSV file, copied 4 quantities mentioned above 

and computed the 5th component if it was required. With these 5 components, the script then 

computed Thermal Metric and Visual Metric separately according to Airflow path type. After all the 

35700 cases had been computed the script opened Cases_In.CSV file from Step 1 and merged 5 

components and 2 metrics side by side for every case and saved it as Cases_In_Out.CSV. This file had 

all parameters of boundary condition /operation mode and computed data from simulations and Step 

3. 

2.1.5. Step 5: Analysis 

This step was the broadest step work wise. Here all the data collected in Cases_In_Out.CSV was used 

to perform different kinds of analysis and visualizations. As mentioned in the previous step 



25 
 

Cases_In_Out.CSV had both input parameters, i.e. boundary condition /operation mode, and output 

parameters, i.e. performance metrics. In this step, several 2D and 3D graphs were made using data and 

more post-processing was done for further analysis. For all this work plotting and scripting capability 

of Python was used extensively. Description to some of the major Python scripts used for data 

analysis and visualization is given here below. 

A Python script was made to plot all data points on X, Y-axis as Thermal and Visual metrics 

respectively, whereas the data point marker was changed according to input parameters for that data 

point. The markers were changed in the following manner: increasing temperature difference 

(between indoor and outdoor) was shown as increasing opacity of the color of marker, increasing 

incident solar radiation was shown as increasing size of marker whereas different airflow paths, 

airflow rates and slat angles were individually shown with a different color of marker. The data points 

which were for “Off” blind state were marked as black dot changing size and opacity as described 

above. Several levels of nested For loops and If/Else condition were used on the data read from 

Cases_In_Out.CSV, whereas all the plotting was done using the Matplotlib library of Python. 

Another type Python script used was designed to visualize the performance of DSF at a specific 

combination of boundary condition. In this script, the data from Cases_In_Out.CSV was taken and 

plotted similarly as done in the previous script but keeping a combination of temperature difference 

(between indoor and outdoor) and incident solar radiation value constant. For every combination, for 

example, -20C and 200 W/m2, programmatically boundary of the scatter plot was made by finding 

min and maximum vertices on every axis. This polygon represented the spread and possibility of 

thermal and visual performance of that DSF for certain boundary condition, whereas the area of that 

polygon represented a comparative value of the performance range. The data points in this area were 

collected to calculate Pearson correlation coefficient, r. The value of r gave the degree of correlation 

between the two metrics. If value of r is closer to zero, it means there is less correlation whereas value 

of r near to -1 and +1 represented negative and positive correlation respectively. These coefficients 

have been described in next sub-section in detail. This Python would plot 2D scatter plot with the 

boundary marked for every combination of boundary condition and also saves the values of Pearson, 

r, area of the polygon and its vertices in a separate CSV file named dT_SR_data.CSV. This data would 

be bi-linearly interpolated to get these coefficients and vertices of polygon for more possibilities of 

boundary conditions and in practicality for any possibility of temperature of inside/outside and 

incident solar radiation.  

Figure 2 shows the 5 steps described above with a brief description of Python scripts used 

everywhere. 

 



26 
 

 

Figure 2: Illustration for four step process of workflow for this study 

2.2. Simulation settings and input parameters 

2.2.1. Simulation settings 

The different façade systems selected for this study were simulated against different boundary 

conditions with different operation modes of a DSF. Each façade system was placed on the wall 

facing south side of a 5m x 5m box with 3.5m high walls. All the six surfaces, i.e. four walls, one 

floor and one roof, are well insulated which makes heat gain/loss from these surfaces almost zero. 

Also, no internal loads were added in the zone which results in, heat gain/loss happening from only 

the façade. The inside temperature of the zone was kept constant by using an Ideal air load HVAC 

system. The thermostat setpoint was varied to 20 °C and 25 °C; which represented winter and summer 

mode respectively. The main objective behind selecting these simulation settings was to keep every 

heat gain/loss which was “not because of façade” equal to zero, as the aim of simulations was to 

record the heat exchange only between façade and the building. 



27 
 

Steady-state simulations were done for each permutation of boundary conditions and operation mode 

to get the values of all 5-heat gain/loss components as shown in Figure 5, which were then processed 

to get 2 performance metrics, i.e. Thermal metric and Visual metric. Steady-state simulations were 

performed instead of dynamic simulations because only then the stabilized effect of a particular 

operation mode at a particular boundary condition can be seen. It was done by keeping boundary 

conditions same for an extended period which allowed dynamic systems to reach an equilibrium state.  

EnergyPlus version 8.6.0 [20] was selected as the simulation platform to perform these steady-state 

simulations. It is one of the newest and most advanced stand-alone building energy simulation 

programs capable of modelling the hourly energy consumption of a building subject to user-specified 

construction, internal loads, schedules, and weather. A dedicated component name “Airflow 

Windows” is present in EnergyPlus to model and simulate DSFs. This component can model only 

forced/mechanical airflow between glass panes for which the airflow rate needs to be given as input. 

It can run in five different modes, i.e. Air supply, Air exhaust, Indoor air curtain, Outdoor air curtain 

and Air buffer.  

In this simplified model of airflow windows [21], the convective heat transfer coefficient for heat 

transfer inside faces of glass in cavity to cavity air is calculated as follows: 

ℎ�� = 2ℎ� + 4                   (1) 

where, 

ℎ��  = convective heat transfer coefficient from glass to gap air (W/m2K) 

ℎ�  = glass-to-glass heat transfer coefficient for non-vented (closed) cavity (W/m2K) 

 = mean air velocity in the gap (m/s) 

The air velocity is determined by the gap cross-sectional area and air flow rate which is the user input 

value in the IDF file:  

 = �
����

 (m/s)                     (2) 

where, 

� = airflow rate (m3/s) 

����= gap cross-sectional area (m2) 

The outlet air temperature of gap is calculated as function of average temperatures of inner faces of 

glasses around cavity and inlet gap temperature given by following expression: 

����,��� =  ���� −  ���� −  ����,!"#$
%&
&'                    (3) 

where, 

( = glazing height (m) 

����,!"= gap air inlet temperature (Indoor temperature if the airflow source is indoor air, Outdoor 

temperature if the airflow source is outside air) (K) 

����  is as follows: 

���� =  )*+ ),
-                    (4) 

�- , �. = Inner face temperatures of glasses around cavity where subscript number represents face 

number counting from outside 

(� = characteristic height (m), given by: 

(� =  /0� 1
- 234

                   (5) 

5 = density of air (kg/m3) 

6� = heat capacity of air (J/kg-K) 

7 = cavity gap width(m) 



28 
 

Hence, the convective heat gain to the zone air due to the gap airflow is: 

8�� = ��  6�,�������,��� − 6�,!"����,!"#(W)                 (6) 

where, 

6�,!" = heat capacity of the gap inlet air (J/kg-K) 

6�,���  = heat capacity of the gap outlet air (J/kg-K) 

and where the air mass flow rate in the gap is:  

�� =  5�(kg/s)                     (7) 

When a shading device is installed in the air cavity, EnergyPlus assumes the shading device is in the 

center of cavity and airflow, F, is divided equally. The convective heat gain to the zone air due to the 

airflow through the two gaps is now calculated as:  

8�� = ��  6�,���,�������,���,��� −  6�,!����,!"#(W)                 (8) 

where the average temperature of the two outlet air streams is: 

����,���,��� =  ����,9,��� +  ����,-,���#/2                  (9) 

and  

6�,���,���  = heat capacity of the outlet air evaluated at ����,���,��� (J/kg-K) 

Although whole building energy simulation programs like IDA ICE and TRNSYS can model and 

simulate DSFs, the major reason why EnergyPlus was chosen for this study was its ability to be easily 

programmed to run thousands of simulations with changing parameters. EnergyPlus is a console-

based program that reads input and writes output to text files. This enables us to programmatically 

pre-process the input files, launch simulation via command line and post-process result files all with a 

scripting program like Python. Although IDA ICE provides capability of running parametric 

simulations, it does not provide smooth flow of workflow the way it was intended in this study. 

EnergyPlus is a dynamic energy simulation program but it can be tricked to perform steady-state 

simulations. It can be done by changing the input EnergyPlus Weather file (EPW) to keep boundary 

conditions, i.e. Dry-bulb temperature (DBT), Relative Humidity (RH), Dew-point temperature (DPT) 

and Global diffuse/direct solar radiation, same all throughout the year; while setting coordinates and 

altitude level of building such that Solar altitude angle is always same which keeps incident solar 

radiation constant. For this purpose, Global Direct solar radiation was kept as zero; EPW file’s earth 

coordinates were set at the North Pole, i.e. 90°N, 0°W; and altitude level was kept at highest possible 

of 20,000 m such that incident solar radiation on façade system which is not influenced by reflections 

due to the surroundings and ground, which EP calculate automatically. Dry-bulb temperature (DBT) 

and Global Diffuse solar radiation were the two conditions parametrized for the simulations. 

2.2.2. Input parameters 

The input parameters against which the simulations were performed can be grouped in two parts. The 

temperature difference of inside and outside, i.e. (DBT-Inside Air Temperature) and Global Diffuse 

radiation value was defined as “Boundary Conditions”. Whereas different operation modes of DSF, 

i.e. Airflow path, Airflow rate; and of Blinds, i.e. State of blinds, Slat angle; was defined as 

“Operation modes”. Different possibilities of these parameters used in this study are listed below: 

Boundary Conditions 

i. Temperature difference (between indoor and outdoor) = -45, -40, -35, -30, -25, -20, -15, -10, -

5, 0, 5, 10, 15, 20 [°C] 

• Outside temperature = -20, -15, -10…….35, 40 [°C] 



29 
 

• Inside Temperature = 20, 25 [°C] 

ii. Solar radiation = 0, 200, 400, 600, 800, 1000 [W/m2]  

DSF operation modes 

i. Airflow rate in cavity = 0, 0.0027, 0.0055, 0.011, 0.022, 0.044, 0.088 [m3/s.m] 

ii. Airflow direction in cavity = Supply (SU), Exhaust (EX), Indoor air curtain (IC), Outdoor air 

curtain (OC), Air Buffer (AB)  

iii. State of Blinds = on/off 

iv. Slat angle = 0, 30, 45, 60, 90, 120, 135, 150 [deg] 

v. Reflectivity of Blinds = High, Low 

2.3. Description of Performance metrics 

Research questions answered here: 

“How to quantify thermal and visual performance of DSF?” 
 

To quantify the thermal and visual performance of a façade system there is a need to define metrics 

which can accurately describe the thermal gain/loss and visual gain/loss of a dynamic façade system 

like a DSF. First, it is important to understand the metrics/coefficient used to evaluate the 

performance of Insulated Glazing Units (IGUs) which will then modify to quantify the performance 

of DSF. For IGUs, for example, a Double/Triple glazing unit, g-value is the coefficient used to 

represent the thermal energy transmittance while VT/Tvis is the coefficient used to represent the visual 

light transmittance.  

G-value of an IGU is defined as the ratio of total solar heat transmittance to the total solar heat 

incident on the surface of IGU.  It can be expressed as follows: 

; − <=>$ = (@A'B,CD+@A'B,ED+@3'F4)
@HF3HIJFK

               (10) 

where, 

L1�M,NO  = Directly Transmitted shortwave radiation 

L1�M,PO = Re-emitted longwave radiation from heat absorbed in glass 

L��"� = Convective heat exchange between glass and zone air 

L!"�!Q�"�  = Total incident solar radiation 

The incident short-wave solar radiation (wavelength 380 to 780 nm), termed as L!"�!Q�"�, is partly 

reflected and absorbed at the window panes. The remaining fraction of the solar radiation is being 

transmitted to the zone’s interior, termed as L1�M,NO. The heat transfer from the interior to the inner 

pane occurs via long-wave infrared radiation (wavelength 8 to 12 mm), termed as L1�M,PO; and 

convection, termed as L��"�. The heat energy absorbed at the inward surface of the inner pane is 

being delivered to the outward surface of the inner pane via heat conduction. In the inter-pane space, 

the heat transfer occurs via convection and longwave radiative exchange, as it is also the case between 

the outward surface of the outer pane and the surrounding.  

Visible transmittance (VT) or Tvis of an IGU is defined as the ratio of the visible light (approximately 

380 to 780 nanometers within the solar spectrum) entering the space through the IGU to the incident 

visible light. It can be expressed as follows: 

��!1 = @A'B,CD
@HF3HIJFK

                 (11) 

Figure 3 and 4 describes the heat and energy flow through an IGU into a zone. While the conventional 

performance metrics like U-value and g-value are sufficient to represent the thermophysical behavior 



30 
 

of an IGU, they do not encompass the total thermophysical gain/loss of an adaptive systems like a 

DSF. The conventional metrics cannot be used because the thermophysical behavior of a DSF is too 

far from the assumptions under which these metrics can be measured or calculated, which is done for 

specific boundary conditions. 

 

Figure 3:G-value of an insulated glazing unit is defined as ratio of total solar heat transmittance to total incident shortwave 

solar radiation 

 

Figure 4: VT or Tvis of an insulated glazing unit is defined as ratio of total visible light transmitted to total incident visible 

light 



31 
 

2.3.1. Thermal metric 

There would be two extra physical quantities for a DSF, besides the three physical quantities 

previously seen in g-value’s schematic illustration (Fig. 3). The heat gain/loss from a DSF as the 

effect of airflow can expressed in two extra terms: 

• L�!R  = convective heat gain to the zone air due to the gap airflow 

This is the convective heat exchange from the airflow in the DSF cavity to the zone air as 

discussed in sub-section 2.2 by equation 16 

• L��"� = Extra energy to compensate for heating/cooling energy spent by HVAC  

This is a fictitious quantity that is not transferred through the component in terms of heat 

transfer but associates a heat loss/gain occurring with a mass transfer to the thermal zone. 

Depending on the airflow path, this amount of energy is accounted or discounted from the 

heat transfer through the façade in order to keep steady state conditions on the indoor side, i.e. 

maintain air balance and heat balance in the zone. It accounts for missing enthalpy flow 

which is compensated by the HVAC to treat the extra air which is either removed or added 

because of the airflow in DSF. This quantity can be calculated as follows: 

L��"� =  �� 6�∆� (W)                    (12) 

where,  

6� = heat capacity of the air (J/kg-K) 

∆� = temperature difference of extra air brought inside the zone to compensate for airflow 

��  = air mass flow rate as in equation 7 

Figure 5 shows the total heat flow and types of heat gain/loss from a DSF into the zone. The metric 

which will quantify the thermal performance of a DSF, simply called “Thermal metric” (W) can be 

expressed as:  

�ℎ$T�<= U$VTWX =  L1�M,NO + L1�M,PO + L��"� +  L�!R +  L��"�  (W)  (13) 

This metric was normalized over the area of the façade which will make unit as W/m2. It is to be 

noted that a DSF can have 5 different airflow path which will 5 different Thermal Metric which is as 

follows: 

a. Indoor Air Curtain: when the airflow is from indoor to indoors. The DSF cavity is 

ventilated by indoor air with no connection to the outdoor air. 

 

�ℎ$T�<= U$VTWX =  L1�M,NO + L1�M,PO + L��"� +  L�!R   (W)   (14) 

where, 
L��"� = 0, as there is no air exchange happening between inside and outside.  

b. Outdoor Air Curtain: when the airflow is from outdoor to outdoor. The DSF cavity is 

ventilated by outdoor air with no connection to the indoor air. 

 

�ℎ$T�<= U$VTWX =  L1�M,NO + L1�M,PO + L��"�  (W)    (15) 

where, 
L��"� = 0, as there is no air exchange happening between inside and outside.  

L�!R = 0, as the heated/cooled air from the cavity does not interact with inside air.  

c. Air Extract: when the airflow is from indoor to outdoor. Here, the DSF removes indoor air. 

 



32 
 

�ℎ$T�<= U$VTWX =  L1�M,NO + L1�M,PO + L��"� + L��"�   (W)   (16) 

where,  
L�!R = 0, as the heated/cooled air from the cavity does not interact with inside air.  
L��"� =  �� 6�(�!" − ����) , where �!" is zone inside temperature and ���� is Outside Dry-

Bulb temperature.  

To maintain the air balance in the zone for the purpose of steady state conditions, same 

amount of extracted by DSF is added from outside via HVAC. Hence, L��"� is the energy 

spent to bring the temperature of that amount of air from ���� to �!". To understand better, 

this extra air, �� , wouldn’t be added in the zone in exact same boundary conditions if there 

wasn’t a DSF present in the zone. If the outside temperature is colder than inside, the HVAC 

would have to heat the air to inside air temperature and vice versa.  

d. Air Supply: when the airflow is from outdoor to indoor. Here, the DSF supplies air to the 

indoor environment. 

 

�ℎ$T�<= U$VTWX =  L1�M,NO + L1�M,PO + L��"� +  L�!R + L��"�   (W)  (17) 

where,  
L��"� =  �� 6�(�!" − ����,���) , where �!" is zone inside temperature and ����,��� is air gap 

outlet temperature as expressed in equation 3.  

L��"� is the energy spent to bring the temperature of the amount of air from ����,��� to �!", 

which is supplied inside. If there was no DSF present in the façade of the zone this extra 

energy would not be spent by HVAC. If the ����,��� is more that zone temperature, HVAC 

would have the supplied air to lower zone air temperature and vice versa. Like Air extract 

mode, here also, �� , would be removed from the zone to maintain air balance but that energy 

lost would not be accounted as the energy lost or gain is happening to outside air and not 

inside the zone air.  

e. Air Buffer: when there is no airflow. All the air inlets are closed and DSF acts as a buffer of 

air gap between two glass.  

 

�ℎ$T�<= U$VTWX =  L1�M,NO + L1�M,PO + L��"�  (W)    (18) 

where, 
L��"� = 0, as there is no air exchange happening.  
L�!R = 0, as the heated/cooled air from the cavity does not interact with inside air.  

2.3.2. Visual metric 

Whereas, to quantify the visual performance of the DSF the metric “Visual metric” (lm) can be 

expressed as: 

ZW7><= U$VTWX =  L1�M,NO × \  (lm)    (19) 

where, 
Luminous Efficacy, \ = 105 lm/W 
This metrics gives the luminous flux that enters the indoor space through the inside interface of the 
DSF. Similar to thermal metrics, visual metric was also normalized over area of the façade which will 
make unit of visual metric as lm/m2 
 



33 
 

 
Figure 5: Heat flow schematic representation for a Double Skin Façade (DSF) 

2.4. DSF configurations  

2.4.1. Variations of Double Skin Façades (DSFs) 

In this study, different configurations of Double Skin Façades (DSFs) were simulated to study the 

effect of varying air gap to varying glass type and reflectivity of shading blinds. Figure 6 shows the 

three different types of glass arrangement used, i.e. Double glazing – Air gap – Single glazing, Single 

glazing – Air gap – Double glazing and Double glazing – Air gap – Double glazing. The details of 

these three-glass arrangements are given in Table 1 while the thermophysical properties of various 

glass panes used in these arrangements are given in Table 2.  



34 
 

 

Figure 6: Three different glass arrangements of DSFs used. 

Table 1: Summary of layers for three different glass arrangement, with Layer1 being outermost and 
Layer 7 innermost. 

 

 

 

Table 2: Thermophysical properties of types of glass panes used. 

 

Double - Airgap - Single Single - Airgap - Double Double - Airgap - Double

Layers 1 AGC Glass, Planibel Clearlite 10 mm AGC Glass, Planibel Clearlite 10 mm AGC Glass, Planibel Clearlite 10 mm

Layers 2 Gap, Argon 16 mm Gap, Air 200/400/600 mm Gap, Argon 16 mm

Layers 3 AGC Glass, Planibel Clearlite 6 mm AGC Glass, Planibel Clearlite 6 mm AGC Glass, Planibel Clearlite 6 mm

Layers 4 Gap, Air 200/400/600 mm Gap, Argon 16 mm Gap, Air 200/400/600 mm

Layers 5
AGC Glass, iplus Top1.1 on Clearlite 

10 mm

AGC Glass, iplus Top1.1 on Clearlite 

10 mm
AGC Glass, Planibel Clearlite 6 mm

Layers 6 - - Gap, Argon 16 mm

Layers 7
- -

AGC Glass, iplus Top1.1 on Clearlite 

10 mm

AGC Glass, Planibel 

Clearlite 6 mm

AGC Glass, Planibel 

Clearlite 10 mm

AGC Glass, iplus Top1.1 

on Clearlite 10 mm

Thickness 0.006 0.010 0.010

Solar Transmittance at Normal Incidence 0.847 0.803 0.597

Front Side Solar Reflectance at Normal Incidence 0.075 0.071 0.284

Back Side Solar Reflectance at Normal Incidence 0.075 0.071 0.206

Visible Transmittance at Normal Incidence 0.895 0.879 0.885

Front Side Visible Reflectance at Normal Incidence 0.080 0.078 0.046

Back Side Visible Reflectance at Normal Incidence 0.080 0.078 0.053

Infrared Transmittance at Normal Incidence 0.000 0.000 0.000

Front Side Infrared Hemispherical Emissivity 0.840 0.840 0.038

Back Side Infrared Hemispherical Emissivity 0.840 0.840 0.840

Conductivity 1.000 1.000 1.000



35 
 

The air gap in all three-glass arrangement is varied as 200mm, 400mm and 600mm, whereas the 

reflectivity of blinds which is inside the air gap is varied to High and Low, i.e. reflectance is 0.8 and 

0.1 respectively while keeping emissivity of the slat same as 0.9 in both. This makes the number of 

types of DSFs to 18 which have been summarized in Table 3. 

Table 3: Summary of different configurations of DSF, for example, “DSF_1” is Double - 200 mm 
Air – Single with High reflective blinds 

 

2.4.2. Benchmark glazings 

To compare the performance of various DSF variations and test them, four different types of Insulated 

glazing units (IGUs) were also simulated under similar conditions while similar performance metrics 

were compared. Figure 7 summarizes the 4 different IGUs studied, while Table 4 list the layer 

arrangements. Similar glass panes were used for IGUs as in DSFs which have been listed in Table 2. 

 

Figure 7: Four different benchmark IGUs studied. 

 

Double - Airgap - Single Single - Airgap - Double Double - Airgap - Double

DSF_1 DSF_3 DSF_5

Double - 200 mm Air - Single Single - 200 mm Air - Double Double - 200 mm Air - Double

High reflectivity blinds High reflectivity blinds High reflectivity blinds

DSF_2 DSF_4 DSF_6

Double - 200 mm Air - Single Single - 200 mm Air - Double Double - 200 mm Air - Double

Low reflectivity blinds Low reflectivity blinds Low reflectivity blinds

DSF_7 DSF_9 DSF_11

Double - 400 mm Air - Single Single - 400 mm Air - Double Double - 400 mm Air - Double

High reflectivity blinds High reflectivity blinds High reflectivity blinds

DSF_8 DSF_10 DSF_12

Double - 400 mm Air - Single Single - 400 mm Air - Double Double - 400 mm Air - Double

Low reflectivity blinds Low reflectivity blinds Low reflectivity blinds

DSF_13 DSF_15 DSF_17

Double - 600 mm Air - Single Single - 600 mm Air - Double Double - 600 mm Air - Double

High reflectivity blinds High reflectivity blinds High reflectivity blinds

DSF_14 DSF_16 DSF_18

Double - 600 mm Air - Single Single - 600 mm Air - Double Double - 600 mm Air - Double

Low reflectivity blinds Low reflectivity blinds Low reflectivity blinds

600 mm 

air gap

200 mm 

air gap

400 mm 

air gap

600 mm 

air gap

200 mm 

air gap

400 mm 

air gap



36 
 

Table 4: Summary of layers for four different IGUs, with Layer1 being outermost and Layer 4 
innermost. 

 

2.5. Data post-processing scheme 

As seen in sub-sections before, this study consists A total of more than 600 000 simulations where 

each simulation has 5 different values as inputs (operation modes and boundary conditions) and two 

outputs (thermal and visual metrics). Given the high number of input and outputs, in order to 

summarize and synthetize this data into useful information. the data was post-processed with an 

increased level of synthesis and aggregation. Three levels of post-processing are conceived with three 

fundamentally different and consequential aims (further detail will be given in the next paragraphs): 

1. Level 1: general trends of how input parameters changes w.r.t. thermal and visual gain in 

simulation cases. 

2. Level 2: qualitative analysis of the effect of varying boundary condition on performance  

3. Level 3: analysis of how performance range and possibility of decoupling thermal and visual 

aspects changes 

Simple Double glazing LowE Double glazing Simple Triple glazing LowE Triple glazing

Layers 1
AGC Glass, Planibel 

Clearlite 10 mm

AGC Glass, Planibel 

Clearlite 10 mm

AGC Glass, Planibel 

Clearlite 10 mm

AGC Glass, Planibel 

Clearlite 10 mm

Layers 2 Gap, Argon 16 mm Gap, Argon 16 mm Gap, Argon 16 mm Gap, Argon 16 mm

Layers 3
AGC Glass, Planibel 

Clearlite 10 mm

AGC Glass, iplus 

Top1.1 on Clearlite 

AGC Glass, Planibel 

Clearlite 6 mm

AGC Glass, Planibel 

Clearlite 6 mm

Layers 4 - - Gap, Argon 16 mm Gap, Argon 16 mm

Layers 5
- -

AGC Glass, Planibel 

Clearlite 10 mm

AGC Glass, iplus 

Top1.1 on Clearlite 



37 
 

 

Figure 8: Data presentation and post-processing scheme 

 

A scheme for data presentation was devised where for every other level, the type of information 

shown in each graph changes while reducing the number of data points on the graphs. The data 

presentation can be distributed in 3 levels as shown in Figure 8, discussed in detail below.  

 

 

 

 

 

 

 

 

 

 

 



38 
 

2.5.1. Level 1 

 

Figure 9: These illustrations show how trend of how (a) boundary conditions, and (b)operation modes parameters effects the 

thermal and visual performance 

In the first level, the aim was to show how a change in every input, i.e. boundary condition and 

operation mode, changes the thermal and visual performance. An individual scatter plot was made for 

every DSF, as in Table 3, plotting every simulation case’s performance metrics such that the Thermal 

Metric value and Visual Metric value of that case was on X and Y-axis respectively. To show the 

variation in inputs, the data point’s marker size, opacity and color was varied which made it simple to 

understand. These trends have been shown in Figure 9 and discussed in detail below: 

a) Solar radiation – Size of data point marker: It was seen in the scatter plot that solar 

radiation value for which each data point represents increased from bottom to down, i.e. the 

data points on the bottom-most part of the scatter spread represented simulation cases with 

lowest solar radiation value and upper-most data points represented simulation cases with 

high solar radiation. This trend also makes sense that visual gain, represented by visual metric 

on y-axis, increases when incident solar radiation increases. In all the scatter plots shown in 

this level, the marker size represents this change. The size of the markers used to represent the 

data point increased with increasing solar radiation value. 

 

b) Temperature difference (between indoor and outdoor)– Opacity of data point marker: 

For the temperature difference value each data point represented it was seen that it increases 

from left to right of the scatter spread of points. The leftmost data points on the graph 

represented simulation cases which had -45 °C as temperature difference while rightmost 

represented cases with +20 °C. This trend was shown as the opacity of the marker, with most 

translucent marker representing -45 °C and most opaque marker representing +20 °C. 



39 
 

 

To maintain the clarity of the scatter plots, the markers were customized to only size and 

opacity as shown above while color was represented by 3 different inputs in 3 different graphs 

respectively. Hence all the DSF were represented in total 3 scatter plots where color of 

marker was represented by airflow speed, airflow rate and slat angle respectively, which are 

explained below. 

 

c) Airflow speed – Color of data point marker: It was seen that airflow speed each data point 

represented increased on both side of 0 kWh/sqm, i.e. thermal metric. The airflow speed 

which data points represented near Thermal metric = 0 kWh/sqm, were for lowest airflow 

speed while as data points go left or right from 0 kWh/sqm, the airflow speed increased. To 

represent the 7 different airflow speed, 7 different colored markers were used, while the size 

and opacity of the marker changed as shown above. 

 

d) Airflow path – Color of data point marker: As mentioned in sub-section before, a DSF has 

5 minds of airflow paths. The spread of data points representing different airflow paths is 

interesting to study how these airflow paths/modes can be used during the operation. To 

represent the 5 different airflow paths/modes, 5 different colored markers were used, while 

the size and opacity of the marker changed as shown above. 

 

e) Slat angle of blinds – Color of data point marker: It was seen that higher the angle of a slat 

of blinds is lower it is in the data points spread, while the simulation cases with no blinds are 

on the topmost location of the data point spread. To represent the 7 different slat angle and 1 

case for no blinds, 8 different colored markers were used, while the size and opacity of the 

marker changed as shown above. 

The methodology to present data shown in this level can be used for both a DSF and an IGU which 

can be used for qualitative comparative analysis. 

  

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

 

2.5.2. Level 2 

 

Figure 10: Illustrations showing (a) trends observed from different plots (b) some examples of how these plots look 

The aim here is to understand how big the range of thermal and visual performance of a DSF is under 

each boundary conditions. This was done by plotting together all the possible operational modes that a 

DSF can have at a particular boundary condition. The simulation cases made had 7 cases of 

temperature difference (between indoor and outdoor) ranging from -45 °C to +20 °C whereas 6 cases 

of incident solar radiation, i.e. 0, 200, 400, 600, 800 and 1000 W/sqm which made a total of 84 

combinations. While the previous level scatter plots presented the data points of all boundary 

conditions on one plot, here 84 different plots were made. Using a Python script, programmatically a 

polygon was made around the scatter plot for every case which represented the boundary of how 

much varied thermal and visual performance of a DSF is for a particular boundary condition. All the 

84 plots had data point markers customized in the same way as done in scatter plots in level 1. From 

these plots following observations were made, which have also been described in Figure 10: 

a) Width of the polygon: The width of the polygon, which is the boundary of scatter plot, 

represented the temperature difference component of the boundary condition for which the 

specific plot was made. The lowest width was seen for temperature difference was equal to 0 

°C. The width of the polygon increases with the increase on both sides of 0, i.e. it was more 

when the temperature difference was -45 °C and +20 °C. 

 



41 
 

b) Height of the polygon: On the other side, the height of the polygon represented the incident 

solar radiation component of the boundary condition for which plot was made. The height of 

polygon increased with increase in solar radiation. 

Same as Level 1, the methodology to present data shown in this level can also be used for both a DSF 

and an IGU which can be used for qualitative comparative analysis. At any particular boundary 

condition, the performance range of a DSF can be seen visualized as a polygon, whereas for an IGU 

the performance range can be visualized only as a line. 

2.5.3. Level 3 

Research questions answered here: 
“How to quantify thermal and visual performance of DSF?” 

 

While the aim of the previous level was to qualitatively assess the performance of a DSF at different 

boundary condition, here the assessment is done quantitively. Another aim of this level is to reduce 

the 84 plots seen before to just one which would represent the meaning of all the data in 84 plots. 

Here, a Python script was used to iteratively calculate the area of the polygon which scatter plot made 

for every boundary condition and calculate the Pearson correlation coefficient of the data points for 

every boundary condition. These 2-correlation metrics were calculated in the following manner: 

a) Area of the Polygon: During each iteration of boundary conditions, the Python script was 

finding the 4 data points which would represent the 4 vertices of the polygon. These 4 data 

points are the maximum and minimum points on the scatter spread. The area of this polygon 

was determined from the following formula: 

 

<T$< =  ](^_`*a ^*`_)+(^*`,a ^,`*)+(^,`ba ^b`,)+(^b`_a ^_`b)
- ]                 

 (20) 

 

 

b) Pearson correlation coefficient: A Pearson correlation is a number between -1 and 1 that 

indicates the extent to which two variables are linearly related, in this case, Thermal and 

Visual metrics. A value of 0 indicates that there is no association between the two variables. 

A value greater than 0 indicates a positive association; that is, as the value of one variable 

increases, so does the value of the other variable. A value less than 0 indicates a negative 

association; that is, as the value of one variable increases, the value of the other variable 

decreases. This is shown in Figure 11. During each iteration of boundary conditions, the 

Python script was copying the thermal metric and visual metric in separate arrays. These 2 

arrays were used to find the Pearson correlation coefficient for the scatter spread for a 

particular boundary condition. The formula used in the Python scripts for computing the 

Pearson, T, is as follows: 

 

T =  ∑(dHa d�)(eHa e�)
f(dHa d�)*f(eHa e�)*                    (21) 

where,  

�! = every data point in Thermal Metric array 

�!  = every data point in Visual Metric array 

��= mean of Thermal Metric array 

�� = mean of Visual Metric array 



42 
 

 

 

Figure 11: Examples of scatter plots with different correlation 

The above 2 correlation metrics were plotted with temperature difference (between indoor and 

outdoor) and incident solar radiation as three different 3D surface plot. This 3D surface plot shows the 

trend of how the particular correlation metric varied with varying boundary conditions. An example of 

how this 3D surface plot would look is shown in Figure 12. The significance of these correlation 

metrics with respect to boundary condition is discussed in the next chapter where 3D plots are shown 

for different DSFs. 

 

Figure 12: Example of how the 3D surface plot between boundary condition and a correlation metric would look 

While it was possible to use methodology of both level 1 and 2 to visualize data for both a DSF and 

an IGU, it is not possible for this level. As mentioned in previous sub-section, the performance range 

of an IGU at a particular boundary condition is a line, it would translate to area as zero and value of 

pearson, r, as 1, which would be same for all boundary conditions and hence incomparable.  



43 
 

3. Results and discussion 

3.1. Performance range of Insulated Glazing Units (IGUs) 

Before looking at the results of how a DSF perform, this subsection presents how different kinds of 

IGUs perform under different boundary condition and operation modes in case there is a shading 

device in use. The performance metrics used here are as same as that would be used for investigating 

the performance of DSFs which will allow us to benchmark the results and get a feel of how the new 

performance metrics proposed in this study look like against metrics generally used, i.e. Tvis and g-

value.  

 

Figure 13: Scatter plot for Visual metric on Y axis against Thermal metric on X axis for a Simple Double-Glazing Unit. 

Figure (a) show how it perform at various boundary condition without any shading system, while Figure (b) shows the 

performance with shading sys system installed with different representing different slat angle of the blinds 

Figure 13 represents the performance of a Simple Double-Glazing Unit, which is the first IGU as 

shown in Figure 7. Figure 13 (a) shows how the IGU perform where there are no blinds installed. The 

increase in solar radiation is represented by the increase in marker size whereas the increase in the 

temperature difference (between indoor and outdoor) is represented by the increasing opacity of the 

markers. A similar trend but with reduced range can be seen in Figure 13(b) showing the performance 

of IGU when blinds are used with different slat angles of slat representing different colors of the 

marker. For higher angles, i.e. near 180 deg, the solar radiation penetration inside the zones is less 

because of over lapping surface of the slats in the path of radiation. This reduces the visual gain for 

cases when higher slat angles are used.  

If the performance of different types of IGUs is compared, as shown in Figure 14, it can be clearly 

seen that a Simple DGU has the highest range of visual gain and thermal gain ranging till 69 

kLm/sqm and 0.7 kW/sqm respectively. The performance range decreases when the U-value of the 

IGUs decrease. This trend makes sense as U-value is the metric defining how much heat transfer can 

happen through the façade system. Whereas in all the cases it can be clearly observed that there is a 

positive correlation seen between Visual and Thermal metric, meaning if one increase other value also 

increases. This trend means that without using a shading system there is no possibility to control the 

two performance aspects, while using a shading system allows to regulate the visual and thermal 

performance but not separately.  



44 
 

 

Figure 14: Performance comparison of different types of IGUs 

3.2. Performance range of Double Skin Facades (DSFs) 

3.2.1. General trends and dependency of operation modes 

Research questions answered here: 
“How big is the thermal and visual performance range of a DSF?” 

“How does different operation modes affect the different performance of a DSF?” 

 

In this sub-section, DSF with configuration Single-200mm airgap-Double with high reflective blinds, 

represented by DSF_3 in Table 3. Figure 15 is the scatter plot of Visual metric against thermal metric 

for all the possible simulation cases for DSF_2, except the cases with indoor air temperature (IAT) 20 

°C to improve clarity, as there was not much difference in comparison to cases with IAT 25 °C. In 

this scatter plot all the markers have been programmatically customized to represent increasing solar 

radiation values they represent with increasing size and increasing temperature difference (between 

indoor and outdoor) they represent with increasing opacity of marker. This means, all cases which 

represent simulation cases with solar radiation, 1000 kWh/sqm, and temperature difference, -40 °C, 

are on the top left whereas simulation cases with solar radiation, 0 kWh/sqm, and temperature 

difference 20 °C, are on the bottom right. The negative values of Thermal metric mean that the DSF is 

extracting that certain amount of heat from the zone air, whereas positive value would mean that the 

DSF is adding that much amount of heat to the zone air. The visual gain ranges from 0 to 38 kLm/sqm 

whereas thermal gain ranges from -3.8 kW/sqm to 1.8 kW/sqm. Figure 16 illustrates the difference in 

the performance range of a DSF when compared to an IGU which has the same number of glass panes 

and shading system.  



45 
 

 

Figure 15: Scatter plot for Visual metric against Thermal metric for a DSF_2, Single-200mm airgap-Double with high 

reflective blinds 

 

Figure 16: Illustration showing how big and wide is the performance range of a DSF compared to IGU for all boundary 

conditions. Both DSF and IGU has same 3 glass panes and shading system. DSF here is Single-200-Double and IGU is 

Low-e Triple glazing 

While the opacity and size of the markers in the scatter plot have been customized to represent a 

change in boundary conditions, the color of the marker is characterized to show a change in different 

operation modes individually. To maintain clarity in the graphs, three different plots are made with 

changing color to represent change in operation modes.  



46 
 

The scatter plot of Figure 15 was taken and colors of all the markers were customized to represent the 

simulation cases with different airflow paths. As can be seen, Air Extract mode was represented by 

Blue markers, Air Supply mode by Cyan, Outdoor Air Curtain mode by Red, Indoor Air Curtain by 

green and Air Buffer mode by Black color marker. It can be seen that Air Extract and Air Supply 

mode have the largest range of thermal gain whereas the remaining three modes had very less. This is 

evident from the fact that Air Supply and Air Extract mode have an added component of heat 

gain/loss because of airflow which is not seen in other modes. The scatter plot with different colors 

for the Airflow path and individual sub-plots for different paths is shown in Figure 17. 

 

Figure 17: In the scatter plot shown in figure 15, color component was given to the markers for the data points to represent 

simulation cases with different Airflow Path 

The similar customization was again done to Figure 15 separately, where color was added to markers 

to represent the simulation cases with different Airflow speed. The simulation cases with highest 

Airflow Speed of 0.0889 m3/s.m was represented by Blue color whereas lowest Airflow Speed of 

0.0028 m3/s.m was represented by Yellow color markers. For Airflow Speed of 0 m3/s.m, which 

represent same cases in Figure 3.4 as Air Buffer are here also represented by black color. With less 

airflow speed, the air in the cavity is able to spend more time in the cavity itself and hence gather 

more heat from the incident solar radiation whereas at the same temperature high airspeed cannot. 

According to the temperature difference (between indoor and outdoor) and amount of heat transfer 

requirement, the speed and airflow path can be regulated. The scatter plot with different colors for 

Airflow speed and individual sub-plots for different airflow speed is shown in Figure 18. 



47 
 

 

Figure 18: In the scatter plot shown in figure 15, color component was given to the markers for the data points to represent 

simulation cases with different Airflow Speed 

To investigate and visualize how the simulation cases with blinds us or no blinds use are represented 

in the overall performance, Figure 15 was colored with changing color representing different slat 

angles, including black markers when no blinds was. The trends observed here and the explanations 

for them is the same as seen in the performance range of IGUs shown in sub-section 13. The scatter 

plot with different colors for different slat angle and individual sub-plots for different angles is shown 

in Figure 19. 

 

Figure 19: In the scatter plot shown in figure 15, color component was given to the markers for the data points to represent 

simulation cases with different simulation cases with no blinds and if blinds present then with different slat angles 

3.2.2. Effect of reflectivity of blinds in DSFs on performance range 

In this sub-section, the overall performance range of DSF_3, i.e. Single-200mm airgap-Double with 

high reflective blinds, is compared with DSF_4, i.e. Single-200mm airgap-Double with low reflective 

blinds, to investigate the effects of high reflective-low absorption slats vs low reflective-high 

absorption slats. As it can be clearly seen in Figure 20, that by using high reflective blinds there is a 



48 
 

more visual gain that low reflective blinds whereas low reflective blinds have more positive thermal 

gain seen. 

 

Figure 20: Performance range comparison for DSF with different reflectivity blinds: (a) Single-200mm airgap-Double with 

high reflective blinds vs (b) Single-200mm airgap-Double with low reflective blinds 

This trend seen is due to the fact that high reflective slat absorbs less incident solar radiation and 

reflect more into the zone and hence more visual gain where lest reflective slat absorbs more solar 

radiation which is radiated into zone air in form of longwave radiation and hence a bit more positive 

thermal gain than high reflective blinds. This trend is seen in all different types of DSF 

configurations. 

3.2.3. Effect of different glass configurations in DSFs on performance range 

While the effect of different reflectivity of shading blinds in DSF with same glass configuration has 

been discussed above, the aim of this section is to investigate the performance of DSF with different 

glass configurations and the reason behind. Here the reflectivity of blinds and air cavity depth is kept 

same as high reflective and 200 mm respectively. In Figure 21 it can be seen that DSF with 

configuration Double-200mm-Double represented in (c) has the lowest visual gain range while the 

thermal range is the same as all other cases. The reason behind this is that there are in total of 4 

glasses which incident solar radiation has to cross to reach the zone. With incident solar radiation 

being partly reflected, absorbed and transmitted at every glass boundary, the amount of solar radiation 

transmitted in visible range throughout the 4 glass panes is less than other two cases where there are 3 

glass panes in total.  

Whereas for the same number of glass panes, i.e. 3, for the other two cases DSF with configuration 

Double-200mm-Single represented in (a) has lower than DSF with configuration Single-200mm-

Double represented in (b). The reason behind this is the placement of the Low-E glass and the shading 

devices in the sequence order of 3 panes and the internal optical reflections between the glass panes, 

blinds and the cavity. The low-e glass is the 2nd glass from outside in the double glazing, which means 

in case (a) the 2nd glass from outside is low-e whereas in case (b) it is the 3rd glass, i.e. the last glass, 

from outside. The low-e or low-emissivity coating minimize the amount of infrared and ultraviolet 

light that comes through your glass also causing to absorbs a bit more of infrared than other glass 

panes without low-e coating. A bit higher temperature of glass with low-e coating causes a small 

optical loss (in the visible range). This same happens with different placement of blinds also which 

leads to slightly different optical properties of the whole DSF. This leads to case (a) receiving less 

transmitted solar radiation; with more difference in visual gain being seen in higher incident solar 

radiation. 



49 
 

 

Figure 21: Performance range comparison for DSF with different arrangement: (a) Double-200mm airgap-Single with high 

reflective blinds; (b) Single-200mm airgap-Double with high reflective blinds; and (c) Double-200mm airgap-Double with 

high reflective blinds 

3.2.4. Effect of different air cavity depth in DSFs on performance range 

While there was a definite change seen in the overall performance range of DSFs when the 

arrangement of glass panes was changed, or different reflective blinds stats were used; there was little 

to no change is seen when air gap depth was changed in a DSF, as shown in Figure 22.  



50 
 

 

Figure 22: Performance range comparison for DSF with same glass and blinds arrangement but different air gap: (a) 

Single-200mm airgap-Double with high reflective blinds; (b) Single-600mm airgap-Double with high reflective blinds 

As discussed in sub-section 2.2.1, The “Airflow Windows” component in EnergyPlus uses a 

simplified mode of heat transfer. The convective heat transfer coefficient for heat transfer inside faces 

of glass in cavity to cavity air is calculated as follows: 

ℎ�� = 2ℎ� + 4                   (2.2.1.1) 

where, 

ℎ��  = convective heat transfer coefficient from glass to gap air (W/m2K) 

ℎ�  = glass-to-glass heat transfer coefficient for non-vented (closed) cavity (W/m2K) 

 = mean air velocity in the gap (m/s) 

The air velocity is determined by the gap cross-sectional area and air flow rate which is the user input 

value in the IDF file:  

 = �
����

 (m/s)                     (2.2.1.2) 

where, 

� = airflow rate (m3/s) 

����= gap cross-sectional area (m2) 

According to these equations if ���� is increased, i.e. increasing the air cavity depth,  should 

increase and hence ℎ�� should also increase leading to an increase in heat transfer. Whereas, when the 

air gap depth is increased from 200mm to 600mm which is also on a higher level of realistic air gaps 

in DSFs, there is no change in the value of  and hence not much significance changes in the value of 

ℎ��. This is because the value of �, i.e. airflow rate, is very small value, although the values of � 

taken in this study are in realistic realm of airflow rate in DSFs. An experiment was done to test this 



51 
 

theory. The value of �, which is an input in “Airflow Windows” component in EnergyPlus was given 

a very high value something like 10 m3/s.m while keeping all the other components same. Under this 

new value of airflow rate, there was a big change seen in overall thermal gain range of DSF with 

200mm air gap vs DSF with 400mm gap and DSF with 600mm gap. 

3.2.5. Variations and trends in performance range for different boundary conditions 

Research questions answered here: 
“How does performance range of a DSF change with boundary conditions?” 

 “How decoupled are thermal and visual aspects of a DSF?” 

 

Until now, in all the previous sub-section, the study was related to, what is the overall performance 

range of a DSF at different operation modes and DSF configurations; and studied the reasoning 

behind them. The performance range of DSF_3, i.e. Single-200mm air-Double with high reflective 

blinds, as shown in Figure 15 presents the simulation cases with all the possible temperature 

differences (between indoor and outdoor) and solar radiation combinations, i.e. 14 cases of 

temperature difference × 6 cases of solar radiation = 84 combinations. In this sub-section all the 84 

cases are studied to see how the performance of a DSF varies at every possible boundary condition 

and how the trends are. 

This was done iteratively using a Python script as described in sub-section 2.1.4 and 2.5.2. Then as 

described in sub-section 2.5.3, for every combination of boundary condition, 2 correlation metrics 

were calculated, i.e. area of the polygon made over performance range and the Pearson correlation 

coefficient of thermal metric vs visual metric data. An example scatter plot of one of the 84 

combinations is shown in Figure 23. 

 

Figure 23: Performance range of DSF_3, i.e. Single-200mm air-Double with high reflective blinds, for temperature 

difference (between indoor and outdoor) of -45 °C and solar radiation of 1000 W/m2. As can be seen on the right side of the 

plot area, area and Person correlation coefficient of each case was calculated and recorded for further analysis 



52 
 

 

Figure 24: Illustration showing how big and wide is the performance range of a DSF compared to IGU for temperature 

difference (between indoor and outdoor) of -45 °C and solar radiation of 1000 W/m2. Both DSF and IGU has same 3 glass 

panes and shading system. DSF here is Single-200-Double and IGU is Low-e Triple glazing 

To summarize the shape of the polygon, i.e. the boundary over performance range, of all 84 cases, the 

shape of polygon has been plotted for fixed value of temperature difference (between indoor and 

outdoor) with changing solar radiation on z-axis while thermal and visual metrics on x and y axis 

respectively. Figure 25 shows the all combinations of solar radiation with temperature difference 

changing from -45 °C to 20 °C. 



53 
 

 

Figure 25: The shape of polygon has been plotted for fixed value of temperature difference (between indoor and outdoor) 

with changing solar radiation on Z-axis while thermal and visual metrics on x and y axis respectively. Sub-plot (a) represent 

all cases with temperature difference fixed as -45 °C, (b) -25 °C, (c) -10 °C, (d) 0 °C, (e) 10 °C, (f) 20 °C 

From the figure 25 it be can concluded that the height of the polygon is dependent on the outside 

incident solar radiation on the façade which decided the maximum visual gain whereas width is 

lowest when temperature difference (between indoor and outdoor) is zero, while increasing on both 

sides of 0 deciding the thermal gain range. This can be summarized with a graphics shown in Figure 

26. 

 

Figure 26: Illustration showing the overall trend seen how performance ranges changes with changing boundary condition 

 

 

 

 

3.2.6. Decoupling performance of a DSF? 

Research questions answered here: 



54 
 

 “How decoupled are thermal and visual aspects of a DSF?” 

 

While the investigation done above is qualitatively in nature, the area of polygon and the Pearson 

correlation coefficient recorded of all 84 boundary condition combinations can be further used for a 

quantitative analysis for how a DSF perform. How both these correlation metrics were calculated has 

been in detail explained in previous sub-section 2.5.3. When the area of the polygon is plotted on z- 

axis against thermal and visual metrics on x and y axis respectively, it can be clearly observed that 

area is the highest in temperature difference (between indoor and outdoor) of -45 °C and increases 

more with increasing solar radiation. A similar trend is also seen on the temperature difference of 20 

°C, shown in Figure 27. 

 

Figure 27: Area of the polygon, i.e. the boundary over performance range, on z-axis plotted against thermal and visual 

metrics on x and y axis respectively for DSF_3, i.e. Single-200mm air-Double with high reflective blinds. 

When Pearson correlation coefficient, r, is plotted on z-axis, it can be observed that for boundary 

condition near 0 °C temperature difference (between indoor and outdoor), the value of r is closer to 

+1, meaning positive correlation while for cases going away from 0 °C temperature difference, the 

value of r trend towards 0, meaning no correlation. It was seen that at value of r reduces more towards 

0 with decreasing solar radiation. 



55 
 

 

Figure 28: Pearson correlation coefficient, r, on z-axis plotted against thermal and visual metrics on x and y axis 

respectively for DSF_3, i.e. Single-200mm air-Double with high reflective blinds 

While the area of the polygon represents the range of possibilities of thermal and visual gain at a 

particular boundary condition, the value of r represents the degree of freedom the two aspects that can 

be controlled individually. It can be seen in above two figures that for boundary conditions near 0 °C, 

neither is there possible range of thermal and visual gain, nor there is large degree of freedom to 

decouple the two aspects. Whereas, an interesting observation made is that, at the boundary conditions 

of -45 °C (and also 20 °C) while the range of possibilities increase with increasing solar radiation, the 

degree of freedom for decoupling decreases. The reason behind is that while at larger solar radiation 

there are more options of thermal and visual gain, the incident solar radiation become a strong 

component of the solar gain hence reducing the degree of freedom to control thermal and visual 

aspect separately. 

If the area of polygon and the value of person coefficient, r, is compared for all 3 different glass 

arrangement, it can be seen that while the DSF with Double-200mmair-Double, seems to have less 

area of the polygon over extreme temperature difference (between indoor and outdoor), i.e. -45 °C 

and 20 °C whereas because of the less overall transmission of solar radiation, as shown by the lower 

peak values for the value of pearson coefficient, r, there is more degree of freedom to decouple 

thermal and visual aspects, shown in Figure 29 and 31 for high reflectivity blinds and in Figure 30 and 

32 for low reflectivity blinds. Comparing cases with different reflectivity of blinds it can be seen that 

in comparison while high reflectivity blinds gives a bit more possible range of visual gain; low 

reflectivity blinds provides much more degree of freedom to decouple the thermal and visual 

performance. 



56 
 

 

Figure 29: Area of the polygon, i.e. the boundary over performance range, on z-axis plotted against thermal and visual 

metrics on x and y axis respectively for three different glass arrangement for high reflectivity blinds 

 

Figure 30: Area of the polygon, i.e. the boundary over performance range, on z-axis plotted against thermal and visual 

metrics on x and y axis respectively for three different glass arrangement for low reflectivity blinds 



57 
 

 

Figure 31: Pearson correlation coefficient, r, on z-axis plotted against thermal and visual metrics on x and y axis 

respectively for three different glass arrangement for high reflectivity blinds 

 

Figure 32: Pearson correlation coefficient, r, on z-axis plotted against thermal and visual metrics on x and y axis 

respectively for three different glass arrangement for low reflectivity blinds 

 

 

 



58 
 

  



59 
 

4. Applications 

This section explains different kinds of applications for how the work done in this thesis can be used 

to design and operate a DSF. 

Research questions answered here: 
 “How this work can be used to design and operate a DSF for a certain climate?” 

 

4.1. Studying potential of different configurations of DSFs in different climate 

If temperature difference (between indoor and outdoor) and incident solar radiation combination on 

all orientations, i.e. north, south, east and west, for a particular climate is plotted on the 2D graph 

version of Figure 27, it can be seen how much independency of thermal and visual metric can be 

enabled in that particular climate. The analysis was done for 4 different kind of climates using EPW 

files for: Rome which is classified as Csa in Köppen climate classification; Oslo which is classified as 

Dfb; Delhi: which is classified as Cwa; and Nairobi which is classified as Cwb in Köppen climate 

classification. The resulting plots have been shown in Figure 33, where each plot has scatter 

distribution of temperature difference vs incident solar radiation on all 4 orientations, i.e. North, East, 

West and South. 

 

Figure 33: Potential of DSF for all orientations in different climates: (a) Rome: Köppen climate classification: Csa; (b) 

Oslo: Dfb; (c) Delhi: Cwa; and (d) Nairobi: Cwb 

It can be seen that Nairobi, Figure 33(a) has the distribution of its of temperature difference (between 

indoor and outdoor) vs incident solar radiation mostly on the low “Area of Polygon” which 

represented by green, meaning if the DSF is used in this climate on any of the orientations, there 

would be very less range of possibilities of thermal and visual gain. Whereas, from Figure 33(b) it can 

be seen that if DSF is used in south orientation in Oslo there is both high range of performance and 

high degree of freedom for decoupling thermal and visual aspects. For Delhi as shown in Figure 33(c) 

it can be seen that there is good range of performance and degree of freedom when DSF is used in 

west orientations. 



60 
 

The results shown in Figure 33 describe the potential of DSFs in different climate is a qualitative and 

visual way, whereas a detailed quantitative study can be done where the potential of certain DSF 

configuration is quantified using some metrics, for example, the amount of area covered by boundary 

conditions of a certain climate on performance range graph while considering the value of z-value, i.e. 

color in performance graph. This quantification potential can be used to compare the performance and 

potential of single DSF in different climates or different kinds of DSFs in a single climate, and in one 

or in anther orientation. 

IGU like double glazing unit or triple glazing unit; and electrochromic or thermochromic façade 

systems are commercialized by characterizing their thermal and visual performance in terms of some 

pre-defined metrics, i.e. g-value, U-value and Tvis. In the same way, a DSFs can also be 

commercialized using the metrics which can be developed using the method shown above. Their 

performance range over a spectrum of boundary conditions and operation modes can be visualized to 

convey their benefits as an efficient building envelope system aiming to reduce building energy 

consumption and indoor air quality for a certain climate and for all or a certain orientation. 

4.2. Designing advanced control strategies for DSFs 

The data gathered in this study in form of performance range of a DSF for different boundary 

conditions can be used along with advanced control algorithms. This section of the chapter proposes a 

methodology which can be used to perform such work. 

4.2.1. Methodology of workflow 

As it was previously discussed in sub-section 3.2.5 of chapter 3, the overall thermal and visual 

performance of DSF changes with the change in temperature difference (between indoor and outdoor) 

and incident solar radiation, as illustrated in Figure 3.12. The coordinates of the vertices of the 

polygon which describes the range of performance of a DSF at a particular boundary condition, were 

recorded for every case. As the boundary conditions are discreetly separated these vertices were 

interpolated using bilinear interpolation algorithms which made it possible to get the values of 

vertices of the polygon for any given temperature difference and solar radiation value. The 

interpolated shape of polygon is illustrated in Fig. 3.11, where a smooth change can be seen in the 

shape on z-axis which represent solar radiation changing from 0 W/sqm to 1000 W/sqm. Bilinear 

interpolation is an extension of linear interpolation for interpolating the output which is dependent on 

two variables (for this case: values of vertices is dependent on temperature difference and solar 

radiation) on a rectilinear 2D grid. The key idea is to perform linear interpolation first in one 

direction, and then again in the other direction. The initial set of vertices of polygon for 14 values of 

temperature difference and 6 values of solar radiation along with a Python script of bilinear 

interpolation can be used to describe and simulate the performance range of a DSF at any given 

boundary condition.  

To design control strategies for a DSF in EnergyPlus there are some limitations. The airflow rate 

value is given as a schedule value or fixed value in “Airflow Windows” which allows it to be changed 

during every timestep of the simulation. Whereas, the airflow path can only be fixed to one mode 

before the start of simulations and also there are no actuators available for Energy Management 

System (EMS) of EnergyPlus to change the airflow path during simulation. This makes it practically 

impossible to test the controls of different airflow path in simulation of DSF.  

In this case, the simulation model the DSF can be replaced with a simple glazing system whose 

thermal and visual gain can be simulated using the data gathered before. At every timestep’s boundary 

condition, the bilinear interpolation over the initial set of vertices of polygon data can used to give 

range of thermal and visual performance. Advanced control strategies can be the used to tell the best 



61 
 

value of thermal and visual gain in the selected range, which will translate as amount of gains from 

simple glazing unit acting as a DSF.  

The “Simple glazing unit” component in EnergyPlus takes U-value, g-value and Tvis as inputs. To 

simulate a thermal gain of a DSF, the U-value and g-value input of simple glazing unit would be fixed 

to 0 to stop any thermal gain from outside and internal gain component was added to put thermal gain 

in the zone heat balance. The power input of this internal gain component would be controlled at 

every timestep using EMS actuators or a schedule value. It can take in both positive and negative 

values representing gain and loss respectively. To simulate the visual gain from a DSF, the Tvis input 

of simple glazing unit would be calibrated using solar radiation and visual gain data gathered before 

from simulations.  

Figure 34 describes the steps of this methodology. 

 

Figure 34: Steps of workflow used for simulating a DSF with an advanced control algorithm 

4.2.2. Control algorithms 

As shown in Figure 34, advanced control algorithms will be used to find the best possible data point, 
i.e. thermal gain and visual gain value, on the polygon shape which is given by Python script. 
Following sub-section describes the control algorithms in detail. 

The best possible value of thermal gain and visual gain at a particular timestep would be found 
keeping following two control objectives: 

a) minimum heating requirement at the particular timestep 
b) UDI, i.e. Useful Daylight Illuminance, in the zone should be between 500 and 2000. 

This can be done in two ways as described below 

a) Option 1 

Find best possible Thermal gain, Visual gain combination at a particular timestep considering 
performance of DSF with respect to the two control objectives, for only that timestep. The 
current timestep would be called planning horizon. It would be done in following steps: (note 
that these are sub-steps of Step 3 as shown in Figure 4.1) 



62 
 

Step 3.1: Take the same EnergyPlus simulation file which is used in Step 1 and stop 
simulation before the timestep which the control algorithm is running for. 

Step 3.2: Run a multi objective optimization for every possibility of Thermal gain, Visual 
gain combination in the polygon which was provided by Python script in step 2, considering 
the two objectives only for that particular timestep, i.e. for planning horizon. 

Step 3.3: As there are two control objectives, there would be several “right” options from 
multi-objective run. Select the best according to some pre-defined criteria. 

Step 3.4: Give output as a value of thermal gain and visual gain data point on the polygon.  

b) Option 2 

Find best possible Thermal gain, Visual gain combination at a particular timestep considering 
performance of DSF for that timestep and also for a definite future (X timesteps). Here X 
timesteps would be called cost horizon. It would be done in following steps: 
 
Step 3.1: Take the same EnergyPlus simulation file which is used in Step 1 and stop 
simulation before the timestep which the control algorithm is running for. 
 
Step 3.2: Run a multi objective optimization for every possibility of Thermal gain, Visual 
gain combination in the polygon, considering the two objectives for cost horizon. 
 
Step 3.3: As there are two control objectives, there would be several “right” options from 
multi-objective run. Select the best according to some pre-defined criteria. 
 
Step 3.4: take results for only first timestep, i.e. for the planning horizon, and discard the rest. 
 
Step 3.5: Give output as a value of thermal gain and visual gain data point on the polygon. 

4.3. On-board real-time controller for DSF 

Same methodology described in section 4.2 can be used to control the operation modes of a DSF in 
real time using an on-board computer controller. The only change would be to use a reduced order 
mathematical energy model of the room in which the DSF is installed. This would be done so that the 
optimization problem can be solved in very small time which can be feasible for real time considering 
the minimum operation mode change time.  

In addition, there would be needing to translate the best combination of the thermal and visual gain 
selected by controller to operation mode and control commands. One way to carry out this task could 
be the adoption of an Artificial Neural Network (ANN) based mathematical model which would 
require all the data gathered from this study to train itself. This trained ANN model would be able to 
guess the set of operation modes, i.e. Airflow Path, Airflow Rate and Blind state, from the selected 
thermal and visual gain value at given boundary conditions. To improve the predication efficiency of 
the ANN model, more simulations might be required as done in this study which would cover 
remaining boundary conditions, airflow rates and blind angles.  

This way of using ANN models for predicting controls for DSF has been described in steps in Fig 35 



63 
 

 

Figure 35: Steps of workflow for predicting controls of DSF using ANN models 

5. Limitations and discussion 

In this thesis work, the focus has been to develop a methodology to study the thermal and visual 
performance range of a DSF and quantitatively study the flexibility of decoupling thermal and visual 
aspects. Whereas the major the objectives of the work were to streamline the whole process of doing 
many thousands of steady state simulations, managing the data gathered on both macro and micro 
level, coding efficient data processing scripts and majorly designing a very orderly and coherent data 
presentation scheme to communicate the “Big Data” gathered in this study. 

As described initially in the introduction, the whole process starts with modelling a model of a DSF in 
a building energy simulation program. The “Airflow Windows” in EnergyPlus simulation program 
was chosen for this purpose. EnergyPlus provides two ways of modelling a DSF. The simpler way, 
“Airflow Windows” which is used in this study, is a dedicated component available to simulate 
ventilated glazed cavities. This component uses a simplified analytical model when it comes to 
airflow calculation algorithms but is coupled with detailed heat transfer models which are used all 
throughout EnergyPlus. The limitations of simple airflow modelling were seen in sub-section 3.2.4 
where there was no change seen in thermal gain range when air gap was increased to 3 times. The 
more complex way to DSF in EnergyPlus is done using the thermal and airflow network model based 
on AIRNET (Walton 1989). Here the ventilated air cavity is divided into several stacked zones, where 
each zone is an airflow network node. These nodes are linked by using different airflow network 
objects, which iteratively calculates the pressure, airflow linkage, temperature and humidity at every 
node. This way of modelling requires way much more time and expertise to correctly model a DSF, 
which in the end may give better or at least same results as with “Airflow Windows” component. 

Although, the “Airflow Windows” component had many technical and operational limitations, using a 
“the most right” component of modelling was not the aim of this thesis. The major aim was to design 
a methodology to analyze the performance of a DSF in an unusual and comprehensive way that points 
out towards a more innovative use of DSF systems and not to model a DSF in the most accurate way. 
The methodology proposed in this thesis can be replicated using the same steps, scripts, performance 
metrics and data presentation schemes to see better or improved results. Whereas if another way of 
modelling a DSF is used, the performance metrics may be modified to better work coherently with 
outputs results of simulation, while keeping the meaning behind them same.  

As seen in the types of DSF configurations selected in this thesis, a DSF can have equal to or more 
than 3 glass planes which may have total glass thickness of more than 25mm. This amount of thermal 
mass would have thermal inertial effects upto to more than 1 hour during peak incident solar 
radiations. This will lead to time shifted effects of operation modes on overall thermal gain which 



64 
 

have not been studied in this thesis. The simulations done for this thesis were steady state in nature, 
which means the immediate effect of changes was seen on thermal and visual gain. On the other hand, 
EnergyPlus also does not have capacitive node in thermal models of heat transfer for glazing systems. 
To study the inertial effect of operation modes the same study could be done but with every operation 
mode considering also some number of every iteration of history operation modes. This would lead to 
a very large computation problem which might be near to impossible to perform. At the same time if 
the gathered data from this study is used in real time controller for a DSF, to incorporate the thermal 
inertial effect, appropriate modifications would have to made to cost functions of the optimization and 
controller equations 

6. Conclusions 

This thesis develops and demonstrates a methodology to study the range of thermal and visual 
performance of a DSF in different boundary conditions and varied operation modes; and how flexible 
a certain DSF is to control the thermal and visual aspects separately. To do so steady state energy 
simulations were performed in a mathematical model of a DSF on a range of realistic boundary 
conditions, i.e. temperature difference (between indoor and outdoor) and incident solar radiation. The 
control parameters of the DSF were varied to a set of realistic values to get different operation modes. 
All the data processing, data management and plotting of results was done using Python. 

Performance metrics for thermal gain and visual gain are presented in this study. The main difference 
between the presented metrics, and the standard way to evaluate the performance of façades as U-
value, g-value, and so on, is that the presented metrics cannot be calculated directly from physical 
characteristics of the materials adopted in a typical façade multilayer system / construction, and do not 
have a general physical meaning. Whereas, they represent the final effect of the façade in terms of 
thermal and visual gains. 

Regarding research questions related to analysis of performance of a DSF, have been discussed in 
Chapter 2. Here, the overall range of thermal and visual gain was shown as a scatter plot and 
presented how the performance changes with changing boundary conditions and operation modes. Air 
Supply and Air Extract presents a large range of thermal gain than other airflow paths, whereas in 
terms of airflow rate, higher rate provides the maximum range which reduces with decreasing airflow 
rate. When a DSF is used without slats highest amount of visual gain was noticed whereas different 
slat angle, if blinds are used, provide much more options of visual gain. Results were then studied for 
different combinations of boundary conditions to study how performance and flexibility changes. The 
area of the total range of performance and person correlation coefficient, r, were calculated for every 
boundary condition. The value of area represented a comparative figure of how big or small is the 
range of thermal and visual performance of a DSF, whereas the value of r represented how much 
correlation was present between thermal and visual gain, which could also be interpreted as a 
comparative figure for degree of freedom for decoupling the two aspects. The results outlined a trend 
that both range of performance and degree of freedom of decupling was lowest when temperature 
difference (between indoor and outdoor) was zero and lowest solar radiation. Both these values 
increased with increase of temperature difference on both sides of 0 with highest being at -45 °C and 
20 °C. On solar radiation axis, while the range of performance increased with increasing incident solar 
radiation, the degree of freedom of decoupling decreased. The obvious reason for this trend is that 
although increasing solar radiation provides good range of performance, it becomes a strong 
influencer at higher values which starts increasing correlation between thermal and visual gains. This 
trend was seen in all different kinds of DSFs whereas the reason behind it was confirmed in DSF with 
double glazing on both inside and outside. Because of overall less solar radiation transmission due to 
less U-value of the combined glass panes, almost same and high degree of freedom for decoupling 
was seen at all solar radiation and highest temperature difference combinations.  

On the research question, “How this work can be used to design and operate a DSF for a certain 

climate?”, a methodology was presented on how to study the potential of a DSF in any given climate 
and how different DSFs can be compared during initial design stage for application in buildings. 
Another detailed methodology is presented on how to use the results of this thesis to efficiently 



65 
 

operate a DSF. This methodology will be used to find the best possible set of controls and operation 
modes for a DSF considering its thermal and visual performance at a certain timestep and its effects 
on future timesteps. Thesis is concluded by a discussion of the limitations part of this study, the 
reason behind why certain aspects of DSF modelling were not considered and how this would be 
different in a real time controller. 

  



66 
 

References 

[1] Pomponi, F., Piroozfar, P. A., Southall, R., Ashton, P., & Farr, E. R. (2016). Energy performance 

of Double-Skin Façades in temperate climates: A systematic review and meta-analysis. Renewable 

and Sustainable Energy Reviews, 54, 1525-1536. 

[2] Oesterle, E. (2001). Double skin facades: integrated planning; building physics, construction, 

aerophysics, air-conditioning, economic viability. Prestel. 

[3] Gratia, E., & De Herde, A. (2004). Natural ventilation in a double-skin facade. Energy and 

buildings, 36(2), 137-146. 

[4] Poirazis, H. (2004). Double skin façades for office buildings. Holland: Lund Institute of 

Technology. 

[5] Saelens, D., & Hens, H. (2001). Experimental evaluation of airflow in naturally ventilated active 

envelopes. Journal of Thermal Envelope and Building Science, 25(2), 101-127. 

[6] Haase, M., da Silva, F. M., & Amato, A. (2009). Simulation of ventilated facades in hot and 

humid climates. Energy and Buildings, 41(4), 361-373. 

[7] Baldinelli, G. (2009). Double skin façades for warm climate regions: Analysis of a solution with 

an integrated movable shading system. Building and Environment, 44(6), 1107-1118. 

[8] Wigginton, M., & McCarthy, B. The Environmental Second Skin'. Research carried out for the 

UK Department of the Environment Transport and the Regions. 

[9] Pappas A. Energy performance of a DSF–analysis for the Museum of Contemporary Art, Denver. 

SOLAR 2006. Denver, USA; 2006. 

[10] Oka, S., Andjelkovic, A. S., Cvjetkovic, T. B., Djakovic, D. D., & Stojanovic, I. H. (2015). 

Development of simple calculation model for energy performance of double skin facades (vol 16, pg 

S251, 2012). THERMAL SCIENCE, 19(2), 749-749. 

[11] Xu, L., & Ojima, T. (2007). Field experiments on natural energy utilization in a residential house 

with a double skin façade system. Building and Environment, 42(5), 2014-2023. 

[12] Yılmaz, Z., & Çetintaş, F. (2005). Double skin façade's effects on heat losses of office buildings 

in Istanbul. Energy and Buildings, 37(7), 691-697. 

[13] Stec, W. J., & Van Paassen, A. H. C. (2005). Symbiosis of the double skin facade with the 

HVAC system. Energy and Buildings, 37(5), 461-469. 

[14] Kragh, M. (2001). Monitoring of Advanced Facades and Environmental Systems. whole-life 

performance of facades University of Bath, CWCT. 

[15] Kragh M. Facade engineering and building physics. Examples of current best practice and recent 

innovations. Integrated Facade Symposium. San Francisco;21 April, 2010. 

[16] Ghadamian, H., Ghadimi, M., Shakouri, M., Moghadasi, M., & Moghadasi, M. (2012). 

Analytical solution for energy modeling of double skin façades building. Energy and Buildings, 50, 

158-165. 

[17] Kim, G., Schaefer, L., & Kim, J. T. (2013). Development of a double-skin facade for sustainable 

renovation of old residential buildings. Indoor and built environment, 22(1), 180-190. 



67 
 

[18] DiMaio, F., & Van Passen, A.H.C. (2001). Modelling the air infiltrations in the second skin 

façade. In: Proceedings of IAQVEC 2001 – The 4th International Conference on Indoor Air Quality, 

Ventilation and Energy Conservation in Buildings, 2-5 October 2001, Changsha (China), pp.873-880. 

[19] Corgnati S.P., Perino M., & Serra V. (2007). Experimental assessment of the performance of an 

active transparent façade during actual operating conditions. Solar Energy 81:8, pp.993-1013. 

[20] Crawley, D. B., Lawrie, L. K., Pedersen, C. O., & Winkelmann, F. C. (2000). Energy plus: 

energy simulation program. ASHRAE journal, 42(4), 49-56. 

[21] EnergyPlus. EnergyPlus engineering reference: the reference to EnergyPlus calculations. Tech. 

rep. Berkeley, CA: Ernest Orlando Lawrence Berkeley National Laboratory. 72, 85, 100. 2013. 

  



68 
 

Appendix 1: Python scripts developed for this study 

Making simulation cases 

1. import csv   

2. with open('cases.csv', 'w', newline='') as csvfile:   

3.     spamwriter = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL)   
4.    

5.     spamwriter.writerow(['Case No.','Outside Dry bulb Temp', 'Outside Dew point Tem

p','Rh','Inside Air Temp','Direct Solar Radiation','Blinds state','Blinds angle','A
irflow speed','Airflow state','Airflow Source','Airflow Destination','Blinds refl']

)   

6.        

7.     outsidedrytemp = [-20,-10,0,10,20,30,40]   

8.     outsidedewtemp = [-26,-17,-

7,2,12,22,31]  #dewpoint temp calculated for Rh 0.6   

9.     insidetemp = [20,25]   

10.     solarrad = [0,2000,4000,6000,8000,9955]   
11.     blinds = ['on','off']   
12.     blindangle = [0,30,45,60,90,120,135,150]   
13.     airflowspeed = [10/3600,20/3600,40/3600,80/3600,160/3600,320/3600]   
14.     airflowmode = ['supply mode','extract mode','interior air curtain','exterior ai

r curtain']   

15.    
16.     case = 1   
17.     for i in range(len(outsidedrytemp)):   
18.         for j in range(len(insidetemp)):   
19.             for k in range(len(solarrad)):   
20.                 for m in range(len(blindangle)):   
21.                     spamwriter.writerow(['Case_'+str(case),outsidedrytemp[i],outsid

edewtemp[i],'60',insidetemp[j],solarrad[k],blinds[0],blindangle[m],'0','interior ai
r curtain','IndoorAir','IndoorAir','Highrefl blinds'])   

22.                     case=case+1   
23.                     for n in range(len(airflowspeed)):   
24.                         for p in range(len(airflowmode)):   
25.                             if airflowmode[p]=='supply mode':   
26.                                 s='OutdoorAir'   
27.                                 d='IndoorAir'   
28.                             if airflowmode[p] == 'extract mode':   
29.                                 s='IndoorAir'   
30.                                 d='OutdoorAir'   
31.                             if airflowmode[p] == 'interior air curtain':   
32.                                 s='IndoorAir'   
33.                                 d='IndoorAir'   
34.                             if airflowmode[p] == 'exterior air curtain':   
35.                                 s='OutdoorAir'   
36.                                 d='OutdoorAir'   
37.                             spamwriter.writerow(['Case_'+str(case),outsidedrytemp[i

],outsidedewtemp[i],'60',insidetemp[j],solarrad[k],blinds[0],blindangle[m],airflows

peed[n],airflowmode[p],s,d,'Highrefl blinds'])   

38.                             case=case+1   
39.    
40.     for i in range(len(outsidedrytemp)):   
41.         for j in range(len(insidetemp)):   
42.             for k in range(len(solarrad)):   
43.                 for m in range(len(blindangle)):   
44.                     spamwriter.writerow(['Case_'+str(case),outsidedrytemp[i],outsid

edewtemp[i],'60',insidetemp[j],solarrad[k],blinds[0],blindangle[m],'0','interior ai
r curtain','IndoorAir','IndoorAir','Lowrefl blinds'])   

45.                     case=case+1   
46.                     for n in range(len(airflowspeed)):   
47.                         for p in range(len(airflowmode)):   
48.                             if airflowmode[p]=='supply mode':   
49.                                 s='OutdoorAir'   



69 
 

50.                                 d='IndoorAir'   
51.                             if airflowmode[p] == 'extract mode':   
52.                                 s='IndoorAir'   
53.                                 d='OutdoorAir'   
54.                             if airflowmode[p] == 'interior air curtain':   
55.                                 s='IndoorAir'   
56.                                 d='IndoorAir'   
57.                             if airflowmode[p] == 'exterior air curtain':   
58.                                 s='OutdoorAir'   
59.                                 d='OutdoorAir'   
60.                             spamwriter.writerow(['Case_'+str(case),outsidedrytemp[i

],outsidedewtemp[i],'60',insidetemp[j],solarrad[k],blinds[0],blindangle[m],airflows

peed[n],airflowmode[p],s,d,'Lowrefl blinds'])   
61.                             case=case+1   
62.    
63.       #blinds off, i.e. there is no blinds on windows   
64.     for i in range(len(outsidedrytemp)):   
65.         for j in range(len(insidetemp)):   
66.             for k in range(len(solarrad)):   
67.                 spamwriter.writerow(['Case_'+str(case),outsidedrytemp[i],outsidedew

temp[i],'60',insidetemp[j],solarrad[k],blinds[1],'-

','0','interior air curtain','IndoorAir','IndoorAir','No Blinds'])   

68.                 case=case+1   
69.                 for n in range(len(airflowspeed)):   
70.                     for p in range(len(airflowmode)):   
71.                         if airflowmode[p]=='supply mode':   
72.                             s='OutdoorAir'   
73.                             d='IndoorAir'   
74.                         if airflowmode[p] == 'extract mode':   
75.                             s='IndoorAir'   
76.                             d='OutdoorAir'   
77.                         if airflowmode[p] == 'interior air curtain':   
78.                             s='IndoorAir'   
79.                             d='IndoorAir'   
80.                         if airflowmode[p] == 'exterior air curtain':   
81.                             s='OutdoorAir'   
82.                             d='OutdoorAir'   
83.                         spamwriter.writerow(['Case_'+str(case),outsidedrytemp[i],ou

tsidedewtemp[i],'60',insidetemp[j],solarrad[k],blinds[1],'-

',airflowspeed[n],airflowmode[p],s,d,'No Blinds'])   
84.                         case=case+1   
85.        
86. print("The total number of cases are: ", case-1)   

Preparing multiple IDFs and EPWs 

1. import csv   

2. with open('cases.csv', newline='') as f:   

3.     reader = csv.reader(f)   
4.     data = []   

5.     for row in reader:   

6.         data.append(row)   

7.     size=len(data)   

8.     print(size)   

9.    

10.     for i in range(1,size):   
11.     #for i in range(14690,14691):   
12.        
13.         filename=data[i][0]   
14.         dbt=data[i][1]   
15.         dpt=data[i][2]   
16.         rh=data[i][3]   
17.         iat=data[i][4]   
18.         dsr=data[i][5]     
19.         bst=data[i][6]   



70 
 

20.         ban=data[i][7]   
21.         asp=data[i][8]   
22.         aso=data[i][10]   
23.         ade=data[i][11]   
24.         refl=data[i][12]   
25.            
26.         # making IDFs   
27.         j='9zones FINAL_temp.idf'   
28.         with open(j, 'r') as file :   
29.             dataidf = file.read()   
30.         # Replace the target string   
31.         dataidf = dataidf.replace('$IAT@@', str(iat))   
32.         dataidf = dataidf.replace('$OAT@@', str(dbt))   
33.            
34.         if bst == 'on':   
35.             dataidf = dataidf.replace('$BST1@@', 'Glaz2')   
36.             dataidf = dataidf.replace('$BST2@@', 'Glaz2')   
37.             dataidf = dataidf.replace('$BST3@@', 'Glaz2')   
38.             dataidf = dataidf.replace('$BST4@@', 'Glaz2')   
39.             dataidf = dataidf.replace('$BST5@@', 'Glaz2')   
40.             dataidf = dataidf.replace('$BST6@@', 'Glaz2')   
41.             dataidf = dataidf.replace('$BST7@@', 'Glaz2')   
42.             dataidf = dataidf.replace('$BST8@@', 'Glaz2')   
43.             dataidf = dataidf.replace('$BST9@@', 'Glaz2')   
44.             dataidf = dataidf.replace('$BAN@@', str(ban))   
45.         if bst == 'off':   
46.             dataidf = dataidf.replace('$BST1@@', '')   
47.             dataidf = dataidf.replace('$BST2@@', '')   
48.             dataidf = dataidf.replace('$BST3@@', '')   
49.             dataidf = dataidf.replace('$BST4@@', '')   
50.             dataidf = dataidf.replace('$BST5@@', '')   
51.             dataidf = dataidf.replace('$BST6@@', '')   
52.             dataidf = dataidf.replace('$BST7@@', '')   
53.             dataidf = dataidf.replace('$BST8@@', '')   
54.             dataidf = dataidf.replace('$BST9@@', '')   
55.             dataidf = dataidf.replace('$BAN@@', '45')   
56.         dataidf = dataidf.replace('$ASP@@', str(asp))   
57.         dataidf = dataidf.replace('$ASO@@', str(aso))   
58.         dataidf = dataidf.replace('$ADE@@', str(ade))   
59.         dataidf = dataidf.replace('$BLINDS@@', str(refl))   
60.         with open('cases/'+str(filename)+'.idf', 'w') as file:   
61.             file.writelines( dataidf )   
62.    
63.         # making EPWs   
64.         k='NFRC OUTSIDE_temp.epw'   
65.         with open(k, 'r') as file :   
66.             dataepw = file.read()   
67.         # Replace the target string   
68.         dataepw = dataepw.replace('$DBT@@', str(dbt))   
69.         dataepw = dataepw.replace('$DPT@@', str(dpt))   
70.         dataepw = dataepw.replace('$RH@@', str(rh))   
71.         dataepw = dataepw.replace('$DSR@@', str(dsr))   
72.         with open('cases/'+str(filename)+'.epw', 'w') as file:   
73.             file.writelines( dataepw )   
74.         if  i%100==0:   
75.             print(filename)   
76.            

Making batch file for EP simulations 

1. import csv   

2. import glob   

3. import subprocess   

4. import os   

5.    



71 
 

6. def split(a, n):   

7.     k, m = divmod(len(a), n)   

8.     return (a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n))   

9.    

10. #numfiles = 31028   
11. numfiles = len(glob.glob1('cases/','*.idf'))   
12.    
13. #distribute in 5 files-----5 as x   
14. x=5   
15.    
16. print(list(split(range(numfiles), x)))   
17. len1=len(list(split(range(numfiles), x))[0])   
18. print(list(split(range(numfiles), x))[0][len1-1])   
19. print(list(split(range(numfiles), x))[0][0])   
20.    
21. #make individual BAT files   
22. for i in range(x):   
23.     with open('cases/Run_'+str(i+1)+'simulation.bat', 'w') as filef:   
24.         with open('temp.bat', 'r') as file :   
25.             dataepg = file.read()   
26.         start = list(split(range(numfiles), x))[i][0]   
27.         last =  list(split(range(numfiles), x))[i][len(list(split(range(numfiles), 

x))[i])-1]   

28.         dataepg = dataepg.replace('@start@', str(start+1))   
29.         dataepg = dataepg.replace('@end@', str(last+1))   
30.         filef.writelines( dataepg )   
31.    
32. #check if runEPfile.bat exist and if delete   
33. if os.path.exists("cases/runEPfile.bat"):   
34.   os.remove("cases/runEPfile.bat")   
35.    
36.    
37. #make runEPfile.bat to run all cmd windows together   
38. f= open("cases/runEPfile.bat","a+")   
39. f.write('cd "cases/"\n')   
40.    
41. for i in range(x):   
42.      f.write('start '+'Run_'+str(i+1)+'simulation.bat \n')   
43. f.close()   
44.    
45. run runEPfile.bat   
46. subprocess.call('cases/runEPfile.bat',creationflags=subprocess.CREATE_NEW_CONSOLE) 

  
47. subprocess.call([r'cases\runEPfile.bat'])   

Batch file for EP simulations 

1. FOR /L %%A IN (@start@,1,@end@) DO (   

2. TITLE Case_%%A running   
3. energyplus -w Case_%%A.epw -p Case_%%A -r Case_%%A.idf   

4.    

5. IF EXIST "Case_%%Aout.epmidf" DEL "Case_%%Aout.epmidf"   

6. IF EXIST "Case_%%Aout.epmdet" DEL "Case_%%Aout.epmdet"   

7. IF EXIST "Case_%%Aout.eso" DEL "Case_%%Aout.eso"   

8. IF EXIST "Case_%%Aout.rdd" DEL "Case_%%Aout.rdd"   

9. IF EXIST "Case_%%Aout.mdd" DEL "Case_%%Aout.mdd"   

10. IF EXIST "Case_%%Aout.eio" DEL "Case_%%Aout.eio"   
11. IF EXIST "Case_%%Aout.end" DEL "Case_%%Aout.end"   
12. :IF EXIST "Case_%%Aout.err" DEL "Case_%%Aout.err"   
13. IF EXIST "Case_%%Aout.dxf" DEL "Case_%%Aout.dxf"   
14. IF EXIST "Case_%%Atbl.tab" DEL "Case_%%Atbl.tab"   
15. IF EXIST "Case_%%Aout.txt" DEL "Case_%%Aout.txt"   
16. :IF EXIST "Case_%%AoutMeter.csv" DEL "Case_%%AoutMeter.csv"   
17. IF EXIST "Case_%%AoutMeter.tab" DEL "Case_%%AoutMeter.tab"   
18. IF EXIST "Case_%%AoutMeter.txt" DEL "Case_%%AoutMeter.txt"   



72 
 

19. IF EXIST "Case_%%Aout.det" DEL "Case_%%Aout.det"   
20. IF EXIST "Case_%%Aout.sln" DEL "Case_%%Aout.sln"   
21. IF EXIST "Case_%%Aout.Zsz" DEL "Case_%%Aout.Zsz"   
22. :IF EXIST "Case_%%AoutZsz.csv" DEL "Case_%%AoutZsz.csv"   
23. IF EXIST "Case_%%AoutZsz.tab" DEL "Case_%%AoutZsz.tab"   
24. IF EXIST "Case_%%AoutZsz.txt" DEL "Case_%%AoutZsz.txt"   
25. IF EXIST "Case_%%Aout.ssz" DEL "Case_%%Aout.ssz"   
26. :IF EXIST "Case_%%AoutSsz.csv" DEL "Case_%%AoutSsz.csv"   
27. IF EXIST "Case_%%AoutSsz.tab" DEL "Case_%%AoutSsz.tab"   
28. IF EXIST "Case_%%AoutSsz.txt" DEL "Case_%%AoutSsz.txt"   
29. IF EXIST "Case_%%Aout.mtr" DEL "Case_%%Aout.mtr"   
30. IF EXIST "Case_%%Aout.mtd" DEL "Case_%%Aout.mtd"   
31. IF EXIST "Case_%%Aout.bnd" DEL "Case_%%Aout.bnd"   
32. IF EXIST "Case_%%Aout.dbg" DEL "Case_%%Aout.dbg"   
33. IF EXIST "Case_%%Aout.sci" DEL "Case_%%Aout.sci"   
34. IF EXIST "Case_%%Aout.svg" DEL "Case_%%Aout.svg"   
35. IF EXIST "Case_%%Aout.shd" DEL "Case_%%Aout.shd"   
36. IF EXIST "Case_%%Aout.wrl" DEL "Case_%%Aout.wrl"   
37. :IF EXIST "Case_%%AoutScreen.csv" DEL "Case_%%AoutScreen.csv"   
38. :IF EXIST "Case_%%AoutMap.csv" DEL "Case_%%AoutMap.csv"   
39. IF EXIST "Case_%%AoutMap.tab" DEL "Case_%%AoutMap.tab"   
40. IF EXIST "Case_%%AoutMap.txt" DEL "Case_%%AoutMap.txt"   
41. IF EXIST "Case_%%Aout.audit" DEL "Case_%%Aout.audit"   
42. :IF EXIST "Case_%%AoutTable.csv" DEL "Case_%%AoutTable.csv"   
43. IF EXIST "Case_%%AoutTable.tab" DEL "Case_%%AoutTable.tab"   
44. IF EXIST "Case_%%AoutTable.txt" DEL "Case_%%AoutTable.txt"   
45. :IF EXIST "Case_%%AoutTable.html" DEL "Case_%%AoutTable.html"   
46. :IF EXIST "Case_%%AoutTable.htm" DEL "Case_%%AoutTable.htm"   
47. IF EXIST "Case_%%AoutTable.xml" DEL "Case_%%AoutTable.xml"   
48. IF EXIST "Case_%%AoutDElight.in" DEL "Case_%%AoutDElight.in"   
49. IF EXIST "Case_%%AoutDElight.out" DEL "Case_%%AoutDElight.out"   
50. IF EXIST "Case_%%AoutDElight.dfdmp" DEL "Case_%%AoutDElight.dfdmp"   
51. IF EXIST "Case_%%AoutDElight.eldmp" DEL "Case_%%AoutDElight.eldmp"   
52. IF EXIST "Case_%%AoutSpark.log" DEL "Case_%%AoutSpark.log"   
53. IF EXIST "Case_%%Aout.expidf" DEL "Case_%%Aout.expidf"   
54. IF EXIST "Case_%%Aout.rvaudit" DEL "Case_%%Aout.rvaudit"   
55. IF EXIST "Case_%%Aout.sql" DEL "Case_%%Aout.sql"   
56. IF EXIST "Case_%%Aout.edd" DEL "Case_%%Aout.edd"   
57. :IF EXIST "Case_%%AoutDFS.csv" DEL "Case_%%AoutDFS.csv"   
58. IF EXIST "Case_%%Aout*.mat" DEL "Case_%%Aout*.mat"   
59.    
60. )   
61. exit   

Post processing the collected data 

1. import csv   

2. import glob   

3. from scipy import interpolate   
4. import os.path   

5. import sys   

6.    

7. #casenum = sys.argv[1]   

8. casenum = 1   

9.    

10.    
11. def air_density_ip(dbt1):   
12.     t =[-20,-10,0,10,20,30,40]   
13.     dens=[1.395,1.3413,1.2922,1.2466,1.2041,1.1644,1.127]   
14.     if float(dbt1) >= -20 and float(dbt1) <= 40:   
15.         f = interpolate.interp1d(t, dens, fill_value = "interpolate")   
16.     else:   
17.         f = interpolate.interp1d(t, dens, fill_value = "extrapolate")   
18.     return f(float(dbt1))   
19.    



73 
 

20. def extract_extra(dbt2,iat1,asp1):   
21.     extra = (float(iat1)-float(dbt2))*float(asp1)*1*air_density_ip(dbt2)*1000/1.5   
22.     return float(extra)   
23.    
24. def supply_extra(dbt3,iat2,asp2,gapconv):   
25.     extra = (float(iat2)-

gapconv_gaptemp(gapconv,dbt3,asp2))*float(asp2)*1*air_density_ip(gapconv_gaptemp(ga

pconv,dbt3,asp2))*1000/1.5   

26.     return float(extra)   
27.    
28. def gapconv_gaptemp(gapconv1,dbt4,asp3):   
29.     gap_temp = float(dbt4)+(float(gapconv1)/(float(asp3)*1*air_density_ip(dbt4)*100

0/1.5))   
30.     return float(gap_temp)   
31.    
32. print(gapconv_gaptemp(206,20,0.044))   
33. print(extract_extra(-20,20,0.044))   
34. print(supply_extra(-20,20,0.044,206))   
35. print(air_density_ip(44.24))   
36.    
37. dbttemp =[]   
38. iattemp =[]   
39. bsttemp =[]   
40. asptemp =[]   
41. asttemp =[]   
42.    
43. with open('cases.csv', newline='') as f:   
44.     reader = csv.reader(f)   
45.     data1 = []   
46.     for row in reader:   
47.         data1.append(row)   
48.     size=len(data1)   
49.     for i in range(1,size):   
50.         #filename=data1[i][0]   
51.         dbttemp.append(data1[i][1])   
52.         iattemp.append(data1[i][4])   
53.         #dsr=data1[i][5]       
54.         bsttemp.append(data1[i][6])   
55.         #ban=data1[i][7]   
56.         asptemp.append(data1[i][8])   
57.         asttemp.append(data1[i][9])   
58.         #aso=data1[i][10]   
59.         #ade=data1[i][11]   
60.    
61. #print(dbttemp)   
62.    
63. a1_shgc=[]    
64. a1_shgc.append('a1_Thermal metrics [W/m2]')   
65. a1_vlt= []   
66. a1_vlt.append('a1_Visual metrics [Lm/m2]')   
67. a1_outSRa=[]   
68. a1_outSRa.append('a1_Incident Solar Radiation Rate per Area [W/m2]')   
69. a1_transSRa=[]   
70. a1_transSRa.append('a1_Transmitted Solar Radiation Rate [W/m2]')   
71. a1_gapCONVa=[]   
72. a1_gapCONVa.append('a1_Gap Convective Heat Transfer Rate [W/m2]')   
73. a1_insCONVa=[]   
74. a1_insCONVa.append('a1_Zone Convection Heat Gain Rate [W/m2]')   
75. a1_insINFRAa=[]   
76. a1_insINFRAa.append('a1_Net Infrared Heat Transfer Rate [W/m2]')   
77. a1_gaptemp=[]   
78. a1_gaptemp.append('a1_Gap Temperature [C]')   
79. a1_deltatemp=[]   
80. a1_deltatemp.append('a1_delta Temperature [C]')   
81.    
82.    



74 
 

83. for x in range(1,35701):   
84.     if  x%5000==0:   
85.         print(x)   
86.     if str(os.path.exists('cases/glaz'+str(casenum)+'/Case_'+str(x)+'out.csv'))=='F

alse':   

87.         zero=0   
88.         a1_outSRa.append(zero)   
89.         a1_transSRa.append(zero)   
90.         a1_gapCONVa.append(zero)   
91.         a1_insCONVa.append(zero)   
92.         a1_insINFRAa.append(zero)   
93.         a1_shgc.append(zero)   
94.         a1_vlt.append(zero)   
95.         a1_deltatemp.append(zero)   
96.         a1_gaptemp.append(zero)   
97.    
98.     else:   
99.         with open('cases/glaz'+str(casenum)+'/Case_'+str(x)+'out.csv', newline='') 

as f:   

100.             reader = csv.reader(f)   

101.             data = []   

102.             for row1 in reader:   

103.                 data.append(row1)   

104.             k = 12                  #line in which data is saved, i.e. date 

  

105.             a1_outSR = data[k][6]   
106.             a1_outSRa.append(a1_outSR)   

107.             a1_transSR = float(data[k][7])/4.75    #WINDOW AREA IS 4.75   

108.             a1_transSRa.append(a1_transSR)   

109.             a1_gapCONV = float(data[k][8])/4.75   
110.             a1_gapCONVa.append(a1_gapCONV)   

111.             a1_insCONV = float(data[k][9])/4.75   

112.             a1_insCONVa.append(a1_insCONV)   

113.             a1_insINFRA = float(data[k][10])/4.75   

114.             a1_insINFRAa.append(a1_insINFRA)   

115.                

116.             if asttemp[x-1] == 'interior air curtain':   

117.                 a1_shgc.append((float(a1_transSR)+float(a1_insCONV)+float(a1

_insINFRA)+float(a1_gapCONV)))   

118.                 if asptemp[x-1] == '0':   
119.                     a1_gaptemp.append('0')   

120.                 else:   

121.                     a1_gaptemp.append(gapconv_gaptemp(a1_gapCONV,iattemp[x-
1],asptemp[x-1]))   

122.             if asttemp[x-1] == 'exterior air curtain':   

123.                 a1_shgc.append((float(a1_transSR)+float(a1_insCONV)+float(a1

_insINFRA)))   
124.                 if asptemp[x-1] == '0':   

125.                     a1_gaptemp.append('0')   

126.                 else:   
127.                     a1_gaptemp.append(gapconv_gaptemp(a1_gapCONV,dbttemp[x-

1],asptemp[x-1]))   

128.             if asttemp[x-1] == 'supply mode':   

129.                 a1_shgc.append((float(a1_transSR)+float(a1_insCONV)+float(a1

_insINFRA)+float(a1_gapCONV))-supply_extra(dbttemp[x-1],iattemp[x-1],asptemp[x-

1],a1_gapCONV))   

130.                 if asptemp[x-1] == '0':   

131.                     a1_gaptemp.append('0')   

132.                 else:   

133.                     a1_gaptemp.append(gapconv_gaptemp(a1_gapCONV,dbttemp[x-

1],asptemp[x-1]))   

134.             if asttemp[x-1] == 'extract mode':   

135.                 a1_shgc.append((float(a1_transSR)+float(a1_insCONV)+float(a1

_insINFRA))-extract_extra(dbttemp[x-1],iattemp[x-1],asptemp[x-1]))   
136.                 if asptemp[x-1] == '0':   

137.                     a1_gaptemp.append('0')   



75 
 

138.                 else:   

139.                     a1_gaptemp.append(gapconv_gaptemp(a1_gapCONV,iattemp[x-

1],asptemp[x-1]))   

140.                

141.             a1_vlt.append(float(a1_transSR)*105)   

142.             a1_deltatemp.append(float(dbttemp[x-1])-float(iattemp[x-1]))   
143.                

144.    

145.    
146. with open('cases.csv','r') as csvinput:   

147.     with open('cases/cases_glaz'+str(casenum)+'_collected_final.csv', 'w') a

s csvoutput:   

148.         writer = csv.writer(csvoutput, lineterminator='\n')   
149.         reader = csv.reader(csvinput)   

150.    

151.         all = []   
152.         x=0   

153.         for row in reader:   

154.             row.append(a1_outSRa[x])   

155.             row.append(a1_transSRa[x])   

156.             row.append(a1_gapCONVa[x])   

157.             row.append(a1_insCONVa[x])   

158.             row.append(a1_insINFRAa[x])   

159.             row.append(a1_shgc[x])   

160.             row.append(a1_vlt[x])   

161.             row.append(a1_gaptemp[x])   
162.             row.append(a1_deltatemp[x])   

163.                

164.             all.append(row)   

165.             x=x+1   
166.         writer.writerows(all)   

Plotting 2D graphs 

1. from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import   

2. import matplotlib.patches as mpatches   

3. import matplotlib.pyplot as plt   

4. import numpy as np   

5. import matplotlib as mpl   
6. import csv   

7. import math   

8. from scipy import stats   

9. import sys   

10.    
11. #casenum = int(sys.argv[1])   
12. casenum = 2   
13. casenames=['DGU-200-Single','Single-200-DGU','DGU-200-DGU','DGU-400-

Single','Single-400-DGU','DGU-400-DGU','DGU-600-Single','Single-600-DGU','DGU-600-

DGU']   
14.    
15. runmode = ['Path','Flowrate','Slatangle']   
16. #modetorun = runmode[int(sys.argv[2])-1]   
17. modetorun = runmode[2]   
18.    
19. print(casenames[casenum-1])   
20.    
21. print(modetorun)   
22.    
23. nam =[]   
24. deltaT=[]   
25. iat=[]   
26. sr=[]   
27. bst=[]   
28. ban=[]   
29. asp=[]   



76 
 

30. ast=[]   
31. ref=[]   
32. thm1=[]   
33. vis1=[]   
34.    
35. def uploadfile(num):   
36.    
37.     with open('../DSFs/cases_glaz'+str(num)+'_collected_final.csv', newline='') as 

f:   
38.         reader = csv.reader(f)   
39.         data = []   
40.         for row in reader:   
41.             data.append(row)   
42.         size=len(data)   
43.    
44.         for i in range(1,size):   
45.             nam.append(data[i][0])   
46.             iat.append(int(data[i][4]))   
47.             deltaT.append(int(data[i][21]))   
48.             sr.append(data[i][5])   
49.                
50.             bst.append(data[i][6])   
51.             ban.append(data[i][7])   
52.             asp.append(data[i][8])   
53.             ast.append(data[i][9])   
54.             ref.append(data[i][12])   
55.    
56.             thm1.append(round((float(data[i][18])/1000),2))   
57.             vis1.append(round((float(data[i][19])/1000),2))   
58.                
59.         print(len(nam),nam[len(nam)-1],nam[0],thm1[0])   
60.        
61. def min_function(somelist):   
62.     min_value = None   
63.     for value in somelist:   
64.         if not min_value:   
65.             min_value = value   
66.         elif value < min_value:   
67.             min_value = value   
68.     return min_value   
69.    
70. def min_x_on_maxyaxis(listx,listy,maxy):   
71.     min_value = None   
72.     for x in range(0,len(listx)):   
73.         if listy[x] == maxy:   
74.             if not min_value:   
75.                 min_value = listx[x]   
76.             elif listx[x] < min_value:   
77.                 min_value = listx[x]   
78.     return min_value   
79.    
80. def max_x_on_minyaxis(listx,listy,miny):   
81.     min_value = None   
82.     for x in range(0,len(listx)):   
83.         if listy[x] == miny:   
84.             if not min_value:   
85.                 min_value = listx[x]   
86.             elif listx[x] > min_value:   
87.                 min_value = listx[x]   
88.     return min_value   
89.    
90. def max_function(somelist):   
91.     max_value = None   
92.     for value in somelist:   
93.         if not max_value:   
94.             max_value = value   



77 
 

95.         elif value > max_value:   
96.             max_value = value   
97.     return max_value   
98.    
99. def PolygonArea(corners):   
100.     n = len(corners) # of corners   
101.     area = 0.0   

102.     for i in range(n):   

103.         j = (i + 1) % n   
104.         area += corners[i][0] * corners[j][1]   

105.         area -= corners[j][0] * corners[i][1]   

106.     area = abs(area) / 2.0   

107.     return area   
108.    

109. def color_datapoint(x):   

110.     airspeed = ['0.088888889','0.044444444','0.022222222','0.011111111','0.0
05555556','0.002777778']   

111.     markert = ["^","v","1","s","P","x"]   

112.     for aa in range(0,len(airspeed)):   

113.         if asp[x] == airspeed[aa]:   

114.             airmode=['supply mode','exterior air curtain','interior air curt

ain','extract mode']   

115.             alphass = [0.4,0.6,0.8,1]   

116.    

117.             for y2 in range(0,len(airmode)):   

118.                 if ast[x] == airmode[y2]:   
119.                     plt.scatter(thm1[x], vis1[x], 10, color='black', marker=

'o' , alpha=alphass[y2])   

120.    

121.        
122.             for y1 in range(0,len(airmode)):   

123.                 if ast[x] == airmode[y1]: #delta changes aplpha(transp) of m

arker   

124.                     slatang = ['30','45','60','90','120','135','150']#['45',

'90']   

125.                     colors = ['blue','green','red','cyan','magenta','gold','

orange']#['blue','green']   

126.                     for z1 in range(0,len(slatang)):   

127.                         if ban[x] == slatang[z1]:   

128.                             plt.scatter(thm1[x], vis1[x], 10, color=colors[z
1], marker=markert[aa], alpha=alphass[y1])   

129.    

130.    
131. def allfunction2(name,visual,thermal,reflec):  #all combos of speed/mode/iat

   

132.    

133.     airspeed = ['0.088888889','0.044444444','0.022222222','0.011111111','0.0
05555556','0.002777778']   

134.     airspeednm = ['0.0889','0.0444','0.0222','0.0111','0.0055','0.0028'] #aa

   
135.    

136.     airmode=['extract mode','supply mode','exterior air curtain','interior a

ir curtain']#x11   

137.     airmodenm =['EX','SU','EC','IC']    

138.        

139.     slatang = ['30','45','60','90','120','135','150']#z1   

140.    

141.     deltaTemp = [-45,-40,-35,-30,-25,-20,-15,-10,-

5,0,5,10,15,20]                                   #y1,2   

142.     alphass = [0.1,0.17,0.24,0.31,0.38,0.45,0.52,0.58,0.65,0.72,0.79,0.86,0.

93,1]   

143.    

144.     solarrad = [0,2000,4000,6000,8000,10000]                                

                        #x1,2   
145.     size = [2,20,40,80,160,320]   

146.    



78 
 

147.    

148.     if modetorun == 'Path':   

149.         colors = ['blue','cyan','red','green']                              

#AirflowMode            #x11   

150.        

151.     if modetorun == 'Slatangle':   
152.         colors = ['blue','green','red','cyan','magenta','gold','grey']      

#SlatAngle          #z1   

153.        
154.     if modetorun == 'Flowrate':   

155.         colors = ['blue','green','red','cyan','magenta','gold']             

#AirflowSpeed           #aa   

156.        
157.     fig = plt.figure(figsize=(10,5))   

158.    

159.     for x11 in range(0,len(airmode)):   
160.     #for x11 in run:   

161.         for x in range(0,len(nam)):   

162.             for aa in range(0,len(airspeed)):   

163.             #for aa in run:   

164.                 if (int(iat[x]) == 25 or int(iat[x]) == 25) and  (asp[x] == 

airspeed[aa] or asp[x] == '0') and ast[x] ==airmode[x11] :   

165.                     for y1 in range(0,len(deltaTemp)):   

166.                     #for y1 in rundt:   

167.                         if int(deltaT[x]) == deltaTemp[y1]:   

168.                             for x1 in range(0,len(solarrad)):   
169.                             #for x1 in runsr:   

170.                                 if int(sr[x]) == solarrad[x1]:   

171.                                     for z1 in range(0,len(slatang)):   

172.                                     #for z1 in run:   
173.                                         if ban[x] == slatang[z1] and ref[x] 

== reflec:   

174.                                             if modetorun == 'Path':   

175.                                                 if asp[x] == '0':   

176.                                                     #plt.scatter(thermal[x],

 visual[x], size[x1], color='black', marker=".", alpha=alphass[y1])     #AirflowMod

e        #x11   

177.                                                     plt.scatter(thermal[x], 

visual[x], 20, color='black', marker=".", alpha=1)      #AirflowMode        #x11   

178.                                                        
179.                                                 else :   

180.                                                     #plt.scatter(thermal[x],

 visual[x], size[x1], color=colors[x11], marker=".", alpha=alphass[y1])     #Airflo
wMode        #x11   

181.                                                     plt.scatter(thermal[x], 

visual[x], 20, color='black', marker=".", alpha=1)      #AirflowMode        #x11   

182.                                                        
183.    

184.                                             if modetorun == 'Slatangle':   

185.                                                 plt.scatter(thermal[x], visu
al[x], size[x1], color=colors[z1], marker=".", alpha=alphass[y1])       #SlatAngle 

         #z1   

186.                                                

187.                                             if modetorun == 'Flowrate':   

188.                                                 if  asp[x] == '0':   

189.                                                     plt.scatter(thermal[x], 

visual[x], size[x1], color='black', marker=".", alpha=alphass[y1])      #AirflowSpe

ed       #aa   

190.                                                 else :   

191.                                                     plt.scatter(thermal[x], 

visual[x], size[x1], color=colors[aa], marker=".", alpha=alphass[y1])       #Airflo

wSpeed       #aa   

192.    

193.                     for y2 in range(0,len(deltaTemp)):   
194.                     #for y2 in rundt:   

195.                         if int(deltaT[x]) == deltaTemp[y2]:   



79 
 

196.                             for x2 in range(0,len(solarrad)):   

197.                             #for x2 in runsr:   

198.                                 if int(sr[x]) == solarrad[x2] and ban[x] == 

'-':   

199.                                     if modetorun == 'Path':   

200.                                            
201.                                         if asp[x] == '0':   

202.                                             plt.scatter(thermal[x], visual[x

], size[x2], color='black', marker='.', alpha=alphass[y2])      #AirflowMode       
 #x11   

203.                                             #plt.scatter(thermal[x], visual[

x], 20, color='black', marker=".", alpha=1)     #AirflowMode        #x11   

204.                                         else :   
205.                                             plt.scatter(thermal[x], visual[x

], size[x2], color=colors[x11], marker='.', alpha=alphass[y2])      #AirflowMode   

     #x11   
206.                                             #plt.scatter(thermal[x], visual[

x], 20, color='black', marker=".", alpha=1)     #AirflowMode        #x11   

207.                                            

208.                                     if modetorun == 'Slatangle':   

209.                                         plt.scatter(thermal[x], visual[x], s

ize[x2], color='black', marker='.', alpha=alphass[y2])      #SlatAngle          #z1

   

210.                                        

211.                                     if modetorun == 'Flowrate':   

212.                                         if asp[x] == '0':   
213.                                             plt.scatter(thermal[x], visual[x

], size[x2], color='black', marker='.', alpha=alphass[y2])      #AirflowSpeed      

 #aa   

214.                                         else :   
215.                                             plt.scatter(thermal[x], visual[x

], size[x2], color=colors[aa], marker='.', alpha=alphass[y2])       #AirflowSpeed  

     #aa   

216.                                        

217.    

218.     plt.grid(b=True, which='major', color='#666666', linestyle='-')   

219.     plt.minorticks_on()   

220.     plt.grid(b=True, which='minor', color='#999999', linestyle='-

', alpha=0.2)   

221.    
222.     plt.title(name+'_with '+reflec+' Reflectivity Slat_'+'allmode'+'_allspee

d_25C IAT')   

223.        
224.     plt.xlabel('Thermal Metrics [kW/sqm]')   

225.     plt.ylabel('Visual Metrics [kLm/sqm]')   

226.    

227.     plt.axis([-4.5, 4, 0, 40])   
228.        

229.    

230.     if modetorun == 'Path':   
231.            

232.         plt.text(2, 32, 'SolarRadiation: 1000 W/sqm', fontsize=9, bbox=dict(

facecolor='white',edgecolor='white', alpha=1,zorder=10))   

233.         plt.text(2, 30, 'deltaT: -

45 C', fontsize=9, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10

))   

234.         #plt.gca().add_patch(plt.Rectangle((1.95, 29.5),2,4, fill=True, edge

color='black', facecolor='None', linewidth=1, alpha=1,zorder=20))   

235.            

236.         plt.text(2, 26, 'Airflow Path : Colors', fontsize=9, fontweight='med

ium', bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

237.         plt.text(2, 24, 'Air Extract         = Blue', color='blue', fontsize

=8, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

238.         plt.text(2, 22, 'Air Supply          = Cyan', color='cyan', fontsize
=8, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   



80 
 

239.         plt.text(2, 20, 'Outdoor Air Curtain = Red', color='red', fontsize=8

, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

240.         plt.text(2, 18, 'Indoor Air Curtain  = Green', color='green', fontsi

ze=8, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

241.         plt.text(2, 16, 'Air Buffer = Black', color='Black', fontsize=8, bbo

x=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   
242.         plt.gca().add_patch(plt.Rectangle((1.95, 15),2,12.5, fill=True, edge

color='black', facecolor='None', linewidth=1, alpha=1,zorder=20))   

243.            
244.     if modetorun == 'Slatangle':   

245.            

246.         plt.text(2, 32, 'SolarRadiation: Marker Size', fontsize=9, bbox=dict

(facecolor='white',edgecolor='white', alpha=1,zorder=10))   
247.         plt.text(2, 30, 'deltaT: Opacity of color', fontsize=9, bbox=dict(fa

cecolor='white',edgecolor='white', alpha=1,zorder=10))   

248.         #plt.text(2, 28,  'No Blinds : Black dots', color='Black', fontsize=
9, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

249.         plt.gca().add_patch(plt.Rectangle((1.95, 29.5),2,4, fill=True, edgec

olor='black', facecolor='None', linewidth=1, alpha=1,zorder=20))   

250.    

251.         plt.text(2, 26, 'Slat Angle : Colors', fontsize=9, fontweight='mediu

m', bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

252.         plt.text(2, 24, '30deg     = Blue', color='blue', fontsize=8, bbox=d

ict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

253.         plt.text(2, 22, '45deg     = Green', color='green', fontsize=8, bbox

=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   
254.         plt.text(2, 20, '60deg     = Red', color='red', fontsize=8, bbox=dic

t(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

255.         plt.text(2, 18, '90deg     = Cyan', color='cyan', fontsize=8, bbox=d

ict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   
256.         plt.text(2, 16, '120deg    = Magenta', color='magenta', fontsize=8, 

bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

257.         plt.text(2, 14,  '135deg    = Yellow', color='gold', fontsize=8, bbo

x=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

258.         plt.text(2, 12,  '150deg    = Grey', color='grey', fontsize=8, bbox=

dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

259.         plt.text(2, 10,  'No Blinds = Black', color='Black', fontsize=8, bbo

x=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

260.         plt.gca().add_patch(plt.Rectangle((1.95, 9),2,18.5, fill=True, edgec

olor='black', facecolor='None', linewidth=1, alpha=1,zorder=20))   
261.            

262.     if modetorun == 'Flowrate':   

263.         plt.text(2, 32, 'SolarRadiation: Marker Size', fontsize=9, bbox=dict
(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

264.         plt.text(2, 30, 'deltaT: Opacity of color', fontsize=9, bbox=dict(fa

cecolor='white',edgecolor='white', alpha=1,zorder=10))   

265.         #plt.text(2, 28,  'No Blinds : Black dots', color='Black', fontsize=
9, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

266.         plt.gca().add_patch(plt.Rectangle((1.95, 29.5),2,4, fill=True, edgec

olor='black', facecolor='None', linewidth=1, alpha=1,zorder=20))   
267.    

268.         plt.text(2, 26, 'Airflow Speed : Colors', fontsize=9, fontweight='me

dium', bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

269.         plt.text(2, 24, '0.0889 m3/s.m     = Blue', color='blue', fontsize=8

, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

270.         plt.text(2, 22, '0.0444 m3/s.m     = Green', color='green', fontsize

=8, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

271.         plt.text(2, 20, '0.0222 m3/s.m     = Red', color='red', fontsize=8, 

bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

272.         plt.text(2, 18, '0.0111 m3/s.m     = Cyan', color='cyan', fontsize=8

, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

273.         plt.text(2, 16, '0.0055 m3/s.m    = Magenta', color='magenta', fonts

ize=8, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

274.         plt.text(2, 14, '0.0028 m3/s.m    = Yellow', color='gold', fontsize=
8, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   



81 
 

275.         plt.text(2, 12, '0 m3/s.m         = Black', color='Black', fontsize=

8, bbox=dict(facecolor='white',edgecolor='white', alpha=1,zorder=10))   

276.         plt.gca().add_patch(plt.Rectangle((1.95, 11),2,16.5, fill=True, edge

color='black', facecolor='None', linewidth=1, alpha=1,zorder=20))   

277.    

278.     if modetorun == 'Path':   
279.         plt.savefig('full/AirflowPath_'+name+'_with '+reflec+' Reflectivity 

Slat_'+'allmode'+'_'+'allspeed'+'_25C IAT.png',dpi=800) #AirflowMode        #x11   

280.         #plt.savefig('full/Path_'+str(int(sys.argv[1]))+'_.png',dpi=800)#Air
flowSpeed       #aa   

281.        

282.     if modetorun == 'Slatangle':   

283.         plt.savefig('full/SlatAngle_'+name+'_with '+reflec+' Reflectivity Sl
at_'+'allmode'+'_'+'allspeed'+'_25C IAT.png',dpi=800)   #SlatAngle          #z1   

284.         #plt.savefig('full/SlatAngle_'+str(int(sys.argv[1]))+'_.png',dpi=800

)   
285.        

286.     if modetorun == 'Flowrate':   

287.         plt.savefig('full/AirflowSpeed_'+name+'_with '+reflec+' Reflectivity

 Slat_'+'allmode'+'_'+'allspeed'+'_25C IAT.png',dpi=800)#AirflowSpeed       #aa   

288.         #plt.savefig('full/AirflowSpeed_'+str(int(sys.argv[1]))+'_.png',dpi=

800)   

289.    

290.     plt.close(fig)   

291.    

292.     print(name+'_with '+reflec+' Reflectivity Slat_'+'allmode'+'_allspeed'+'
_25C IAT.png')   

293.    

294. uploadfile(casenum)   

295. #allfunction2(casenames[casenum-1],vis1,thm1,'High')   
296. allfunction2(casenames[casenum-1],vis1,thm1,'Low')   

Plotting 3D graphs 

1. import csv   

2. import glob   

3. from mpl_toolkits.mplot3d import Axes3D   

4. import matplotlib.pyplot as plt   

5. import numpy as np   
6. from scipy import interpolate   

7. from matplotlib import cm   

8. from matplotlib.ticker import LinearLocator, FormatStrFormatter   

9. from mpl_toolkits.axes_grid1 import make_axes_locatable   

10. import sys   
11. from PIL import Image   
12. import numpy as np   
13. import PIL   
14.    
15. from PIL import Image   
16. from PIL import ImageOps   
17. from PIL import ImageDraw   
18.    
19. import imageio   
20.    
21. dt=[]   
22. sr=[]   
23. x1pt=[]   
24. x2pt=[]   
25. x3pt=[]   
26. x4pt=[]   
27. y1pt=[]   
28. y2pt=[]   
29. y3pt=[]   
30. y4pt=[]   
31. '''''  



82 
 

32. 2       3               4               5           6       7           8   9   10 
 11  12  13  14  15  16          17              18              19                

  20  

33. Area    Side1_visual    Side2_thermal   Perimeter   Pearson Spearman    x1  x2  x3 
 x4  y1  y2  y3  y4  Area_RANK   Pearson_RANK    Spearman_RANK   delta visual_Rank 

  delta thermal_Rank  
34.   
35. delta of thermal metrics=side2  
36.   
37. delta of visual metrics=side1  
38.   
39. thermal =x pts  Thermal Metrics [kW/sqm]  
40. visual =y pts  Visual Metrics [kLm/sqm]  
41.   
42.       
43.         x2,y2-------x3,y3  
44.          /           /  
45.       x1,y1--------x4,y4  
46.       
47.   
48. Spearman Correlation Coefficient  
49. Pearson Correlation Coefficient  
50. '''   
51.    
52. def combineimages(number):   
53.     images = list(map(Image.open, ['movie1/'+str(number)+'_'+str(nameright[0])+'_mo

vie.png','movie1/'+str(number)+'_'+str(nameright[1])+'_movie.png','movie1/'+str(num

ber)+'_'+str(nameright[2])+'_movie.png']))   

54.    
55.     widths, heights = zip(*(i.size for i in images))   
56.    
57.     total_width = sum(widths)   
58.     max_height = max(heights)   
59.    
60.     new_im = Image.new('RGB', (total_width, max_height))   
61.    
62.     x_offset = 0   
63.     for im in images:   
64.       new_im.paste(im, (x_offset,0))   
65.       x_offset += im.size[0]   
66.    
67.     new_im.save('test_High.png',quality=100)   
68.    
69.     images = list(map(Image.open, ['movie1/'+str(number)+'_'+str(nameright[3])+'_mo

vie.png','movie1/'+str(number)+'_'+str(nameright[4])+'_movie.png','movie1/'+str(num

ber)+'_'+str(nameright[5])+'_movie.png']))   

70.    
71.     widths, heights = zip(*(i.size for i in images))   
72.    
73.     total_width = sum(widths)   
74.     max_height = max(heights)   
75.    
76.     new_im = Image.new('RGB', (total_width, max_height))   
77.    
78.     x_offset = 0   
79.     for im in images:   
80.       new_im.paste(im, (x_offset,0))   
81.       x_offset += im.size[0]   
82.    
83.     new_im.save('test_Low.png',quality=100)   
84.    
85.    
86.     list_im = ['test_High.png', 'test_Low.png']   
87.     imgs    = [ PIL.Image.open(i) for i in list_im ]   
88.     # pick the image which is the smallest, and resize the others to match it (can 

be arbitrary image shape here)   



83 
 

89.     min_shape = sorted( [(np.sum(i.size), i.size ) for i in imgs])[0][1]     
90.    
91.     # for a vertical stacking it is simple: use vstack   
92.     imgs_comb = np.vstack( (np.asarray( i.resize(min_shape) ) for i in imgs ) )   
93.     imgs_comb = PIL.Image.fromarray( imgs_comb)   
94.     imgs_comb.save( 'movie1/Final'+str(number)+'.png' )   
95.     im = Image.open('movie1/Final'+str(number)+'.png')   
96.     d = ImageDraw.Draw(im)   
97.     left = (0, 540)   
98.     right = (1980, 540)   
99.     line_color = (0, 0, 0)   
100.     d.line([left, right], fill=line_color, width=4)   

101.     im.save('movie1/Final'+str(number)+'.png')   
102.        

103. solarrad = [0,200,400,600,800,1000]   

104. deltaT = [-45,-40,-35,-30,-25,-20,-15,-10,-5,0,5,10,15,20]   
105.    

106. name = ['glaz1_High','glaz2_High','glaz3_High','glaz1_Low','glaz2_Low','glaz

3_Low']   

107. nameDSF=['DGU-200-Single','Single-200-DGU','DGU-200-DGU','DGU-200-

Single','Single-200-DGU','DGU-200-DGU']   

108. namerefl=['High','High','High','Low','Low','Low']   

109. nameright=['DGU-200-Single_High','Single-200-DGU_High','DGU-200-

DGU_High','DGU-200-Single_Low','Single-200-DGU_Low','DGU-200-DGU_Low']   

110.    

111. for i in range(0,len(name)):   
112.     with open('csv outputs/dT_SR data_'+str(name[i])+'.csv', newline='') as 

f:   

113.         temp1=[]   

114.         temp2=[]   
115.         temp3=[]   

116.         temp4=[]   

117.         temp5=[]   

118.         temp6=[]   

119.         temp7=[]   

120.         temp8=[]   

121.         temp9=[]   

122.         temp10=[]   

123.         reader = csv.reader(f)   

124.         data = []   
125.         for row in reader:   

126.             data.append(row)   

127.         size=len(data)   
128.         for i in range(1,size):   

129.             temp1.append(float(data[i][0]))   

130.             temp2.append(float(data[i][1])) #'Solar radiation [kW/sqm]'   

131.             temp3.append(float(data[i][7]))   
132.             temp4.append(float(data[i][8]))   

133.             temp5.append(float(data[i][9]))   

134.             temp6.append(float(data[i][10]))   
135.             temp7.append(float(data[i][11]))   

136.             temp8.append(float(data[i][12]))   

137.             temp9.append(float(data[i][13]))   

138.             temp10.append(float(data[i][14]))   

139.         dt.append(temp1) #'deltaT [C]'   

140.         sr.append(temp2) #'Solar radiation [kW/sqm]'   

141.         x1pt.append(temp3)   

142.         x2pt.append(temp4)   

143.         x3pt.append(temp5)   

144.         x4pt.append(temp6)   

145.         y1pt.append(temp7)   

146.         y2pt.append(temp8)   

147.         y3pt.append(temp9)   

148.         y4pt.append(temp10)   
149.    

150. print(len(dt))   



84 
 

151.    

152. fig = plt.figure(figsize=(10,5))   

153. ax = Axes3D(fig)   

154.    

155. def make3Dsurface(x,y,z,title1,color,xlabel,ylabel,zlabel,knum):   

156.     surf = ax.scatter(x,y,z, c=color,s=2,marker='o',alpha =0.5,linewidth=1, 
antialiased=True)   

157.     #surf = ax.plot_trisurf(x,y,z, cmap=plt.get_cmap('Blues'), linewidth=5, 

antialiased=True)   
158.     surf = ax.plot(x,y,z, c=color,alpha =0.5,linewidth=1, antialiased=True) 

  

159.     #ax.scatter(xs, ys, zs, c=c, marker=m)   

160.     ax.set_ylabel(ylabel,fontsize=10,fontweight='bold')   
161.     ax.set_xlabel(xlabel,fontsize=10,fontweight='bold')   

162.     ax.set_xlim(0, 1000) #thermal   

163.     ax.set_ylim(-50, 20) #visual   
164.     #ax.set_zlim(-4.5,2)   

165.     ax.set_zlim(0,30)   

166.    

167.     ax.zaxis.set_rotate_label(True)    

168.     ax.set_zlabel(zlabel, rotation = 90,fontsize=10,fontweight='bold')   

169.     alltext=ax.texts   

170.     for t in alltext:   

171.         t.set_visible(False)   

172.     ax.text2D(0.05, 0.95, title1+' Reflectivity Slats', color='red', transfo

rm=ax.transAxes, fontsize=10,fontweight='bold')   
173.        

174.    

175.    

176.     #plt.savefig(title+'3D.png')   
177.     #plt.show()   

178.     #plt.close(fig)   

179.    

180.    

181. def make3dplots11(test):   

182.     for k in test:   

183.         for j in range(0,len(deltaT)):       

184.             zaxis_thm=[]   

185.             zaxis_vis=[]   

186.             xaxis=[]   
187.             yaxis=[]   

188.             for i in range(0,len(dt[k])):   

189.                 if dt[k][i]==deltaT[j]:   
190.                     #zaxis_thm.append(x1pt[k][i])   

191.                     zaxis_thm.append(x2pt[k][i])   

192.                     zaxis_thm.append(x3pt[k][i])   

193.                     #zaxis_thm.append(x4pt[k][i])   
194.                     zaxis_thm.append(x2pt[k][i])   

195.                        

196.                     zaxis_vis.append(y1pt[k][i])   
197.                     zaxis_vis.append(y2pt[k][i])   

198.                     #zaxis_vis.append(y3pt[k][i])   

199.                     #zaxis_vis.append(y4pt[k][i])   

200.                     zaxis_vis.append(y1pt[k][i])   

201.                        

202.                     xaxis.extend([sr[k][i],sr[k][i],sr[k][i]])   

203.                     yaxis.extend([dt[k][i],dt[k][i],dt[k][i]])   

204.             #make3Dsurface(xaxis,yaxis,zaxis_thm,str(nameright[k]),'blue','S

olar radiation [W/sqm]','Delta Temperature [°C]','Thermal Metrics [kW/sqm]',k)   

205.             make3Dsurface(xaxis,yaxis,zaxis_vis,str(nameright[k]),'blue','So

lar radiation [W/sqm]','Delta Temperature [°C]','Visual Metrics [kLm/sqm]',k)   

206.             ax.view_init(elev=22, azim=80)   

207.             '''''  

208.             plt.savefig('movie1/'+str(flag+1)+'_'+str(nameright[k])+'_movie.
png')  

209.               



85 
 

210.             img = Image.open('movie1/'+str(flag+1)+'_'+str(nameright[k])+'_m

ovie.png')  

211.             img_with_border = ImageOps.expand(img,border=1,fill='black')  

212.             img_with_border.save('movie1/'+str(flag+1)+'_'+str(nameright[k])

+'_movie.png')  

213.             '''   
214.            

215.         #plt.show()   

216.         plt.savefig('movie1/Vis_'+str(nameright[k])+'_movie.png')   
217.         plt.cla()   

218.    

219. def make3dplots(test):   

220.     for k in test:   
221.         flag=0   

222.         for i in range(0,len(dt[k])):   

223.             zaxis_thm=[x1pt[k][i],x2pt[k][i],x3pt[k][i],x4pt[k][i]]   
224.             zaxis_vis=[y1pt[k][i],y2pt[k][i],y3pt[k][i],y4pt[k][i]]   

225.             xaxis=[sr[k][i],sr[k][i],sr[k][i],sr[k][i]]   

226.             yaxis=[dt[k][i],dt[k][i],dt[k][i],dt[k][i]]   

227.             make3Dsurface(xaxis,yaxis,zaxis_thm,str(nameright[k]),'blue','So

lar radiation [W/sqm]','Delta Temperature [°C]','Thermal Metrics [kW/sqm]',k)   

228.             #make3Dsurface(xaxis,yaxis,zaxis_vis,str(int(dt[k][i])),'blue','

Solar radiation [W/sqm]','Delta Temperature [°C]','Visual Metrics [kLm/sqm]',k)   

229.             ax.view_init(elev=18, azim=54)   

230.             '''''  

231.             plt.savefig('movie1/'+str(flag+1)+'_'+str(nameright[k])+'_movie.
png')  

232.               

233.             img = Image.open('movie1/'+str(flag+1)+'_'+str(nameright[k])+'_m

ovie.png')  
234.             img_with_border = ImageOps.expand(img,border=1,fill='black')  

235.             img_with_border.save('movie1/'+str(flag+1)+'_'+str(nameright[k])

+'_movie.png')  

236.             '''   

237.             flag=flag+1   

238.            

239.         plt.show()   

240.         plt.cla()   

241.    

242.    
243. #high=[0,1,2]   

244. #test=[3,4,5]   

245. #low=[3,4,5]   
246. make3dplots11([2])   

247. #make3dplots11([0,1,2])   

248. #make3dplots11([3,4,5])   

249.    
250.    

251. def gifmaker_indi(test,count):   

252.     for k in test:   
253.         #for x in range(count):   

254.             #combineimages(x+1)   

255.         images = []   

256.         for i in range(count):   

257.             images.append(imageio.imread('movie1/'+str(i+1)+'_'+str(namerigh

t[k])+'_movie.png'))   

258.         imageio.mimsave('F_'+str(nameright[k])+'_movie1.gif', images,loop=0)

   

259.    

260. def gifmaker_all(count):   

261.     for x in range(count):   

262.         combineimages(x+1)   

263.     images = []   

264.     for i in range(count):   
265.         images.append(imageio.imread('movie1/Final'+str(i+1)+'.png'))   

266.     imageio.mimsave('all_movie1.gif', images,loop=0)   



86 
 

267.    

268.    

269.    

270. #gifmaker_indi([0,1,2],115)   

271. #gifmaker_indi([3,4,5],115)   

272. #gifmaker_all(count)   

For making video from data 

1. import cv2   

2. import os   

3. import imageio   
4.    

5. video_name = 'mp444.avi'   

6. #fourcc = cv2.VideoWriter_fourcc(*'DIVX')   
7. images = []   

8. flag=115   

9. casenum =2   
10. for i in range(flag):   
11.     images.append('movie/f'+str(casenum)+'/'+str(i+1)+'_movie.png')   
12. frame = cv2.imread(images[0])   
13. height, width, layers = frame.shape   
14.    
15. video = cv2.VideoWriter(video_name, 0, 10,(width,height))   
16.    
17. for image in images:   
18.     video.write(cv2.imread(image))   
19.    
20. cv2.destroyAllWindows()   
21. video.release()   

 



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 A
rc

hi
te

ct
ur

e 
an

d 
D

es
ig

n
D

ep
ar

tm
en

t o
f A

rc
hi

te
ct

ur
e 

an
d 

Te
ch

no
lo

gy

M
as

te
r’

s 
th

es
is

Gaurav Chaudhary

Decoupling the thermal and visual
performance in glazing systems: a
novel methodology for the numerical
investigation of the case of double
skin facade systems.

Master’s thesis in Sustainable Architecture (M.Sc.)
Supervisor: Dr. Francesco Goia (NTNU, Norway)
Co-supervisor: Dr. Fabio Favoino (Politecnico di Tornio, Italy)

June 2019


