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Parameter identification of ship manoeuvring model under disturbance using support
vector machine method
Tongtong Wang , Guoyuan Li , Baiheng Wu , Vilmar Æsøy and Houxiang Zhang

Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Aalesund, Norway

ABSTRACT
Demanding marine operations increase the complexity of manoeuvring. A highly accurate ship model
promotes predicting ship motions and advancing control safety. It is crucial to identify the unknown
hydrodynamic coefficients under environmental disturbance to establish accurate mathematical models.
In this paper, the identification procedure for a 3 degree of freedom hydrodynamic model under
disturbance is completed based on the support vector machine with multiple manoeuvres datasets. The
algorithm is validated on the clean ship model and the results present good fitness with the reference.
Experiments in different sea states are conducted to investigate the effects of the turbulence on the
identification performance. Generalisation results show that the models identified in the gentle and
moderate environments have less than 10% deviations and are considered allowable. The higher
perturbations, the lower fidelity the identified model has. Models identified under disturbance could
provide different levels of reliable support for the operation decision system.
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1. Introduction

Obtaining a model that can accurately describe the ship dynamics
and its interaction with the environment has always been of con-
siderable interest to academic researchers and marine industries.
The model is expected to be high fidelity so that can be used for
designing high-performance model-based control strategies
(Zheng et al. 2018), as well as developing computer-based simu-
lators for virtual testing (Li et al. 2016).

However, themodelling process is found complex due to the non-
linear properties of ship dynamics. Themodels obtained from exper-
iments are thought to be the most accurate and reliable, yet they can
also be themost economically costly to develop. Only a limited num-
ber of hull ships have had any parameters determined experimen-
tally. Although lots of empirical methods associated with various
model series have been developed, they canonly provide reliable esti-
mates when the hull form fits some tested series well enough, so that
they are suggested to be usedwith great care. An alternative of theor-
etical calculations appears to recourse to computer fluid dynamics
(CFD). The CFD techniques are already matured enough to provide
estimates that, in general, can be viewed even more credible than
empirical methods (Martelli et al. 2021). However, building proper
finite element models necessitates expert experience, and in
addition, it often is computationally intensive for on-line use. System
identification theory comes up for its efficiency and economy.When
addressing the ship manoeuvring model configuration issue, in gen-
eral, it has to deal with complicated hydrodynamic effects associated
with nonlinear and coupled coefficients, which challenge the
researchers a lot (Åström and Källström 1976; Skjetne et al. 2004).

To address the challenges in ship dynamics identification,
researchers offer various methods, for example, least-square method
(Ding 2014), Bayesian approach (Xue et al. 2020), the maximum like-
lihood method (Chen et al. 2018, july), extended Kalman filter

method (Perera et al. 2015), and so on. These methods are demon-
strated valid for a more or less wide range of hull forms and environ-
ment configurations. However, the conventional approaches are
found sensitive to noise and initial estimations would influence the
converging performance. Regarding the circumstances outlined it
would be practically difficult to identify the model plant in a realistic
environment. Given the technological and computational advances
in instrumenting process, a branch of identification method by
machine learning has been established.

The techniques in the form of neural networks (NNs) have been
applied as a regression process to model the nonlinear ship
dynamics and predict future trajectories. In the work of Rajesh
and Bhattacharyya (2008), NN was employed to estimate the
unknown time equation clubbed by all nonlinear hydrodynamic
derivatives of large tankers. This experience shows that NNs work
well on approaching nonlinearities, yet meanwhile, the exploration
to parameters associated with the ship is kept out of reach. Simi-
larly, in the work of Cheng et al. (2019), the NN was used to gen-
erate a surrogate model based on the ship motion data. Again, it
is a black-box model, and the parameters are not correlated to
specific physical properties of the ship.

In the cases where the hydrodynamic derivatives are preferred to
be presented in detail, another machine learning technique – sup-
port vector machine (SVM) can help. This approach proposed by
Vapnik (1999) features a kernel-based learning process and facili-
tates the possibility of acquiring regression coefficients. It is increas-
ingly applied to estimate ship dynamics, for instance, in the work of
Luo and Zou (2009), as well as Zhang and Zou (2011), the authors
implemented the Abkowitz model identification of a benchmark
ship. It is shown that the SVM approach works well when there
is no disturbance accounted for in the system.
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However, the ship dynamics have always changing due to the
interaction with environmental disturbance and load conditions.
Developing a reliable model to a considerable extent under such
interference to provide onboard decision support for autonomous
vessels where no human expertise could dominate, is practically
pivotal. Inspired by the pragmatic challenge, increasing attention
has been drawn to the system identification problem in random
environments. The SVM-based identification is found to be insen-
sitive to instrumental noise and capable of achieving high general-
isation performance (Sutulo and Soares 2014; Wang et al. 2019).
Examples of identifying ship model in waves are reported in the
work by Hou and Zou (2016) and Selvam and Bhattacharyya
(2010). In their work, the excitation forces and moments of
waves are estimated first by numerical calculation or experiment
measurements. Whereas the instant signals of waves or ocean cur-
rents are always not available onboard, which consequently limits
the assessment of environmental loads. An alternative solution is
modelling the slow-varying environmental forces as a stochastic
process to compensate for the lack of realistic ship manoeuvring
data. Achieving reliable estimation under such disturbance is the
target of this study. The extent of perturbations varies to simulate
different sea states. Within this context, the authors intend to
address the impact of external disturbance on the parameter
identification performance and seek estimations to a considerable
accuracy by using the SVM-based identification approach so that
they can be used in different operating scenarios according to
their fidelities.

The structure of this paper is organised as follows. Section 2 for-
mulates the parameter identification problem and procedure. This
is followed by a review of the ship manoeuvring model and the con-
cept of SVM algorithms. In Section 3, the identification algorithm is
implemented for a clean system, aiming to verify the fidelity of the
numerical model. Section 4 focuses on the disturbance experiment
design and results discussion. The marine ship is assumed to expose
to different levels of environmental perturbations, and the fidelity of
the identified model is of particular concern. Conclusions and
future work are presented in the final section.

2. Parameter identification

The parameter identification of the ship manoeuvring model is
complex due to the respective hydrodynamic effects. Normally,
the ship dynamics are described by a group of derivative equations,
associated with linear and nonlinear terms. Specifically, the identifi-
cation process is described in Figure 1. The regression model,
derived from the ship manoeuvring model, determines the input
and output features of the SVM. After preparing the data contain-
ing ship motion and propulsion commands, the SVM is extensively
trained and optimal coefficients are then generated. By substituting
the identified results back into the ship manoeuvring model, the
estimated model is obtained and could be further examined. Par-
ticularly, the generalisation capability of the identified model
should be stressed properly.

The training datasets include the vessel’s multiple different
manoeuvres. Note that the ship motion data should be taken
extra cleaning treatment to eliminate the measurement noise if it
is collected from the onboard sensors.

Models to describe ship dynamics can take many forms. To
highlight the ship hydrodynamic properties, the Abkowitz model
expressed in form of Taylor series is selected. A benchmark ship
– a Mariner class vessel acts as research platform. The major
steps concerning identification as shown in the dash box are
expanded in the following subsections.

2.1. Ship manoeuvring model

For an offshore surface vessel performing manoeuvring tasks, its
horizontal 3 degree of freedom (DOF) behaviour in non-dimen-
sional form can be expressed as

m′ − Xu̇
′ 0 0

0
0

m′ − Y ′
v̇ m′x′g − Y ′

ṙ

m′x′g − N′
v̇ I′zz − N′

ṙ

⎡
⎢⎣

⎤
⎥⎦ u̇′

v̇′

ṙ′

⎡
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⎤
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⎣
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⎦ (1)

where the superscript represents dimensionless variables. m′ is the
ship mass, x′g is the position of gravity centre in the longitudinal
direction of the body-fixed coordinate system. u̇′, v̇′, ṙ′ are the
accelerations in surge, sway, and yaw directions. X′, Y ′ and N′ rep-
resent forces along the ship longitudinal and lateral directions, as
well as the moments about the vertical axis, respectively.
X′
u̇, Y

′
v̇, Y

′
ṙ , N

′
v̇, N

′
ṙ are non-dimensional added mass coefficients.

Izz′ is the inertia moment about the vertical axis.
The non-dimensional variables are defined as

u̇′ = u̇L
U2

, v̇′ = v̇L
U2

, ṙ′ = ṙL2

U2
, u′ = u

U
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U
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U
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√

X′ = X
0.5rL2U2

, Y ′ = Y
0.5rL2U2

, N′ = N
0.5rL2U2

where r is the density of water, L is the ship length, U is registered
as the instantaneous ship speed, u refers to perturbed surge velocity
about nominal speed U0.

The non-dimensional forms of hydrodynamic forces/moments
in the Abkowitz model are represented as Equation (2).
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The hydrodynamic derivatives {X′(·), Y′(·), N′((·))} are the par-
ameters that need to be identified.

2.2. Regression model

The Abkowitz model is generally considered as a nonlinear hydro-
dynamic model, whereas it can be viewed as a linear model with
respect to the hydrodynamic parameters. The motion equations
are discretised by using Euler’s stepping method and the derived
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regression model is

u′(n+ 1)− u′(n) = AX(n)
v′(n+ 1)− v′(n) = BY(n)
r′(n+ 1)− r′(n) = CN(n)

(3)

where A, B, C are parameter vectors formed by hydrodynamic
derivatives to be identified, given as

A = [a1, a2, · · · a16]1×16

B = [b1, b2, · · · b22]1×22

C = [c1, c2, · · · c22]1×22

where X(n), Y(n), N(n) are the variables vectors, n and n+ 1 are
the adjacent sampling time steps. By solving the governing model
Equation (1), one can get the variable vectors given as Equation
(4), compounding by ship velocities and rudder angle.

X(n) =[u′, u
′2, u

′3, v
′2, r

′2, r′v′, d
′2, u′d
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′2, u′r

′2,
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L
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(4–c) where S = (m′ − Y ′
v̇)(I

′
zz − N′

ṙ)− (m′x′g − Y ′
ṙ)(m

′x′g − N′
v̇).

The rudder angle is represented by d and d′ = d. It should be men-
tioned that the five zeros frequency added mass derivatives X′

u̇, Y
′
v̇,

Y ′
ṙ , N

′
v̇ and N′

ṙ usually have enough preciseness, which can be found
in semi-empirical formulas or calculated through strip theory. They
can always be estimated beforehand. Only the parameter sets
A, B, and C are unknown and they will be identified by the SVM
algorithm. Mention that the hydrodynamic derivatives X′

(·) in
surge equation are simply obtained by Equation (5) once the vector
A is determined. While bi and ci (i = 1, 2, . . . , 22) are not direct
hydrodynamic coefficients in sway and yaw motion equation, they

need further treatment by Equation (6).

X′
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L(m′ − X′
u̇)

Dt
A (5)

Y ′
(·)

N′
(·)

[ ]
=

(I′zz − N′
ṙ)Dt

SL
− (m′x′g − Y ′

ṙ)Dt

SL

− (m′x′g − N′
v̇)Dt

SL2
(m′ − Y ′

v̇)Dt
SL2

⎡
⎢⎢⎣

⎤
⎥⎥⎦

−1

B
C

[ ]
(6)

2.3. Support vector machine algorithm

Support vector machine (SVM) learning strategy was formally pro-
posed in the 1900s by Vapnik (1999). As mentioned before, this
approach is widely used in system engineering and is considered
to be a powerful tool in system identification. As a batch technique,
it does not require any initial estimation values and avoids lengthy
iterations. It also has a better global optimal extremum, compared
with traditional neural networks.

Generally, SVM used for regression is also called SVR. Given the
training dataset {(xi, yi), xi [ Rn, yi [ R}, xi is the input vector and
yi is the output. For regression purposes, the general approximation
function of SVM is shown as

f (x) = WTF(x)+ b (7)

where W is the weight matrix and b is the bias term. F( · ) is the
nonlinear function, which is mapping the input data to a high
dimensional feature space. The goal is to find the optimal weights
and threshold that best fit the data. It is proposed to do so by
defining the criteria Equation (8) that simultaneously measures
structure risk and empirical risk. It differs from conventional neural
networks, which rely on only the empirical risk minimisation so
that the SVM features a sparse solution.

min
w,b,e

1
2
W2 + g

∑l

i=1

(ji + ĵi

( )
(8)

Subject to:

f (xi)− yi ≤ e+ ji,
yi − f (xi) ≤ e+ ĵi,

ji ≥ 0, ĵi ≥ 0

where i = 1 · · · l, l is the number of samples, and g is the penalty
factor with positive values. ji and ĵi are non-negative slack vari-
ables. e is the tube size referring to the precision by which the func-
tion is to be approximated. Errors are to be accepted when the
samples are located in the tube. The introduction of tube and
slack variables in the SVM algorithm promotes its robustness to
noise and generalisation performance. Solving for the optimal
weights and bias is a process of convex optimisation, which is

Figure 1. Scheme of parameter identification for ship manoeuvring model.
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made simpler by using Lagrange multipliers and formulating the
dual optimisation problem given as

max
a, a∗

∑l
i=1

yi(a− a∗)−∑l
i=1

e(a− a∗)− 1
2

∑l

i,j=1

(ai − a∗
i )(aj − a∗

j )xi, xj

(9)

Subject to:

∑l

i=1

(ai − a∗
i ) = 0, a, a∗ [ [0, g]

where a, a∗ are the Lagrangian multipliers. xi, xj refers to the ker-
nel function. The solution for the weights is based on the Karsh-
Kuhn-Tucker conditions. Finally, the approximation of the func-
tion f (x) is given as

f (x) = ∑l
i=1

(ai − a∗
i )x, xi + b (10)

The support vectors are those data on or outside the tube with non-
zero Lagrange multipliers. To carry out parameter identification
using SVM, the linear kernel function is then adopted, representing
an inner product between its operands. So, the identified parameter u
can be regressed as

u = ∑l
i=1

(ai − a∗
i )xi (11)

In general, the identification process is conducted as the following
steps:

1. Collect the sample experiment data {(ti, ui, vi, ri,di), i =
1, . . . .l} based on full-scale sea trials or simulation.

2. Construct the input and output vectors for each SVM regressor
according to Equations (3) and (4).

3. Train the SVM regressor and optimise the hydrodynamic
coefficients.

4. Substitute the identified results back into model Equation (2) to
get identified ship model.

5. Verify the generalisation performance of the obtained model.

3. Model validation

In this section, the effectiveness of the SVM-based identification
algorithm will be investigated in a clean vessel model without
disturbance.

The experiments are performed in the Marine Systems Simu-
lator (MSS) (Perez et al. 2006) developed by the Norwegian Univer-
sity of Science and Technology and cooperating groups. It handles
different simulation scenarios and provides enough resources for
the implementation of mathematical models of marine systems.
The Mariner class vessel (Chislett and Strom-Tejsen 1965) is
selected as a benchmark for verification in this study. It should be
noted that in the hydrodynamic model of the Mariner class vessel,
only 10 hydrodynamic coefficients in surge motion equation, 15 in
sway equation, and 15 in yaw equation are considered, and the
others are zeros. The SVM regressor is implemented by using Sci-
kit-learn in Python. Following the procedure as shown in Figure 1,
the parameters are identified and verified against the experimental
values.

3.1. Training data preparation

To cover as much as dynamic features, multiple manoeuvres are
conducted in the simulator at 15 knots (7.717 m/s). The multiple
manoeuvring datasets, including 20°/20°, 15°/15°, and 10°/10° zig-
zag tests, are sequentially generated, and equally sampled at 2 Hz
in 900 s. 1800 samples are collected in total as the training data.

3.2. Identification results

Once the samples are extracted, the SVM is trained to fit the
approximation function. The hyperparameters g and e in the
SVM regression model with linear kernel are determined by grid
search and cross validation. In this regression model, the regularis-
ation factor g is obtained as 104, and e is 0. The unknown non-
dimensional hydrodynamic coefficients in Equation (2) are ident-
ified and the results are listed in Table 1, in comparison with the
planar motion mechanism (PMM) experimental values. It can be
seen that most of the numerical coefficients agree well with the
real experimental values. Although some of them, for instance the
coefficients N0, N′

0u, N
′
ouu in yaw direction, have relatively obvious

discrepancies, they have a limited effect on the accuracy of the
numerical model as their values are quite small.

3.3. Identified model validation

To verify the obtained hydrodynamic models, the prediction of the
same multiple zigzag maneuver tests – 20°/20°, 15°/15°, and 10°/
10°, is performed by the numerical model. Figure 2 shows that
the model predicted velocities in three directions, as well as the
angular displacement, achieve a satisfactory agreement with the
references. The consistency in parameter value and prediction

Table 1. Identified non-dimensional hydrodynamic coefficients (×10−5).

X-Coef SVM PMM Y-Coef SVM PMM N-Coef SVM PMM
X ′u −185.2 −184.0 Y ′v −1158.2 −1159.9 N′

v −262.4 −264.0
X ′uu −116.6 −110.0 Y ′r −498.1 −498.9 N′

r −165.4 −166.0
X ′uuu −220.0 −215.0 Y ′vvv −8150.4 −8078.5 N′

vvv 1667.5 1636.0
X ′vv −923.0 −899.0 Y ′vvr 15312.0 15358.0 N′

vvr −5484.0 −5483.0
X ′rr 13.8 18.0 Y ′vu −1156.2 −1160.0 N′

vu −250.6 −264.0
X ′rv 779.3 798.0 Y ′ru −497.3 −498.9 N′

ru −162.2 −166.0
X ′dd −94.6 −95.0 Y ′d 277.6 278.0 N′

d −139.0 −139.0
X ′udd −190.2 −190.0 Y ′ddd −89.6 −90.0 N′

ddd 42.3 45.0
X ′vd 92.3 93.0 Y ′ud 554.3 556.1 N′

ud −270.0 −278.0
X ′uvd 86.1 93.0 Y ′uud 271.7 278.0 N′

uud −87.8 −139.0
Y ′vdd −3.6 −4.0 N′

vdd 17.5 13.0
Y ′vvd 1213.1 1190.1 N′

vvd −476.2 −489.0
Y0 −3.6 −4.0 N0 1.6 3.0
Y ′0u −8.6 −8.0 N′

0u 8.0 6.0
Y ′ouu −2.7 −4.0 N′

ouu −0.4 3.0
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performance demonstrates the effectiveness and reproducibility of
the SVM-based identification method.

4. Disturbance experiment

To estimate the hydrodynamic parameters under environmental
disturbance, and investigate the influence on the model fidelity, dis-
turbance experiments are conducted, and identification results are
discussed in this section.

4.1. Disturbed manoeuvring models

The ship motion is always influenced by variations of wind, waves,
and ocean currents in real world. These forces are not accounted for
in the Abkowitz model presented in Section 2. A reasonable way to
describe the environmental effects is modelling them as a stochastic
process (Fossen 2011). Such a process can represent the slow-vary-
ing environmental forces and moments due to wind loads, second-
order wave drift forces, and current forces. These effects are lumped

Figure 2. The validation between the SVM predictions and the model reference zigzag tests. (This figure is available in colour online.)
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into a bias term b [ R3 acting on the ship. The disturbed model is
given as

m′ −X′
u̇ 0 0

0
0

m′ −Y ′
v̇ m′x′g −Y ′

ṙ

m′x′g −N′
v̇ I′zz−N′

ṙ

⎡
⎢⎣

⎤
⎥⎦ u̇′

v̇′

ṙ′

⎡
⎣

⎤
⎦=

X′

Y ′

N′

⎡
⎣

⎤
⎦+RT(c)b+w2

(12)

where ḃ=w1 represents the stochastic disturbances, and it is
usually modelled as a Wiener process. The variables wi(i= 1, 2)
are zero-mean Gaussian noise vectors, referring to bias, and process
noise respectively. R is the rotation matrix shown as follows, trans-
forming the ship motion from the body-fixed frame to the earth-
fixed frame. c is to the ship heading.

R=
cosc −sinc 0
sinc cosc 0
0 0 1

⎡
⎣

⎤
⎦

Note the measurement noise is not accounted for in this model, for
the reason that we mainly focus on the effects of environmental
effects and progress noise on the performance, which are practically
meaningful and have not been closely studied. From Equation (12),
the regression function is derived in a form as

v̇
ḃ

[ ]
= M−1t

0

[ ]
+ 0 M−1RT(c)

0 0

[ ]
v
b

[ ]
+ M−1w2

w1

[ ]
(13)

where M[R3×3 is the vessel mass matrix including added mass.
n= [u, v, r]T is the ship velocity vector, and t= [X, Y, N]T rep-
resents hydrodynamic forces and moment, as described in Equation
(2). The parameters inside the expression are the ones that need to
be identified.

By applying the SVM method validated in Section 3, hydrodyn-
amic coefficients in three directions are estimated, and the corre-
sponding model fidelity is examined in detail.

4.2. Disturbance set up

When preparing the training data, more rudder commands are
added to cover ship dynamic characteristics. Figure 3 shows the
excitation signal distribution in the simulation period.

The bias w1 [ R3×1 and process noise w2 [ R3×1 are defined
according to the rule proposed by Sutulo and Soares (2014):

wi = max (wi)k0ikiz (14)

where z is the discrete zero-mean Gaussian white noise process.
w is the primary clean reference response. max (wi) refers to the
maximum absolute value of the clean response and it scales the
noise signal to the origin response. k is a response specific
reduction factor, which is set to be 0.05 for rudder angle
response, 0.2 for the surge velocity, and 1.0 for other remaining
responses. k0 is the general reduction factor used to label the
noisy extent, which is assumed to be 5%, 10%, and 20% as listed
in Table 2.

4.3. Identification results under disturbance

To investigate the effect of disturbance level on the identification
results, a group of experiments is designed as listed in Table 3.
The disturbance bias level is set varying from NL1 to NL3, while
the process noise level is set constant at NL1. To eliminate the out-
liers in the random process, each experiment case is executed one
hundred trials. The Savitzky–Golay filter is applied to preprocess
and smooth the training data.

One trial of the disturbed accelerations in surge, sway, and yaw
directions are presented in Figure 4. This example shows that the
disturbance level in general has a more obvious consequence on
the surge acceleration than on the sway and yaw directions. It is
not unreasonable that the coupling between sway and yaw direction
decreases the perturbation effects to some extent.

After the training datasets are prepared after hundreds of trials,
the SVM algorithm is applied to train the regressor for the 3-DOF
dynamic model. The identified parameters are found normally dis-
tributed and thus the average is chosen as the general solution. By

Figure 3. The excitation signal of multiple zigzag tests. (This figure is available in colour online.)

Table 2. Disturbance/noise level set up.

Noise level (NL) k0
NL0 0%
NL1 5%
NL2 10%
NL3 20%

Table 3. Experiment case set up.

Case Disturbance bias Process noise
1 NL1 NL1
2 NL2 NL1
3 NL3 NL1
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substituting those results into Equation (2), the identified models at
different disturbance levels are then obtained.

Normally, the extensively trained SVM results are able to repro-
bude the training trajectory, therefore, a more critical evaluation of
the model fidelity is that it should be capble of predicting other
manoeuvres that the SVM has not been trained on. An 18° turning
circle operation is then undertaken to examine its generalisation
performance. The comparison between the SVM predictions and
origin model reference in 3-DOF velocities, heading angle,
and ship trajectory are shown in Figure 5. It can be seen that the
model identified under disturbance and process noise could
basically capture the ship’s dynamic properties and generate a rela-
tive accurate response. The prediction errors at NL1 and NL2 are
considered allowable. Generally, the deviation gets larger when
the disturbance level is higher. Note that at the same disturbance
level NL1, the deviation of surge speed is more obvious than
that of sway and yaw speed, which is implied by the results from
Figure 4.

To quantitatively measure the prediction errors, the manoeuvr-
ing characteristics for turning circles are calculated and listed in
Table 4. The table shows that the predicted maneuver properties
at different disturbance levels have various deviations from the
model reference. More concretely, at NL1 and NL2, the discrepan-
cies are almost lower than 10%, while at NL3, the errors are around
20%. It reveals that when the ship is exposed to gentle and moderate
environments, the identified model is able to keep its key character-
istics and its predictive capability could be considered acceptable.
Although relatively obvious dispersions at NL3 scenario is
observed, it could still indicate a potential path in the short future.
These results reveal that the SVM-based approach could realise par-
ameter identification in disturbed environment to a certain accu-
racy, which practically extends the applicable scope in kinds of
scenarios.

Due to the correlation between the SVM input features, the par-
ameter estimations may show a large dispersion from their exper-
imental values. However, the model, as a whole, can still be able

Figure 4. The disturbed accelerations in surge, sway, and yaw directions at different disturbance levels. (This figure is available in colour online.)
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Figure 5. The SVM predictions at different disturbance levels compared with model reference of 18° turning circle. (This figure is available in colour online.)

Table 4. Manoeuvring characteristics comparison between SVM predictions and model reference.

Manoeuvring characteristics Model reference SVM_NL1 SVM_NL2 SVM_NL3

Value (m) Value (m) Deviation (%) Value (m) Deviation (%) Value (m) Deviation (%)
Steady turning radius 667 644 3.5 595 10.8 707 6.0
Maximum transfer 1279 1306 2.1 1242 2.9 1594 24.6
Maximum advance 746 801 7.4 796 6.7 905 21.3
Transfer at 90 (deg) heading 546 578 5.9 557 2.0 694 27.1
Advance at 90 (deg) heading 742 796 7.3 791 6.6 895 20.6
Tactical diameter at 180 (deg) heading 1275 1302 2.1 1237 3.0 1586 24.4
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to predict new maneuver behaviour with different fidelities, even if
the parameters cannot be assigned a physical interpretation. The
generalisation capability of the identified model presented above
is found evidence for this argument.

5. Conclusions

In this paper, an SVM-based parameter identification procedure
is presented, which is applied to the scenario where ship
manoeuvres in stochastic environments. The work focuses on
the investigation of identification performance, as well as the
model fidelity under different levels of perturbations. By taking
multiple zigzag manoeuvres data in the MSS simulator, the SVM
is well trained to get all hydrodynamic coefficients, linear and
nonlinear, in a 3-DOF Abkowitz model. Satisfactory estimation
results are achieved in the clean system, showing its approach-
ability in marine domain. The method is then extended to
incorporate stochastic process to the model plant to simulate
real environment effects. Estimation results show that the
fidelity is decreasing with respect to the interference levels.
Models with prediction errors of the magnitude could be con-
sidered usable in 5% and 10% disturbance. Although the
model dispersion is obvious under 20% perturbation, the intui-
tive predictions is still encouraging in which we could bring
support to the operation decision system.

The main advantages of using the SVM identification method
are the possible robustness to noise by tuning the penalty factor
and width of the insensitive tube, so that being able to achieve better
generalisation compared to traditional neural networks. Mean-
while, it offers an inspection of specific parameters associated
with the vessel other than a grouped black-box model. Even if its
strengths are obvious, its performance on a heavily polluted system
is still limited. In addition, this approach is now validated on con-
stant parameters, and it cannot be applied to time-varying coeffi-
cients. This drawback limits the on-line identifications that are
always encountered in real life. For instance, for the operations
that cause a large angular displacement of a vessel, such as takeoff
and landing of autonomous aerial vehicles and helicopters, crane
operations, and so on, the ship responses are changing associated
with the operation status. Such cases push further research on
time-varying parameter identification, which will be included in
the future study. Furthermore, the presented identification pro-
cedure will be implemented in real-life sea trials to verify its adap-
tability in realistic scenarios. Efforts will also be paid to refine the
SVM approach to improve the identification accuracy in strong
environments.
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