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It has recently been reported that the equal load sharing fiber bundle model predicts

the rate of change of the elastic energy stored in the bundle reaches its maximum

before catastrophic failure occurs, making it a possible predictor for imminent collapse.

The equal load sharing fiber bundle model does not contain central mechanisms that

often play an important role in failure processes, such as localization. Thus, there is an

obvious question whether a similar phenomenon is observed in more realistic systems.

We address this question using the discrete element method to simulate breaking of a

thin tissue subjected to a stretching load. Our simulations confirm that for a class of virtual

materials which respond to stretching with a well-pronounced peak in force, its derivative

and elastic energy we always observe an existence of the maximum of the elastic energy

change rate prior to maximum loading force. Moreover, we find that the amount of energy

released at failure is related to the maximum of the elastic energy absorption rate.

Keywords: Fiber Bundle Model, Discrete Element Method, Bayesian error estimation, tensional fracturing, energy

variation, collapse point

1. INTRODUCTION

Fracturing, breaking, or more generally fragmentation of solid materials is a common physical
processes that we meet in our daily lives. At the same time, it is one of the most complex processes
covering a huge range of length and energy scales from atomic scale (breaking of chemical bonds)
up to earthquakes (kilometer scale). This, together with a huge diversity of materials composition
and variety of loading conditions leads to the aforementioned complexity. On the other hand, the
fracture processes are extremely important for both industry and society. There is thus no surprise
that a huge effort has been made to understand the fracture process in order to use it efficiently
in controlled conditions (industry) and to prevent catastrophic failures (engineering, earthquakes).
Furthermore, breaking/fracture dynamics plays central role in geophysical phenomena, such as
snow avalanches [1], landslides [2, 3] as well as in stretching in biological materials [4]. The study
of the breaking process has recently led to a discovery of a robust phenomenon which occurs before
catastrophic failure (collapse) of composite materials under stress [5]. It has been found that the
simple Fiber Bundle Model (FBM), a representative of fibrous materials, predicts existence of a
maximum of the elastic energy absorption rate prior to a catastrophic failure point, namely the
strain value at which the fiber bundle sustains the largest loading (stretching) force. Although the
FBM has been proved to be a very powerful theoretical tool [6] it is based on some simplifications
with respect to realistic processes. The obvious question thus arises if similar phenomena can also
be predicted by other methods capable of grasping more realistic breaking scenarios. To answer
this question, we have turned our attention toward numerical simulations of the breaking process
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by means of the Discrete Element Method (DEM) [7]. The two
methods, FBM and DEM, we are dealing with in this paper,
represent two complementary approaches to the study of fracture
or breaking processes.

The Fiber Bundle Model [8] represents an approach
which, through appropriate generalizations and simplifications,
attempts to grasp the most important elements of fracturing
process in composite materials. On the other hand, the
numerical Discrete Element Method [7, 9] has the capability of
describing more realistic failure processes using the principles
of a classical dynamics. Both methods exhibit some similarities
which make their conjecture an interesting and efficient way of
transferring theoretical concepts to realistic physical scenarios.
Let us briefly discuss this point. The basic feature of both
methods is a discrete representation of the medium under
investigation. The FBM represents it as a finite number of
fibers joining two clamps stretching the medium [6]. In the
DEM approach the medium is represented by an assemble
of interacting and bonded particles subjected to an external
loading. Upon this loading, the fibers in FBM and inter-
particles bonds in DEM, bearing part of an external load,
break according to assumed rules if the stretching force exceeds
some threshold values. The threshold probability distribution
of fibers strength and the model of inter-particle interactions
fully and uniquely determine the dynamics of the system.
In the current application we have further enhanced this
similarity by choosing in DEM simulations a classical, elastic-
brittle interaction model. It assumes that bonds joining near-
neighborhood particles are represented by perfectly elastic
“springs” which break if extended over some critical value, just
like the fibers in the FBM model. The fibers and inter-particle
bonds braking possibilities make both methods highly non-linear
and capable of addressing problems with non-trivially evolving
boundary conditions, like, for example, creating a free surface
by fracturing.

The most obvious difference between the two methods
is that fibers in FBM are clamped between two rigid bars,
which is not the case in the DEM approach. The inter-particle
bonds in DEM can be viewed as a “micro-fibers” joining only
neighborhood particles. However, it is worth to mention that
during a loading evolution a coherent behavior of these micro-
fibers can lead to the creation of macroscopic “super-fibers”
joining loading clamps, like fibers in the FBM. Moreover, if
particles are randomly packed, the inter-particle bonds are
randomly orientated in space, in contradiction to the FBM fibers
which are always parallel to the external load. Comparing both
approaches we would finally point out that DEM inherently
includes geometry of the analyzed body, while FBM does not.
At first sight, this seems to be in a favor of DEM but it also
leads to some serious shortages of the method. The inclusion
of geometrical aspects into fracture simulations mixes kinematic
(e.g., acoustic wave propagation effects) and dynamical effects
due to bond-breaking. It makes the inference about breaking
process much more complex. On the other hand, this feature
of DEM as well as the aforementioned similarities open up a
possibility of transmitting concepts from the FBM abstraction
level to the “real world.”

FIGURE 1 | (Left) the fiber bundle model—parallel fibers are placed between

two rigid bars and are stretched by an amount x by applying a force F at the

lower bar. (Right) The discrete element model—a thin tissue built of

interconnected spherical particles vertically stretched using a constant velocity.

The initial length of the fibers (left) and the initial height of the tissue are

also shown.

In this work we explore the possibility of verifying the
appearance of the maximum of an elastic energy absorption rate
prior to the catastrophic failure predicted by the FBM [5] is also
visible in DEM simulations. To answer this question, we have
designed a series of numerical simulations of stretching a thin
tissue. The limitation to such a quasi-two-dimensional case (often
referred to as a 2.5D problem) is fully intentional. On one hand,
we want to avoid possible complications introduced by a fully
3D approach, but on the other hand we wish to allow for a full
development of local inter-particle interactions, which requires a
full 3D neighborhood of each particle. The underlying concept
of the theoretical analysis and numerical simulations is sketched
in Figure 1, where the cartoon of stretched bundle of fibers and
the stretched thin tissue built of spherical particles are shown.
In the case of the FBM, stretched fibers break sequentially from
the weakest to the strongest. In case of the DEM simulations,
dragging up the upper horizontal edge of the tissue causes the
breaking of inter-particle bonds and finally leads to its failure. For
the sake of clarity, the most important parameters are graphically
illustrated in Figure 2 using an example of DEM simulated
loading curves, describing the evolution of dragging force, elastic
energy and its derivative with extension of the sample.

Answering the posed question goes through the following
steps: After the Introduction (section 1) we give a short
background of the studies on breaking of FBM in section 2.
In several subsections of section 2 we discuss strength and
stability in FBM, energy variations during breaking process
and the prediction concerning the existence of a “precursor”
of the collapse point. In the next section (section 3) the DEM
method is shortly presented, followed by a detailed description
of performed numerical simulations in section 4. The simulation
results are discussed in section 5, and we give some final remarks
and conclusions in section 6.

2. FIBER BUNDLE MODEL

When we stretch a system, composed of elements with
different strength thresholds, weaker elements fail first. As the
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FIGURE 2 | Illustration of parameters used in the analysis. In the case of the

DEM analysis, the vertical deformation (strain) parameters, x, xc, and xp, are

scaled by the initial height l0 of the tissue.

surviving elements have to support the force, stress (force
per element) increases and that can trigger more element-
failure. With continuous stretching, at some point the system
collapses completely.

There are several physics-based models [10–12] that can
describe such a scenario. The FBM is one of those models being
a useful tool for studying fracture and failure [6, 13, 14] of
composite materials under different stretching conditions. In
1926, Peirce introduced the Fiber Bundle Model [8] to study the
strength of cotton yarns in connection with textile engineering.
Some static behavior of such a bundle was discussed by Daniels
in 1945 [13] and the model was brought to the attention of
physicists in 1989 by Sornette [15], who then proceeded mainly
to explore the failure dynamics and avalanche phenomena in this
model [16–18].

The simplicity of the model allows one to achieve analytic
solutions [14, 19] to an extent that is not possible in any of the
other fracture model. For these reasons, FBM is widely used as a
model of fracture-failure that extends beyond disordered solids.

In the FBM (Figure 1), a large number of parallel Hookean
springs or fibers are clamped between two horizontal clamps; the
upper one (fixed) helps hanging the bundle while the load hangs
from the lower one. The springs or fibers are assumed to have
different breaking strengths. Once the load per fiber exceeds a
fiber’s threshold, it fails and can not carry load any more. The
load/stress it carried is now transferred to the surviving fibers.
If the lower platform deforms under loading, fibers closer to the
just-failed fiber will absorb more of the load compared to those
further away. Examples of such models are the Soft Clamp FBM
[20] or the one proposed by Hidalgo et al. [21]. The extreme
version of such models is the Local Load Sharing FBM [22]
where the forces carried by the failed fiber is absrobed by its
sucrviving neighbors. If the lower clamp is rigid, the load is
equally distributed to all the surviving fibers. This is the Equal
Load Sharing (ELS) FBM.

We will in the following only discuss the ELS FBM, which we
refer to as the FBM in the following.

FIGURE 3 | Force (black curve), elastic energy (blue curve), and elastic energy

change rate (red curve) against the stretch x for uniform distribution of the fiber

strengths in the bundle.

2.1. Strength and Stability of the Fiber
Bundle Model
Let us consider a fiber bundle model having N parallel fibers.
Each fiber responds linearly with a force f to the stretch value x
as f = κx, where κ is the spring constant. If the stretch x exceeds
the strength threshold, the fiber fails irreversibly.

The strength thresholds of the fibers are drawn from
a probability density p(x) described by the corresponding
cumulative probability P(x). For example, for the uniform
distribution on the unit interval we have

p(x) = 1; P(x) = x. (1)

If Nf fibers have failed at a stretch x, then the bundle carries
a force

F = (N − Nf )κx = N(1− P(x))κx (2)

which for the uniform distribution is a parabola as shown in
Figure 3.

The force-maximum is the strength of the bundle and the
corresponding stretch value xc is the critical stretch beyond
which the bundle collapses. Therefore, there are two distinct
phases of the system: stable phase for 0 < x ≤ xc and
unstable phase for x > xc. The critical stretch value is found by
setting dF(x)/dx = 0:

1− xcp(xc)− P(xc) = 0. (3)

and the solution for the uniform threshold distribution reads

xc =
1

2
. (4)

In a similar way, one may calculate the critical strength of the
bundle by putting xc value in the force expression (Equation 2).

Fc

N
=

1

4
. (5)
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2.2. Energy Variation and Warning Sign of
Collapse
Work of an external load stretching the bundle converts into
elastic energy of the fibers Ee and is partially released as damage
energy Ed of broken fibers. When N is large, one can express Ee

and Ed in terms of the stretch x as [5]

Ee(x) =
Nκ

2
x2

(

1− P(x)
)

, (6)

and

Ed(x) =
Nκ

2

∫ x

0
dy

[

p(y)y2
]

. (7)

For the uniform distribution within the range (0, 1), the
Equations (6, 7) reads

Ee(x) =
Nκ

2
x2(1− x), (8)

and

Ed(x) =
Nκ

6
x3. (9)

Clearly, the damage energy increases steadily with the stretch, but
elastic energy has a maximum. Setting dEe(x)/dx = 0, one gets
the condition for the position of the elastic energy maximum

2(1− P(xm))− xmp(xm) = 0, (10)

whose solution for the uniform distribution reads [5].

xm = 2/3 = 4/3 xc. (11)

Although the elastic energy has a maximum, it appears after the
critical extension value, i.e., in the unstable phase of the system.
Therefore, it can not help us to predict the catastrophic failure
point of the system.

The situation is different if we consider the rate of elastic
energy change E(x) = dEe(x)/dx which reads [5]

E(x) =
Nκ

2

[

2x
(

1− P(x)
)

− x2p(x)
]

. (12)

Now, one can demonstrate that E(x) has a maximum and,
this maximum appears before the critical extension value xc
(Figure 3). Indeed, one can calculate the value of stretch x = xp
at which E has a maximum.

Taking derivative of dE/dx,

dE(x)

dx
=

Nκ

2

[

2
(

1− P(x)
)

− 4xp(x)− x2p′(x)
]

; (13)

where p′(x) stands for derivative of p(x). Setting dE(x)/dx = 0 at
x = xp we get the following solution for the uniform distribution

xp =
2

3
xc. (14)

Thus, the rate of change of elastic energy shows a maximum
before the actual failure appears. This result has been proven
under weak conditions and demonstrated also for other
probability distributions [5]. The obvious question at this
moment is what information about upcoming failure this
“precursor” provide us with. To answer this question, let us
reformulate the problem at hand in the following way.

Let us assume that we know that maximum of the elastic
energy absorption rate occurs at given xp and let us assume that
its value at xp is Emax. Knowing these two values can we predict
quantitatively a failure time (measured in units of x) and can we
predict its size in term of the released elastic energy? The answer
can be obtained from equations describing the dependences of Ee

and E on x as well as conditions for their maxima. The relations
between xc, xm and xp for a general power law distribution

p(x) = (1+ α)xα ,
P(x) = x1+α ,

(15)

where α > 0 and 0 ≤ x ≤ 1 reads

xc =
(

3+α
2

)
1

1+α xp

xm = (2+ α)
1

1+α xp
(16)

For the purpose of later comparison with DEM simulations,
we introduce another parameter, δx, describing the delay of the
critical value with respect to xp: δx = xc−xp, and the coefficientŴ
quantifying a retardation of the point when elastic energy reaches
maximum xm with respect to xc:

xm = xc + Ŵ δx, (17)

in terms of the δx scale.
For the power law distribution, the explicit form for δx anf Ŵ

reads

δx =

[

(

3+ α

2

)
1

1+α

− 1

]

xp, (18)

and

Ŵ =
(2+ α)

1
1+α −

(

3+α
2

)
1

1+α

(

3+α
2

)
1

1+α − 1
. (19)

Both δx and Ŵ are monotonically decreasing functions of α and
reach their maxima for the uniform distribution: δx(α = 0) =
1/6 and Ŵ(α = 0) = 1, which means that in this case xp and xm
are symmetrically located with respect to xc.

Next, let us define yet another quantity Ar which relates the
maximum of elastic energy Ee(x) to the maximum of the energy
absorption rate E(x).

Ar =
Eemax

xp Emax
=

Ee(xm)

xpE(xp)
, (20)

so

Eemax = Arxp Emax (21)
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The xp factor assures not only the dimensionality of Ar but also
leads toArindependent of xp for power law distribution, as shown
below. For a given probability distribution Ar reads

Ar =
1

2

x3m p(xm)

3x3p p(xp)+ x4p p
′(xp)

. (22)

For the power law distribution (Equation 15) the explicit form of
Ar can be easily found

Ar =
1

2

(2+ α)
3+α
1+α

3+ α
. (23)

Let us note, that in this case Ar is constant, independent of xp,
and reaches its maximum value for uniform distribution Ar(α =
0) = 4/3.

Interpretation of Equations (16), (21), and (22) is quite simple.
For the considered power law distribution, the pair of parameters
(xp, Emax) fully determines the upcoming failure, both a moment
of its occurrence (xc) as well as the amount of elastic energy
(Eemax) which is released during the catastrophic failure.

3. DISCRETE ELEMENT METHOD

The Discrete Element Method (DEM) [7] is the numerical
method originally developed for simulating the behavior of
granular media. It represents a medium under consideration as
an ensemble of geometrical, perfectly elastic objects (originally
circles in 2D) that interact with each other by repulsive forces due
to surface contacts. The original Cundal idea has been extended
by incorporating more complex particle interaction schemes and,
particularly, by introducing bonds between particles—internal
forces [23, 24] joining particles in a single piece. This has changed
the DEM method to the modern simulation technique situated
between the molecular dynamics from one side and the fluid
(continuum) mechanics from other side [9, 25, 26].

The most important feature of the DEM method is a
mathematical representation of the medium by a set of
interacting finite size particles whose dynamics directly follows
from the Newton equations of motion. Such a direct approach
has an obvious advantage. It does not use any continuity,
conservation, or other assumptions typical for continuum
mechanics. One of themost important consequences is that DEM
is particularly suitable for solving problems with complex, non-
trivially evolving boundary conditions. This is just the case of a
fracturing process.

Finally, let us note that DEM is a particular numerical
technique of solving general multi-body static or dynamic tasks.
Thus, in the application discussed here it allows to simulate
temporal evolution of objects prior to fracture nucleation similar
to continuum mechanics, through a period of development of
a micro-fracture system and dynamical breaking like fracture
mechanics, and, finally, can also include post-failure dynamics.
This last issue is very interesting because laboratory data cannot
provide reliable information about just-after-failure situation,
which, on the other hand, seems to be crucial for large scale

(seismology) analysis and is also interesting from a theoretical
point of view [24, 27].

There exists a number of implementations of the DEM
method as ready-to-use software. Our choice for the analysis
presented here is the Esys-Particle software developed at the
University of Queensland, Australia [28, 29]. We have chosen
this particular software for many reasons as discussed in Debski
and Klejment [30]. A detailed description of the software can be
found in Abe et al. [28].

The Esys-Particle software provides a number of inter-particle
interaction models and methods of simulating external loads. In
our analysis we have used the standard elastic-brittle interaction
model [9, 24]. Themost essential element of this model are elastic
bonds joining pairs of neighborhood particles and representing
Hookean attracting or repulsing central force if bonded particles
change their relative distance:

EF = −knδr
Er

|Er|
, (24)

where Er is a vector of relative position of particles, δr denotes a
change of particle distance and kn is a strength of inter-particle
interaction (“spring constant”). However, if a distance between
the particles increases by more then a critical distance bd, the
bond breaks and disappears. If all bonds attached to a given
particle break it becomes the “unbonded particle.” Summarizing,
the used inter-particle interaction model is fully defined by a pair
of parameters (kn, bd).

DEM simulates temporal evolution of a given system by an
explicit time integration of equations of motion for all particles
including external and inter-particle forces. At each time step
positions and velocities of the particles and the acting forces
are calculated and used to move the particles from the current
to new positions. Then the time is increased by a predefined
time step and procedure is repeated until a stopping criterion
is met. Within the Esys-Particle software the Verlet integration
schemata is used what assure conservation of system energy [28].

4. NUMERICAL EXPERIMENT—SETUP
AND DATA PROCESSING

Our DEM simulations deal with the simplest fracture dynamics
task, namely the fracturing of materials under tensional load
(mode 1 in the standard fracture mechanics classification).
Taking into account the goal of the analysis, all performed
simulations were conducted using the setup shown in Figure 1

with the following details.
Firstly, to avoid possible complications due to the full 3D

analysis and speed up (lengthy) calculations we have considered
only a 2.5D case—a thin tissue. Its size was assumed to be: depth
D = 5 mm, height L = 25 mm, and width W = 80 mm. This
numerical sample was built of spherical particles with radii in
the range 0.2–0.6 mm distributed according to the log-normal
distribution truncated to this range. Particles were randomly
distributed in space, which we have achieved by means of the
GenGeo algorithm [28]—a part of the Esys-Particle software.
The sample consists altogether of almost 25,000 particles bonded
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by almost 125 thousand bonds. The same numerical sample was
used in all simulations.

Secondly, the time step of the evolution was chosen to
assure stability of computations and read dt = 10−7 s.
However, in many cases we have to go down to dt = 10−8 s,
especially for cases with very small kn and bd to get numerically
stable solutions. This was possible because of the reduced
dimensionality (2.5D) of the sample. Typically, to get the sample
break into two disconnect parts we need to perform around
106–107 time steps. Only in few cases we need to wait until
over 108 time steps are completed. The small time steps have
the advantage of providing us with a very dense sampling of the
evolution process.

In all simulations, the sample was numerically “glued” to the
bottom and the upper plates by assuming that the particles of the
uppermost and the lower-most layers of the samples interacted
with the appropriate plates much stronger than with each others.
In all simulations, the lower plate was fixed and the upper one
was moving up with a maximum velocity of 50 mm/s. This
dragging velocity has been selected as a tread-off between a
computational efficiency and an attempt of reaching a quasi-
static loading. It has been reached by gradual change of loading
velocity from zero to the prescribed value during an initial period
which varied depending on the (kn,bd) parameters used. In the
case of microscopic parameters for which breaking occurred at
large strains (larger than about 20%), this initial period was
relatively short and took 10,000 time steps. However, for cases
when samples break at much smaller strains, such a beginning of
loading was too abrupt and has often lead to numerical problems.
For such cases, we changed the loading velocity, much slower
extending the initial period up to 106 time steps, at the price of
slowing down computation by over two orders of magnitude.

Finally, we have performed a quite exhaustive scan over a
space of microscopic parameters (kn, bd). In each simulation,
all particle bonds have shared the same kn and bd parameters.
The scanned values of microscopic interaction parameters were
following. The threshold distance bd ranged between 10−3 mm
up to 5 mm. The scanned values of the strength of bonds kn
varied from 10 N/mm up to 107 N/mm. The scan of the (kn,
bd) space was not uniform mainly for technical reasons. The
region of large kn and simulatneously small bd was beyond
our current computational capacities since large kn requires
(numerical stability) very small dt and small bd would need a very
gentle loading. Estimated computational time for such a setup
was tens of weeks. Instead, we have put more attention to a region
of small knand a transition from small to large bd.

Yet another parameter of particles, namely their density was
kept constant in all simulations as a parameter less important
for the breaking dynamics. Its value was a priori set to ρ =
2.5 · 10−4g/mm3.

The goal of our DEM simulations was to create “realistic
data” which could support or falsify predictions of the fiber
bundlemodel. The richness of internal structure of the usedDEM
sample, a large range of explored interaction parameters, and the
natural difference between the twomethods discussed above have
opened a question how this comparison should be done. Should
we use all simulation results, or should we restrict ourselves to a

specific subset only. Our experience [30] has shown that among
simulated by DEM breaking mechanisms we can find both
brittle-like processes which can be adequately described by the
FBM method but also complex cases for which the FBM method
probably fails. Taking this into account we have finally decided
to accept for analysis only those simulation results for which
well-pronounced peaks in the loading force and elastic energy
derivative were visible. We have imposed no restrictions on the
variation of elastic energy. The reason for this selection criterion
was that only in such cases we could estimate the δx parameter
with acceptable accuracy and thus avoid serious problems with
an analysis of reliability of the obtained “numbers.” Nevertheless,
in some cases even this weak criterion has failed and some
simulations have to be rejected from analysis “by hand.” This
happened whenever the complexity of breaking process has lead
either to masking the critical value xc (very large estimation
errors), or made its identification doubtful when many local
maxima of the force were observed. Using a specific selection
criterion, nomatter how weak it is, it always rises a question if the
obtained results are not biased by such selection. We will come
back to this point in the conclusion section. To summarize this
part, almost 200 DEM simulations were finally analyzed.

A comparison of DEM simulations with the FBM predictions
requires reading out of simulation data the position of maxima
(xc, xm, and xp) and corresponding values of Fc, E

e
max, and Emax.

It was usually quite easy in the case of Eemax but often problematic
for Emax, and Fc. This issue has raised the problem of a proper
treatment of appearing uncertainties. For this reason and tomake
the analysis as precise as possible we used a composite data pre-
processing schemata assuring the maximum required accuracy.
Considering xc, xp, and the corresponding Fc, Emaxvalues we have
used the following approach.

First, the curves F(x), Ee(x) were filtered (low pass). The
used filters (convolutional or non-convolutional type) and their
parameters were selected interactively. The goal of this filtering
was to remove the high frequency oscillations (see discussion
of noise origins below) from the data. The same filter was used
for both F(x) and Ee(x) to avoid relative phase shifts. Next,
the derivative E(x) of elastic energy was calculated. This has
been done using the pseudo-spectral approach (high-order finite
different method) as follows: For each x we have locally fitted a
3rd order polynomial to Ee(x) using near-neighborhood x points.

In the next step, the maximum of E(x) curve was estimated
using a local 3rd order polynomial fit around its noisy maximum
as shown in Figure 4. The xp and Emaxvalues were approximated
by a position and a value of the obtained fit. The same fitting
procedure was used for estimating the position of maximum of
F(x).

We have preferred this more complex procedure of estimating
the location of the maxima instead of an additional low pass
filtering of E(x) and direct search for it because this way we
have avoided an additional phase shift (introduced always by a
filtering procedure).

The obtained values of maxima location can, in principle,
be used to calculate the δx parameter. However, such a direct
approach unavoidably leads to loss of estimation precision. Since
this parameter is the most important for our analysis, we have
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Dȩbski et al. Criterion for Imminent Failure

FIGURE 4 | An example of simulated loading curves and the illustration of the

procedure of estimation of maxima of F (x) and E (x) curves by means of a

polynomial approximation. The maximum of E (x) is found by fitting a 3rd order

polynomial to an appropriate curve around its noisy maximum. The same

procedure was used for getting xc from F (x).

thus used yet another, more advanced Bayesian approach [31]
capable to explore information about δx provided by a given
dataset in the optimum way. The details of the method can be
found in, for example, Tarantola [31] and Debski [32] and here
let us recall only the most important points of the method.

A task of estimating the unknown parameters (here δx)
from a given data set can be cast into a task of joining of
the whole available information about the thought parameters.
This information comes from observation (data) theory (relation
between thought and measured quantities) and a priori
existing estimations. The important fact is that all information
contributing to the final estimation is essentially imprecise. Thus,
first of all any data are subjected to uncertainties due to the
limited accuracy of any measurement/simulation. Theoretical
uncertainties arise from possibly approximate relations between
thought parameters and those which have been measured or
simulated. Finally, the existing (if at all) a priori information is
often quite vague.

From the mathematical point of view, the idea of joining
information is formulated using the Bayesian interpretation of
probability [33]. It takes the form of constructing the so-called a
posteriori probability distribution, which in the most often met
situations reads [31, 32]

σ (m) = f (m) exp
(

−||datobs − dat(m)||
)

, (25)

where m stands for the thought parameters, datobs and dat(m)
are observational data and theoretical prediction for a given m,
and || · || stands for a norm measuring a “distance” between
observations and predictions. Finally, the f (m) is a probability
distribution describing our a priori knowledge. It can be proved
[31] that σ (m) provides the quantitative description of all
available information aboutm.

An application of this approach for estimation of the δx
parameters takes a few steps. First, we identify m with δx: m =
δx. Next, as “observational” data we chose the function F(x).
Finally, we have assumed that around their maxima the F(x) and

E(x) curves are similar enough so locally one can write

F(x) ≈ const.E(x+ δx). (26)

This last assumptions simply tells that the peak of E(x), when
scaled and shifted by δx, should coincide with the peak of F(x).
One can try to provide deeper arguments for such assumption,
based, for example, on the FBM prediction (see Figure 3), but in
our case it basically follows from the observation of an occurrence
of such coincidences (see, e.g., the upper left panel in Figure 5).

The choice of the norm || · || in Equation (25) should reflect
the expected observational and theoretical uncertainties [32]. In
cases of tasks with “data” represented by continuous functions,
the cross-correlation of datobs and dat(m) is most often used.
However, we have preferred another choice, namely

||datobs − dat(m)|| =
∑

i

|F(xi)− E(xi + δx)|, (27)

where | · | stands for the absolute value and the sum is over
all strain values in predefined range. This l1-based norm is
more robust than the classical cross-correlation norm (essentially
equivalent to least-squares norm) and easily accommodates even
large differences for a finite number of xi arguments [32].
However, if one or both curves have large gradients within
the summation range using such norm can lead to seriously
biased a posteriori probability distribution [31]. In consequence,
estimated solutions can also be subjected to uncontrolled
systematic errors.

While plotting the output results we used the convention
according to which a vertical elongation of the sample (strain)
was expressed by percentage of an initial sample height, i.e.,

x =
l− l0

l0
× 100% (28)

To enable the visualizations all plotted quantities, like elastic
energy Ee, its derivative (E), and stretching force F, etc., were
separately normalized.

5. RESULTS

The performed simulations have provided numerical evidence
that can be used to support or falsify the FBM prediction, thus
being a proxy of experimental measurements. Adopting this
point of view and by analogy to real experiments, the important
question arises about uncertainties inherent to the simulation
results. The simulations provide us with macroscopic quantities,
like total elastic energy absorbed by the sample and stored
in inter-particle bonds, deformation of the sample, number of
broken bonds, and total force acting on the upper, moving up
plate. They also provide data allowing to construct snapshots of
microscopic state of the sample at any time during the simulation.
Each of these quantities is subjected to uncertainties coming
from different sources. We have identified three of them, namely
numerical errors, statistical fluctuations and effects of additional
physical processes. Since the last issue is strictly connected with
observed breaking mechanisms, we describe uncertainty and
breaking mechanism analysis together.
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FIGURE 5 | Three examples of an estimation of the delay parameter δx using the Bayesian (probabilistic) approach. The curves F (x), E (x), and E (x+δx ) for the optimal

δx value are shown in the upper row. The lower row shows corresponding a posteriori probability distributions. The shown cases correspond to one of the best (almost

noise-free) simulation results (left column) with well matching F and E curves, a typical situation (middle column) and a “difficult” case when acoustic waves strongly

disturbed the breaking process.

5.1. Uncertainty Analysis
Numerical simulations, depending on the assumed aims, can
be viewed either as an extension of theoretical analysis toward
situations that cannot be treated analytically due to the
complexity of the problem or as an extension of experimental
data. This double point of view causes some controversy with
respect to how numerical errors should be treated. The first
(modeling) approach concentrates only on achieving the highest
possible theoretical accuracy as numerical simulations are treated
as a direct extension of the underlying theory. The error analysis
is in this case straightforward and concentrates on such issues as
the accuracy of the approximations to the underlying equations
and the stability of the numerical scheme that, by the way, can
be quite complex from a technical point of view. On the other
hand, if the simulation is to provide observational data, we need
a much broader approach to the uncertainty analysis. We have
to include not only the issue of numerical uncertainties, but
also characteristics of the simulated processes. This essentially
complicates matters.

The DEM method, like any other numerical implementations
of analytical models, has limitations and introduces unavoidably
some approximations resulting in numerical uncertainties. The
two most important factors are at present an accuracy of
approximations of derivatives in original continuous physical
equations and the stability of the time integration [34]. The
last issue has generated much attention and has lead to the
formulation of various so-called stability conditions (see, for
example [9] for an analysis). Their basic meaning is to assure that
none of the particles constituting the sample move too far from
their current positions in a single time step. If suchmotion should

happen, the interactions with neighborhood particles will lead to
extremely large, non-physical forces acting between neighboring
particles and as a consequence generate spurious high-frequency
oscillations or even blowing up the whole sample. This instability
is in fact the main source of numerical noise in DEM simulations
and can be controlled (diminished) by choosing appropriately
small time steps. However, it is very difficult to completely get
rid of this type of noise, especially if the simulations contain
large numbers of particles. In such systems, there is always a
finite chance that at a given evolution stage, internal forces will
exceed the stability limit due to fluctuations and the particles
(especially the smallest ones) will locally start high frequency
oscillations. However, in many cases such artificial oscillations
are quite efficiently dumped by the interactions with surrounding
particles during the next couple of time steps. If there remains as
stationary noise, the simulation can often be accepted and noise
can be removed by standard low pass data filtering. We refer to
this particular feature of DEM as soft stability.

The significant feature of the performed simulations is their
multi-body character. We model the behavior of a system of
a large number of interacting objects. We would then expect
the occurrance of statistical fluctuations in the macroscopic
variables, such as drag force, elastic energy, etc. From our point
of view, such fluctuations can be treated as a noise disturbing the
simulation results.

The last identified source of final uncertainties was the fact
that the DEM simulations inherently include the geometry
of the sample and (implicitly) the finite speed of stress
and strain development inside it. In consequence, we have
always simulated not only a “pure” breaking process but
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FIGURE 6 | Three types of noise encountered in performed simulations: numerical noise (left column), statistical fluctuations (middle column), and disturbances due to

additional physical processes (right column). The F (x), E (x), and Ee(x) curves are shown in the uppermost row, the corresponding a posteriori probability distributions

for δx parameter in the middle one, and selected snapshots of samples micro-structures in the lower-most row. The snapshots show the inter-particle bonds strains

and use the same color scale. See text for detailed explanations.

also additional physical processes, among which generating of
acoustic waves and stress diffusions were the most important.
Under some favorable conditions, these additional physical
processes seriously influenced our simulations and have not
allowed to identify the critical value at all. In most cases,
however, they only significantly contributed to the final,
a posteriori uncertainties.

The described types of simulation uncertainties are presented
in Figure 6, where examples of numerical noise, statistical
fluctuations and creation of acoustic waves and their influence
on observed parameters are shown. In addition, we include in
this figure (middle row) the a posteriori distributions for the
δx parameter estimated for the presented cases and examples
of snapshots of the internal state of the samples illustrating
mechanisms of generation of a given type of noise. For the
purpose of this illustration, we adopted special measures. First
of all, we have slightly increased the numerical noise (left column
in Figure 6 by enlarging the time step in this case. Moreover, we

have started this simulation with abrupt loading which has led to
some minor instabilities already at the beginning of simulation.
These continued as stationary high frequency noise. On the
other hand, to illustrate statistical fluctuation type noise (middle
column) we have decreased the evolution time step to diminish
the numerical noise and also have gently started loading. In the
last cases (right column), no special measures have been applied.

A few conclusions can be drawn from Figure 6. First of all,
we observe that the numerical noise and statistical fluctuations
lead to quite similar effects: a high frequency, low amplitude
oscillation visible in the F(x) and E(x) curves. In practice, these
two types of noise are indistinguishable. On the other hand, the
existence of acoustic waves leads to a characteristic undulation of
the F(x) curve and, in the presented case, has significantlymasked
the critical value and decreased the accuracy of the estimation
of xc. The conclusion is that a low-pas filtering of the data can
efficiently remove numerical and fluctuation noise, but not errors
introduced by additional physical processes.
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Secondly, the numerical noise can appear at any stage of
evolution and can hardly be visible as a disturbance of the
microscopic state (provided we are within a soft stability limit).
On the other hand, the statistical fluctuations appear only if
the sample has accommodated enough elastic energy uniformly
distributed over the whole sample making the system reach a
quasi-equilibrium state. The existence of acoustic waves is clearly
visible in the snapshots as a time propagating disturbance.

The most interesting is, however, a comparison of the
a posteriori distribution for δx parameters estimated by the
Bayesian inversion method (middle row in Figure 6) which
brings us information on how to identify how a given type of
noise influences the δx estimation. In all cases we have observed
a unimodal distribution whose shape essentially follows the l1
norm-based likelihood function we have used. The “width” of
this distribution is a measure of the accuracy of δx estimation.
The smallest uncertainties are (or can be) due to the numerical
noise. The statistical fluctuations lead to larger, though still
moderate uncertainties. Finally, the largest errors are potentially
introduced by the acoustic waves. Although the presented cases
are for illustration only and hence arbitrary chosen, they suggest
that the most important source of the final uncertainties are
acoustic waves, or more generally, additional physical processes
accompanying the breaking process in the DEM simulation
[30]. In the next section, we discuss, among other issues, the
contribution of the different observed breaking mechanisms to
the types of noise.

Finally, let us note that the contribution of the numerical
noise is not only small if the simulation is properly run, but
in principle it can be highly suppressed by reducing the time
step used. In practice, the reducing of time steps leads to much
longer, often unacceptable computations, so that some level of
numerical noise has to be accepted. Although it can easily be
removed by low pass filtering, it marks its existence in a posteriori
errors. It is not clear how the influence of statistical fluctuations
on the final uncertainties can be diminished. A more advanced
analysis, taking into account the possibility of resizing the sample,
is apparently needed in this case. Finally, the uncertainties due
to additional physical processes seems to be irreducible and
the only way of avoiding them is a proper selection of the
simulation setup.

5.2. Breaking Mechanisms
Within the set of performed simulations we have observed a
variety of different breaking mechanisms. Some of them were
qualitatively quite similar to the FBM predictions illustrated
in Figure 3, and some were apparently quite different. The
observed difference in simulated breaking processes were
obviously due to different values of the (kn, bd) parameters
because all others conditions (micro-structure of the sample
and loading conditions) were kept the same. It is thus obvious
that the richness of breaking modes arises directly from a non-
linearity of the breaking of particle-particle bonds controlled by
(kn, bd). However, we have to point out an important role of
microscopic structure of the sample in a fragmentation process.
Actually, for a given virtual material defined by (kn, bd) an
actually breaking process is determined by a micro-structure of

the sample—a particle distribution in the sample. It determines
which bonds break first, in which direction a fracture tip progress,
etc. In our case the particles are distributed randomly and the
sample is heterogeneous at the particles level. It introduces some
randomness to our simulations. In principle, it is the same for
all performed simulations because we have always used the same
sample. However, in reality it is not exactly a case because the
micro-structure of the sample is continuously changing from
the time the first particle-particle bond breaks. The complex,
non-linear feedback between a pair of (kn, bd) parameters and
the internal micro-structure during the breaking process causes
that at the breaking stage we are efficiently dealing with slightly
different samples for different (kn, bd) parameters.

For the purpose of our analysis we divide the observed
breaking mechanisms qualitatively in the following into four
categories, shortly describing their main features.

The first class of observed breaking mechanisms, referred
to as ductile-like, is characterized by a very wide maximum
of elastic energy around the failure point xc. An example of
variation of the force, elastic energy and its derivative with
the sample deformation is shown in Figure 7. This figure also
provides a histogram illustrating the change of the rate of bond
breaking during the simulation. Three snapshots of the sample’s
internal state illustrating this breaking mechanism ares shown in
Figure 8.

For this type of simulated breaking process, we observe a fast
initial absorption of external work and nucleation of fracturing
followed by a very slow destruction of the sample. During this
continuous damage stage, the force needed for keeping the
constant stretching speed exhibit significant fluctuations with
many local maxima. The breaking process was apparently much
more complex than predicted by FBM (Figure 3). For this type
of breaking mechanisms, it was impossible to identify the critical
strain xc at which samples reached the unstable phase. For this
reason we have not considered such cases in analysis that follows.
It is interesting, however, that even in this case the energy
absorption rate curve demonstrated a well-defined maximum,
which appeared prior to any loading force maximum as visible
in Figure 7—following in a sense the FBM predictions.

The second class of observed fracture process consists of
brittle-like processes during which collapse of the sample
occurred very quickly after the beginning of loading without
a visible “necking” of the sample. They always have a form
of tearing out a few uppermost (or lower-most) layers from
the remaining body of the sample in a cleavage-like process.
Figure 9 shows a post-failure state of the sample broken this
way and Figure 9 the corresponding loading curves and broken
bonds. Apparently, such a breaking scenario is most similar
to the one modeled by the FBM (Figure 3). An additional
advantage of this breaking mechanism is that a relatively high
accuracy of the δx estimation may be achieved due to neither
statistical fluctuations nor acoustic waves have adequate room
for development. However, such cases require a very gentle
beginning of loading to avoid numerical instabilities.

The collapse of the sample occurred at very small strains and
happened very quickly as a result of the bonds were breaking
only in a narrow strain range around a well-pronounced critical
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FIGURE 7 | An example of the ductile-like breaking mechanism. (Left) Force (F )—thick black curve, Elastic energy (Ee)—thin blue solid curve and the energy

absorption rate (E )—dashed red curve as functions of strain x. (Right) number of broken bonds in a fixed strain interval against x. A relatively fast increase of elastic

energy at an initial phase is followed by a long-lasting stage of slowly changing elastic energy (left). At this stage, a slow destruction of the sample is observed (right)

and the loading force needed to keep stretching speed constant exhibits significant fluctuations. The particle-particle interaction parameters for this case read:

kn = 107 N/mm, bd = 0.01 mm.

FIGURE 8 | Snapshots of the microscopic state of a sample undergoing a ductile-like breaking process at strains (x = 2, 7, 24%) indicated above the panels. Short

colored segments represent inter-particle bonds existing at a given loading stage and their extension with respect to initial values are mapped by colors. The

corresponding loading curves are shown in Figure 7.

FIGURE 9 | Snapshots of a microscopic state of a sample undergoing a pure brittle cleavage-like breaking process. Short colored segments represent the

inter-particle bonds existing at a given loading stage and their extension with respect to the initial values are mapped by colors. The corresponding loading curves are

shown in Figure 10.

value xc. The energy absorption rate curve E(x) has its maximum
ahead of the critical strain xc. We have observed mechanisms
of this type only for the smallest values of critical bonds strains
bd < 0.1mm regardless of the considered values of kn.

In many simulations we have observed a breaking mechanism
referred to as hyper-elastic. In a way similar to the brittle cases,
the damaged energy is released in a small well-localized region
around xc. What distinguishes this scenario from the brittle

scenario is a long initial stage of building-up the internal elastic
energy of the sample and as a consequence a significant necking
of the sample prior to breaking, typical for real ductile materials.
Figure 11 shows loading curves for such cases, and a sequence of
snapshots characteristic for this type of breaking process is shown
in Figure 12.

Apparently as Figure 12 demonstrates, in such cases we are
encountering a more complex breaking process than what is
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FIGURE 10 | An example of loading curves for the pure brittle cleavage-like breaking mechanisms (see Figure 7 for the description). In this case, the fracture occurs

at very small deformations and is very well-localized around the critical strain xc. The particle-particle interaction parameters for this case read: kn = 10 N/mm,

bd = 0.1 mm.

FIGURE 11 | Loading curves for the hyper-elastic breaking mechanisms (see Figure 7 for the description). In this case the fracture has occurred at relatively large

deformations but, like in the brittle cases, has been very well-localized around the critical strain xc, and the accumulated elastic energy is almost entirely and quickly

released. The particle-particle interaction parameters for this case read: kn = 105 N/mm, bd = 0.4 mm.

described in the FBM. However, in spite of this, the basic features
of the failure process seen in the FBM are still preserved. For this
type of fracturing we observe a well-pronounced peaks of F(x),
E(x), and usually a delayed but also well visible wider peak of
Ee(x). Only in such cases a favorable conditions for developing
statistical fluctuations occurred, because the sample (depending
on values of microscopic parameters kn, bd) could absorb and
store a large amount of internal energy. Simulations leading to
this type of breaking process were quite susceptible to generating
numerical noise which usually appeared around the critical
value because at this stage the internal forces approaches their
maximum values and numerical instabilities could easily develop.
If such a noise was stationary or was diminishing, the simulation
was accepted. Otherwise, the simulation was repeated with a
smaller time step. In some cases, especially for cases with shorter
initial stable phase we observed the development of acoustic
waves propagating through the sample. However, the energy they
were carrying was much smaller than the accumulated elastic
energy, so their existence practically lead to some increase of final
uncertainty only.

The final class of the observed mechanisms can be referred
to as semi-ductile. One of the distinct features of events of this
class is the presence of clearly visible acoustic waves in the stable
loading phase. In some cases they lead to a small undulation

of F(x), Ee(x) or its derivative. However, in some cases they
can completely dominate the loading phase of the evolution. In
such extreme cases they can even prohibit a precise identification
of the critical stretch. The loading curves for such an extreme
case when strong acoustic waves have been generated from the
beginning of the process is shown in Figure 13.

For events of this class we still can identify the critical value,
and the maximum of the energy absorption rate but often with
much lower accuracy. The Ee(x) curves are quite wide and their
maxima are often noticeably shifted toward larger x with respect
to xc similar to ductile cases. However, unlike the ductile cases,
F(x) is relatively smoothly decaying with increasing x. The slowly
decreasing of the elastic energy after reaching the critical value
indicates a complex breaking mechanism. Indeed, we observe
for such cases, the failure goes through the development of a
multi-crack-systems. The micro-crack interact with each other
and coalesce, which finally leads to a failure of the sample.
This breaking mechanism is much slower than the fracturing
process typical for hyper-elastic cases (fast horizontal fracture) or
brittle one (cleavage process). The series of snapshots shown in
Figure 14 illustrates both above mentioned features.

All analyzed DEM simulations are finally shown on the scatter
plot in Figure 15. The four categories of breaking mechanisms
are represented at this figure by different colors. In spite of
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FIGURE 12 | Snapshots of the microscopic state of a sample undergoing a hyper-elastic breaking process at selected (indicated above panels) strains. Short colored

segments represent inter-particles bonds existing at given loading stage and their extension with respect to initial values are mapped by colors. The corresponding

loading curves are shown in Figure 9. A release of an internal elastic stress by developing fracture system is clearly visible. The particle-particle interaction parameters

for this case read: kn = 105 N/mm, bd = 0.4 mm.

FIGURE 13 | Two examples of loading curves for semi-ductile breaking mechanisms with moderate (left) and strong amplitude acoustic waves generated and

developing from the beginning of loading (see Figure 7 for the description). The wavelength of the acoustic waves for the case shown in the left panel is about 1/3 of

critical strain and their presence manifest themselves in irregular increase of the loading force in the initial loading stage strain. In the case shown in the right panel

neither the critical stress xc nor the maximum of energy absorption rate can be found with acceptable accuracy due to the strong acoustic waves. The particle-particle

interaction parameters for the case shawn on left read: kn = 105 N/mm, bd = 0.05 mm and for the case shown on right kn = 102 N/mm, bd = 0.6 mm.

the fact that the proposed categorization is merely qualitative
conclusions are quite obvious. The brittle-like processes are
observed only for weak (small kn) and rigid (small bd) virtual
materials. On the other hand the hyper-elastic cases were
observed for stronger (large kn) but flexible (large bd) materials.
The semi-ductile cases were observed for intermediate values
of the (kn, bd) parameters with a probably (insufficient space

sampling) smooth transition toward the ductile type in a region
of small bd and large knparameters. Star symbols are used to
distinguished at Figure 15 cases for which the maximum of
elastic energy is a significantly delayed (Ŵ > 5) with respect to the
critical strain. Surprisingly, within the given set of simulated cases
such events are mostly located along the brittle—semi-ductile
boundary. This issue will be analyzed elsewhere.
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FIGURE 14 | Snapshots (at indicated deformations x) of the microscopic state of a sample undergoing a semi-ductile breaking process. The corresponding loading

curves are shown in right panel in Figure 13. The most essential features for this class of processes are: (a) the development and propagation of acoustic waves

(upper row) and (b) multi-crack fracturing pattern (lower row). The first visible signature of development of the fracture system, appearing at about 60% strain is

marked by a circle in the lower left panel and at 80% strain the sample is still far away from breaking apart. Such a slow failure process is typical for this class of

processes and differentiates it from hyper-elastic ones (see Figure 12). The particle-particle interaction parameters for this case read: kn = 102 N/mm, bd = 0.6 mm.

FIGURE 15 | The scatter plot of all analyzed events on the kn-bd plane.

Different colors represent different categories of observed breaking

mechanism: green—brittle, blue—hyper-elastic, yellow—semi-ductile,

red—ductile, respectively. The star symbols depict cases for which the

maximum of elastic energy is significantly delayed (Ŵ > 5) with respect to the

critical strain. For few cases we could not determine (for technical reasons) the

delay parameter Ŵ and such cases are left as open (white) circles. The region

of (kn, bd ) parameters for which strong acoustic waves were observed is

shaded in gray.

5.3. Signature of Imminent Failure
Answering the main question posed at the beginning of this
paper, let us begin the discussion of results by gathering the
information on the δx parameter from all analyzed numerical
simulations. The result is shown in Figure 16.

The most obvious conclusion from this figure is that within
the class of analyzed events we have always observed a positive
value of δx. Estimated uncertainties indicate the significance of

FIGURE 16 | The delay δx = xc − xp between the critical stress xc and the

strain at which the elastic energy absorption rate reaches maximum for all but

ductile-like simulation results. The dashed curves show the FBM predictions

for power law distributions with α = 0 and 5. The circled events show

systematically underestimated δx values due to used procedure of δx
calculation (see text for details).

this result. It holds for all observed critical strains xc. We observe
the monotonic, almost linear increase of δx with xc over the
range 0.01 < xc < 10. Distortions observed at the smallest
xc are most probably due to the resolution limit imposed by
a necessity of using a low pass filter to remove noise. Much
more interesting is a saturation of δx(xc) at large xc. Actually,
two effects are visible for the largest xc values. The first one
is the existence of a group of events for which δx values are
significantly smaller than the remaining ones. This group is
circled in Figure 16. A closer inspection of breaking mechanisms
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for this group of events reveales that all have the same breaking
pattern shown at the uppermost, middle panel in Figure 6. For
such curves with large gradients the used method of constructing
the likelihood function often fails [31] and leads to serious
under-, or overestimation of the parameters. This is exactly the
case for this group of events.

It could have been corrected, however we have not done it
since it would go beyond the main goal of the paper and was of
relatively low importance for the group of events we analyzed.
Besides this technical issue, we observe an apparent saturation of
the δx(xc) curve. This effect may have different origins. One of
them can be a finite size of the used sample. We are also recall
a limitation of the DEM method in connection with a proper
description of materials with large Poisson ratios [35]. However,
it can also be a signature of approaching the limits of applicability
of the FBMmodel. This issue requires further investigations.

The visible deviations at extremely small and large xc do
not, however, change the main conclusions, that for over
three orders of magnitude of xc the numerical DEM results
are in a very good agreement with the FBM predictions
concerning the positivity of δx and its dependence on xc. The
obtained results fits perfectly with the FBM predictions for
power law fiber strength distributions with exponents in the
range 0 < α < 5.

We provide complementary information and independent
support for the FBM predictions in the plot of the Ar coefficient
against xc, as shown in Figure 17. We have here plotted it
dividing all events into three categories with respect to the Ŵ

parameter. Let us recall here that according to Equation (17)
this dimensionless parameter measures the retardation of the
point when internal elastic energy reaches a maximum value with
respect to the critical value xc. The larger the parameter Ŵ, the
latter the elastic energy maximum, and the wider a peak of the
elastic energy. Two curves corresponding to the FBM predictions
for the power law distributions with exponents α = 0, and 5 are
also shown.

For the majority of events characterized by the critical strain
xc lower than about 10% we have obtained an almost constant
value of Ar in full compliance with the FBM predictions (see
Equation 23). The agreement for the power law distribution with
exponents in the range 0 < α < 5 is remarkably good, and the
range of α for which it holds agrees with the analysis for δx. In
the case of Ar we also observe a systematic deviations from the
FBM model for the largest xc. The reasons for this deviation are
most probably the same as in the case of δx parameters and will
be discussed elsewhere.

The most intriguing result shown in Figure 17 is, however,
the existence of a group of events for which values of Ar are
much larger than 4/3, i.e., the value predicted by FBM as the
superior limit. For these few exceptional events we have observed
Ar ∼ 3 and Ŵ over 5, (the FBM prediction is Ŵ < 1), thus
much beyond the FBM limits. It has to be noticed that these
exceptional events appear at critical strains for which other,
compliant with FBM solutions exist and they are not influenced
by the data processing methods, which was the case for the
δx parameter for the largest xc. Detailed examination of the
loading curves and the snapshots of the breaking process have

FIGURE 17 | The ratio Ar of the maximum of elastic energy released during

the final failure to the product of maximum of elastic energy increase rate and

xp against x. Horizontal lines shows the prediction of the FBM model for power

distribution with α = 0—red line and α = 5—blue line. Errors are mainly due to

imprecise estimation of xp and Emax . The plotted values have been divided into

three groups depending on the value of Ŵ expressing the retardation of the

energy maximum xm with respect to xc (see Equation 17): the maximum of

energy just follows the xc point (Ŵ < 1), intermediate case (1 < Ŵ < 5) and the

case when the energy maximum occurs far away from xc.

indicated that all these events exhibit semi-ductile, complex
breaking mechanism, and that is why their common feature are
large values of Ŵ. It is thus not astonishing that they do not fit the
FBM predictions for which the breaking mechanism is a simple
“one-step” process. When the critical value is reached the loading
process switches from the stable to the unstable phase leading to
an immediate breaking of the sample and hence release of the
whole reservoir of energy. It is astonishing that for this group of
events, the deviation from the FBM prediction for Ar we observe
simultaneously no departures from the FBM results concerning
the positivity of xc. Actually, observation of the existence of
such events is one of the two most important results of
our analysis.

6. DISCUSSION AND CONCLUSIONS

Considering the posed question whether the signature of
imminent failure predicted by the FBM method is also visible
in the DEM simulations, we can positively answer yes. In all
analyzed simulations we observe the existence of a precursory
maximum of an elastic energy absorption rate prior to the
critical strain at which the loading force reaches the maximum.
We have also observed a very good agreement of the DEM
simulation results with the FBM predictions for the variation
of the δx–a difference between the critical strain and the
strain at which precursor maximum occurs, and the Ar–
the scaled ratio of total absorbed energy and maximum of
the absorption rate parameters. The advanced error analysis
allows us to recognize and qualitatively take into account the
sources of major errors providing solid evidence for the above
conclusions. All these arguments provide a strong support
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for the Fiber Bundle Model. However, a few observed facts
forces us to pose some important physical questions and
prevent us from drawing too optimistic but possibly too
naive conclusions.

The first issue is a possible bias/limitation introduced by the
selection procedure we have applied to the DEM simulations.
We have considered only cases with a well-pronounced peak in
the force and the energy absorption rate curves. The motivation
of such selection is purely technical—we wished to assure a
satisfactory accuracy of identifying of the critical value and the
point at which the energy absorption rate reaches maximum.
Among almost 200 performed simulations, only eight have been
rejected due to failing this condition, which suggests it to be
quite reasonable. However, consequences of such a procedure,
even if it looks reasonable, go much beyond the technical issue
itself. Actually, the applied criterion resulted in restriction of
our analysis to processes in which force, energy absorption rate,
and also elastic energy (although it was not required) were
single-modal. By this we understand that the corresponding
loading curves were quite compactly localized around the
critical strain and do not exhibit a presence of significant
secondary local maxima. What is the physical meaning
of this fact?

The well-pronounced single, peaks in force, elastic energy,
and energy absorption rate function mean that the breaking
is essentially a “one-step” process. When initiate at the critical
strain it unavoidably leads to a breaking of an object apart and
release of the whole absorbed and stored internal energy. For
such cases, the DEM simulations indeed confirm the existence
of a precursory phenomena preceding the imminent failure, as
predicted by FBM [5]. The DEM simulations have shown that
this phenomenon also holds if more complex, but still essentially
“one-step” processes are considered. The situation changes
essentially if more complex breaking processes are considered.
The existence of such processes has recently been reported [30]
and in a restricted form of semi-ductile cases also appeared in
our simulations. For such processes we found a “soft” breaking
the FBM predictions: the Ar , and Ŵ parameters significantly
differs from the FBM predictions but the δx parameter follows
closely the FBM solution. An open question thus arises if the
existence of the precursor phenomenon predicted by FBM can
still be observed in case of more complex processes or not.
For example, one can imagine the breaking process consisting
of a series of smaller sub-failures. Will the system inform
us about an approaching final failure in such a case? The
answer is open.

Another, more elementary issue is related to how the external
work done by the loading forces is absorbed and stored in the
sample. In the fiber bundle model, the whole work is absorbed
as elastic energy of the stretched fibers. Upon breaking a fiber,
the elastic energy it has stored is released as the damage energy
[5] and, what is important, it decouples from the model. By
this we mean that the released energy does not influence the
state of remaining fibers. In the DEM method, the situation is

more complex. The energy released by a bond breaking is, in
the first step, converted directly to the kinetic energy of particles
originally joined by the bond. In the next steps, this “damage”
energy either transforms (most of it) into elastic energy of
remaining bonds attached to particles or remains to be a kinetic
energy of vibrating particles. The first situation occurs if particles
can hardly move or if they can carry a minimum kinetic energy
due to their small masses. If this situation occurs, DEM directly
mimics the FBM approach. However, DEM can also simulate an
opposite situation, when the released energy can (to some extent)
remain as kinetic energy of the originally bonded particles [30]
and so does not decouple from the system. The obvious questions
to be answered in the future are how such elastic-kinetic energy
conversion mechanism modifies the FBM predictions, is this
process responsible for the complexity of ductile-like breaking
process, and so forth.

In the light of the above comments, the results of our analysis
can be summarized in a general way as follows: When the
external force is stretching a body, part of its work (all in an
ideal case) converts into the internal energy of the body. If this
energy transfer is dominated by building up an elastic energy and
the final breaking of the body is a single-step process, then we
observe a robust signal-precursor of the upcoming failure. The
reaching of the maximum by the elastic energy absorption rate
is just a signature that a catastrophic failure is approaching. The
obtained results immediately poses further important questions.
The first, and the most important one is, what are the limits of
applicability of the FBM method when applied to description of
breaking solid materials. Another one is whether the inclusion
of mechanisms of conversion of the external work into kinetic
energy (heat) of particles/fibers change the conclusion about
relation between the maximum energy absorption rate and the
critical value or not.
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