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Abstract: An abundance of objective image quality metrics have been introduced in the literature.
One important essential aspect that perceived image quality is dependent on is the viewing distance
from the observer to the image. We introduce in this study a novel image quality metric able to
estimate the quality of a given image without reference for different viewing distances between
the image and the observer. We first select relevant patches from the image using saliency infor-
mation. For each patch, a feature vector is extracted from a convolutional neural network model
and concatenated at the viewing distance, for which the quality is predicted. The resulting vector is
fed to fully connected layers to predict subjective scores for the considered viewing distance. The
proposed method was evaluated using the Colourlab Image Database: Image Quality and Viewing
Distance-changed Image Database. Both databases provide subjective scores at two different viewing
distances. In the Colourlab Image Database: Image Quality we obtain a Pearson correlation of 0.87 at
both 50 cm and 100 cm viewing distances, while in the Viewing Distance-changed Image Database
we obtained a Pearson correlation of 0.93 and 0.94 at viewing distance of four and six times the image
height. The results show the efficiency of our method and its generalization ability.

Keywords: image quality assessment; convolutional neural network; viewing distance; feature combination

1. Introduction

Image quality assessment is central in acquisition, processing, analysis and reproduc-
tion of images. The interest and need for image quality assessment has increased in the
last decades, resulting in increasing research on this topic. Subjective assessment is even
considered to be the ”gold standard”, but objective assessment is becoming increasingly
popular. A plethora of objective assessment methods, commonly known as Image Quality
Metrics (IQMs), have been suggested in the literature over the last decades [1–6]. These
metrics have also been considerably evaluated [7–12]. Despite the large number of exist-
ing IQMs and their extensive evaluation, there are still several limitations and unsolved
challenges [8,13–16].

IQMs can, depending on the availability of the reference image, be divided into full-
reference, reduced-reference, or no-reference [17]. Full-reference IQMs need the complete
reference, while reduced-reference IQMs need partial information of the images, and no-
reference IQMs do not need access to the reference image. Conventional IQMs only utilize
information on the intensity of the distortion, such as mean-squared-error and peak-signal-
to-noise-ratio (PSNR). In spite of this, these IQMs have been used with success in different
applications, but they have only been moderately correlated with perceived quality for
natural images [11]. IQMs based on structural similarity have become very popular in the
last decade [18], and they showed to correlate better with subjective scores than PSNR [11].
There were also proposed many other IQMs based on different approaches, such as the
spatial CIELAB [19], total variation of difference [20], PSNR-HVS-M [21], Difference of
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Gaussians [22], machine learning [23], spatial hue angle metric [24]. They have also incorpo-
rated different aspects related to the human visual system, such as contrast sensitivity [19],
visual masking [25,26], gaze information [27,28]. These IQMs have been applied to a a wide
range of applications, including color printing [29–31], displays [32], compression [33,34],
cameras [35], image enhancement [36], gamut mapping [37,38], medical imaging [39,40],
and biometrics [41–43].

Recently the use of deep learning has attracted the attention of many researchers in
image quality [44–51]. The distance from the image to the observers is an important aspect
when observers evaluate quality [20,52,53]. This well-known fact was, however, overlooked
in many of the existing IQMs, and very few of the IQMs based on deep learning incorporate
viewing distance. In addition, the existing datasets for evaluation of the performance of
IQMs were only carried out at a single viewing distance or the distance was not controlled
(i.e., fixed). The Colourlab Image Database: Image Quality (CID:IQ) [52] is one of a handful
publicly available datasets where observers evaluated quality of images at two different
viewing distances, namely 50 cm and 100 cm.

The main contributions of this work are:

• The integration of the viewing distance on a modified version of the pre-trained
VGG16 model.

• The integration of the saliency information to extract patches according to their importance.
• The comparison of our modified model with several configurations.
• Evaluation of the proposed method against other state-of-the-art methods on two datasets.

We utilize a Convolutional Neural Network (CNN) to predict perceived image quality
at different viewing distances. To the best of our knowledge, this is the first work where
viewing distance is included in a CNN-based IQM. First, we will introduce related back-
ground, then we present the proposed method. Furthermore, we present our experimental
results, and then the conclusion is given.

2. Background

There is a large number of IQMs in the literature [1–5], and many different approaches
have been taken. In recent years, more and more IQMs based on deep learning have been
proposed, and the use of deep learning has been postulated to result in better performing
IQMs [15].

Chetouani et al. [54] handled image quality as a classifying problem through linear
discriminant analysis. The authors first extract characterizing features from both the
original and degraded images. Then, the type of degradation in the image is found by
using a minimum distance criterion. The most appropriate IQM for a given distortion
is finally applied. Evaluation was carried out on the TID2008 dataset [10] and the LIVE
Image Quality Assessment Dataset [55]. The results showed that the suggested method is
improving the correlation coefficients, but that the improvement is distortion dependent.

In [56], Chetouani extended the previous work by Chetouani et al. [54] through a
CNN model for identifying the degradation and prediction of quality. The degraded image
goes through two parallel processes, where the distortion type is identified using a CNN
model in one process and for the other the most salient patches are found. The quality
estimation is also done through a CNN model with two convolutional layers, two pooling
steps, one fully connected layer and one output layer. Evaluation was carried out on
the TID2008 dataset [10], Categorical Subjective Image Quality [57], and the LIVE Image
Quality Assessment Dataset [55], using the following distortion types: white noise, JPEG,
JPEG2000, blur and fast fading. The results indicated that the proposed method gave higher
correlation coefficients compared to other no-reference IQMs, and comparable results of
the best full-reference IQMs.

Chetouani [58] used the pre-trained VGG16 model in a no-reference IQM. A patch
selection step based on saliency information using a scanpath predictor was incorporated
in the IQM. Patches of the fixation points from the scanpath predictor was used as input
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to the CNN model. The IQM was evaluated on the CU-Nantes dataset [59]. The results
showed that the proposed CNN model had the highest quality performance.

Hou et al. [50] suggested a no-reference IQM based on a discriminative deep learning
model that was trained to classify natural scene statistics features in five quality levels
(excellent, good, fair, poor, and bad). The final predicted quality score was obtained from
a quality pooling step. The proposed IQM was evaluated on the LIVE Image Quality
Assessment Dataset [55], TID2008 [10], Categorical Subjective Image Quality [57], IVC [60],
and MICT [61].

Kang et al. [45] introduced a no-reference metric that predicted image quality of
patches in images using CNNs. They contrast normalize the grayscale image, before
selecting non-overlapping patches, where each patch is inputted to the network. The
network consisted of five layers, where the first convolutional layers filtered the input
with 50 kernels. 50 feature maps are created, which are pooled into one max and one
min. Further, two fully connected layers of 800 nodes are used. The final layer is a linear
regression, giving the final quality score. The no-reference IQM was evaluated on the LIVE
Image Quality Assessment Dataset [55] and the TID2008 dataset [10]. The proposed IQM
showed an overall correlation higher than other no-reference metrics in the evaluation.

Li et al. [46] extracted simple features from images by using a Shearlet transform,
and then further treated image quality as a classification problem using deep neural
networks. The first step of extracting features were based on that the statistics of the
Shearlet coefficients changed as an image were distorted. The features are extracted from
each of the color channels (RGB) and normalized, these features are then evolved in stacked
auto-encoders before the final features are inputted to a Softmax classifier. The authors
used the LIVE Image Quality Assessment Dataset [55], TID2008 [10] and the LIVE multiply
distorted dataset [62]. Their results showed comparable results to other no-reference IQMs,
but not as high correlation coefficients compared to the best full-reference metrics.

Lv et al. [48] apply a multi-scale Difference of Gaussian to generate features, which
were processed in a deep neural network in their proposed IQM. It used a combination
of a stacked auto-encoder with three hidden layers and a support vector machine regres-
sion. The IQM was evaluated on the TID2008 dataset [10] and the LIVE Image Quality
Assessment Dataset [55]. The proposed no-reference IQM showed higher correlation coeffi-
cients compared to other state-of-the-art no-reference IQMs, and comparable correlation
coefficients to state-of-the-art full-reference IQMs.

Bianco et al. [44] introduced a no-reference IQM using CNNs for generic distortions,
where quality scores (categories such as bad, poor, fair, good and excellent) are predicted
for sub-regions within the image and support vector regression is applied on the CNN
features. Their architecture is based on the Caffe network [63], but pre-trained on three
image classification tasks. The authors experimented with selecting between 5 and 50 sub-
regions randomly from the images. Evaluation was performed using the LIVE In the Wild
dataset [64], and they showed higher correlation coefficients than state-of-the-art IQMs.
They also evaluated their method on the LIVE Image Quality Assessment Dataset [55],
Categorical Subjective Image Quality [57], TID2008 [10], TID2013 [65]. Their correlation
coefficients were similar or higher compared to other metrics.

Li et al. [66] merged CNNs and Prewitt magnitude on a segmented image to esti-
mate the quality of images. The CNN model is based on seven layers, using normalized
32 × 32 pixel image patches as input. The authors computed weights for the image patches,
which is based on a graph-based segmentation of the original image, where the weight
is the sum after applying the Prewitt operator on the image. The IQM was evaluated on
the TID2008 dataset [10] and the LIVE Image Quality Assessment Dataset [55]. The results
show that the introduced IQM has higher correlation coefficients compared to no-reference
IQMs, and similar to the best full-reference IQMs.

Kim et al. [47] utilized local quality maps as intermediate targets for CNNs. In the
proposed IQM, the CNN is trained with respect to each non-overlapping patch in the image,
also giving equal weights for every pixel in the image. This results in a local quality score.
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Further, the pooling stage is incorporated for training. All parameters of the model are
optimized simultaneously. The CNN architecture consisted of two convolutional layers and
five fully connected layers. The proposed IQM was evaluated on the TID2008 dataset [10]
and the LIVE Image Quality Assessment Dataset [55], and the results showed that it is
comparable to the best performing IQMs.

Gao et al. [49] introduced a full-reference IQM to measure the local similarities between
the features from the distorted and reference images using deep neural networks. The
reference image and the degraded image are fed separately to the VGGnet [67]. Further, the
output of each layer is computed being the feature map. Then, local similarities between
the feature map of the reference and the feature map of the degraded image are found.
At last, the local similarities are pooled as a final quality score. They evaluated their
method on the LIVE Image Quality Assessment Dataset [55], Categorical Subjective Image
Quality [57], the LIVE multiply distorted dataset [62], and TID2013 [65]. The performance
of the full-reference IQM was similar to that of the best state of the art IQMs.

Fan et al. [68] introduced a no-reference IQM. The first step was to identify the
distortion of the input image, which was done using a shallow CNN with one convolution
layer. Further, for every distortion type they designed a CNN, which is used to calculate a
quality score for each patch in the image. At last, a fusion algorithm was used to generate
one single quality score for the entire image. Evaluation was carried out on the LIVE Image
Quality Assessment Dataset [55] and Categorical Subjective Image Quality [57] dataset.
Performance of the introduced no-reference IQM was comparable to state of the art IQMs,
but the correlation coefficients were slightly lower than the best full-reference IQMs.

Ravela et al. [69] proposed a no-reference IQM, in which they classify the distortions
present in the degraded image. For each distortion class they compute a quality score.
These are further combined through a weighted average-pooling algorithm to obtain a
single regressor output. The IQM was evaluated on LIVE Image Quality Assessment
Dataset [55], Categorical Subjective Image Quality [57] and the TID2008 dataset [10]. The
evaluation showed comparable results to other state of the art IQMs. This approach can be
is similar to that of [54,56].

Varga [70] introduced no-reference IQM using multi-level inception features from
a pretrained CNN. The method uses the entire to extract image resolution independent
features. The IQM was evaluated on the LIVE in the wild dataset [64], and obtained higher
correlation values compared to many state of the art methods.

Ma et al. [71] proposed a no-reference IQM mimicking the mimicking the human
visual system, more precisely by using an active inference module of a generative adver-
sarial network to predict the main content of the image. Then by using a multi-stream
convolutional neural network (CNN) they assess the quality related to scene information,
distortion type and content degradation. The proposed IQM was evaluated on LIVE Image
Quality Assessment Dataset [55], Categorical Subjective Image Quality [57], TID2013 [65],
LIVE In the Wild dataset [64] and LIVE multiply distorted dataset [62]. The method showed
comparable or higher correlation values compared to other state of the art IQMs.

Amirshahi et al. [51] introduced a full-reference IQM using self-similarity and a CNN
model. It used CNN features across multiple levels to calculate the similarity between
the reference image and the degraded image. The IQM was based on the Alexnet [72]
architecture. The method extracts feature maps at five convolutional layers, and these
are compared using a histogram-based quality metric. A quality value at each layer is
computed, and further pooled using a geometrical mean to get a final quality value.
The proposed IQM was evaluated on the LIVE Image Quality Assessment Dataset [55],
Categorical Subjective Image Quality [57], the Colourlab Image Quality Dataset [52], and
TID2013 [65]. The results showed that the proposed IQM gave similar performance to
the best state-of-the-art IQMs. The same IQM was also evaluated on a dataset for image
contrast enhancement evaluation [73], where it also performed quite well [36].

The approach by Amirshahi et al. [51] was improved in [74] where the feature maps
were compared using traditional IQMs such as SSIM [18], PSNR and mean squared error.
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The proposed IQM was evaluated on the LIVE Image Quality Assessment Dataset [55],
Categorical Subjective Image Quality [57], the Colourlab Image Quality Dataset [52], and
TID2013 [65]. They showed an improvement in performance of the IQMs (on average an
increase of 23%) using a CNN based approach.

In this study, we advance the current research compared to the existing CNN-based
IQMs by predicting image quality without a reference for different viewing distances. To
achieve this, relevant patches were selected based on saliency information and the viewing
distance was included to features extracted from a modified pre-trained CNN model.

3. Proposed Method

The pipeline of the proposed no-reference IQM is summarized in Figure 1. For a given
degraded image, we first select the most relevant patches based on their saliency weights.
For each patch, we extract a feature vector from a CNN model and concatenate it at the
viewing distance for which the quality is predicted. The resulting vector is then fed to fully
connected layers to predict the subjective quality for the considered viewing distance. Each
of these steps is described in this section.

Figure 1. Flowchart of the proposed IQM.

3.1. Saliency-Based Patch Selection

Visual attention is one of the selective mechanisms of our human visual system that
involves an attractiveness towards some regions of the image. These attractive regions
highly influence our subjective judgement and therefore impact the subjective quality
of an image. In this study, we exploited this perceptual mechanism to select the most
relevant patches that have high perceptual impact. To do so, we employed the scanpath
predictor described in [75], which aims to mimic the behavior of our human visual system
when it faces a real image. It predicts fixation points of the scanpath via a given saliency
map. Figure 2 shows an image (Figure 2a), its corresponding saliency map (Figure 2b),
its highlighted image (Figure 2c), and the predicted scanpath (Figure 2d). The predicted
fixation points of the scanpath are represented by the blue points.

For each predicted fixation point, a small patch was extracted. In [45,76], they exam-
ined the impact of the patch size and found that a size of 32 × 32 × 3 constitutes a decent
trade-off between the performance and the time computation. The same size, 32 × 32 × 3,
was used in our approach. As found by Vigier et al. [77] observers at visual angles up to 60◦

reach the same salient region, indicating that saliency is the same at different distances. The
saliency map was computed using the Graph-Based Visual Saliency (GBVS) method [78].
GBVS has shown to be very good for fixation location and scanpath predictor [79], and is
therefore used. The number of fixation points and its impact on the performance will be
discussed in Section 4.1. For more details about the saliency-based patch section, readers
are referred to [80].
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Figure 2. Example of a predicted scanpath of a given image: (a) Distorted image, (b) its saliency map
from the GBVS method [78], (c) its highlight image and (d) the predicted scanpath.

3.2. Cnn Model

A wide range of CNN models with various architectures have been proposed in the
literature. Some researchers proposed their own models [45] trained from scratch, while
others employed pre-trained models like AlexNet [72] and ResNet [81]. In our technique,
we used the model introduced by the Oxford Visual Geometry Group (VGG), as this model
is widely utilized and provided decent results in many applications [67,82–86]. More
precisely, we fine-tuned the pre-trained VGG16 model without data augmentation, since
these treatments change the structure of the data and thus modify the perceived quality [87].
VGG16 is composed of 13 convolutional layers and 3 fully connected layers with an input
of size 224 × 224 × 3 (color image) and an output of size 1000 (i.e., 1000 classes). In order
to adapt this model to our context, we first replaced the input image layer of VGG16 by
another image layer of size 32 × 32 × 3. The 3 initial fully connected layers were also
replaced by 2 other fully connected layers of size 128 and 1, where the last fully connected
layer is a regression layer to predict “continuous values”. In order to predict the quality
of a given image for different viewing distances, a feature vector was extracted from
the last convolutional layer of our model and concatenated to the viewing distance D,
normalized between 0 and 1 with 0 corresponds to 0*H and 1 to 6*H. In order to not give
more importance to the viewing distance, the feature vector to which the viewing distance
is concatenated was also normalized between 0 and 1. The resulting vector is then fed as
input to the first fully connected layer as described in Figure 3. All these modifications
allow us to adjust the model to our task, but it also leads to reduce the number of learnable
parameters, since we have now around 14 M of learnable parameters compared to the
initial 138 M.

Figure 3. Fully connected layers of the considered model. D is the viewing distance.

To train our model, the learning rate and the momentum were set to 0.01 and 0.9. We
utilized stochastic gradient descent as the optimization function, and the mean square
error as the loss function. The number of epochs and the batch size were set to 25 and 32,
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respectively. After each epoch, the training data were shuffled, and then we stored the
model. The model providing the best performance was finally retained. All the experiments
were carried-out with the configuration listed in Table 1.

Table 1. Computer configuration used in our experiments.

Configuration

Computer Model DELL Precision 5820

CPU Intel Xeon W-2125 CPU 4.00 GHz (8 cores)

Memory 64 GB

GPU NVIDIA Quadro P5000

3.3. Datasets

Two different datasets that provide subjective quality scores for two different viewing
distances were used to evaluate our method.

• CID:IQ (Colourlab Image Database: Image Quality) [52]: This dataset is one of the
few publicly available datasets with subjective scores collected at different viewing
distances. CID:IQ has 690 distorted images made from 23 original images with high-
quality. Subjective scores were collected at two viewing distances (50 cm and 100 cm,
which correspond respectively to 2.5 and 5 times the image height) for each distorted
image. Distorted images were generated with six types of degradation at different
five levels: JPEG2000 (JP2K), JPEG, Gaussian Blur (GB), Poisson noise (PN), ∆E gamut
mapping (DeltaE) and SGCK gamut mapping (SGCK). An original image and five
distorted images are presented in Figure 4.

• VDID2014 (Viewing Distance-changed Image Database) [53]: This dataset has 160 dis-
torted images made from 8 high-quality images. For each distorted image, subjective
scores were collected at two different distances (4 and 6 times the image height).
Distorted images were made using four types of degradation at five different levels:
JPEG2000 (JP2K), JPEG, Gaussian Blur (GB) and White Noise (WN). An example of
distorted images is shown in Figure 5.

Figure 4. Samples of the CID:IQ dataset.
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Figure 5. Samples of the VDID2014 dataset.

3.4. Evaluation Criteria

Pearson (PCC) and Spearman (SROCC) correlation coefficients were employed to
evaluate the quality prediction of the introduced IQM. The coefficients were calculated
between the subjective scores and the predicted image quality values for each viewing
distance. A correlation coefficient of 1 indicates a perfect prediction and a correlation
coefficient of 0 indicates no correlation.

The predicted scores were mapped to the subjective scores through the following
non-linear logistic function:

Q = β1(
1
2
− 1

e−β2(Qp−β3)
) + β4 ∗ Qp + β5 (1)

where Qp and Q are the predicted and the mapped scores. β1–β5 are the fitting parameters.

4. Experimental Results

In this section, we first study the impact on the performance of the number of extracted
patches. Our method is then evaluated on each dataset individually. After comparing the
results to the state-of-the-art, we test the generalization capacity of our method through a
cross dataset evaluation.

4.1. Impact of the Number of Fixation Points

As mentioned above, the number of patches extracted per image is fixed by the number
of fixation points. Its impact on the performance was here analyzed by varying the number
of fixation points from 10 to 200. For each value of the number of fixation points, PCC and
SROCC values were calculated. Figure 6 shows the correlation coefficients obtained on the
CID:IQ dataset by splitting the database according to the reference images. The test set
was composed of one-fold (20% of the reference image and its degraded versions), while
the training-validation set included the remaining images. The latter was split randomly
without overlapping (80% for training and then 20% for validation). This protocol ensures
non-overlap or redundancy (in terms of image content) between sets. This procedure was
repeated five times and the correlations were calculated by concatenating the scores.

As expected, the lower the number of fixation points, the lower the correlation. Indeed,
the number of fixation points fixes the amount of data of the training set, which directly
impacts the capacity of our model to learn the data. Correlations of the two viewing dis-
tances were close and increased with the number of fixation points. The best performance
was raised for number of fixation points = 180 (i.e., 180 patches extracted per image). In
the following, the quality of each image is thus predicted through 180 patches, where the
quality is the average of the quality for each of the 180 patches.

The attention of an observer can be influenced by the viewing distance or the distor-
tions [88], and as the incorporated scanpath predictor does not account for this, it may have
an influence and should be investigated in future work.
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Figure 6. Correlation values when changing the number of fixation points.

In order to better show the relevance of our pipeline, we compared the proposed
saliency-based patch selection with the classical approach (i.e., no selection) and a random
selection. These tests were carried out using the modified version of VGG16 and the
baseline model, which corresponds to the modified version of VGG16 without integrating
the viewing distance (i.e., one input and one output). The latter was trained using subjective
scores of one viewing distance (i.e., 2.5*H) and tested on two distances (i.e., 2.5*H and
5*H). This procedure was applied to not associate several outputs to a single input. Table 2
shows the correlations obtained on CID:IQ dataset. As can be seen, a random selection
of patches provided poorer results, while the proposed saliency-based patch selection
improved the performance. Compared to the random selection, the use of all patches
(i.e., no selection) improved the performance, but the global correlation still lower than that
achieved with the proposed saliency-based patch selection. In addition, the integration of
the viewing distance as input (i.e., proposed model) to the baseline model highly improved
the performance whatever the selection type, especially when the proposed saliency-based
selection step was applied.

Figure 7 shows the loss values obtained in the training and validation sets across the
number of epochs for one random splitting of the CID:IQ dataset. The loss values of both
sets decreased until stabilizing, indicating no-overfitting.

Table 2. Impact of the patch selection step. Pearson (PCC) and Spearman (SROCC) values obtained
with and without the saliency-based patch selection as well as with a random patch selection for each
viewing distance of the CID:IQ database. Highest values are in bold.

50 cm (2.5*H) 100 cm (5*H) ALL

Selection PCC SROCC PCC SROCC PCC SROCC

Without integration of the viewing distance (baseline model)

Random 0.670 0.667 0.637 0.621 0.641 0.629

No 0.725 0.736 0.664 0.659 0.681 0.682

Saliency 0.712 0.718 0.705 0.704 0.695 0.695
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Table 2. Cont.

50 cm (2.5*H) 100 cm (5*H) ALL

Selection PCC SROCC PCC SROCC PCC SROCC

With integration of the viewing distance (proposed model)

Random 0.757 0.750 0.764 0.718 0.750 0.729

No 0.819 0.815 0.819 0.775 0.813 0.797
Saliency 0.870 0.867 0.870 0.846 0.876 0.865

Figure 7. Loss in training and validation sets across the number of epochs for one splitting of the
CID:IQ dataset.

Figure 8 shows the patch scores predicted for a given image and the corresponding
subjective scores for two viewing distances. As can be seen, there is a gap between the
predicted patch scores for the distance 50 cm (blue curve) and those predicted for the
distance 100 cm (green curve). This gap reflects well the gap between the corresponding
subjective scores (black and red dotted lines). Therefore, the integration of the viewing
distance as input to our model allowed to well shift the predicted score according to the
viewing distance considered.

Figure 8. Predicted scores of a given distorted image for two different viewing distances and their
corresponding subjective scores.
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4.2. Individual Evaluation

In this section, we present the results of our method for both datasets (CID:IQ and
VDID2014). For each of them, we computed the correlations according to the viewing
distances as well as the correlations per degradation type.

4.2.1. CID:IQ

We evaluated our method on CID:IQ dataset by applying the protocol described in
Section 4.1 (i.e., 5 fold cross validation). Table 3 shows the correlations for each viewing
distance. The results were compared to our previous work (CNN-VD) [58], where only one
CNN model with two outputs was used. As can be seen, high performances were obtained
for the two viewing distances with close correlation values. Compared to CNN-VD, the
correlations increased with an improvement in terms of PCC of 1.4% for the two distances.

Table 3. Pearson (PCC) and Spearman (SROCC) correlation coefficients between the predicted quality
scores and the subjective ones for each viewing distance of the CID:IQ database. Highest values are
in bold.

50 cm (2.5*H) 100 cm (5*H)

PCC SROCC PCC SROCC

CNN-VD (NR) 0.858 0.855 0.858 0.826

Our method (NR) 0.870 0.867 0.870 0.846

In Table 4, the correlation coefficients for each distortion, at five levels, are shown and
compared to those of MSSIM and CNN QUALITY. In general, the performances were high
for all distortions and viewing distances. The highest values were obtained for SGCK at
50 cm and at 100 cm, while the lowest ones were obtained for JPEG at 50 cm and JP2K for
100 cm. We also noticed that for SGCK, JPEG, GB, and DeltaE the proposed method has
slightly higher coefficients for the 100 cm viewing distance compared to 50 cm, while it
was the opposite for JP2K and PN. Compared to the MSSIM and CNN Quality metrics the
proposed metric has good performance, giving a higher correlation value for JPEG, PN,
SGCK and DeltaE for 50 cm and JPEG, SGCK and DeltaE for 100 cm. It is also noticeable
that the proposed method is more stable compared to MSSIM.

Table 4. Pearson (PCC) correlation coefficients between the predicted quality scores and the subjective
ones for each distortion of the CID:IQ database.

50 cm (2.5*H)

Distortion type Our method MSSIM CNN Quality

JP2K 0.819 0.851 0.826

JPEG 0.812 0.736 0.801

PN 0.836 0.811 0.792

GB 0.870 0.576 0.882

SGCK 0.913 0.736 0.814

DeltaE 0.919 0.792 0.837

100 cm (5*H)

Distortion type Our method MSSIM CNN Quality

JP2K 0.735 0.825 0.804

JPEG 0.820 0.700 0.811

PN 0.793 0.838 0.771

GB 0.884 0.598 0.893
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Table 4. Cont.

100cm (5*H)

Distortion type Our method MSSIM CNN Quality

SGCK 0.938 0.725 0.805

DeltaE 0.923 0.780 0.862

4.2.2. Vdid2014

To evaluate our method on VDID2014, the dataset was split into 4-fold (i.e., 25% of
the reference image and its degraded versions for the test set and the rest for the training-
validation set). As can be seen in Table 5, the performances were higher than those obtained
on CID:IQ and the best results were obtained for the distance 4*H. Compared to CNN-VD,
the improvements in terms of PCC are 5.43% for the distance 4*H and 2.84% for 6*H.

Table 5. Pearson (PCC) and Spearman (SROCC) correlation coefficients between the predicted quality
scores and the subjective ones for 4*H and 6*H viewing distances of the VDID2014 database. Highest
correlation coefficients are in bold.

4*H 6*H

PCC SROCC PCC SROCC

CNN-VD (NR) 0.884 0.871 0.914 0.898

Our method (NR) 0.932 0.907 0.940 0.922

Table 6 presents the result of each degradation type, where each degradation has five
levels. The correlations were generally high for all distortions. Contrary to the results of
CID:IQ, all the correlations of our method were higher for the distance 6*H. The highest
values were obtained for JPEG and JP2K for both 4*H and 6*H. Compared to the MSSIM
and CNN Quality metrics, the proposed method has good performance, giving a higher
correlation value for JP2K, JPEG and GB for 4*H and for JP2K, JPEG and WN for 6*H.
MSSIM obtained the best results for WN for 4*H, while CNN Quality achieved the best
results for GB for 6*H.

Table 6. Pearson (PCC) correlation coefficients between the predicted quality scores and the subjective
ones for each distortion of the VDID2014 database.

4*H

Distortion Type Our Method MSSIM CNN Quality

JP2K 0.925 0.827 0.874

JPEG 0.969 0.876 0.874

WN 0.903 0.912 0.871

GB 0.913 0.773 0.901

6*H

Distortion Type Our Method MSSIM CNN Quality

JP2K 0.951 0.8461 0.896

JPEG 0.973 0.846 0.886

WN 0.930 0.895 0.895

GB 0.921 0.796 0.933



Appl. Sci. 2021, 11, 4661 13 of 21

4.2.3. Computation Time

We also compared the computation time of the proposed pipeline to that with no-
selection. It is worth noting that we compared here only the computation time related to
the quality prediction without integrating the saliency-based patch selection. As shown
in Table 7, the quality of an given image is predicted using 180 patches whatever the
dimension of the image, while 625 and 310 patches are used for images of CID:IQ and
VDID14 datasets, respectively. The results show that the proposed method based on
saliency is faster compared to using all patches.

Table 7. Mean number of patches extracted per image on both datasets and their computation time.

Database All Patches Saliency-Based
Patch Selection

CID:IQ 625 (u75 ms) 180 (u21.6 ms)

VDID 310 (u37.2 ms) 180 (u26.6 ms)

4.2.4. Comparison with the State-Of-The-Art

The results of our method were compared to the state-of-the-art IQMs (PSNR, PSNR-
HVS-M [89], PSNR-HA [89], C-PSNR-HVS-M [89], C-PSNR-HA [89], SSIM [18], CSSIM [90],
CSSIM4 [90], WASH [91], VIF/VIFP [92], IFC [93], UQI [94], WSNR [95], SNR, NQM [96],
MSSIM [97], FSIM [98], GMSD [99], CNN Quality [51]). In addition, we compared against
no-reference IQMs (BRISQUE [100], DIVINE [101], AQI [102], ARISMC [103], BQMS [104],
CPBD [105]). For fair comparison, the BRISQUE and DIVINE IQMs were retrained on both
databases. Three distance-based metrics were also considered. The well-known metric
Visual Difference Predictor (VDP) [106], that exploits the contrast sensitivity function that
integrates the viewing distance, was evaluated against the proposed method. In [53], the
authors improved the well-known metrics PSNR and SSIM by integrating an optimal scale
selection model in discrete wavelet transform domain. This model aims to consider viewing
distance and image resolution before using existing metrics. The latter are respectively
labelled here as PSNR2 and SSIM2.

Table 8 shows the results for both databases, the same results for Pearson correlation is
shown in Figures 9–12. 95% confidence intervals were calculated using Fishers Z-transform.
Globally, the correlations achieved on VDID2014 dataset were higher than those of CID:IQ.
The metrics better predict the quality for 50 cm on CID:IQ, while higher correlations were
obtained for 6*H on VDID2014.

For FR approaches, the best performance on CID:IQ was obtained by CSSIM for 2.5*H
and MSSIM for 5*H. CSSIM is a metric based on predictability of blocks simulating the
visual system, and has also been shown to perform better than SSIM [90]. The main differ-
ence between SSIM and MSSIM is the multi scale analysis that allowed an improvement of
6% on CID:IQ. On VDID2014, CNN Quality achieved the best results for the two viewing
distances. No-reference IQMs failed to predict quality for both databases, even after being
retrained. Our distance-based method performed better than all the compared ones by
more than 1.4% on CID:IQ. On VDID2014, our method obtained competitive results, since
PSNR2 and SSIM2 performed better than our method for 6*H. However, our method is
blind and thus does not need any information from the reference image. Furthermore, our
method performed better than most of the FR metrics.

To show the global performance of the suggested method, we calculated the correlation
whatever the viewing distance and the degradation type. Tables 9 and 10 present the results
on CID:IQ and VDID2014 datasets, respectively. Our method performed better than all
the compared ones by more than 2.7% on CID:IQ. On VDID2014, the results show that the
suggested IQM achieved the second best PCC value. However, our method remains highly
competitive since most of the compared methods obtained a PCC smaller than 0.9 and best
results (i.e., SSIM2 and PSNR2) were achieved by two FR metrics.
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Non-linear Pearson correlation values with a 95% confidence interval. Viewing distance 50 cm
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Figure 9. Performance of the IQMs on the CID:IQ dataset for 50 cm viewing distance. The figure
shows Pearson correlation with a 95% confidence interval.

Non-linear Pearson correlation values with a 95% confidence interval. Viewing distance 100 cm
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Figure 10. Performance of the IQMs on the CID:IQ dataset for a 100-cm viewing distance. The figure
shows Pearson correlation with a 95% confidence interval.

Non-linear Pearson correlation values with a 95% confidence interval. Viewing distance 4H

Metrics

0

0.2

0.4

0.6

0.8

1

P
e

a
rs

o
n

 C
o

rr
e

la
ti
o

n

PSN
R

PSN
R
-H

VS-M

PSN
R
-H

A

C
-P

SN
R
-H

A

C
-P

SN
R
-H

VS-M
SSIM

C
SSIM

C
SSIM

4

W
ASH

VIF
VIF

P
IF

C
U
Q
I

W
SN

R
SN

R
N
Q
M

M
SSIM

FSIM

G
M

SD

C
N
N
 Q

ua
lit
y

D
IV

IN
E

BR
IS

Q
U
E

AQ
I

AR
IS

M
C

C
PBD

VD
P 

SSIM
2

PSN
R
2

C
N
N
-V

D
 

O
ur

 M
et

ho
d

Figure 11. Performance of the IQMs on the VDID dataset for 4H viewing distance. The figure shows
Pearson correlation with a 95% confidence interval.

Non-linear Pearson correlation values with a 95% confidence interval. Viewing distance 6H
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Figure 12. Performance of the IQMs on the VDID dataset for 6H viewing distance. The figure shows
Pearson correlation with a 95% confidence interval.
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Table 8. Pearson (PCC) and Spearman (SROCC) correlation coefficients between the predicted quality
scores and the subjective ones for each viewing distance of CID:IQ and VDID2014. Highest values
per category are shown in bold and the highest one has a grey background.

CID:IQ VDID2014

50 cm (2.5*H) 100 cm (5*H) 4*H 6*H

Metric PCC SROCC PCC SROCC PCC SROCC PCC SROCC

Full-Reference

PSNR 0.625 0.625 0.676 0.670 0.837 0.884 0.873 0.895

PSNR-HVS-M 0.673 0.664 0.746 0.739 0.919 0.945 0.891 0.930

PSNR-HA 0.690 0.687 0.730 0.729 0.924 0.940 0.897 0.933

C-PSNR-HA 0.745 0.743 0.765 0.769 0.913 0.943 0.887 0.931

C-PSNR-HVS-M 0.734 0.728 0.790 0.788 0.891 0.943 0.861 0.926

SSIM 0.703 0.756 0.573 0.633 0.737 0.927 0.786 0.934

CSSIM 0.791 0.792 0.842 0.828 0.943 0.945 0.932 0.929

CSSIM4 0.666 0.636 0.774 0.753 0.940 0.934 0.939 0.921

WASH 0.547 0.524 0.408 0.404 0.476 0.476 0.427 0.432

VIF 0.723 0.720 0.631 0.626 0.517 0.694 0.541 0.700

VIFP 0.704 0.703 0.550 0.547 0.556 0.648 0.577 0.656

IFC 0.317 0.493 0.173 0.343 0.825 0.870 0.852 0.900

UQI 0.585 0.594 0.484 0.474 0.818 0.845 0.847 0.855

WSNR 0.572 0.560 0.673 0.654 0.931 0.937 0.949 0.952

SNR 0.640 0.636 0.688 0.671 0.809 0.853 0.854 0.871

NQM 0.483 0.469 0.664 0.632 0.944 0.928 0.949 0.936

MSSIM 0.748 0.827 0.718 0.789 0.746 0.930 0.785 0.936

FSIM 0.678 0.744 0.773 0.816 0.730 0.906 0.782 0.935

GMSD 0.709 0.743 0.733 0.767 0.563 0.902 0.589 0.905
CNN Quality 0.756 0.753 0.857 0.831 0.954 0.958 0.943 0.947

No-Reference

DIVINE 0.227 0.259 0.225 0.247 0.303 0.274 0.301 0.266

BRISQUE 0.499 0.520 0.444 0.491 0.704 0.708 0.707 0.709

AQI 0.152 0.236 0.450 0.311 0.355 0.242 0.341 0.263

ARISMC 0.095 0.133 0.015 0.114 0.718 0.730 0.712 0.734

CPBD 0.368 0.299 0.300 0.245 0.502 0.504 0.461 0.486

Distance-based
VDP (FR) 0.481 0.476 0.376 0.397 0.748 0.829 0.712 0.748
SSIM2 (FR) 0.424 0.549 0.586 0.682 0.764 0.942 0.838 0.959
PSNR2 (FR) 0.453 0.438 0.568 0.545 0.949 0.933 0.951 0.952
CNN-VD (NR) 0.858 0.855 0.858 0.826 0.884 0.871 0.914 0.898
Our method (NR) 0.870 0.867 0.870 0.846 0.932 0.907 0.940 0.922

Table 9. PCC and SROCC values whatever the viewing distance computed on CID:IQ.

Method PCC SROCC

PSNR 0.636 0.635

PSNR-HVS-M (FR) 0.696 0.686

PSNR-HA (FR) 0.694 0.694

C-PSNR-HA (FR) 0.737 0.740

C-PSNR-HVS-M (FR) 0.744 0.742

SSIM 0.623 0.680

CSSIM (FR) 0.798 0.793
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Table 9. Cont.

Method PCC SROCC

CSSIM4 (FR) 0.700 0.679

WASH (FR) 0.468 0.454

VIF 0.665 0.659

MSSIM 0.716 0.790

SSIM2 0.495 0.602

PSNR2 0.507 0.482

CNN Quality 0.717 0.775

AQI (NR) 0.221 0.273

ARISMC (NR) 0.039 0.122

CPBD (NR) 0.325 0.261

CNN-VD 0.853 0.839

Our method 0.876 0.865

Table 10. PCC and SROCC values whatever the viewing distance computed on VDID2014.

Method PCC SROCC

PSNR (FR) 0.837 0.868

PSNR-HVS-M (FR) 0.887 0.916

PSNR-HA (FR) 0.893 0.915

C-PSNR-HA (FR) 0.882 0.916

C-PSNR-HVS-M (FR) 0.859 0.914

SSIM (FR) 0.737 0.909

CSSIM (FR) 0.918 0.915

CSSIM4 (FR) 0.921 0.908

WASH (FR) 0.441 0.445

VIF (FR) 0.515 0.684

MSSIM (FR) 0.745 0.911

SSIM2 (FR) 0.801 0.955

PSNR2 (FR) 0.950 0.946

CNN Quality (FR) 0.929 0.931

AQI (NR) 0.341 0.244

ARISMC (NR) 0.704 0.720

CPBD (NR) 0.472 0.481

CNN-VD (NR) 0.900 0.888

Our method (NR) 0.930 0.912

4.3. Cross Dataset Evaluation

We evaluated the generalization ability of our method by training our model on
CID:IQ and testing it on VDID2014 without overlap between both. It is worth noting that
cross dataset evaluation in our context is more difficult than those traditionally carried
out in image quality assessment. Indeed, in addition to the difference in terms of content
between both datasets, the two viewing distances considered by each of the databases are
different. In other words, we evaluated here the efficiency of our method to predict the
quality of unknown image for unknown viewing distances.
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Table 11 shows the correlations obtained for both viewing distances as well as the
global performance. Compared to the individual evaluation, the performance decreased
but still high. The same PCC value was obtained for the two distances. In addition to
the viewing distances and the content (2.5*H and 5*H on CID:IQ against 4*H and 6*H on
VDID2014), this decrease is certainly due to the fact that certain degradation types were
not considered during the training step (White Noise on VDID2014 and Poisson Noise
on CID:IQ).

Table 11. Cross dataset evaluation using CID:IQ as training set and VDID2014 as test set.

PCC SROCC

4*H 0.885 0.889

6*H 0.885 0.910

Global performance 0.887 0.898

(whatever the distance) 0.887 0.898

5. Conclusions

We have proposed a novel CNN-based blind image quality method that predicts
subjective scores for different viewing distances was introduced. The method first selects
relevant patches from the image based on a scanpath predictor, further these patches are
used to extract features from a CNN based on VGG16. Feature vector concatenated with
the viewing distance is fed to a fully connected layer to predict the perceived quality. Our
method was evaluated on two different databases. Results obtained by our method were
compared to the state-of-the-art and showed its consistency with the subjective judgments.
A cross-dataset experiment was also carried out and showed the generalization ability of
our method to predict the quality of unknown images for unknown viewing distances.

In future work, the combination of several deep learning-based features should be
studied. In addition, the use of other techniques for incorporating attention, foveation [107]
and multi scale analysis can be seen as potential future work. The integration of more
viewing distances will also be investigated.
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